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particularly relevant factor determining investment in developing and transition 
economies. In this thesis, therefore, investment decisions under uncertainty are 
selected as an area of interest. 
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ÖZET 

Dünyanın en büyük metropollerinden biri olan İstanbul’un en önemli 
problemlerinden biri trafik ve ulaşım problemidir. Bu problemin çözümü toplu 
taşımayı cazip hale getirmektir. Toplu taşımayı cazip hale getirme sunulan taşıma 
sistemlerinin rahat, hızlı, güvenilir ve ucuz olmasına dayanır. Bu yüzden uzun 
dönemde tamamlanması planlanan raylı sistemlerin yatırımları en önemli projelerdir. 
Ayrıca toplu taşımayı zaman, ücret ve fiziksel yapısı açısından bir bütün olarak ele 
alırsak, raylı sistemler en büyük öneme sahiptir. 

Bu çalışmada, yapım aşamasında olan 4.64 km uzunluğunda üç istasyona sahip 
4.Levent-Maslak Sanayi Metro hattı incelenmiştir. Projenin iki amacı vardır: 
Birincisi yatırımın fizibilitesini araştırmak ikinciside en iyi yatırım politikasını 
belirlemek. Bu analizlerde belirli ve olasılıklı dinamik programlama kullanılmıştır. 

Proje hattında genel ulaşım şu anda otobüs ve minibüslerle sağlanmaktadır. Otobüs 
ve minibüsler toplam araç trafiğinin 12% sini oluşturmakta ve trafiğin yoğun olduğu 
saatlerde de toplam yolcuların 65% ini taşımaktadırlar. 

Bu hattın 2005 – 2009 yılları arasındaki 5 yıllık yapım aşamasından sonra 2010 
yılında faaliyete geçmesi planlanmaktadır. Bu yapım aşamasında, yatırımın en iyi 
zamanlaması araştırılmıştır. Daha sonra 2010 yılından 2034 yılına kadar olan 
dönemde de en iyi yatırım politikasına, yani her yıl alınması gereken tren sayısına, 
karar verilmiştir. 

Her yıl olasılıklı olarak yolcu sayısını gösteren 3 duruma ve her durum da satın 
alınması gereken tren sayısından oluşan bir karar kümesine sahiptir. En fazla kar 
sağlayan tren sayısı o durumun en iyi kararını oluşturmaktadır. Projenin maliyetleri 
metro hattının yapım maliyetleri, tren yatırım maliyetleri ve bunların çalışma ve 
bakım maliyetlerinden oluşmaktadır. Projenin gelirleri ise, otobüs, minibüs ve özel 
taşıtlardan sağlanan maliyet tasarruflarıdır. Metro projesinin faaliyete geçmesiyle 
trafiğin bir kısmının metroya geçmesi, hem yeni ve ihtiyaç duyulacak, ek otobüs ve 
minibüs yatırımlarında bir azalma, hem de bunların çalıştırılmasından kaynaklanan 
maliyetlerde bir azalma sağlayacaktır. Ayrıca seyehat süresinde de büyük bir azalma 
olacağından bundan sağlanan maliyet tasarruflarının büyük bir katkısı olacaktır. 
Nüfus artarken trafik de artacağından, metro projesi hızlı, güvenilir ve ucuz 
olmasından dolayı toplu taşımada en önemli yeri alacaktır. 

2010 – 2034 yılları arasındaki en iyi yatırım politikasını bulmak için Microsoft 
Visual Studio C++ 6.0 kullanılmıştır. Bu bilgisayar programından alınan sonuçlara 
göre 2029’dan 2034 yılına kadar 1 tren satın alınmasına karar verilmiş ve toplam 
$355,079,716 kar sağlanmıştır. Sonuçları elde ettikten sonra bazı parametrelerin 
etkilerini görebilmek için duyarlılık analizi yapılmıştır. Bu parametreler nüfustaki 
artış, faiz oranındaki azalma, geçiş olasılıklarındaki değişiklikler, tren yatırım 
maliyetinin düşmesi ve bunların farklı kombinasyonları olarak ele alınmıştır. 

Projenin iki amacı birbiriyle ilişkilidir: Eğer en iyi yatırım politikası kar 
sağlamıyorsa, projeye yatırım yapılmayacaktır. Proje kar sağladığından, yatırım 
yapılmaya karar verilmiş ve 5 yıllık yapım aşamasında yapılan yatırımların en iyi 
zamanlamaları bulunmuştur. Bu dönemde, her yıl iki seçenekten oluşmaktadır: Ya o 
yıl yatırım yapılacak ya da o yıl bekleyip gelecek yıl yatırım yapılacaktır. Yine 
dinamik programlama kullanarak, yatırımın en iyi zamanlamasına karar verilmiştir. 
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Tezin birinci bölümünde giriş kısmı yer almaktadır. Bu kısımda yatırım tanımı, 
özellikleri verilmiş, klasik teori olarak bilinen Orthodox Teorisi’nden ve yatırım 
analizlerinde yeni bir görüş olan Opsiyon Yaklaşımı’ndan bahsedilmiştir. Ayrıca 
geleneksel  “net şimdiki değer“ kuralının yanlış sonuçlar verebildiği gösterilmiştir. 

İkinci ve üçüncü bölümlerde, Dinamik Programlama ve Markov Karar Prosesleri’ 
nin tekniklerine yer verilmiştir. Dördüncü bölümde Stokastik Proseslere giriş 
yapılmış ve süreklilik gösteren stokastik prosesler üzerinde durulmuştur. Beşinci ve 
altıncı bölümler, yatırım fırsatları ve yatırımların en iyi zamanlamaları hakkında 
detaylı bilgiler içermektedir.  

Yedinci bölümde, dinamik programlama uygulamaları hakkında yapılan literatür 
araştırmalarına geniş bir biçimde yer verilmiş, sekizinci bölümde de 4.Levent-
Maslak Sanayi Metro hattında yapılan uygulama kısmı yer almıştır. Tez, sonuçlar 
kısmıyla sonlanmıştır. 
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SUMMARY 

One of the most important problems of İstanbul, which is one of the largest cities in 
the world, is transportation and traffic. The solution to this problem is attracting of 
mass transportation. Attracting mass transportation is based on the following 
characteristics: comfort, speed, reliability and cheapness. Therefore, the investments 
of railway systems that are planned for completion in a long time are the most 
important projects. Moreover, when we take into consideration the integration of the 
time, fee and physical structure of the mass transportation, railway systems have the 
most significance.  

In this thesis, 4.Levent – Maslak Sanayi Subway Project was analyzed, which 
consists of 4.64 km involving three stations. The objective of the thesis is twofold: 
Investigate the feasibility of the investment and decide on the optimal investment 
policy by using probabilistic dynamic programming. 

In this project line, public transport is provided by buses and minibuses. Buses and 
minibuses, including those used by companies and schools, account for only 12% of 
total vehicular traffic and carry about 65% of total passengers in the peak hour.  

The subway project is planned to be in operation in 2010 right after a construction 
period of 5 years between 2005 and 2009. In this part, the feasibility of the project 
was investigated. Then, from year 2010 to year 2034, the optimal investment policy, 
the required number of trains to be purchased in each investment epoch, was 
determined. In each year, we have 3 states that represent the number of passengers of 
Yenikapı-Maslak Sanayi Line which is the extension of our project line. Moreover, 
each state has a decision set which is formed from the number of trains to be 
purchased and the number of trains which provides the maximum profit is our 
decision in that state. The costs of the project are construction costs of the subway 
line, investment costs of the trains and their operating and maintenance costs. And 
the benefits of the project are the costs savings provided from the buses, minibuses 
and cars and revenue of fee provided from the trains decided to be bought. The 
Subway project will reduce the investment required for new and additional buses and 
minibuses that would be required to accommodate the peak hour traffic demand. 
Therefore, this project will reduce the vehicle operating costs of buses, minibuses 
and cars, and provide cost savings of road maintenance and accident costs, because 
some traffic will be diverted from road to rail. Furthermore, the travel time to be 
saved by the transport users with the construction of project line constitutes the most 
important part of the cost savings. Since the traffic will increase when the population 
increases, the subway project will take the more important place in the mass 
transportation because of speed, reliability, comfort and cheapness. 

To find the optimal investment rule, we used probabilistic dynamic programming 
since the states are not known with deterministically. The Microsoft Visual Studio 
C++ 6.0 was used for developing computer program. According to the computer 
program, it was decided to purchase 1 train from the year 2029 to year 2034 with 
total profit of $355,079,716. After we got the results, a sensitivity analysis was 
conducted to determine the significance of effects of possible scenarios with respect 
to some key parameters. These included increases in population, decreases in interest 
rate, changes of transition probabilities, etc. and their various combinations. 
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The aims of the project are interrelated: If the optimal investment policy is not 
profitable, then do not invest in the project. Then, since the project was found as 
profitable, we decided to invest in the project and tried to determine the optimal 
timing of the investments made in the construction period. In the 5 years construction 
period, we have two choices in each year: The first is investing in that year and the 
second is waiting in that year and investing in the next year. Again by using dynamic 
programming, we determined the optimal timing of the investments. 

The first chapter of the thesis is an introduction part. Here, the definition of the 
investment was given and the option approach that is the new view in the investment 
analysis and the orthodox theory that is known as the neoclassical theory were 
described. Moreover, it was shown that the traditional “net present value” rule can 
give wrong answers. The reason is that this rule ignores the irreversibility and the 
option of delaying investment. In the second and third chapters, the techniques of the 
Dynamic Programming and Markov Decision Processes were studied. The fourth 
chapter is an introduction to stochastic processes. In this part, continuous-time 
stochastic processes were explained. In the fifth and sixth chapters, the techniques 
and detailed information were studied about the investment opportunities and the 
optimal timing of the investments. In the seventh chapter, the literature research 
about dynamic programming applications took part and then my application was 
described in detailed. Finally, the thesis was ended with main conclusions.
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1. INTRODUCTION 

1.1 A new view of investment 

In economics investment is defined as the act of incurring an immediate cost in the 

exception of future rewards. Firms that construct plants and install equipment, 

merchants who lay in a stock of goods for sale, and persons who spend time on 

vocational education are all investors in this sense. Somewhat less obviously, a firm 

that shuts down a loss-making plant is also “investing”:  the payments it must make 

to extract itself from contractual commitments, including severance payments to 

labor, are the initial expenditure, and the prospective reward is the reduction in future 

losses. 

Viewed from this perspective, investment decisions are ubiquitous. Purchase of any 

book about investment decisions is an investment. The reward will be an improved 

understanding of investment decisions if you are an economist, and an improved 

ability to make such decisions in the course of your future carrier if you are a 

business school student. 

Most investment decisions share three important characteristics in varying degrees. 

First, the investment is partially or completely irreversible. In other words, the initial 

cost of investment is at least partially sunk; you can not recover it even if you change 

your mind. Second, there is uncertainty over the future rewards from the investment. 

The best you can do is to assess the probabilities of the alternative outcomes that can 

mean greater or smaller profit (or loss) for your venture. Third, you have some 

leeway about the timing of your investment. You can postpone action to get more 

information (but never, of course, complete certainty) about the future.  

These three characteristics interact to determine the optimal decisions of investors. 

The orthodox theory of investment has not recognized the important qualitative and 

quantitative implications of the interaction between irreversibility, uncertainty, and 

the choice of timing. Compared to the predictions of most of the earlier models, real 

world investment seems much less sensitive to interest rate changes and tax policy 

changes and much more sensitive to volatility and uncertainty over the economic 

environment. The new view resolves these anormalies, and in the process offers 

some guidance for designing more effective public policies concerning investment. 
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1.2 The Orthodox Theory 

How should a firm, facing uncertainty over future market conditions, decide whether 

to invest in a new factory? Most economics and business school students are taught a 

simple rule to apply to problems of this sort. First, calculate the present value of the 

expected stream of profits that this factory will generate. Second, calculate the 

present value of the stream of expenditures required to build the factory. Finally, 

determine whether the difference between the two – the net present value (NPV) of 

the investment – is greater than zero. If it is, go ahead and invest. 

Of course, there are issues that arise in calculating this net present value. Just how 

should the expected stream of profits from a new factory be estimated? How should 

inflation be treated? And what discount rate (or rates) should be used in calculating 

the net present values? Resolving issues like these are important topics in courses in 

corporate finance, and especially capital budgeting, but the basic principle is fairly 

simple – calculate the NPV of an investment project and see whether it is positive. 

The net present value is also the basis for the nonclassical theory of investment as 

taught to undergraduate and graduate students of economics. In the new view the rule 

expressed using the standard incremental or marginal approach of the economist is 

found: invest until the value of an incremental unit of capital is just equal to its cost. 

Again, issues arise in determining the value of an incremental unit of capital, and in 

determining its cost. For example, what production structure should be posited? How 

should taxes and depreciation be treated? 

Much of the theoretical and empirical literature on the economics of investment deals 

with issues of this sort. There are two essentially equivalent approaches are 

mentioned. One, following Jorgenson (1963), compares the per-period value of an 

incremental unit of capital (its marginal product) and an “equivalent per-period rental 

cost” or “user cost” that can be computed from the purchase price, the interest and 

depreciation rates, and applicable taxes. The firm’s desired stock of capital is found 

by equating the marginal product and the user cost. The actual stock is assumed to 

adjust to the ideal, either as an ad hoc lag process, or as the optimal response to an 

explicit cost of adjustment.  

The other formulation, due to Tobin (1969), compares the capitalized value of the 

marginal investment to its purchase cost. The value can be observed directly if the 
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ownership of the investment can be traded in a secondary market; otherwise it is an 

imputed value computed as the expected present value of the stream of profits it 

would yield. The ratio of this to the purchase price (replacement cost) of the unit, 

called Tobin’s q, governs the investment decision. Investment should be undertaken 

or expanded if q exceeds 1, it should not be undertaken, and existing capital should 

be reduced, if q < 1. The optimal rate of expansion or contraction is found by 

equating the marginal cost of adjustment to its benefit, which depends on the 

difference between q and 1. Tax rules can alter this somewhat, but the basic principle 

is similar. In all, the underlying principle is the basic net present value rule. 

1.3 The Option Approach 

The net present value rule, however, is based on some implicit assumptions that are 

often overlooked. Most important, it assumes that either the investment is reversible, 

that is, it can somehow be undone and the expenditures recovered should market 

conditions turn out to be worse than anticipated, or, if the investment is irreversible, 

it is now or never proposition, that is, if the firm does not undertake the investment 

now, it will not be able to in the future. 

Although some investments meet these conditions, most do not. Irreversibility and 

the possibility of delay are very important characteristics of most investments in 

reality. As a rapidly growing literature has show, the ability to delay irreversible 

investment expenditure can profoundly affect the decision to invest. It also 

undermines the simple net present value rule, and hence the theoretical foundation of 

standard neoclassical investment models. The reason is that a firm with an 

opportunity to invest is holding an “option” analogous to a financial call option – it 

has the right but not the obligation to buy an asset at some future time of its 

choosing.  When a firm makes irreversible investment expenditure, it exercises or 

“kills” its option to invest. It gives up the possibility of waiting of new information to 

arrive that market conditions change adversely. This lost option value is an 

opportunity cost that must be included as part of the cost of the investment. As a 

result, NPV rule “invest when the value of a unit of capital is at least as large as its 

purchase and installation cost” must be modified. The value of the unit must exceed 

the purchase and installation cost, by an amount equal to the value of keeping the 

investment option alive.  
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Recent studies have shown that this opportunity cost of investing can be large, and 

investment rules that ignore it can be grossly in error. Also, this opportunity cost is 

highly sensitive to uncertainty over the future value of the project, so that changing 

economic conditions that affect the perceived riskness of future cash flows can have 

a large impact on investment spending, larger than, say, a change in interest rates. 

This may help to explain why neoclassical investment theory has so far failed to 

provide good empirical models of investment behavior, and has led to overly 

optimistic forecasts of effectiveness of interest rate and tax policies in stimulating 

investment. 

The option insight also helps explain why the actual investment behavior of firms 

differs from the received wisdom taught investment behavior of firms differs from 

the received wisdom taught in business schools. Firms invest in policies that are 

expected to yield a return in excess of a required. Firms do not invest until price rises 

substantially above long-run average cost.  On the downside, firms stay in business 

for lengthy periods while absorbing operating losses, and price can fall substantially 

below average variable cost without inducing disinvestment or exit. This also seems 

to conflict with standard theory, but it can be explained once irreversibility and 

option value are accounted for. 

Of course, one can always redefine NPV by subtracting from the conventional 

calculation the opportunity cost of exercising the option to invest, and then say that 

the rule “invest if NPV is positive” holds once this correction has been made. 

However, to do so is to accept the criticism. To highlight the importance of option 

values, keep them separate from the conventional NPV, if others prefer to continue to 

include all relevant option values in their definition of NPV. [1, 5] 

1.4 Irreversibility and the Ability to Wait 

What makes an investment expenditure a sunk cost and thus irreversible? Investment 

expenditures are sunk costs when they are firm or industry specific. For example, 

most investments in marketing and advertising are firm specific and can not be 

recovered. Hence they are clearly sunk costs. A steel plant, on the other hand, is 

industry specific – it can only be used to produce steel. One might think that because 

in principle the plant could be sold to another steel company, the investment 

expenditure is recoverable and is not a sunk cost. This is incorrect. If the industry is 
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reasonably competitive, the value of the plant will be about the same for all firms in 

the industry, so there would be little to gain from selling it. For example, if the price 

of steel falls so that a plant turns out, exposes, to have been a “bad” investment for 

the firm that built it, it will also be viewed as a bad investment by other steel 

companies, and the ability to sell the plant (or any other industry-specific capital) 

should be viewed as largely a sunk cost. 

Even investments that are not firm or industry specific are often partly irreversible 

because buyers in markets for used machines, unable to evaluate the quality of an 

item, will offer a price that corresponds to the average quality in the market. Sellers, 

who know the quality of the item they are selling, will be reluctant to sell an above-

average item. This will lower the market average quality, and therefore the market 

price. For example, office equipment, cars, trucks, and computers are not industry 

specific, and although they can be sold to companies in other industries, their resale 

value will be well below their purchase cost, even if they are almost new. 

Irreversibility can also arise because of government regulations or institutional 

arrangements. For example, capital controls may make it impossible for foreign (or 

domestic) investors to sell assets and reallocate their funds and investments in new 

workers may be partly irreversible because of high costs of hiring, training, and 

firing. Hence most major capital investments are in large part irreversible. 

Of course, firms do not always have the opportunity to delay their investments. For 

example, there can be occasions in which strategic considerations make it imperative 

for a firm to invest quickly and thereby preempt investment by existing or potential 

competitors. However, in most cases, delay is at least feasible. There may be a cost 

to delay – the risk of entry by other firms or simply foregone cash flows – but this 

cost must be weighed against the benefits of waiting for new information. Those 

benefits are often large. 

An irreversible investment opportunity is much like a financial call option. A call 

option gives the holder the right, for some specified amount of time, to pay an 

exercise price and in return receive an asset (e.g. a share of stock) that has some 

value. Exercising the option is irreversible; although the asset can be sold to another 

investor, one can not retrieve the option or the money that was paid to exercise it. A 

firm with an investment opportunity likewise has the option to spend money         
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(“exercise price”), now or in the future, in return for an asset (e.g. a project) of some 

value. Again, the asset can be sold to another firm, but the investment is irreversible. 

As with the financial call option, this option to invest is valuable in part because the 

future value of the asset obtained by investing is uncertain. If the asset rises in value, 

the net payoff from investing rises. If it falls in value, the firm need not invest, and 

will only lose what it spent to obtain the investment opportunity.  

Finally one might ask how firms obtain their investment opportunities, that is, 

options to invest, in the first place. Sometimes investment opportunities result from 

patents, or ownership of land or natural resources. More generally, they arise from a 

firm’s managerial resources, technological knowledge, reputation, market position, 

and possible scale, all of which may have been built over time, and which enable the 

firm to productively undertake investments that individuals or other firms can not 

undertake. Most important, these options to invest are valuable. Indeed, for most 

firms, a substantial part of their market value is attributable to their options to invest 

and grow in the future, as opposed to the capital they already have in place. Most of 

the economic and financial theory of investment has focused on how firms should 

(and do) exercise their options to invest. To better understand investment behavior it 

may be just as important to develop better models of how firms obtain investment 

opportunities. [1, 5, 18] 
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2. DYNAMIC PROGRAMMING 

Dynamic Programming is a useful mathematical technique for making a sequence of 

interrelated decisions. It provides a systematic procedure for determining the optimal 

combination of decisions. 

In contrast to linear programming, there is not a standard mathematical formulation 

of the dynamic programming problem. Rather, dynamic programming is a general 

type of approach to problem solving, and the particular equations used must be 

developed to fit each situation. Therefore, a certain degree of ingenuity and insight 

into the general structure of dynamic programming problems is required to recognize 

when and how a problem can be solved by dynamic programming procedures.[4] 

Moreover, dynamic programming is a branch of applied mathematics rather than as 

something more specific. The subject’s coherence results from the fact that it is 

pervaded by several themes. We shall see that these themes include the concept of 

states, the principle of optimality, and functional equations. [25] 

2.1 Characteristics of Dynamic Programming Problems 

The basic features that characterize dynamic programming problems are; 

1. The problem can be divided into stages, with a policy decision required at 

each stage. Dynamic programming problems require making a sequence of 

interrelated decisions, where each decision corresponds to one stage of the 

problem. 

2. Each stage has a number of states associated with the beginning of that stage. 

The number of states may be either finite or infinite. 

3. The effect of the policy decision at each stage is to transform the current state 

to a state associated with the beginning of the next stage (possibly according 

to the probability distribution). Dynamic programming problems can be 

interpreted in terms of the networks. Each node would correspond to a state. 

The network could consist of columns of nodes, with each column 

corresponding to a stage, so that the flow from anode can go only to a node in 

the next column to the right. The links from a node to nodes in the next 

column correspond to the possible policy decisions on which state to go to 

next. The value assigned to each link usually can be interpreted as the 
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immediate contribution to the objective function from making that policy 

decision. In most cases, the objective corresponds to finding either the 

shortest or the longest path through the network.  

4. The solution procedure is designed to find an optimal policy for the overall 

problem, i.e., a prescription of the optimal policy decision at each stage for 

each of the possible states. Dynamic programming provides the policy 

prescription of what to do under every possible circumstance (which is why 

the actual decision made upon reaching a particular state at a given stage is 

referred to as a policy decision).  

5. Given the current state, an optimal policy for the remaining stages is 

independent of the policy decisions adopted in previous stages. Therefore, the 

optimal immediate decision depends on only the current state and not on how 

you got there. This is the principle of optimality for dynamic programming. 

Any problem lacking this property cannot be formulated as a dynamic 

programming problem.  

6. The solution procedure begins by finding the optimal policy for the last stage. 

The optimal policy for the last stage prescribes the optimal policy decision 

for each of the possible states at that stage. 

7. A recursive relationship that identifies the optimal policy for stage n, given 

the optimal policy for stage 1n + , is available. Therefore finding the optimal 

policy decision when you start in state s at stage n requires finding the 

minimizing value of nx . For a problem, the corresponding minimum cost is 

achieved by using this value of nx  and then following the optimal policy 

given when you start in state nx  at stage 1n + . The precise form of the 

recursive relationship differs somewhat among dynamic programming 

problems. [4] 

 N = number of stages 

 n = label for current stage ( 1, 2,..., )n N=  

ns = current state for stage n 

nx =decision variable for stage n 

*
nx  = optimal value of nx  (given ns ) 
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( , )n n nf s x = Contribution of stages , 1,...,n n N+  to the objective function if 

system starts in state ns  at stage n, immediate decision is nx , and optimal 

decisions are made thereafter. 

* *( , )n n n nf f s x= . 

The recursive relationship will always be of the form 

* *max{ ( , )} or min{ ( , )},n n n n n n n n
xx nn

f f s x f f s x= =  

where ( , )n n nf s x would be written in terms of *
1, , ( ),n n n ns x f s +  and probably 

some measure of the immediate contribution of nx  to the objective function. 

It is the inclusion of *
1 1( )n nf s+ + on the right-hand side, so that *( )n nf s is 

defined in terms of *
1 1( )n nf s+ + that makes the expression for *( )n nf s  a 

recursive relationship. 

8. When we use this recursive relationship, the solution procedure starts at the 

end and moves backward stage by stage - each time finding the optimal 

policy for that stage - until it finds the optimal policy starting at the initial 

stage. This optimal policy immediately yields an optimal solution for the 

entire problem, namely, *
1x  for the initial state 1s , then *

2x  for the resulting 

state 2s  then *
3x  for the resulting state 3s , and so forth to *

Nx  for the resulting 

Ns . [4] 

2.2 Deterministic Dynamic Programming 

In deterministic problems, the state at the next stage is completely determined by the 

state and policy decision at the current stage. The probabilistic case, where there is a 

probability distribution for what the next state will be, is discussed in the next 

section. 

Deterministic dynamic programming can be described diagrammatically as shown in 

the following Figure 2.1.  Thus, at stage n the process will be in some state ns . 

Making policy decision nx  then moves the process to some state 1ns +  at stage 1n + . 
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The contribution thereafter, to the objective function under an optimal policy has 

been previously calculated to be *
1 1( )n nf s+ + . The policy decision nx  also makes some 

contribution to the objective function. Combining these two quantities in an 

appropriate way provides ( , )n n nf s x , the contribution of stages n onward to the 

objective function. Optimizing with respect to nx  then gives * *( ) ( , )n n n n nf s f s x= . 

After *
nx  and *( )n nf s are found for each possible value of ns , the solution procedure is 

ready to move back one stage.  

One way of categorizing deterministic dynamic programming is by the form of the 

objective function. For example, the objective might be to minimize the sum of the 

contributions from the individual stages, or to maximize such a sum, or to minimize 

a product of such terms, and so on. Another categorization is in terms of the nature of 

the set of states for the respective stages. In particular, states ns  might be 

representable by a discrete state variable or by a continuous state variable, or perhaps 

a state vector (more than one variable) is required. Similarly, the decision variables  

1 2( , ,..., )Nx x x  also can be either discrete or continuous. [4, 25] 

                                       Stage n                                      Stage 1n +  

                        State:                                 nx  

                                                          Contribution  

                                                                 of nx  

                       Value: ( , )n n nf s x                                     *
1 1( )n nf s+ +  

Figure 2.1: The Basic Structure of Deterministic Dynamic Programming 

2.3 Probabilistic Dynamic Programming 

Probabilistic dynamic programming differs from deterministic dynamic 

programming in that the state at the next stage is not completely determined by the 

state and policy decision at the current stage. Rather, there is a probability 

distribution for what the next state will be. However, this probability distribution still 

is completely determined by the state and policy decision at the current stage. The 

resulting dynamic programming is described diagrammatically in Figure 2.2. For the 

purposes of this diagram, we let S denote the number of possible states at stage 1n +  

ns  1ns +
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and label these states on the right side as1,2,3,..., S . The system goes to state i with 

probability ( 1, 2,..., )ip i S= given state ns  and decision nx  at stage n . If the system 

goes to state  i, iC  is the contribution of stage n to the objective function.  

When Figure 2.2 is expanded to include all the possible states and decisions at all the 

stages, it is sometimes referred to as a decision tree. If the decision tree is not too 

large, it provides a useful way of summarizing the various possibilities. Because for 

the probabilistic structure, the relationship between ( , )n n nf s x  and the *
1 1( )n nf s+ +  

necessarily is somewhat more complicated than that for the deterministic dynamic 

programming. The precise form of this relationship will depend upon the form of the 

over all objective function. To illustrate, suppose that the objective is to minimize the 

expected sum of the contributions from the individual stages. In this case, ( , )n n nf s x  

represents the minimum expected sum from stage n onward, given that the state and 

policy decision at stage n are ns  and nx  respectively. Consequently,  

*
1

1

( , ) [ ( )]
S

n n n i i n
i

f s x p C f i+
=

= +∑    with    *
1 1 1

1
( ) min ( , )n n n

xn

f i f i x+ + +
+

=  

where this minimization is taken over the feasible values of 1nx + . 

 

Figure 2.2: The Basic Structure of Probabilistic Dynamic Programming 

 

nS

1 

2 

S 

xn 

p1 

c1 

ps 

p2 

c2 

cs 

Decision 

Stage n Stage n+1 

Probabilities 

Contribution 
for stage n 

( , )n n nf s x  

*
1(1)nf +  

*
1(2)nf +  

*
1( )nf S+  

. 

. 

. 
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3. MARKOV DECISION PROCESSES 

Markov chains that are observed are only at discrete points in time (e.g., the end of 

the day) rather than continuously. [4] Each time it is observed, the Markov chain can 

be in any one of a number of states. Given the current state, a (one-step) transition 

matrix gives the probabilities of what the state will be next time. Given this transition 

matrix, steady-state probabilities are found for what state it is in. [4] 

Many important systems (e.g., many queuing systems) can be modeled as either a 

discrete time or continuous time Markov chain. It is useful to describe the behavior 

of such a system in order to evaluate its performance. However, it may be even more 

useful to design the operation of the system so as to optimize its performance. 

In this part, it is focused on how to design the operation of a discrete time Markov 

chain so as to optimize its performance. Therefore, rather than passively accepting 

the design of the Markov chain and the corresponding fixed transition matrix. For 

each of the possible state of the Markov chain, a decision is made about which one of 

several alternative actions should be taken in that state. The action chosen affects the 

transition probabilities as well as both the immediate costs (or rewards) and 

subsequent costs (or rewards) from operating the system. We want to choose the 

optimal actions or the respective states when considering both immediate and 

subsequent costs. The decision process for doing this is referred to as a Markov 

decision process. [4] 

3.1 A Model for Markov Decision Processes 

The model for the Markov decision processes can be summarized as follows: 

1. The state i of a discrete time Markov chain is observed after each transition 

( 0,1,..., )i M=  

2. After each observation, a decision (action) k is chosen from a set of K 

possible decisions ( 1, 2,..., ).k K=  (some of the K decisions may not be 

relevant for some of the states.) 

3. If decision id k=  is made in state i, an immediate cost is incurred that has an 

expected value ikC . 
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4. The decision id k=  in state i determines what the transition probabilities will 

be for the next transition from state i. Denote these transition probabilities 

by ( )ijp k , for 0,1,...,j M= . 

5. A specification of the decisions for the respective states 0 1( , ,..., )Md d d  

prescribes a policy for the Markov decision process. 

6. The objective is to find an optimal policy according to some cost criterion 

which considers both immediate costs and subsequent costs that result from 

the future evolution of the process. One common criterion is to minimize the 

(long run) expected average cost per unit time. (An alternative criterion is 

considered in [4]) 

The general model qualifies to be a Markov decision process because it possesses the 

Markovian property that characterizes any Markov process. In particular, given the 

current state and decision, any probabilistic statement about the future of the process 

is completely unaffected by providing any information about the history of the 

process. This Markovian property holds here since (1) we are dealing with a Markov 

chain, (2) the new transition probabilities depend on only the current state and 

decision. 

The description of a policy implies two convenient (but unnecessary) properties that 

they will assume through out this chapter. One property is that a policy is stationary; 

i.e., whenever the system is in state i, the rule for making the decision always is the 

same regardless of the value of the current time t. The second property is that a 

policy is deterministic, i.e., whenever the system is in state i, the rule for making the 

decision definitely chooses one particular decision. [4] 

3.2 Linear Programming and Optimal Policies 

The past section described the main kind of policy (called a stationary, deterministic 

policy) that is used by Markov decision processes. It was seen in [4] that any such 

policy R can be viewed as a rule that prescribes decision ( )id R  whenever the system 

is in state i, for each 0,1,..., .i M=  Thus, R is characterized by the values 

0 1{ ( ), ( ),..., ( )}.Md R d R d R  
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Equivalently, R can be characterized by assigning values 0ikD =  or 1 in the matrix 

State i   

0

1

.

M

 

01 02 0

11 12 1

1 2

...

...

... ... ... ...

...

K

K

M M MK

D D D

D D D

D D D

 
 
 
 
 
 

 

Where each ( 0,1,..., and 1,2,..., )ikD i M k K= =  is defined as  

1 if decision is to be made in state

0 otherwiseik

k i
D

 
=  
 

 

Therefore, each row in the matrix must contain a single 1 with the rest of the 

elements 0s.  

3.2.1 A Linear Programming Formulation 

The convenient decision variables (denoted here by iky ) for a linear programming 

model are defined as follows [4]. For each  0,1,...,i M=  and 1, 2,...,k K= , let iky  be 

the steady-state unconditional probability that the system is in state i and decision k 

is made; i.e. 

iky = P {state = i and decision = k}. 

Each iky  is closely related to the corresponding ikD  since, from the rules of 

conditional probability, 

,ik i iky Dπ=  

Where iπ  is the steady state probability that the Markov chain is in state i. 

furthermore,  

1

K

i ik
k

yπ
=

=∑  

So that 



 16 

1

ik ik
ik K

i
ik

k

y y
D

y
π

=

= =

∑
 

There exist three sets of constraints on iky : 

1. 
0

1
M

i
i

π
=

=∑      so that     
0 1

1.
M K

ik
i k

y
= =

=∑∑   

2. From results on steady state probabilities 

0

M

j i ij
i

pπ π
=

=∑  

So that 

1 0 1

( ),
K M K

ik ik ij
k i k

y y p k
= = =

=∑ ∑∑     For   1,2,..., .j K=  

3. 0,iky ≥   For  0,1,...,i M=  and 1, 2,...,k K= . 

The long run expected average cost per unit time is given by 

0 1 0 1

( ) .
M K M K

i ik ik ik ik
i k i k

E C C D C yπ
= = = =

= =∑∑ ∑∑  

Hence the linear programming model is to choose the iky  so as to 

Minimize   
0 1

M K

ik ik
i k

Z C y
= =

=∑∑  

Subject to the constraints 

1. 
0 1

1.
M K

ik
i k

y
= =

=∑∑  

2. 
1 0 1

( ) 0,
K M K

ik ik ij
k i k

y y p k
= = =

− =∑ ∑∑   for  0,1,...,j M=  
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3. 0,iky ≥     For  0,1,...,i M=  and 1, 2,...,k K= . 

Thus this model has 2M +  functional constraints and ( 1)K M + decision variables. 

[Actually (2) provides one redundant constraint, so any one of these 1M +  

constraints can be deleted.] 

Because this is a linear programming model, it can be solved by the simplex method. 

Once the iky  values are obtained, each ikD is found from  

1

ik ik
ik K

i
ik

k

y y
D

y
π

=

= =

∑
 

The key conclusion is that the optimal policy found by the simplex method is 

deterministic rather than randomized. Thus, allowing policies to be randomized does 

not help at all in improving the final policy. However, it serves an extremely useful 

role in this formulation by converting integer variables (the ikD ) to continuous 

variables so that linear programming (LP) can be used. [4] 

3.3 Policy Improvement Algorithm for Finding Optimal Policies 

Linear programming can be used to solve vastly larger problems, and software 

packages for the simplex method are ver widely available. [4] 

The second popular method is namely a policy improvement algorithm. The key 

advantage of this method is that it tends to be very efficient, because it usually 

reaches an optimal policy in a relatively small number of iterations. 

If the current state i of the system and the decision ( )id R k=  when operating under 

policy R, two things occur. An (expected) cost ikC  is incurred that depends upon 

only the observed state of the system and the decision made. The system moves to 

state j at the next observed time period, with transition probability given by ( ).ijp k  

If; in fact, state j influences the cost that has been incurred, and then ikC is calculated 

as follows. Let 

( )ijq k = Expected cost incurred when the system is in state i, decision k is 

made and the system evolves to state j at the next observed time period. 
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Then,      
0

( ) ( ).
M

ik ij ij
j

C q k p k
=

= ∑  

Preliminaries 

Referring to the description and notation for Markov decision processes, for any 

given policy R , it was shown that there exist values 0 1( ), ( ), ( ),...., ( )Mg R v R v R v R  

that satisfy  

 
0

( ) ( ) ( ) ( ), 0,1, 2,...,
M

i ik ij j
j

g R v R C p k v R i M
=

+ = + =∑  

( )n
iv R was denoted by the total expected cost of a system starting in state i 

(beginning the first observed time period) evolving for n time periods. It was shown 

that by the following recursive function 

1

0

( ) ( ) ( ), 0,1, 2,..., .
M

n n
i ik ij j

j

v R C p k v R i M−

=

= + =∑  

where 1( )i ikv R C=  for all i. The expected average cost per unit time following any 

policy R can be expressed as, 
0

( ) ,
M

i ik
i

g R Cπ
=

=∑  which is independent of the starting 

state i. [2, 3, 4] 

3.3.1 The Policy Improvement Algorithm 

The algorithm begins by choosing an arbitrary policy 1R . It then solves the system of 

equations to find the values of 1 0 1 1( ), ( ), ( ),..., ( )Mg R v R v R v R−  [with ( ) 0Mv R = ]. 

This step is called value determination. A better policy, denoted by 2R , is then 

constructed. This step is called policy improvement. These two steps constitute an 

iteration of the algorithm. Using the new policy 2R , iteration is performed. These 

iterations continue until two successive iterations lead to identical policies, which 

signify that the optimal policy has been obtained.  
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3.3.2 Summary of the Policy Improvement Algorithm 

Initialization: Choose an arbitrary initial trial policy 1R . Set 1.n =  

Iteration n: 

Step 1: Value determination: For policy nR , use ( ),ij ikp k C  and ( ) 0M nv R =  to solve 

the system of 1M +  equations 

0

( ) ( ) ( ) ( ), 0,1, 2...
M

n ik ij j n i n
j

g R C p k v R v R i M
=

= + − =∑  

for all 1M +  unknown values of 1 0 1 1( ), ( ), ( ),..., ( )Mg R v R v R v R− . 

Step 2: Policy Improvement: Using the current values of ( )i nv R  computed for 

policy nR , find the alternative policy 1nR +  such that, for each state i, 1( )i nd R k+ =  is 

the decision that minimizes 

0

( ) ( ) ( )
M

ik ij j n i n
j

C p k v R v R
=

+ −∑  

For each state i, 

1,2,... 0

Minimize [ ( ) ( ) ( )]
M

ik ij j n i n
k k j

C p k v R v R
= =

+ −∑   

And then set 1( )i nd R +  equal to the minimizing value of k. This procedure defines a 

new policy 1nR + . 

Optimality test: The current policy 1nR +  is optimal if this policy is identical to 

policy nR . If it is, stop. Otherwise, reset 1n n= + and perform iteration. [4,25] 

Two key properties of this algorithm are 

1. 1( ) ( ), 1,2,...n ng R g R n+ ≤ =  

2. The algorithm terminates with an optimal policy in a finite number of 

iterations. 
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3.4 Discounted Cost Criterion 

This measure uses a discount factorα , where 0 1α< < . The discount factor α  can 

be interpreted as equal to 1/ (1 ),i+  where i is the current interest rate per period. 

Thus, α  is the present value of one unit of cost m periods in the future.  

This discounted cost criterion becomes preferable to thee average cost criterion when 

the time periods for the Markov chain are sufficiently long that the time value of 

money should be taken into account in adding costs in future periods to the cost in 

the current period. Another advantage is that the discounted cost criterion can readily 

be adapted to dealing with a finite-period Markov decision process where the 

Markov chain will terminate after a certain number of periods.[2,3,4] 

Both the policy improvement technique and the linear programming approach can be 

applied with minor adjustments as follows: For example in the policy improvement 

algorithm: 

Let ( )n
iV R  be the expected total discounted cost; 

1

0

( ) ( ) ( ),
M

n n
i ik ij j

j

V R C p k V Rα −

=

= + ∑  

with 1( )i ikV R C= . As n approaches infinity, this recursive function converges to  

0

( ) ( ) ( ), 0,1,2,...,
M

i ik ij j
j

V R C p k V R i Mα
=

= + =∑  

Where ( )iV R  can now be interpreted as the expected total discounted cost when the 

process starts in state i and continues indefinitely. The detailed formulations are 

found in [4,25].  

3.4.1 Finite-Period Markov Decision Processes and the Method of Successive 

Approximations 

This method is for quickly finding at least an approximation to an optimal policy. We 

have assumed that Markov Decision process will be indefinitely, and we have sought 

an optimal policy for such a process. The basic idea of the method of successive 

approximations is to instead find an optimal policy for the decisions to make in the 
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first period when the process has only n time periods to go before termination, 

starting with 1,n =  then 2n = and so on. As n grows large, the corresponding 

optimal policies will converge to an optimal policy for the infinite period problem of 

interest. Thus, the policies obtained for 1, 2,3....n =  provide successive 

approximations that lead to the desired optimal policy. 

In particular, for 0,1,...,i M= , let 

n
iV = Expected total discounted cost of following an optimal policy given that 

process starts in state i and has only n periods to go. 

n
iV  is obtained from the recursive relationship by the principle of optimality for 

dynamic programming, 

{ }

1

0

1

min ( ) , 0,1,2,...,

min , 0,1,2,..., .

M
n n

i ik ij j
k

j

i ik
k

V C p k V i M

V C i M

α −

=

  
= + = 

  

= =

∑
 

To minimizing value of k provides the optimal decision to make in the first period 

when the process starts in state i. 

Although the method of successive approximations may not lead to an optimal policy 

for the infinite-period problem after only a few iterations, it has one distinct 

advantage over the policy improvement algorithm and linear programming 

techniques. It never requires solving a system of simultaneous equations, so each 

iteration can be performed simply and quickly.  

Furthermore, if the Markov decision process actually does have just n periods to go, 

n iterations of this method definitely will lead to an optimal policy. (For an n–period 

problem, it is permissible to set  1α =  , that is, no discounting, in which case the 

objective is to minimize the total expected cost over n periods. [4]) 
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4.  STOCHASTIC PROCESSES AND ITO’S LEMMA 

4.1 Stochastic Processes 

A stochastic process is a variable that evolves over time in a way that is at least in 

part random. The temperature in downtown Boston is an example; its variation 

through time is partly deterministic (rising during the day and falling at night, and 

rising towards summer and falling towards Winter), and partly random and 

unpredictable. The price of IBM stock is another example; it fluctuates randomly, but 

over the long haul has had a positive expected rate of growth that compensated 

investors for risk in holding the stock. 

Somewhat more formally, a stochastic process is defined by a probability law for the 

evolution tx  of a variable x over time t. Thus, for given times 1 2 3t t t< < , etc., the 

probability that the corresponding values 1 2 3, , ,x x x  etc. can be calculated, lie in some 

specified range, for example 

1 1 1 2 2 2prob ( , ,...)a x b a x b< ≤ < ≤  

When time 1t  arrives and we observe the actual value 1x , we can condition the 

probability of future events on this information. 

In continuous-time stochastic process, the time index t is a continuous variable. 

(Even though we might only measure the temperature or stock price at particular 

points in time, these variables vary continuously through time.) However, the 

variables in discrete-time processes can change only at discrete points in time. One 

of the simplest examples of a stochastic process is the discrete-time discrete-state 

random walk. Here, tx  is a random variable that begins at a known value 0x , and at 

times 1, 2, 3,...,t =  takes a jump of size 1 either up or down, each with probability ½. 

Since the jumps independent of each other, we can describe the dynamics of tx  with 

the following equation: 

1t t tx x −= + ∈ , 

where t∈   is a random variable with probability distribution 
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1
prob ( 1) prob ( 1) ( 1, 2, 3,...)

2t t t∈ = = ∈ = − = =  

We call tx  a discrete-state process because it can only take on discrete values. For 

example, set 00 =x . Then for odd values of t, possible values of tx  are 

( ,..., 1, 1,..., )t t− − , and for even values of t, possible values of tx  are 

( ,..., 2, 0, 2,..., )t t− − . The probability distribution for tx  is found from the binomial 

distribution. For t steps, the probability that there are n downward jumps and nt −  

upward jumps is 

 t

n

t
−









2                                                            (4.1) 

Therefore, the probability that xt will take on the value t-2n at time t is 

prob ( 2 ) 2 t
t

t
x t n

n

− 
= − = 

 
                                                                           (4.2) 

We will use this probability distribution in the Wiener process as the continuous limit 

of the discrete-time random walk. At this point, however, note that the range of 

possible values that tx  can take on increases with t, as does the variance of tx . Hence 

tx  is a nonstationary process. 

Because the probability of an upward or downward jump is ½, at time 0=t  the 

expected value of tx  is 0 for all t. (Likewise, at time t, the expected value of tx  for 

tT >  is tx .) One way to generalize this process is by changing the probabilities for 

an upward or downward jump. Let p be the probability of an upward jump and 

)1( pq −= the probability of a downward jump, with qp < . Now we have a 

random walk with drift; at time 0=t , the expected value of tx  for 0>t  is greater 

than zero, and is increasing with t. 

The random walk (with discrete or continuous states, and with drift or without) 

satisfies the Markov property, and is therefore called Markov process. This property 

is that the probability distribution for 1+tx  depends only on tx , and not depend on 

what happened before time t. For example, in the case of the simple random walk 
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given by equation (1), if 6=tx , then 1+tx  can equal 5 or 7, each with probability ½. 

The values of ,, 21 −− tt xx  etc. are irrelevant once we know tx . The Markov property is 

important because it can greatly simplify the analysis of a stochastic process. [1] 

4.2 The Wiener Process 

A Wiener process – also called a Brownian motion – is a continuous-time stochastic 

process with three important properties. First, it is a Markov process. This means 

that the probability distribution for all future values of the process depends only on 

its current value, and is unaffected by past values of he process or by any other 

current information. As a result, the current value of the process is all one needs to 

make a best forecast of its future value. Second, the Wiener process has independent 

increments. This means that the probability distribution for the change in the process 

over any time interval is independent of any other (no overlapping) time interval. 

Third, changes in the process over any finite interval of time are normally 

distributed, with a variance that increases linearly with the time interval. 

The Markov property is particularly important. Again, it implies that only current 

information is useful for forecasting the future path of the process. Stock prices are 

often modeled as Markov processes, on the grounds that public information is 

quickly incorporated in the current price of the stock, so that the past pattern of 

prices has no forecasting value. (This is called the weak form of market efficiency. If 

it didn’t hold, investors could in principle “beat the market” through technical 

analysis, that is, by using the past pattern of prices to forecast the future.) The fact 

that a Wiener process has independent increments means that we think of it as a 

continuous-time version of a random walk. 

The three conditions discussed above the Markov property, independent increments, 

and changes that are normally distributed – may seem quite restrictive, and might 

suggest that there are very few real-world variables that can be realistically modeled 

with Wiener processes. For example, while it probably seems reasonable that stock 

prices satisfy the Markov property and have independent increments, it is not 

reasonable to assume that price changes are normally distributed; after all, we know 

that the price of a stock can never fall below zero. It is more reasonable to assume 

that changes in stock prices are log normally distributed, that is, that changes in the 
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logarithm of the price as a Wiener process, rather than the price itself. Through the 

use of suitable transformations, the Wiener process can be used as a building block to 

model an extremely broad range of variables that vary continuously (or almost 

continuously) and stochastically through time. 

It is useful to rotate the properties of a Wiener process somewhat more formally. If 

)(tz  is a Wiener process, then any change in ,, zz ∆  corresponding to a time 

interval t∆ , satisfies the following conditions: 

1. The relationship between z∆  and t∆  is given by 

tz t∆ =∈ ∆ , 

Where t∈  is a normally distributed random variable with a mean of zero and a     

standard deviation of 1. 

2. The random variable t∈  is serially uncorrelated, that is, 

[ ] 0 for .t s t sε ∈ ∈ = ≠  Thus the values of z∆  for any two different intervals 

of time are independent. [Thus )(tz  follows a Markov process with 

independent increments.] 

Let examine what these two conditions imply for the change in z over some finite 

interval of time T. We can break this interval up into n units of length t∆  each, 

with tTn ∆= / . Then the changes in z over this interval is given by 

1

( ) ( )
n

t
i

z s T z s t

=

+ − = ∈ ∆∑                                                               (4.3)                       

The si '∈  are independent of each other. Therefore we can apply the Central Limit 

Theorem to their sum, and say that the change )()( szTsz −+  is normally distributed 

with mean zero and variance .Ttn =∆  This last point, which follows from the fact 

that z∆  depends on t∆  and not on ,t∆  is particularly important; the variance of the 

change in a Wiener process grows linearly with the item horizon. 

Also note that the Wiener process is nonstationary. Over the long run its variance 

will go to infinity. By letting t∆  become infinitesimally small, we can represent the 

increment of a Wiener process, dz, in continuous time as 
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  tdz dt=∈                                                                                       (4.4) 

Since t∈  has zero mean and unit standard deviation, ,0)( =dzε  

and 2( ) ( )V dz dz dtε  = =
 

. Note, however, that a Wiener process has no time 

derivative in a conventional sense;  1/ 2/ ( )tz t tε −∆ ∆ = ∆   which becomes infinite as 

t∆  approaches zero.          

At times we may want to work with two or more Wiener processes, and we will be 

interested in their covariances. Suppose that )(1 tz  and )(2 tz  are Wiener processes. 

Then we can write 1 2 12( ) ,dz dz dtε ρ=   where 12ρ is the coefficient of correlation 

between the two processes. Because a Wiener process has a variance and standard 

deviation per unit of time equal to 1 2
12( ( ) / 1),dz dtε ρ  =

 
 is also the covariance 

per unit of time for the two processes. [1] 

4.2.1 Brownian motion with Drift 

The Wiener process can easily be generalized into more complex processes. The 

simplest generalization of equation (4.4) is the Brownian motion with drift: 

 dzdtdx σα +=                                                                   (4.5) 

where dz is the increment of a Wiener process as defined above. In equation (4.5), α   

is called the drift parameter, and σ  the variance parameter. Note that over any time 

interval t∆ , the change in x, denoted by x∆ , is normally distributed, and has expected 

value tx ∆=∆ αε )(  and variance .)( 2 txV ∆=∆ σ [1] 

4.2.1.1  Random Walk Representation of Brownian motion 

In this part it is shown how equation (4.5) can be derived as the continuous limit of a 

discrete-time random walk. To do this, we will divide time up into discrete periods of 

length t∆ , and we will assume that in each period the variable x either moves up or 

down by an amount h∆ . Let the probability that it moves up be p, and the probability 

that it moves down be q = 1 – p. Figure 4.1 shows the possible values of x in each of 

three periods, assuming it begins at the point 0x . For each possible combination of t 

and x, the probability of it being reached is also shown. Note that from each period to 
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the next, x∆  is a random variable that can take on the values h∆± . Also note that x 

follows a Markov process with independent increments – the probability distribution 

for its future value depends only on where it is now, and the probability that it will 

move up or down in each period is independent of what happened in previous 

periods. 

 

Figure 4.1: Random Walk Representation of Brownian motion (From [1], page 68) 

Let us examine the distribution for future values of x. First, observe that the mean of 

x∆  is [ ] .)( hqpx ∆−=∆ε  Thus the variance of x∆  is 

  [ ] ( ) [ ]22 2 2 2( ) 1 ( ) ( ) 4 ( )V x x x p q h pq hε ε   ∆ = ∆ − ∆ = − − ∆ = ∆
  

            (4.6) 

A time interval of length t has ttn ∆= /  discrete steps. Since the successive steps of 

the random walk are independent, the cumulated change 0( )tx x−  is a binomial 

random variable with mean 

                   ,/)()( thqpthqpn ∆∆−=∆−  

and the variance 

                   2 2 21 ( ) ( ) 4 ( ) /n p q h pqt h t − − ∆ = ∆ ∆
 

.    
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So far the probabilities p and q and the increments h∆  and t∆  have been chosen 

arbitrarily, and shortly we will want to let t∆  go to zero. As it does, we would like 

the mean and variance of 0( )tx x−  to remain unchanged and to be independent of the 

particular choice of , ,p q h∆  and .t∆  In addition, we would like to reach equation 

(4.5) in the limit. We can ensure that this will indeed be the case by setting 

  th ∆=∆ σ                                                                                       (4.7) 

And 

  
1 1

1 ( / ) , 1 ( / )
2 2

p t q tα σ α σ   = + ∆ = − ∆                        (4.8) 

then                 
2

p q t h
α α

σ σ
− = ∆ = ∆  

Substitute these expressions for h∆  and qp −  into the formulas above, when the 

number of step, n, goes to infinity, and the binomial distribution converges to a 

normal distribution, with mean 

  
2

( / )t h h t t
α

α
σ

∆ ∆ ∆ =  

and variance 

  2 2 21 ( / ) ( ) /t t t t tα σ σ σ − ∆ ∆ ∆ →
 

. 

These are exactly the values we need for Brownian motion; α  is the drift; and 2σ  

the variance, per unit time. In the limit as ,0→∆t  both the mean and variance of 

0( )tx x−  are independent of h∆   and t∆ . 

We see, then, that Brownian motion is the limit of random walk, when the time 

interval and step length go to zero together while preserving the relationship of 

equation (4.7).  

An interesting property of Brownian motion is that as ,0→∆t  the total distance 

traveled over any finite interval of time becomes infinite. [1] 
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4.3 Generalized Brownian motion – Ito Processes 

The Wiener process can serve as a building block to model a broad range of 

stochastic variables. A number of examples will be examined, all of which are 

special cases of the following generalization of the simple Brownian motion with 

drift that are studied in the previous section: 

  ( , ) ( , )dx a x t dt b x t dz= +                                                               (4.9)   

where, again, dz is the increment of a Wiener process, and ( , )a x t  and ( , )b x t  are 

known (nonrandom) functions. The new feature is that the drift and variance 

coefficients are functions of the current state and time. The continuous-time 

stochastic process ( )x t  represented by equation (4.9) is called an Ito’s process.[1] 

4.4 Ito’s Lemma 

We have seen that in the previous section the Ito process of equation (4.9) is 

continuous in time, but is not differentiable. However, we will often need to work 

with functions of Ito processes, and we will want to the differentials of such 

functions. For example, we might describe the value of an option to invest in a 

copper mine as a function of the price of copper, which in turn might be represented 

by a geometric Brownian motion. In this case, we would want to determine the 

stochastic process that the value of the option values. To do this, and in general to 

differentiate or integrate functions of Ito processes, we will need to make use of Ito’s 

Lemma. 

Ito’s Lemma is easiest to understand as a Taylor series expansion. Suppose that ( )x t  

follows the process of equation (4.9), and consider a function ( , )F x t  that is at least 

twice differentiable in x and once in t. We would like to find the total differential of 

this function, dF . The usual rules of calculus define this differential in terms of first-

order changes in x and t: [1] 

  ( ) ( )
F F

dF dx dt
x t

∂ ∂
= +

∂ ∂
. 
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5. DYNAMIC OPTIMIZATION UNDER UNCERTAINTY 

Time plays a particularly important role for investment decisions. The payoffs to a 

firm’s investment made today accrue as a stream over the future, and are affected by 

uncertainty as well as by other decisions that the firm or its rivals will make later. 

The firm must look ahead to all these developments when making its current 

decision. One aspect of this future is an opportunity to make the same decision later; 

therefore the option of postponement should be included in today’s menu of choices. 

The mathematical techniques to model investment decisions must be capable of 

handling all these considerations. 

In this section dynamic programming technique will be developed. Dynamic 

programming is a very general tool for dynamic optimization, and is particularly 

useful in treating uncertainty. It breaks a whole sequence of decisions into just two 

components; the immediate decision, and a valuation function that encapsulates the 

consequences of all subsequent decisions, starting with the position that results from 

the immediate decision. If the planning horizon is finite, the very last decision at its 

end has nothing following it, and can therefore be found using standard static 

optimization methods. This solution then provides the valuation function appropriate 

to the penultimate decision. That, in turn, serves for the decision two stages from the 

end, and so on. One can work backwards all the way to the initial condition. This 

sequence of computations might seem difficult, but advances in computing hardware 

and software have made it quite feasible. If the planning horizon is infinite, what 

might seem like an even more difficult calculation is simplified by its recursive 

nature: each decision leads to another problem that looks exactly like the original 

one. This not only facilitates numerical computation, but also often makes it possible 

to obtain a theoretical characterization of the solution, and sometimes an analytical 

solution itself. [1,25] 

5.1 Dynamic Programming 

The two period example 

Dynamic programming is in essence a systematic method of making comparisons 

such as the present value that result from the immediate investment and from waiting 

for more general dynamic decisions.  
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Consider a firm that is trying to decide whether to invest in a widget factory. The 

investment is completely irreversible – the factory can only be used to make widgets, 

or should the market for widgets evaporate, the firm can not “uninvest” and recover 

its expenditure.  

Let I denote the sunk cost of investment in the factory that then produces one widget 

per period forever, and r be the interest rate. Suppose the price of a widget in the 

current period 0 is 0P . From period 1 onward, it will be 0(1 )u P+  with probability q, 

and 0(1 )d P−  with probability (1 )q− . 

First suppose that the investment opportunity is available only in period 0; if the firm 

decides not to invest in period 0, it can not change its mind in period 1. Let 0V  

denote the expected present value of the revenues the firm gets if it invests. 

Weighting the two alternative possibilities for widget prices by their respective 

probabilities, discounting, and adding, we have 

[ ]

[ ]

[ ]

0 0 0 0 2

0 0

0

1 1
(1 ) (1 )(1 ) ...

1 (1 )

1/(1 )
1 ( )

1 1/(1 )

1 ( ) /

V P q u P q d P
r r

r
P q u d d P

r

P r q u d d r

 
= + + + − − + + 

+ + 

 +
= + + + −  

− + 

= + + + −

  

(Note that we need 0r >  for convergence of the sum.) If 0V I> , the investment is 

made and the firm gets 0V I− ; if 0V I< , the investment is not made and the firm 

gets 0; if 0V I= , the firm is indifferent between investing and not investing and gets 

zero in either case. Let 0Ω denote the net payoff of the project to the firm, if it is 

forced in period 0 to decide whether to invest, on a now-or-never basis. Thus we 

have shown that 

 [ ]0 0max ,0V IΩ = −                                                                                     (5.1) 

Now consider the actual situation, where the investment opportunity remains 

available in future periods. Here the period 0 decision involves a different trade-off; 

invest now, or wait and do what is best when period 1 arrives. To asses this, the firm 

must look ahead to its own actions in different future eventualities. From period 1 
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onward the conditions will not change, so there is no point postponing any profitable 

projects beyond period 1. Hence we need look ahead only as far as period 1. 

Suppose the firm does not invest in period 0, but instead waits. In period 1 the price 

will be 

 
0

1
0

(1 ) with probability

(1 ) with probability 1

u P q
P

d P q

+
= 

− −
 

It will stay at this level for periods 2, 3…. The present value of this stream of 

revenues, discounted back to period 1, is 

 
2

1 1 1 1

1

/(1 ) /(1 ) ...

(1 ) /

V P P r P r

P r r

= + + + + +

= +
 

For each of the two possibilities (the price going up or down between periods 0 and 

1), the firm will invest if 1V I> , realizing a net payoff 

 [ ]1 1max ,0F V I= −  

This outcome of the future decisions is sometimes called the continuation value. 

From the perspective of period 0, the period 1 price 1P , and therefore the values 1V  

and 1F , are all random variables. Let 0ε  denote the expectation (probability-

weighted average) calculated using the information available at period 0. Then we 

have 

[ ]0 1 0 0
1 1

max (1 ) ,0 (1 ) max (1 ) ,0
r r

F q u P I q d P I
r r

ε
+ +   

= + − + − − −      
              (5.2) 

This could be called the expected continuation value, or just the continuation value, 

with the expectation being understood. 

Now return to the decision at period 0. The firm has two choices. If it invests 

immediately, it gets the expected present value of the revenues minus the cost of the 

investment, 0V I− . If it does not, it gets the continuation value [ ]0 1Fε  derived 

above, but that starts in period 1 and must be discounted by the factor 1/(1 )r+  to 

express it in period 0 units. The optimal choice is obviously the one that yields the 
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larger value. Therefore the net present value of the whole investment opportunity 

optimally deployed, which we denote by 0F , is 

 [ ]0 0 0 1
1

max ,
1

F V I F
r

ε
 

= − 
+ 

                                                                   (5.3) 

The firm’s optimal decision is the one that maximizes this net present value. 

This captures the essential idea of dynamic programming. We split the whole 

sequence of decisions into two parts: the immediate choice, and the remaining 

decisions, all of whose effects are summarized in the continuation value. To find the 

optimal sequence of decisions we work backward. At the last relevant decision point 

we can make the best choice and thereby find the continuation value 1( )F . Then at 

the decision point before that one, we know the expected continuation value and 

therefore can optimize the current choice. In this example there were just two 

periods. When there are more than two periods, the same procedure applies 

repeatedly. 

The decision where the investment opportunity remains available at period 1 is less 

constrained than the one where it must be made on a now-or-never basis in period 0. 

Equation (5.1) shows the net payoff 0Ω for this latter case; since that situation 

terminates the decision process at time 0, let us call it the termination value at time 0. 

Now we have the net worth 0F  of the less constrained decision problem from 

equation (5.3). The difference 0 0( )F − Ω is just the value of the extra freedom, 

namely the option to postpone the decision.  

To get a better idea of the factors that affect the value of the option to postpone, let 

us examine more closely the sources of the differences between 0F and 0Ω . First, by 

postponing the decision the firm gives up the period 0 revenue P0. This difference 

favors immediate action. Second, postponing the decision also means postponing the 

cost of investment; this favors waiting since the interest rate is positive. (More 

generally, the cost of investment could itself be changing over time, and that would 

bring new considerations; for example, if the firm expects capital equipment to get 

cheaper over time, this is an additional reason for waiting.) Third, and most 

important, waiting allows a separate optimization in each of the contingencies of a 
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price rise and a price fall, whereas immediate action must be based on the average of 

the two. This ability to tailor action to contingency, specifically to refrain from 

investment if the price goes down, gives value to the extra freedom to wait. [1] 

Many periods 

In this subsection the theory of dynamic programming is developed in a setting 

where uncertainty is modeled using discrete-time Markov processes. Some general 

properties are easier to demonstrate in this format. Diffusion properties are Markov 

processes can be regarded as limits of random walks in discrete time as the length of 

each time period and of each step of the walk both become small in a suitable way.  

With our application to investment in mind, we will refer to the decisions of a firm, 

but the theory is of course perfectly general. The firm’s current status as it affects its 

operation and expansion opportunities is described by a state variable x. For 

simplicity of exposition we take this to be a scalar (real number), but the theory 

extends readily to vector states of any dimension. At any date or period t, the current 

value of this variable tx  is known, but future values 1 2, ,...t tx x+ + are random 

variables. We supposes that the process is Markov, that is all the information relevant 

to the determination of the probability distribution of future values is summarized in 

the current state tx .  

At each period t, some choices are available to the firm, and we represent them by 

the control variables u. In the above example where the only choice was whether to 

invest at once or wait, we could let u be a scalar binary variable, whose value 0 

represents waiting and 1 represents investing at once. In other applications, for 

example, if the scale of investment is a matter of choice, u can be a continuous 

variable. If the firm has choices in addition to those bearing on investment, for 

example, hiring labor at time t, then u can be a vector. The value ut of the control at 

time t must be chosen using only the information that is available at that time, 

namely tx .  

The state and the control at time t affect the firm’s immediate profit flow, which is 

denoted by ( , )t t tx uπ . Here the relevant control variable tu  might be the quantity of 

labor hired or raw materials purchased. The tx  and tu of period t also affect the 

probability distribution of future states. Here tu  can be the amount of investment or 
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R&D, or even a decision to abandon the enterprise. Let 1( | , )t t t tx x u+Φ  denote the 

cumulative probability distribution function of the state next period conditional upon 

the current information (state and control variables). 

The discount factor between any two periods is 1/ (1 )ρ+ where ρ is the discount 

factor. The aim is to choose the sequence of controls { }tu  over time so as to 

maximize the expected net present value of the payoffs. Sometimes we will force the 

decision process to end at some period T, with a final payoff that depends on the state 

reached; this termination payoff function is denoted by ( )t txΩ . 

Now the basic dynamic programming technique can be applied. Remember the idea 

is to split the decision sequence into two parts, the immediate period and the whole 

continuation beyond that. Suppose the current date is t and the state is tx . Let the 

outcome is denoted by ( )t tF x – the expected net present value of the firm’s cash 

flows – when the firm makes all decisions optimally from this point onwards. 

When the firm chooses the control variables tu , it gets an immediate profit flow 

( , )t t tx uπ . At the next period ( 1)t + , the state will be 1tx + . Optimal decisions 

thereafter will yield, in the notation it is 1 1( )t tF x+ + . This is random from the 

perspective of period t, so the expected value must be taken, [ ]1 1( )t t tF xε + + .  That is 

called the continuation value. Discounting back to period t, the sum of the immediate 

payoff and the continuation value is 

 [ ]1 1
1

( , ) ( )
1t t t t t tx u F xπ ε

ρ
+ ++

+
 . 

The firm will choose tu  to maximize this, and the result will be just the value ( )t tF x . 

Thus 

 [ ]1 1
1

( ) max ( , ) ( )
1t

t t t t t t t t
u

F x x u F xπ ε
ρ

+ +
 

= + 
+ 

                                          (5.4) 

The idea behind this decomposition is formally stated in Bellman’s Principle of 

optimality: “An optimal policy has the property that, whatever the initial action, the 

remaining choices constitute an optimal policy with respect to the subproblem 
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starting at the state that results from the initial actions”. Here the optimality of the 

remaining choices 1 2, ,...t tu u+ +  etc., is subsumed in the continuation value, so only 

the immediate control tu  remains to be chosen optimally. 

The result of this decomposition, namely equation (5.4), is called the Bellman 

Equation, or the fundamental equation of optimality. To reiterate, the first term on 

the right-hand side is the immediate profit, the second term constitutes the 

continuation value, and the optimum action this period is the one that maximizes the 

sum of these two components. 

In the two period example, immediate investment gave 0V I− , waiting had no 

period-0 payout but only a discounted continuation value [ ]0 1 /(1 )F rε + , and the 

optimal binary choice between these alternatives yielded the larger of these two. 

Thus the earlier equation (5.3) is a special case of the general Bellman Equation 

(5.4). 

If the many-period problem has a fixed finite time horizon T, we can start at the end 

and work backward similarly. At the end of the horizon the firm gets a termination 

payoff  ( )t txΩ . Then the period before, 

 [ ]
1

1 1 1 1 1
1

( ) max ( , ) ( )
1T

T T T T T T T
u

F x x u F xπ ε
ρ−

− − − − −
 

= + 
+ 

 

Thus we know the value function at 1T − . That in turn allows us to solve the 

maximization problem for 2Tu − , leading to the value function 2 2( )T TF x− − , and so 

on. At one time this was thought to be too complex a procedure to be practicable, and 

all kinds of indirect methods were devised. However, advances in computing have 

made the backward calculation remarkably usable. [1] 

Infinite horizon 

If there is no fixed time horizon for the decision problem, there is no known final 

value function from which we can work backward. Instead, the problem gets a 

recursive structure that facilitates theoretical analysis as well as numerical 

computation. The crucial simplification that an infinite horizon brings to equation 

(5.4) is independence from time t as much. Of course the current state tx  matters, but 
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the calendar date t by itself has no effect. This works provided the flow profit 

function π, the transition probability distribution function Ф, and the discount rate ρ 

are themselves all independent of the actual label of the date, a condition that is 

satisfied or assumed in many economic applications.  

In this setting, the problem one period hence looks exactly like the problem now, 

except of course for the new starting state. Therefore the value function is common 

to all periods, although of course it will be evaluated at different points tx . Therefore 

the function ( )tF x  is written without any time label on the function symbol. The 

Bellman equation for any t  becomes 

 1
1

( ) max ( , ) [ ( )]
1t

t t t t t
u

F x x u F xπ ε
ρ

+
 

= + 
+ 

 

Since tx  and 1tx +  could be any of the possible states, they are written in general 

form as x  and x′ . Then for all x  we get 

 
1

( ) max ( , ) [ ( ) | , ]
1u

F x x u F x x uπ ε
ρ

 
′= + 

+ 
                                       (5.5) 

where the expectation has been denoted as conditioned on the knowledge of the 

current period’s x  and u . This is the Bellman equation for the infinitely repeating, 

or recursive, dynamic programming problem. 

Now that there is no fixed terminal date which to work backward, they are seemed to 

have lost an explicit or constructive way to find the value function F , we cannot 

find the optimal control u  by solving the maximization problem on the right-hand 

side of the Bellman equation. Thus we need assurance that a solution actually exists, 

and a way to find it.  

The recursive Bellman equation (5.5) can be thought as a whole list of equations, one 

for each possible value of x  , with a whole list of unknowns, namely all the values 

( )F x . If x  took on only a finite number of discrete values ix , this would be a 

simultaneous system with exactly as many equations as the number of unknowns 

( )iF x . More generally, we can regard (5.5) as a functional equation, with the whole 

function F  as its unknown. 
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Despite superficial appearances, this equation is not linear. The optimal choice of u  

depends on all the values ( )F x′  that appear, weighted by the appropriate 

probabilities, in the expectation on the right-hand side. When this optimal control is 

substituted back, the result can be nonlinear in the ( )F x′  values. 

This takes the form of an iterative procedure. Start with any guess for the true value 

function, say (1) ( )F x . Use it on the right-hand side of equation (5.5) and find the 

optimal choice rule 1u  , which can now be expressed as a function of x alone. 

Substituting it back, the right hand side becomes value function of x ; call it (2) ( )F x . 

Now use it as the next guess of the true value function, and repeat the procedure. 

Then the successive guesses (3) ( )F x , (4) ( )F x , etc., will converge to the true function. 

Convergence is guaranteed no matter how bad the initial guess, but of course with a 

good initial guess the procedure will reach the desired accuracy of the approximation 

in fewer steps. 

The key lies in the factor 1/ (1 )ρ+  on the right-hand side. This being less than 1, it 

scales down, or contracts, any errors in the guess from one step to the next. As long 

as the profit flows are bounded, any errors in the choice of u  cannot blow up. 

Gradually, only the correct solution is left. This method is increasingly used in many 

applications, and even in econometric work. [1] 
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6. A FIRM’S DECISIONS 

6.1 Investment Opportunities and Investment Timing 

In this chapter, investment decisions under uncertainty will be analyzed. The main 

concern with investment expenditures has two very important characteristics. First, 

the expenditures are at least partly irreversible; in other words, sunk costs that cannot 

be recovered. Second, these investments can be delayed, so that the firm has the 

opportunity to wait for new information to arrive about prices, costs, and other 

market conditions before it commits resources. 

The ability to delay an irreversible investment expenditure can profoundly affect the 

decision to invest. In particular, it invalidates the simple net present value rule as it is 

commonly taught to students in business schools: “Invest in a project when the 

present value of its expected cash flows is at least as large as its cost.” This rule is 

incorrect because it ignores the opportunity cost of making a commitment now, and 

thereby giving up the option of waiting for new information. As I mentioned before, 

that opportunity cost must be included as part of the total cost of investing. In this 

section, this opportunity cost and its implications for investment at a greater level of 

generality will be examined. 

Firstly the most basic continuous-time models of irreversible investment will be set. 

In this model, which was originally developed by McDonald and Siegel (1986), a 

firm must decide when to invest in a single project. The cost of the investment, I, is 

known and fixed, but the value of the project, V, follows a geometric Brownian 

motion. The simple net present value rule is to invest as long as V I> , but as 

McDonald and Siegel demonstrated, this is incorrect. Because future values of V are 

unknown, there is an opportunity cost to investing today. Hence the optimal 

investment rule is to invest when V is at least as large as a critical value *V  that 

exceeds I . After describing the basic model in detail, they showed that how the 

optimal investment rule (that is, the critical value *V ) can be found by dynamic 

programming. Finally they extended the model by considering alternative stochastic 

processes for the value of the project, V . [1] 
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6.1.1 The Basic Model 

McDonald and Siegel (1986) considered the following problem: At what point is it 

optimal to pay a sunk cost I in return for a project whose value is V, given that V 

evolves according to the following geometric Brownian motion: 

dV V dt V dzα σ= +                                                                                    (6.1) 

where dz is the increment of a Wiener process. Equation (6.1) implies that the 

current value of the project is known, but future values are lognormally distributed 

with a variance that grows linearly with the time horizon. Thus although information 

arrives over time (the firm observes V changing), the future value of the project is 

always uncertain. 

Equation (6.1) is clearly an abstraction from most real projects. For example, 

suppose the project is a widget factory with some capacity. If variable costs are 

positive and managers have the option to shut down the factory temporarily when the 

price of output is below variable cost, and or the option to abandon the project 

completely, V will not follow a geometric Brownian motion even if the price of 

widgets does. (Models in which the output price follows a geometric Brownian 

motion will be developed and the project can be temporarily shut down or 

abandoned.) If variable cost is positive and the managers do not have the option to 

shut down (perhaps because of regulatory constraints), V can become negative, 

which is again in conflict with the assumption of lognormality. In addition, one 

might believe that a competitive product market will prevent the price from 

wandering too far from long-run industry-wide marginal cost, or that stochastic 

changes in price are likely to be infrequent but large, so that V should follow a mean-

reverting or jump process.  

Note that the firm’s investment opportunity is equivalent to a perpetual call option – 

the right but not the obligation to buy a share of stock at a prespecified price. 

Therefore the decision to invest is equivalent to deciding when to exercise such an 

option. Thus, the investment decision can be viewed as a problem of option 

valuation. Alternatively, it can be viewed as a problem in dynamic programming. 

They derived the optimal investment rule in two ways, first using dynamic 

programming, and then using option pricing (contingent claims) methods.  
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The value of the investment opportunity (that is, the value of the option to invest) 

will be denoted by ( )F V . A rule is wanted that maximizes this value. Since the 

payoff from investing at time t is tV I− , we want to maximize its expected present 

value: 

( )( ) max T
TF V V I e ρε − = −

 
                                                                    (6.2) 

where ε  denotes the expectation, T is the (unknown) future time that the investment 

is made, ρ  is a discount rate, and the maximization is subject to equation (6.1) for V. 

For this problem to make sense, α ρ<  must be assumed; otherwise the integral in 

equation (6.1) could be made indefinitely larger by choosing a larger T. Thus waiting 

longer would always be a better policy, and the optimum would not exist. The 

difference ρ α−  will be denoted as δ ; thus 0δ > are being assumed. [5] 

6.1.1.1 The Deterministic Case 

Although the investment decision is affected by uncertainty, it is useful to first 

examine the case in which there is no uncertainty, that is, σ  in equation (6.1) is zero. 

So, there can still be a value to waiting. 

If 0σ = , 0( ) tV t V eα= , where 0 (0)V V= . Thus given a current V, the value of the 

investment opportunity assuming we invest at some arbitrary future time T is 

( ) ( )T TF V V e I eα ρ−= −                                                                              (6.3) 

Suppose 0α ≤ . Then ( )V t will remain constant or fall over time, so it is clearly 

optimal to invest immediately if V I> , and never invest otherwise. Hence, 

[ ]( ) max ,0F V V I= − . 

What if 0 α ρ< < ? Then ( ) 0F V > even if currently V I< , because eventually V  

will exceed  I. Also, even if V now exceeds I, it may be better to wait rather than to 

invest now. To see this, maximize ( )F V  in equation (6.3) with respect to T. Then 

* 1
max log ,0

( )

I
T

V

ρ

α ρ α

   
=   

−   
                                                               (6.4) 
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Note that if V is not too much larger than I, we will have * 0T > . The reason for 

delaying the investment in this case is that in present value terms, the cost of the 

investment decreases by a factor of  )( Te ρ α− − . 

For what values of V is it optimal to invest immediately? By setting * 0T = , we see 

that one should invest immediately if *
V V≥ where 

*
V I I

ρ

ρ α
= >

−
                                                                              (6.5) 

Finally, by substituting expression (6.4) into equation (6.3), the following solution 

for ( )F V was obtained: 

/ *

*

[ / ( )][ ( ) / ] for ,
( )

for

I V I V V
F V

V I V V

ρ αα ρ α ρ α ρ − − ≤ 
=  

− >  
                      (6.6) 

Figure 6.1 shows ( )F V as a function of V for 1, 0.10I ρ= =  and 0, 0.03, 0.06α = . 

Note that ( )F V increases when α  increases, as does the critical value *V . Growth in 

V creates a value to waiting, and increases the value of the investment opportunity. 

[1] 

6.1.1.2 The Stochastic Case 

Now, the case 0σ > will be studied. The problem is to determine the point at which 

it is optimal to invest I in return for an asset worth V. Since V evolves stochastically, 

a time T as it was did before will not be able to determined. Instead, the investment 

rule will take the form of a critical value *V  such that it is optimal to invest once 

*V V≥ .As we will see, a higher value of σ will result in a higher *V , that is, a 

greater value to waiting. It is important to keep in mind, however, that in general 

both growth ( 0)α >  and uncertainty ( 0)σ > can create to waiting and thereby affect 

investment timing. 

In the next part, this problem is solved by the dynamic programming. 
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Figure 6.1: Value of Investment Opportunity, F(V), for 0, 0.1σ ρ= = ( From [1], page 139) 

6.1.2 Solution by Dynamic Programming 

Because of the investment opportunity, ( )F V , yields no cash flows up to time T  that 

the investment is undertaken, the only return from holding it is its capital 

appreciation. Hence, in the continuation region (values of V for which it is not 

optimal to invest) the Bellman equation, 

( )F dt dFρ ε=                                                                                             (6.7) 

Equation (6.7) says that over a time interval dt, the total expected return on the 

investment opportunity, F dtρ , is equal to its expected rate of capital appreciation. 

When dF was expanded using Ito’s Lemma, then the Bellman equation becomes 

(after dividing through by dt): 

2 21
( ) ( ) 0

2
V F V V F V Fσ α ρ′′ ′+ − =  .                                                         (6.8) 

To ensure existence of an optimum (for reasons already explained in connection with 

the deterministic case), it was assume that α ρ<  or 0δ > . With this notation, the 

Bellman equation becomes the following equation that must be satisfied by ( )F V : 

2 21
( ) ( ) ( ) 0

2
V F V V F V Fσ ρ δ ρ′′ ′+ − − =                                                   (6.9) 

In addition, ( )F V  must satisfy the following boundary conditions: 
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(0) 0,F =                                                                                                    (6.10) 

* *( ) ,F V V I= −                                                                                          (6.11) 

*( ) 1.F V′ =                                                                                                 (6.12) 

Condition (6.10) arises from the observation that if V goes to zero, it will stay at zero. 

Therefore the option to invest will be of no value when 0.V =  The other two 

conditions come from consideration of optimal investment. *V  is the price at which 

it is optimal to invest, or the free boundary of the continuation region. Then (6.11) is 

the value-matching condition; it just says that upon investing, the firm receives a net 

payoff *V I− . Finally, condition (6.12) is the smooth-pasting condition. If ( )F V  

were not continuous and smooth at the critical exercise point *V , one could do better 

by exercising at a different point. 

Equation (6.11) has another useful interpretation. Write it as * ( )V F V I− = . When 

the firm invests, it gets the project valued V, but gives up the opportunity or option to 

invest, which is valued at ( )F V . Thus, its gain, net of the opportunity cost, is 

( )V F V− . The critical value *V  is where this net gain equals the direct or tangible 

cost of investment, I. Equivalently, the equation could be written as * *( )V I F V= + , 

setting the value of the project equal to the full cost (direct cost plus the opportunity 

cost) of making the investment. 

To find ( )F V , equation (6.9) must be solved subject to the boundary conditions 

(6.10)-(6.12). To satisfy the boundary condition (6.10), the solution must take the 

form 

1( )F V A V
β

=                                                                                (6.13) 

where A is a constant that is yet to be determined, and 1 1β >  is a known constant 

whose value depends on the parameters ,σ ρ  and δ  of the differential equation. 

Then we get 

1*

1 1
V I

β

β
=

−
                                                                                             (6.14) 
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and 

1 11 1
11* *

1 1( ) /( ) ( 1) / ( )A V I V I
β ββ ββ β

−−  = − = −
  

                                (6.15) 

Equations (6.13)-(6.15) give the value of the investment opportunity and the optimal 

investment rule, that is, the critical value *V  at which it is optimal to invest. For the 

time being, the most important point is that since 1 1,β >  we have 1 1/ ( 1) 1β β − >  

and * .V I>  Thus the simple NPV rule is incorrect; uncertainty and irreversibility 

drive a wedge between the critical value *V  and I. The size of the wedge is the factor 

1 1/ ( 1)β β − , and it becomes important to examine its magnitude for realistic values 

of the underlying parameters and its response to changes in these parameters.[1,5] 

6.1.3 Characteristics of the Optimal Investment Rule 

Since all parameters  , , rσ δ  are interdependent, it is important to be careful while 

the analysis is making. As mentioned in the past section, 

x mrδ µ α φ σ ρ α= − = + − . Hence, for example, an increase in the risk-free rate, r, 

is likely to result in the risk-adjusted expected return, µ , which, if the drift rate α  is 

constant, implies an increase in δ . Likewise, an increase in σ  is likely to be 

accompanied by an increase in µ , which again implies an increase in δ  if α  is 

constant. These interdependencies should be kept in mind when analyzing how a 

change in a market driven parameter (such as r) will affect the value of the 

investment opportunity and the optimal investment rule.  

Another issue that should be kept in mind when performing comparative static 

experiments is that our model assumes that the parameters ,α σ , etc. are fixed 

numbers. If α and σ  are changing over time or in response to changes in the state 

variable V (either deterministically or stochastically) and the firm knows this, it 

should take into account when determining the optimal investment rule. For example, 

it may be that α  and σ  in equation (6.1) should be replaced with functions ( , )V tα  

and ( , )V tσ . This will complicate the problem considerably. [1] 
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6.2 The value of a project and the decision to invest 

The basic model of irreversible investment demonstrated a close analogy between a 

firm’s option and a financial call option. In the case of a call option, the price of the 

stock underlying the option was assumed to follow a stochastic process, usually a 

geometric Brownian motion. In the real investment model, the corresponding state 

variable was the value of the project, V, for which they stipulated a stochastic 

process. 

At the above, V followed a stochastic process, and particularly a geometric Brownian 

motion, it is an abstraction from reality. First, if the project is a factory and there are 

variable costs of operation, V will not follow a geometric Brownian motion. Second 

and more important, the value of a project depends on future prices of outputs and 

inputs, interest rates, etc. These in turn can be explained in terms of the underlying 

demand and technology conditions in various markets. Hence fluctuations in V can 

be traced back to uncertainty in these more basic variables. To understand a firm’s 

behavior, we might be satisfied to work with an exogenous process for the output and 

input prices. At the industry level, we must make the output price endogenous. At an 

even more general equilibrium level, the input prices must also be determined 

simultaneously by considering all industries’ factor demands. [1, 5] 

6.2.1 The Simplest Case: No Operating Costs 

The firm’s investment project, once completed, will produce a fixed flow of output 

forever. For convenience, the units so that the quantity of output from the project was 

chosen as equal to one unit per year. The inverse demand function giving price in 

terms of quantity Q  was supposed as ( )P Y D Q= , where Y is a stochastic shift 

variable. Here, since the variable cost of production was assumed to be zero, the 

firm’s profit flow is just (1)P Y D= . Hence, without further loss of generality, P 

itself can be taken as the stochastic variable. 

The simplest stochastic process for P was assumed as the geometric Brownian 

motion: 

dP P dt P dzα σ= +                                                                                   (6.16) 
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The profit flow is P in perpetuity, and its expected value grows at the trend rate α . If 

future values are discounted at the rate µ  , then the expected present value V of the 

project when the current price is P is just given by / ( ).V P µ α= −  In this case, V , 

being a multiple of  P, also follows a geometric Brownian motion with same 

parameters α  and σ . Hence the investment problem reduced to the same in the past 

section. Here the work will be directly in terms of P to set the stage for the 

generalizations to come. [1] 

Valuing the Project 

If the project is a contingent or derivative asset, whose payoffs depend on the value 

of the more basic asset P, then the value of the project as a function ( )V P of the price 

of the basic asset can be derived.  

A portfolio was constructed at time t that contains one unit of the project, and a short 

position of n units of output, where n was chosen to make the portfolio riskless. The 

holder of the project will get the revenue or profit flow P dt  over the time interval of 

length dt . Also, a holder of each unit of the short position must pay to the holder of 

the corresponding long position an amount equal to the dividend or convergence 

yield that the latter would have earned, namely, P dtδ . Thus holding the portfolio 

yields a net dividend ( )P n P dtδ− .  

It also yields a (stochastic) capital gain, which is equal to  

 
[ ]

[ ]

2 21
( ) ( ) ( ) ( )

2

( ) ( )

dV ndP P P V P n P P V P dt

P V p n P dz

α σ

σ

 
′ ′′− = − + 

 

′+ −

 

When ( )n V P′= is chosen and the required processes are done, we get the 

fundamental component of value as: 

( ) /V P P δ= .                                                                                             (6.17) 

Valuing the Option to Invest 

The value V of an installed project is a function of the current price P as we know. 

So, we can obtain the diffusion process of V from that of P by using Ito’s lemma. To 
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find the value of the option to invest as a function of the price, ( )F P , using the 

above solution for ( )V P as the boundary condition that holds at the optimal exercise 

threshold. When we looked the behavior of ( )F P  at *P , at this threshold it becomes 

optimal to exercise the option. According to the value matching condition and 

smooth pasting condition,  

1*

1 1
P I

β
δ

β
=

−
                                                                                          (6.18) 

Using the relation (6.17) the price threshold equivalently can be expressed in terms 

of a value threshold [1] 

1*

1 1
V I

β

β
=

−
. 

Dynamic Programming 

If the risk in P cannot be spanned by existing assets, then we cannot construct a 

riskless portfolio and use it to obtain a differential equation for ( )V P . As explained 

before, we can use instead dynamic programming with an exogenously specified 

discount rate ρ , although we will not be able to relate this discount rate to the 

riskless rate and the market price of risk using CAPM. [1] 

The value of the project at time t can be expressed as the sum of the operating profit 

over the interval ( , )t t dt+ and the continuous value beyond t dt+  .Thus 

 ( ) ( ) dtV P P dt V P dP e ρε − = + +
 

. 

Expanding the right-hand side using Ito’s lemma, and when we take the limit as 

0dt → , we get the differential equation, 2 21
( ) ( ) ( ) 0

2
P V P PV P V P Pσ α ρ′′ ′+ − + = . 

When the equation solved, it is obtained ( ) /( )V P P ρ α= − . For this, to make 

economic sense we need ρ α> . 

Then the option to invest can be analyzed similarly. Start with a P in the range 

*(0, )P , where the option continues to be held. Finally when we use the value 



 49 

matching and smooth pasting between ( )F P  and ( )V P at *P  to complete the 

project; the result is 

* 1

1

( ) .
1

P I
β

ρ α
β

= −
−

 

6.2.2 Operating Costs and Temporary Suspension 

Suppose once again that the output price follows the geometric Brownian motion of 

equation (6.1). Then , , ,α σ µ and δ µ α≡ −  are all constants. If the option of 

investing in the project is ever going to be exercised, we need µ α> , or 0,δ >  and 

we will assume that this is indeed the case. We will also assume that operation of the 

project entails a flow cost C, but that the operation can be temporarily and costlessly 

suspended when P falls below C, and costlessly resumed later if P rises above C. 

Therefore, at any instant the profit flow from this project is given by 

[ ]( ) max ,0 .P P Cπ = −                                                                               (6.19) 

McDonalds and Siegel pointed out another useful way to look at such a project. It 

gives the owner an infinite set of options. The option at time t, if exercised, means 

paying C to receive the P that prevails at that instant. Since each option can only be 

exercised at its specified instant, these are European call options. They also showed 

that the project can be valued by valuing each of these options and then summing 

these values by integrating over t.  [1,5] 
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7. DYNAMIC PROGRAMMING APPLICATIONS 

7.1 Investment Planning  

In investment planning problems, the aim is usually to determine the optimal timing 

and sequence of capital investments. 

In [6], they presented a method for determining the optimal timing and economic 

feasibility of a new 1945 km railway linking North and South Brazil. Possible new 

railway links, together with the existing road, rail and water transport system are 

modeled as a network. Shippers route their traffic over the network to minimize their 

cost, and the railway investor selects the sequence and timing of new links (if any) 

that maximize the present value of benefits to the investor. The problem was 

formulated as a mixed integer programming problem but then they showed that the 

problem can be formulated as nested dynamic programming models that can be 

easily implemented in a spreadsheet. The traffic assignment problem was 

implemented as a recursive model that was used to calculate the benefits for each 

possible system state. A second dynamic programming problem calculates the 

optimal expansion path for the system.  

The investment model determined the optimal sequence and timing of capital 

investments in new rail lines in the North-Central corridor of Brazil, to maximize the 

present value of benefits. The benefit in each year is the annual revenue from traffic 

on the new rail lines minus the sum of the annual long run operating costs and the 

cost of any capital investments in new rail made in that year. 

For each origin to destination traffic flow, the cheapest (shortest) path was found 

from origin to destination on the existing system. When new rail links were added to 

the system, there were cost savings for any particular origin to destination shipment 

if its shortest path included some of the new links. The new total OD cost across all 

shipments was lower, and the cost reduction compared to the existing system was the 

benefit that resulted from the new links. The total benefit was then simply this cost 

saving compared to the existing system considering all OD shipments. 

In the first dynamic programming model, they selected the investment decisions in 

new rail links to maximize the present value of the net benefits. They had three 

decisions as do not build the link, build next link from the south and build next link 
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from the north. And then an additional dynamic programming algorithm was used to 

calculate the shortest (minimum cost) path for each state and OD pair.  

Moreover, the paper [7] extended the real options literature by discussing an 

investment problem, where a firm has to determine optimal investment timing and 

optimal capacity choice at the same time under conditions of irreversible investment 

expenditures and uncertainty in future demand. After the project is installed with a 

certain maximum capacity, this capacity is fixed as an upper boundary to the output 

and can not be adjusted later on. And for all decision, uncertainty in future demand 

leads to an increase in optimal installed capacity. But on the other hand, it causes 

investment to be delayed to an extent that even small uncertainty makes waiting and 

accumulation of further information the optimal decision for large ranges of demand. 

Limiting the capacity which may be installed weakens this extreme effect of 

uncertainty. 

When a firm has the opportunity to invest in a project, its interest is to find the 

optimal investment strategy using the full freedom of choice that is restricted by 

many constraints. But there may be uncertainty in future values of several input 

quantities concerning this decision and in most cases the investment time is not 

fixed. Investment timing is one of the main instruments to optimize the firm’s 

strategy.  

When the firm decides to exercise its option to invest, it has to fix the capacity which 

will be installed. There is no possibility to adjust the capacity when uncertain 

parameters – like prices or demand – have changed to unexpected values. Firms face 

problems of this kind when capacity-adjustment of a ready built production facility is 

not possible and the installation of an additional project is out of discussion. Because 

you had the unique chance to commit the use of some natural resource, for example 

to build a hydrostorage plant. When the plant is completed and the water is dammed 

up to a certain level, the resource is committed for the lifetime of the plant. Another 

example is planning a hotel in the center of the city. The capacity choice corresponds 

to the determination of the number of rooms which shall be installed, so the 

maximum capacity is fixed. There is no possibility to add the capacity.  

The standard problem of investment timing is: As long as the option to invest is 

alive, the firm has to decide either to keep it alive and wait or to exercise the option, 
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that is to pay the investment cost and establish the project. But now the firm has to 

fix the size of the project and this will cause modification in the investment strategy. 

This paper discussed that uncertainty leads to higher values and higher marginal 

values of the project. And therefore increasing uncertainty will cause increasing size 

of the project. But the threshold up to which opportunity costs are positive increases 

fast with increasing uncertainty, so waiting becomes more valuable and investment is 

delayed to an extent which is not seen in the standard timing model.  

In this paper, he considered a firm that has the option to invest in a production 

facility with maximum capacity m, where m has to be fixed during the conception of 

the project. The demand function is   

 ( )P t qθ δ= −                                                                                               (7.1) 

Where q is the output of the firm, P is the price which can be achieved for one unit of 

the output and /dP dqδ = −  describes the dependence of the price on the output. 

( )tθ  is the demand shift parameter which follows a  stochastic process of the form 

 d dt dzθ α θ σ θ= +  

 0(0) 0,θ θ= ≥ geometric Brownian motion                                                (7.2) 

where dz  is the increment to a wiener process, α  the expected relative drift of θ  per 

unit of time and 2σ  the relative variance per unit of time. That means, the current 

value of the demand shift parameter is known but the future values are log-normally 

distributed and the variance is increasing. This stochastic process induces uncertainty 

and thus risk into the investment problem. He assumed the marginal production costs 

c′  to be a function of the project’s size but constant with respect to the output  

( ( )).c c m′ ′=  The profit flow  π  is, 

 [ ]( , , ) ( , ) ( ) , 0m q P q c m q q mπ θ θ ′= − ≤ ≤                                             (7.3) 

The investment costs I  that had to be paid for installation of a production facility are 

a function of the facility’s maximum capacity ( ).I I m=  They were assumed to be 

sunk costs and 

 ( ) , 1I m bmγ γ= ≤                                                                                (7.4) 
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So the marginal investment costs are decreasing with increasing installed capacity. 

The firm’s task was then to observe the system and decide either to wait or to invest 

and fix the size of the project.  

When the firm decides to exercise the option to invest and to install a project with 

capacity m it has to pay ( )I m and receives a project worth V. For this, it is necessary 

to know the value of the project which is a function of θ  and installed capacity m. 

θ ’s current value is known and the future values are defined by (7.2). So the 

derivation of V follows the standard approach using dynamic programming. The firm 

was assumed to choose its output q to maximize V and the optimal q is found by 

maximizing the profit flow π  at every point when the level of demand shift 

parameter θ  has changed. 

 ( , ) max ( ( ), , ( )) rV m t m q t e dτθ ε π θ τ τ τ−= + +∫                                          (7.5) 

Where r is the discount rate ( 0).r α> >  After he got the boundary values of θ , he 

formed the ranges for θ  and V was substituted by the following equation and  the 

calculation of V would be done by the use of dynamic programming: 

( , ) ( , ) ( ( , ) ( , ))r dt
V m m dt e V m dV mθ π θ ε θ θ−= + +                                      (7.6) 

This leads (applying Ito’s lemma) to the nonhomogeneous differential equation and 

according to this equation the particle solutions of the differential equations ( )jV  

were found for the ranges and the solution was written as follows: 

 ,1( , ) | ( , ) ( )j j jV m R V m A mθ θ θ θ β∈ = =  

After the firm decided to invest at a level θ  of the demand shift parameter, the 

question that must be asked is which capacity should be installed. Because of this, 

the marginal value of the project was determined. By using different variances the 

figure of marginal value and θ  was drawn and according to the figure , it was seen 

that the marginal value is increasing with increasing uncertainty and the marginal 

project is only utilized when θ  > 2θ  ( the second boundary value for θ , which is 

2c mδ′ + ).  
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In another paper [15], the weaknesses of the net present value criterion was 

considered. An attempt was made to modify the NPV criterion by incorporating the 

real opitons approach and itas application was demonstrated in a greenhouse 

construction investment plan. Moreover, in the paper [16], the optimal investment 

strategy of an investor was solved with preferences for wealth at some future date - 

the investment horizon and in paper [17] a mathematical model of sequential 

investment behaviour was presented under conditions of uncertainty. The model 

adresses the problem of an investor with access to a limited pool of capital. They 

evaluated how the optimal investment behaviour should change when changes 

occurred in the environment. And in paper [19], the model calculates an optimal 

investment plan for a highway corridor subject to budget constraints and the dynamic 

programming model was used to solve for the optimal expansion path for each link 

in the highway system. 

7.2 Optimal Allocation 

When given a resource, x , it is divided into two parts, y  and x y− . From y , it is 

obtained a return of ( )g y ; from x y−  a return of  ( )h x y− . In so doing, they 

expended a certain amount of the original quantity and left with a new quantity,  

( )a y b x y+ − , where 0 , 1a b< < . This process was then continued. How does one 

allocate at each stage, so as to maximize the total return obtained over a finite or 

unbounded number of stages? [8] 

If there was only one stage, the total return was 1( , ) ( ) ( )R x y g y h x y= + − and if 

there was N-stage, the total return due to an initial allocation of y was described as 

follows: 

Let ( )Nf x = total return obtained from N-stage process given an initial amount x and 

employing an optimal policy.  

      1( , ) ( ) ( ) [ ( )]N NR x y g y h x y f ay b x y−= + − + + −  

By definition; 
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In paper [22], the method of dynamic programming was used for solving problems 

where several different types of limited resources are to be divided optimally 

between a great number of projects. 

7.3 Exploitation of Natural Resources 

It is well known that a number of optimality problems in investment analysis can be 

phrased in a dynamic programming framework, for example, optimal stopping 

problems, portfolio selection, and the exploitation of natural resources. In the paper 

[9], the last topic, the exploitation of natural resources, forms the main idea of the 

interest. Generally, such dynamic programming problems can be modeled in discrete 

time under uncertainty and with a finite horizon consisting of N steps. To be more 

specific, stationary and that the state space process was a k-dimensional Markov 

process would be assumed where the states were numbered by  1, 2,3,..., .i k=   nV  

was the optimal value function at stage n. Using the dynamic programming principle, 

nV  satisfied the recursive equation 

 1
1

( ) max ( , ) ( ) ( )
k

n ij n
d j

V i C i d P d V jβ +
=

 
= + 

  
∑                                                  (7.7)                         

Where the recursion goes from 1,...,1.n N= −  Here ( , )C i d  is the expected 

immediate return in state i using decision d, ( )ijP d  is the transition probability from 

state i to state j, and β  is a discount factor. At stage N, they assumed 

 { }( ) max 0, ( , )n
d

V i C i d=  

now they assumed that the optimal policy can be determined from (7.7) using 

standard algorithms. But there were a number of problems when it came to practical 

applications to investment analysis. One problem was that the state space may be 

continuous, but a manageable state space could be obtained as an approximation by 

discretization. A more difficult practical problem was the specification of the 
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transition probability matrix { }( ), , 1,2,..., .ijP d i j k=  Usually there would not be 

enough empirical data so that these quantities can be estimated reasonably well using 

Markov chain estimates even for moderate values of k. Some of these problems have 

been eliminated by postulating a continuous time model for the state. In much of the 

work of practical interest, the simple model  

 ( ) / ( ) ( )dS t S t dt dW tα σ= +                                                                        (7.8) 

has been used. Here the state space ( )S t  was described by a stochastic differential 

equation and ( )W t  was a Wiener process and σ and α  were unknown parameters.  

The main idea of this article was to return to a discrete time framework where (7.8) 

was replaced by a more general type difference equation for ( )S t  in such a way that 

the transition probabilities ( )ijP d  entering in (7.7) can be generated from the 

difference equation that in turn contains a few parameters that can be estimated from 

the data or determined by choice of scenarios. The dynamic programming algorithm 

was then used to pinpoint the optimal policy.  

As I said before, the main idea of this article was to return to a discrete time 

framework. Discretization means that a continuous state problem 

 1( ) max ( , ) ( ( , ); ) ( )n n
d

V x C x d P x y d V y dyβ +
 ′ ′= + ∫                                     (7.9) 

is replaced by the discrete version (7.7). To have confidence in their model they 

thought that it was important to have an idea of how accurate this approximation 

was. As the discretization was made finer, the right hand side of (7.7) converged to 

the right hand side of (7.9) for a given discretization point ( )1 2, ,..., ,i i i ipx x x x=  

representing a state i, 1, 2,..., .i k=  Thus if a fine enough grid was chosen, 

| ( ) ( ) |n i n iV x V x′ − could be made arbitrarily small. To apply the dynamic programming 

approach, the price had to be discretized. So they are worth with levels of 

discretization ranging with tS  going in equidistant steps. They assumed that the 

probability transition matrix ( ) ( )ij ijP d P  =   was independent of the decision d 

made. They used standard backward recursion to solve dynamic programming 
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problem. It was also possible to solve this problem with N = ∞  using a policy 

improvement algorithm or linear programming but they didn’t because of their 

computational complexity. In this example, there were 32 different price sates, and in 

16 of these it found to be optimal to open the mine but in Brennan and Schwartz 

(1985) paper they found 4 of these price states as optimal and this was of course an 

important theoretical and practical distinction between the two models. 

In the paper [8], it was mentioned that this problem possessed an additional feature 

of difficulty due to presence of chance mechanisms. In this problem, they had two 

gold mines, Amerconda and Bonanza, the first with an amount x of gold, and the 

second contains an amount of y. In addition they had a rather delicate gold-mining 

machine which has the property that if used to mine gold in Amerconda, there was a 

probability 1p  that it mined a fraction 1r  of the gold there and a probability 

1(1 )p− that it mined no gold and be damaged beyond repair. Similarly bonanza 

associated the probabilities 2p  and 2(1 )p− and the fraction 2r . They began by using 

the machine in either the Amerconda (A) or Bonanza (B) mine. If the machine 

undamaged, they again made a choice of using the machine in either of the two 

mines, and continued in this way, making a choice before each mining operation, 

until the machine is damaged. Then they tried to decide what sequence of choices 

maximizes the amount of gold mined before the machine is damaged. Since they 

dealed with a stochastic process, they use the average of the possible returns 

(expected value). After they listed all the policies, to determine an optimal policy, 

computed the expected returns and compared them. The functional equation of this 

problem is: 

( , )f x y = Expected amount of gold mined before the machine is damaged when A 

has x, and B has y, and an optimal policy is employed. 

If an A operation is used first, the expected amount of gold mined was denoted by 

( , )af x y  and similarly for B operation, it was denoted by ( , )bf x y . 

 
1 1 1

2 2 2

( , ) { [(1 ) , ]}

( , ) { [ , (1 ) ]}

a

b

f x y p r x f r x y

f x y p r x f x r y

= + −

= + −
 



 58 

Since A or B must be chosen so as to maximize the over-all expected return, the 

following equation yielded this: 

1 1 1

2 2 2

: { [(1 ) , ]}
( , ) max

: { [ , (1 ) ]}

A p r x f r x y
f x y

B p r x f x r y

+ −  
=  

+ −  
 

Then the solution equation was shown as follows: 

 If   1 1 1 2 2 2/ (1 ) / (1 ),p r x p p r y p− > −    take the A choice 

 If    1 1 1 2 2 2/ (1 ) / (1 ),p r x p p r y p− < −   take the B choice 

 If    1 1 1 2 2 2/(1 ) /(1 ),p r x p p r y p− = −    either of the choice is optimal 

7.4 Feasibility Problems 

In the paper [10], they considered the problem of routing trains through railway 

stations. It was motivated by the project DONS that was carried out under the 

supervision of the Dutch Organization Railned and Netherlands Railways. The 

Decision Support System that is the objective of the project DONS contained two 

modules. One was CADANS that assisted the planners in generating the cyclic 

hourly timetables. The second was the STATIONS that assisted the planners in 

checking whether a timetable generated by the other module was feasible with 

respect to the routing of trains through railway stations. 

In this paper they tried to solve the feasibility problem. Given the layout of a railway 

station, the arrival and departure times, as well as the arrival and departure directions 

of a number of trains, is it possible to route these trains through the railway station 

such that no pair of trains is conflicting, such that trains can be coupled or uncoupled 

if necessary, and such that a number of service constraints are satisfied? A railway 

station can be entered by a train from a number of entering points and left through a 

number of leaving points. Each of these points corresponds to the direction of travel. 

The railway network outside these points was not relevant for the feasibility problem. 

A railway consists of platforms and many track sections. A complete route for a train 

is a sequence of sections connecting an entering point to a leaving point, by passing 

the platforms. So, there will be many different routes between a given pair of 
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entering and leaving points and even several different routes that use the same 

platform.  

The routing of one train depends on the routing of others. Since any track section can 

only be reserved by one train at a time, no section of the inbound route may be 

reserved by another train before the section is released again. This will happen as 

soon as the train leaves the section. Moreover, a complete outbound route leading 

from a platform towards a leaving point is reserved for each train. If a train doesn’t 

stop at a platform, a complete route that consists the inbound route and outbound, is 

reserved for the train.  

While they assign the trains to their route, they tried to prevent conflicting of the 

trains and thus the reservation of a common section within the route for  a train 

doesn’t conflict with the reservation of this section within the other route of the other 

train. So, the assignment of the train ( )t r t→  is feasible when intersection with the 

other train’s assignments is empty set. Furthermore, they modeled the other 

constraints such as coupling, that means the following train coupled onto the leading 

train, and other service constraints according to these safety rules. Safety rule was 

represented by .,t t
F ′ Its mean is safety rule for the train t and train t′ . Based on the 

information contained in the sets ,t t
F ′  some of the allowed routes for a certain train 

may be excluded from further consideration, since they are dominated by other 

routes. In particular route r may be eliminated from the route set if there exists 

another route r′  that leaves at least the same routing possibilities for all other trains. 

Therefore, the set of relevant sections of r′  is a subset of the set of relevant sections 

of route r.  

The feasibility problem is firstly formulated by integer linear program.  The objective 

is to maximize the number of trains that can be routed through the railway station. 

,t rX was assumed the value 1 if train t is assigned to route r and the value 0 

otherwise. 

 Objective function   

 ,max
t

t r
t T r R

X
∈ ∈
∑ ∑                                                     (7.10) 
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Where constraint (7.11) guarantees that only allowed train-route combinations are 

selected. Constraint (7.12) ensures that each train is assigned to at most one route. 

After they modeled the problem by the integer linear program, they showed that the 

problem can be interpreted as a Node Packing Problem (NPP) which deduces a 

number of valid inequalities that tighten the integer programming formulation, and 

thus make the LP-relaxation more accurate. Then they showed that, if the layout of 

the railway station is fixed, then the safety optimization problem can be solved by a 

dynamic programming approach in an amount of time that is polynomial in the 

number of trains.  

7.5 Capacity Allocation Problem 

In the paper [11], they faced the problem of finding the optimal trade-off between the 

number of arrivals and departures in order to reduce a delay function of all the 

flights, using a more realistic representation of the airport capacity, i.e. the capacity 

envelope. For general airport capacity envelopes, they proposed a dynamic 

programming formulation with a corresponding backward solution algorithm, which 

is robust, easy to implement and has a linear computational complexity. The 

algorithm performances were evaluated on different realistic scenarios, and the 

optimal solutions were compared with the greedy algorithm which can be seen as the 

approximation of the current decision procedures. 

They presented the capacity allocation problem. The main difference between this 

model and the ground-holding model, which has acquired greatest interest in the 

research community, was the explicit consideration of interdependent arrivals and 

departures capacities. Since many interactions between the arrivals and departures, 

due to the safety rules and airport layout, they represented the airport capacity by an 

arrival-departure capacity curve or envelope. Airport arrivals and departures 
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capacities were given by interdependent variables whose values depend on the 

arrival/departure rate of the total airport operations in a specific time unit. So, airport 

capacity was defined as the number of aircraft allowed to land and take-off in a unit 

of time. All the combinations of arrivals and departures which saturate airport 

capacity defined the capacity envelope. Therefore, they represented the airport 

capacity by a set of linear constraints indexed by ti I∈ at time t of the type 

 , , ,(departuresat time ) (arrivalsat time )i t i t i t tt t i Iα β γ+ ≤ ∀ ∈  

Where , ,, ,i t i tα β  and ,i tγ  were given constants. The envelope provided a better and 

more accurate representation of the real airport capacity especially in those airports 

where either there is just one runway or there are intersections among runways. For 

instance, in the case of Rome Fiumincino airport with good weather conditions, if all 

the capacity was allocated to arrivals then 56 flights could arrive and if all the 

capacity was allocated to departures then 44 flights could depart in one hour. The 

case of mixed operations, they told that they might have 34 arrivals and 32 

departures.  

The airport capacity allocation problem was defined as the problem of finding an 

optimal policy that uses the airport capacity in an efficient way, i.e., that reduces the 

total number of delays (of landing and airborne aircraft). 

The aim of the paper was, given the airport traffic flow demands, to find for each 

time period t of the time horizon { }1,2,..., ,T T=  the optimal capacity allocation in 

order to satisfy the airlines’ demands as much as possible, minimizing a function of 

the flight delays. Each airport had requested demands of arrivals and departures 

called demand point. If the demand point is inside the airport capacity, both the 

demand of arrivals and departures were satisfied. But if the demand point was 

outside the airport capacity, then some flights must be delayed or cancelled. Hence, 

they had to decide the number of arrivals and departures to serve in order to match 

the corresponding requested demands. The objective function was the minimization 

of total delay costs (costs means delays). The constraints were formed from two 

things: capacity constraint and assignment constraints. For each flight, the 

assignment constraints fixed the unique departure and arrival times. Moreover, once 

the optimal airport working point, which is the optimal combinations of arrivals and 
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departures, was established for each time period, the FIFO rule was the optimal 

policy for the airport capacity allocation problem.  

Let them denote the requested number of departures and arrivals by tD  and tA   

respectively, for each time period t. The decision variables of the problem are 

 td →  Number of delayed departures at time t 

   ta →  Number of delayed arrivals at time t 

The objective function was the minimization of cumulative weighted delay, and 

( )t ta∆ and ( )t td∆ represented the marginal delay increments at time t when 

decisions ta  and  td  were taken. 

 [ ]min ( ) ( )t t t ta d∆ + ∆∑  

Subject to  

  

, 1 , 1 ,

1

1

( ) ( )

,

i t t t t i t t t t i t

t t t

t t t

t t

d D d a A a

d d D

a a A

d a Z

α β γ− −

+

+

+

+ − + + − ≤

≤ +

≤ +

∈

   

Second and third constraints defined the transition of the system from one stage to 

the following one, with initial condition 0 0 0.d a= =  

At each stage t (time period), the state of the system tz was defined by the total 

number of requested arrivals and departures, that was given by the sum of those 

delayed in the previous time period and the current demand. The state of the system 

depends on the decision taken in the previous stage. At any stage the decision 

consisted in establishing the number of delayed departures and arrivals which is 

equivalent to fixing the airport working point AWP. The resulting problem has a 

dynamic programming formulation. It is a discrete-time dynamic system whose state 

evolves according to a decision or control, and the objective function accumulates 

additively over time and depends on the states visited and the controls chosen. This 
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algorithm iteratively constructed the optimal policies, i.e. the sequence                            

{ }1 2, ,...m mπ =  where km is a function mapping states into decisions.  

The transition of the system from one stage to next one was given by 

 1 1 1( , ) ( , ) ( , ) ( ( ), ( ))t t t t t t t a dz a d a d A D u t u t+ + += = + −  

Where ( ( ), ( ))t a du u t u t=  is the decision taken at stage t. And the problem was 

stated as below 

 
{ }

*

,...,1 1 1,..., 1

min ( , ) ( )t t t T T
u u t t T

r z u r z
− ∈ −

 
 +
  

∑  

Where ( , ) ( ) ( ),t t t t t t tr z u a d= ∆ + ∆  which is the immediate return if the system is in 

state tz at stage t and the decision tu is taken and ( , )t t tz a d=  is the state of the 

system at stage t. According to these, the problem could be solved using a backward 

dynamic programming algorithm. This procedure reduces the possible sequence of 

decisions to that of finding the optimal decision in all states for all stages.  

In the following sections, the computational analysis and evaluation of the algorithm 

performances were carried out. The algorithm performances were evaluated on 

different realistic scenarios and also with respect to commonly used greedy decision 

policy. On this subject, optimal solutions were more balanced than corresponding 

greedy solutions as evidenced by both average and maximum values of the 

percentage deviation of the greedy solutions from optimal solutions. As a result, the 

dynamic programming algorithm gave better results than the other. 

7.6 Capacity Expansion Problems 

In the paper [12], the problem of optimally meeting a stochastically growing demand 

for capacity over an infinite horizon was considered. Under the assumption that 

demand for product follows either a nonlinear Brownian motion or a non-Markovian 

birth and death process, they showed that stochastic problem can be transformed into 

an equivalent deterministic problem. The equivalent problem was formed by 

replacing the stochastic demand by its deterministic trend and discounting all costs 



 64 

by a new interest rate that is smaller than the original, in approximate proportion to 

the uncertainty in the demand.   

Within the modeling environment a stochastic demand is often replaced by a 

forecasted demand that grows deterministically over time. But some of the papers 

have established that simply replacing demand by their forecasted means is not 

satisfactory. Their assumptions are from Manne’s (1961) paper. The key 

transformation is the replacement of interest rate by an interest rate that is a 

decreasing function of the variance of the demand process.  

They assumed that the available capacity must meet or exceed the demand for 

product or service. The decisions include the timing, sizing, and type of capacity to 

be installed over time.  

At each transition epoch, the future states of a semi-Markov process are conditionally 

independent of the past states when given the present state. By the assumptions, thus, 

the deterministic variable installed capacity captures all information regarding the 

historical evolution of the problem that is relevant to the optimal determination of the 

next facility. Therefore, the problem was stated as a dynamic program with the state 

variable representing installed capacity at expansion epochs. Let ( )T x  be the time at 

which a total capacity x is exhausted and let ( )f x  denoted the minimum expected 

cost discounted to time ( )T x of expanding capacity to meet future demand given that 

the accumulated capacity is currently exhausted.  

When an equivalent interest rate exists, it is unique and given by  

 *
( )| ln ( ) | / [ ( )]T xr r E T xφ=                                                                         (7.14) 

where ( ) ( )T x rφ  is the laplace transform of ( ).T x  When equivalent interest rate *r  

exists, the original stochastic expansion problem may be solved via a deterministic 

problem formulation in which  the random expansion epochs ( )T x are replaced by 

their expected  values and the original interest rate is replaced by its equivalent *r .  

In the following, they gave two definitions and according to them, they formed the 

equivalent interest rate *r .  
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In the continuous model the *r  was given by 

* 2 2( / ) ( 1 2 ( / ) 1r p r pσ σ= + −  

 In the discrete model, the *r  was given by  

* 1/ (0)ln ( ( ) )r r φφ ′
=  where 0(0) ( ) / | .rd r drφ φ =′ =  

In either case, they showed that every optimal capacity expansion sequence for the 

deterministic problem with demand *(.)P  in which all costs were continuously 

discounted using the interest rate *r was optimal for the stochastic problem.  

As a result, working within the framework of the general model, they provided 

conditions for the existence of a deterministic equivalent problem *P  and an 

equivalent interest rate *r . The equivalent interest rate enables the effects of the 

variability of the demand process to be completely summarized in a single number 

*r . Finally, they told that the transformation to the equivalent problem required that 

only a reduction of the interest rate from r  to *r . 

In another paper [14], the problem of choosing an optimal initial capacity expansion 

was considered. They discussed an algorithm about how long a horizon is sufficient 

to reach stability in the first facility choice and they showed that this first choice was 

the optimal choice for the infinite horizon problem. In paper [20], two approaches 

were developed for capacity planning for large multilocation systems and in the 

paper [21], dynamic programming approaches for the multilocation problem adapted 

to solve the specialization problem in which a growing demand must be met. 

7.7 Replacement Analysis 

Replacement analysis is concerned with determining the optimal time to remove a 

current asset (defender) from service and selection of another asset (challenger) to 

take its place. The economic life of an asset is dependent on a variety of factors, 

including deterioration and obsolescence. While obsolescence is generally a result of 

external to the asset, such as technological change, deterioration is generally a result 

of how the asset is utilized over its lifetime. If multiple assets are available to meet 
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demand and the assets must not continually operate at maximum capacity, then a 

decision maker may have some control over asset utilization patterns by allocating 

workload. These utilization patterns directly impact operating costs and salvage 

values and thus have a strong influence on the optimal replacement time of the 

assets. In the paper [13], they examined asset replacement decisions, based on age 

and cumulative utilization, under various costs and demand assumptions. They 

provided an efficient optimal solution procedure through the use of stochastic 

dynamic programming. They provided a method to easily examine solutions for the 

two asset case. 

In the case of a single asset utilization is generally not a controllable variable as its 

usage must be a reaction to the demand environment. However in the case of 

multiple assets, one has the ability to set utilization patterns by allocating demand 

among the available assets, assuming all assets must not continually operate at their 

maximum capacity. This allocation decision has a direct impact on each asset’s 

operating costs and salvage values and thus the optimal replacement schedule. 

In this paper, they were concerned with examining the optimal replacement and 

utilization schedules for a number of assets over a finite horizon with stochastic 

demand. Both age and cumulative utilization were formed the state variables for 

replacement decisions. These are assumed to be the same for similar assets (same age 

and technology).  

In the single asset replacement problem, the decision is whether to keep or replace 

the asset at the end of each period. In the two asset case, the decisions are whether to 

keep both assets (KK), replace both assets (RR) , or keep one and replace the other 

(RK, KR), totaling four possibilities. After this decision made, the allocation of 

demand to the two assets must be made. This two stage decision process repeated at 

each period over the decision horizon. The states of dynamic programming referred 

to the state of each asset, defined by their age i, and cumulative utilization j. Once an 

asset reached its maximum service life age N or cumulative utilization M, it must be 

replaced.  

1 1 2 2( , , , )tf i j i j =  Minimum expected net present value of costs when starting with 

two assets of age 1i  and 2i  and cumulative utilization levels of 1j  and 2j  at time t 

and choosing optimal decisions through time T. 
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( , )tP i j = Purchase cost of ith period old asset with cumulative utilization j at time t  

( , )tS i j = Salvage value of ith period old asset with cumulative utilization j at time t 

( , , )tC u i j = Operating and maintenance cost of an ith period old asset with 

cumulative utilization j utilized at level u at time t 

tK = Fixed cost charge if an asset is purchased at time t 

,m td = Demand level m in period t 

,( )m tp d = Probability of demand ,m td  in period t 
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8. APPLICATION 

8.1 Problem Definition 

In this project, 4.Levent – Maslak Sanayi Subway Project was analyzed (see Figure 

8.1) which consists of 4.64 kilometers with 3 stations, by using probabilistic dynamic 

programming. 

The objective of the project is twofold:  

• Investigate the feasibility of the investment 

• Decide on the optimal investment policy (required number of trains to be 

purchased in each investment epoch). 

These two decisions are interrelated: If the optimal investment policy is not 

profitable, then do not invest in the project. Therefore, our main objective is to find 

the optimal investment policy, i.e., the required number of trains to be bought in each 

investment epoch. For example, how many trains to buy at the beginning of year, 

say, 2012.  

The main factor affecting the required number of trains to buy is the traffic intensity 

during the peak hours. The distribution of subway peak hours is given in Figure 8.2 

and Table 8.1 shows the estimated daily passenger traffic that constitutes 

approximately 53% of the daily traffic in peak hour. [24] 

Table 8.1: Peak and Off-Peak Hour Traffic on Subway (*) (Source: [24], page 33) 

 Hours Percentage of Daily Traffic 

Peak Hours (8:00 – 10:00, 16:00 – 20:00) 6 53.0 

Off Peak Hours (10:00 – 16:00, 20:00 – 21:00) 7 35.0 

Night Hours (21:00 – 01:00, 08:00 – 07:00) 8 12.0 

Total 19 100.0 

(*) Source: Ulaşım A.Ş., October 2004 
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Figure 8.1: Present Subway Line and Its Extensions (Source: [24], page 8) 

 

Figure 8.2: Distribution of Subway Traffic by Hours ( Source: Ulaşım A.Ş. 2004) 
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Table 8.2 shows the estimated annual traffic. Our approach is instead of taking a 

single value for yearly traffic, giving probabilities to yearly traffic values for each 

year. For example, for year 2011 we have 3 states namely 160,000,000; 165,000,000; 

170,000,000 that denote the yearly passenger number of the Yenikapı – Maslak 

Sanayi Line with different probabilities. 

At each stage we have 3 states representing the number of passengers per year. We 

will choose these states as 3% above the estimated average number of passengers per 

year and 3% below that. 

Table 8.2: Annual Traffic of the Subway Project (Source: [24], page 36) 

 

As we see from the Figure 8.3, the population increases linearly according to the year 

like as employment and number of students.  To meet their demand, the number of 

buses, minibuses or train numbers should be increased. But they have different 

profits and costs. The trains carry more passengers than the buses and minibuses so 

when trains are decided to buy, the traffic of the buses and minibuses will diverted 
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from road to railway. Therefore we will get cost savings from the buses and 

minibuses. As a result, when we decide to buy train, we should consider all these 

considerations. 

 

Figure 8.3: Population, Employment and Number of Students Estimates (Source: [24], page 
19) 

8.1.1 Model Formulation 

In this study, our objective is to decide on whether to buy train or not, if we decide 

on to buy train, how many trains to add each year. In each state, we have 5 decisions: 

we can buy no train, we can buy one train, we can buy two trains, etc. 

i.e., {0, 1, 2, 3, 4}.id =  

The policy  π  is formed from the decisions of the years, 1 2 25{ , ,..., }.d d dπ =   

Let, 

( )nf i = The maximum expected discounted reward that can be earned during 

n periods if the state at the beginning of the current period is i 

( , )nr i d = The revenue of the state i under decision d at stage n 

( , )nc i d = The cost of the state i under decision d at stage n 
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( | , )p j i d = The probability of the next period’s state j given the current state 

is i with decision d 

r = the interest rate, 1/ (1 )r+  is the discount factor between two periods. 

 

Figure 8.4: Diagram for the Optimality Equation 

Then the optimality equation becomes 

     
3
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8.2 Planning Horizon 

The period of calculation for the analysis is assumed as follows: 5 years of 

construction period beginning in 2005 and 25 years of operations period from 2010 

to 2034. In the operations period, we found the optimal investment policy, how many 

trains should be added to meet demand each year, by using probabilistic dynamic 

programming. We worked with backward dynamic programming. In the construction 

period, we investigated the feasibility of the investment; optimal timing of the 

investments. 

8.3 The Project Costs and Revenues 

8.3.1 Economic Costs 

1. Construction costs:  

 

 

  …………   n                                         n+1   ................ 

States 

    i            p j i d( | , )                 j 
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Table 8.3: Construction Costs of the Project ($1,000) (Source: [24], page 53) 

  Year 1 

2005 

Year 2 

2006 

Year 3 

2007 

Year 4 

2008 

Year 5 

2009 

Total 

Civil Works  Capital 50,000 50,000 40,000 0 0 140,000 

E-M Works & 

SubwayVehicles 

Capital 0 0 50,000 50,000 98,400 198,400 

Engineering & 

Consulting 

Capital 1,500 1,500 2,000 2,000 2,000 9,000 

Financing Costs Capital 1,636.8 148.8 148.8 111.3 73.8 2,119.5 

Miscellaneous 

& Others 

Capital 7,000 7,000 8,000 7,000 7,000 36,000 

General Total  60,136.8 58,648.8 100,148.8 59,111.3 107,473.8 385,519.5 

 

2. Investment Costs of Subway Vehicles: Each train has 8 vehicles and the 

cost of each vehicle is $1,600,000. 

3. Operating and Maintenance Costs:  

Table 8.4: Unit Operations and Maintenance Costs (Source: [24], page 39) 

Energy (USD / Vehicle-km) 0.52 

Track & Facilities Maintenance (USD / km) 10,275 

Repair & Maintenance of Rolling Stock 

(USD / Vehicle-km) 

0.04 

Managerial Personnel (USD / Vehicle-km) 0.096 

Other Expenditures (*) (USD / km) 513,135 

(*) Rents and general expenditures 

Source: Ulaşım A.Ş.(İstanbul Transportation Company), 2004 

 

8.3.2 Economic Benefits 

1. Vehicle Operating Cost Savings of Buses and Minibuses :  

The Subway Project will reduce the vehicle operating costs of buses and 

minibuses, because some traffic will be diverted from road to rail. Vehicle 

operating cost savings are $1.16 per vehicle-km for buses and $0.29 per 
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vehicle-km for minibuses. The modal split of the subway traffic for the 

“without project” case was estimated as follows:  

Private cars 15 % 

Buses 43 % 

Minibuses 43 % 

2. Vehicle Operating Cost Savings of Private Cars:  

Operating cost of cars, including, fuel, oil and tyres consumption as well as 

maintenance and depreciation costs, was estimated as $0.39 per vehicle-km in 

2003. The value of economic operating costs was calculated excluding duties 

and taxes. Shadow price coefficient of 0.70 (conversion factor) was used to 

convert operating costs of cars to economic costs. [24] 

3. Capital Cost Savings of Buses and Minibuses:  

The Subway Project will considerably reduce the investment required for new 

and additional buses and minibuses that would be required to accommodate 

the peak hour traffic demand and to replace the old buses and minibuses. It 

was assumed that, under normal conditions, a bus and a minibus could 

operate 180 km daily. Service availability factors are assumed to be 0.85 and 

0.90 for buses and minibuses, respectively. Capitals are $200,000 per bus and 

$63,000 per minibus. [24] 

4. Road Maintenance Cost Savings:  

The Subway Project is also expected to provide savings of road maintenance 

costs because of the traffic to be diverted from cars, public transport buses 

and minibuses. It is clear that heavy vehicles (trucks and buses) cause more 

damage on roads than light vehicles such as cars. The damage is assumed to 

be a non-linear function of the axle weight of the road vehicle. It has been 

calculated that a minibus causes 16 times and a bus causes 4000 time as much 

damage as a typical car. Based on the statistics published by the General 

Directorate of Highways (K.G.M.), road maintenance cost per 1 million 

vehicle-km was estimated as $16.16 for cars, $258.00 for minibuses and 

$65,000 for buses. [24] 
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5. Road Accident Cost Savings : 

Economic costs of road accidents are very difficult to quantify. A 

considerable portion of road accidents on the city roads are not reported. 

Road accident costs cover the cost of the material damaged in accident, 

hospital and police costs and economic losses caused by fatalities and 

injuries. Based on the accident data published by the General Directorate of 

Highways (K.G.M.) for Istanbul, road accident cost per 1 million vehicle-km 

was estimated as $36,208. [24] 

6. Travel Time Cost Savings :  

The travel time to be saved by transport users was estimated as the difference 

in travel time (total passenger-hours) between the “without” and the “with” 

project cases. Average travel time to be saved per trip with the project was 

estimated to increase from 12.2 minutes in 2010 to 15.5 minutes in 2023. The 

GDP data to calculate the value of time were obtained from the Household 

Income Distribution Study of State Institute of Statistics (D.I.E.) and shown 

in Table 8.5 and value of time savings of the project is shown in Table 8.6. 

7. Environmental Cost Saving : 

Similar to road accidents, environmental cost savings resulting from a net 

reduction in noise levels and motor vehicle emissions are also very difficult to 

quantify. Accurate valuations relating to air quality will always be difficult 

owing to problems of obtaining reliable data on emissions, ambient pollutant 

levels, quantifying the link between emissions and impacts. Environmental 

damage costs of road vehicles were derived from "Fuel and Location on the 

Damage Costs of Transport Emissions, Eyre, N.J. et al., JTEP, January 1997, 

pp. 5-24". An average of $0.40 per km for buses and minibuses, $0.15 per km 

for cars were assumed as the environmental damage cost of urban emissions 

of vehicles. 
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Table 8.5: Average Value of Time (*) (Source: [24], page 45) 

 Car user (**) PT User (***) Average 

GDP per capita 
(USD) 

7,066 4,162 6,065 

GDP per working 
Person (USD) 

23,553 13,874 20,217 

Value of Time per 
Working Hour (USD 
/ Hour) 

11.06 6.51 9.49 

Value of Time per 
Nonworking Hour 
(USD / Hour) 

2.76 1.63 2.37 

Average Value of 
Time (USD / Hour) 

6.91 4.07 5.93 

(*) As of average of year 2004, $1 = 1,432,144 TL 

(**) The lowest income group of 20% of population was excluded 

(***) The highest income group of 20% of population was excluded 

Table 8.6: Value of Time Savings ($) (Source: [24], page 46) 
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8. Fee (Financial Revenue ) : 

The current fare structure for the buses and rail systems has a flat rate 

irrespective of the distance of the journey. The existing policy of applying 

reduced for students, elderly and other eligible categories of users is expected  

to be retained. The existing full fare is 1.10 YTL ($0.81). Considering the 

passengers traveling at reduced fares, the fare level of $0.70 was applied as an 

average to estimate the revenues. [24] 

8.4 Results of the Model 

8.4.1 Part 1: Optimal Investment Policy 

In this part, we used Microsoft Visual Studio C++ 6.0 language to solve the 25 years 

period of investment policy based on dynamic programming. Decisions are about the 

number of trains required to be purchased in each investment epoch. You can see the 

computer program code in the Appendix. The output of the code is shown in Table 

8.7. At the beginning we have 4 trains and after 19th year (that is, year 2029) we 

decided to buy 1 train each year for 6 years until the end of the planning horizon. 

Thus, in 2034 we should have 10 trains in all. 

After we got the results, we changed some of the variables and made sensitivity 

analysis. The results are shown in Table 8.8. As we see from the sensitivity analysis, 

interest rate is one of the most important variables in determining the decisions for 

the problems that have long planning horizon.  
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Table 8.7: Output of the code 
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Table 8.8: Results of the Sensitivity Analysis 

 Decision 
Years 

Decision (units) 
� Number of  
Trains (units) 

Profit ($)  

Base case 20 - 25 1 � 10 355,079,716 (*) 

Reduction in 
purchasing cost of 
train (18.75%) 

17 - 25 
 

1 � 13 356,498,280 (**) 

Reduction in 
purchasing cost of 
train (10%) 

19 - 25 1 � 11 355,754,341 (***) 

Increase 
population (2%) 

22 - 25 1 � 8 361,591,791  

Increase 
population (3%) 

22 - 25 1 � 8 364,916,092  

Change 
probabilities 

20 - 25 1 � 10 355,913,707 (****) 

Change interest 
rate  

20 - 25 1 � 10 413,484,149 (******) 

Reduction in 
purchasing cost 
(18.75%) and 
increase 
population (2%) 

19 - 25 1 � 11 362,774,473  

Reduction in 
purchasing cost 
(18.75%) and 
increase 
population (3%) 

20 - 25 1 � 10 365,998,144  

Reduction in 
purchasing cost 
(10%) and 
increase 
population (3%) 

20 - 25 1 � 10 365,446,435  

Increase 
population (2%) 
and decrease 
interest rate to 
(10%) 

22 - 25 1 � 8 420,882,077  

Change 
probabilities and 
decrease interest 
rate to (10%) 

20 - 25 1 � 10 414,440,031 (******) 

 
(*) Transition probabilities of the states are:  

� First state: (0.6, 0.3, 0.1) 

� Second state:  (0, 0.7, 0.3) 

� Third state: (0, 0.5, 0.5)  
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and interest rate, r =12%. Decisions were given between the years 20th and 25th and 

determined as 1 train. At the end, we should have 10 trains with total profit of 

$355,079,716. 

(**) The cost of the train is $1,600,000. Here, its cost was decreased to $1,300,000. 

(***) The cost of the train was decreased to $1,440,000. 

(****) Transition probabilities were changed as follows: (0.5, 0.3, 0.2), (0, 0.6, 0.4), 

(0, 0.4, 0.6). 

(*****) Interest rate was decreased from 12 % to 10 %. 

(******) Transition probabilities were changed as follows: (0.5, 0.3, 0.2), (0, 0.6, 

0.4), (0, 0.4, 0.6) 

8.4.2 Part 2: Optimal Timing of the Investment 

In this part, we investigated the feasibility of the investment. The period is 5 years 

from 2005 to 2009. We decided to optimal timing of the investments made between 

these years. In each year we have two decisions:  

1. Invest immediately at that year 

2. Wait until the next year and invest at that year 

Let, 

( )t tF x = The expected net present value of the cash flows when the firm makes all 

decisions optimally from this point onwards 

( )t tr x = Revenue of the state at time t 

( , )t t tx dπ = The profit flow of the current state x under decision d at that time t 

I = Sunk cost, investment 

1 1[ ( )]t t tF xε + + = Expected value of the next state at the next stage t+1  

 [ ]1 1
1

( ) max ( , ) ( )
1t

t t t t t t t t
d

F x x d F x
r

π ε + +
 

= + 
+ 

 

When we write the equation briefly, we get 

 [ ]1 1
1

( ) max ( ) , ( )
1t t t t t t tF x r x I F x

r
ε + +

 
= − 

+ 
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If we invest immediately, we will get revenue of that state minus the sunk cost, 

( )t tr x I− . If we wait and invest next year, we will get the discounted expected value 

of the next year net present value, 1 1
1

( )
1 t t tF x

r
ε + + 
 +

. During the construction 

phase, since we will not get any revenue, the value of ( )t tr x will be 0. Moreover, at 

the end we will have only one choice, invest immediately at that year, so we can 

eliminate the waiting decision. Then we can write the equation again as follows: 

 [ ]1 1
1

( ) min ; ( )
1t t t t tF x I F x

r
ε + +

 
=  

+ 
. 

 5F I= . 

The solution of investment timing is: 

In year 2009: 

{ }5 107,473,800F =     

� Invest immediately in that year 

In year 2008: 

{ }

54
1

min 59,111,300; (59,111,300 )
1 0.12

min 59,111,300; 148,736,696

59,111,300

F F
 

= + 
+ 

=

=

 

� Invest immediately in that year 

In year 2007: 

{ }

3 4
1

min 100,148,800; (100,148,800 )
1 0.12

min 100,148,800; 142,196,517

100,148,800

F F
 

= + 
+ 

=

=

 

� Invest immediately in that year 
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In year 2006:       

{ }

2 3
1

min 58,648,800; (58,648,800 )
1 0.12

min 58,648,800; 141,783,571

58,648,800

F F
 

= + 
+ 

=

=

 

� Invest immediately in that year 

In year 2005: 

{ }

1 2
1

min 60,136,800; (60,136,800 )
1 0.12

min 60,136,800; 106,058,571

60,136,800

F F
 

= + 
+ 

=

=

 

� Invest immediately in that year 

The summary of this analysis is as follows: 

• 5th year (2009) � Invest immediately in that year 

• 4th year (2008) � Invest immediately in that year 

• 3rd year (2007) � Invest immediately in that year 

• 2nd year (2006) � Invest immediately in that year 

• 1st year (2005) � Invest immediately in that year. 
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9. CONCLUSIONS 

Most investment decisions share three important characteristics: Irreversibility, 

uncertainty and timing. These three characteristics interact to determine the optimal 

decisions of investors. In this thesis, I tried to explain investment under uncertainty 

based on dynamic programming. It was shown that the “net present value” rule can 

give wrong answers by the Option Approach. Therefore, we should think every time 

that we will have an option value while deciding on an investment. 

The first chapter of the thesis is an introduction part. In this part, the definition of the 

investment was given and the option approach that is the new view in the investment 

analysis and the orthodox theory that is known as the neoclassical theory were 

described. Moreover, it was shown that the traditional “net present value” rule can 

give wrong answers. The reason is that this rule ignores the irreversibility and the 

option of delaying investment. 

In the second and third chapters, Dynamic Programming techniques and Markov 

Decision Processes were studied. Dynamic programming was identified as a branch 

of applied mathematics rather than as something more specific. The subject’s 

coherence results are pervaded by several themes. We saw that these themes include 

the concept of states, the principles of optimality and functional equations. 

Since we used probabilistic dynamic programming in the application part, the fourth 

chapter focused on stochastic processes. Moreover, continuous-time stochastic 

processes were tried to explain.  

In the fifth and sixth chapters, the techniques about the investment opportunities and 

the optimal timing of the investments were studied and detailed information was 

given. It was concerned on two important characteristics of the investment 

expenditures. First, the expenditures are at least partly irreversible; in other words, 

sunk costs that cannot be recovered. Second, these investments can be delayed, so 

that the firm has the opportunity to wait for new information to arrive about prices, 

costs, and other market conditions before it commits resources.  

In the seventh chapter, the literature research about dynamic programming 

applications was taken part. It was seen that dynamic programming was used in 
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many applications: Investment planning, capacity expansion, optimal allocation of 

resources, replacement anlaysis, etc.  

In the eighth chapter, my application was described in detailed. Here, transportation 

and traffic problem which are the main problems of İstanbul were considered. By 

using C++ computer programming language, a programme was developed based on 

probabilistic dynamic programming. From the code, an optimal policy was found 

which is formed from the required number of trains to be purchased each year. The 

decisions given according to the computer program are purchasing 1 train between 

the years 2029 and 2034 with the total profit of $355,079,716. 

After we got the results, a sensitivity analysis was conducted to determine the 

significance of effects of possible scenarious with respect to some key parameters. 

The best result was obtained by changing the discount factor according to the 

sensitivity analysis and when the investment cost of the trains decrease, the required 

number of trains to be purchased increased. In the 25 years operation period, we used 

constant discount factor. According to these results, if we change the discount factor 

each year, we may take more truly results. 

Since this optimal investment policy is profitable, we decided that we will invest. 

Again by using dynamic programming, we determined the optimal timing of the 

investments. During the construction phase, since we won’t get any revenue from the 

project, the timing of the investments will take the most important place. As a result, 

we decided to invest immediately in these years. 
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APPENDIX 

In this C++ computer program, it was decided to optimal investment policy (the 

required number of trains to be purchased in each year). The inputs of the code are 

the population size, interest rate, cost and profit information of the bus, minibus, car 

and subway, initial number of trains, transition probabilities, etc. The output of the 

program is the required number of trains to be purchased in each year and the profit 

of the project.                                                                                                                                                                 

The source of the code 

#include<iostream> 

#include<iomanip> 

#include<cmath> 

 

using namespace std; 

 

const double interest_rate = 0.12; 

const int year = 26; 

const int state = 3; 

const int ds = 5; 

int project_pop[year][state]; 

 

int population[year][state] =  { { 0 , 0 , 0 } , { 316000000 , 327000000 , 335000000 }  

, { 307000000 , 316000000 , 325000000 } , { 298000000 , 310000000, 316000000 }      

, { 289000000 , 300000000 , 307000000 } , { 280000000 , 290000000 , 298000000 } 

, { 272000000 , 282000000 , 289000000 } , { 264000000 , 275000000 , 280000000 } 

, { 257000000 , 265000000 , 272000000 } , { 249000000 , 259000000 , 264000000 } 

, { 242000000 , 250000000 , 257000000 } , { 235000000 , 245000000 , 249000000 } 

, { 228000000 , 236000000 , 242000000 } , { 221000000 , 230000000 , 235000000 } 

, { 215000000 , 223000000 , 228000000 } , { 209000000 , 217000000 , 221000000 } 

, { 202000000 , 210000000 , 215000000 } , { 197000000 , 204000000 , 209000000 } 

, { 191000000 , 198000000 , 202000000 } , { 185000000 , 192000000 , 197000000 } 

, { 180000000 , 186000000 , 191000000 } , { 175000000 , 181000000 , 185000000 } 

, { 170000000 , 176000000 , 180000000 } , { 165000000 , 171000000 , 175000000 } 
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, { 160000000 , 165000000 , 170000000 } , { 156000000 , 156000000 , 156000000 } 

} ; 

 

int car_km[year][state]= { { 0 , 0 , 0 } , { 19679157 , 19679157 , 19679157 } ,          

{ 19183650 , 19183650 , 19183650 } , { 18700060 , 18700060 , 18700060 } ,           

{ 18228109 , 18228109 , 18228109 } , { 17767525 , 17767525 , 17767525 } ,           

{ 17318044 , 17318044 , 17318044 } , { 16879406 , 16879406 , 16879406 } ,           

{ 16451357 , 16451357 , 16451357 } , { 16033649 , 16033649 , 16033649 } ,           

{ 15626041 , 15626041 , 15626041 } , { 15228297 , 15228297 , 15228297 } ,           

{ 14840185 , 14840185 , 14840185 } , { 14461479 , 14461479 , 14461479 } ,           

{ 14082774 , 14082774 , 14082774 } , { 13704068 , 13704068 , 13704068 } ,            

{ 13325363 , 13325363 , 13325363 } , { 12946657 , 12946657 , 12946657 } ,            

{ 12567952 , 12567952 , 12567952 } , { 12189246 , 12189246 , 12189246 } ,            

{ 11810540 , 11810540 , 11810540 } , { 11431835 , 11431835 , 11431835 } ,           

{ 11053129 , 11053129 , 11053129 } , { 10674424 , 10674424 , 10674424 } ,                

{ 10295718 , 10295718 , 10295718 } , { 9917013 , 9917013 , 9917013 } } ; 

 

int decision[ds] = { 0 , 1 , 2 , 3 , 4 } ; 

 

int travel_time_total[year]  =   { 0 , 78032435 , 74309932 , 70786686 , 67453443 , 

64301444 , 61322399 , 58508457 , 55852176 , 53346502 , 50984742 , 48760546 , 

46667884 , 44544154 , 42489500 , 40501635 , 38578370 , 36717612 , 34917359 , 

33175691 , 31490771 , 29860834 , 28884192 , 26759222 , 25284368 , 23858137 }; 

int policy[25] = { 1 , 1 , 1 , 1 , 2 , 1 , 1 , 0 , 1 , 2 , 1 , 1, 1 , 1 , 1 , 0 , 0 , 0 , 1 , 1 , 1 , 2 

, 1 , 1 , 1}; 

int tot_revenue[year][state][ds]; 

 

class Metro{ 

public: 

 double energy_cost ; 

 int maint_cost ; 

 double repair_cost ; 

 double personnel_cost ; 

 int personel_number; 
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 int wage ; 

 int other_cost ; 

 int vehicle_cost; 

 double fee; 

 double project_length ; 

 double total_length  ; 

 double pop_rate_without ; 

 double pop_rate_project ; 

 double peak_hr_pop_rate ; 

 double peak_hr ; 

 double full_rate ; 

 int capacity ; 

 double pass_km_with ; 

 double pass_km_without ; 

 int train_number[year][state]; 

 int cost[year][state][ds]; 

 int peak_hr_pop_project[year][state]; 

 int peak_hr_pop_without[year][state]; 

 int tour_number_without[year][state]; 

 int tour_number_with[year][state]; 

 int train_km_without[year][state]; 

 int train_km_with[year][state]; 

 

 

 

Metro (double a = 0.52, int b = 10275, double c = 0.04, double d = 0.096,      

 

int e = 1000, int f = 15640, int g = 513135, double h = 4.6, double i = 16.64,  

 

double j = 0.8, double k = 0.2, double l = 0.53, double m = 6.0,  

 

double n = 0.9, int o=1872, double p = 5.86, double r = 5.1, int z = 1600000,  

 

double v=0.70); 
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}; 

Metro :: Metro ( double a, int b, double c, double d, int e, int f, int g, double h,  

 

double i, double j, double k, double l, double m, double n,int o, double p, double r,  

 

int z, double v) 

{ 

 energy_cost = a; 

 maint_cost = b; 

 repair_cost = c; 

 personnel_cost = d; 

 personel_number = e; 

 wage = f; 

 other_cost = g; 

 project_length = h; 

 total_length = i ; 

 pop_rate_without = j;                                      //0,8 

 pop_rate_project = k;                                       //0,2 

 peak_hr_pop_rate = l; 

 peak_hr  = m; 

 full_rate = n; 

 capacity = o; 

 pass_km_with = p; 

 pass_km_without = r; 

 vehicle_cost = z; 

            fee = v; 

} 

 

class Bus{ 

public: 

 float op_costS ; 

 float road_maint_costS; 

 float road_accident_costS ; 

 int capital_costS ; 
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 float travel_time_costS ; 

 float environmental_costS ; 

 float pop_rate ; 

 float passenger_km  ; 

 int capacity ; 

 float tour_length ; 

 int total_tour_length ; 

 float bus_tour_number; 

 float availability_rate ; 

 int initial_number ; 

 float conversion_factor ; 

 int required_number_without[year][state]; 

 int required_number_project[year][state]; 

 int required_number_with[year][state][ds];  

 int revenue[year][state][ds]; 

 int bus_pop_with[year][state][ds]; 

 int bus_pop_without[year][state]; 

 int bus_km_with[year][state][ds]; 

 int bus_km_without[year][state]; 

 int cost[year][state][ds]; 

 int purchased_train_pop[year][state][ds]; 

 

 Bus ( float a = 1.16, float b = 0.065, float c = 0.036208, int d = 200000,  

 

float e = 5.93, float f = 0.4, float h = 0.14, float i = 4.68, int j = 70,  

 

float k = 9.6, int l = 180, float m = 0.85, int n = 16, float y = 0.7 );  

}; 

 

Bus :: Bus ( float a, float b, float c, int d, float e, float f,  float h, float i, int j, float k,  

 

int l, float m, int n, float y) 

{ 

 op_costS = a; 
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 road_maint_costS = b; 

 road_accident_costS = c; 

 capital_costS = d; 

 travel_time_costS = e; 

 environmental_costS = f; 

 pop_rate = h; 

 passenger_km = i; 

 capacity = j; 

 tour_length = k; 

 total_tour_length = l; 

 availability_rate = m; 

 initial_number = n; 

 conversion_factor = y; 

} 

 

class Minibus : public Bus{ 

public: 

 int minibus_tour_number; 

 int minibus_pop_with[year][state][ds]; 

 int minibus_pop_without[year][state]; 

 int minibus_km_with[year][state][ds]; 

 int minibus_km_without[year][state]; 

 

Minibus ( float a = 0.29 , float b = 0.000258 , float c = 0.036208 ,  

 

float d = 63000.0 , float e = 5.93 , float f = 0.4 , float h = 0.1 , double i = 6.46, 

 

float j = 14.0 , float k = 9.6 , float l = 180 , float m = 0.90 , float n = 86.0 ,  

 

float y = 0.7 ) : Bus ( a , b , c , d , e , f , h , i , j , k , l , m , n , y ) { }; 

}; 

 

class Car{ 

public: 
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 double op_costS; 

 double road_maint_costS ; 

 double road_accident_costS ; 

 double travel_time_costS ; 

 double environmental_costS ; 

 double conversion_factor ; 

 int revenue[year][state][ds]; 

 

Car ( double a = 0.39 , double b = 0.00001616 , double c = 0.036208 ,  

 

double d = 5.93 , double e = 0.15 , double f = 0.7 ); 

}; 

 

Car :: Car ( double a , double b , double c , double d , double e , double f ) 

{ 

 op_costS = a ; 

 road_maint_costS = b ; 

 road_accident_costS = c ; 

 travel_time_costS = d ; 

 environmental_costS = e ; 

 conversion_factor = f ; 

} 

 

 

 

void main() 

{ 

int y, s , i , t ; 

 Car c ; 

 Minibus min ; 

 Bus b ; 

 Metro m ; 

 int initial_train_number[25] ; 

 initial_train_number[0] = 4 ; 
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 int max_state ;                                       // maximum value of the state 

 int V_max[year][state] ; 

 V_max[0][0] = 0 ; 

 V_max[0][1] = 0 ; 

 V_max[0][2] = 0 ; 

 double prob[3][3] = { { 0.6 , 0.3 , 0.1} , { 0.0 , 0.7 , 0.3} , { 0.0 , 0.5 , 0.5} };

  

 int tot_prob[state] ; 

 int dec[year][state] ; 

 min.minibus_tour_number = min.total_tour_length / min.tour_length ; 

 b.bus_tour_number = b.total_tour_length / b.tour_length ; 

 

 for ( y = 1 ; y < year ; y++ ) 

 {      

 for ( s = 0 ; s < state ; s++ ) 

 { 

  //population[y][s] = population[y][s] * (1 + rate) ; 

 

project_pop[y][s] = ( population[y][s]  * m.pop_rate_project *  

m.peak_hr_pop_rate ) / 330 ; 

 

  // information for subway 

 

m.peak_hr_pop_project[y][s] = population[y][s]  * 

m.peak_hr_pop_rate * m.pop_rate_project ; 

    

m.peak_hr_pop_without[y][s] =  population[y][s]  * 

m.peak_hr_pop_rate * m.pop_rate_without ; 

 

m.tour_number_without[y][s] = population[y][s]  * m.full_rate * 

m.pop_rate_without / ( 330 * m.capacity * 2 ) ; 

    

m.train_km_without[y][s] = m.tour_number_without[y][s] * 330 * 8 * 

(m.total_length - m.project_length) * 2 ; 



 96 

    

m.tour_number_with[y][s] =  population[y][s] * m.full_rate  /   ( 330 * 

m.capacity * 2 ) ; 

 

m.train_number[y][s] = m.peak_hr_pop_without[y][s] * m.full_rate / ( 

330 * m.capacity * 2 * m.peak_hr ) ; 

   

  //information for minibus 

 

min.minibus_pop_without[y][s] = population[y][s] * min.pop_rate * 

m.pop_rate_project ; 

 

min.minibus_km_without[y][s] = min.minibus_pop_without[y][s] * 

min.tour_length / min.capacity ; 

 

min.required_number_project[y][s] = ( project_pop[y][s] * 0.5 * 

min.availability_rate ) / (min.minibus_tour_number * min.capacity ) ;

  

       

  // information for bus 

 

b.bus_pop_without[y][s] =  population[y][s] * b.pop_rate * 

m.pop_rate_project ;   

 

b.bus_km_without[y][s] = b.bus_pop_without[y][s] * b.tour_length / 

b.capacity ; 

 

b.required_number_project[y][s] = ( ( project_pop[y][s] * 0.5 ) / ( 

b.bus_tour_number * b.capacity ) ) * b.availability_rate ;  

    

  } 

 } 

 for ( y = 1; y < year ; y++ ) 

 {  
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 for (  t  = 0 ; t < 3 ; t++ ) 

 { 

  tot_prob[t] = 0 ; 

 } 

 for ( t = 0 ; t < 3 ; t++ ) 

 { 

 for ( int k = 0 ; k < 3 ; k++ ) 

 {  

  tot_prob[t] = tot_prob[t] + prob[t][k] * V_max[y-1][k] ; 

 } 

 } 

 for ( s = 0 ; s < state ; s++ ) 

 { 

 max_state = 0 ; 

 

 for ( i = 0 ; i < 5 ;  i++ ) 

 { 

tot_revenue[y][s][i] =  population[y][s] * m.pop_rate_project * 1 ; 

 //revenue from fee of bus and minibus 

 

  if ( i != 0 )                           // for the project case 

  { 

 

 

  //subway cost 

 

m.train_km_with[y][s] = m.tour_number_with[y][s] * 330 * 8 * 

m.project_length * 2 + ( m.tour_number_with[y][s] / 

m.train_number[y][s] ) * decision[i] * 2 * 8 * 330 * m.project_length ; 

     

m.cost[y][s][i] = ( ( m.energy_cost * m.train_km_with[y][s] + 

m.maint_cost * m.project_length * pow( 1.02 , year – y ) +  

m.repair_cost * m.train_km_with[y][s] + m.personnel_cost * 

m.train_km_with[y][s] + m.personel_number * m.wage + 
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m.other_cost * m.project_length * pow( 1.02 , year – y ) )  /  5 ) + ( 

decision[i] *  m.vehicle_cost * 8 ) ; 

     

 

  //minibus revenue 

 

min.purchased_train_pop[y][s][i] = decision[i] * m.capacity * 2 *  

m.pop_rate_project * m.peak_hr_pop_rate * m.full_rate *  

 ( m.tour_number_with[y][s] / ( m.train_number[y][s]+ decision[i] ) ); 

  

// population not met with subway 

 

min.minibus_pop_with[y][s][i] = ( project_pop[y][s] –  

min.purchased_train_pop[y][s][i] ) * 0.5 ;       

 

min.required_number_with[y][s][i] = ( min.minibus_pop_with[y][s][i] 

* min.availability_rate ) / ( min.minibus_tour_number * min.capacity 

) ; 

    

min.minibus_km_with[y][s][i] = ( population[y][s] * min.pop_rate * 

m.pop_rate_project* min.tour_length / min.capacity) - (  ( 

min.required_number_project[y][s] - 

min.required_number_with[y][s][i] ) * min.total_tour_length * 330 ) ; 

      

min.revenue[y][s][i] = ( min.op_costS * 

min.minibus_km_with[y][s][i] * min.conversion_factor  )  + ( 

min.road_maint_costS * min.minibus_km_with[y][s][i]  * 

min.conversion_facto r) + ( min.road_accident_costS * 

min.minibus_km_with[y][s][i]  ) + ( min.environmental_costS * 

min.minibus_km_with[y][s][i] ) + ( ( 

min.required_number_project[y][s] -

min.required_number_with[y][s][i] ) * min.capital_costS * 

min.conversion_factor  ) ; 
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//bus revenue 

 

b.purchased_train_pop[y][s][i] = decision[i] * m.capacity * 2 * 

m.pop_rate_project * m.peak_hr_pop_rate * m.full_rate * 

(m.tour_number_with[y][s] / ( m.train_number[y][s] + decision[i] ) ) ; 

      

b.bus_pop_with[y][s][i] = ( project_pop[y][s] - 

b.purchased_train_pop[y][s][i] ) * 0.5 ; 

     

b.required_number_with[y][s][i] = ( b.bus_pop_with[y][s][i] * 

b.availability_rate ) / ( b.bus_tour_number * b.capacity ) ; 

     

b.bus_km_with[y][s][i] = ( population[y][s] * b.pop_rate * 

b.tour_length * m.pop_rate_project / b.capacity) - ( ( 

b.required_number_project[y][s] - b.required_number_with[y][s][i] ) 

* b.total_tour_length * 330 ) ; 

    

b.revenue[y][s][i] = ( b.op_costS * b.bus_km_with[y][s][i] * 

b.conversion_factor ) + ( b.road_maint_costS * 

b.bus_km_with[y][s][i]  * b.conversion_factor ) + ( 

b.road_accident_costS  *  b.bus_km_with[y][s][i]  ) + 

(b.environmental_costS  *  b.bus_km_with[y][s][i] ) + ( ( 

b.required_number_project[y][s] - b.required_number_with[y][s][i] ) 

* b.capital_costS * b.conversion_factor) + ( 

b.purchased_train_pop[y][s][i] * m.fee * 330 ) ;   

      

     

  //car revenue 

 

c.revenue[y][s][i] = car_km[y][s] * c.op_costS * c.conversion_factor 

+ car_km[y][s] * c.road_maint_costS * c.conversion_factor + 

car_km[y][s] * c.road_accident_costS + car_km[y][s] * 

c.environmental_costS ;  
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  // total revenue 

 

tot_revenue[y][s][i] =  b.revenue[y][s][i] + min.revenue[y][s][i] + 

c.revenue[y][s][i] + travel_time_total[y] - m.cost[y][s][i] ; 

    } 

  }                        // end of i (decisions) 

    

for ( t = 0 ; t < 5 ;  t++ ) 

  { 

  if ( tot_revenue[y][s][t] > max_state ) 

  { 

  max_state = tot_revenue[y][s][t];        // maximum value of the state 

  dec[y][s] = t;                                // decision which provides max profit

     

  } 

  } 

 

  V_max[y][s] = max_state + ( 1 / ( 1 + interest_rate ) ) * tot_prob[s] ;  

 

  }                  // end of s (states)   

 }                             // end of y (years) 

 

 

 cout <<  "***************************************** "  <<  endl ; 

 cout <<  "********  initial number of trains = 4  ******* "  << endl ;  

 cout <<  "************************************* "  <<  endl << endl ; 

 

 for ( y = 1; y < year ; y++ ) 

 { 

  cout  <<   "Year: "  <<   y   <<   endl; 

 

initial_train_number[y] = initial_train_number[y-1] +  

dec[year-y][policy[y]] ; 
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cout <<"  \n          Decision:"  <<  dec[year-y][policy[y]] <<  "    " << 

"Number of Trains:"  <<  initial_train_number[y]  <<  endl  <<  endl ; 

 

 } 

 

cout << "  \n\n  ---------> with profit: " << V_max[25][policy[0]] << endl << 

endl << endl ; 

 

} 
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