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for SM-netFusion-NAGFS, and SM-netFusion-SNF pairs for
AD-LH, AD-RH, LMCI-LH and LMCI-RH datasets. [Box plot
legend: median (midline), box (25th and 75th percentiles), and
whiskers (extrema)]............................................................................105

Figure 4.16 : Dissimilarity between the possible pairs combination of
A) single-view and B) multigraph fusion methods using
KL-divergence for the AD and LMCI in the left and the right
hemispheres........................................................................................106

Figure 4.17 : Region-wise local efficiency distribution of connectional
brain templates generated by A) SNF [1], NAG-FS [7], and
SM-netFusion [8] against the ground truth distribution for
single-view fusion methods comparison; and B) netNorm [2],
SCA [9], MVCF-Net [10], cMGI-Net [20], and DGN [11] against
the ground truth for multi-graph integration methods using 5-fold
cross-validation for the AD and LMCI populations in the left and
right hemispheres. For multi-graph fusion methods comparison,
DGN achieved the most similar distribution to the ground truth
while SM-netFusion displayed the closest distribution. ....................107

xxiv



Figure 4.18 : Charts display the average local efficiency distribution across
regions (ROIs), modularity, global efficiency, and participation
coefficient of connectional brain templates estimated by A)
single-view fusion methods (SNF [1], NAG-FS [7], and
SM-netFusion [8]) and B) multigraph fusion methods (netNorm
[2], SCA [9], MVCF-Net [10], cMGI-Net [20], and DGN [11])
against the ground truth for AD-LH, LMCI-LH, AD-RH, and
LMCI-RH groups using 5-fold cross validation. Remarkably,
DGN achieved the highest scores including average local
efficiency distribution over regions, modularity, particiation
coefficient, and global efficiecy comparing to other multigraph
fusion methods with a high statistical significance demonstrated
by a two-tailed paired t-test (all p < 0.0001) for DGN-SCA,
DGN-netNorm, DGN-MVCFNet, and DGN-cMGI-Net pairs for
AD-LH, AD-RH, LMCI-LH and LMCI-RH groups. While for
the single-view integration methods comparison, SM-netFusion
significantly outperformed SNF and NAG-FS for AD and LMCI
datasets in both hemispheres (all p < 0.0001)...................................108

Figure 4.19 : Pairwise distance comparison of the learned connectional
templates generated by A) single-view fusion methods (SNF [1],
NAG-FS [7], and SM-netFusion [8]); and B) multigraph fusion
methods (netNorm [2], SCA [9], MVCF-Net [10], cMGI-Net
[20], and DGN [11]) using Hamming distance and Jaccard
distance measures for AD and LMCI populations in the left and
right hemispheres. ..............................................................................108

xxv



Figure A.1 : Centeredness comparison of connectional templates generated
by A) single-view integration methods including network
atlas-guided feature selection (NAG-FS) [7], similarity network
fusion (SNF) [1], and supervised multi-topology network
cross-diffusion (SM-netFusion) [8]; and B) multi-graph fusion
methods including multi-view networks normalizer (netNorm)
[2], cluster-based network fusion (SCA) [9], multi-view clus-
tering and fusion (MVCF-Net) [10], cluster-based multi-graph
integrator networks (cMGI-Net) [20], and deep graph normalizer
(DGN) [11]. Charts illustrate the mean Frobenius distance
between the connectional templates learned from the training sets
and networks of the samples in the testing set using a 5-fold
cross-validation strategy. We reported the average distance for
each cross-validation fold as well as the average across folds
(“Mean” bars on the right). For multi-graph fusion methods
comparison, DGN achieved the lowest mean Frobenius distance
to the population multi-view networks with a high statistical
significance demonstrated by a two-tailed paired t-test (all
p < 0.0001) for DGN-SCA, DGN-netNorm, DGN-MVCFNet,
and DGN-cMGI-Net pairs for M-LH, M-RH, F-LH and F-RH
groups. LH: left hemisphere. RH: right hemisphere. M: Male
population. F: Female population. As for single-view fusion
methods comparison, SM-netFusion significantly achieved the
lowest mean Frobenius distance to the population single-view
networks (all p < 0.0001) using two-tailed paired t-test for
SM-netFusion-NAGFS, and SM-netFusion-SNF pairs for M-LH,
M-RH, F-LH and F-RH datasets........................................................129

Figure A.2 : Comparison of the average topological distributions across
5-fold cross-validation of PageRank [12], Katz centrality [13],
node strength [14], random-walk centrality [15], information
centrality [16], Laplacian centrality [17], eigenvector centrality
[18], and betweeness centrality [19] of templates generated by A)
SNF [1], NAG-FS [7], and SM-netFusion [8] against the ground
truth distribution for a population of single-view network; and
B) netNorm [2], SCA [9], MVCF-Net [10], cMGI-Net [20], and
DGN [11] against the ground truth distribution for a population
of multi-view network for M and F datasets in the left and right
hemispheres........................................................................................130

xxvi



Figure A.3 : This chart displays the average topological distributions of
PageRank [12], Katz centrality [13], node strength [14],
random-walk centrality [15], information centrality [16], Lapla-
cian centrality [17], eigenvector centrality [18], and betweeness
centrality [19] measures across the nodes (ROIs) of the
learned templates generated by A) SNF [1], NAG-FS [7],
and SM-netFusion [8] against the ground truth distribution
of a population of single-view networks; and B) netNorm
[2], SCA [9], MVCF-Net [10], cMGI-Net [20], and DGN
[11] against the ground truth distribution of a population
of multi-view network for the M and F datasets in the
left and right hemispheres. For multi-graph fusion methods
comparison, DGN achieved the highest average distribution
comparing to the average distribution of other multigraph fusion
methods with a high statistical significance demonstrated by
a two-tailed paired t-test (all p < 0.0001) for DGN-SCA,
DGN-netNorm, DGN-MVCFNet, and DGN-cMGI-Net pairs for
M (LH), M (RH), F (LH) and F (RH) groups, except for
the random-walk centrality measures. For single-view fusion
methods comparison,SM-netFusion significantly achieved the
maximum average distribution comparing to SNF and NAG-FS
for all centrality measures except the betweeness centrality and
node strength for M (LH), M (RH), F (LH) and F (RH) datasets......131

Figure A.4 : Average of Kullback-Liebler divergence distribution across
5-fold cross validation between the ground truth distribution and
the average topological distributions of the learned connectional
templates generated by A) single-view fusion methods (SNF
[1], NAG-FS [7],and SM-netFusion [8]); and B) multigraph
fusion methods (SCA [9], netNorm [2], MVCF-Net [10],
cMGI-Net [20], and DGN [11]). The topological measures
include PageRank [12], Katz centrality [13], node strength
[14], random-walk centrality [15], information centrality [16],
Laplacian centrality [17], eigenvector centrality [18], and
betweeness centrality [19]. Charts illustrate that for multi-graph
fusion methods comparison, DGN achieved the minimum mean
KL-divergence distribution and the narrowest dispersion range
with a high statistical significance demonstrated by a two-tailed
paired t-test (all p < 0.0001) for DGN-SCA, DGN-netNorm,
DGN-MVCFNet, and DGN-cMGI-Net pairs for M-LH, M-RH,
F-LH and F-RH groups. For single-view fusion methods
comparison, SM-netFusion significantly achieved the lowest
mean KL-divergence distribution to the population single-view
networks (all p < 0.0001) using two-tailed paired t-test for
SM-netFusion-NAGFS, and SM-netFusion-SNF pairs for M-LH,
M-RH, F-LH and F-RH datasets. [Box plot legend: median
(midline), box (25th and 75th percentiles), and whiskers (extrema).]132

Figure A.5 : Dissimilarity between the possible pairs combination of
A) single-view and B) multigraph fusion methods using
KL-divergence for the M and F in the left and the right hemispheres.133

xxvii



Figure A.6 : Pairwise distance comparison of the learned connectional
templates generated by A) single-view fusion methods (SNF [1],
NAG-FS [7], and SM-netFusion [8]); and B) multigraph fusion
methods (netNorm [2], SCA [9], MVCF-Net [10], cMGI-Net
[20], and DGN [11]) using Hamming distance and Jaccard
distance measures for M and F populations in the left and right
hemispheres........................................................................................133

Figure A.7 : Region-wise local efficiency distribution of connectional
brain templates generated by A) SNF [1], NAG-FS [7], and
SM-netFusion [8] against the ground truth distribution for
single-view fusion methods comparison; and B) netNorm [2],
SCA [9], MVCF-Net [10], cMGI-Net [20], and DGN [11] against
the ground truth for multi-graph integration methods using 5-fold
cross-validation for the M and F populations in the left and right
hemispheres. For multi-graph fusion methods comparison, DGN
achieved the most similar distribution to the ground truth while
SM-netFusion displayed the closest distribution. ..............................134

Figure A.8 : Charts display the average local efficiency distribution across
regions (ROIs), modularity, global efficiency, and participation
coefficient of connectional brain templates estimated by A)
single-view fusion methods (SNF [1], NAG-FS [7], and
SM-netFusion [8]) and B) multigraph fusion methods (netNorm
[2], SCA [9], MVCF-Net [10], cMGI-Net [20], and DGN
[11]) against the ground truth for M-LH, F-LH, M-RH, and
F-RH groups using 5-fold cross validation. Remarkably, DGN
achieved the highest scores including average local efficiency
distribution over regions, modularity, particiation coefficient, and
global efficiecy comparing to other multigraph fusion methods
with a high statistical significance demonstrated by a two-tailed
paired t-test (all p < 0.0001) for DGN-SCA, DGN-netNorm,
DGN-MVCFNet, and DGN-cMGI-Net pairs for M-LH, M-RH,
F-LH and F-RH groups. While for the single-view integration
methods comparison, SM-netFusion significantly outperformed
SNF and NAG-FS for M and F datasets in both hemispheres (all
p < 0.0001). .......................................................................................134

xxviii



MULTI-MODAL NEUROIMAGING DATA PREDICTION:
ESTIMATION OF CONNECTIONAL BRAIN TEMPLATE AND MULTIGRAPH

CLASSIFICATION WITH APPLICATION TO GENDER FINGERPRINTING

SUMMARY

The work developed in this Ph.D. thesis concerns the design of machine learning and
geometric deep learning models that estimate a holistic representation of a population
of multigraph brain connectivity and use the learnable integration networks for
classification tasks with application to gender fingerprinting. Male and female brains
are demonstrated to be highly distinguishable. Understanding sex differences in the
brain has implications for elucidating variability in the incidence and progression of
the disease, psychopathology, and differences in psychological traits and behavior.
Decoding the brain construct using diverse neuroimaging techniques seems to be the
ultimate pursuit of neuroscientists as well as brain-imaging analysts to extract the
difference in genders’ brains, thus boosting the neurological disorder diagnosis and
prognosis related to sex. Currently, where an increasing number of brain imaging is
being collected to investigate both women and man brains at their different modalities,
more advanced analytical tools are required to meet new challenges revealed by
large, complex, and multi-source sets of brain networks. On one hand, the estimation
of a connectional brain template (CBT) integrating a population of brain networks
while capturing shared and differential connectional patterns across individuals
remains unexplored in gender fingerprinting. On the other hand, multigraphs with
heterogeneous views present one of the most challenging obstacles to classification
tasks due to their complexity. Several works based on feature selection have been
recently proposed to disentangle the problem of multigraph heterogeneity. However,
such techniques have major drawbacks. First, the bulk of such works lies in the
vectorization and the flattening operations, failing to preserve and exploit the rich
topological properties of the multigraph. Second, they learn the classification process
in a dichotomized manner where the cascaded learning steps are pieced in together
independently. Hence, such architectures are inherently agnostic to the cumulative
estimation error from step to step. To overcome these drawbacks, in this thesis,
we propose a medical computer-aided diagnosis tool enabling us to address the key
challenges related to brain networks collected from multiple sources/modalities.
First, we proposed how to estimate representative and centered brain network atlases,
which can be leveraged to identify discriminative brain connectivities between male
and female populations across heterogeneous datasets. Perhaps one of the greatest
scientific challenges is to create a representative map of a brain network population
acting as a connectional fingerprint. A very recent concept -connectional brain
template (CBT), presents a powerful tool for capturing the most important and
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discriminative traits of a specific population while preserving its topological patterns.
The idea of a CBT is to integrate a population of heterogeneous brain connectivity
networks into a unified representation. Specifically, we present the first study to
estimate gender-specific CBTs using multi-view cortical morphological networks
(CMNs) estimated from conventional T1-weighted magnetic resonance imaging
(MRI). Specifically, each CMN view is derived from a specific cortical attribute (e.g.
thickness), encoded in a network quantifying the dissimilarity in morphology between
pairs of cortical brain regions. To this aim, we propose Multi-View Clustering and
Fusion Network (MVCF-Net), a novel multi-view network fusion method, which
can jointly identify consistent and differential clusters of multi-view datasets in order
to capture simultaneously similar and distinct connectional traits of samples. Our
MVCF-Net method estimates a representative and well-centered CBTs for male
and female populations, independently, to eventually identify their fingerprinting
regions of interest (ROIs) in four main steps. First, we perform multi-view network
clustering model based on manifold optimization which groups CMNs into shared and
differential clusters while preserving their alignment across views. Second, for each
view, we linearly fuse CMNs belonging to each cluster, producing local CBTs. Third,
for each cluster, we non-linearly integrate the local CBTs across views, producing
a cluster-specific CBT. Finally, by linearly fusing the cluster-specific centers we
estimate a final CBT of the input population. MVCF-Net produced the most centered
and representative CBTs for male and female populations and identified the most
discriminative ROIs marking gender differences. The most two gender-discriminative
ROIs involved the lateral occipital cortex and pars opercularis in the left hemisphere
and the middle temporal gyrus and lingual gyrus in the right hemisphere. Second,
to address the major issues in classifying complex data, we put forward an
integration learning which fuses multigraphs brain connectomes with the aim to boost
classification performance using the integrated networks. Specifically, we introduce
Multigraph Integration and Classifier Network (MICNet), the first end-to-end graph
neural network-based model for multigraph classification. First, we learn a single-view
graph representation of a heterogeneous multigraph using a GNN based integration
model. The integration process in our model helps tease apart the heterogeneity
across the different views of the multigraph by generating a subject-specific graph
template while preserving its geometrical and topological properties. Second, we
classify each integrated template using a geometric deep learning block which
enables us to grasp the salient graph features of a specific population. We train, in
end-to-end fashion, these two blocks using a single objective function to optimize the
classification performance. We evaluate our MICNet in gender classification using
brain multigraphs derived from different cortical measures. We demonstrate that our
MICNet significantly outperformed its variants thereby showing its great potential
in multigraph classification. Finally, we review current graph integration methods
that estimate well-centered and representative brain connectional templates (CBTs)
for populations of single-view and multigraph brain networks. Then, we conducted
a comparison study on these generated CBTs by single-view and multigraph fusion
methods to evaluate their performances, separately, based on the following criteria:
centeredness, discriminability (biomarker-reproducibility), and topological soundness
(node-level similarity, global-lever similarity, and distance-based similarity). We
demonstrate that deep graph normalizer (DGN) method significantly outperforms
other multi-graph and all single-view integration methods for estimating CBTs using
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a variety of healthy and disordered datasets in terms of centeredness, discriminability
(i.e., graph-derived biomarkers reproducibility that disentangle the typical from the
atypical connectivity variability), and preserving the topological traits at both local
and global graph-levels.
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ÇOKLU MODAL NÖROGÖRÜNTÜLEME VERİ TAHMİNİ:
BAĞLANTILI BEYİN ŞABLONUNUN TAHMİNİ VE CİNSİYET

PARMAK İZİ UYGULAMASI İLE ÇOKLU GRAFİK SINIFLANDIRMA

ÖZET

Bu doktora tezinde geliştirilen çalışmada, çoklu grafik beyin bağlantısı popülasy-
onunun bütünsel bir temsilini tahmin eden ve cinsiyet parmak izine uygulama
ile sınıflandırma görevleri için öğrenilebilir entegrasyon ağlarını kullanan makine
öğrenimi ve geometrik derin öğrenme modellerinin tasarımı ile ilgilidir. Erkek ve
kadın beyinlerinin son derece ayırt edilebilir olduğu gösterilmiştir. Beyindeki cinsiyet
farklılıklarını anlamak, hastalığın görülme sıklığı ve ilerlemesindeki değişkenliği,
psikopatolojiyi ve psikolojik özellikler ve davranışlardaki farklılıkları aydınlatmak
için çıkarımlara sahiptir. Çeşitli nörogörüntüleme tekniklerini kullanarak beyin
yapısını deşifre etmek, sinirbilimcilerin yanı sıra beyin görüntüleme analistlerinin
cinsiyetlerin beyinlerindeki farkı ortaya çıkarmak için nihai arayışı gibi görünüyor,
böylece nörolojik bozukluk teşhisini ve cinsiyetle ilgili prognozu güçlendiriyor. Şu
anda, hem kadın hem de erkek beyinlerini farklı modalitelerinde araştırmak için artan
sayıda beyin görüntülemenin toplandığı yerde, büyük, karmaşık ve çok kaynaklı beyin
ağları setlerinin ortaya çıkardığı yeni zorlukların üstesinden gelmek için daha gelişmiş
analitik araçlara ihtiyaç duyulmaktadır. Bir yandan, bireyler arasında paylaşılan ve
farklı bağlantı kalıplarını yakalarken bir beyin ağları popülasyonunu bütünleştiren bir
bağlantısal beyin şablonunun (CBT) tahmini, cinsiyet parmak izinde keşfedilmemiş
kalır. Öte yandan, heterojen görünümlere sahip çoklu grafikler, karmaşıklıkları
nedeniyle sınıflandırma görevlerinin önündeki en zorlu engellerden birini sunar.
Son zamanlarda, çoklu grafik heterojenliği sorununu çözmek için öznitelik seçimine
dayalı birkaç çalışma önerilmiştir. Bununla birlikte, bu tür tekniklerin önemli
dezavantajları vardır. İlk olarak, bu tür çalışmaların büyük kısmı vektörleştirme ve
düzleştirme işlemlerinde yatmakta olup, çoklu grafiğin zengin topolojik özelliklerini
koruyamamakta ve kullanamamaktadır. İkinci olarak, kademeli öğrenme adımlarının
bağımsız olarak bir araya getirildiği, sınıflandırma sürecini ikiye bölünmüş bir şekilde
öğrenirler. Bu nedenle, bu tür mimariler, adım adım kümülatif tahmin hatasına doğal
olarak agnostiktir. Bu dezavantajların üstesinden gelmek için, bu tezde, birden fazla
kaynaktan/modaliteden toplanan beyin ağlarıyla ilgili temel zorlukları ele almamızı
sağlayan tıbbi bilgisayar destekli bir teşhis aracı öneriyoruz. İlk olarak, heterojen veri
kümelerinde erkek ve kadın popülasyonları arasındaki ayrımcı beyin bağlantılarını
belirlemek için kullanılabilecek temsili ve merkezlenmiş beyin ağı atlaslarının
nasıl tahmin edileceğini önerdik. Belki de en büyük bilimsel zorluklardan biri,
bağlantı parmak izi görevi gören bir beyin ağı popülasyonunun temsili bir haritasını
oluşturmaktır. Çok yeni bir kavram olan bağlantısal beyin şablonu (CBT), belirli bir
popülasyonun topolojik modellerini korurken en önemli ve ayırt edici özelliklerini
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yakalamak için güçlü bir araç sunar. Bir BDT fikri, heterojen beyin bağlantı ağlarından
oluşan bir popülasyonu birleşik bir temsile entegre etmektir. Spesifik olarak,
geleneksel T1 ağırlıklı manyetik rezonans görüntülemeden (MRI) tahmin edilen çok
görüntülü kortikal morfolojik ağları (CMN’ler) kullanarak cinsiyete özgü CBT’leri
tahmin eden ilk çalışmayı sunuyoruz. Spesifik olarak, her CMN görünümü, kortikal
beyin bölgeleri çiftleri arasındaki morfolojideki farklılığı ölçen bir ağda kodlanmış
belirli bir kortikal öznitelikten (örn. kalınlık) türetilir. Bu amaçla, aynı anda benzer
ve farklı bağlantı verilerini yakalamak için çoklu görünüm veri kümelerinin tutarlı ve
farklı kümelerini ortaklaşa tanımlayabilen yeni bir çoklu görünüm ağ füzyon yöntemi
olan Çoklu Görünüm Kümeleme ve Füzyon Ağı (MVCF-Net) öneriyoruz. örneklerin
özellikleri. MVCF-Net yöntemimiz, erkek ve kadın popülasyonları için temsili ve
iyi merkezli CBT’leri bağımsız olarak tahmin ederek, parmak izi alan ilgi bölgelerini
(ROI’ler) dört ana adımda tanımlar. İlk olarak, CMN’leri paylaşılan ve diferansiyel
kümeler halinde gruplandırırken görünümler arasındaki hizalarını koruyan manifold
optimizasyonuna dayalı bir çoklu görünüm ağ kümeleme modeli gerçekleştiriyoruz.
İkinci olarak, her görünüm için, yerel CBT’ler üreterek, her kümeye ait CMN’leri
doğrusal olarak birleştiririz. Üçüncüsü, her küme için, kümeye özgü bir CBT üreterek
yerel CBT’leri görünümler arasında doğrusal olmayan bir şekilde bütünleştiririz. Son
olarak, kümeye özgü merkezleri doğrusal olarak birleştirerek, girdi popülasyonunun
nihai bir CBT’sini tahmin ederiz. MVCF-Net, erkek ve kadın popülasyonları
için en merkezli ve temsili CBT’leri üretti ve cinsiyet farklılıklarına işaret eden
en ayrımcı ROI’leri belirledi. Cinsiyete dayalı en fazla iki ROI, sol hemisferde
lateral oksipital korteks ve pars opercularis ve sağ hemisferde orta temporal girus ve
lingual girus ile ilgiliydi. İkinci olarak, karmaşık verilerin sınıflandırılmasındaki ana
sorunları ele almak için, entegre ağları kullanarak sınıflandırma performansını artırmak
amacıyla çoklu grafik beyin bağlantılarını birleştiren bir entegrasyon öğrenimi ortaya
koyduk. Spesifik olarak, çoklu grafik sınıflandırması için ilk uçtan uca grafik sinir
ağı tabanlı model olan Multigraph Integration and Classifier Network’ü (MICNet)
tanıtıyoruz. İlk olarak, GNN tabanlı bir entegrasyon modeli kullanarak heterojen
bir çoklu grafiğin tek görünüşlü bir grafik temsilini öğreniyoruz. Modelimizdeki
entegrasyon süreci, geometrik ve topolojik özelliklerini korurken konuya özel bir
grafik şablonu oluşturarak çoklu grafiğin farklı görünümleri arasındaki heterojenliği
ayırmaya yardımcı olur. İkinci olarak, belirli bir popülasyonun göze çarpan grafik
özelliklerini kavramamızı sağlayan bir geometrik derin öğrenme bloğu kullanarak her
bir entegre şablonu sınıflandırıyoruz. Sınıflandırma performansını optimize etmek
için tek bir amaç fonksiyonu kullanarak bu iki bloğu uçtan uca bir şekilde eğitiyoruz.
MICNet’imizi farklı kortikal ölçümlerden elde edilen beyin multigraflarını kullanarak
cinsiyet sınıflandırmasında değerlendiriyoruz. MICNet’imizin varyantlarından önemli
ölçüde daha iyi performans gösterdiğini ve böylece çoklu grafik sınıflandırmasındaki
büyük potansiyelini gösterdiğini gösterdik. Son olarak, tek görüntülü ve çok grafikli
beyin ağlarının popülasyonları için iyi merkezli ve temsili beyin bağlantı şablonlarını
(CBT’ler) tahmin eden mevcut grafik entegrasyon yöntemlerini gözden geçiriyoruz.
Ardından, performanslarını aşağıdaki kriterlere göre ayrı ayrı değerlendirmek için
tekli görünüm ve çoklu grafik füzyon yöntemleriyle oluşturulan bu CBT’ler
üzerinde bir karşılaştırma çalışması gerçekleştirdik: merkezlilik, ayırt edilebilirlik
(biyobelirteç-tekrarlanabilirlik) ve topolojik sağlamlık (düğüm düzeyinde benzerlik,
küresel kaldıraç benzerliği ve mesafeye dayalı benzerlik). Derin grafik normalleştirici
(DGN) yönteminin, merkezlilik, ayırt edilebilirlik (yani, çözülen grafikten türetilen
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biyobelirteçler yeniden üretilebilirliği) açısından çeşitli sağlıklı ve düzensiz veri
kümelerini kullanarak CBT’leri tahmin etmek için diğer çoklu grafik ve tüm tek
görünüm entegrasyon yöntemlerinden önemli ölçüde daha iyi performans gösterdiğini
ortaya koymuş (tipik olanı atipik bağlantı değişkenliğinden ayıran grafikten türetilen
biyobelirteçler tekrarlanabilirliği) ve hem yerel hem de küresel grafik düzeylerinde
topolojik özellikleri korunması sağlanmıştır.
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1. INTRODUCTION

The aim of this chapter is to present valuable role of morphological brain connectomes

to investigate gender difference and its impact on the brain diseases using integration

concept. Section 1.1 describes brain connectivity networks extracted from different

sources of Magnetic resonance imaging to investigate gender difference and its impact

on the human health. Section 1.2 describes the connectional fingerprint concept

of heterogeneous multimodal data. Then, detailed descriptions of connectomes,

multigraph integration, and multigraph classification are provided in section 1.3.

Section 1.4 describes in detail the road map and the contributions of this thesis.

1.1 Gender Difference and Brain Connectivity

The brain construct encodes subtle differences in the anatomy and the cognitive

function, as well as the human behaviors between men and women. For instance,

gender has demonstrated a substantial influence on many areas of brain and behavior,

including emotion, memory, perception, language, and other cognitive domains

cahill2006sex. For example, men perform better in mental rotation and visuospatial

perception processing, whereas women have advantages in verbal memory and fluency

and in the speed of articulation hamilton2008cognition. These differences emerge

during foetus development period where research has shown that male fetuses appear

to involute fewer overproduced cortical neurons than females [21]. Morphologically,

men have a larger brain than do women. Prior studies have suggested that focal

differences of Gray Matter (e.g., cortical thickness) between males and females might

account for their behavioral differences [22, 23].

Moreover, gender is an important determinant of human health. In fact, plenty

of studies have shown that several brain disorders can be related to gender. This

difference in disorder between men and women could explain in part that the male

brain undergoes greater functional impairments from early brain damage whereas the
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female brain exhibits a higher incidence and prevalence of dementia [24]. Hence, it is

important to first pin down gender differences in the healthy human brain. This can

potentially help devise a personalized treatment for different neurological disorders,

tailored for male and female populations, respectively.

On the other hand, emerging neuroimaging studies have reported gender effects

on the structural organization of White Matter, indicating an important role for

brain connectivity between brain regions in sexual dimorphism [25, 26]. Specifically,

structural magnetic resonance brain imaging (sMRI) and diffusion magnetic resonance

brain imaging (dMRI) data have revealed substantial gender differences in white

matter–based anatomical connectivity. Structural MRI data further demonstrated

gender differences in the connectivity revealed by morchometric correlation among

brain areas. Functional connectivity derived from functional neuroimaging such

resting state functional magnetic resonance brain imaging (fMRI) and Positron

Emission Tomography (PET) data is also modulated by gender. Moreover, male

and female human brains display differences in the network topology that represents

the organizational patterns of brain connectivity across the entire brain. Hence, we

resort to modeling the brain as a network, where the interaction between regions

(connectivities) becomes a biological feature of interest to capture the functional,

morphological and topological differences between genders.

Despite this growing body of research on such networks and how they encode

for gender differences, however, there is still a large gap in the literature where

cortical morphological networks (CMN) remain unexplored with respect to gender.

In fact, CMN where each network models the relationship in morphology between

different cortical brain regions quantified using a specific measurement (e.g., cortical

thickness), have not been investigated with respect to gender differences in the

human brain. On the other hand, based on the tension theory of cerebral cortex

morphogenesis suggesting that cortical morphology reflects the underlying changes in

the structural and functional connectome [27], recent studies have started exploring

morphological connections of the cortex and how they are altered by neurological

disorders including dementia [28, 29] and autism [9, 30], and how they are linked
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to cognition and genomics [31]. The majority of these seminal works applied

machine learning on brain morphological network datasets and demonstrated their

potential in unraveling the cortical brain construct from a connectional viewpoint

while leveraging minimal financial resources for brain scanning without the need of

costly and time-consuming fMRI and DWI. A landmark work investigated gender

differences in cortical morphological complexity [23]in independent as opposed to

interactive brain regions; however, no previous studies investigated how gender

influences morphological connections.

1.2 Connectional Fingerprint of Heterogeneous Multimodal Data

Exploring data from the aforementioned neuroimaging sources in the previous

paragraph (e.g., functional MRI, structural MRI, diffusion MRI, PET imaging)

provides multiple modalities spanning the healthy and disordered brain spectrum.

Specifically, multimodal brain imaging has shown tremendous potential for

neurological disorder diagnosis, where each imaging modality offers specific

information for learning more holistic and informative data representations.

For instance, connections in brain networks derived from resting fMRI encode

correlations in functional activity among brain regions, whereas DTI networks provide

information concerning structural connections (i.e., white matter fiber paths) between

these nodes [32–34]. Joining both networks results in two different modalities of

brain connectivity, leading to a variability of the data. Therefore, it is unsurprising

that understanding brain network connectivity across different modalities has long

been a central goal of neuroscience and has recently catalyzed an unprecedented

era of large-scale initiatives and collaborative projects to map brain networks more

comprehensively and in greater detail than ever before.

Understanding how the brain’s structural, morphological, and functional levels

interlink offer more comprehensive picture of the brain facets construction [35].

However, analyzing these multi-modal connectomic data (brain networks) together,

remains challenging due to the large inter-modality variations in different views of

connectivity networks and the heterogeneity of connectional brain networks across

the population samples [36, 37]. Nonetheless, mapping brain networks of a whole
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population into a single representation is useful to capture the most shared and

representative brain signature across a population [38].

However, an individual signature of a particular subject differs from one to another,

making the identification of biomarkers associated with a specific population harder.

Mostly, these biomarkers are important in disentangling the typical from the atypical

variations across the population samples and extracting their different patterns. For

example, numerous studies have started to emphasize the importance of looking for

commonalities and differences in neurobiological and psychiatric changes across brain

disorders [29, 39, 40], which may improve our ability to understand the differences

between comorbid disorders such as autism and dementia. Consequently, extracting

an integral connectional fingerprint of heterogeneous brain networks of a given

population while preserving their common and distinct patterns remains a critical

pursuit towards assisting researchers to develop novel integration models.

1.3 Graph Theory, Connectomes, and Multigraph

Since brain network has undeniably a complex structure, understanding the

relationship between these connectivies across different modalities is very challenging

task before moving to the brain networks integration. This brings us to the concept of

graphs and the graph theory approach where they have been crucial in recent efforts

to represent and comprehend the function and structure of complex systems. First,

mapping the brain network as graph where nodes represent the brain regions and edges

between nodes represent the anatomical connections between these neural elements is

an essential step to analyse the brain using those graph theoretical methods [41, 42].

Then, applying graph theory methods provides a really powerful way to quantitatively

describe the topological organisation of brain connectivity (e.g, patterns). They

give a way of transforming the confusing messy into a neat organization (Figure 1.1)

where we can directly make inferences for the topological organization of this network.
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Figure 1.1 : Brain graph analysis. From confusing messy to neat organisation.

In the same context, the concept of "connectome" was introduced by [38] where they

assign to each brain graph a matrix representing all possible pairwise connections

between the brain regions. Specifically, the graph nodes denoting different brain

regions are represented by the rows or columns of the matrix, and the connection

(edges) between two nodes is represented by the respective matrix element

(Figure 1.2). This equivalence between graph representations and matrix signifies that

we can use both of them in the analysis of brain network connectivity.

Figure 1.2 : Brain graph as a matrix (connectome).

Since brain data was collected from multiple neuroimaging modality (e.g., functional

MRI or diffusion MRI), the generated multimodal brain connectivity networks(e.g.,
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functional and morphological connectivities) [29,30,43] can be modeled by multigraph

representation. Specifically, the interaction denoting the multimodal brain connectivity

between two anatomical regions of interest (ROIs), namely the multigraph nodes, is

encoded in a set of edges of multiple types. Each edge type defines that particular

modality for modeling the relationship between brain ROIs. Hence, using the concept

of connectomes, a brain multigraph can be mathematically encoded in a tensor, which

can also be viewed as a set of stacked matrices, where each matrix represents a different

type of edges (connectivities) of the graph.

1.3.1 Multigraph integration

The concept of integration comes in to normalize a set of multigraphs, while

considering all edge weights, thereby fusing complementary information into

a representative template of a given population of multigraphs. A good fused

representation should carry the different traits and relevant patterns characterizing

the graph population to guarantee its representativeness. Among various integration

techniques, some are based on graph comparison techniques such as graph edit

distance (GED) [44]. However, these methods not only fail to simultaneously satisfy

graph scalability, node and permutation-invariance criteria but also are originally

designed to work on single-view graphs.

Another type of integration methods rely on multiple kernel-based comparison

methods which can optimally take into account the multiscale structure of graphs.

Each kernel can capture a particular graph scale which makes these algorithms more

scale adaptive [45]. However, such graph fusion approaches raise a computational

overhead cubic in deriving Laplacian Matrix Eigenvalues and when the size of the

graph exponentially grows.

In the same context, more recent machine learning methods coped with the graph

integration task. For instance, SNF-Clustering-Average (SCA) method based on

similarity network fusion (SNF) [1] was introduced in [9]. It performs linear

and non-linear fusion operations on different multigraphs. Another technique is

netNorm which builds a representative template based on feature selection prior
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to a non-linear fusion [2]. More recently, a supervised multi-topology network

cross-diffusion (SM-netFusion) was proposed by [46] based on graph topological

measures. SM-netFusion uses a weighted mixture of multi-topological measures to

enhance the non-linear fusion process for supervised graph integration. Although it

takes into account the heterogeneity of the data, this method is limited to single view

graphs. Another drawback of these last methods is that they work in a dichotomized

manner and not in an end-to-end fashion.

To overcome these limitations, emerging geometric deep learning techniques have

been recently proposed. For instance, [11] introduced Deep Graph Normalizer (DGN),

an end-to-end novel approach, which maps multiview networks into a centered and

representative subject-biased template by introducing subject normalization loss. DGN

applies consecutive graph convolutional neural layers to perform node embeddings by

locally integrating edges from different heterogeneous views. Although this method

works in an end-to-end fashion, the classification of multigraphs from different

populations was not included in the learning process which mainly focused on

population graph integration.

1.3.2 Multigraph classification

Another category of studies has focused on single graph and multigraph classification

tasks. For instance, spectrum-based methods [47] performed classification by

generalizing the convolutional neural networks to graphs in the spectral domain where

featured concepts of the architecture are transformed into the frequency domain via

graph Fourier transform. One main important limitation of such spectral techniques is

that they depend on the fixed spectrum of the graph Laplacian which does not make

them suitable for multiple structure-view graphs.

Another type of graph classification has been developed based on spatial methods [48].

The core idea was to propagate local features between neighboring nodes. Some of

them integrated a spatial graph convolutional layer to pool unarranged node features

into a sorted graph representation. Such methods succeeded in achieving remarkable
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performance at node classification tasks, however, they are not tailored to classify

whole graphs.

Alternatively, [30] proposed an unsupervised clustering-based methods that learn a

similarity matrix from graphs. [5] first vectorized brain multigraphs then applied an

infinite feature selection trained with a supported vector machine classifier to identify

the top discriminative edges between male and female brains. [29] performed a similar

process but first computed correlation-based similarity matrices between different

multigraph views prior to the feature selection step. However, such methods have a

shared limitation which is the vectorization of multigraphs –causing the loss of the

multigraph topological properties (Figure 1.3).

To address these issues, geometric deep learning (GDL), a recent graph-oriented

learning approach extended from general-purpose deep learning, demonstrated its

superiority over other approaches in classifying graphs and non-Euclidian structures

in general [49]. A major GDL architecture, graph neural networks (GNNs) introduced

by [50], have shown a remarkable performance in a variety of graph specific tasks

such as graph classification [51], node classification and link prediction [52]. GNNs

are not only simple to implement, but they can also capture different graph underlying

patterns by message passing between nodes. Besides, they do not need to go through

a preprocessing step as they can operate directly on graphs.

In this context, [52] performed multiple bootstrapped graph convolutional neural

networks (GCNN) to improve the classification accuracy and make it more robust

against noisy data. [50] proposed GNN-based models that propagate information and

construct node representations that can be “aware” of the broader graph structure.

GraphSAGE [53] first performs sum, mean or max-pooling neighborhood aggregation,

then updates the nodes representation by applying a linear projection on top of the

convolution layer. Graph Isomorphism Network (GIN) [54] extends GraphSAGE

with arbitrary aggregation functions on multi-sets. Edge-Conditioned Convolution

(ECC) [51] assigns different weights to neighboring nodes by learning parameters

for each edge label. [55] proposes Deep Graph Convolutional Neural Network
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(DGCNN) based on convolutional layer similar to the formulation of [56] while

adding a specific sorting algorithm called SortPool. DiffPool [57] proposes an

adaptive hierarchical pooling mechanism that collapses nodes on the basis of a

supervised criterion using differentiable graph encoders. However, such methods only

work on single-view graphs and require prior preprocessing to work on multigraphs.

To address this limitation, we propose for the first time an end-to-end learning

based graph classification architecture using multigraph fusion. In the first step, we

learn a single-view graph representation from each multigraph to disentangle the

heterogeneity problem while preserving multigraph topological features. Next, we

introduce these graph templates into a geometric deep learning based classification

step to optimally capture the discriminative patterns in graph structure.

Figure 1.3 : Diagram of conventional multigraph classification and integration tasks.
a) Given a multigraph, typical classification methods including [5] aims
to concatenate the multiple vectorized views. The stacked feature vectors
are fed into an independent classification model. b) Proposed method
integrates the views of the same sample into a single-view graph. Next,
the fused multigraph is fed into the classification block. Both blocks work
in an end-to-end manner which makes the integration block contributes
to the discriminativeness and the global classification performance of the
model.

1.4 Contributions and Road-map

The organization of this thesis is presented as follows: Chapter 2 includes the

literature and the related works of our three major contributions. Chapter 3 details
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the methodologies of our three contributions including the models architectures

and their evaluations strategies. Chapter 4 details the experimental results and the

discussions of our thesis works including the data evaluation and preprocessing,

parameters settings, and the comparison methods. Finally, in chapter 5, we discuss

the implications for future research and clinical practice for our work. We also expand

on the potential application of our approaches to other brain diseases and we conclude

this thesis with the list of contributions.

The main contributions of this thesis and can be summarized as follows:

Learning brain fingerprint of gender from cortical morphological datasets based

on machine learning model: As a first contribution, we suggest to build machine

learning model that learn how to integrate heterogeneous medical datasets derived

from multimodal cortical measurements (e.g., maximum principal curvature, cortical

thickness network, sulcal depth network) for generating a holistic representation for

male and female brains that captures relevant connectional features that discriminate

between them. Specifically, we propose, for the first time, a gender-specific

connectional brain templates (CBTs) estimation method (MVCF-Net) using

multi-view cortical morphological networks (CMNs) estimated from conventional

T1-weighted magnetic resonance imaging (MRI) to disentangle male from female

connectome. To this aim, given a population of brain connectomes, we propose to

learn how to estimate a centered and representative morphological brain network

template to reliably map the morphological connectome and its variability across

training individuals, thereby capturing their shared traits (i.e., connectional fingerprint

of a population). Essentially, we first learn how to cluster multi-view network based

on manifold optimization which groups CMNs into shared and differential clusters

while preserving their alignment across views. Next, for each view, we linearly fuse

connectomes living in each cluster. Then, for each cluster, we non-linearly merge the

local CBTs across views, producing a cluster-specific CBT. Last, by integrating the

produced the cluster-specific centers we ultimately estimate the population network

template (fingerprint). We compute the difference between male and female network

CBTs to identify the most discriminative features (brain regions of interests). Our
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multi-View clustering and fusion network (MVCF-Net) framework produced the

most centered and representative and centered multimodal CBTs for male and female

populations and identified the most discriminative ROIs marking gender differences.

Building a geometric deep learning based integration model for multigraph

classification: As for second contribution, we suggest to build an end-to-end

graph neural network based model for multigraph classification with application to

genders brain connectomes. Thus, we propose the first method entitled multigraph

integration and classifier network (MICNet) that couples both integration and

classification in an end-to-end fashion. Specifically, having the integration block

prior to classification boosts the discriminativeness of the edges that will pass

through the classification block. First, we learn the integration of heterogeneous

multigraph into a single-view graph representation using a GNN based integration

model. Eventually, the integration process in our model will ensure a representative

subject-level template of the geometrical and topological features from the original

multigraphs in a discriminative approach. Thus, the integrated template will capture

the most discriminative patterns of a multigraph for the purpose of the classification

task. Second, we apply a subject-specific thresholding filter on the outputs of the

integration block to generate binary matrices representing single-view graphs with

binary edge attributes. The thresholding filter emphasizes the connections having

most discriminative and representative edges used as subject fingerprints, thereby

having more impact on the classification output. Last, we feed these graphs to a

graph neural networks -based classification architecture which performs several graph

convolutions through a sequence of embedding and pooling layers to obtain the final

classification prediction. Specifically, our model learns the optimal weights of both

integration and classification layers through a single objective loss function during

a shared optimization process to provide the best classification performance. Our

proposed geometric deep learning based classifier MICNet works in an end-to-end

fashion to capture the most discriminative traits of the graph to predict gender class

using brain multigraphs derived from different cortical measures.
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Comparing the performance of the existing models that estimate connectional brain

template (CBT) using graph theory: In the third contribution, We suggest to review

current graph fusion methods for CBTs generation promoted with a comparative study

to evaluate their performance across extensive experiments in terms of producing the

most centered templates, recapitulating unique traits of populations, and preserving

the complex topology of biological networks. As a first step, we will review existent

graph integration methods which can be emphasized in two categories: unimodal

fusion methods and the multimodal integration methods. After summarizing them,

we conduct a comparative study between fusion models of each category in separate

manner by evaluating the performance of their generated CBTs. Ideally, a reliable

estimated template should preserve the topological patterns and properties of a

specific population during the fusion process. In more details, a CBT should satisfy

the following criteria:(1) centeredness as it occupies the ‘center’ of a population

by achieving the minimum distance to all population samples. (2) graph-derived

biomarker reproducibility as as it allows to identify connectional biomarkers that

disentangle the differences in brain connectivity between populations with different

brain states (i.e., healthy and disordered or genders). (3) topological soundness to

the population at different scales including node-wise similarity as it tests whether

the local structure of the original data which includes the connectivity between the

nodes are preserved by the CBT, distance-based similarity as it quantifies the distance

between two networks by studying some characteristics, and global-based similarity as

it tests whether the generated CBT preserves the global structure of the original graphs

networks. In doing so, we discuss the results of the CBT evaluation measures and the

strength of the best method. We highlight the limitations of the integration methods

in estimating representative reference connectional templates derived from complex

graph’s connectomes. We conclude with an outlook in the future of multigraphs fusion

methods and discuss new avenues towards improving them to work on brain dynamic

and non-isomorphic networks.

For easy and clear understanding to our work in this thesis, we provide an organized

schema of three blocks where each indicates the general idea of the work done in

each chapter (2,3 and 4). The roadmap schema is illustrated in Figure 1.4. To
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summarize, neuroimaging studies have shown that gender is strongly related to brain

disorders, and studying brain connectivity networks with respect to gender differences

helps for precise diagnosis and early prediction of neurological diseases as well

as deciding the treatment strategies. The existing researches have explored data

from multi-modal sources including functional MRI, structural MRI and diffusion

MRI to capture the difference in functional and structural connectivities. However,

despite the importance of morphological connections in changing the structural and

functional connectome as well as in being altered by neurological disorders, cortical

morphological networks remain unexplored with respect to gender. On the other hand,

unimodal and multi-modal integration models based on machine learning techniques

have been developed to extract an integral connectional fingerprint of heterogeneous

brain networks of a given population. That’s why, the goal of this thesis is first

to investigate cortical connectivity fingerprinting unveiling gender differences using

integration concept. Next, by combining this latter approach with a classification

model, we improve the learning process by extracting the most discriminative and

representative patterns used as subject fingerprints to classifier heterogeneous brain

multi graphs genders populations. For accurate evaluation of the integration model

performance, we will investigate the main measures that can be extracted from

the brain network with the help of graph theory. These measures define the most

significant brain regions (central nodes) and the most discriminative connections

unveiling gender differences. These topological measures reflect different aspects of

topological centrality which means a node ability to influence (or be impacted by) other

network components based on the topology of its connections [42].
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Figure 1.4 : Roadmap of the thesis work
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2. LITERATURE REVIEW

The structure of the chapter is organized as follows. In section 2.1, the related works of

our proposed Multi-View Clustering and Fusion Network (MVCF-Net) model. Section

2.2 provided the related works of brain graph classification and integration methods.

Section 2.3 describes the evaluation strategies of our proposed integration model.

2.1 Related Works of Integration Models

Several human neuroimaging studies have been conducted to analyze brain

connectivity between regions with respect to gender differences providing

fundamental insights into the organization and integration of brain networks in

male and female populations [33, 58]. In particular, brain Gender differences can

be identified using functional connectivity and structural connectivity, derived from

functional magnetic resonance imaging (fMRI) and diffusion weighted imaging

(DWI) respectively [33, 33, 34]. By explicitly deriving structural and functional

brain connectivity from functional and diffusion-weighted magnetic resonance

imaging (fMRI and dMRI), network analysis presents a powerful tool for exploring

structural–functional connectivity relationships [59–61] and revealing the causative

linkage between connectivity changes and task performance across genders [62].

Several studies [63–66] on sex differences revealed contrasting activation patterns in

cognitive abilities, behaviors and emotions between male and female brains. Such

studies provide a better understanding of learning processes, language development,

and progression of neurologically-based diseases such as autism spectrum disorder and

depression [67, 68] across genders. What’s more, early prediction, risk, and protective

factors of brain disorders can be captured, as well as personalized treatments for male

and female populations can be designed. Although fMRI and dMRI neuroimaging

modalities allowed the discovery of predictive brain connections fingerprinting gender

differences, they may have a few limitations. On the one hand, functional MRI can
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produce spurious and noisy connectomes due to the low signal-to-noise ratio induced

by non-neural noise [30]. On the other hand, diffusion MRI can produce biased and

largely variable structural connectomes depending on the employed fiber tractography

method; a fact supported by a recent study [69] which evaluated 35 methods to

generate structural connectomes and showed that how variations in diffusion MRI

pre-processing steps affect network reliability and its ability to classify subjects

remains opaque.

To circumvent the limitations of these neuroimaging modalities, recent studies

have explored an alternative brain network representation, a cortical morphological

network (CMN) constructed from structural T1-w MRI. The main idea is to

build a network based on morphological connections of the cortical surface

derived from a unique cortical attribute such as sulcal depth or cortical thickness.

Specifically, CMNs model the relationship in morphology between different cortical

regions quantified using specific cortical measurements. For instance, CMNs were

investigated in neurodegenerative disorders [29, 40] as well as in neuropsychiatric

disorders [30, 40]. [5]presented the first study on gender differences using CMNs of

healthy subjects. This work leverages a feature selection method to find the most

discriminative morphological connections between male and female cortices using

different cortical attributes. Although compelling, this study might discard some

of the important connectional features (CFs) in revealing the gender-specific brain

connectional map. In fact, the utilized feature selection method selects only the

important CFs and eliminates others which can lead to losing rich information when

creating holistic maps of the male and female multi-view CMNs.

On the other hand, the concept of connectional brain template (CBT) comes in to

normalize a set of multi-view brain networks, while considering all connectivities

to enable the integration of complementary information and the production of a

representative ‘average’ of a given population. Hence, the estimation of a CBT

provides an excellent tool for mapping human psychological behavior and cognitive

functions, by providing a representative and holistic connectional map of a set

of multi-view brain networks. As integral and normalized representations of the
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multi-view brain connectivity, CBTs estimated for each gender,can hence help spot

out different connectional patterns between the male and female brains. [70] presents

the first study on the estimation of a centered CBT using a population of brain

networks based on a diffusive-shrinking graph technique. However, this work was

limited to handling single-view networks, thereby overlooking the complementary

and richness of multi-view brain networks populations, where each individual is

represented by a set of brain networks (i.e., views). [9] generalized this concept

to multi-view brain networks for a more holistic and integral mapping of brain

connectivity by first non-linearly fusing multi-view brain networks for each individual

in the population, and secondly by clustering the fused networks and integrating

them within each cluster, and finally by averaging the obtained centers of all clusters.

Despite its promising performance, this study has a major drawback which is

clustering the samples without considering their heterogeneity across views which

fails to simultaneously capture the distinct and the shared population-specific traits.

2.2 Related Works of Multigraph Classification Methods

In the era of data eruption, rich and complex data can be modeled as a multigraph

structure –a generic and rich graph representation where the graph nodes represent

the data entities (actors) and the graph edges denote the interactions between these

entities [71]. The multigraph structure enables us to model multiple relations using

different types of edges between pairs of nodes [44]. Since multigraphs allow more

than one relation between a pair of nodes, we can represent rich data more succinctly

which in turn helps in capturing complementary information between multi-source

data that cannot be discovered in the otherwise simple graphs. However, the

heterogeneity aspect captured by the difference of measures across views within the

same multigraph is overlooked by graph classification models intended for single-view

graphs datasets [72]. Consequently, multigraph classification cannot benefit from

the non-linearity provided by the richness of information carried by the different views.

Recently, there have been a great number of deep learning-based models dealing with

multigraph classification [72]. However, these generalized learning architectures fail
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to capture the rich topological properties of graphs. To fill this gap, geometric deep

learning (GDL), a pioneering set of learning-based models, has demonstrated high

performance in graph oriented tasks applied on a wide variety of applications such

as molecular structures, social networks and knowledge graphs. A core element in

GDL is graph neural networks (GNN) which are the extension of artificial neural

networks (ANN) to the domain of graphs [50]. Another prime GDL architecture

is graph convolutional networks (GCN) which are the extension of convolutional

neural networks (CNN) to the graph domain [3]. GCN sequentially performs

multiplication operations between original input data and a set of weights similarly to

CNN. The main difference resides in the structure of the input data, since GCN deals

with graphs where the number of edges change and the nodes do not have a given order.

To deeply get advantage from the hierarchical structure of the graphs, many geometric

deep learning architectures have been designed such as DiffPool [57]. This method

consists in hierarchically embedding nodes by assigning them to clusters. To perform

embedding and assignment operations, DiffPool exploits separate GNN-based layers.

Despite the promising performance of the aforementioned GDL-based techniques,

they do not naturally generalize to multigraphs.

Due to its complexity, multigraph classification remains a difficult task. One of the

most challenging obstacles is the heterogeneity problem resulting from different

types of edges in each graph. Another major issue is the non-linear relationship

across views. To alleviate data heterogeneity, some of the existing solutions proposed

flattening out the multigraph structure by transforming a high-dimensional tensor

to a vector. For example, [73] vectorized multimodal graph data to learn more

generalized features for urban spatiotemporal forecasting. However, flattening out and

concatenation techniques do not preserve the topology of the graph structure. To the

best of our knowledge, no existing work investigated learning-based multigraph fusion

for classification tasks. Fusion approaches can be a solution for the aforementioned

problems since it blends together the different views while preserving the topological

properties of the multigraph, which enables us to reduce the data high dimensionality.
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Several multigraph integration methods have been conducted to generate a single-view

graph. In particular, as a generic unsupervised technique, SNF [1] integrates different

data types in a non-linear fashion. By constructing a sample-similarity network for

each data type, SNF [1] integrates these networks into a single similarity network

using a nonlinear combination method. However, SNF is limited to equal weighting

of the different views within the same observation and it came with the assumption

of emphasizing the nearest top-k local connections for each node. A recent selective

technique, netNorm [2], normalizes and fuses a population of multi-view networks

into a single-view network. To this aim, netNorm [2] constructs a high-order graph

using cross-view connectional features as nodes and their Euclidean distance as

dissimilarity measures to select the most significant network edges in a population.

Then, the selected edges are integrated into a single network using SNF. However,

one of the major limitations of netNorm resides in the total dichotomy between its

different steps which blocks the feedback propagation along the process in order

to globally optimize the template estimation. Therefore, errors might accumulate

throughout the estimation pipeline. To overcome this limitation, a GDL-based

architecture, CMGINet [20], was developed to integrate a multi-graph network

preceded by clustering. First, it clusters similar samples together using multi-kernel

manifold learning. Next, for each cluster, the method integrates the multigraph of

each subject into a single graph, then fuses the generated graphs into a cluster-specific

network. Finally, CMGINet generates a representative template by averaging the

cluster-specific networks. The generated single-view graph is characterized by its

representativeness and centeredness in relation to the original graphs. However, if

we have two populations to classify, CMGINet [20] is agnostic to the class label of

multigraphs. Hence, the investigation of how to generate discriminative templates

which capture traits distinguishing between classes is important while dealing with

multi-labeled datasets.

To address all these limitations, we propose the first graph neural network model that

integrates and classifies multigraphs, named Multigraph Integration and Classifier

Network (MICNet). Our framework consists of two main blocks. We design a

multigraph integration block which is inspired from [74] to perform subject-level
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multigraph integration. This block ensures the fusion of the heterogeneous views

within the same multigraph. Then, we inject the subject-level integrated graphs

into a graph classification block based on several node embedding and pooling

layers [57]. This block performs sequential hierarchical node embeddings resulting

in simpler graph representations as the network deepens to eventually output a class

score. Weights of integration and classification blocks are learned through a single

objective loss function during a shared optimization process. We also introduce the

classification output in the global loss function which is back-propagated into the

layers of both integration and classification blocks in an end-to-end manner.

The contributions of our work and the advantages of our joint multigraph integration

and classification framework can be summarized as follows:

i) We propose the first method that couples both integration and classification in an

end-to-end fashion. Having an integration block prior to classification enhances the

discriminativeness of the edges that will pass through the classification block.

ii) We implement a geometric deep learning based integration in our model. This

ensures a learnable representation of the geometrical and topological features from the

original multigraphs.

iii) The integration process in our model generates a representative subject-level

template in a discriminative approach. The integrated template captures the most

relevant patterns of a multigraph for the purpose of the classification task.

iv) Our proposed method works in an end-to-end fashion. The model learns the optimal

weights of both integration and classification layers during the same backward pass to

provide the best classification performance.

2.3 Related Works of Single-view and Multi-view Integration Methods

The availability of neuroimaging data using multiple data acquisition techniques is an

important factor in increasing our understanding of the extraordinarily complex, yet

highly organized, topology of the underlying human neural architecture; the so-called

connectome [75, 76]. Using different sources of measurements, one can derive, for

the same subject, multiple brain connectivity networks [77]. Having such multimodal
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information, we can represent each subject by a multi-view graph where each view

corresponds to an imaging modality defining a single type of brain connectivity

network, each node of the graph denotes a brain region and the edge between two

nodes represents the interaction between pairs of brain regions [44, 71]. A multigraph

structure encapsulates the representation of multiple relations between two anatomical

regions of interest (ROIs). For instance, connections in brain networks derived from

resting state functional magnetic resonance brain imaging (fMRI) encode correlations

in functional activity among brain regions, whereas diffusion tensor imaging (DTI)

networks provide information concerning structural connections (i.e., white matter

fiber paths) between these nodes [32–34]. Joining both networks results in two

different views of brain connectivity, leading to a variability of the data.

Understanding how the brain’s structural, morphological, and functional levels

interlink offer more comprehensive picture of the brain facets construction [78].

However, analyzing these multi-modal connectomic data together, remains

challenging due to the large inter-modality variations in different views of connectivity

networks and the heterogeneity of connectional brain networks across the population

samples [36, 37]. Nonetheless, mapping brain networks of a whole population

into a single representation is useful to capture the most shared and representative

brain signature across a population [38]. However, an individual signature of a

particular subject differs from one to another, making the identification of biomarkers

associated with a specific population harder. Mostly, these biomarkers are important

in disentangling the typical from the atypical variations across the population

samples and extracting their different patterns. For example, numerous studies have

started to emphasize the importance of looking for commonalities and differences in

neurobiological and psychiatric changes across brain disorders [28,29,40], which may

improve our ability to understand the differences between comorbid disorders such as

autism and dementia. Consequently, extracting an integral connectional fingerprint of

heterogeneous brain networks of a given population while preserving their common

and distinct patterns remains a critical pursuit towards assisting researchers to develop

novel graph integration models.
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Human neuroscience studies have made significant progress on the path towards

estimating brain network templates for a population of connectomes [70]. Several

integration methods were proposed to form the integrated complex representation

for a population of both unimodal (single-view) [1, 7, 8] and multi-modal

(multi-view) [2, 9–11, 20] brain networks. Nevertheless, single-view integration

methods were limited to fuse single-view networks, thereby, overlooking the

complementary and richness of multi-view brain network populations. More broadly,

multi-view integration methods generalized this concept to multi-view brain networks

for more holistic and integral mapping of the brain connectivity population. Both

categories of fusion methods introduce the concept of connectional brain template

(CBT) [70] as a normalized connectional representation of population of single-view

or multi-view brain networks considering all population connectivities. Leveraging

the brain template enables not only the integration of complementary information

of a given population but also the generation of new connectomes for synthesizing

brain graphs when minimal resources exist. Furthermore, the estimation of a

population CBT provides an excellent tool for extracting integral connectional

fingerprint of each population holding its most specific traits, which is an essential

step for group comparison studies (e.g., the comparison of genders integral signatures).

In this forward-looking review, we introduce single-view and multi-view integration

methods, focusing on how they produce for each population-type (single-view-based

and multiview-based networks, respectively) a unified normalized connectional

representation (CBT). After summarizing them, we conduct a comparative study

between the unimodal fusion methods and the multimodal integration methods,

separately, by evaluating the performance of their generated CBTs in terms of

(1) well-centeredness (2) discriminativeness, and (3) topological soundness to the

population at different scales including node-wise similarity, distance-based similarity,

and global-based similarity. In doing so, we discuss the results of the CBT evaluation

measures and the strength of the best method. We highlight the limitations of the

integration methods in estimating representative reference connectional templates

derived from complex graph’s connectomes. We conclude with an outlook in the

future of multigraphs fusion methods and discuss new avenues towards improving
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them to work on brain dynamic and non-isomorphic networks.
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3. METHODOLOGY

The structure of the chapter is organized as follows. In section 3.1, we present

the methodology of our estimation of gender-specific connectional brain templates

using joint multi-view cortical morphological network integration work. Section 3.2

provides the methodology of the multigraph classification using learnable integration

network with application to gender fingerprinting work. Section 3.3 details the

methodology of our comparative study of connectional brain templates in network

neuroscience.

3.1 Proposed Multi-View Clustering and Fusion Network (MVCF-Net)

We propose MVCF-Net, a novel multi-view network brain connectivity

clustering-fusion method that estimates a representative and centered CBTs for

a given population, with application to gender fingerprinting. Our method is rooted in

the identification of consistent and differential clusters across brain views to generate

a representative and well-centered CBT for a given population and to reduce subject

inter-variability.

3.1.1 MVCF-Net overview

Figure 3.1 provides an overview of the four key steps of the proposed joint

multi-view network clustering and fusion framework MVCF-Net to estimate a

population-based CBT from a set of multi-view CMNs: 1) feature extraction

similarity networks construction, 2) multi-view clustering using optimization

manifolds, 3) Individual-based non-linear fusion of connectional brain views, and

4) Linear fusion. Furthermore, we detail our evaluation strategies for assessing the

representativeness and discriminability of the estimated CBTs as well as the identified

of the top discriminative regions of interest differentiating both genders. To this aim,

first, we leverage multi-view network clustering model based on manifold optimization
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method [6], which performs clustering across data views. Thus, similar connectional

traits and distinct connectional traits of samples within and across clusters in different

views can be identified in an unsupervised way [6]. Second, for each view, we

linearly average the CMNs of the subjects within each cluster, so that each cluster is

represented by a local CBT. Third, for each aligned cluster, we non-linearly integrate

its local CBTs across views into a cluster-specific CBT. Finally, we linearly fuse the

cluster-specific CBTs to estimate the final CBT representing a given population. The

estimated CBT captures both shared and distinct traits of a population. Ultimately, by

simply comparing the CBTs derived from female and male populations, respectively,

we spot out gender connectional differences. We demonstrate that the resulting

multi-view population-driven CBTs by MVCF-Net fulfill the following criteria: (i)

they are well-centered and they achieve the minimum Frobenius distance to all brain

views and all subjects in a given population, and (ii) they can effectively differentiate

gender fingerprints by capturing the most discriminative brain connections regions

between male and female cortices.

3.1.2 Feature extraction and similarity networks construction

In this section, we detail the first step of MVCF-Net framework, which aims to extract

feature and construct similarity networks. For each view m we extract the off-diagonal

elements of the upper triangular part of each brain network encoded in a symmetric

connectivity matrix to form the feature vector f m
n . The dimension of each feature

vector is thus equal to N f = Nr × (Nr − 1)/2. Next, for each view m, we define a

pairwise distance matrix Dm between subjects, where Dm(i, j) is the Euclidean distance

between subject i and subject j using their feature vectors f m
i and f m

j . We then generate

the similarity matrix Sm based on the distance (i.e., dissimilarity) matrix Dm to capture

the similarity strength between each pair of subjects. We denote by Si, j the similarity

value between subjects i and j, where Si, j approaches zero when i and j are dissimilar.

For easy reference, we summarize the major mathematical notations in 3.1.

3.1.3 Multi-view clustering using optimization manifolds

Unlike other methods [9] which generate CBTs by directly fusing heterogeneous

connectional brain networks of a given population, first, we group subjects into more
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Figure 3.1 : Pipeline of the proposed MVCF-Net framework for connectional brain
template (CBT) estimation using multi-view brain networks. First, for
a given brain network view and for each subject, we extract features
by vectorizing the upper off-diagonal part of each brain connectivity
matrix. Second, we compute the Euclidian distance between each pair
of subjects using their corresponding features vectors to eventually derive
a multi-view similarity matrix. Third, we perform multi-view network
clustering based on manifold optimization method [6] to partition subjects
into shared and differential clusters across views. Fourth, we linearly
average all brain networks in each cluster as they lie close to each other,
producing local CBTs. Next, for each cluster, we non-linearly fuse
its local CBTs across each view using similarity network fusion (SNF)
since the local CBTs might lie far from each other. This produces a
cluster-specific CBT. Last, we average all cluster-specific CBTs across
all clusters, thereby generating the global population CBT.
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Table 3.1 : Major mathematical notations used in this paper.

Math notation Dimension Definition
M N number of views
m N view m
n N subject n
Mm - manifold of Mth view, 1 ≤ m ≤ M
N N number of a subject in a given population, 1 ≤ n ≤ M
Nr N number of regions of interest in a brain network (ROIs)
Ri - region of interest i, 1 ≤ i ≤ Nr
Nc N number of clusters
Nt N number of iteration in SNF algorithm
N f N dimension of feature vector f m

n
K N number of folds used for cross-validation partition
Kn N number of the nearest neighbors used for KNN algorithm
Nm

nc
- cluster nc in Mth view, 1 ≤ nc ≤ Nc

m̄ci R mean cortical attribute of Ri
Vm

n RNr×Nr brain network of Mth view for subject n
Dm RN×N distance matrix of Mth view
fm
n RN f×1 feature vector of Mth view for subject n

Sm RN×N similarity matrix of Mth view
Wm RN×N diagonal matrix of Mth view of matrix Sm
Lm RN×N Laplacian matrix of Mth view of matrix Sm
Vm RN×Nc assignment matrix of Mth view of all subjects into Nc clusters
ηm RN×Nc eigenvector of Mth view of the Laplacian Lm
V RNc×Nc right singular vectors decomposition of U
W RN×Nc left singular vectors decomposition of U
U RM×N ×Nc representation of Um in all network views
Am

nc
RNr×Nr estimated CBT of cluster nc in Mth view

Pm
nc

RNr×Nr full kernel matrix for Mth view and cluster nc
Sm

nc
RNr×Nr sparse kernel matrix for Mth view and cluster

Fnc RNr×Nr fused CBT of cluster nc across all views
C RNr×Nr estimated connectional brain template
q N number of subject in cluster nc
T R absolute difference matrix between two CBTs
α R discriminative score vector of ROIs distinguishing two groups
ym N class label vector of all subjects in Mth view
x RN f×1 weight feature vector of ROIs
B RNn×Nn discriminative weight matrix of ROIs
KNN - K-Nearest Neighbors
SNF - Similarity Network Fusion
SVD - singular vectors decomposition
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homogeneous clusters by leveraging a multi-view clustering model developed by [6],

which returns the aligned clusters in each view. Thus, both the consistent clusters and

the differential clusters are identified in each view. Specifically, for each manifold

Mm, we transform the connectional brain networks to similarity matrices that measure

the relation between different subjects. Next, for each view, we partition subjects

into aligned clusters by solving an optimization problem using the line-search method

and then by applying k-means clustering. While the line-search method returns the

assignment of subjects into all clusters for each view, k-means clustering method

groups subjects into clusters. Thus, the aligned clusters are identified in each view.

We detail these steps in the following part. We illustrate in Figure 3.2 multi-view

clustering using optimization manifolds of MVCF-Net.

First, we construct the diagonal matrix Wm by summing each row of Sm as indicated in

Eqs. (2) and (3), then perform spectral clustering to solve the optimization model [79]

as follows:

Wm = diag1≤i≤N(Si) (3.1)

where

Si =
N

∑
j=1

Si,j (3.2)

minUm∈RN×Nc trace(UT LU) s.t. UT U = INc (3.3)

where

L =


L1 0 · · · 0
0 L2 · · · 0
...

... . . . 0
0 0 · · · LM

−


0 In · · · In
In 0 · · · In
...

... . . . In
In In · · · 0

 (3.4)

and

U =


U1
U2
...

UM

 (3.5)
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Figure 3.2 : Multi-view clustering using manifold optimization. For each view
m lying on a manifold Mm, first, we calculate pairwise distance
matrix between subjects. Second, for each view m, we derive
the similarity matrices using K-nearest neighbor (KNN) method and
compute the Laplacian matrix. Then, for each view m, we partition
all subjects into clusters while preserving their alignment using
multi-view spectral clustering. Thus, both consistent and differential
clusters can be identified simultaneously. To do that, we solve
the optimization problem for each view: min trace(UT

mLUm) where
Umisavectorrepresentingtheinitial partitiono f Nsub jectsintoNc cluster.
The optimization process includes three steps: first we project the
negative gradient on the tangent vector to the manifold m and we obtain
the direction ηm. Second, we update Um by adding a multiple of
this direction to its previous measurement. Third, we retract the new
Um+1 to the manifold using single value decomposition. Finally, as U
converges, we compute k-means clustering to obtain the final label vector
partitioning the N subjects into Nc clusters for each network view.
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where Nc denotes the putative number of the clusters in each view, Lm = Sm −Wm

is the Laplacian matrix of Sm and Um is the assignment matrix of N subjects into NC

clusters for view m. The Laplacian matrix reveals the information about the structure

of a graph by showing how many edges are linked to each node (subject), and is

used to partition the nodes into clusters by leveraging the Laplacian eigenvectors and

eigenvalues in spectral clustering method. Spectral clustering is an effective technique

for identifying communities of nodes in a graph based on the edges connecting them.

This is achieved by dividing the graph nodes into several groups such that nodes in the

same group are similar and nodes in different groups are dissimilar to each other [6].

The first term in the objective function (4) clusters the subjects in each view, while the

second term is a constraint to align the clusters in each view. The β is to balance the

importance between the network views. Since we treat all views equally, we consider

that networks are on the same level and we set β = 1.

To solve the optimization problem (4), we implement the line search algorithm on

Stiefel manifold [6] to find the optimal solution of the objective function trace(UT LU)

[80]. This approach includes three steps. First, we project the negative gradient descent

direction of the objective function to the tangent vector space of the Stiefel manifold

{Mm =Um ∈RN×Nc : UT
mUm = INc},m= 1, ...,M. The gradient descent of the objective

function can be defined in a closed form as:

−∇U trace(UT LU) =−LU = (ZT
1 ,Z

T
2 , ...,Z

T
M)T (3.6)

For each manifold Mm, we compute the orthogonal projection to the tangent vector

space to get the direction ηm which represents also the eigenvector of the Laplacian,

then we search for the next point by adding a multiple of this direction to the old

iteration point.

ηm = Zm − 1
2

Um((UT
m)Um +(ZT

m)Um) (3.7)

Second, we associate to the new iteration point a retraction to the manifold using single

value decomposition and we get the new assignment vector Um of the N subjects

into Nc clusters. We keep updating the line search method until the value of vector

Um converges to U. Finally, we use unsupervised k-means clustering to cluster the
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elements in U. By taking only the k eigenvectors corresponding to the k smallest

eigenvalues of Lm, we extract the cluster assignment vector which represents the

partition of all subjects in the aligned clusters Cm
1 ;. . . ; Cm

Nc
for each view m.

3.1.4 Individual-based non-linear fusion of connectional brain network views

To estimate the CBT Am
nc

of each cluster nc for the mth view, we linearly average all

brain networks of subjects belonging to cluster nc in view m:

Am
nc
=

∑i∈qVm
i

dim(nc)
1 ≤ i ≤ N, 1 ≤ m ≤ M (3.8)

where q is the number of subjects in cluster nc for a given view m. q can take

different values across views and clusters. Next, we merge all Am
nc

across M views

using non-linear fusion function φ in order to derive an ’average’ connectional brain

representation of cluster nc across all views:

Φ({Am
nc
}M

m=1) 7→ Fnc (3.9)

Ultimately, Φ non-linearly maps the view-specific CBTs {Am
nc
}M

m=1 located in different

views to a fused brain network Fnc of multi-view networks in cluster nc. Thus, we

integrate networks sharing the same connectional traits from different manifolds (i.e.,

views), but within a single cluster. To do so, we leverage the similarity network fusion

technique (SNF) proposed by [1]. SNF enables the fusion of subjects having common

neighbors across views so that complementary information can be propagated through

the fusion process. Given a cluster nc, for each CBT Am
nc

of view m,

Pm
nc
(i, j) =

{ Am
nc(i, j)

2∑l ̸=i Am
nc(i,1)

, j ̸= i
1
2 , j = i

(3.10)

Pm
nc
(i, j) =

{ Am
nc(i, j)

2∑l∈Ni Am
nc(i,1)

, j ̸= i

0, otherwise.
(3.11)

Note that P carries all information about ROIs similarities of each subject to all other

ROIs, whereas S only encodes the similarity to the Kn most similar ROIs. Ni denotes

the set of most q closed ROIs (neighbors) to the target ROI Ri. To find the set Ni, we
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use the K-nearest neighbors (KNN) algorithm. Next, we compute iteratively the status

matrices Pm
nc

by using the following equation [1]:

Pm
nc
= Sm

nc
× (

∑t ̸=m Pt
nc

M−1
)× (Sm

nc
)T , m ∈ 1, ...,M (3.12)

For each cluster nc and view m, we update the similarity matrix Pm
nc

by diffusing

the global structure of other networks ∑t ̸=m
Pt

m
m−1 along the sparse structure Sm

nc
of the

current view m. After Nt iterations, we compute the average of the diffused matrices

Pm
nc

across the different M views and we get the fused CBT representing the cluster nc

across views using the following equation:

Fnc =
∑

M
m=1 Pm

nc

M
(3.13)

3.1.5 Linear fusion

After obtaining the cluster-based CBTs {Fnc}
Nc
nc=1, we linearly average them into a

single final CBT denoted as C:

Fnc =
∑

Nc
nc=1 Fnc

Nc
(3.14)

For easy reference, we detail the steps of the proposed MVCF-Net framework in

Algorithm 1 3.2. MVCF-Net Algorithm 1: Joint multi-View Network Clustering and

Fusion.

3.1.6 Evaluation strategies

We evaluate the performance of our MVCF-Net framework by testing the generated

connectional brain template (CBT) in term of (1) representativeness and centeredness,

(2) and discriminability. To ensure the reproducibility and the generalizability of our

evaluation results, we split each dataset (male (M) and female (F) populations) into

training and testing subsets using 5-fold cross-validation. We use the training subset

to train our model and to generate CBTs for both hemispheres (LH and RH) of 2

populations namely; M, and F. Next, we showcase MVCF-Net with the aforementioned

evaluation tests on the left out testing subset.

3.1.6.1 Evaluation strategy of connectional brain template representativeness
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Table 3.2 : MVCF-Net Algorithm: Joint Multi-View Network Clustering and Fusion.

Line Algorithm
1 INPUTS: Set of population brain connectivity network views:
2 {{V1

1, ...,V
m
1 , ...,V

M
1 }, ...,{V1

n, ...,Vm
n , ...,VM

n }, ...,{V1
N , ...,Vm

N , ...,V
M
N }};

3 M: number of views;
4 N: number of subjects in the population;
5 Nc: number of clusters;
6 K: number of folds in cross-validation strategy;
7 Feature extraction and similarity networks construction
8 For each subject n, extract the feature vector fn = {f1

n, ..., fm
n , ..., fM

n };
9 Calculate the multi-view pairwise distance matrix between subjects using

Euclidian distance D = {D1, ...,Dm, ...,DM};
10 Compute the similarity matrices S = {S1, ...,Sm, ...,SM} based on D;
11 Compute the similarity matrices W = {W1, ...,Wm, ...,WM};
12 Multi-view clustering using optimization manifolds [6]
13 Initialization: Compute the Laplacian matrices L = {L1, ...,Lm, ...,LM}

using S and W given a starting point U0; U as N ×M points in RNc

14 Solve the optimization problem using spectral clustering algorithm:
15 Repeat
16 Compute the negative gradient:

−∇U trace(UT LU) =−LU = (ZT
1 ,Z

T
2 , ...,Z

T
M)T

17 for m = 1,2, ...,M do
18 project the negative gradient to the tangent vector of the manifold Mm;
19 ηm = Zm − 1

2Um((UT
m)Um +(ZT

m)Um);
20 η = (ηT

1 ,η
T
2 , ...,η

T
M)T ;

21 end for
22 Update the next point: U = U+αη ;
23 Until |U1 −U0|< ε;
24 Retract using singular value decomposition: U = WVT ;
25 Compute k-means clustering algorithm to get the clusters label of the nodes

in each network m: Cm
1 ,C

m
2 , ...,C

m
Nc

;
26 Fusion process of network views
27 for m = 1,2, ...,M do
28 for nc = 1,2, ...,Nc do
29 Compute the CBT Am

nc
by linear fusion of {Vm

n , n ∈ nc};
30 end for
31 Compute Fnc the network representing cluster nc by merging Am

nc
across views using SNF algorithm [1];

32 end for
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33 Linear fusion
34 Compute the estimated CBT representing the population by averaging

Fnc across clusters;
35 Extraction of ROIs scores using the estimated CBTs of two

populations p and p′ and cross-validation strategy
36 for i = 1,2, ...,K do
37 for j = 1,2, ...,K do
38 Compute D the absolute distance between two estimated

populations CBT Ap
i and Ap′

i ;
39 end for
40 Compute the weight vector α representing the discriminative score of

ROIs by aggregating the elements of each row in the matrix D;
41 end for
42 OUTPUTS: Return the estimated CBT of a population and the ROIs

scores vector between two populations.

We evaluate both the centeredness and representativeness of the estimated CBT for

a given population using two evaluation metrics: (i) the mean Frobenius distance as

well as (ii) the Pearson correlation between the estimated CBT and the brain networks

of all subjects across views in the given population. For each view m, we compute

the mean Frobenius distance dm
F between the estimated CBT and all brain networks,

then we calculate the average of dm
F across the views. Likewise, we compute the

mean Pearson correlation rm for each view between the predicted CBT and all brain

networks belonging to a given population, then we linearly average rm across views.

The Frobenius distance and the Pearson correlation between two matrices G = (gi j)

and H = (hi j) where 1 ≤ i, j ≤ N are calculated as follow:

dF(G,H) =
√

∑
i

∑
j
| gi, j −hi, j |2 (3.15)

r(G,H) =
∑i ∑ j(gi, j −g)(hi, j −h)√

(∑i ∑ j | gi, j −g |2)(∑i ∑ j | hi, j −h |2)
(3.16)

where g = mean(G) and h = mean(H). For evaluating the reproducibility of the

estimated CBTs, we use K-fold cross-validation for validating and testing. We

randomly split each group in the given population of multi-view brain networks into

K sub-populations. For each sub-population, we generate a CBT and we measure

its Frobenius distance to views. For better visualization of the results and for easy
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comparison between methods, we further normalize the Frobenius distances for each

fold using the following formula:

d′
F = (dF −meani)/(maxi −meani)+1.5 (3.17)

where meani and maxi denote respectively the average and the maximum Frobenius

distances in fold i.

3.1.6.2 Evaluation strategy of connectional brain template discriminability

In this part, we aim to test the discriminability of the estimated CBTs by identifying

the top brain ROIs that distinguish between two groups. This experiment evaluates the

performance of a given method in relation with the discriminability of the ROIs. To

do so, we estimate a CBT for each group, then by computing the difference between

both templates, we identify the top ROIs distinguishing between both groups. Next, we

compute the overlap (in %) between the top discriminative ROIs found by MVCF-Net

and a supervised machine learning method based on multiple kernel learning (MKL)

Figure 3.3. Both methods are detailed below.

Identification of top discriminative ROIs using the estimated CBTs

To assess the reproducibility of our proposed method, we use K-fold cross validation

strategy to partition samples in each population (male/female) into K groups (folds).

We denote by pi the fold i of group 1 (e.g., male) and p′j the fold j of group 2, where

1 ≤ i, j ≤ K. After computing the estimated CBTs of all folds for both populations,

we compute the average absolute difference between all n possible pair combinations

of estimated CBTs. Each combination includes CBTs from both fold groups p and

p′, then we define an NrNr matrix T representing the cumulative absolute differences

between all pairs of CBTs:

T =
K

∑
i, j=1

| Ap
i −Ap′

i j |, 1 ≤ i, j ≤ K (3.18)

where Ap
i denotes the CBT of group 1 from fold i and Ap′

j is CBT of group 2 from fold

j. By aggregating the elements of each row in T, we get the weight score αi assigned

to the ROI Ri. The obtained αi denotes the cumulative Euclidian distance from Ri to

all other ROIs R j ( j ̸= i). Next, we rank the elements in score vector α decreasingly
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to identify the top discriminative ROIs having the highest scores. The pipeline steps of

top discriminative ROIs are illustrated in Figure 3.3.

Figure 3.3 : Identification of regions of interest (ROIs) scores using MVCF-Net
method. First, we calculate the absolute difference between two estimated
connectional brain templates (CBTs) to generate the absolute difference
matrix. Secondly, we aggregate the column elements of each row in the
absolute difference matrix to produce a score vector assigning the weight
for each ROI. Finally, we decreasingly rank the elements of score vector
to get the top discriminative ROIs.

Reproducibility of top discriminative ROIs

Next, we aim to evaluate the reproducibility of the top discriminative ROIs revealed

by two CBTs, each derived from a particular population. To this aim, we

propose to use an independent machine-learning methodology for supervised feature

selection, namely multiple kernel learning (MKL), and compare the ROIs identified

by MVCF-Net and MKL. MKL is a technique that learns an optimal combined

kernel from predefined basic kernels (e.g. information coming from multiple sources

by maximizing separability between them). Specifically, MKL was shown to be

powerful in classification task that distinguishes between classes while identifying

the most discriminative features between them [4]. Given a labeled sample with its

corresponding feature vector, we train an SVM classifier that learns a weight score

for each feature measuring its discriminative power in the target classification task.

For each network view m, we use a K-fold randomized partition to divide the data

into K subpopulations. Let p denote population 1 and p′ population 2. For each

combination of subpopulations pi and p′j , where 1 ≤ i, j ≤ K, we construct a feature

vector Fm
n for each subject n in both subpopulations p and p′ using the vectorized upper

triangular part of the connectivity matrix Vm
n , and we assign its label ym

n ∈ 1 indicating
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the population class. Using fm
n ; ym

n and the subpopulations pi and p′j as inputs to

train the SVM classifier, we use a wrapper method to estimate a weight vector xm
i, j

which assigns a learned weight quantifying the importance of each feature (i.e., brain

connectivity) in distinguishing between two classes. We compute the total weight

vector x by cumulating xm
i, j across all views and all combinations of sub-populations:

x =
K

∑
i, j=1

M̄

∑
m=1

xm
i, j (3.19)

We apply anti-linearization to transform the weight vector x into a square matrix B

where each element B(i, j) represents the learned weight assigned to brain connections

between ROIs Ri and R j. Next, by summing up the weights of all connections involving

Ri to other ROIs, we obtain the weight score αi that quantifies the discriminative power

of Ri. αi is then calculated as follows:

αi = ∑
j ̸=i

B(i, j), 1 ≤ j ≤ Nr (3.20)

Finally, we select the top discriminative ROIs using the highest scores αi, where 1 ≤

i ≤ Nr . The identification pipeline of top discriminative ROIs using MKL technique

is illustrated in Figure 3.4.

3.2 Multigraph Integration and Classifier Networks (MICNet)

3.2.1 MICNet overview

Figure 3.5 provides an overview of the key steps of our proposed multigraph

integration and classifier networks MICNet which is the first end-to-end learning

based graph classifcation architecture using multigraph fusion. In the first step, we

learn a single-view graph representation from each multigraph to disentangle the

heterogeneity problem while preserving multigraph topological features. To this aim,

we first compute multiple convolutions on the multigraph views at a subject-level.

Next, at each layer, we perform a multiplication of a multigraph tensor convolution

output and the resulting tensor of the previous layer. After computations of all layers,

we then calculate the average of the resulting tensor over the channels to obtain a
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Figure 3.4 : Identification of the top discriminative ROIs using multiple kernel
learning (MKL). First, we linearize the multi-view brain connection
networks for training and testing brain networks through the vectorization
of the upper triangular part of each population matrices to generate a
feature vector for each brain network. Second, for each view m, we
apply MKL based on support vector machine (SVM) to obtain a weight
vector xm quantifying the discriminability of each brain feature (i.e., brain
connectivity between two anatomical regions of interest (ROIs)). Next, by
summing the weight vectors xm across views, we obtain the total weight
vector x for a particular ROI. We then use anti-linearization to transform
the weight vector into a matrix where each element represents the
connectivity weight between two ROIs. Specifically, anti-linearization
is the inverse of features vectorization where the weight vector represents
the upper triangular part of the resulting symmetrical connectivity matrix.
By aggregating the columns of the resulting matrix, we obtain the score
vector denoting the discriminative power of each ROI. Finally, we rank
brain ROIs according to their highest scores.
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Table 3.3 : Major mathematical notations used in this paper.

Mathematical notation Definition
N number of multigraphs (subjects)
n number of graph nodes
nv number of views

A(k)
i the ith view of the kth subject’s adjacency tensor

y(i) real label of the ith subject
ŷ(i) predicted label of the ith subject
ng number of graph integration layers
np number of classification pooling layers
S[i] assignment tensor at the ith layer
H[i] input embedding tensor at the ith layer
Z[i] output embedding tensor at the ith layer
p prediction logits vector

single view-graph after integration of the original views. In the second stage, we

introduce these graph templates into a geometric deep learning based classification

step to optimally capture the discriminative patterns in graph structure. To do so,

we compute a sequence of pooling layers where we run two separate GNN-based

architectures to learn new embedding representations for the nodes and their new

assignment to the new clusters. After the final pooling layer, we use all the embedding

tensors to classify the graph using a dedicated GNN-based architecture.

3.2.2 Problem definition

Graphs are data structures with a node set V and an edge set E, G = (V,E), where

E ⊂ V ×V . We denote n = |V | and nv the number of nodes and the number of

views, respectively. In this study, we work with undirected graphs having multiple

edge attributes. Since our problem is supervised classification of a multigraph set, we

denote the label of a graph as y and its predicted label as ŷ. We represent subjects

in the population as a set of tensors {A(i)}N
i=1. Each tensor A(i) ∈ Rn×n×nv stacks the

adjacency matrices of the ith subject in the dataset. Specifically, A(i)
j ∈ Rn×n is the jth

view of the ith subject in the population. In this work, our goal is to conduct an accurate

classification for a dataset of labeled multigraphs.

In this section, we detail the components of our MICNet architecture for multigraph

integration and classification (Fig 3.5). First, we introduce the integration block that

learns the shared connectivity patterns across the multi-view graph tensor to generate
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Figure 3.5 : Overview of our multigraph integration and classification (MICNet)
architecture. MICNet performs classification of multigraphs with
heterogeneous views. We first integrate a multigrah at a subject-level.
The integration block extracts single-view graphs from the original
multigraphs. These single-view graphs contain the most relevant edge
attributes. Next, we introduce the outputs of the integration block
to a subject-specific thresholding filter. This step generates binary
matrices representing single-view graphs with binary edge attributes.
This step selects the connections having most relevant connectivity
weights, thereby emphasizing the most discriminative and representative
edges used as subject fingerprints. We feed these graphs to a GNN-based
classification architecture which performs several graph convolutions to
get final prediction. We transform the single-view graph through a
sequence of embedding and pooling layers into predicted labels.
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subject-level integrated graphs (i.e., template graphs). Second, we apply thresholding

filters at a subject level to generate binary adjacency matrices. Third, we perform a

classification step that stacks multiple graph convolutions and graph neural layers to

obtain the final classification prediction.

3.2.3 Multigraph integration and thresholding step

The input of the integration block is a multigraph with heterogeneous views and

different edge types. Let A ∈ Rn×n×nv be the set of input tensors representing the

multigraphs. The output of this block is an n× n matrix which represents the single

view integrated graph. The integration block was inspired by graph transformer

networks proposed in [74] for node classification. Here we adapt it to perform a graph

integration task. The goal of our integration block is to transform an input tensor

which represents a multigraph A ∈ Rn×n×nv to a single view graph which is an n× n

matrix representing the integrated subject-specific template.

Figure 3.6 : Multigraph integration pipeline. For a given multigraph, this block
consists in the fusion of the multigraph views at a subject-level. We
compute the subject-level integrated template by stacking different
convolution operations. At each layer, we perform a multiplication of
a multigraph tensor convolution output and the resulting tensor of the
previous layer. After computations of all layers, we calculate the mean of
the resulting tensor over the channels. The resulting tensor represents a
single view-graph obtained after integration of the original views.

The multigraph fusion is done by the exploration of the graph meta-paths [74].

Meta-paths can be used to highlight relationships between multiple nodes related

through different edge types. They can be useful to identify hidden or complex
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patterns lying in more than one view specially when dealing with multigraphs with

heterogeneous edge types. Given a node of a multigraph, meta-paths can be decisive

to explore the relevant edges that connects it with its neighborhood through the

heterogeneous views. The meta-path extraction can be a hard task when dealing

with relatively high-dimension multigraphs. We can define the meta-path graph by

its adjacency matrix Aδ , describing the connections between the nodes with a relation

that represents the meta-path δ as follows:

Aδ = Aδp ...Aδ2Aδ1 (3.21)

where p denotes the number of edge types included in the meta-path δ . The adjacency

matrix using the meta-path d can be seen as a multiplication of the adjacency matrices

{Aδj}
p
j=1 where δ j is the jth edge type included in the meta-path δ . To obtain

adjacency matrices with meta-paths, our model computes several multiplications of

convolutions of the original adjacency matrices. For the initial layer, our integration

block performs the multiplication of two convolutions of the original input tensor as

follows:

A[1] = φ0(A[0],so f tmax(Wφ0))φ1(A[0],so f tmax(Wφ1)) (3.22)

where Wφ0,Wφ1 ∈ Rnc×nv×1×1 are the learned weight matrices corresponding to the

two separate 1× 1 convolutions used at the 1st layer φ0 and φ1, respectively. nc is a

parameter indicating the number of channels used in the convolution.

For the following layers, our model computes the multiplication of the output of the

last layer and the convolution’s output of the original tensor as:

A[i] = A[i−1]
φi(A[0],so f tmax(Wφi)), i > 1 (3.23)

where A[i] ∈Rn×n×nc is the resulting tensor from the ith layer. Wφi ∈Rnc×p×1×1 is the

learned weight matrix of the 1×1 convolution φi used at the layer i. A[i] represents the

meta-paths learned for the multigraph tensor A until the ith layer. Next, we compute

the mean over channels of the tensor resulting from the last layer. The resulting tensor

is an n× n matrix which represents the subject-level integrated graph. The obtained
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graph contains the meta-paths learned following multiple convolutions during the

integration process. The meta-paths are the most relevant relationships containing

different edge types. The resulting tensor is a single-view graph A = (ai j) ∈ Rn×n.

Next, we conduct a thresholding to emphasize the edge attributes that have more impact

on the classification output. We threshold the integrated subject-level templates using

a specific filter that keeps the edges having the highest connectivity weights. This

filter extracts a binary matrix from the integrated template. We aim to remove weak

connections that can be irrelevant. Hence, we only preserve the most pertinent edges.

We perform two methods of filters: mean-based and median-based thresholdings. For

each method, we compare the weights with the threshold and make the following

transformation:

ai, j =

{
1, if ai, j ≥ t
0, if ai, j < t

(3.24)

where t is the threshold chosen for the adjacency weights specific to the graph

represented by the tensor A = (ai, j). Consequently, we obtain a binary matrix for

each subject representing the new integrated template which will be injected in the

classification model. Furthermore, we will show in the following sections that the

thresholding step has an important contribution to the global performance of our

MICNet architecture.

3.2.4 Multigraph classification

Following the thresholding of the fused subject-specific template, we obtain a

single-view graph. This graph has only one edge type and the edge weights are binary

with an adjacency matrix A(k) ∈{0,1}n×n where k ∈{1, ...,N} is the index of the graph

in the dataset. In this section we describe the different classification blocks used by our

model. We will compare the contributions of each classifier to our whole end-to-end

model performance in the results section.

3.2.4.1 Classification with hierarchical embedding

We build a GNN-based graph classification model. Our model defines an end-to-end

strategy that stacks multiple layers of GNN modules to learn a differentiable soft
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cluster assignment for nodes. Each GNN architecture contains multiple stacked graph

convolutions parametrized based on these hyperparameters: hidden dimension, assign

ratio and output dimension denoted as h,a and o, respectively. In each layer i, we

generate the new adjacency matrix and node embedding matrix of the newly coarsened

graph by the following equations:

H[i+1] = S[i]TZ[i] (3.25)

A[i+1] = S[i]TA[i]S[i] (3.26)

where H[i] ∈ R(|V |ai)×(2h+o) and A[i] ∈ R(|V |ai)×(|V |ai) for i > 0. In each layer i,

we compute the new adjacency matrix and node embedding matrix using two

tensors learned through the classification model which are the embedding tensor

Z[i] ∈ R(|V |ai)×(2h+o) and the assignment tensor S[i] ∈ R(|V |ai)×(|V |ai+1) in Table 3.3.

These two tensors Z and S are generated through two separate GNN-based

architectures. The embedding tensor Z is responsible for the new node embeddings

and obtained through this equation:

Z[l] = GNNi,embed(A[i],H[i]) (3.27)

On the other hand, the assignment tensor S[i] at the ith layer generates assignments of

the nodes of the previous layer to the new clusters.

S[i] = so f tmax(GNNi,pool(A[i],H[i]) (3.28)

Noting that in our case, we initialize H[0] = In,A[0] = A, this whole process can be

repeated np times where np corresponds to the number of the pooling layers. After the

final pooling layer, another GNN is performed to vectorize the embedding tensors and

generate the final prediction of our model.

p = GNN pred(Z[np],Z[np−1], ....,Z[0]) (3.29)

where p = (p j) ∈ Rl×1 is the prediction vector containing the prediction logits where

l is the number of classes in the dataset. p is computed by GNNpred a GNN-based
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architecture that takes as input the embedding tensors of all the pooling layers of

the classification block. The predicted label of the classification is the index of the

maximum value in the final prediction vector.

ŷ = j p j = { j | p j = max
j′

p j′} (3.30)

3.2.4.2 Graph convolution networks (GCN) classifier

GCN performs a sequence of graph convolution layers. In the literature, there are

variant implementations of GCN [3]. These implementations differ by the propagation

rule used in every neural network layer H[i+1] = f (H[i],A) where H[i+1] is the

graph-level output of the (i+1)th layer. Here we choose the propagation rule proposed

in [3]:

f (H[i],A) = σ(D̂− 1
2 ÂD̂− 1

2 H[i]W[i]) (3.31)

with Â = A+ I where I is the identity matrix and D̂ is the diagonal node degree matrix

of Â.

3.2.4.3 Loss

The loss function of our MICNet model aims to minimize the error between the real

labels of our multi-view graphs subjects and the model’s predicted labels. We only

introduce the prediction logits and the real labels to the loss function. In our model,

we use the cross-entropy loss to improve the global performance of our model.

L =− 1
N

N

∑
i=1

(y(i) log(ŷ(i))) (3.32)

where y(i) and ŷ(i) are the real class and the predicted class of ith subject, respectively. N

is the total number of subjects in a given population. This loss takes into consideration

the weights of both classification and integration layers. The design of our model

loss ensures that our proposed method works in an end-to-end fashion by learning

the weights of all layers through backpropagation. During a single backward pass,
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Figure 3.7 : Illustration of our proposed MICNet graph classification model with one
pooling layer. We initialize A[0] as the adjacency matrix of the graph
obtained after thresholding step and H[0] as an identity matrix In. On one
hand, we run a GNN-based architecture to obtain the embedding tensor
Z[0]. Then, we multiply Z[0] by A[0] to obtain the new adjacency matrix
A[1]. On the other hand, we run another GNN-based architecture to get
the assignment matrix S[0] containing the new nodes representation in the
new clusters. Next, we multiply Z[0] by the softmax output of S[0] to get
the new nodes embedding matrix H[1]. We run a separated GNN-based
architecture using Z[1] and H[1] to obtain the updated output embeddings
tensor of nodes Z[1]. This whole process represents the 1st pooling layer
and it is repeated np times. After the final layer computations, we use all
the embedding tensors {Z[i]}np

i=0 to classify the graph using a dedicated
GNN-based architecture.

our model updates all its weights to optimize the classification performance in an

end-to-end manner.

3.3 CBT Estimation Methods

We present the first review paper which provides an insightful survey of the existing

integration models promoted with a comparative study to evaluate their performance

across extensive experiments in terms of producing the most centered templates,

recapitulating unique traits of populations, and preserving the complex topology

of biological networks. In our search for articles that introduce graph integration

methods, we emphasize two categories which estimate a unified connectional

representation of a population of networks. The first category corresponds to the

single-view fusion methods where they take populations of single-view networks and

output single CBTs. For this category, we identify three single-view graph fusion

methods: SNF [1], NAG-FS [7], and SM-netFusion [8]. These fusion methods are
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based on different machine learning (ML) architectures.

The second group represents multi-view graphs integration methods which

fuse populations of multi-view networks into a single connectional template.

For this category, we review five multigraph fusion methods: netNorm [2],

SCA [9], MVCF-Net [10], cMGI-Net [20], and DGN [11]. Multigraph fusion

methods can be sub-categorized into two big classes: machine learning-based

and deep learning-based models. The source articles are published between

2018 and 2020, except the one proposed by [1] in 2014. In the following

section, we detail the architecture of each graphs integration method for

both categories. We refer the reader to our GitHub link where all papers

cited in our work are available at https://github.com/basiralab/

Multigraph-and-Single-View-Integration-in-Network-Neuroscience.

The aforementioned integration frameworks are graph-based models which are

designed to learn from a brain graph where nodes represent anatomical brain regions

and edges denote the morphological connectivities. Integration models aim to generate

a representative template which encodes a holistic mapping of shared traits within a

population of brain multigraphs (single-view graphs). This problem can be defined

as follows. Let sample s (brain connectome) in a population be represented by

a set of nv weighted undirected graphs with nr nodes. We model this sample as

a single tensor Ts ∈ Rnr×nr×nv that is composed of stacked nv adjacency matrices

{Xv
s}

nv
v=1 of Rnr×nrcapturing the pairwise relationships between n ROIs. The objective

of these fusion frameworks is to integrate a set of multi-view (single-view) graphs

T = {T1,T2, ...,TN} in order to obtain a population-representative connectional

template T ∈ Rnr×nr that is well-centered (2) discriminative, and (3) topological

sound (topological pattern are preserved when transforming a population of multi-view

(single-view) networks to a unique and generic connectional template).

3.3.1 Single-graph fusion methods

SNF. Similarity network fusion (SNF), proposed by [1], is a generic unsupervised

technique for non-linear network integration, which is based on message passing
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Figure 3.8 : The schema illustrates connectional brain templates (CBTs) estimated by
a) single-graph fusion methods for a given population of single-view
brain networks: network atlas-guided feature selection (NAG-FS) [7],
similarity network fusion (SNF) [1] and supervised multi-topology
network cross-diffusion (SM-netFusion) [8]; and b) multi-graph inte-
gration methods for a population of multi-view connectomic brain data:
multi-view networks normalizer (netNorm) [2], SNF-Clustering-Average
(SCA) [9], multi-view clustering and fusion (MVCF-Net) [10],
cluster-based multi-graph integrator networks (cMGI-Net) [11].
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theory [81]. SNF aims to estimate a status matrix for each network that carries the

whole networks information and a sparse local matrix that only takes up to top-k

neighbors into consideration. Next, an iterative integration step is conducted to update

each status network by diffusing the mean global structure of the remaining networks

and along with the sparse local network. The obtained single similarity network

captures both shared and complementary information from different data sources.

NAG-FS. Network atlas-guided feature selection (NAG-FS) method, proposed by [7],

is a feature selection-based method to produce a unified normalized connectional

representation of a population of brain networks. First, NAG-FS clusters similar brain

networks into non-overlapping subspaces using multiple kernels. Then, NAG-FS

leverages the network diffusion and fusion techniques introduced in [1] to nonlinearly

fuse the networks lying in the same subspace, hence creating a cluster-specific network

atlas. (i.e., a population center). Last, the population connectional network atlas is

obtained by non-linearly diffusing and fusing network atlases. NAG-FS captures

potential data distribution heterogeneity with different bandwidths.

SM-netFusion. Supervised multi-topology network cross-diffusion (SM-netFusion),

proposed recently by [8], is a supervised fusion method for CBT estimation

from single-view networks of a population based on graph topological measures.

SM-netFusion uses a weighted mixture of multi-topological measures to enhance

the non-linear fusion process for supervised graph integration. First, SM-netFusion

learns a weighted combination of the topological diffusion kernels derived from

degree, closeness and eigenvector centrality measures in a supervised manner. Then,

SM-netFusion non-linearly cross-diffuses the normalized brain networks so that all

diffused networks lie close to each other for the final fusion step to generate the

target of a specific population. This normalization well captures the shared networks

between individuals at different topological scales, improving the representativeness

and centeredness of the estimated multi-topology CBT.
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3.3.2 Multigraph fusion methods

SCA. Starting with the SNF-Clustering-Average (SCA) introduced by [9], is a

multi-view brain connectivity fusion framework for estimating a brain network

atlas of multi-view brain networks population. Specifically, SCA non-linearly fuses

multi-view networks into a single network for each subject. In this step, all individuals

are diffused from the original space into the mapped space where their brain views are

unified individually by leveraging the generic similarity network fusion (SNF). Then,

it clusters the fused networks in the mapped space to identify individuals sharing

similar connectional traits in an unsupervised way, which are next averaged within

each cluster to generate a representative network atlas for each cluster. After obtaining

the cluster-based brain templates, SCA constructs the final multi-view network atlas

by linearly averaging the obtained templates of all clusters into a single template

denoting the multi-view network atlas.

netNorm. A recent selective technique, netNorm introduced by [2], builds a

representative template based on graph feature selection prior to a non-linear fusion

to integrate multi-view networks. First, netNorm defines a cross-view feature vector

between each pair of ROIs for each individual in the population. Then, in order to

investigate the inter-relationship between different subjects in a population at local

scale, this framework constructs a high-order graph for each pairwise connection by

measuring the Euclidean distance between the cross-view feature vectors across all

subjects. Next, netNorm selects the most centered cross-view connectional features

across the population, which will compose the new significant edges for each network

view. Finally, the network views are integrated into a single network using non-linear

fusion technique to generate brain connectional template.

MVCF-Net. More recently, [10] proposed multi-view clustering and fusion

(MVCF-Net), a graph-based clustering method, to fuse a population of multi-view

networks. This method is rooted in the identification of consistent and differential

clusters across brain views to generate a connectional brain template for a given

population. To this aim, first, MVCF-Net leverages multi-view network clustering

model based on manifold optimization method [6], which groups similar subjects
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in the same cluster and separates dissimilar subjects in different clusters while

preserving their alignment across data view. Thus, similar connectional traits and

distinct connectional traits of samples within and across clusters nested in different

views can be identified in an unsupervised way [6]. Then, for each view, MVCF-Net

linearly fuses the networks within each cluster to generate local CBT and non-linearly

integrates the resulting local CBTs across views into a cluster-specific CBT. Next, by

linearly fusing the cluster-specific centers, the final CBT is estimated to represent a

given population of multi-graph networks. MVCF-Net jointly captures simultaneously

similar and distinct connectional traits of samples.

cMGI-Net. More recently, [20] proposed a clustering-based multi-graph integrator

network (cMGI-Net) for CBT estimation of multigraph population. Based on

geometric deep learning, cMGI-Net non-linearly maps a population of brain

multigraphs to a target CBT in an end-to-end manner using single objective loss

function to optimize. First, cMGI-Net clusters similar samples together using

multi-kernel manifold learning (MKML) introduced in [82]to disentangle the

heterogeneity of the population and facilitating the following integration task. Then,

for each cluster, cMGI-Net integrates multigraph network of each subject into a

single graph to identify useful edge types between connected nodes. This step results

in generating metapaths for each subject which can be very useful to encapsulate

representative connections across multigraph networks. Next, cMGI-Net fuses the

generated subject-specific graphs into a cluster-specific CBT while learning their

weights under the constraint of minimizing the distance between the resulting template

and all multigraph networks of the population. The final CBT is estimated by simply

averaging the cluster-specific CBTs.

DGN. Another very recent approach, deep graph normalizer (DGN) introduced

by [11], is a GNN-based architecture that learns how to normalize and integrate a

population of multigraph brain networks into a single CBT. First, each training sample

passes through a sequence of graph convolutional neural network layers which are

separated by non-linear activation of the previous layer. Precisely, each GNN layer

learns deeper embeddings for each node by locally integrating connectivities offered
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by different heterogeneous views and blending the previous layer’s embeddings using

integrated connectivities. Next, DGN computes the pairwise absolute difference of

each pair of the final layer’s node embeddings to derive connectivity weights of the

generated CBT. To evaluate the representativeness of the estimated subject-biased

CBT, DGN integrates a randomized weighted loss function (SNL) which updates the

model weights in a way that generated CBT represents a random subset of the training

views set. Specifically, the trained model is fed with an arbitrary subject of the training

population and learns how to achieve subject-to-population mapping thanks to SNL

optimization. The obtained CBT is refined by selecting the element-wise median of

all training CBTs to retain the most centered connections for the final CBT generation.

3.3.3 CBT evaluation measures

Ideally, a reliable estimated template should preserve the topological patterns and

properties of a specific population during the fusion process [75]. In more details, a

CBT should satisfy the following criteria:(1) centeredness as it occupies the ‘center’

of a population by achieving the minimum distance to all population samples. (2)

graph-derived biomarker reproducibility as as it allows to identify connectional

biomarkers that disentangle the differences in brain connectivity between populations

with different brain states (i.e., healthy and disordered or genders). (3) graph

global-level similarity as it tests whether the generated CBT preserves the global

structure of the original graphs networks. (4) graph node-wise similarity as it tests

whether the local structure of the original data which includes the relationship

(connectivity) between the nodes are preserved by the CBT. (5) graph distance-base

similarity as it quantifies the distance (similarity score) between two networks by

studying some characteristics.

To evaluate the centeredness of the CBTs, we measure the Frobenius distance from

the estimated template to each tensor view of each subject in the population. Based

on graph theory approach, to compare the aforementioned criteria of graph networks

and further on the performance between the graph fusion methods, it is mandatory

to quantify the similarity between them [83, 84] using graph theoretical measures.
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However, applying this task on complex networks such brain networks is difficult and

may fail to encapsulate in a single score because of their heterogeneous composition.

To overcome this limitation, we integrate in our CBTs comparison a combination of

methods and metrics that evaluate multiple levels in a graph: the nodal level (brain

regions), the local level and the global level of a graph network [85–89]. In the rest of

this section, we detail the five criteria for CBTs comparison, their evaluation methods

and metrics.

3.3.3.1 CBT centeredness test

We evaluate the centeredness and representativeness of the estimated CBT by

measuring the mean Frobenius distance from the estimated template to each tensor

view of each subject for a given population. Frobenius distance between two matrices

A and B is a scalar value and is calculated as: dF(A,B) =
√

∑i ∑ j|Ai j −Bi j|2. For

reproducibility and generalizability, we split the datasets into training and testing sets

using 5-fold cross-validation. We use the training set to generate a connectional

template and to calculate its mean Frobenius distance to all views of each sample

within the testing left-out fold. Hence, for each population (i.e., AD), we generate 5

CBTs, with an additional one using the whole data. To assess the statistical significance

of each single-view fusion method and multigraph fusion method, we validate the

comparative study of the CBT centeredness using two-tailed paired t-test across all

data folds in addition to the whole data between the comparative methods.

3.3.3.2 CBT discriminativeness reproducibility test

Our second criterion is that the generated templates are discriminative which means

that CBTs will encapsulate the most distinctive traits of a population of graph

networks. To test the discriminability of the estimated CBTs, we first spot the

most k discriminative brain ROIs where a population pA CBT largely differs from a

population pB CBT (i.e., (1) AD vs. LMCI, and (2) M vs. F). To do so, we compute

the absolute difference between both estimated templates pA and pB, respectively. To

assess the reproducibility of the CBT produced by each graph fusion method, we use

randomized k-fold partition to divide each population into k folds. Ai and Bi denote

the estimated CBTs for the ith fold for population pA and the jth fold for population

pB, respectively, where 1 ≤ i, j ≤ k. We compute the mean absolute difference
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Figure 3.9 : Diagram illustrating the criteria used to evaluate the performance
of the connectional brain templates generated for single-view graph
integration methods and multi-view graphs fusion methods. This
includes first graph centeredness using Frobenius distance, second the
graph-derived biomarker reproducibility where we identify the overlap
of top k discriminative nodes (ROIs) computed by the graph fusion
methods and by an independent biomarker selection method, third
the global-level similarity using both modularity and global efficiency
measures, fourth the graph distance-based similarity where we compute
Hamming and Jaccard distances. Finally, we include the graph node-wise
similarity where we evaluate three behavior for the graph: integration
behavior using participation coefficient, segregation behavior using local
efficiency, and hubness behavior using the following centrality metrics:
PageRank [12], Katz centrality [13], node strength [14], random-walk
centrality [15], information centrality [16], Laplacian centrality [17],
eigenvector centrality [18], and betweeness centrality [19].
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between the estimated templates across folds using simple inter-template subtraction

as follows: D = ∑i, j|Ai j −Bi j|,1 ≤ i, j ≤ k, where D is an nr × nr matrix containing

the absolute features’ differences between all pairs of fold i and fold j in terms of

connectional strength. Next, we sum the columns of the resulting difference matrix to

obtain a discriminability score vector α where the ith coefficient denotes the score αi

assigned to the ith ROI representing the cumulative distance from ROI i to all other

ROIs k ̸= i. αi is calculated as follows: αi = ∑k D(i,k),1 ≤ k ≤ nr,k ̸= i. We then pick

the top k discriminative ROIs with the highest scores.

To evaluate the reproducibility of CBT-based discriminative ROIs, we propose to use

an independent learner, namely multiple kernel learning (MKL) [4], which aims to

identify the most discriminative features for a target classification task disentangling

both pA and pB groups. Next, we compute the overlap (in %) between the top

discriminative ROIs found by the application of (i) the mean absolute difference

between the estimated CBTs and (ii) a supervised machine learning method based

on MKL. To do so, we independently train a support vector machine (SVM) based

on a supervised feature selection method. For each network view v, we first extract

connectional features from each brain network view belonging to the given population

by vectorizing the upper triangle of the connectivity matrix. Then, we use a k-fold

randomized partition to divide each population pA and pB into k sub-populations.

Given the vth brain view, for each combination of pA
i and pB

i sub-populations,

where 1 ≤ i, j ≤ k , we train an SVM classifier using the wrapper method MKL to

learn a weight score vector quantifying the importance of the features (i.e., brain

connectivities) according to their distinctiveness in distinguishing between two

sub-populations. Next, we compute the total feature weight vector by summing

up the weight vectors for all views and all possible A − B combinations of their

k sub-populations as follows: w = ∑
nv
v=1 ∑

k
i, j=1 wv

i, j. We linearly anti-vectorize the

resulted feature weight vector w to obtain matrix M ∈ Rnr×nr where each element

M(i, j) represents the learned weight assigned to brain connections between ROIs

Ri and R j. Finally, we sum up the columns of the resulted matrix M to obtain ROIs

discriminability scores where each weight score αi quantifies the discriminative

power of Ri, and we pick the top ROIs with the k highest score. Getting the top k
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discriminative ROIs using CBT-based graph fusion methods and MKL-based SVM

method, we report the overlap between them where the highest overlap denotes the

best method performance in relation with the discriminability of the ROIs.

3.3.3.3 CBT node-wise similarity comparison

Many studies, which investigate the topological features of complex networks [41, 75,

90], consider that graph theoretical metrics are sufficient to preserve the population

topology. Among them, we specify graph node-wise metrics which can be estimated

at node level of the compared networks. Graph node-wise metrics are calculated

for each node, and then the node’s metric values are compared across the graphs

(CBTs). Such comparison metrics allow not only to explore more features in the

graph, but also to indicate where the difference is located between the CBTs (on which

brain regions). Globally speaking, these metrics reflect mainly three behaviors in the

network: hubness, segregation, and integration.

Hubness behaviour test

To evaluate the hubness behavior of a graph network, we first include the following

measures as they capture different graph topological properties: (i) node strength [14]

describes the connection strength (weight) of node to all other nodes, (ii) betweenness

centrality [19] is defined as the fraction of all shortest paths in the network that

pass through a given node, (iii) random-walk betweeness centrality [15] counts

how often a node is traversed by a random walk between two other node, (iv)

eigenvector centrality [18] measures a node’s importance while giving consideration

to the importance of its neighbors, (v) weighted PageRank [12] can be seen as a

variant of eigenvector as it investigates the in-degree of nodes and their neighbours

by assigning a score to each node based on the number and the weight of edges

connected to each node, (vi) Katz centrality [13] can be seen as the generalization of

the eigenvector centrality where it computes the relative influence of a node within a

network by measuring the number of immediate neighbors (first degree nodes) and

also all other nodes in a network that connect to a node under consideration through

these immediate neighbors, (vii) information centrality [16] is defined as a variant

of closeness centrality based on effective resistance between nodes in a networks. It
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quantifies how easy a node is reached by paths from other nodes, (viii) Laplacian

centrality [17] quantifies each node using node strength to asses the impact of their

removal from a graph.

Next, we conduct ROI-based comparison using the distribution over the ROIs

of the aforementioned centrality measures (CMs) for the connectional templates

(CBTs-based CMs) generated by all graph fusion methods (single-view and

multi-graph integration methods). Specifically, each CM distribution is a discrete

distribution which is composed of topological measures calculated for each node.

For a fair comparison between the CBTs-based CMs, we include CM distribution

of the ground truth template (GT-based CM), as a reference for the estimated

templates. For each centrality metric, we acquire the ground truth distribution by

averaging the distribution of topological measures (i.e., PageRank) of each network

view of each testing subject. Additionally, we compute method-based comparison

using the Kullback-Liebler divergence measure (KL-divergence). For each centrality

measure and for each graph fusion method, we compute KL-divergence between

CBT-based CM distribution and GT-based CM distribution over the ROIs. Note that

we normalize each distribution using the total sum of measures across all nodes before

computing KL-divergence to get a valid discrete probability CM distribution. For the

reproducibility of hubness results, for each pair of graph fusion method and CM, we

apply 5-fold cross-validation to split the data into training set for CBT generation and

testing set to compute CBT-based CM distribution, GT-based CM distribution, and the

KL-divergence between them. We report the average centrality metric distributions

across folds for the estimated brain template, the average ground truth distributions,

and the Kullback-Liebler divergence distribution over folds between the normalized

CBT-based CM distribution and the normalized GT-based CM distribution. More

formally, KL-divergence measures the difference between two probability distributions

p(x) and q(x) of a discrete variable x:

DKL(p(x) ∥ q(x)) =
nv

∑
x=1

p(x) ln
p(x)
q(x)

, (3.33)

where p denotes the normalized CBT-based CM distribution, q is the normalized

GT-based CM distribution and x represents the node of the graph. Finally, we

conduct method-to-method comparison between all possible pairs of graph fusion
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methods. Specifically, given two fusion methods, we average, for each method,

the KL-divergence distribution over folds between the normalized CBT-based CM

distribution and the normalized GT-based CM distribution. Then, we compute the

KL-divergence between the resulting averages of two methods.

Figure 3.10 : Analysis diagram illustrating the types of comparative study to evaluate
single-view and multigraph fusion methods. We conduct method-based
analysis where we evaluate the CBTs generated by thefusion methods
against the ground truth using frobenius distance, centrality metrics,
Kullback-Leibler divergence, modularity, local efficiency, and global
efficiency measures. We also conduct ROIs-based analysis to evaluate
the CBTs at the node-scale, where we recompute both centrality metrics
and local efficiency, and we add the participation coefficient. Lastly,
we include method-to-method analysis using a pairwise comparison
between graph fusion methods, where we compute three measures:
KL-divergence, Hamming distance and Jaccard distance.

Segregation behaviour test

Another broader criterion for node-wise similarity comparison is the segregation

behaviour of graph network, which quantifies the relative difference in strength of

within-network versus between-network connections. Among the metrics belonging

to this class, we include the local efficiency [91], which measures the efficiency of

information transfer limited to neighboring nodes. It is calculated as the average

nodal efficiency among the neighboring nodes of node i, excluding node i itself. More
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formally, the local efficiency is defined as:

Eloc(i) =
1

NGi(NGi −1) ∑
j ̸=h∈Gi

A j,h (3.34)

where A j,h is the connectivity weight of the adjacency matrix A of graph G relating

node j with node h, and NGi is the number of neighbour of node i.

Integration behaviour test

Another direction to measure the similarity between graphs is to evaluate their

integration behavior, which reflects the ability of network to combine information

from distant nodes. In this context, we include participation coefficient [90], which

quantifies the balance between the intramodule versus intermodule connectivity for

a given node. In other word, participation coefficient measures the distribution of a

node’s edges among the communities of a graph. This metric approaches 0 when

a node’s edges are restricted to its community, and it takes a maximal value that

approaches 1 when the node’s edges are equally distributed among all communities

(high correlations with multiple communities). More formally, the participation

coefficient can be defined as:

PCi = 1−
Nc

∑
s=1

ki,s

ki
(3.35)

where ki,s is the node strength (sum of weights connections) of node i to other nodes in

its own community network (s), and ki is the degree of node i regardless of community

membership. By subtracting that ratio from 1, participation coefficient is a normalized

measure of the connections that are not within a node’s own community, or that are

across communities.

3.3.3.4 CBT graph-edit distances-based comparison

The main idea of distance-based graph comparison methods consists of comparing two

graphs networks by quantifying their similarity. This includes methods based on edit

distances that focus to find the common/uncommon nodes (brain regions) and edges

(connections) between two brain networks. A special instance of the broader class

of graph-edit distances is the Hamming distance. Introduced by [92], the Hamming

distance measures the amount of change between two graphs by counting the number

of edge deletions and insertions necessary to transform one graph into another. More
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formally, the (normalized) Hamming distance is defined as the sum of difference

between the adjacency matrices of two graph networks G and G̃ on N nodes:

dH(G, G̃) =
N

∑
i, j=1

∣∣Ai, j − Ãi, j
∣∣

N(N −1)
=

1
N(N −1)

∥∥A− Ã
∥∥

1,1 (3.36)

where i and j are two nodes, and A and Ã are the adjacency matrices of G and G̃

, respectively. The Hamming distance value (if normalized) is bounded between 0

(no similarity at all) and 1 (fully similar/same network) over all graphs of size N.

However, the Hamming distance is sensitive to the density of the graphs. This yields

a limited capacity to recognize similar level of relative variability across graphs with

varying sparsity.

A potential solution to the aforementioned density-effect problem consists in using the

Jaccard distance [93], which includes a normalization with respect to the volume of

the union graph. This distance metric can be understood as the proportion of edges

that have been removed or added with respect to the total number of edges appearing

in either graph network. More formally, given two weighted graphs, G and G̃, and two

nodes i and j, the Jaccard similarity is defined as the difference between the size of the

intersection of graph G and graph G̃ (i.e. the number of common edges) and the size

of the union of graph G and graph G̃ (i.e. the number of unique edges) over the size of

the union of graph G and graph G̃:

dJaccard(G, G̃) =

∣∣G∩ G̃
∣∣ ∣∣G∪ G̃

∣∣∣∣G∪ G̃
∣∣ (3.37)

In the case of weighted graphs, G and G̃ can be represented by their corresponding

adjacency matrices A and Ã, where Ai, j and Ãi, j denote the edges weights of graphs

G and G̃, respectively, relating node i with node j. The Jaccard distance can be written

as:

dJaccard(G, G̃) = 1−
∑i, j min(Ai, j, Ãi, j)

∑i, j max(Ai, j, Ãi, j)
(3.38)

A Jaccard distance close to 1 indicates an entire remodeling of the graph structure

between graph G and G̃.

3.3.3.5 CBT global-level similarity comparison
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In this part, we aim to evaluate the global structure of the estimated CBTs. One way

is to investigate the modular structure of the graph network. A well accepted criterion

is modularity Q, introduced by [94], which evaluates the goodness of partitioning

of graph nodes into clusters. In other word, the modularity detects the communities

(clusters) in a graph where a node belongs to a community if it has stronger connections

with members of this community than with members of another community. Thus, a

high modularity means a good clustering where dense connections between nodes are

within the same cluster and sparse connections are in different clusters, whereas a

low modularity means a poor clustering. More formally, given an adjacency matrix

A ∈ Rnr×nr which represents the estimated connectional template (CBT) in our case,

the modularity Q applies to a graph G and a clustering C can be written as:

Q(C) = ∑
i, j∈V

(
Ai, j −

wiw j

w

)
δC (i, j) , (3.39)


wi = ∑i∈V Ai, j

w = ∑i∈V wi = ∑i, j∈V Ai, j

δC (i, j) = 1, if (i, j) are in the same cluster under clustering C
δC (i, j) = 0,otherwise.

(3.40)

where Ai, j denotes the connection weight that relates node i with node j. A minimum

value of Q near to 0 indicates that the considered network is close to a random one,

whereas a maximum value of Q near to 1 indicates a strong community structure. The

modularity Q can be written in term of probability distribution:

Q(C) = ∑
i, j∈V

(p(i, j)− p(i) p( j))δC (i, j) . (3.41)

Our objective is to cluster nodes while maximizing the modularity which means to

decrease the second term of Q. However this quantity is negligible for too small

clusters. To go beyond the resolution limit, the multiplicative factor γ , called the

resolution is introduced as follow:

Q(C) = ∑
i, j∈V

(p(i, j)− γ p(i) p( j))δC (i, j) . (3.42)

For γ = 0, the resolution is minimum and there is a single cluster, that is C =

{{1, ...,n}}; γ = ∞, the resolution is maximum and each node has its own cluster, that

is C = {{1} , ...,{n}}. To maximize the modularity of our CBTs graphs, we leverage
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the hierarchical clustering algorithm, named Pairwise Agglomerative using Resolution

Incremental sliding (Paris), which is agglomerative and is based on simple distance

between clusters induced by the probability of sampling node pairs. The main idea of

this method is to split the nodes of a network into K non-overlapping communities.

Specifically, Paris tries to approximate the optimal partitions with respect to the

modularity score and with a sliding resolution. Starting from the maximum resolution

where each node has its own cluster, Paris looks for the first value of the resolution

parameter γ , say γ1, that triggers a single merge between two nodes, resulting in

clustering C1. γ1 can be written as:

γ1 = maxi, j∈V
p(i, j)

p(i)p( j)
. (3.43)

Then, the hierarchical clustering algorithm looks for the next value of the resolution

parameter, say γ2,that triggers a single merge between two nodes, resulting in

clustering C1,and so on. We get in total the sequence of resolutions γ1, . . . ,γn−1.

Specifically, the resolution γt provides exactly n− t clusters. Since the best modularity

values of the CBTs nodes clustering are reached when the resolution γn−1 provides

exactly one cluster, we compute the optimal modulatity score Qn−1 of each estimated

CBT with corresponding to its resolution γn−1.

A second method to evaluate the entire structure of the estimated CBTs is to quantify

the exchange of information across the whole graph network. A good criterion for this

measurement is the global efficiency [91, 95], which is defined as the inverse of the

average distance (efficiencies) over all pairs of nodes (i, j), i ̸= j in the whole graph.

More formally, the global efficiency is denoted:

Eglob =
1

n(n−1) ∑
i ̸= j

1
d(i, j)

(3.44)
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4. RESULTS AND DISCUSSIONS

The structure of the chapter is organized as follows. Section 4.1 details the results

of our experiments generated by our multi-view clustering and fusion network

MVCF-Net framework to estimate a well-representative and centered connectional

brain template (CBT) for a population of multi-view brain networks. By estimating

gender-specific CBTs for male and female cortical morphological networks,

respectively, we will identify the top cortical ROIs marking gender differences.

We will demonstrate the outperformance of MVCF-Net in comparison with a

state-of-the-art method SNF-Clustering-Average (SCA) in terms of (i) centeredness

and representativeness compared to all subjects and all views in the population and

(ii) discriminability in identifying the most reproducible and discriminative gender

connectional markers. By generating a robust and holistic connectional brain map

(i.e., CBT) representing a given population, MVCF-Net will reveal gender-specific

fingerprints using multi-view cortical morphological in relation to behavior, learning,

and cognition. In our future work, we will examine how the identified gender cortical

morphological markers relate to brain function and structure using multimodal brain

networks.

Section 4.2 details the results and the discussions chapter, we will detail the results

of our experiments generated by our novel graph neural network based multigraph

classification framework rooted in (i) multigraph fusion including multiple graph

convolutions aiming at learning how to optimally construct the meta-path adjacency

matrix across heterogeneous data views and (ii) a classification block comprising

consecutive GNN-based node embedding layers to predict the target class label.

Our MICNet framework works in an end-to-end manner which helps emphasize

the weights of the most relevant edges during the integration step. Based on the

experimental results, our MICNet will outperform baseline methods on the two

brain genomics superstruct project datasets. In our future work, we aim to generate
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augmented multigraphs based on population-level integrated templates to enlarge the

dataset and eventually enhance the classification performance. Since our model works

on heterogeneous multigraphs, we will evaluate it on an extended dataset covering

a diverse range of edge types such as structural and functional connectivites. We

also aim to further enhance our framework by designing attention techniques for

multigraphs.

Section 4.3 details the results and the discussions chapter, we will detail the results

of the conducted comparison study on the learned brain connectional templates

(CBTs) generated by single-view fusion methods and by multigraph fusion methods,

separately, by evaluating their performance against the ground truth in term of

centerdness, biomarker reproducibility, node-wise similarity, global-level similarity,

and distance-based similarity. First, we will estimate single population-based

CBTs and multigraph population-based CBTs by integrating a set of single-view

biological networks and a set of multigraph biological networks, respectively into a

single connectional template. Next, we will compute a set of measurements on the

generated CBTs to evaluate their topological properties on the two brain datasets: the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database GO public dataset and

the Brain Genomics Superstruct Project (GSP) dataset. Based on the experimental

results, we will demonstrat that DGN consistently and significantly outperforms

other multigraph integration methods by generating well-centered, discriminative,

and topologically sound connectional templates. Together, these criteria will allow

DGN to lead the discriminative power in discovering connectional biomarkers that

disentangle the connectivity variability of two different populations.

4.1 Results and Discussion of Our Proposed MVCF-Net Method

4.1.1 Experimental results

4.1.1.1 Evaluation dataset and preprocessing pipeline

We evaluate our proposed MVCF-Net method using the brain genomics superstruct

project (GSP) dataset [96, 97] detailed in Table 4.1. The dataset consists of 698
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healthy candidates split in two populations: 308 subjects are males and 390 subjects

are females, and none of them carry any sign of brain disorders or had any history

of mental disease. Each subject is represented with structural T1-w MR image

which undergoes preprocessing steps such motion and topology correction, T1-w

intensity normalization and segmentation of the subcortical white and deep grey

matters volumetric structures [5]. Then, we leverage the reconstruction of the right

and the left cortical hemispheres (RH and LH) for each subject [5]. Next, we

partition each hemisphere into Nr = 35 cortical regions of interest (ROIs) using

Desikan-Killiany Atlas [98] and FreeSurfer [99]. Finally, for each subject n and for

each hemisphere, we define M = 4 networks {Vm
n }M

m=1, where each is represented

by a cortical morphological network (CMN): V1
n indicates the maximum principal

curvature brain view, V2
n marks the mean cortical thickness brain view, V3

n is generated

using the mean sulcal depth, and V4
n is derived from the mean cortical curvature.

Brain morphological networks are constructed separately for the left and the right

hemispheres, and they are investigated independently as we aimed in this study to

overlook morphological connections that can be “biased” by the brain hemispheric

asymmetry [68,100]. Combining them also prevents the loss of insightful information

on how gender affects each hemisphere independently.

Table 4.1 : Data distribution of female/male dataset.

datasets
M/F

M F
Number of subjects 615 781

mean ± std. age 21.6±0.9 21.6 ±0.8

4.1.1.2 Method parameters

We list below the parameters used in our methodology and comparison methods: (1)

Kn: the number of selected neighbors for KNN (2) Nc: the number of clusters for

k-means clustering and (3) M: the number of views:

• Number of clusters Nc. In fact, we use a grid search strategy that considers all

parameter combinations by varying the number of clusters Nc in the range [2,15]

in order to determine the best Nc that achieves the minimum Frobenius distance

and the maximum Pearson correlation for the multi-view brain networks across
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all methods (ours and SNF-Clustering-Average (SCA)). We found that the optimal

number of clusters Nc is equal to 3 across all methods.

• Kn in KNN algorithm. We also investigate the best number of Kn nearest neighbors

used in KNN method. We vary Kn in the set (5, 10, 15, 20) and we find that Kn = 5

achieves the minimum Frobenius distance between the estimated templates and all

population networks for each method, independently. Figure 4.1 and Figure 4.2

display the average Frobenius distance between the estimated CBT and all CMNs

using our method and SCA [9] while varying the number of Kn nearest neighbors.

Noticeably, setting Kn = 5 achieves the best results across all methods. We also use

the grid search strategy to identify the best combination of the parameters Nc and

Kn dependently.

• Number of views M. We vary the number of selected views to build the

subject-specific CMNs from 2 to 4 views. For each selected number of views, we

assess all possible combinations of views out of the existing 4 views (e.g., we have

C2
4 possible combinations of M = 2 out of 4 views). We report the average Frobenius

distance and the average Pearson correlation between the estimated morphological

CBT and all CMN views in the left (LH) and right (RH) hemispheres using our

method MVCF-Net in comparison with SCA [9] respectively represented in Figure

4.3 and Figure 4.4.

Figure 4.1 : Average Frobenius distance between the estimated CBT by MVCF-Net
and all CMNs in the left (LH) and right (RH) hemispheres as we vary the
number of selected neighbors for KNN.
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Figure 4.2 : Average Frobenius distance between the estimated CBT by
SNF-Clustering-Average (SCA) [9] and all CMNs in the left (LH)
and right (RH) hemispheres as we vary the number of selected neighbors
for KNN.

Figure 4.3 and Figure 4.4 display the average Frobenius distance and the average

Pearson correlation between the estimated morphological CBT and all CMNs using

our method MVCF-Net in comparison with SNF-Clustering-Average (SCA) [9] as we

vary the number of selected views constructing the subject-specific CMNs. For each

selected number of views (e.g. 2 views, 3 views, all views), we compute the average

of metric (e.g. Frobenius distance, Pearson correlation) using all combination of

brain networks. Noticeably, including all views together (e.g. four cortical attributes)

achieves the best results for the average Frobenius distance and the average Pearson

correlation in the left (LH) and right (RH) hemispheres across all methods (Ours and

SCA).

4.1.1.3 Methods comparison

In this work, we propose a robust multiview clustering and fusion network MVCF-Net

method for CBT estimation which can simultaneously capture shared and distinct

traits of a population lying on different views and identify the top discriminative ROIs

marking gender differences. For comparative evaluation, we benchmark MVCF-Net

against a state-of-the-art method SNF-Clustering-Average (SCA) introduced in [9].

4.1.1.4 CBT representativeness and centeredness
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Figure 4.3 : Average Frobenius distance between the estimated morphological CBT
and all CMNs in the left (LH) and right (RH) hemispheres using our
method MVCF-Net in comparison with SNF-Clustering-Average (SCA)
[9] as we vary the number of selected views constructing the CMNs from
2 to 4 views. Each bar represents the average Frobenius distance and
its standard deviation of all possible combinations for a given number of
views.

Figure 4.4 : Average Pearson correlation between the estimated morphological CBT
and all CMNs in the left (LH) and right (RH) hemispheres using our
method MVCF-Net in comparison with SNF-Clustering-Average (SCA)
[9] as we vary the number of selected views constructing the CMNs from
2 to 4 views. Each bar represents the average Pearson correlation and
its standard deviation of all possible combinations for a given number of
views.
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We evaluate the representativeness of the proposed CBT by computing the mean

Frobenius distance and the Pearson correlation between the estimated brain network

and all different views (4 views) in each population for SCA as well as for MVCF-Net

in left and right hemispheres. To better visualize the difference in performance

between MVCF-Net and SCA, we plot the normalized Frobenius distance in Figure

4.5. Also, we randomly partition our data into 5 folds to evaluate the reproducibility

of our results across folds as well as when using the whole dataset.

As illustrated in Figure 4.5 and Figure 4.6, our MVCF-Net provides the best centered

CBTs for male and female populations in both hemispheres. Based on both evaluation

metrics, MVCF-Net method outperforms SCA by achieving the minimum Frobenius

distance and the maximum correlation between the estimated CBT and all views for

whole and subpopulations (5 folds) in each hemisphere. Excluding one male LH

sub-population, MVCF-Net achieves the maximum correlation comparing to SCA.

A smaller Frobenius distance indicates a more centered CBT with respect to all

individuals in the population and all views. Clearly, MVCF-Net estimates the most

centered brain template for each population.

Further, our method stands out in performance in comparison with

SNF-Clustering-Average (SCA) as we vary the number of selected views constructing

the morphological CMNs from 2 to 4 views. As illustrated in Figure 4.3 and Figure

4.4, ourMVCF-Net provides the best centered CBTs for male and female populations

by achieving the optimal averages in both Frobenius distance and Pearson correlation

between the estimated morphological CBT and all CMNs in the left (LH) and right

(RH) hemispheres when the number of views is equal to 2, 3 and 4, respectively. We

note that MVCF-Net significantly (p− value < 0.001) outperforms SCA comparison

method in terms of centeredness across all populations in both hemispheres based on

two tailed paired t-test.

4.1.1.5 CBT discriminability

In addition to being well-centered, we demonstrate that MVCF-Net generates a

well-discriminative CBT able to easily spot gender-distinctive brain regions. In
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particular, we identify the top 15 discriminative ROIs distinguishing between male

and female populations for both hemispheres using the estimated CBTs representing

each group. To compare the performance between MVCF-Net and SCA methods, we

evaluate the reproducibility of the top 15 discriminative ROIs distinguishing between

gender populations in comparison with a feature selection method, namely MKL.

Next, we compute the overlap between the most discriminative ROIs identified using

our method and those using MKL.

Table 4.2 displays the overlap in % between the top 15 discriminative ROIs identified

using (i) MKL and (ii) the absolute difference between the two estimated CBTs by

MVCF-Net and SCA, respectively. We demonstrate that our method achieves an

overlap percentage of 60% in identifying the most discriminative brain regions in

the left hemisphere between genders and 46.67% in the right hemisphere. While

SCA method reaches only an overlap percentage of 53.33% and 33.33% in the left

hemisphere and the right hemisphere, respectively. Table 4.3 displays the overlap in

% between the top 20 discriminative ROIs identified using MKL and the absolute

difference between the two estimated CBTs.

Table 4.2 : Matching rate in % between the top 15 discriminative ROIs distinguishing
between male and female populations identified by (i) MKL and (ii)
the difference between the estimated CBTs by SNF-Clustering-Average
(SCA) and our method for the right and left hemispheres (RH and LH).

Dataset
Male / Female
LH RH

SCA 53.33% 33.33%
Ours 60% 46.67%

Specifically, our method achieves an overlap percentage of 65% in identifying the

most discriminative brain regions in the left hemisphere between genders and 60%

in the right hemisphere, while SCA reaches only an overlap rate of 45% for left

hemisphere and 55% for the right hemisphere. We notice that the overlap rates

between the most discriminative ROIs identified using (i) MKL and MVCF-Net

methods as well as using (ii) MKL and SCA methods are higher in the left hemisphere

72



Figure 4.5 : Evaluation of the normalized Frobenius distance between the estimated
morphological CBT and all multi-view brain networks for male and
female populations in left and right hemispheres (LH and RH) using our
method MVCF-Net in comparison with SNF-Clustering-Average (SCA)
[9].

Figure 4.6 : Evaluation of Pearson correlation between the estimated morphological
CBT and all multi-view brain networks for male and female population
in left and right hemispheres (LH and RH) using our method MVCF-Net
in comparison with SNF-Clustering-Average (SCA) [9].
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compared to the right hemisphere. Our finding supports the evidence that strong

gender-related differences are more prevalent in the left hemisphere [101].

In Figure 4.8, we visualize the top 15 discriminative ROIs that distinguish between

gender populations for left and right hemispheres using MKL and MVCF-Net,

respectively. We plot the discriminability weight of ROIs using the normalized

score vector. We note the most two discriminative ROIs selected by MVCF-Net

differentiating between male and female populations include the lateral occipital cortex

(region 12) followed by the pars opercularis (region 19) for the left hemisphere. These

regions are correlated with processing of visuospatial and motion information [102].

For the right hemisphere, the two highly ranked discriminative ROIs identified by our

method included the middle temporal gyrus (region 16) and lingual gyrus (region14)

which are correlated with brain size, gray-matter volume and concentration [103,104].

Figure 4.7 displays the top 5 discriminative ROIs distinguishing between gender

populations using MVCF-Net for both RH and LH. These regions are consistent with

the literature findings investigating the gender fingerprint, where they were shown

to be involved in visuospatial processing, cognitive performance, emotion and facial

expression. Precisely, the most discriminative regions selected by our method explain

the difference in integration, communication, reaction and memories abilities between

human genders [105].

Our discriminative analysis of the estimated CBTs shows the consistency of our

proposed method in relation with MKL technique. By detecting gender-specific

biomarkers using both comparative methods, we conclude that our proposed

MVCF-Net achieves the highest biomarker reproducibility overlap of the top ROIs

distinguishing between male and female CMNs (Tables 4.2, 4.3 and Figure 3.1).

This demonstrates the effectiveness of our method, first in merging complementary

information from one population while computing multi-view clustering using

manifolds optimization, in which the aligned clusters preserves simultaneously similar

and dissimilar traits of the subjects, second in enhancing the distinctive traits between

male and female cortical morphological networks while capturing their fingerprinting
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ROIs.

Table 4.3 : Matching rate in % between the top 20 discriminative ROIs distinguishing
between male and female populations identified by (i) MKL and (ii) the
difference between the estimated CBTs by SCA and our method for the
right and left hemispheres (RH and LH).

datasets
Male / Female
LH RH

SCA 60% 45%
Ours 65% 55%

4.1.2 Discussion

We introduce MVCF-Net, a novel framework for connectional brain template

estimation that leverages complementary information offered by multi-view CMNs

for a population of multi-view brain networks. Using the estimated CBTs, we identify

the top discriminative ROIs distinguishing between genders. First, for each view,

MVCF-Net groups similar subjects in the same cluster while separate dissimilar

subjects in different clusters. Based on manifold optimization, the clustering process

computes the aligned clusters across views to map the subjects to a common space.

Then a multi-fusion operation is applied to obtain a representative CBT that captures

both shared and differential traits of a population using different views.

4.1.2.1 Parameters impacts

The impact of changing the number of clusters Nc on the estimated CBT can

be explained by the fact that the k-means clustering algorithm is sensitive to the

initial positions of the cluster centroids. As we vary the number of clusters, the

total within-cluster variation changes result in different CBTs. We note that the

generated CBT depends also on the selected number of nearest neighbors Kn. In

KNN algorithm, the computation of both pairwise similarity matrix and the Laplacian

matrix depends on the value of Kn, where a smaller value of Kn can fail to depict

a highly heterogeneous multi-peaked distribution of the population whereas a larger

value might over-cluster the data and fail to mimic the real distribution. For the

selection of the appropriate number of views (cortical attributes), we demonstrate that
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including four cortical morphological networks will provide the best results in terms

of CBT centeredness and representiveness. Constructing the CMNs using all views

together achieves the optimal average Frobenius distance and the optimal average

Pearson correlation in the left (LH) and right (RH) hemispheres across all methods

(Ours and SCA). A combination of morphological attributes has been proven to have

better diagnostic performance compared with a single attribute [106]. This can be

explained by the fact that each type of morphological view is derived from a specific

cortical measurement will reveal different changes in the morphology of the brain

regions. Thus, the constructed CMNs efficiently handle the complexity of the cortical

networks and its multivariate interacting effects between the regions which can greatly

help in learning a holistic map of the brain connectivity.

4.1.2.2 CBT representativeness and centeredness

Our proposed method achieves the best performance in terms of centeredness where

the estimated CBTs, derived frommale and female populations in both left and right

hemispheres, achieve the minimum mean Frobenius distance to all network views

(Figure 4.5) as well as the highest Pearson correlation when randomly partitioning the

data as well as when using the whole data (Figure 4.6). These results can be explained

by the fact that while SCA integrates heterogeneously the network views lying on

different manifolds by merging them directly on a global scale, MVCF-Net learns

how to align clusters across views to capture both consistent and differential clusters

simultaneously. The correlation between the estimated CBT and all network views in

each population is globally consistent across both hemispheres, yet the results between

the right and the left hemispheres for gender populations show higher correlations for

the left hemisphere. This difference can be explained by the fact that both hemispheres

present morphological asymmetry [100, 107], which generates different CBTs with

different centeredness rates.
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Figure 4.7 : Top 5 discriminative regions of interest (ROIs) in left (LH) and right
(RH) hemispheres distinguishing between gender populations revealed
by computing the absolute difference between male and female CBTs by
MVCF-Net.

77



Figure 4.8 : Evaluating the discriminability of the estimated population specific
connectional brain template by MVCF-Net. We identify the top 15
discriminative ROIs using multiple-kernel learning (MKL) and the
absolute difference between male and female CBTs in the right and left
hemispheres (RH and LH). For each of top identified 15 ROIs, we display
their discriminative weight.

4.1.2.3 CBT discriminability

We demonstrate the discriminative potential of MVCF-Net against SCA in

distinguishing between gender populations, where MVCF-Net remarkably achieves

the highest matching rate with MKL method of the most 15 discriminative ROIs

and the most 20 discriminative ROIs as shown in Tables 4.2, 4.3 and Figure 4.7

respectively. These results indicate the effectiveness of our framework in identifying

brain regions marking gender differences. This can be explained, first, by the fact

that the estimated CBT occupies the minimum distance compared to all subjects in

the population, which results in minimizing the inter-subject variability. Second,

MVCF-Net is based on multi-view clustering strategy which learns cluster alignment

across views to eventually identify both consistent and differential clusters at the same

time. Furthermore, MVCF-Net integrates SNF to fuse complementary data lying on

different manifolds and avoid dealing with different scales, collection bias and noise

in different data types [1]. Therefore, we believe that MVCF-Net produces more

holistic CBT representations for male and female populations, stimulating a deeper
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understanding of gender difference using multi-view cortical morphological networks.

We display in Figure 4.7 the top 5 discriminative ROIs characterizing the differences

between male and female CMNs in the right and left hemispheres. MVCF-Net shows

that the top three ROIs distinguishing between genders in the left hemisphere are the

lateral occipital cortex, pars opercularis and postcentral gyrus. The lateral occipital

cortex is correlated with the control of vision processing specifically facial expression.

Our findings are consistent with previous studies, where men showed an asymmetric

functioning of visual cortex while decoding faces and expressions, whereas women

showed a more bilateral functioning. These results indicate the importance of gender

effects in the lateralization of the occipitotemporal response in facial expressions.

Other studies supporting our findings, showed a higher activation through a rapid and

symmetric of visual time inputs for women rather than men [108, 109]. The reason

behind an earlier visual ability is that women have a higher concentration of fibers in

the right optic radiation than men [110]. Besides, the pars opercularis region shows

an increased volume in young adult females in comparison to males which reflects

the high emotional empathic level in women [111]. The third most discriminative

region, postcentral gyrus, is involved in multiple aspects of sensory processing and

sensorimotor integration [112] especially in the perception of emotions in facial

stimuli [113]. The study of [114] supports our discovery of the postcentral gyrus

region as a gender biomarker and showed higher regional homogeneity in females

than males. This explains why female generally excel in language [115, 116], facial

emotion recognition [117] and emotional memory tasks [118].

The fourth most discriminative ROI in LH is the caudal anterior cingulate cortex, which

is widely known to be involved in the sensory motor (e.g. motor of reactions) [119].

While the fifth region corpus callosum has been already demonstrated by a large

number of studies to show asexual dimorphism. This finding can be explained by the

difference in the shape of this region between genders, where it was more bulbous

shaped in females and more tubular-shaped in males [120]. Generally, anatomical

sex differences such as shape and volume could underlie gender-related differences in
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behavior and neuropsychological functions.

For the right hemisphere, our method shows that the most three discriminative

regions are the middle temporal gyrus, lingual gyrus and superior parietal gyrus.

The middle temporal gyrus reveals the difference in the functional organization of

the brain activation between male and female brains, where males show a greater

ventral stream activation than females. This explains the high mathematical and

spatial cognition performances in males [65]. The lingual gyrus is responsible

for visuospatial processing in mental rotation tasks, where the female brain was

shown to use spatial attention and working memory, whereas the male brain uses the

visuo-motor network [121]. Other morphological differences in the right occipital

lingual gyrus and the right middle temporal gyrus were identified by [122], noting that

females have significantly increased gray matter concentration rather than male, while

males have increased gray matter volume. The third most discriminative ROI, superior

parietal gyrus, is correlated with the conscious visual perception of individuals. This

focal region showed a difference in brain structure variability between genders which

can be explained by gray matter density disparity in the parietal cortex between them.

The fourth most discriminative region in RH is pars triangularis which is important for

verbal and language processes. The selection of this region is consistent with [123]

study showing the difference of hormone levels in male and female brains responsible

for brain system regulation. Compared to women, men showed higher nodal degree

and nodal efficiency in pars triangularis. While the entorhinal cortex represents the

fifth most discriminative ROI which is consistent with [5] finding that this region

is considered as a morphological ‘hub’ in CMNs derived from four measurements:

maximum principal curvature, mean sulcal depth, mean average curvature and mean

cortical thickness. Particularly, the entorhinal cortex might explain the difference in

gender behavior and why males and females learn differently.

The difference between the top discriminative regions in the right and left hemispheres

are mainly due to the asymmetric nature of the human brain [107, 124]. This lack

of equivalence comes from the difference in cognitive function for each hemisphere
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called hemisphere lateralization. While the right hemisphere is responsible for the

visuospatial processing tasks, which is consistent with our finding about the top

discriminative regions for the right part of the brain (e.g. middle temporal gyrus

region and lingual gyrus), the left hemisphere is used for linguistic processing and

communication which is consistent with our top discriminative regions in the left

hemisphere related to facial emotional expressions [125]. Our results confirm the fact

that the top discriminative regions in the right and left hemispheres are different. In

fact, [126, 127] demonstrated in their studies the asymmetric influence of gender on

the morphological aspects between both hemispheres where male brains were found

to be more asymmetric than female. This gender-related effect is noticeable in all

brain areas but is most significant in the superior temporal gyrus.

4.1.2.4 Limitations and future directions

In our future work, we will examine CBTs generated from multimodal brain networks

for a more holistic investigation of gender difference at a morphological, functional

and structural levels. This will give new insights into how gender-specific brain

morphology relates to brain function and structure. Also, we will use different

weights for different views (attributes) according to their importance instead of equal

weights. As alternative, we propose simultaneous learning of view specific weights

while optimizing the loss function of the multi-view clustering task. This will enable

us to identify the most important views in the fusion process and estimation of the

gender-specific population-driven CBT.

In summary, we evaluated MVCF-Net, which has the best results in terms of CBT

centeredness and representiveness, on morphological connectomic data. Although

promising, our method overlooks the topological properties of brain networks when

integrating them into a unified CBT. One can integrate topological measures such as

degree centrality or betweenness centrality, quantifying the hubness of brain regions

in a network, to perverse the population topological properties when estimating the

target CBT. We will also tap into the nascent field of graph neural networks (GNNs),

which will enable us in an end-to-end manner to learn a CBT without resorting to
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craftsmanship of an independent data processing steps. We note that our proposed

framework is generalizable to different network neuroscience modalities such as

functional and structural connectivities, independently.

4.2 Results and Discussion of Our Proposed MICNet Method

4.2.1 Experimental results

4.2.1.1 Evaluation dataset and preprocessing pipeline

We evaluate our proposed MICNet method on two brain genomics superstruct project

(GSP) multigraph datasets extracted from structural T1-w MR images [97]: one

representing multigraphs of the right hemisphere (RH) and the left hemisphere (LH),

respectively. Both RH and LH multigraph datasets contain 699 subjects. All subjects

are represented by multi-view fully connected graphs of healthy brain connectomes.

RH and LH datasets contain 391 female subjects and 308 male subjects. Each brain

is represented by a set of nv = 4 networks, called cortical morphological networks

(CMNs) constructed from structural T1-w MRI.

Specifically, we first divide each hemisphere into n = 35 cortical regions of interest

(ROIs) representing the nodes of the graphs using Desikan-Killiany Atlas [128]. Next,

we produce for each subject a multigraph composed of 4 CMNs, each encoding the

dissimilarity in morphology between different cortical regions of interest quantified

using a specific cortical measurement. Consequently, each subject is represented by a

multigraph where each edge attribute is derived from a particular cortical measurement

(e.g., cortical thickness).

Hence, we represent the subject’s ith CMN as an adjacency matrix Ai where i ∈

{1, ...,nv}. Particularly, A1 indicates the maximum principal curvature brain view,

A2 denotes the mean cortical thickness brain view, A3 is generated using the mean

sulcal depth, and A4 is derived from the mean cortical curvature. Thus, each edge in
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Table 4.4 : Data description of female/male distributions

Dataset Male Female
Number of subjects 308 391

mean ± std. age 21.6 ±0.9 21.6 ±0.8

the graph has nv attributes that correspond to connectivity weights for different cortical

measures. For each subject, we initialize the feature matrix as an identity matrix.

4.2.1.2 Method parameters

To evaluate the reproducibility of our model as well as benchmark methods, we ran

5-fold cross validation (4 folds for training and 1 fold for testing). For each dataset,

we choose the thresholding method based on the results in Fig 4.9. For RH data, We

set ng = 1,h = 150,o = 550,a = 0.1 and np = 1 where ng,h,o,a and np = 1 are the

number of graph integration layers, the hidden dimension, the output dimension, the

assignment ratio and the pooling layers num 1ber, respectively. For LH data, We set

ng = 1,h = 128,o = 512,a = 0.3 and np = 2. All models were trained for 50 epochs.

4.2.1.3 Methods comparison

In this work, we proposed a robust multigraph integration and classification model. To

generate the subject-level integrated templates, we benchmarked MICNet against five

multigraph integration methods:

Linear fusion We add a linear neural layer that has nv learned weights. We train this

layer over the views of the multigraphs. It assigns an optimized weight for each view

to perform a weighted average of the original multigraph. Thus, this step learns to

generate a single-view representation (i.e., single graph) of the input multigraph tensor.

Integration by average We compute the simple average of the connectivities over all

the views. a′i j =
1
nv

∑
nv
k=1(ai j)k where A′ = (a′i j) is the resulting single-view graph.

SNF [1] performs a non-linear fusion of the multigraphs across views based on the

similarities between nodes. Next, it fuses the multigraph through successive fusion
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iterations. The final output is a single view graph with the same nodes of the original

graph.

netNorm [2] performs a fusion process based on population-based feature selection.

This method constructs a fused matrix based on a commonality criterion of feature

vectors. The final output of this method is a single-view graph with the same number

of nodes as the original multigraph.

4.2.1.4 Classification performance

Table 4.5 displays the classification results in terms of accuracy, specificity and

sensitivity of the different combinations of the five integration methods and the

two classifiers detailed in the previous sections. For each dataset, we evaluate 10

models constructed from the 10 possible combinations of the integration methods

and classifiers. Based on the accuracy, our MICNet outperforms all benchmark

methods by achieving the highest accuracy rate for subpopulations (5 folds) for both

hemisphere datasets (RH and LH). On the other hand, if we replace the classifier

with GCN and combine it with our integration, the resulting model outperforms all

the other GCN-based models. Besides, the models based on our classification block

outperform all the GCN-based models except one case when combined with netNorm

[2] integration method. We can see that if we change the classifier and consider

the multigraph integrator combined with baseline GCN outperforms all GCN-based

solutions. This demonstrates the superiority of our GDL-based integration step over

other integration techniques. We can explain this by the fact that our learning based

integration was able to generate a better subject-specific graph template that contributes

in boosting the classification accuracy.

4.2.2 Discussion

In this section, we introduced MICNet, a novel deep learning based architecture

for multigraph classification that integrates a multigraph into a single-view graph

prior to classification to leverage the complementary information offered by its

different edge types and weights. Our multigraph integration ensures the generation

of a representative subject-level single-view graph which enables us to preserve

the multigraph topological properties. The geometric deep learning based classifier
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Table 4.5 : Comparing the classification performance metrics by our proposed method
(MICNet) and benchmark methods for gender classification. Our model
MICNet is represented by our integration and our classifier (DIFF). The
benchmark methods used for comparison include different integration
techniques and classifiers. The integration methods are: similarity network
fusion technique (SNF) [1], normalization method (netNorm) [2], simple
average (average), weighted linear average (linear) and our integration.
The classifiers are graph convolutional networks (GCN) [3] and the
classification block (DIFF) that we integrated in our model. All models
include thresholding as mentioned in the above sections.

RH Accuracy Sensitivity Specificity
GCN 0.62 ±0.03 0.74 0.48SNF [1] DIFF 0.63±0.02 0.75 0.5
GCN 0.65 ±0.05 0.77 0.51netNorm [2] DIFF 0.6 ±0.03 0.72 0.46
GCN 0.67 ±0.02 0.78 0.54Average DIFF 0.67 ±0.03 0.78 0.53
GCN 0.49 ±0.03 0.5 0.47Linear DIFF 0.68 ±0.04 0.85 0.49
GCN 0.68 ±0.02 0.78 0.55Our integration DIFF 0.7 ±0.03 0.83 0.52

LH Accuracy Sensitivity Specificity
GCN 0.48 ±0.06 0.4 0.6SNF [1] DIFF 0.56 ±0.02 1 0
GCN 0.64 ±0.04 0.78 0.47netNorm [2] DIFF 0.6 ±0.02 0.69 0.49
GCN 0.66 ±0.03 0.72 0.59Average DIFF 0.69 ±0.06 0.68 0.71
GCN 0.51 ±0.06 0.57 0.45Linear DIFF 0.69 ±0.04 0.69 0.7
GCN 0.68 ±0.04 0.68 0.67Our integration DIFF 0.71 ±0.02 0.69 0.73

captures the most discriminative traits of the graph to predict the subject class.

Our MICNet implementation allows end-to-end gradient-based training with original

graphs, without the need to first transform graphs into vectors. This section covers

interpretations of quantitative and qualitative results.

4.2.2.1 Quantitative analysis

Our model achieved higher classification accuracy without the need for any data

normalization. This demonstrates that our model is good at capturing relevant features
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with dataset showing lower integrity relation within it. In Fig 4.9, we compared the

performance of our model with and without normalization. The normalization that we

used is min-max normalization.

In addition, we tested different types of filters between integration and classification

blocks. Figure 4.9 displays the impact of the choice of the filter on the classification

results. We applied three types of filters: mean, median and without thresholding.

Figure 4.9 shows that thresholding had an important effect in boosting the model

performance. This can be explained by the fact that thresholding motivates the model

to focus on the connectivities emphasized by the integration block.

4.2.2.2 Qualitative analysis

Here, we analyze some clinical insights extracted from the model at different levels

during the learning process. The clinical insights include the important features of

both connectivities and regions of interest.

Insights into the most representative cortical morphological connections By

integrating the complementary information of multigraphs over the views for each

subject in the population, our MICNet generated a representative and homogeneous

subject-level single-view representation. To visualize the most representative

morphological connectivities, we conducted a linear average of the integrated graphs

across all subjects. Next, we identified the top 5 weighted brain connectivities of

the population encoding gender specificity. These selected connectivities represent

the most representative edges learned after the integration process. Both gender

populations in the left (LH) and the right hemispheres (RH) share the same top

5 representative morphological connections between the brain regions except one

different connection for the male population in the RH dataset.

Figure 4.10 display the average single-view learned representations across all subjects

and the top 5 most representative morphological connectivities of both gender

populations for RH and LH, respectively. As shown in the figure, female circular

graph in LH, male circular graph in LH and female circular graph in RH showed the

86



Figure 4.9 : a) Testing the effect of normalization on the accuracy performance
using 5 folds cross-validation. b)Testing the effect of thresholding on
the accuracy performance using 5 fold cross-validation. For a) and
b), the left and right barplots display the accuracy obtained using left
and right hemisphere datasets, respectively. In each plot of a), the
left bar shows the result obtained by our model after normalization of
the data using min-max technique. The right bar shows the results
obtained by our model without data normalization. In each plot of
b), the bars correspond to three types of filters: mean thresholding,
median threshoding and without thresholding. The thresholding step
was applied between integration and classification blocks of our model.
These barplots point out the contribution of the different thresholding
strategies to the global model accuracy for both datasets (left and right
hemispheres).
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same top 5 connections between ROIs. The first most representative connection was

identified between the bank of the superior temporal sulcus and the supramarginal

gyrus. Moreover, the connection linking the bank of the superior temporal sulcus and

the temporal pole was scored as the second most representative edge. The third most

representative morphological connection was identified between the cuneus cortex and

the supramarginal gyrus. The connection between the cuneus cortex and temporal pole

had the fourth rank. The fifth most representative cortical morphological connection

was established between the supramarginal gyrus and the temporal pole.

Supporting our findings, [129] reported that the cuneus cortex region had been shown

to be involved in a neural network functionally specialized in the processing of

spatially guided behavior. [130] studied the abnormalities in neonates associated with

genetic risk for schizophrenia. It was reported that male with high-risk neonates

had significantly thicker cortex in the left cuneus cortex while female with high-risk

neonates had significantly thinner cortex in the right cuneus.

[131] found that females have higher regional homogeneity in supramarginal gyrus

than males during the resting-state and spontaneous brain activity within cerebral

cortex. [130] demonstrated that the supramarginal gyrus volume is significantly larger

in male subjects when compared to females. Moreover, male showed a leftward

(left > right) asymmetry for the supramarginal gyrus, with a less marked opposite

asymmetry in females. Such sexual dimorphisms may possibly underlie the subtle

cognitive differences observed between both genders.

[130] studied the influence of gender on the morphology of temporal pole structures

in patients with schizophrenia. They found that temporal lobe volume on the left

is significantly smaller in male patients than in female comparison subjects. [132]

reported evidence that the temporal pole may have a lower synaptic density in women

than in men, which could differentially influence the efficiency with which certain

cognitive operations are performed.
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[133] reported that the bank superior temporal sulcus was associated with action

control in the context of reward processing. Other studies [132] found that the superior

temporal sulcus region was implicated in the representation of perceived pleasantness

and positive affection. [134] provided evidence that men exhibited a stronger reduction

of activation in this region during the ‘desire-reason dilemma’. This finding supports

the view of a sexual dimorphism that manifested in the recruitment of gender-specific

neural resources during the successful deployment of self-control [134].

Figure 4.10 : a) Average connectivity matrices across all the subjects of each class
after multigraph integration with the respective top 5 connectivity
weights using MICNet on left hemisphere dataset. b) Average
connectivity matrices across all the subjects of each class after
multigraph integration with the respective top 5 connectivity weights
using MICNet on right hemisphere dataset. For a) and b), the two
figures at the left and the two figures at the right correspond to the male
and female class subjects, respectively. Each heatmap is obtained by
computing the average of each connectivity of all subjects for a specific
class after integration block. The heatmaps reflect the distributions of
the assigned weights by the multigraph integration step. Circular graphs
display the most important connectivities for each class based on the
edge weights after integration.

Insights into the most representative cortical morphological regions To identify

brain regions marking gender differences, we extracted the weights characterizing

the importance of brain regions to differentiate between male and female CMNs in

the right and left hemispheres. Fig 4.11 displays the learned weights for the first
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graph convolution layer after integration. These weights have more contribution in the

pooling process of the classification block. Hence, they have the major contribution in

the classification decision. Based on the results in Fig 4.11, MICNet showed that the

top two discriminative ROIs distinguishing between genders in the left hemisphere are

the precentral gyrus and rostral middle frontal.

The precentral gyrus is correlated with the control of the voluntary movements.

As a sub-region of the frontal lobe, this sensory-motor region is responsible on the

spontaneous activity of the body such as hand and face areas. Our findings are

consistent with previous studies of [135], where men showed a volumetric increase

in the white matter of the left precentral gyrus region due the biological changes of

hormones in puberty . In females, however, there were no significant volumetric

changes with age. Other studies [129] supporting our findings, showed that the

maturation of white matter in the left pre-central gyrus in men may underlie the

differences in semantic verbal ability. As a language sub-region, the left precentral

gyrus may contribute to the increase in learning disabilities that are more seen in males

than females. For example, boys are four times more likely than girls to stutter and

language impairments have been found to occur 10 times more often to boys compared

to girls [133]. Additionally, [129] reported that girls outperform boys during preschool

and early years in articulation, longer sentences use, verbal fluency, and tests of

grammar and spelling. In a language phonological task using fMRI, [133]reported

that men showed greater activation in the precentral gyrus, whereas women showed

more bilateral activation.

The second most discriminative region is the rostral middle frontal gyrus, which is

widely known to be involved in the mental rotation task. The study of [131] supported

our discovery of this region as a gender biomarker and showed that the networks

involved in visual attention appear to be more strongly activated in the mental rotation

tasks in men as compared to women. These findings suggested that men and women

use similar neural pathways to analyze and solve the mental rotation task. In fact, male

use a more automatic process when analyzing complex visual reasoning tasks while

female use a more top-down process (frontal lobe functioning). Another study [136]
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showed that men have an increased activation in areas that have been implicated for

visual analysis (rostral middle frontal gyri, and middle occipital gyrus) compared to

women while designing a cubic figure.

For the right hemisphere, our method showed that the top two discriminative regions

are the superior parietal cortex and the pericalcarine cortex. The superior parietal

cortex (SPC), is correlated with the conscious visual perception of individuals [135].

This focal region shows a difference in brain structure variability between genders

which can be explained by gray matter density disparity in the parietal cortex between

them. Other studies supported our findings, showing that SPC plays a key role in

cognitive processes, in particular somatosensory and visuo-motor integration as well

as visuo-spatial attention and memory [137]. The increase of the parietal gray and

white matter in men compared to women is associated with bilateral superior parietal

activations, leading to higher performance in visuo-spatial tasks for male [135].

Rightward lateralization had been described for intentional processes, movement

planning, and visuo-motor transformations [137].

On the other hand, the second most discriminative brain regions (nodes), pericalcarine

cortex, belongs to the primary sensory cortex which plays an important role in

visual information [138]. Our findings were supported by [138], reporting that

the pericalcarine cortex is associated with task-focused activity which requires both

visuo-spatial perception and motor coordination. In particular, such tasks require a

tight link between the spatial-temporal constraints and one’s own bodily movement

control. [136] demonstrated that the pericalcarine is a particularly strong source of

visual gamma–band activity reporting that gamma peak frequency is higher in female

than male subjects.

4.2.2.3 Limitation and future directions

Although our model outperformed baseline methods in the target brain multigraph

classification task, it has a few limitations that could be overcome in future work.

First, the metapaths generated during the integration can be of a suboptimized

length. Alternatively, we can implement self-attention layers inspired by [139]
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Figure 4.11 : Region-wise distribution of the learned discriminative weights in
MICNet for both datasets (right hemisphere and left hemisphere).
We extracted these weights from the first graph convolution layer
of the classification block. These learned weights are obtained
by the end-to-end learning process to deliver accurate prediction of
classes. These weights reflect the most discriminative brain regions
distinguishing between male and female classes.

and adapt it to our framework to help capture the most relevant combinations of

edge weights of different lengths. Second, considering the high dimensionality

of the brain connectomes, our evaluation dataset is considered relatively small.

Alternatively, we intend to exploit the potential of data augmentation techniques and

adapt it to the multigraph domain to sustain our model in terms of reproducibility

and generalizability. Finally, despite the heterogeneity of the evaluation dataset,

it contained only morphological connectivities. It would be more challenging

if we add connectivity edges derived from other modalities such as structural

connectivities [131] or functional connectivities [46] which will in turn increase the

multigraph heterogeneity.

In summary, We introduce Multigraph Integration and Classifier Network (MICNet),

the first end-to-end graph neural network based model for multigraph classification.

First, we learn a single-view graph representation of a heterogeneous multigraph using

a GNN based integration model. The integration process in our model helps tease

apart the heterogeneity across the different views of the multigraph by generating
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a subject-specific graph template while preserving its geometrical and topological

properties. Second, we classify each integrated template using a geometric deep

learning block which enables us to grasp the salient graph features. We train, in

end-to-end fashion, these two blocks using a single objective function to optimize the

classification performance. We evaluate our MICNet in gender classification using

brain multigraphs derived from different cortical measures. We demonstrate that our

MICNet significantly outperformed its variants thereby showing its great potential in

multigraph classification.

4.3 Results and Discussion of Our Comparative Study of Connectional Brain

Templates in Network Neuroscience

4.3.1 Experimental results

4.3.1.1 Evaluation datasets

We conduct our comparison study between the graph fusion methods, which is based

on the aforementioned CBT evaluation measures, using two datasets: the first datasets

(M/F dataset) consists of 308 male subjects (M) and 391 female subjects (F) from

the Brain Genomics Superstruct Project (GSP) dataset [97], aged between 21 and

23 years old; males (n = 308; 21.6 ± 0.9 years, mean ± s.d.); females (n = 390,

21.6 ± 0.8 years, mean ± s.d.). The second dataset (AD/LCMI dataset) is collected

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database GO public

dataset [140] and includes 67 subjects (35 diagnosed with Alzheimer’s diseases

(AD) and 32 with Late Mild Cognitive Impairment (LMCI)). For both datasets,

each subject is represented by 4 cortical morphological brain graphs derived from

maximum principal curvature, mean cortical thickness, mean sulcal depth, and average

curvature measurements. For each hemisphere, cortical surface is reconstructed from

T1-weighted MRI using FreeSurfer pipeline and parcellated into 35 cortical regions

of interest (ROIs) using Desikan-Killiany cortical atlas [141]. The corresponding

connectivity strength between two ROIs is derived by computing the pairwise of the

absolute difference of their average cortical attribute as introduced in [29] (Table 4.6).
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Table 4.6 : Data distribution for M/F and AD/LCMI datasets. Each view in the
connectomic datasets contains 35 nodes, and 4 views are fully connected.

datasets
M/F AD/LCMI

M F AD LMCI
Number of subjects 615 781 70 64

Right hemisphere (RH) 308 391 35 32
Left hemisphere (LH) 308 391 35 32

mean ± std. age 21.6±0.9 21.6 ±0.8
number of views 4 4 4 4

4.3.1.2 Parameter settings

We set all the hyperparameters for each graph fusion method using a grid search. For

SNF [1], we empirically set the number of nearest neighbors to K = 20 and the number

of iterations Nt = 20 for convergence. For NAG-FS [7] method, we set the number of

cluster to Nc = 3 for multiple kernels learning parameters. We also set the number of

iterations to Nt = 20 for SNF parameters. Concerning the number of nearest neighbors

for both SNF and multiple kernels learning, we opted for setting them to K = 20 which

produce the best performance. For SM-netFusion [8] parameters, we tested it using

Nc = 3 clusters given the best result. For the cross-diffusion process parameters, we

also set the number of iterations to Nt = 20 for convergence. We fixed the number of

closest neighbors K = 20. For SCA [9] parameters, we set the number of iterations to

Nt = 20 as it guarantees SNF convergence [1]. We set the number of nearest neighbors

to K = 20 and for the clustering we used Nc = 3 clusters giving the best results. For

MVCF-Net [10] parameters, we set the number of clusters to Nc = 3 achieving the best

results and the number of nearest neighbors to K = 5 for K-Nearest Neighbor(KNN)

algorithm as recommended in [10]. For netNorm [2] parameters, we set the the number

of iterations used in SNF to Nt = 20 to guarantee its convergence as recommended

in [1]. We also empirically set the number of nearest neighbors to K = 20. For

cMGINet [20] parameters, we set the number of clusters to Nc = 3 and the number

of kernels to 5 for the multiple kernel learning. We trained the cMGINet model using

300 epochs with hyperparameters λ = 0.3 for scaling the subject-specific integration

loss and the number of channels nc = 2. For SNF, the number of nearest neighbors

is set to Nt = 20. For DGN [11] parameters, we empirically set the hyperparameters

to 3 edge-conditioned convolutional neural network layers with an edge-conditioned
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filter learner neural network. These layers are separated by ReLU activation function

and output embeddings with 36, 24 and 5 dimensions for each ROI in the multigraph

brain networks, respectively. The DGN is trained using gradient descent with Adam

optimizer and a learning rate of 0.0005. The number of random samples in the subject

normalization loss function is fixed to 10.

4.3.1.3 Evaluation strategies

We evaluate the performance of the single-view fusion methods set including SNF [1],

NAG-FS [7], and SM-netFusion [8], and the multigraph fusion methods set including

DGN [11], cMGI-Net [20], netNorm [2], MVCF-Net [10], and SCA [9], separately.

For CBT generation, we employ as input dataset single-view networks for single-view

fusion method and multi-view networks composed of 4 cortical morphological brain

graphs for multigraph integration methods. To ensure the reproducibility and the

generalizability of our evaluation results, we split each dataset into training and

testing subsets using 5-fold cross-validation. We use the training subset to train the

aforementioned 8 different models and to generate CBTs for both hemispheres(LH

and RH) of 4 populations namely; AD, LMCI, M, and F. Next, we showcase each

fusion method with four different evaluation tests on the left out testing subset: (1)

centeredness, (2) biomarker discovery of most discriminative connections between two

groups, (3) graph global-level similarity to the original dataset, (4) graph node-wise

similarity, and (5) graph distance-base similarity.

4.3.2 Discussion

4.3.2.1 CBT centeredness test

We evaluated the centeredness of the estimated CBT by measuring its Frobenius

distance to each tensor view of each subject in the population. According to the

results in Figure 4.12 and Figure A.1, DGN considerably outperforms all benchmark

multigraph fusion methods by achieving the minimum average Frobenius distance

for all evaluation datasets (AD/LMCI and M/F datasets), for subpopulations (5-fold)

and the mean over the folds in both hemispheres (RH and LH). For single-view

fusion methods comparison, SM-netFusion slightly outperforms SNF and NAG-FS

by attaining lower Frobenius distance value than the other methods. We note that
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DGN and SM-netFusion significantly outperform other methods across all left-out

folds and evaluation datasets. (Figure 4.12 and Figure A.1, two-tailed paired t-test, all

p < 0.0001). These results can be explained by the fact that unlike other single-view

and multigraph fusion methods, DGN integrates a randomized weighted loss function

which acts as a regularizer to minimize the distance between the population of

multi-graph brain networks and the estimated CBT, thereby enforcing its centeredness.

DGN also refines the estimated CBT using a post-training process based on the

element-wise median of all training CBTs to select the most centered connections for

the final CBT generation. Most importantly, it is trained in an end-to-end manner.

4.3.2.2 CBT discriminativeness reproducibility test

In addition to being well-centered, we demonstrated that DGN generates a

well-discriminative CBT able to easily spot both gender-distinctive brain regions

and AD-LMCI-distinctive brain regions. This can be explained by the fact that

DGN captures the most discriminative traits of a population of multigraph networks,

acting as a connectional brain biomarkers. Particularly, we first spotted the top

k (k = 10, 15, 20, 25) most discriminative brain connectivities distinguishing

between two populations (i.e., AD/LMCI) for both hemispheres using the estimated

CBTs representing each class. Next, to evaluate the reproducibility of CBT-based

discriminative ROIs, we trained a support vector machine (SVM) to learn how to

classify two populations coupled with Multiple Kernel Learning (MKL) to learn a

weight vector that scores the discriminativeness of each feature (i.e., ROI). Next,

we computed the overlap between the most discriminative ROIs identified using

inter-class CBT difference and those using MKL.

Table 4.7 displays the overlap in % between the top 10, 15, 20, and 25 discriminative

ROIs identified using (i) MKL and (ii) the absolute difference between two estimated

CBTs generated by all single-view and multigraph fusion methods, respectively, using

both AD/LMCI datasets and M/F connectomic datasets. We demonstrated that DGN

method reaches the highest overlap percentage comparing to other multigraph and

single-view fusion methods between AD/LMCI datasets by achieving 14-32% and

20-46% boost in biomarker reproducibility against other methods in the left and the
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Figure 4.12 : Centeredness comparison of connectional templates generated by A)
single-view integration methods including network atlas-guided feature
selection (NAG-FS) [7], similarity network fusion (SNF) [1], and
supervised multi-topology network cross-diffusion (SM-netFusion) [8];
and B) multi-graph fusion methods including multi-view networks nor-
malizer (netNorm) [2], SNF-Clustering-Average (SCA) [9], multi-view
clustering and fusion (MVCF-Net) [10], cluster-based multi-graph
integrator networks (cMGI-Net) [20], and deep graph normalizer (DGN)
[11]. Charts illustrate the mean Frobenius distance between the
connectional templates learned from the training sets and networks of
the samples in the testing set using a 5-fold cross-validation strategy.
We reported the average distance for each cross-validation fold as well
as the average across folds (“Mean” bars on the right). For multi-graph
fusion methods comparison, DGN achieved the lowest mean Frobenius
distance to the population multi-view networks with a high statistical
significance demonstrated by a two-tailed paired t-test (all p < 0.0001)
for DGN-SCA, DGN-netNorm, DGN-MVCFNet, and DGN-cMGI-Net
pairs for AD-LH, AD-RH, LMCI-LH and LMCI-RH groups. LH:
left hemisphere. RH: right hemisphere. AD: Alzheimer’s disease.
LMCI: Late Mild Cognitive Impairment. As for single-view fusion
methods comparison, SM-netFusion significantly achieved the lowest
mean Frobenius distance to the population single-view networks (all
p < 0.0001) using two-tailed paired t-test for SM-netFusion-NAGFS,
and SM-netFusion-SNF pairs for AD-LH, AD-RH, LMCI-LH and
LMCI-RH datasets.
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right hemispheres, respectively. Furthermore, DGN ranked first in reproducibility

where it achieves 12-30% and 12-40% boost in identifying the most discriminative

brain regions between genders against other methods in the left and right hemispheres,

respectively, using M/F datasets (Table 4.7). The displayed results represent

respectively the minimum and the maximum differences between the reproducibility

rates of DGN and each of the other methods over the top k (10, 15, 20,and 20)

discriminative ROIs distinguishing between AD and LMCI poulations, and between

male and female populations.

Table 4.7 : Matching rate in % between the top k (10, 15, 20,and 20) discriminative
ROIs distinguishing between AD and LMCI poulations, and between
male and female populations identified by (i) MKL [4] and CBT-based
single-view fusion methods and (ii) MKL [4] and CBT-based multigraph
fusion methods for the right and left hemispheres (RH and LH).

Top k (%) discriminative ROIs Matching rate (10 % ) Matching rate (15 % ) Matching rate (20 % ) Matching rate (25 % )
datasets AD-LMCI GSP AD-LMCI GSP AD-LMCI GSP AD-LMCI GSP

Hemispheres LH RH LH RH LH RH LH RH LH RH LH RH LH RH LH RH
SNF [1] 0.3 0.1 0.1 0.1 0.2 0.13 0.33 0.4 0.5 0.5 0.5 0.5 0.68 0.68 0.68 0.64

SM-netFusion [8] 0.5 0.5 0.1 0.1 0.47 0.53 0.33 0.46 0.55 0.55 0.55 0.55 0.72 0.72 0.72 0.72
Single-
view

fusion
methods

NAG-FS [7] 0.2 0.2 0 0.2 0.27 0.27 0.27 0.33 0.5 0.5 0.46 0.5 0.68 0.68 0.64 0.64
SCA [9] 0.3 0.3 0.2 0.4 0.4 0.53 0.27 0.33 0.45 0.65 0.4 0.5 0.64 0.68 0.68 0.68

MVCF-Net [10] 0.46 0.46 0.2 0.4 0.47 0.53 0.27 0.33 0.45 0.55 0.4 0.5 0.64 0.68 0.68 0.68
netNorm [2] 0.3 0.4 0.2 0.4 0.4 0.53 0.33 0.4 0.55 0.6 0.5 0.5 0.72 0.64 0.7 0.64

cMGINet [20] 0.2 0.4 0 0.1 0.4 0.47 0.27 0.33 0.55 0.65 0.4 0.45 0.72 0.72 0.64 0.68

Multigraph
fusion

methods
DGN [11] 0.5 0.5 0.3 0.5 0.53 0.6 0.53 0.53 0.6 0.7 0.6 0.6 0.76 0.84 0.76 0.76

4.3.2.3 CBT node-wise similarity comparison

Hubness behaviour test

Furthermore, we compared the performance of the graph fusion methods by evaluating

the similarity of their generated brain templates at the node-wise scale. One way to do

so is to quantifythe topological properties of the CBTs using the following centrality

measures: node strength, betweenness centrality, random-walk betweeness centrality,

eigenvector centrality, weighted PageRank, Katz centrality, information centrality,

and Laplacian centrality. Specifically, we evaluated the topological properties of

the learned CBTs by comparing the likelihood of distribution of the aforementioned

topological measures between the ground truth of multigraph brain population and

the learned CBTs. We calculated the ground truth by averaging the distribution

of topological measures of each network view of each testing subject. We display

the average across five folds for each centrality metric in the form of distribution

graphs for AD (LH), LMCI (LH), AD (RH), and LMCI (LH) populations (Figure

98



4.13) and for M (LH), F (LH), M (RH), and F (LH) populations (Figure A.2). As

shown in Figure 4.13 and Figure A.2, the connectional brain template generated by

DGN shows a striking similarity with the ground truth data in topological properties

while other multigraph integration methods and all single-view fusion methods fail

to preserve the multi-view and single-view connectomic data topology, respectively.

This can be explained by the fact that DGN has the ability to capture much more

complex topological patterns rather than the other fusion architectures. Specifically,

DGN trains a GDL-based learning process for brain connection weights by blending

a sequence of hidden nodes embeddings with the integrated connectivities while

capturing complex patterns and non-linear variation across individuals. For easy

interpretation and better visualization of the results, we computed the average of each

centrality measure distribution across the ROIs, so that each distribution is represented

by a single value. The results in Figure 4.14 (for AD/LMCI dataset) and Figure A.3

(for M/F dataset) confirm that DGN is the most topology preserving method in a

population of multiview networks by closely nearing the average distribution of the

ground truth multi-view brain networks. While SM-netFusion achieved the highest

average distribution comparing to other single-view fusion methods.

Second, we extended the hubness comparison between the CBTs by integrating the

Kullback-Liebler (KL) divergence metric which measures the dissimilarity between

two given graphs by quantifying the information change between them. The main

idea was to compute for each centrality metric the KL-divergence of (i) the ground

truth distribution and (ii) each of the distributions derived from the connectional brain

templates, learned within a 5-fold cross-validation strategy. Note that we normalized

each distribution using the sum over all nodes to get a valid discrete probability

distribution. Next, we reported the KL-divergence distribution resulting from all

possible pair combinations of sub-populations (folds). We evaluated the performance

of the graph fusion methods based on the lowest value of the average KL-divergence

distribution and its standard deviation over all combinations of 5 sub-populations.

A small divergence signifies similar distributions. Comparing to other multigraph

fusion methods Figure 4.15 and Figure A.4 section B showed that DGN significantly

outperforms other multigraph fusion methods on both evaluation datasets using the
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left and right hemispheres and across all topological measures (two-tailed paired

t-test p < 0.0001) by achieving the minimum scores in both mean KL-divergence

distribution and its dispersion for AD, LMCI, M, and F datasets. We demonstrated that

DGN generates the most similar centrality measure distribution to the ground truth

by preserving the complex patterns in a population of multi-view networks during the

data integration process to generate more holistic and integral connectional templates.

For the single-view fusion methods comparison, Figure 4.15 and Figure A.4 section A

showed that SM-netFusion outperforms SNF and NAG-FS by achieving the minimum

mean KL-divergence distribution in AD/LMCI dataset and M/F dataset, respectively,

for both hemispheres.

Lastly, we compute a pairwise comparison between all combinations of the single-view

and multigraph fusion methods, separately, using KL divergence. Specifically, for

each topological measure, we computed the KL-divergence between a pair of average

KL-divergence distributions derived from two selected methods. The resulting score

reflects the topological dissimilarity between the pair of methods. Figure 4.16 and

Figure A.5 display the KL-divergence between all possible pairs combination of

single-view and multigraph fusion methods using AD/LMCI dataset and M/F dataset,

respectively, for left and right hemispheres. Remarkably, DGN stands out again with

the highest KL-divergence among the other multigraph fusion methods across all

datasets and all centrality metrics, while SM-netFusion differs the most among other

single-view fusion methods.

Segregation behaviour test

Another aspect to compare the performance of the graph fusion methods is by

evaluating the segregation behavior of their generated CBTs. For that, we computed

the local efficiency distribution across the ROIs of each connectional template (nodes

graph) using 5-fold cross-validation. Then, we reported the average local efficiency

distribution over all sub-populations (testing folds) for AD, LMCI using left and

right hemispheres. For a fair comparison, we further computed the ground truth

distribution by averaging the local efficiency that are independently calculated for
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Figure 4.13 : Comparison of the average topological distributions across 5-fold
cross-validation of PageRank [12], Katz centrality [13], node strength
[14], random-walk centrality [15], information centrality [16], Laplacian
centrality [17], eigenvector centrality [18], and betweeness centrality
[19] of templates generated by A) SNF [1], NAG-FS [7], and
SM-netFusion [8] against the ground truth distribution for a population
of single-view network; and B) netNorm [2], SCA [9], MVCF-Net [10],
cMGI-Net [20], and DGN [11] against the ground truth distribution for
a population of multi-view network for AD and LMCI datasets in the
left and right hemispheres.
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Figure 4.14 : This chart displays the average topological distributions of PageRank
[12], Katz centrality [13], node strength [14], random-walk centrality
[15], information centrality [16], Laplacian centrality [17], eigenvector
centrality [18], and betweeness centrality [19] measures across the
nodes (ROIs) of the learned templates generated by A) SNF [1],
NAG-FS [7], and SM-netFusion [8] against the ground truth distribution
of a population of single-view networks; and B) netNorm [2],
SCA [9], MVCF-Net [10], cMGI-Net [20], and DGN [11] against
the ground truth distribution of a population of multi-view network
for the AD and LMCI datasets in the left and right hemispheres.
For multi-graph fusion methods comparison, DGN achieved the
highest average distribution comparing to the average distribution of
other multigraph fusion methods with a high statistical significance
demonstrated by a two-tailed paired t-test (all p < 0.0001) for
DGN-SCA, DGN-netNorm, DGN-MVCFNet, and DGN-cMGI-Net
pairs for AD (LH), AD (RH), LMCI (LH) and LMCI (RH) groups,
except for the random-walk centrality measures. For single-view
fusion methods comparison,SM-netFusion significantly achieved the
maximum average distribution comparing to SNF and NAG-FS for all
centrality measures except the betweeness centrality and node strength
for AD (LH), AD (RH), LMCI (LH) and LMCI (RH) datasets.
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each view of each testing subject. Figure 4.17 and Figure A.7 showed that DGN has

the most similar distribution with the ground truth for AD, LMCI, M, and F datasets

using both hemispheres. While SM-netFusion displayed the closest distribution.

For easy visualization of the results, we displayed the average local efficiency

distribution over the ROIs for the ground truth brain networks and the learned CBT

by different methods. Remarkably, Figure 4.18 and Figure A.8 section B confirmed

that DGN achieves the highest average local efficiency over regions compared to

other methods for AD (LH), AD (RH), LMCI (LH) and LMCI (RH) datasets. This

can be explained by the fact that DGN aggregates the information passed by its

neighbours while taking into consideration the multi-view attributes of its neighboring

edges. This was done by integrating graph convolution layers which act as edge

conditioned filter learner to learn deeper embeddings for each ROI. As results, the

information is efficiently transferred to neighboring nodes while fusing the population

of multigraph networks. For single-view fusion methods comparison, SM-netFusion

slightly achieved the highest average local efficiency over regions comparing to SNF

and NAG-FS for ASD/LMCI and M/F datasets (Figure 4.18 and Figure A.8 section A).

Integration behaviour test

Furthermore, we compared the integration behavior between the estimated

connectional templates using the coefficient participation metric, which quantifies the

connection strength (node’s edges) between communities (modules) in the graph for

ASD/LMCI and M/F datasets Figure 4.18 and Figure A.8. We computed the average

participation coefficient across five folds for the CBTs generated by each graph

fusion methods and the ground truth network data, respectively. We acquired the

ground truth by averaging the participation coefficient measures which are separately

calculated for each testing sample and for each view network. We demonstrated

that DGN achieves the maximum average participation coefficient compared to other

multigraph fusion methods, and the closest score to the ground truth with a high

statistical significance demonstrated by a two-tailed paired t-test (all p < 0.0001)

for DGN-SCA, DGN-netNorm, DGN-MVCFNet, and DGN-cMGI-Net pairs for AD

(LH), AD (RH), LMCI (LH) and LMCI (RH) groups (Figure 4.18 section B) as well

as for F (LH), F (RH), M (LH) and M (RH) populations (Figure A.8 section B). This
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can be explained by the fact that DGN learns the optimized integration of multigraph

networks into a single representation population graph in an end-to-end manner

using GNN-based integrator while taking into account the data heterogeneity and

complementary information across views within the same multigraph. For single-view

fusion method comparison, SM-netFusion significantly displayed the highest average

participation coefficient comparing to SNF and NAG-FS for AD, LMCI, M, and F in

both left and right hemispheres (Figure 4.18 and Figure A.8 section A).

4.3.2.4 CBT global-level similarity test

As for the evaluation of the global-level similarity of the learned brain connectional

templates, we included modularity and global efficiency measures. We computed

the average modularity and the average global efficiency over the random sample

partitions of the learned CBTs by different fusion methods. Next, we calculated the

modularity and the global efficiency for each view of each testing sample and we

averaged them to acquire the measures of the ground truth. We demonstrated that

DGN significantly outperforms other multigraph fusion methods across evaluation

datasets (AD, LMCI, M, and F) for both hemispheres (Figure 4.18 and Figure A.8

section B), two-tailed paired t-test, p < 0.0001). This result is the outcome of DGN

learning process of fusing multigraph brain networks while preserving the connections

strength in the entire graph structure across subjects, and thus preserving the brain

graph communities. Specifically, DGN introduces a randomized weighted loss

function (SLN) that optimizes connectivity weights of the generated CBT to ensure

its representativeness in term of community structures. For the single-view fusion

methods comparison, SM-netFusion significantly achieved the maximum average

modularity comparing to SNF and NAG-FS for AD, LMCI, M, and F in both left and

right hemispheres (Figure 4.18 and Figure A.8 section A), two-tailed paired t-test,

p < 0.0001).
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Figure 4.15 : Average of Kullback-Liebler divergence distribution across 5-fold
cross validation between the ground truth distribution and the average
topological distributions of the learned connectional templates generated
by A) single-view fusion methods (SNF [1], NAG-FS [7],and
SM-netFusion [8]); and B) multigraph fusion methods (SCA [9],
netNorm [2], MVCF-Net [10], cMGI-Net [20], and DGN [11]).
The topological measures include PageRank [12], Katz centrality
[13], node strength [14], random-walk centrality [15], information
centrality [16], Laplacian centrality [17], eigenvector centrality [18], and
betweeness centrality [19]. Charts illustrate that for multi-graph fusion
methods comparison, DGN achieved the minimum mean KL-divergence
distribution and the narrowest dispersion range with a high statistical
significance demonstrated by a two-tailed paired t-test (all p < 0.0001)
for DGN-SCA, DGN-netNorm, DGN-MVCFNet, and DGN-cMGI-Net
pairs for AD-LH, AD-RH, LMCI-LH and LMCI-RH groups. For
single-view fusion methods comparison, SM-netFusion significantly
achieved the lowest mean KL-divergence distribution to the population
single-view networks (all p < 0.0001) using two-tailed paired t-test
for SM-netFusion-NAGFS, and SM-netFusion-SNF pairs for AD-LH,
AD-RH, LMCI-LH and LMCI-RH datasets. [Box plot legend: median
(midline), box (25th and 75th percentiles), and whiskers (extrema)].
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Figure 4.16 : Dissimilarity between the possible pairs combination of A) single-view
and B) multigraph fusion methods using KL-divergence for the AD and
LMCI in the left and the right hemispheres.

4.3.2.5 CBT distance-based similarity test

To evaluate the similarity between the estimated connectional templates by different

methods, we computed both Hamming distance and Jaccard distance between all

possible pairs combination of the learned connectional templates generated by

single-view and multigraph fusion methods, separately, using AD, LMCI, M, and F

for left and right hemispheres. Remarkably, the CBT learned by DGN method stands

out with the highest Hamming and Jaccard distances among CBTs generated by other

multigraph fusion methods across all datasets (Figure 4.19 and Figure A.6 section B).

The large difference (dissimilarity) between DGN-based CBT and other integration

methods-based CBTs can be explained by the fact that DGN, which is based on
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is a geometric deep learning-based (GDL) architecture, normalizes a population of

multigraph networks into single generic representation in end-to-end manner unlike

other methods except cMGI-Net. Furthermore, the SNL introduced in DGN acts

as a regularizer to the overfitting and the overlooking of the model while assigning

weights to the views, thus helps to avoid view-biased CBT estimation to minimize

the distance between the population and its estimated CBT unlike cMGI-Net. All

those different components of DGN architecture promote the generation of distinct

CBT unlike other connectional brain templates. For single-view fusion methods

comparison, SM-netFusion differs the most among other single-view fusion methods

for AD, LMCI, M, and F in both hemispheres (Figure 4.19 and (Figure A.6 section

A).

Figure 4.17 : Region-wise local efficiency distribution of connectional brain templates
generated by A) SNF [1], NAG-FS [7], and SM-netFusion [8] against the
ground truth distribution for single-view fusion methods comparison;
and B) netNorm [2], SCA [9], MVCF-Net [10], cMGI-Net [20], and
DGN [11] against the ground truth for multi-graph integration methods
using 5-fold cross-validation for the AD and LMCI populations in the
left and right hemispheres. For multi-graph fusion methods comparison,
DGN achieved the most similar distribution to the ground truth while
SM-netFusion displayed the closest distribution.

4.3.2.6 Limitation and future directions

Although DGN outperformed other fusion models in the target brain multigraph

integration task, it has a few limitations that could be overcome in future work.

First, DGN is limited to static brain networks (fixed-time data points) and may not

easily be adapted to more sophisticated network structures such as networks with
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Figure 4.18 : Charts display the average local efficiency distribution across regions
(ROIs), modularity, global efficiency, and participation coefficient
of connectional brain templates estimated by A) single-view fusion
methods (SNF [1], NAG-FS [7], and SM-netFusion [8]) and B)
multigraph fusion methods (netNorm [2], SCA [9], MVCF-Net [10],
cMGI-Net [20], and DGN [11]) against the ground truth for AD-LH,
LMCI-LH, AD-RH, and LMCI-RH groups using 5-fold cross validation.
Remarkably, DGN achieved the highest scores including average local
efficiency distribution over regions, modularity, particiation coefficient,
and global efficiecy comparing to other multigraph fusion methods with
a high statistical significance demonstrated by a two-tailed paired t-test
(all p < 0.0001) for DGN-SCA, DGN-netNorm, DGN-MVCFNet, and
DGN-cMGI-Net pairs for AD-LH, AD-RH, LMCI-LH and LMCI-RH
groups. While for the single-view integration methods comparison,
SM-netFusion significantly outperformed SNF and NAG-FS for AD and
LMCI datasets in both hemispheres (all p < 0.0001).

Figure 4.19 : Pairwise distance comparison of the learned connectional templates
generated by A) single-view fusion methods (SNF [1], NAG-FS [7],
and SM-netFusion [8]); and B) multigraph fusion methods (netNorm
[2], SCA [9], MVCF-Net [10], cMGI-Net [20], and DGN [11]) using
Hamming distance and Jaccard distance measures for AD and LMCI
populations in the left and right hemispheres.
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dynamic connectivity [142]. Alternatively, multimodal fusion models with flexible

and powerful generic architecture can be developed to enable the evaluation of data

with time-dependent brain multigraph population. For instance, geometric recurrent

neural networks (RNNs) based on graph convolutional operations can be used to fuse

dynamic brain networks derived from MRI measurements acquired at different time

points to reveal the trajectory of neurological diseases [143]. Second, all comparative

graph fusion methods including DGN, they assume that all network views contain

the same number of nodes. Alternatively, DGN model can be extented to handle

non-isomorphic graphs with varying numbers of nodes. For instance, [144] propose

a generalization of GNNs, so-called k-dimensional GNNs (k-GNNs), which can take

higher-order graph structures at multiple scales into account and maps any different

graphs to different embeddings. Also inspired from GNNs and the Weisfeiler-Lehman

(WL) graph isomorphism test, [54] proposed a powerful GNN-based model that

distinguishes isomorphic and non-isomorphic graph structures by mapping them to

different representations in the embedding space.

Furthermore, DGN is limited by generating single population-based CBT which may

not be discriminative enough to disentangle two specific groups. One solution is

to train an auxiliary GNN classifier which forces the fusion model to learn how to

capture the most discriminative connectional traits differentiating between several

brain network populations. Specifically, a classification task can be added to the

fusion process to boost the differences between group connectional templates, and

thus the learned templates can be useful to study specific population pairs (i.e., brain

disorder, gender differences). Finally, we evaluated DGN on unimodal data for CBT

generation. In the future work, we can generalize our comparison study to integrate

multi-modal brain networks such as functional and structural brain networks at the

same time while capitalizing on geometric deep learning for estimating holistic CBTs

and investigating populations difference at functional and structural levels.

In summary, our comparison studies evaluating the performance of the learned brain

connectional templates (CBTs) generated by single-view fusion methods and by

multigraph fusion methods, separately, demonstrate that DGN outperforms other
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multigraph fusion methods in terms of producing the most centered templates,

preserving the complex topology of biological networks, and encapsulating the

most unique traits of a population of multiview networks, which makes it easily

distinguishable from other population templates. Additionally, we showed that the

population-representative connectional template generated by DGN achieves the

most similar graph structure with a population of multigraph networks at the local

scale, the global scale, and distance-based scale. DGN proved its efficiency by

estimating a connectional brain templates that fingerprint the population of multi-view

brain networks. For example, DGN-connectional brain templates that fingerprint the

population of multi-view brain networks derived from T1-weighted MRI scans have

revealed a set of biomarkers for both Alzheimer’s diseases and Late Mild Cognitive

Impairment.
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5. CONCLUSIONS

Gender may have a substantial influence on human cognitive functions, including

emotion, memory, perception, etc., [145]. Men and women appear to have different

ways to encode memories, sense emotions, recognize faces, solve certain problems,

and make decisions. Since the brain controls cognition and behaviors, investigating

the difference of men and women brains is an important underpinning to understand

the pathophysiology of many neurological disorders, thus boosting neurological

disorder diagnosis and prognosis as well as guiding clinicians in early symptomatic

treatment strategies. In current clinical practice, structural brain imaging (CT or MRI)

and functional brain methods, such as PET scanning of glucose metabolism were

employed to detect the gender differences in the human brain, while gender-related

morphological differences was overlooked.

On the other hand, despite the growing number of neuroimaging modalities, certain

limitations could result in sacrificing some imaging modalities to have the most

important one. In this thesis, we proposed a medical computer aided diagnosis

tools enabling to address the key challenges related to brain networks collected

from multiple morphological modality (i.e., multi-source data) in order to extract

the most discriminative brain features (specific brain regions and connectivites) that

differentiate between men and women as well as to boost gender prediction:

First, we proposed how to estimate representative and centered brain network atlases

to generate gender fingerprinting, which can be leveraged to identify discriminative

brain connectivities between men and women populations. To do so, we defined

the first multiview cortical morphological networks clustering and Fusion Network

(MVCF-Net) method which achieved the best results in terms of representativeness

and centeredness of the generated brain template for each population in comparison

to state-of-the-integration method (SCA) introduced in (Dhifallah et al. 2019). We
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also used MVCF-Net to identify the most discriminative fingerprinting regions of

the brain that distinguish between genders. To sum up, the estimation of centered

brain network templates provides a new and exciting venue for better understanding

a wide gender difference and easily and effectively spotting reliable biomarkers for

improving diagnosis and prognosis of diseases related to gender. In our future work,

we will improve the discriminative power of network atlases to distinguish between

genders populations by integrating geometric deep learning approaches.

Second, we design the first end-to-end graph neural network-based model for

multigraph classification using morphological brain data with the aim to boost genders

classification performance. Our framework MICNet (multigraph integration and

classifier network) learns a single-view graph representation of a heterogeneous

multigraph brain networks prior to classification. While the integration block

enables us to preserve the multigraph topological properties, the geometric deep

learning-based classifier captures the most discriminative traits of the graph to predict

the subject class. Our MICNet significantly outperformed baseline methods on the

two-brain genomics superstruct project datasets, thereby showing its great potential

in multigraph classification. In our future work, we will evaluate our framework

on larger connectomic datasets by generating augmented multigraphs based on

population-level integrated templates and eventually enhance the classification

performance. Furthermore, we will extend our work to handle multimodal brain

graphs covering a diverse range of edge types such as structural and functional

connectivites. We also aim to further enhance our framework by implementing

attention techniques for multigraphs enables us to preserve the multigraph topological

properties.

Third, we review current graph fusion methods that estimate a representative

map acting as a connectional fingerprint of single-view and multigraph brain

networks populations. These methods integrate a population of heterogeneous brain

connectivity networks into a unified representation, hence the concept of connectional

brain template (CBT). Furthermore, we conducted a comparative study between the

unimodal fusion methods and the multimodal integration methods, separately, by
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evaluating the performance of their generated CBTs in terms of (1) well-centeredness

(2) discriminativeness, and (3) topological soundness to the population at different

scales including node-wise similarity, distance-based similarity, and global-based

similarity. We demonstrated that the geometric deep learning architecture-based

model, namely Deep Graph Normalizer (DGN) significantly outperforms other

multigraph integration methods by generating well-centered, discriminative, and

topologically sound connectional templates. Together, these criteria allow DGN to

lead the discriminative power in discovering connectional fingerprints that disentangle

the differences in brain connectivity between populations while preserving their

topological patterns at both local and global graph-levels. In the future work, we can

extend our comparison study to cover multi-modal brain networks such as functional

and structural brain networks while capitalizing on geometric deep learning for

estimating holistic CBTs and investigating populations difference at functional and

structural levels. The importance of analyzing brain connectivity patterns in biological

datasets which proliferate with unprecedented complexity and heterogeneity opens

new frontiers to upgrade the capacity of multigraphs fusion methods to work on

multimodal connectomic datasets to learn integral and holistic connectional templates

of populations of multi-view networks. Geometric recurrent neural networks based

on CNNs can be used to fuse dynamic graphs acquired at different time points to

reveal the trajectory of neurological diseases. Also, multigraph fusion methods

can be agnostic to the number of nodes using k-dimensional GNNs-based learning

models which map non-isomorphic brain networks to different representations in the

embedding space.

113



114



REFERENCES

[1] Wang, B., Mezlini, A.M., Demir, F., Fiume, M., Tu, Z., Brudno, M.,
Haibe-Kains, B. and Goldenberg, A. (2014). Similarity network fusion
for aggregating data types on a genomic scale, Nature methods, 11(3),
333.

[2] Dhifallah, S., Rekik, I., Initiative, A.D.N. et al. (2020). Estimation
of connectional brain templates using selective multi-view network
normalization, Medical Image Analysis, 59, 101567.

[3] Kipf, T.N. and Welling, M. (2016). Semi-supervised classification with graph
convolutional networks, arXiv preprint arXiv:1609.02907.

[4] Varma, M. and Babu, B.R. (2009). More generality in efficient multiple kernel
learning, Proceedings of the 26th Annual International Conference on
Machine Learning, pp.1065–1072.

[5] Nebli, A. and Rekik, I. (2020). Gender differences in cortical morphological
networks, Brain imaging and behavior, 14(5), 1831–1839.

[6] Yu, Y., Zhang, L.H. and Zhang, S. (2019). Simultaneous clustering of multiview
biomedical data using manifold optimization, Bioinformatics, 35(20),
4029–4037.

[7] Mhiri, I. and Rekik, I. (2020). Joint functional brain network atlas estimation and
feature selection for neurological disorder diagnosis with application to
autism, Medical image analysis, 60, 101596.

[8] Mhiri, I., Mahjoub, M.A. and Rekik, I. (2020). Supervised Multi-topology
Network Cross-Diffusion for Population-Driven Brain Network Atlas
Estimation, International Conference on Medical Image Computing and
Computer-Assisted Intervention, Springer, pp.166–176.

[9] Dhifallah, S., Rekik, I., Initiative, A.D.N. et al. (2019). Clustering-based
multi-view network fusion for estimating brain network atlases of
healthy and disordered populations, Journal of neuroscience methods,
311, 426–435.
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APPENDIX A:

Additional experiments provided on Brain Genomics Superstruct Project (GSP)
dataset.

Figure A.1 : Centeredness comparison of connectional templates generated by A)
single-view integration methods including network atlas-guided feature
selection (NAG-FS) [7], similarity network fusion (SNF) [1], and
supervised multi-topology network cross-diffusion (SM-netFusion) [8];
and B) multi-graph fusion methods including multi-view networks
normalizer (netNorm) [2], cluster-based network fusion (SCA) [9],
multi-view clustering and fusion (MVCF-Net) [10], cluster-based
multi-graph integrator networks (cMGI-Net) [20], and deep graph
normalizer (DGN) [11]. Charts illustrate the mean Frobenius distance
between the connectional templates learned from the training sets and
networks of the samples in the testing set using a 5-fold cross-validation
strategy. We reported the average distance for each cross-validation
fold as well as the average across folds (“Mean” bars on the right).
For multi-graph fusion methods comparison, DGN achieved the lowest
mean Frobenius distance to the population multi-view networks with a
high statistical significance demonstrated by a two-tailed paired t-test
(all p < 0.0001) for DGN-SCA, DGN-netNorm, DGN-MVCFNet, and
DGN-cMGI-Net pairs for M-LH, M-RH, F-LH and F-RH groups. LH:
left hemisphere. RH: right hemisphere. M: Male population. F:
Female population. As for single-view fusion methods comparison,
SM-netFusion significantly achieved the lowest mean Frobenius distance
to the population single-view networks (all p < 0.0001) using two-tailed
paired t-test for SM-netFusion-NAGFS, and SM-netFusion-SNF pairs for
M-LH, M-RH, F-LH and F-RH datasets.
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Figure A.2 : Comparison of the average topological distributions across 5-fold
cross-validation of PageRank [12], Katz centrality [13], node strength
[14], random-walk centrality [15], information centrality [16], Laplacian
centrality [17], eigenvector centrality [18], and betweeness centrality
[19] of templates generated by A) SNF [1], NAG-FS [7], and
SM-netFusion [8] against the ground truth distribution for a population
of single-view network; and B) netNorm [2], SCA [9], MVCF-Net [10],
cMGI-Net [20], and DGN [11] against the ground truth distribution for
a population of multi-view network for M and F datasets in the left and
right hemispheres.
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Figure A.3 : This chart displays the average topological distributions of PageRank
[12], Katz centrality [13], node strength [14], random-walk centrality
[15], information centrality [16], Laplacian centrality [17], eigenvector
centrality [18], and betweeness centrality [19] measures across the nodes
(ROIs) of the learned templates generated by A) SNF [1], NAG-FS
[7], and SM-netFusion [8] against the ground truth distribution of a
population of single-view networks; and B) netNorm [2], SCA [9],
MVCF-Net [10], cMGI-Net [20], and DGN [11] against the ground
truth distribution of a population of multi-view network for the M and
F datasets in the left and right hemispheres. For multi-graph fusion
methods comparison, DGN achieved the highest average distribution
comparing to the average distribution of other multigraph fusion methods
with a high statistical significance demonstrated by a two-tailed paired
t-test (all p < 0.0001) for DGN-SCA, DGN-netNorm, DGN-MVCFNet,
and DGN-cMGI-Net pairs for M (LH), M (RH), F (LH) and F (RH)
groups, except for the random-walk centrality measures. For single-view
fusion methods comparison,SM-netFusion significantly achieved the
maximum average distribution comparing to SNF and NAG-FS for all
centrality measures except the betweeness centrality and node strength
for M (LH), M (RH), F (LH) and F (RH) datasets.
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Figure A.4 : Average of Kullback-Liebler divergence distribution across 5-fold cross
validation between the ground truth distribution and the average
topological distributions of the learned connectional templates generated
by A) single-view fusion methods (SNF [1], NAG-FS [7],and
SM-netFusion [8]); and B) multigraph fusion methods (SCA [9],
netNorm [2], MVCF-Net [10], cMGI-Net [20], and DGN [11]).
The topological measures include PageRank [12], Katz centrality
[13], node strength [14], random-walk centrality [15], information
centrality [16], Laplacian centrality [17], eigenvector centrality [18], and
betweeness centrality [19]. Charts illustrate that for multi-graph fusion
methods comparison, DGN achieved the minimum mean KL-divergence
distribution and the narrowest dispersion range with a high statistical
significance demonstrated by a two-tailed paired t-test (all p < 0.0001)
for DGN-SCA, DGN-netNorm, DGN-MVCFNet, and DGN-cMGI-Net
pairs for M-LH, M-RH, F-LH and F-RH groups. For single-view fusion
methods comparison, SM-netFusion significantly achieved the lowest
mean KL-divergence distribution to the population single-view networks
(all p< 0.0001) using two-tailed paired t-test for SM-netFusion-NAGFS,
and SM-netFusion-SNF pairs for M-LH, M-RH, F-LH and F-RH
datasets. [Box plot legend: median (midline), box (25th and 75th
percentiles), and whiskers (extrema).]
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Figure A.5 : Dissimilarity between the possible pairs combination of A) single-view
and B) multigraph fusion methods using KL-divergence for the M and F
in the left and the right hemispheres.

Figure A.6 : Pairwise distance comparison of the learned connectional templates
generated by A) single-view fusion methods (SNF [1], NAG-FS [7],
and SM-netFusion [8]); and B) multigraph fusion methods (netNorm
[2], SCA [9], MVCF-Net [10], cMGI-Net [20], and DGN [11])
using Hamming distance and Jaccard distance measures for M and F
populations in the left and right hemispheres.
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Figure A.7 : Region-wise local efficiency distribution of connectional brain templates
generated by A) SNF [1], NAG-FS [7], and SM-netFusion [8] against
the ground truth distribution for single-view fusion methods comparison;
and B) netNorm [2], SCA [9], MVCF-Net [10], cMGI-Net [20], and
DGN [11] against the ground truth for multi-graph integration methods
using 5-fold cross-validation for the M and F populations in the left
and right hemispheres. For multi-graph fusion methods comparison,
DGN achieved the most similar distribution to the ground truth while
SM-netFusion displayed the closest distribution.

Figure A.8 : Charts display the average local efficiency distribution across regions
(ROIs), modularity, global efficiency, and participation coefficient of
connectional brain templates estimated by A) single-view fusion methods
(SNF [1], NAG-FS [7], and SM-netFusion [8]) and B) multigraph
fusion methods (netNorm [2], SCA [9], MVCF-Net [10], cMGI-Net
[20], and DGN [11]) against the ground truth for M-LH, F-LH,
M-RH, and F-RH groups using 5-fold cross validation. Remarkably,
DGN achieved the highest scores including average local efficiency
distribution over regions, modularity, particiation coefficient, and global
efficiecy comparing to other multigraph fusion methods with a high
statistical significance demonstrated by a two-tailed paired t-test (all
p < 0.0001) for DGN-SCA, DGN-netNorm, DGN-MVCFNet, and
DGN-cMGI-Net pairs for M-LH, M-RH, F-LH and F-RH groups. While
for the single-view integration methods comparison, SM-netFusion
significantly outperformed SNF and NAG-FS for M and F datasets in
both hemispheres (all p < 0.0001).
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• Chaari, N., Camgöz Akdağ, H., Rekik, I. 2021. Comparative Study of
Connectional Brain Templates in Network Neuroscience. (Ready for submission)

135


	FOREWORD
	TABLE OF CONTENTS
	ABBREVIATIONS
	LIST OF TABLES
	LIST OF FIGURES
	SUMMARY
	ÖZET
	1. INTRODUCTION
	Gender Difference and Brain Connectivity 
	Connectional Fingerprint of Heterogeneous Multimodal Data
	Graph Theory, Connectomes, and Multigraph
	Multigraph integration
	Multigraph classification

	Contributions and Road-map

	2. LITERATURE REVIEW
	Related Works of Integration Models
	Related Works of Multigraph Classification Methods
	Related Works of Single-view and Multi-view Integration Methods

	3. METHODOLOGY
	Proposed Multi-View Clustering and Fusion Network (MVCF-Net)
	MVCF-Net overview
	Feature extraction and similarity networks construction
	Multi-view clustering using optimization manifolds
	Individual-based non-linear fusion of connectional brain network views
	Linear fusion
	Evaluation strategies
	Evaluation strategy of connectional brain template representativeness
	Evaluation strategy of connectional brain template discriminability



	Identification of top discriminative ROIs using the estimated CBTs
	Reproducibility of top discriminative ROIs
	Multigraph Integration and Classifier Networks (MICNet)
	MICNet overview
	Problem definition 
	Multigraph integration and thresholding step
	Multigraph classification
	Classification with hierarchical embedding
	Graph convolution networks (GCN) classifier
	Loss


	CBT Estimation Methods
	Single-graph fusion methods
	Multigraph fusion methods
	CBT evaluation measures
	CBT centeredness test
	CBT discriminativeness reproducibility test
	CBT node-wise similarity comparison



	Hubness behaviour test
	Segregation behaviour test
	Integration behaviour test
	CBT graph-edit distances-based comparison
	CBT global-level similarity comparison

	4. RESULTS AND DISCUSSIONS
	Results and Discussion of Our Proposed MVCF-Net Method 
	Experimental results
	Evaluation dataset and preprocessing pipeline
	Method parameters
	Methods comparison
	CBT representativeness and centeredness
	CBT discriminability

	Discussion
	Parameters impacts
	CBT representativeness and centeredness
	CBT discriminability
	Limitations and future directions


	Results and Discussion of Our Proposed MICNet Method 
	Experimental results
	Evaluation dataset and preprocessing pipeline
	Method parameters
	Methods comparison
	Classification performance

	Discussion
	Quantitative analysis
	Qualitative analysis
	Limitation and future directions


	Results and Discussion of Our Comparative Study of Connectional Brain Templates in Network Neuroscience
	Experimental results
	Evaluation datasets
	Parameter settings
	Evaluation strategies

	Discussion
	CBT centeredness test
	CBT discriminativeness reproducibility test
	CBT node-wise similarity comparison
	CBT global-level similarity test
	CBT distance-based similarity test
	Limitation and future directions



	5. CONCLUSIONS
	REFERENCES
	APPENDICES
	APPENDIX A:

	CURRICULUM VITAE


