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SONLU TIPTEN KURESEL HIPERYUZEYLER

OZET

Bu tez cahsmasinda, Oklid uzaymm hiperkiirelerinin  sonlu tipten alt
manifoldlarimin (6zellikle hiperyiizeylerinin) smiflandirilmasi kisa bir sekilde
incelenmistir. Oklid uzaymn bir hiperkiiresinin kompakt bir hiperyiizeyinin,
kiigiik hiperkiire olmamasi durumunda, 2-tipinden ve kiitlesel-simetrik olmasi
icin gerek ve yeter kogul, ortalama ve skaler egriliklerinin sabit olmasidir.
Bu sonu¢ bize, bir hiperkiirenin sonlu tipten kompakt izoparametrik bir
hiperylizeyinin, 1 veya 2 tipinden olmasi gerektigini gosterir. Oklid
uzayimin bir hiperkiiresinin kompakt 2-tipinden bir hiperyiizeyi, ancak ve
ancak kiitlesel-simetrik ise sabit ortalama egrilige sahip olabilir. Bu genel
sonu¢ kullanilarak, bir hiperkiirenin Dupin hiperyiizeyleri ve izoparametrik
hiperytlizeyleri arasinda, 2-tipinden olmay1 igeren bir baglanti verilmistir.
Bunlara ek olarak, bir hiperkiirenin kompakt 2-tipinden bir Dupin hiperyiizeyinin
sabit ortalama egrilige sahip olacag1 gosterilmigtir.

En fazla iki asal egrilige sahip kiiresel bir hiperyiizeyin 2-tipinden olmasi ic¢in
gerek ve yeter kosul, uygun yarigaph iki kiirenin ¢arpimi olarak yazilabilmesidir.
Bunun yani sira, 2-tipinden kiiresel bircok hiperyiizeyin kiitlesel-simetrik oldugu,
ve 2-tipinden Kkiitlesel simetrik kiiresel bir hiperyiizeyin umbilik noktasinin
bulunmadigr gosterilmistir.

Oklid uzaymin paralel ortalama egrilik vektoriine sahip 2-tipinden bir alt
manifoldu, kiiresel veya sifirli tipinden olmak zorundadir. Bu sonucu kullanarak,
paralel egrilik vektoriine sahip 2-tipinden ylizeylerin tam bir simiflandirmasi
verilmistir.



SPHERICAL FINITE TYPE HYPERSURFACES

SUMMARY

In this thesis, we give a short survey on the classification of finite type
submanifolds (especially hypersurfaces) of hyperspheres of a Euclidean space.
A compact hypersurface of a hypersphere of a Euclidean space R™ is
mass-symmetric and is of 2-type if and only if it has constant mean curvature
and constant scalar curvature unless it is a small hypersphere. This result shows
that a compact isoparametric hypersurface of a hypersphere is either of 1-type or
of 2-type. A compact, 2-type hypersurface of a hypersphere in R™ has constant
mean curvature if and only if it is mass-symmetric. Using this general result,
a relation between Dupin hypersurfaces and isoparametric hypersurfaces in a
hypersphere involving 2-typeness is given. Moreover, it is shown that a compact
2-type Dupin hypersurface of a hypersphere has constant mean curvature.

A hypersurface of a hypersphere with at most two distinct principal curvatures is
of 2-type if and only if it is the product of two spheres of appropriate radii. It is
shown that many 2-type hypersurfaces of a hypersphere are mass-symmetric and
that, mass-symmetric, 2-type hypersurfaces of a hypersphere have no umbilical
point.

Furthermore, a 2-type submanifold (not necessarily compact) in R™ with parallel
mean curvature vector, is either spherical or null. By applying this result a
complete classification of 2-type surfaces with parallel mean curvature vector is
given.



1. INTRODUCTION

The notion of finite type submanifolds and maps in Euclidean space was
introduced by B.Y. Chen in the late seventies, and it has become a useful tool
for investigation of submanifolds. A submanifold M of a Euclidean space R™ is
said to be of finite type if the position vector of M in R can be expressed as a
finite sum of R™-valued maps on M, such that for each one of these maps, every
component function of the map lays in the same eigenspace of the Laplacian
A, which acts on smooth functions on M. If one of the nonconstant maps is

harmonic, then the submanifold M is said to be of null finite type.

The first results on the finite type submanifolds were collected in the book
[1] more than twenty years ago. Since that time the subject has had a rapid
development. In a survey article [8], B.Y. Chen reported the progress made by
various geometers on the subject up to year 1996. The most of the references on

this subject can be seen in [§].

The concept of finite type is the natural extension of minimal submanifolds.
The class of submanifolds of finite type consists of nice submanifolds of the
Euclidean space. For example, all minimal submanifolds of a Euclidean space
and all minimal submanifolds of hyperspheres of a Euclidean space are of 1-type
and vice versa. Also, all parallel submanifolds of a Euclidean space are of finite
type. Furthermore, circular cylinders and helical cylinders are of null 2-type, and

results on null 2-type submanifolds can be seen in [6, 7, 9].

The purpose of this thesis is to give a short survey on finite type compact
submanifolds of hyperspheres of a Euclidean space. The second chapter is

devoted to prelimineries and some results on submanifolds.
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In Chapter 3, we give the evaluation of the Laplacian of the mean curvature
vector of a spherical submanifold because it plays an important role in finite

type theory.

In Chapter 4, we are concerned with compact mass-symmetric 2-type
submanifolds of a hypersphere of a Euclidean space. It is shown that, for
a compact hypersurface M of S™~! in R™, if M has nonzero constant mean
curvature and constant scalar curvature, then both the mean and scalar

curvatures are completely determined by the eigenvalues of the Laplacian.

Moreover, it is proved that, a compact hypersurface M of a hypersphere with at
most two distinct principal curvatures is of 2-type if and only if M is the product

of two spheres with appropriate radii.

In Chapter 5, we give some results on isoparametric and Dupin hypersurfaces

involving finite typeness.

In Chapter 6, we study 2-type submanifolds of Euclidean spaces. A 2-type
submanifold M of R™ with parallel mean curvature vector is either spherical
or it is of null 2-type. Also, it is shown that there are no spherical hypersurfaces
of null 2-type. Applying these results, a complete classification of 2-type surfaces

with parallel mean curvature vector is given.

In Chapter 7, we give results and discussion.



2. PRELIMINERIES

Let M be an n-dimensional manifold embedded in an m-dimensional Riemannian
manifold M. Then the submanifold M is also a Riemannian manifold with the
induced Riemannian metric. Let X and Y be two vector fields on M. Then we

have

VXY: ny+h(X, Y), (21)

where V is the Riemannian connection defined on M, V is the induced
Riemannian connection on M, and h is the second fundamental form of the
submanifold M. Let £ be a normal vector field on M and X be a tangent vector

field on M. Then V x¢ can be decomposed as
Vxé=—AcX + Dxé (2.2)

where A¢ and D are the Weingarten map of M with respect to {, and the normal
connection in the normal bundle M= of M in M, respectively. The equations

(2.1) and (2.2) are called the Gauss and Weingarten formulas.

The curvature tensor of the Riemannian manifold M is given by

R(X,Y)Z =VxVyZ —VyVxZ —VixyZ (2.3)
for any vector fields X, Y and Z on the submanifold M. Similarly, the curvature
tensor of the submanifold M is given by

R(X,Y)Z =VxVyZ -VyVxZ —Vxy)Z.

For any vector field W on M, if we write R(X,Y,Z,W) = (R(X,Y)Z, W) and
R(X,Y,Z, W)= (R(X,Y)Z, W), then we have

RX,Y,Z,W) = R(X,Y,Z,W) + (h(X, Z), h(Y,W)) — (h(X, W), h(Y, Z)),
(2.4)



which is called the Gauss equation. Let &,...,&,,_, be an orthonormal normal
basis for the normal bundle of M in M and let h* (o = 1,...,m — n) be the
corresponding second fundamental forms, that is, A(X,Y) = Zha(X ,Y)E,.

The normal component of R(X,Y)Z is given by
(R(X,Y)2)" = (Vxh)(Y, Z) — (Vyh)(X. Z) (2.5)
where the covariant derivative of h, denoted by (Vxh), is defined as

(Vxh)(Y,Z) = > (Dx(h*(Y, 2)&) — h*(VxY, Z)éa — h*(Y, Vx Z)&a)

[0}

= Y (b)Y, 2)e + > hO(Y. Z)Dxé, (2.6)

[0}

The equation (2.5) is called the Codazzi equation. If the ambient space M is a

space of constant curvature, then Codazzi equation can be written as
(VxA)Y — ApeY = (VyAe) X — Ap, e X. (2.7)

Given two vectors X and Y in T,(M) and an orthonormal basis ey, ..., e, of

T,(M), we define the Ricci tensor S and the scalar curvature p by

n

SY) = Y (R(e, X)Y.e),

i=1
1 n
P = m ;S(ei, 62').

The mean curvature vector H of M in M is given by
1
H = —trh, (2.8)
n

and if e,,,1, ..., €, are orthogonal unit normal vector fields of M in M such that

ent1 is parallel to the mean curvature vector H of M, the allied mean curvature

vector A(H) of M in M is defined as

m

.A(H) = Z tI’AHAQEB.

B=n+2
Let M be an n-dimensional, oriented Riemannian manifold. We choose an

orthonormal local basis eq,...,e, whose orientation is the same with that of
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M. Denote by w!,...,w" the dual basis of e1,...,e,. Then w' A ... Aw" is
the volume element of M. Since w!, ..., w" form a local basis of A\'(M), every

p-form o on M can be expressed locally as

a = Z Wiy WA s AW (2.9)
1<i1 < <ip<n
The Hodge star isomorphism, * : AP(M) — A"P(M), from p-forms into
(n — p)-forms is defined as

) T —
*xQ = E €iy..ip jl,,,jn_pailmipwﬂ AN...\Nw™ P, (210)

1<j1< . <jn-p<n

where €, i, ji..j._, 18 zero if 4;...4, ji...j,—p do not form a permutation of
{1,...,n}, and is equal to 1 or —1 according to whether the permutation is even
or odd. The form x« is called the adjoint of the form «. The adjoint of 1 is
just the volume element, *1 = w! A ... A w", and adjoint of any function is its

product with the volume element.

Let a and (8 be p-forms given by
o= Zailmipw“ Ao Aw' and 0= ijlmjpwjl Ao AW,
Then we have

aAxf = ( Z ail.,_ipw“/\.../\wip)

i< <ip
k1 K
/\( Z Ejl---jp ki..kn_p bjljpw AN...\Nw p)
k/'1<“'-<k’n—p
i i k i —

= E €irvip krokin—p Qiyoip OipipW™ Ao AWP AW AL AW

k1< <kn_p
= E @i, ..y iy, wAWE AL AW

1< <tp
= E iy Uiy * 1. (2.11)

i< <ip

For any two p-forms a and 3 on M, a (global) scalar product of a and 3 is

defined by
(a,ﬂ):/Ma/\*ﬂ, (2.12)

5



whenever the integral converges. Two forms are orthogonal if their scalar product
is zero. Using the star operator and the differential operator, the co-differential

operator 6 : AP(M) — AP"'(M) is defined as

oo = (—1)”1”“"Jrl *xd* q,
where « is a p-form on M. It follows from straightforward computation that,
xda = (—1)Pd* « and * da = (—1)PT6 * a. (2.13)
Using the operators d and § we define an operator A by
A =dd + dd.

Then A maps p-forms into p-forms. The operator A is called the Laplacian of
M. A p-form o on M is called harmonic if Aa = 0.

Proposition 2.1. [1] If M is a compact, oriented Riemannian manifold, and «

and [ are two forms of degree p and p + 1 respectively, then we have

(da, B) = (a0, 35), (2.14)

i.e., the operator ¢ is the adjoint of d. Consequently the Laplacian A is

self-adjoint.

Proof : The manifold M is compact without boundary, so the Stokes theorem
implies
/ dlaA*5) =0
M
Since d(a A #03) = da A %5 + (—1)Pa A d(*3), we have

/Mda/\*ﬂ:(—l)pl/ a Nd(x3).

M

The two forms da and 3 are of degree p+1, so we can write / da A x5 = (da, ).
M
On the other hand, from (2.13), we have d(*3) = (—1)P*! x 63, which yields

(—1pp? /M o Nd(x) = (—1p (~1yp! /M o A (50) = (o, 6).

6



Combining these results, we obtain (2.14). Moreover, we have
(Aa, f) = (dda, B) + (ddev, §) = (a, do) + (e, 0df) = (e, AP),
hence A is self-adjoint. m

Theorem 2.2. [1] On a compact, oriented Riemannian manifold M, a form «

is harmonic if and only if da = da = 0.

Proof : Let a be a p-form on M. Then Proposition 2.1 implies
(Aa, ) = (dda, @) + (dda, @) = (da, dax) + (de, dev).

Since for any form 7 we have (v,7) > 0 and we have (v,v) = 0 if and only if

~v = 0, we conclude that « is harmonic if and only if da = da = 0. m

Corollary 2.3. [1] Let f € A’(M), where M is a compact Riemannian manifold.

Then f is harmonic if and only if it is constant.

Proof : If f is harmonic, from Theorem 2.2 we have df = 0, which implies that
f is constant. Conversely, let f be constant and w' A ... A w™ be the volume

element on M. Then we have df = 0 and
§f = (=1D)"Mxdx f= (=" xd(fw A AWY) = 0.
From Theorem 2.2, we see that f is harmonic. O]

Corollary 2.4. [1] If f is a differentiable function on a compact, oriented

Riemannian manifold M, then we have

/MAf*1:o.

Proof : Since f is a O-form, Af = ddf. Then using Proposition 2.1, we have

/Af*lz/ Sdf +1 = (5df,1) = (df, d1) = 0.
M M



Proposition 2.5. [1] Let  : M — R™ be an isometric immersion of a compact

n-dimensional Riemannian manifold M into R™. Then we have
/ (1+(z,H))*1=0.
M
Proof : Because Ax = —nH, we have

n/M(x,H>*1 - —/M(:L’,Aa:)*l:—/M((:I:l,...,:cm),(Axl,...,Axm)>*1

= — Ax;x1=— /Ai/\*iz— (Az;, x;)
z‘:1/M:C ‘ ; M ‘ ' ; o
i=1 i=1

NE

n/(x,H>>|<1 = — Y (dz;,dz;). (2.15)

The 1-form dx; can be written in terms of the dual basis w

1

<.
Il

1 n —
soo,w™ as dx; =

dz;(e;)w! = > ej(x;)w!. Substituting this in (dx;, dz;) we have
=1

(dz;,dx;) = /dez-/\*(dxi):/M(Zek(mi)wk)A*(Zej(mi)wj)
= /M(Zek(azi)wk)/\( Z €110 165 (T4)

wh AL AW AL AW,

where w’/ means that w’ is missing. Hence,

n

(dvi, dz;) = /A/[(Zekz(l'i)wk)/\(Z(—l)j_lej(l‘i)’wl/\"'/\:L_U\}/\"'/\wn)

j=1

= /M (Z(—l)jflek(xi)exxi)wk A (wl A--- A 1/1)\; Ao A w"))

k.
— /M(Z(—l)j—l(ej(xi))ij/\(wl/\.../\zu\]/'/\.../\w”))
= /M (Z(_l)j_l(_1)j_1(€j($i))2wl A Aw)
(drdn) = [ eyt 216



0 0

Let v1,...,y, be a local coordinate system on M, e P be the local
yl Un
coordinate base field and dy, . . ., dy, be the corresponding dual base field. Then
= 0

any 1-form w on M can be expressed locally in this basis as w = Z w(@)dyj.

=1 J
So we can write

ox;
dxZ d —Zd .
Z yﬂ — ayj Yj
0
( . 8yj>

respect to the coordinates yi,...,y,, and by ¢” the inverse of g;;. Since

We denote by g¢;; = the components of the metric tensor with

the basis eq,...,e, is orthonormal, we have <ek,el) = 0g. Let n and ~ be
two 1-forms on M. Then we can write n = Zn dyk Zn er)w® and

v = Zv dyl 27 e;)w'. We know that an inner product of two 1-forms
!

is deﬁned as

0 0
_ ki
(n,7) E g n(ayk)v(ayl),
so we see that (n,v) = E S (e)y( E n(ex)v(ex). Therefore we find

(dx;, dx;) = nglde dxz(a?/l) Z(%(%‘))Q- (2.17)

k

Combining (2.15), (2.16) and (2.17) we obtain

n/M Z/M (ex(2:))?) * 1

k=1

ox; 8%
= —Z/ ngldx% a U dx’(c‘)yl Z/ Z klﬁyk 3yz .

w071 0% 0T~ ,0x1 0oy 0T,
= — 1
/M(Zg <(3yk’0yk’ ’3yk)’(3yz’3yz’ ’ 8yz>>>*

k,l
=— M 1:—/ 1
/M(;g gkl)* n M*

and the proof is completed. O

Let M be a connected (not necessarily compact) submanifold of R™ and z : M —

R™ be an isometric immersion of M into R™. If eq,..., e, is an orthonormal local

9



frame field tangent to M, then the Laplacian A of M, which acts on smooth
functions C*° (M) on M, is given by

A= Zn:(veiei — e;€;).

i=1

If the position vector x of a submanifold M in R™ can be written as
q
T =xo+ Z Ty, Axy = Ny, (2.18)
t=p

where ¢ is finite, then M is said to be of finite type, or of order [p, q]. Here x
is a constant map and z,’s are non-constant maps. A submanifold M is said to
be of k-type, if there are k nonzero z;’s in (2.18), where k is a natural number.
A k-type submanifold is null if one of the z;’s is harmonic. If a submanifold M
is compact, then every eigenvalue A; of the Laplacian is nonnegative, and on M
only the constant functions are harmonic. So a compact submanifold M can not
be null. In this case, the constant vector z, in (2.18) becomes the center of mass
of M in R™. A submanifold M is of null 1-type if and only if it is a minimal
submanifold of R™. Moreover, a submanifold of R is non-null 1-type if and

only if it is a minimal submanifold of a hypersphere of R™.

We give the main theorems about finite typeness of an isometric immersion of a

compact Riemannian manifold M into R™ omitting their proofs.

Theorem 2.6. [1] Let x : M — R™ be an isometric immersion of a compact
Riemannian manifold M into R™. Then M is of finite type if and only if there
is a non-trivial polynomial P such that P(A)H = 0 (or P(A)(x — ) = 0).
In other words, M is of finite type if and only if the mean curvature vector H

satisfies a differential equation of the form
AFH + ClAk_lH + -4 1 AH +c,H=0
for some integer £ > 1 and some real numbers cq, ..., c.

Theorem 2.7. [12] Let M be a finite type submanifold of R™. Denote by P,,(t)

a monic polynomial of least degree with P,,(A)H = 0. Then we have

10



(a) the polynomial P,,(t) is unique,
(b) if @ is a polynomial with Q(A)H = 0, then P,,(t) is a factor of @), and

(c¢) M is of k-type if and only if degP,, = k.

Example. (A Flat Torus in R®) We consider the immersion z : 7% — R defined
by

. o : t :
x(s,t) = (asins, bsmssml—),bsmscosl—),acoss,bcosssml—), bcosscosl—)).

(2.19)
Assume that a? + b*> = 1 and a,b > 0. The coordinate base fields of the tangent

bundle are

. . . .t .
er = (acoss,bcosssin—,bcosscos—, —asins, —bsin ssin —, —bsin s cos - ),
b b b b
. t . ot t ot
es = (0,sinscos—, —sinssin—, 0, cosscos -, — cos ssin —).

b b b b

We can see that eq, e5 form an orthonormal basis. We have

_ t t t

Veer = (—asins, —bsinssin R —bsin s cos R —acos s, —bcos ssin -,

t

—bcosscosg)7

_ — t 1 . t . .

Ve 2 = Ve = (O,COSSCOSE, —cosssml—),(), —smscosg,smssm 5),
= 1 t 1 t 1 t 1 t
Ve,2 = (0,—=sinssin -, ——sin scos —,0, —— cos $sin —, —— €0S 5 COS — ).
2 .= b b b b b 3

Using V.,e; = (V.ej, e1)er +(Ve,ej, e2)ea, we find that V.e; =0 for 4,5 = 1,2.

In local coordinates, the Laplace operator takes the form

0? 0?
A=—(—+—).
(aSQ + atQ)
From (2.1) and (2.8) we obtain
1 t t t
H= —g — %(0, sinssing, sinscos[—), O,cosssing, COS S COS E)
Applying the Laplacian we have
AH (14+ ) H + 2 (sins,0,0 0,0)
= — — —(s coS
b2 2b2 11187 7 ) 87 7 )
1 1
AN’H = —(1+ b_2)2H + %(2 + b—2)(sins,0,0,cos 5,0,0).

11



Consequently we have

1 1
A*H — (2+ﬁ)AH+ (14 —)H =0.

This shows that T2 is of 2-type in RS.

Let v; and vy be two R™-valued functions on M. An inner product of v; and v

is defined by
(v1,09) = / (v1,v2)dV, (2.20)
M

where (v1,v9) denotes the Euclidean inner product of v; and v,.

Lemma 2.8. [1] Let  : M — R™ be an isometric immersion of a compact
Riemannian manifold M into R™. Then we have (z;,xs) = 0 for ¢t # s, where x;

is given as in (2.18).

Proof : We can write (2.18) in vector form as

q

(1, oy Tm) = (Tots - -+ Tom) + Z(mtl, ey D)

t=p

Since A is self adjoint, using (2.20) and (2.12) we have

(T, 05) = )\t/ (Z$t¢$si)dvz)\t2($tia$si)
Moy

1

- Z(/\tmtmxsi) = Z(A%%’ Tsi) = Z@“’ Azy;)

= Z@ti, Astsi) = As/ (thixsi)dv = As(t, Ts).
Mo

%

But we have A\; # A for ¢t # s, hence (x4, z5) = 0. O

We give some theorems without proofs for later use.

Lemma 2.9. [1] Let M be a compact minimal submanifold of a hypersphere
S™=1(r) in R™. Then M is mass-symmetric in S™~!(r).

An m-dimensional complete Riemannian manifold of constant curvature k is
called a space form and it is denoted by R™ (k).

12



Proposition 2.10. [1] An n-dimensional totally umbilical submanifold M in the
real space form R™ (k) is either totally geodesic in R™(k) or contained in a small

hypersphere of an (n+1)-dimensional totally geodesic submanifold of R™ (k).

Proposition 2.11. [1] Let M be a pseudo-umbilical submanifold of the real
space form R™(k). If M has parallel mean curvature vector, then either M is
a minimal submanifold of R™(k), or M is a minimal submanifold of a small

hypersphere of R™ (k).

Theorem 2.12. [2] Let M be a surface in an m-dimensional space form R™ (k)
of curvature k. If the mean curvature vector H is parallel in the normal bundle,

then M is one of the following surfaces;
(a) minimal surfaces of R™(k),
(b) minimal surfaces of a small hypersphere of R™(k), or

(c) surfaces with constant mean curvature |H| in a 3-sphere of R™ (k).

Proposition 2.13. [2] Let M be a surface in a 3-dimensional space form
R3(k) with constant mean curvature |H|. If M has nonzero constant Gaussian

curvature, then M is contained in a hypersphere of R3(k).

Proposition 2.14. [2] The minimal surfaces of a small hypersphere of a
Euclidean m-space R™, the open pieces of the product of two plane circles, and
the open pieces of a circular cylinder are the only nonminimal surfaces in R™

with parallel mean curvature vector and constant Gaussian curvature.
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3. THE LAPLACIAN OF THE MEAN CURVATURE VECTOR

In this section we give the evaluation of the Laplacian of the mean curvature

vector of a spherical submanifold.

Lemma 3.1. [1] Let M be an n-dimensional submanifold of a hypersphere

S™=1(r) of radius r in R™ centered at the origin. Then we have

na2

AH = AP H' + A(H') + (VA + o/ (J4dP + 5)6 = T, (3.1)

where VAH = VAH + ADH-

Proof: We denote by V' and V the connections of S™~! and M. Let H, h, A
and D be the mean curvature vector, second fundamental form, the Weingarten
map and the normal connection of M in R™; H', b/, A" and D’ be those of M in
S™=1, respectively. Let a and o/ be the lengths of H and H’ respectively and &
be the unit normal vector field £ = %/. Then we have A, = A’; and D{ = D'E.

For an n-dimensional submanifold M of R™ we have

AH =APH + ||Au||?H + A(H) + tr(VAg). (3.2)
Let {41, Mns2, - --,Mm} be an orthonormal normal basis of M in R™ such that
N = L. Then we have
,
H:litrAn:l(trAw£+ mzltrAn):H’—£ (3.3)
n A= Ty plB r2’ '

B=n+1 B=n+1
If we apply the Laplacian of the normal bundle of M in R™ to the mean curvature
vector H, we write

APH =YDy, ..H - D.D,.H, (3.4)

i=1
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where ey, ..., e, is an orthonormal tangent basis of M. Since D’.,H’ is a vector
normal to M and tangent to S™!, we have D., D', H' = D'..D'..H'. We also see
from D = 0 that Dy, .. H = Dy, .,(H'— %) — Dy, ..H' = D'y, ..H'. Applying
these in (3.4), we find APH = AP'H'.

We choose an orthonormal normal basis {e,11, ...., €, } of M such that
H , x 1
== = d g = — 1), 3.5
Cni1 = a(a 7,2) an €n+2 Ta(fJFOém) (3.5)

where o = (a/)? + 7“_12 We can see from the definitions of e,,; and e, that, at
each point of M, the two sets of vectors {e,t1,€n12} and { %, ¢} span the same
subspace of the normal space of M in R™. Hence {;, €, €ni3,.ery €} 18 also an
orthonormal normal basis of M. The allied mean curvature vector of M in ™!
is given in this basis by

m

A,(H/) = Z tr(AH/Aﬁ)G/g. (36)

B=n+3
On the other hand, when e, 1 and e, are chosen as in (3.5), we can write the
allied mean curvature vector of M in R™ as
m

AH) = Y tr(ApAp)es. (3.7)

B=n+2

Moreover, we have

AH) = tr(AgAno)ena+ Y tr(Agdg)es
B=n+3

< 1
= tl"(AHAn+2)€n+2 + Z (tl"(AH/AB) + ﬁﬁl"Aﬁ)@ﬁ.
B=n+3

Since H = ae,11, we obtain trdg =0 for § =n+3,...,m. Using (3.6) we find

A(H) = tl"(AHAn+2)€n+2 + AI(H/) (38)
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A direct computation gives

n

tr(AgAn2) = Z (A Anioe;, e;)

i=1
= i i(0/<A£A£+a’ac“3i ei) — i<AxA£+a’x€i ez'))
— ra ’ 72 ’
S B | ) ! —
= Etr(Ag) + E ;(ﬁ — (a/) )<A£€“ €i> — £ o <€i7 €i>
o s 1.1 o na/
= @HAsH + a(ﬁ — (o)7)trAe — REP
Since trA¢ = na’, we have
o 2 2
tr(AnAnsz) = —([|4l” = n(a)"). (3.9)
Substituting (3.9) in (3.8) gives
/ ! Cl/ 2 "2
AH) = A(H) + (AP = n(0))enso (3.10)

Applying (3.10) in (3.2), we obtain
/ = O/
AH = AP H' +tx(VAy) + ||Au||?H+ A (H') + E(||A£||2 —n(a)*)ense. (3.11)
From (3.3) and (3.5), we also find,

PlAnl® = ’tr(Audn) = (AuAneie;)

- 2a/ n
= Y (Aw_ 5 A se;e) = ()] Al + e+,

=1

1 2n(a)?  n
Al = S (@)?ad? + 20T 1y (3.12)
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If we substitute (3.12) in (3.11), we get

, — ! 9 AV
AH = APH 4 u(TAg) + AH) + & (@) Ag + 200 1

1
a2r?

= AP'H +t0(VAy) + A(H') +

2n(a/)?  n o

"2 2

A - =

(@Y Aell® + —5=+ Z)z + —

o2 4o 9
r2a2 ||Af|| €+( r2a2

_(Qn(o/)2 n  n(d)

([ A¢l* = n(a’)*)(

n(o/)?)

)€

£+ dx

roa

nao’

)
)§

a?rd

4):1:

CY2T'4 o2rb 2r2

= APH' 4 t(VAg) + A(H') + o' A6 + ¢

r2

r4a2

TZTZOZZ

! 1l ~— / / / nO/ /
= AVH'+ u(VAg) + AH) + APE + 56 = S5 (07 + )

! 2

na no
£ - —u.
.

— AVH +t(VAg) + A'(H') + || Ac||%¢ +

r2

Consequently we have (3.1).

(o + (o/)*((e)” + l)7"2)x

Moreover, if r = 1, then using H = H' — z, the equation (3.1) becomes

AH = A" H' +tx(VAz) + A (H') + (| A¢l* +n)H + (| Ael* = n(a')?)

z. (3.13)

Lemma 3.2. [3] Let M be an n-dimensional submanifold of S™ (1) in R™.

Then we have

tr(VAy) = ggrad o + 2trApg
Proof: Let Fi, Ey,.....E, be orthonormal eigenvectors of Ay =
P1, P2, - - -, Pn be the corresponding eigenvalues. Since
ApE; = O/piEi
and
we obtain

(Ve Ap)Ej = pi(Eid )Ej + o/ (Eip;) Ej + Z o' (p; — pr)wh(E;) Eg.
P

17
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Combining the Codazzi equation (2.7) and (3.17) we have

Apgelj — Apg e = (Ve Ae)E; — (Vg Ae) B
= (Eip;)E; — (Epi)E;

+ > (o5 = )W (E) = (pi = po)wf (E;)) Ex(3.18)

whenever o/ # 0.

If we take the inner product of both sides of (3.18) with E;, we find
—(Ejpi) + (ps = p)wi(E) = (pi = pi)wi(E;) = (ApgeEj — Apy ¢Ei, Ey),
(pi = py)w](Ei) = (Ejps) + (Apy ¢ Ej — Ap,, ¢Ei, Ei) i#j. (319

Noting that VAy = VAy + Apy and applying H = H' — z, A, = —I and
Dz =0 in tr(VAy) =Y. (Vg An)E; + Apg,nE;), we have

1

r(VAp) =Y (Ve Aw)E; + Ap, wE) (3.20)

If we put j =i in (3.17), we obtain
k
Substituting the above equation in (3.20) gives

tr(VAy) = Z (pz-(Eio/) +d' (Eip;) + Z o (pr — Pz)wZ(Ek))Ez
%

(2

=+ Z Aa’DEig—l-(Eia’)gEi

= > (pBEa) + ' (Ep) + Y (px = pi)wi(By)) E;

(2

+a'trApe + Z(Eio/)piEi
Consequently we have

tr(VAy) = o/trAD@LZ (Q(Eia')meo/(Eipi)—l—Z o' (p—pi)wi,(Ex)) E;. (3.21)
i k
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Substituting (3.19) into (3.21) and making a direct computation we find

tr(VAH)

= oztrAD5+Z (B )p; + o/ (Eip;)

+ Y o (Eipi + (Apg, e Bi, Br) — (Apg, ¢ B, Ei))) Ei
k, k#i

= o'trApe + Z(Eia/)piEi + Z ((EiO/)Pi + & (Eipi)

+ Z a,(Eipk>)Ez' + Z 05/<ADEk§Ei7Ek>Ei

k, ki i,k kA

— Z 05/<ADEi§EkaEk>Ei
i, k,k#1i

= trdpm +Z (E:d)piE; + o'trApe — « Z ADE eEi, E;) E;

+Z "(Eipi)+ > o/ (Eipr)) i—naZH,DEZfE

k, k#i
+Oé Z<ADEi5Ei’ E2>Ez

= 2trApp — na Z (H,Dp.&)E; +Z (Eip)Ei + ) o/ (Eipr) Er
ik

where we have used the following statements,

and

Z <ADEk§Ei7 Ek>Ez = tI'Apg — Z<ADEi§Ei’ Ez)
i, k, k#1 7

> (AppeBr BB =) (nH,Dp&)E; - Y (Ap, B, E)E,.

i)k, ki

Hence, considering

we obtain

tr(VAp) = 2trApg —no’ Y (H, Dp,&)E; + na' > Ei(o))E;. (3.22)

On the other hand, we have

(H,Dg,&) = (H',D'p¢) =a(§, ~A'¢E;i + D'g€)

= o(6, V&) = SEEE =0
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and

/ / _n 2 _n 20\ .
no Z(Eia)Ei = 32 (Eo )Ei—§Zda (E;)E;
— g Z(grada2, E)E; = —grada®

Substituting these in (3.22), we obtain (3.14). O

Corollary 3.3. [4] Let M be a hypersurface of S**1(1) in R""2. Then we have
AH =A""H' + ggrad o + 2trApg: + (|| A¢l)* + n)H' — na’z. (3.23)

Lemma 3.4. [3] If M is a submanifold of S™~! with parallel mean curvature

vector H' (or H) then tr(VAy) = 0.

Proof : The mean curvature vector is parallel, so we have DH’ = 0, which
implies trApy: = 0. On the other hand, since o' is constant, we have
ggradoz2 = gglraud((o/)2 +1)=0. O

Corollary 3.5. [3] If M is a hypersurface of S"™™ in R"*? with constant mean

curvature, then tr(VAg) = 0.
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4. COMPACT SPHERICAL SUBMANIFOLDS OF FINITE TYPE

In this section we study properties of compact spherical submanifolds of finite
type in R™. We give some relations between the eigenvalues of the Laplacian

and the mean and scalar curvatures of a spherical submanifold of R™.

Theorem 4.1. [3] Let M be a compact, n-dimensional submanifold of a
hypersphere S™~! in R™ such that M is not of 1-type and the mean curvature
vector H' is parallel. Then M is mass-symmetric and of 2-type if and only if M

is an A-submanifold of S ! and ||Ag/|| is constant.

Proof: Assume that S™ ! is centered at the origin with radius 1. Since H' is
parallel, we have A”"H’ = 0 and Lemma 3.4 implies that tr(VAg) = 0. So
(3.13) becomes

AH = A(H') + (Ael* +n)H + (| Ael]* ~ n(a))z. (4.1)

Let ey, eq, ... e, be an orthonormal local tangent basis on M. If Ay has constant

length, then since

n

| Am|? = tr(Afy) = () Y (Aeer, Aces) = (o)[| A,

i=1
(a')?|| A¢||? is also constant. Here o/ is a nonzero constant, because if o/ = 0,
then M is minimal in S™! and a compact minimal submanifold of a hypersphere
of R™ is of 1-type. But this contradicts with our assumption, hence o’ # 0 and

| A¢||* is a constant.

If M is an A-submanifold of S™~! and ||Ag|| is constant, from (4.1) we have

AH =bH + cx, (4.2)
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where b = || A¢||* + n and ¢ = ||A¢||> — n(e/)? are constants. Integrating both
sides of (4.2) on M, we find

/ AHAV = b / HdV +c / zdV. (4.3)
M M

M

The integral on the left hand side is zero by Corollary 2.4 and the first integral
on the right hand side is zero by Corollary 2.4 since Az = —nH. So we obtain

c / zdV = 0. (4.4)

M

We know that the center of mass zy of M in R™ is given by
[ zdV
M

Tav-
M

To —

If ¢ # 0, from (4.4) we see that xy = 0, which implies M is mass-symmetric.

If ¢ = 0, we have || A¢||* = n(a’)?. Let Fy, Fs, ...., E, be the principal vector fields
of A¢ and py, po, ...., pn be the corresponding principal curvatures. Then we have

n

14el® = tx(A2) = Y (AX(E), Bi) = pr-

i=1
On the other hand we have

n(0')? = n(-tr A = n(-- S (A sz

A

Substituting these in [|A¢]|? = n(a’)?, we obtain
1
PPyt = 5(01+P2+-~-+Pn)2

which holds if and only if p; = py = - - - = p,,. But this implies that Ay = (a/)?I,
that is, M is pseudo-umbilical in S™~!. Since H’ is parallel, Proposition 2.11
implies that M is of 1-type which is a contradiction to our assumption. Thus
xo = 0, M is mass-symmetric in S™~!. By applying (4.2) and Theorem 2.6, we
conclude that M is of 2-type.

22



Conversely, if M is mass-symmetric and of 2-type, then by Theorem 2.6, there
exists constants b and ¢ such that AH = bH + cx. Combining this with (4.1),

we have

AH = A(H') + (|Ael* +n) H + (| Aell” — n(o/)*)z = bH + cx

Since H = H' — z and A'(H’) is normal to H' and tangent to S™~!, we see that
A'(H') = 0. From the above equation , we also see that bH' = (|| A¢||* + n)H'.
As M is of 2-type, we have H' # 0 and || A¢||* = b—n, which is a constant. From
| A¢||* = n(a’)? = ¢, we have o/=constant. Consequently ||Ap/[|* = (/)?[|A¢||? is

constant. O

The second fundamental form A of a submanifold M of a Riemannian manifold

M is parallel if we have

(Vzh)(X,Y) = Dzh(X,Y) — h(VzX,Y) — h(X,VzY) =0,

for any vector fields X, Y and Z tangent to M. A submanifold is called a parallel

submanifold if it has parallel second fundamental form. Let M be a parallel

submanifold of M and let ey, es, ..., e, be an orthonormal local tangent basis of
n .
M. Using V.. e; = > w!(ex)e;, we have
j=1

1 n
DekH = Dek (EZh(el,ez))
=1

n

1 2 X ,
= =D ((Veeien) + hlei, Veeer) = = > wl(en)hes, e:)
i=1 i,j=1
2 ) )
= =D (wl(ex) + wj(ex)hles e) = 0

1<j

Therefore, a parallel submanifold has parallel mean curvature vector. If we write
H = (31 where 7 is the unit vector in the direction of H, then ||Ay||* = 5%||A,|?

is constant because 3 is constant and for any vector field X tangent to M we
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have,
XA, = XZ(AE]ei,ei :XZ (Ayes, )

= XZ (e5,€;), Z —2Zh”X (R])

= ZZh (Dxh(ei, e)), _ZZh vxei,ej)m(ei,vxej),n)

= ZZh” U)Z. ek,e] +22h ezaek)vn>

i3,k .5,k
= 4> hlwf(X)(h(ej,en),n) =4 > LR (wf(X) + wi(X)) = 0.
1,5,k 7, i<k

Corollary 4.2. [3] If M is a compact parallel submanifold of S™~!, then M is
an A-submanifold of S™~! if and only if M is mass-symmetric and M is either

of 1 or 2-type in R™.

Proof : Let M be an A-submanifold of S™~!. Since M is a parallel submanifold,
the mean curvature vector is parallel and | A/ ||* = (¢/)?||A¢]|* is constant. If
o' = 0, then M is minimal in S™~!, hence it is of 1-type. Also, by Lemma 2.9, M
is mass-symmetric in S™!. Let o/ # 0, then from the proof of Theorem 4.1, we

see that AH = bH + cx, where b and ¢ are constants. Thus from (4.3), we have

c/ xzdV = 0.
M

If <=0, M is pseudoumbilical. Since the mean curvature vector is parallel, by
Proposition 2.11, M is a minimal submanifold of a small hypersphere S™~2(cy),
(co < 1) of S™71(1), which implies that M is mass-symmetric in S™2(cg). On
the other hand, if ¢ # 0, since we have A'(H') = 0 and ||Ag/|| is constant,
by Theorem 4.1, M is mass-symmetric and is of 2-type. Conversely, let M be
mass-symmetric in S™~! and be of 1 or 2-type in R™. If M is of 1-type, then
we have AH = aH for some constant a. Then from (4.1), we get A'(H') = 0.
Finally, if M is of 2-type, it follows from Theorem 4.1 that A'(H’) = 0. O

Theorem 4.3. [3] Let M be a compact hypersurface of a hypersphere S™*! such

that M is not a small hypersphere of S"*!. Then, M is mass-symmetric and of
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2-type if and only if M has nonzero constant mean curvature o’ and constant

scalar curvature.

Proof : Without loss of generality we may assume that S"*! in R"*? is
centered at the origin with radius 1. Assume that M is of 2-type in R"*2 and
mass-symmetric in S"™1(1). As M is a hypersurface of S A'(H') =0 on M.
{&, 2} is an orthonormal normal basis of M in R"*? so, for any vector fields X

and Y tangent to M, we can write the second fundamental form of M as
B(X,Y) = (h(X,Y), ¢ + (h(X,Y), )z = (X, V)€ + B*(X, Y ).

Let eq, €9, . .., €, be an orthonormal tangent basis of M and ||h|| denote the length

of the second fundamental form which is given by ||h]|*> = Z((hfj)z_’_(hfy)Z) where

i\j
hfj = h%(e;,e;) and hi; = h*(e;, e5). Then we have

IR1P =D (((Agei, ) + ({Ases, €))) = [ A¢])® +n.

2¥]

Using o? = («/)? + 1 and [|h]|? = || A¢||* + n, we can write
[ A¢ll* = n(a')* = |A]* — na’. (4.5)

Since M is of 2-type we have AH = bH + ¢(x — x¢), where b and ¢ are constants
and zg is the center of mass of M in R"*2, Moreover we have xy, = 0 because M

is mass-symmetric in S**!.

Substituting A’(H’) = 0 and (4.5) in (3.13), and combining with AH = bH +cz,

we obtain

AP H' +t2(VAg) + [|h)*H + (||h]|* = na®)z = bH + cx. (4.6)

Since tr(VApg) is tangent to M and other terms in (4.6) are normal to M, we

get tr(VAy) = 0. If we put H = H' — z in (4.6) we have

AP'H' +||h|*H' — no’s = bH' 4 (¢ — b)x. (4.7)
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AP'H' is parallel to H' so we find na® = b — ¢, which implies that o is constant.
Therefore H' is parallel and AP"H’ = 0. Because M is of 2-type, o’ is nonzero,

so (4.7) yields ||h||* = b. Since the scalar curvature satisfies
n(n—1)p=n’a® — A, (4.8)

p is also constant.

Conversely if M has constant scalar curvature and nonzero constant mean
curvature o, then the mean curvature vector H' is parallel, hence A”'H' = (
and tr(VAg) = 0 by Lemma 3.4. Also M is an A-submanifold of S"*! because
M is a hypersurface. From (4.8), we see that ||h]|? is constant. As a result we
have

AH = ||h|[*H + (|h[|* — na®)x = bH + cx

where b and ¢ are constants. From the proof of Theorem 4.1, we know that if
¢ # 0, M is mass-symmetric in S"** and is of 2-type in R"2. If ¢ = 0, then M is
of 1-type, which implies that it is a minimal submanifold of a hypersphere S™*+*
in R"*2 and M lies in the intersection of S"*' and S"*!'. Then M is either a
great or a small hypersphere of S*™!. M can not be a great hypersphere of S**!
because great hyperspheres of a space form are totally geodesic, thus minimal
in S"*1, but we assumed that o’ is nonzero. Finally, M can not be a small

hypersphere of S"*!, because this contradicts to our assumption. O

Theorem 4.4. [1] Let M be an n-dimensional compact submanifold of a

hypersphere S™(r) of radius r in R™*!. Then

(1) if M is of finite type, then A\, > 22 and A\, = 22 if and only if M is of 1-type,
r r

(2) if M is mass-symmetric in S™(r), then \; <\, < % and \, = % if and only

if M is minimal in S"(r) and hence M is of 1-type.

Proof : It is known that for a compact submanifold M of R™*!, we have

vol(M) k=1,2,3 or 4. (4.9)



equality holding for some k& = 1,2, 3 or 4, if and only if M is of order ¢. (for the
proof, see [1], p 296) We also have

1
|H|* = |H’|2+ﬁ. (4.10)

From (4.9) and (4.10), we find

— )Jvol(M /|H| dv < ( q)vol(M). (4.11)

G
This shows that A, > CIEA = ot then (4.10) and (4.11) implies H' = 0. So
M is minimal in S™ and is of 1-type. The converse of this is clear.
For statement (2), we assume that the centroid of M is the center of S™(r) and
without loss of generality we may assume that S"(r) is centered at the origin.

Then we have x = Z x;. From Az = —nH, Proposition 2.5 and Lemma 2.8 we

t=p
have
nvol(M) = —n/ (x, H)dV = (z, Ax)
M
q q q
= (Z Tt, Z/\sxs) = Z)\t($taxt>
t=p s=p t=p
q q q
> A (wnw) = A0 @ Y ) = A, x) = Nyl
t=p t=p S$=p
nvol(M) > A\ |lz||* (4.12)

Since M lies in S™(r), using (2.20) we find
||95”2:(957$)=/ (x,z)dV = / Zm dV = r?vol(M).
M i=1

Thus, by (4.12) we obtain

ﬁ >\, (4.13)

If the equality of (4.13) holds, then the inequality of (4.12) becomes equality and

M is of 1-type. The converse of this is clear. O

Combining Theorem 4.3 and Theorem 4.4 we obtain the following:
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Corollary 4.5. [3] Let M be a compact hypersurface of S"*!(1). If M has
constant mean curvature and constant scalar curvature, then either M is a small
hypersphere or the eigenvalue A\, of A on M satisfies A\, < n. Equality holds if

and only if M is minimal in S**! and M is of 1-type in R"*2.

Theorem 4.6. [3] Let M be a compact hypersurface of S"**(1) such that M
is not a small hypersphere. If M has nonzero constant mean curvature o’ and

constant scalar curvature p, then both o' and p are completely determined by

the order of M. We have

(@) =1~ =), (4.14)
1 M,

p= E(A;Hr)\q)—m, (4.15)

IBI2 = A, + Ay, (4.16)

Proof : Without loss of generality we may assume that S"™!(1) is centered at the
origin. It follows from Theorem 4.1 that M is mass-symmetric and is of 2-type.
Since M is of 2-type, by Theorem 2.6, there exists a unique monic polynomial
P(t) = t? 4 bt + ¢ such that P(A)z = 0 and AH = —bH + %x Combining this
with (3.1), we have
AP H + A (H') +tr(VAg) + (|| Ac|)® +n)H' —na’x +bH' — bz — Sm =0. (4.17)
The two distinct real roots of the polynomial P(¢) correspond to the two
eigenvalues A\, and )\, of the Laplacian of M which satisfy Az, = A,x, and
Az, = A\, Hence we can write P(t) = t2 + bt +¢ = (t — \,)(t — \,) and we
obtain
b=—(\,+ A and T = M\ (4.18)

The sum of the terms normal to S"*! in (4.17) vanishes, so we have

b T Ap+ A ApA Ap A
n2 Y% 1 A S N A AV
(@) =— -5 -1 1= (-2 o),

n n

We have tr(VAg) = 0 because it is the only term tangent to M in (4.17). Since

M is a hypersurface in S"™! we have A'(H') = 0. Moreover ' is constant on M,
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so we get D'H' = 0, hence AP"H' = 0. Applying these in (4.17) gives
([Aell* +n)H' +0H" = (|| A¢l]® + n)H — (A, + A\)H' =0

Consequently we have ||h||> = [|A¢]|> + n = A\, + A;. On the other hand using
(4.8), we find

1 20 12 2 2 1
= — —||h = ——((n—=1) (A, + X)) — A\
p= (Pt ) = s (= D0+ A0 = M),
oMt AN
B n nn—1)
which completes the proof. O]

Assume that M is a compact 2-type submanifold of S™~1(1). Then we have
AH =bH + c(x — xp) (4.19)

where 1z is the center of mass of M in R™ and b and c¢ are constants given by

ApA
b=X\,+ A, and ¢ = 21,
n

Since the mean curvature vectors of M in R™ and S™!(1) are related by

H = H' — z, then (3.1) and (4.19) yield
AP H 4 t:(VAg) + A(H') + (| A¢|?> + n)H — bH' = na’x — bx + c(x — x0).
Taking the inner product of both sides of the above equation with x, we have
c(zo, ) =na’® —b+ec. (4.20)

If « is constant, then (xg,z) = |xo||z|cosf is a constant, where 6 denotes the
angle between the vectors o and x in R™. If (x¢,x) = 0, then we can have
|zo| = 0, which implies that M is mass-symmetric in S '. If |zo| # 0 and
|z| cos @ = 0, since z is the position vector of M in R™, |z| is nonzero and we have
cos f = 0, that is, the point x is contained in the hyperplane which passes through
the origin and is normal to the vector xy. This implies that M is contained in this
hyperplane, but since |zg| # 0, 2o is not in this hyperplane, which contradicts

with 2y being the center of mass of M in R™. Thus, if (z,x) = 0, then M is
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mass-symmetric in S™!. On the other hand, if (zo,z) # 0, then M lies in the
hyperplane which is defined by (4.20). This hyperplane is normal to the vector
xg. Moreover, xy becomes the centroid of the small hypersphere which is the
intersection of this hyperplane and S™~!. Thus M is mass-symmetric in this

hypersphere.

Consequently we obtain the following.

Lemma 4.7. [4] Let M be a compact 2-type submanifold of S™~!(1) in R™. If M
has constant mean curvature, then either M is mass-symmetric in S™7!(1) or M

is contained in a small hypersphere of S™!(1) as a mass-symmetric submanifold.

Theorem 4.8. [4] Let M be a compact hypersurface of S**! in R"*2. Then we

have

(1) if M is of 2-type, then mean curvature of M is constant if and only if M is

mass-symmetric in S**!;

(2) if M is of 3-type then either M is non-mass-symmetric in S or M has

nonconstant mean curvature.

Proof : Let M be a compact hypersurface of a hypersphere S*™! in R"2,
Without loss of generality, we may assume that S"*! is the unit hypersphere
centered at the origin. If M is of 2-type and it has constant mean curvature, then
by Lemma 4.7, either M is mass-symmetric in S**! or it is a small hypersphere
of S"*1. We have H = H' — z and since M is a hypersurface in S"*!, at each
point of M, the vectors H' and z span the normal space of M in R"*2. If M is a
small hypersphere of S*™!, then M is the intersection of S"*! with a hyperplane
of R"*2. Denote the normal vector of this hyperplane by a. Since M also lies in
this hyperplane, a is in the normal space of M in R"*2 therefore we can write

a = cix + coH'. Then we get
a c
H=H —z=——(=+1)z
Co Co
Applying the Laplace operator to this equation, we obtain

AH = (2 4 DAz = (2 + 1)k,
Co (6))
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which implies that a small hypersphere of S"*! is of 1-type. But this contradicts
with the assumption that M is of 2-type, hence M can not be a small hypersphere
of S"*!. Therefore, a compact 2-type hypersurface M of S"™! with constant
mean curvature is mass-symmetric. Conversely if M is a mass-symmetric 2-type

hypersurface, then Theorem 4.3 implies that M has constant mean curvature.

Now we prove statement (2). Assume that M is of 3-type, the mean curvature
o' of M in S"*! is constant, and M is mass-symmetric in S*™!. Then it is clear
that o is nonzero. Since o is constant and M is a hypersurface in S**!, we have

D'H' =0 and A'(H') = 0. Thus Corollary 3.3 and ||h]]* = || A¢||* + n imply
AH = ||h||*H" — na’x. (4.21)
Applying the Laplace operator to (4.21) yields
A?H = A(||h|PH' — naz) = A(||h]]PH + ||h|*z — na’z). (4.22)

We want to find an expression for A(fH) where f € C°°(M). Let a be a constant
vector in R"*2 then (fH,a) becomes a smooth function on M and we can write

n

A(fH,a) = ((Vee){fH, a) = ciei{fH,a)).

=1
We have
(Veei)(fH,a) = (—Au(Ve,ei) + Dy, fH, a),

and therefore,

n

AfH = > (Dv,efH = DD, fH)
=1

+> ((Ve,Apn)ei + Ap, rre: + hie:, Apner))

=1
n

= ) ((Veiei)fH + [ Dy, —eileif)H — (eif ) De, H
=1

_<€if)D€iH - fDeiDeiH + (elf)AHel + fvez’(AHei) - fAH(veiei)
+(eif)Anei + [Ap,, mei + fh(e;, Ahei)>
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n

= > (Ve = eilei )VH + [(Dg, e H = De, Do, H + V., (Age:)
i—1
—AH(VGZ.Q‘) + ADEiHei + h(@i, AHBZ))
+(eif)(=De,H — De,H + Ape; + AHei))
AfH = (Af)H+ f(AH)+ 2(eif)(Ane; — De,H). (4.23)
=1

Substituting ||h]|? for f in (4.23) and using D.,H = D, H' = D'.,H' = 0, we
obtain

A(IRIPH) = (AP + [hP(AH) + ) 2(e]|hl*) Ane;

=1
n

= (A|RIP)H + [[R]*(AH) + 2AH(Z(6i|Ih|I2)ei)

= (ARIP)H + AP (AH) + 24 (grad||h||*). (4.24)

On the other hand for any fe C*°(M), we have

n

A(fz) = > ((Vee)fr+ fDy,e,x — De((eif )z + fDe,x)
1=1

+Ve (Apzei) = Ape(Vesei) + Aerpratrpe,z€i + fhei, Azei)).

Substituting D..x = 0 and A, = —I above, we obtain
A(fr) = (Af)z =2 i(eif)ei - fi h(ei,ei) = (Af)x — 2gradf —nfH.
i—1 i=1

As a result we get

A(|h]*z) = (AllR]1*)z — 2grad||h]|* — [|h||*nH. (4.25)
Lastly, since o is constant and A is linear, we have

A(na’z) = na*Ax = na®(—nH) = —n*a’H. (4.26)

Noting that

Ap(grad||h]|*) = Am(grad||h||*) — As(grad||hl|*) = Ap(grad|[A]*) + grad|[A]*
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and substituting (4.23), (4.24) and (4.25) in (4.22), we get

NH = (AR + [BPAH) + 2Au(arad|BIP) + (AR
—2grad||h||? — ||h||*nH + n*a*H
= (AR H = (Alla]*)z + [RI*(AH) + 2Am (grad||2]]*) + 2grad]|A||*
+(A||R||P)x — 2grad||h||* — ||h|PnH + n*a*H
= (A[RIP)H + IR[PRPH + k[P — na’z) + 2A5 (grad||h]*)

—||h||*nH + n*a*H,
and hence,

APH = (AR A1 =nl|hlP+na®) H' = (]| hl*(a')*+n*a?)z+2An (grad | h|]?).
(4.27)

Moreover, since M is of 3-type and mass-symmetric, there exists a polynomial

P(t) = t*+a1t* + ast + a3 such that P(A)z = 0. If we put Az = —nH, we obtain
A’H = c;AH + o H + e3x, (4.28)
where ¢1, ¢y and ¢z are constants. Substituting (4.21) into (4.28) we have
A*H = ¢|(||h]|PH' — na®z) + o H' — cox + c3,
= (c1||h|]* + c2) H' + (—cina® — ¢y + c3) . (4.29)
Equating the terms normal to S"™! in (4.27) and (4.29) gives
—n(a)?||h]]* = n(n — c1)a? — ¢ + cs. (4.30)

So ||h]|* is constant, hence from (4.8), we see that M has constant scalar
curvature. Therefore, by applying Theorem 4.3 we conclude that M is of 2-type.

This is a contradiction. O

Corollary 4.9. [3] If M is a 2-type compact hypersurface of S"™! and M has

constant mean curvature, then M has constant scalar curvature.
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Proof: By Theorem 4.8 we see that M is mass-symmetric. According to

Theorem 4.3 M has constant scalar curvature. O

Let M be a compact 2-type hypersurface of S**! in R""2. We assume that S"*!

is of radius one and is centered at the origin. From Corollary 3.3 we have
(AH,z) = —na’. (4.31)

Also, taking the inner product of both sides of (4.19) with the position vector x
gives

(AH,z) = —b+ ¢ — c{z, z0). (4.32)

If we take the inner product of both sides of (4.19) with a vector field X tangent
to M, we get
(AH, X) = —c(zg, X). (4.33)

We denote by (AH)T the component of AH tangent to M. Let ei,..., e, be

n

an orthonormal tangent basis of M. Then we can write (AH)T = Y (AH, e;)e;.
i=1

Applying (4.33), we find (AH)T = — 3" ¢(xg,e;)e;. On the other hand , from
i=1
(4.20) we see that e;(c(z, o)) = e;(na® +c —b). So we have

nei(a?) = c(Ve,x,10) = cle;, 70).

Combining our results we get

n

(AH)" =~ Z (o, €;)€; = —nZei(aQ)ei = —ngrad(a?) = —ngrad(a?).
i=1 =1

(4.34)

The only terms tangent to M on the right hand side of (3.23) are ggrad(az)

and 2trApg . So from (4.34) we can write
3n 9
trApy = 7 grad o”. (4.35)

Let Ei, Es,...,E, be orthonormal principle directions of A with principal
curvatures fi1, flg, . . . , i, respectively. Then from (4.35) we find

_ 3n 2 3” 2 _ 3n / /
trApp = —Zgradoz =~ ZEi(a VE; = 5 Za E;(a")E;.  (4.36)
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On the other hand, from the definition of trApy, we write

n

trApp = ZADE whi = Z (A6 Bi + AwpgeBi) = Y (B ) Er. (4.37)

=1

Combining (4.36) and (4.37) we find
(2ui + 3nd')(Eid) =0 (i=1,...n) (4.38)

Lemma 4.10. [4] Let M be a compact 2-type hypersurface of S"™!(1). Then

!
on the

3na
grad(a/)? is a principal direction of A¢ with principal curvature —

set U = {ueM |grad(a/)? #0 atu}.

Proof : Since o is not constant on U, we can not have F;o/ = 0 for all i, ...n.
Therefore, using (4.38) we get

n

Ae(grad(a')?) = Z oV AE; ZZ@ (B ) B;

i=1

3na’

= — Z a'3nd/ (E;d ) E; = — grad(a/)?.
i=1

Now we give a general lemma on 2-type hypersurfaces.

Lemma 4.11. [4] Let M be a compact 2-type hypersurface of S in R"*2. Then
either M has constant mean curvature or U = {ue M |grad(a/)* # 0 atu} is
dense in M, that is, the closure of U is M.

Proof : Let M be a 2-type hypersurface of S"™'. We assume that U is
neither empty nor dense in M. Since U is nonempty, the mean curvature o’
is not constant on M and hence, by Theorem 4.8, M is not mass-symmetric
in S"*1, that is, 29 # 0, and M — U has nonempty interior. Let V be a
component of int(M — U). Then o' is constant on V. From (4.20), we see
that (x,z0) = |z||xo| cos@ is constant on V, where 6 is the angle between the

vectors o and x in R""2. Here z, is nonzero because M is not mass-symmetric
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in S"*!. We see that V is contained in a hyperplane of R"™? which is normal to
the vector xg. Therefore V is an open portion of a small hypersphere of S**! and
consequently V is totally umbilical in S**!. For any vector field X tangent to

1
M, we have A¢X = pX on V. So, on V we have o/ = —trA, = p which implies
n

that py = ps = -+- = p, = & on V. Thus, by considering Lemma 4.10, we have
3 /

— T;a =y = g =+ = p, = a on U. This is a contradiction and Lemma

4.11 is proved. O

Let M be a compact 2-type hypersurface of S"™(1) in R"™2. Then from (4.19),
(4.35) and Corollary 3.3, we find

cro = —AP H' 4 ngrad(a?) + (b — ||h||*)H' + (na® 4 ¢ — b)z. (4.39)
Thus we have
—c(zg, H) = (AP'H' H') + (|| h]|* = b)(/)? 4+ na® 4+ ¢ — b. (4.40)

Since

Az, x0) = (Ax,z0) = —n(H, xp),

Using (4.20), we find
—c(xg, H) = Ac?. (4.41)

Consequently, (4.40) and (4.41) yield
Aa? = (AP'H' H'Y + (||n]|* = b)(e/)? + na® + ¢ — b. (4.42)

As before, let o/ be the local function defined by H' = /€ and let eq, e, ..., €,
form an orthonormal tangent basis for M. Then we have o? = (a/)? + 1, and

n n

Aa? = A(d)? = Z(Veiei —eie))(d)? = Z (2¢/(Ve,eia') — e;(2d/e;a))
i=1 i=1

— Z(za’(veieia’ —ei(e;d)) = 2(e;a)?)

i=1

= 2d/Ad’ — 2|gradd’|?, (4.43)
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where we have put
n n n

Z(eio/)2 = (Z(eio/)ei, (eja’)e;) = (gradd/, grada’) = |grada’|?.

i=1 =1 7=1

We also have

<Hl, AD/H/> _ <H/72(D/Ve,eiH/_Dlez‘DéiH/»

=1
n

— Z(H’, (Veeid )+ ' Dy, £ — (e )DL & — (eieia)§
i=1

—O/D; D;ﬁ — (eio/)DéiQ

= (¢, /A’ + ) (o/(Dy, & — D.,D,&) = 2e:a' D, €)).

i=1
Since M is a hypersurface of S"*!, we have D’¢ = 0, thus
(H',AP'H'Y = o/ Ad/. (4.44)
Using (4.42), (4.43) and (4.44), we find
%Aoﬂ _ lerada’ 2 + ([[A]]” = B)(')® + na® + ¢ — b, (4.45)

Let U = {ueM|grad(«/)> # 0 atu} be dense in M. Then grad(a/)? is a
principal direction on U. Since grad(a’)? = 2a/gradc’, then grada’ is parallel to
grad(a’)?. Let Ey, Es, - - , E, be orthonormal principal directions with principal

curvatures fiy, fio, - - - , [y respectively, and E; is assumed to be in the direction

of grada/. From (4.39), we find

0 = Ej(cwy) = nV,(grada®) + Vg, (b — ||h]|*)/¢ — ij(AD/H’)

+Vg,(na® +c—b)z.  (4.46)
Since F; is parallel to grada?, we have grada? = (Fya?)E), and using
Vi Ej=> wk(E)Ey (i,5,k=1,...,n), (4.47)
K
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we have

Vg, (grada®) = Vg, ((E10?)E)) = E;(E10®)Ey + (E10?) Vi, By
= E;(E\0®)E) + (E10”) (Vg By + MEj, Ey))
= Ej(BEia®) By + (Bia?) zn:w’f(Ej)Ek
k=2
+(E1042)((A5Ej, E)é+ (ALE;, E1>:c)
= E;(Ei0®)E; + (Eia?) zn:w’f(Ej)Ek.

k=2

If we substitute this in (4.46), we get

0 = n(Ej(Eloz E1 + E1 Zwl ) — Ao/(b—HhHQ)ij

D0/ (b~ [HIP)E ~ Vi, [ S (0D, ) + (Vi B

=1

—D}JL((Elo/)f + o/DElg)] — Ana24e—b)eBj + D, (na® +c —b)x

Because M is a hypersurface in S"*!, we have D = D’€ = 0, and therefore we

get

0 = n(Ej(Eloz VE, + Ey(a Zwl Ek)—a(b—||h|| )ALE;

+E(a (b= |h])E = Vi, ( Y(Vi B)a's = (BiE)E)
I=1
—(na*+c—b)AE; + E-(na2 +c—b)z + (na®+c—b)Dg,x

= n(B(Bia®)E + Eyla Zw1 V) = el (b= |12 E,
+E;(a/b — o/ ||h)*)¢ - ij(Aa’g) (na® + ¢ —b)E; + Ej(na® + ¢ — b)z
— u(B(Bed)E + Bila 2iwf )EL) — el (b~ [HIP)E,
+E;(a'b— ||h]|*)E - (EjAo/)g + AdA¢Ej + (na? 4+ ¢ — b)E;
+E;(na® + ¢ — b)x.
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Consequently we obtain

0 = n<Ej(Eloz B, + Ey(a Zwl ) — (/b — ||h|PPa! — Ad!); E,
+E;(c/(b— ||h]]*) — Ad )f + (na® +c—b)E; + Ej(na®> +c—b)z j>1
(4.48)
on U.

By taking the inner product of (4.48), with £, we obtain
0 = 2n(Eya)d'w](E;) — pj(ba’ — ||h]*a — Ad/) +na +c—b, j>1 (4.49)
on U.

Theorem 4.12. [12] Let M be a hypersurface in R™™ (k) whose principal
curvatures are constant. If exactly two are distinct, then M is locally isometric

to the product of two spaces of constant curvature.

Theorem 4.13. [4] Let M be a compact hypersurface of S"™'(1) with at
most two distinct principal curvatures. Then M is of 2-type if and only if

M is the product of two spheres SP(r1) x S"P(ry) such that r# + 3 = 1 and
p n—p
(ri,72) # (1] =5/ ).

n n

Proof : We assume that M is a compact 2-type hypersurface in S*™(1) with at

most two distinct principal curvatures.

If the mean curvature o/ of M in S"™"! is non-constant, then according to

Lemma 4.11, the open subset U = {ue M |grad(a’)* # 0 atwu} is dense in M.

2

From Lemma 4.10 we know that grad(a’)? is a principal direction on U with

3na’
corresponding principal curvature — . Since grad(a’)? = 2a/gradd’, we see
;. . ) ) . . 3na’
that grada’ is also a principal direction with principal curvature p; = — 5 on

U. First we will show that the multiplicity of p; is one on U.

Since M is a hypersurface of S"*!(1), from Codazzi equation (2.7) we have

(VxA)Y = (VyA)X (4.50)
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for X, Y tangent to M. Let E4,..., E, be orthonormal principal directions on M
such that F; = grada’, and pq, . .., i, be the corresponding principal curvatures.

We have
(Vi,A)E; = Vi, (AE) — Ac(Vi,Ei) = Vi, (1uE:) — Ag Zw
= (Ejm)E; —{—ILLZZ’LU Ek—Zw ) e B
= (Ejm)E; +Zw — i) By (4.51)
Applying (4.50) and (4.51), we obtain
(Ejp)Es — (B E; = Z (wh(B) 1y — ) = wh (B (i = ) ) B
For ¢ # j and k = i we have

Ey () = wl(E) (i — ). (4.52)

Since grada’ = > E;(o/)E; and E; = gradd’, it is clear that grada/ = F (/) Ey
and E;o' = 0 for i = 2,...,n. Moreover, we must have Ei;a’ # 0 because we

have assumed that mean curvature is nonconstant on M. Let the multiplicity
3na’

of pu1 =
(4.52) yields

be a principal direction with gy = p;. Then

Eypig = (p2 — pa)wy(E2) = 0,
which implies that Fyu, = E1p; = 0. But this contradicts with the nonconstancy

of /. Therefore the multiplicity of u; is one on U. Since M has at most two

1
distinct principal curvatures, and the mean curvature is given by o/ = —trd, =
n

1 n
— E i, then we have
n

—

3na’ Sna’
_ d ==y, = 4.
111 5 and p = 50 =) (4.53)
If we put j = 1in (4.52) and substitute (4.53) in (4.52), we have
Ei(pi) = wi(E)(w — ) (i=2,...,n),
Sna’ : 3na/ bna/
E(s——r) = wil&)( - - ;
1(2(n—1)> wi(B) (= =5 Q(n—l))
5B = —(3n+2)dwi(E;) (i=2,...,n).  (4.54)
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on U. Consequently by using the equation |grada/| = Eja/, (4.49) and (4.54),

we get

5na’
-1

I 2.1 / 2 o
2 (ba’ — ||h||*e — Ad) + na®+c—b  (4.55)

=— lgrada/|? —

3n + 2 )

on U. Since the right hand side of (4.55) is a well defined continuous function
on M and U is dense in M, the equation (4.55) holds on the whole hypersurface
M. Equation (4.55) yields

4(n—1)

2(n—1)
3n + 2

o Ad =
50

lgradd’|® + (b — ||R|)*)(a/)? — (na? +c —b).

1
Since from (4.43) we have o/ Ao/ = |gradd’|? + §A(a’)2, substituting this in the

above equation and making a direct computation we get

1 n—6 2(n—1)
IA>L)? = "2 B2V (A2 2. (4
S8 = 2= D harada? 4 (0 Py~ 2 D na? o). (450
Combining (4.45) and (4.56), we obtain
4(n—1) 3n+ 2
A(e)? = 22— jgradal? 24 c—b). 1
() 3 2 lgrada’|* + (na” +c—0) (4.57)

Multiplying both sides of (4.57) with (3n+2)5n and applying Corollary 2.4 gives

20n(n — 1) / lgrada’2dV + (3n + 2)? /(na2 +c—b)dV =0. (4.58)
M M

On the other hand, integrating both sides of (4.20) we have

/(na2 +c—0b)dV = /c(:c, xo)dV (4.59)
M M
where
fde
Ton = ]\4—
0 de )
M
from which it follows that
(mo,x()}/d‘/ = /(xo,x>dV (4.60)
M M



If we substitute (4.60) in (4.59), we obtain

/(na2 +c—b)dV = (o, :c0>/ dv. (4.61)

M M

Therefore by using (4.58) and (4.61) we have

/ <20n(n — 1)|grade’|* + (3n + 2)*c{xo, x0>>dV =0.

M
This gives

/C(ﬂfo,[l?o)dv = 07

M
which implies that o = 0. Since M is a compact 2-type mass-symmetric

hypersurface of S*™!, it follows from Theorem 4.3 that, M has nonzero constant
mean curvature and constant scalar curvature p. But this is a contradiction with
our assumption that o’ is non-constant. Therefore the mean curvature o/ must

be constant on M.

By Theorem 4.8, a compact 2-type hypersurface of S"*! with constant mean
curvature is mass-symmetric and hence, by Theorem 4.3 , it has constant scalar
curvature p. If M has only one principal curvature, then M is totally umbilical
in S"*!, hence it is pseudo umbilical. Moreover, constancy of o/ implies that H’
is parallel because M is a hypersurface of S"*1. So Proposition 2.11 implies that
M is of 1-type, therefore M must have exactly two distinct principal curvatures.
On the other hand, since the scalar curvature is constant, from (4.8), we see that
|R|I* = || A¢ll* + n = kpa? + lu® + n (where k + 1 = n) is constant and this,
together with the constancy of o/ = %(kul + lus), imply that M has exactly
two distinct constant principal curvatures. So M is the product of two spheres,

M = SP(r1) x S"P(ry). Since M is a nonminimal hypersurface of S"*1(1), we

have r¥ + 73 = 1 and (r1,72) \/7\/71 p

Conversely, since SP(r;) and S" P(ry) have constant principal curvatures, the

product manifold SP(r1) x S"P(ry) has constant principal curvatures. By a
n—p

direct computation it can be shown that the condition (ry, o) # (\/E ,
n
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implies that M = SP(ry) x S"P(ry), r} + 73 = 1 is not minimal in S"*!(1).

Therefore, Theorem 4.3 implies that M is of 2-type. O]

Corollary 4.14. [1] Let M be a compact, mass-symmetric surface of S*(r) in
R*. Then M is of 2-type if and only if M is the product of two plane circles of
different radii, that is, M = S'(a) x S'(b), a # b.

Let M be a 2-type hypersurface of a unit hypersphere S"**(1). We have

AD,H, = Z(D/Ve.eiH, - D(IEZ D:ilH,)
=1

= > (a'Dg, &+ (Vee)d'é = Dl (o D& + (e)6))
=1

= D ((Vee)o's = (eia)Di& — eesa't)
i=1

= Z((Veiei)a' — ;0 )€ = (Ad)E. (4.62)

i=1

Hence from (3.23) we get

(AH ) = ((Ad)E+ ggrad@2 + 2trAprg + ||B]|PH — naz, €,
= ((Ad)E + ||n|]PH’,€).

On the other hand, taking the inner product of (4.19) with £ gives
(AH, &) = (bH' + (¢ — b)x — cxo,&) = (bH', &) — (cx0, &)
Combining these, we obtain
c(x0,€) = (b— |||} — Ad. (4.63)

Lemma 4.15. [12] Let M be a compact 2-type hypersurface of S"*! in R""2.

Then we have
/ (||h||2 — b)(o/)QdV + / |grado/|2dV + c\xOIQVOIM =0 (4.64)
M M
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Proof: Let M be a compact 2-type hypersurface of a unit hypersphere S"**(1).
Applying Corollary 2.4 to (4.43) we obtain

/a’AO/dV:/ |grada’|?dV. (4.65)
M M

Using (4.60), we get

/(xO,H>dV:/ (mO,H'—x>dV:/ (wo, H'YAV — |wo|*volM.  (4.66)
M M M

Moreover by Corollary 2.4, we have

1
/ (20, HYAV = / (20, — - Az)dV = 0. (4.67)
M M n
It follows from (4.66) and (4.67) that
/ (20, H'YAV = o |>vol M. (4.68)
M

From (4.63), (4.65) and (4.68) we find (4.64). O

We also need the following theorem (Proof can be seen in [10]).

Theorem 4.16. [10] If M is a compact 2-type hypersurface of a unit hypersphere

S"T1(1) in R™*2 then we have \, <n < \,.

Theorem 4.17. [12] Let M be a compact hypersurface of a hypersphere S™*!
in R"*2. If M is of 2-type and

9n + 16
()\p + )\q> - m)\p)\q > n,

then M is mass-symmetric.

Proof : We assume that M is a compact 2-type hypersurface of a hypersphere
S**1 in R™*2 and it is not mass-symmetric. Then by Theorem 4.8, M has
non-constant mean curvature. From Lemma 4.11 we see that the open set
U = {ueM |grad(a’)* # 0 atu} is dense in M. By Lemma 4.10, grada’ is

/

Y onU. Let By, By, ..., E,

a principal direction with principal curvature —

be orthonormal principal directions with principal curvatures pg, pio, ..., iy
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respectively, and FE; is assumed to be in the direction of grada’. From the proof
of Theorem 4.13 we know that the multiplicity of u; is one on U. Therefore we

get

= 3na/ = M) &
Il = = A = S = (2 3 = TS 5
i=1 i=2 i=2

On the other hand we have

- 3 3na/ 25n2(a)?
(n_l)gﬂzzz(Zui)2:(trA£—ul)2:(na'+ 5 )2 = 4( ) '

1=2

Thus we obtain

In*(a’)®  25n*(a’)*  9n+16 ,

1Al = n > ==+ An—1) 4n-1)" (o)’

from which it follows
/HMW—mmYﬂfz /UMW—n+m—mxwﬂw
M M

> _—
/ ( ( 1)n(a) +n b)(a)dv
In + 16

— an/M(O/)ZLdV—i-(n—b)/M(o/)QdV,

/M (IAlI% = b)(a)2dV > %M /M (@/)'dV + (n — b) /M ()2dV.  (4.69)

From (4.20), (4.60) and o? = (o/)? + 1, we get
cxo|*volM = / (o, x)dV = / (na® +c —b)dV
M M

~ 0 / (@')2dV + (n+ ¢ — b)volM, (4.70)

Expanding the left hand side of [n(a/)? + (n + ¢ — b)]? > 0 and integrating it on
M with use of (4.70), we get

/ (n*(a)* +2n(a/)?(n +c—b) + (n+c—b)*)dV >0,

n2/ ()*dV > —(n+c—0b) (Zn/ (a')?dV + (n+ ¢ — b)volM),
n? /M (@)Y > (b—n—e)(2elwo2 + (b—n — ) Jvol M. (4.71)
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From (4.69), (4.70) and (4.71), we see that

3n + 2)* 9n + 16 1
PP =B)(a)2aV = T (b—n— o ne) = (clao | +b— - c)volM
[ (e =parpay = Gt ogyene) ylelaalt +b=n—cjvo
1
+—:f(7;2t 16) (b —n — ¢)c|zo|*vol M. (4.72)
Using Theorem 4.16, we see that
Y 1
b—c—n=(A+X\)— —nzﬁ(n—)\p)()\q—n)>0. (4.73)
By the hypothesis, we have
9n + 16 9n + 16
<A+ N)— —MW\=b— ———
n—( P+ Q> (37’L+2)2 p7iq (372—{—2)20717
1
0<b—n— Mcn.
(3n + 2)?

By combining this with (4.72) and (4.73) we may find
/ (||R]|* = b)(a')?dV > 0.
M
But this contradicts with Lemma 4.15, so M has to be mass-symmetric. [

Theorem 4.18. [12] Let M be a compact and mass-symmetric hypersurface of

a hypersphere S"™1(1) in R"™2. If M is of 2-type, then M has no umbilical point.

Proof : If a point p in M is an umbilical point, for any vector X tangent to

M at p, we have A X = pX where p is a constant. Since o/ = p at p we have

11 = = |4l = 3 122 = np? = (o)’ (4.74)
=1

at p. On the other hand, by Theorem 4.6, we know that

ApA
n(a)? =1+ — 22 —n

and

1% = A + Ay,
from which together with (4.74), we obtain
ApA
M+A—n=X\+— 21—
n
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ApA
which implies that ~*~% = 0. This is a contradiction because both ), and A,
n

must be nonzero since M is not of null 2-type. O]

In Theorem 4.8, it was proved that, there is no compact, mass-symmetric
hypersurface of constant mean curvature in S**! which is of 3-type. Now we

give a more restrictive theorem.

Theorem 4.19. [12] There is no compact hypersurface of constant mean

curvature in S"*! which is of 3-type.

Proof : Let M be a compact hypersurface of a hypersphere S**! which is of
3-type and has constant mean curvature «o'. Since o' is constant and M is a
hypersurface, we have D'H' = AP'H' = trAp = 0, and grada’ = 0. Then
Corollary 3.3 gives

AH = ||h||*H" — na’x. (4.75)

On the other hand, from Theorem 2.6 and Theorem 2.7, there exist nonzero

constants ¢, ¢o and c3 such that
A’H = c;AH + coH + c3(z — x0) (4.76)
Substituting (4.75) and H = H' — z in (4.76) we have

A’H = c(|h||PH — na’z) + co(H' — ) + c3(z — ),

= (c1]|h]]® + c2)H' + (—e1na® — ¢y + ¢3)x — e30. (4.77)

Taking the inner product of (4.27) and (4.77) with £ and equalizing them, we

have
o (A[[B]P + [[R][* = nl|hl]? + n*a®) = o/ (c1|| Al + ¢2) — eszo, €). (4.78)

Similarly, taking the inner product of (4.27) and (4.77) with x and equalizing

them, we obtain

n(a’)?[|h)|? + n?a? = eina® + co — 3 + e3(wo, 7). (4.79)
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Applying the Laplace operator to both sides of (4.79) gives

n(@)A|L? = esA{xg, ) = cs(x, Ax) = c5{xg, —nH),

= —c3a/ (w0, &) + 3w, x). (4.80)
From (4.78) we see that
(@) AllR|* = = (@) (IR]* = nlll* +n*a®) + (o) (e 2] + c2) — o/ es(wo, €).
Combining this with (4.80), we have
@)(IPl* = cllhll* = 2 = nl|h]|* + n*a®) = —cs(wo, ). (4.81)
On the other hand, from (4.79) we have

2117 = n®a® + c1na® + ¢; — c3 = —cs(wo, ).

—n(a’)
If we combine this with (4.81) we get

(@)?[IA[* = ex(@)?[[l* + n*a — cina® — c20” + 3 = 0

So (/)?[|h]|* — e1(’)?||R]|? is a constant. Since M is of 3-type, o is a nonzero
constant and h has constant length. Hence the scalar curvature of M is also
constant. By Theorem 4.3, M is of 2-type. This is a contradiction, so o’ can not

be constant. N
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5. FINITE TYPE ISOPARAMETRIC AND DUPIN

HYPERSURFACES OF A HYPERSPHERE

A hypersurface M of S™*! is called an isoparametric hypersurface if M has
constant principal curvatures. Isoparametric hypersurfaces have constant mean
curvature and constant scalar curvature. A hypersurface M of S"*! is called a
Dupin hypersurface if the multiplicities of the principal curvatures are constant

and each principal curvature is constant along its principal direction.

Lemma 5.1. [3] If M is a compact isoparametric hypersurface of S"*1(1), then

we have
(a) M is mass-symmetric in S"*!(1) or a small hypersphere,
(b) M is either of 1 or 2-type,

(c) the mean curvature, the scalar curvature and the length of the second

fundamental form are completely determined by the order of M in R"*2, and

(d) if M is not a small hypersphere of S"*!(1), then A, < n, equality holding

when and only when M is of 1-type.

Proof : For the proof of statements (a) and (b), let p1,. .., p, be the principal
curvatures of M in S""(1). As M is an isoparametric hypersurface, the mean

1 :
curvature o = — E pi is a constant, and hence the mean curvature vector H’
n =

is parallel. Since || A¢|* = %pr and ||h]|* = ||A¢l]* 4+ n, from (4.8), we see
that the scalar curvature is aliso constant. As M is a hypersurface, it is an
A-submanifold. If we have o/ = 0, then M is mass-symmetric in S"*!(1) and it
is of 1-type. If o/ # 0, then from (3.23), we can write AH = bH + cx where b and

¢ are constants. From the proof of Theorem 4.1 we see that if ¢ # 0, then M is
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mass-symmetric in S"™!(1) and is of 2-type, and ¢ = 0 implies that M is pseudo
umbilical and of 1-type. In the latter case, M is minimal in another hypersphere

Sn+1 and hence it is a small hypersphere in S"*1(1).

For the proof of statement (c), if o/ # 0 and M is not a small hypersphere,
then by Theorem 4.6, o/ and p are completely determined by the order of
M. On the other hand, if M is of 1-type, we have AH = \,H, hence (3.23)
gives ||h|> = [[A¢l|? + n = N, and || A¢|]? = n(a))? If o = 0, (4.8) implies
ﬁ(rﬂ —A2). If o # 0 and M is a small hypersphere in $"*!(1), then
it is totally umbilical and hence p; = -+ = p,. In this case since ||A¢|* = np?

Ap— 1
we have np? +n = ||h]|> = \,. So we obtain p; = {/ ~%——, which implies that
n

p:

Ap— 1
o =p = P . Using (4.8), we see that the scalar curvature can also be
n

written in terms of \,. Statement (d) follows from statement (a) and Theorem

4.4. O

Theorem 5.2. [3] Let M be a compact Dupin hypersurface of S such that
M is not of 1-type and it has at most 3 distinct principal curvatures. Then M

is isoparametric if and only if M is of 2-type and it is mass-symmetric in S**!.

Proof : Let M be a compact Dupin hypersurface of S**! such that M is not
of 1-type and it has at most 3 distinct principal curvatures. Then M has 2 or 3
distinct principal curvatures. Assume that M has 3 distinct principal curvatures

p1, p2 and p3 with multiplicities my, mo and mg, respectively. Then we have

na’ = mypy + maps + msps, (5.1)

| Ael|* = mip1? + maps® + maps®. (5.2)

If M is of 2-type and mass-symmetric in S"*!, then Theorem 4.3 implies that
both o and ||A¢|| are constant. Let E; be an eigenvector with eigenvalue p.
Then by the definition of Dupin hypersurface, we have Eyp; = 0. Thus (5.1) and
(5.2) imply
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Ei1(na’) = ma(E1pa) + m3(E1ps) = 0, (5.3)

and

Er (| Ael?) = 2maps(Erps) + 2msps(Eips) = 0. (5.4)

Since po and p3 are different, (5.3) and (5.4) give E1ps = Eips = 0. Similarly
if £y and Ej are eigenvectors with eigenvalues py and p3 respectively, we have
FEypy = Eyps = E3pr = Espy = 0. Because E1py = FEypy = Ezpz = 0, we
conclude that py, ps and p3 are constant. Therefore M is isoparametric. If M
has 2 distinct principal curvatures and it is of 2-type, then by Theorem 4.3, it is

clear that M is isoparametric. The converse of this follows from Lemma 5.1. [

Theorem 5.3. [4] If M is a compact 2-type Dupin hypersurface of S"™!, then

M has constant mean curvature. And hence, it is mass-symmetric in S**!,

Proof : If M is a Dupin hypersurface of S*™!, then the multiplicities of the

principal curvatures are constant and the principal curvatures are constant along

their principal directions. We define F; = % on U, where U is given
in Lemma 4.10. Then according to Lemmag 4.10, E; is a principal direction
on U with A:E, = _37120/ E4, and since M is a Dupin hypersurface, we have
Ei(/) = 0. So we get
, n
Ey(a') = %(O/) — m > Bl i) = 0.

Since grad(a’)? is parallel to Fy, from the definition of grad(a’)?, we see that
FEy(d/) = Es(a/) = -+ = E,(a’) = 0 on U. But this implies that grad(a/)* = 0
on U, which is a contradiction . Consequently, the subset U is empty. Thus M

has constant mean curvature. And hence M is mass-symmetric in S"*1. O
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6. 2-TYPE SUBMANIFOLDS OF R™

A 2-type submanifold of R™ with parallel mean curvature vector is either
spherical or null. Using this result, we give a complete classification of 2-type

surfaces with parallel mean curvature vector.
If M is an n-dimensional null 2-type submanifold of R™. Then we can write the
position vector x of M in R™ as,

r=x0+T,+x, Az,=0, Azx,=A\z4 (6.1)

where zg is a constant vector, and z, and z, are nonconstant maps from M into

R™.

Theorem 6.1. [11] Let M be a 2-type submanifold of R™. If M has parallel
mean curvature vector, then one of the following two cases occurs;

(a) M is spherical,

(b) M is of null 2-type.

In particular, if M is compact then M is spherical and mass-symmetric.

Proof : Let e,.1,...,e, be an orthonormal normal basis of M such that
ens1 is parallel to H. If H is parallel, we see that AP H = 0 and by Lemma 3.4,
tr(VAy) = 0. Then (3.2) becomes

AH = ||Ax|*H + A(H). (6.2)
If M is of 2-type in R™, then the position vector x of M in R™ can be written as

T —To=Tp+ Ty Az, =Nz, Az, = N2, (6.3)
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We have Az = Az, +4) = A\ + Agzq and A%z = Nox, + A2z, So we see that
Ao+ A)Az = XA (x —20) = Noap 4+ Noag 4+ MAg(mp + 24) — Mg (2 — o)
= )\;xp + )\flxq = A%z,

Hence,

APz = (N, + A\ )Ax — M\, (2 — 3p). (6.4)

Since Ax = —nH, we find

ApA
AH = (N, +A\)H + Zq(x — Zg). (6.5)

Combining this with (6.2), we see that a 2-type submanifold M of R™ with

parallel mean curvature vector satisfies

ApAg

| A |[2H + AH) = (A + A H + "2 (2 — ). (6.6)

The terms on the left hand side of (6.6) are linearly independent and are normal
to M. We have either \,\, = 0, which implies that M is of null 2-type, or x — x¢
is normal to M. If the second case occurs, then for any vector field Y tangent to
M we have Y (x — xo, 7 — 20) = 2(Vy(z — 2¢), 7 — 20) = 2(Y, 2 — 2¢) = 0. Hence
(x — o, T — x0) is a positive constant, and M is contained in a hypersphere S™~!
centered at xg. In particular if M is compact, M can not be null and the term
xo in (6.3) corresponds to the center of mass of M in R™. So the constancy of

(x — xo, T — x) implies that M is mass-symmetric in S™!. O

Corollary 6.2. [11] Every 2-type compact hypersurface of R” has non-constant

mean curvature.

Proof : For a hypersurface M of R™, the constancy of mean curvature is
equivalent to the parallelism of the mean curvature vector. A compact 2-type
submanifold of R™ with DH = 0 is contained in a hypersphere S™~!. Since M
is a hypersurface in R™, M is an open portion of S™ !, and so M is of 1-type.

This is a contradiction. O

Proposition 6.3. [10] There is no spherical hypersurface of null 2-type.
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Proof : Let M be a hypersurface of the unit sphere S**! in R**2. If M
is of 2-type, then substituting A\, + A\, = b and % = ¢ in (6.5), we get
AH = bH + c¢(x — xy). Using this, (4.35) and Corollary 3.3, we can obtain
equation (4.39) for the case when M is not necessarily compact. Combining

(4.39) and (4.62), we find

c(z — o) = —ngrada® + (Ad' + ||h[]*a’ — ba') & + (b — na®)z. (6.7)

If M is of null 2-type, we have ¢ = 0. So the coefficient of z in (6.7) vanishes
and « is constant. Since M is a hypersurface, the constancy of o/ implies that
the mean curvature vector is parallel. Then it follows from Theorem 6.1 that M

can not be spherical, which contradicts to our assumption. O

Theorem 6.4. [11] Let M be a compact 2-type surface in R™. Then M has
parallel mean curvature vector if and only if M is the product of two plane circles

with different radii.

Proof : If M is a surface in a space form R™(k) with parallel mean curvature

vector, then by Theorem 2.12, M is one of the following:
(i) a minimal surface of R™(k),
(ii) a minimal surface of a small hypersphere of R™(k),

(iii) a surface with constant mean curvature |H| in a 3-sphere of R™(k) (great

or small).

Here k=0 and R™(k) = R™, so if M is a minimal surface of R™, then M is of
null 1-type. A small hypersphere of R™ is a usual hypersphere of R™, so if M
is a minimal surface of a hypersphere, then M is of non-null 1-type. Hence M
can not be one of (i) or (ii). A great 3-sphere of R™ is a linear 3-dimensional
subspace R? of R™, and a small 3-sphere of R™ is a hypersphere S? of R* in
R™. Therefore M is a surface in either R® or S3. If M lies in R® and M is
compact and is of 2-type with parallel mean curvature, then by Theorem 6.1, M

is spherical, and hence it is a 2-sphere of R™. In this case M is of 1-type, which
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is a contradiction. If M lies in S*, then since M is compact and is of 2-type
with parallel mean curvature vector, M is mass-symmetric in S* by Theorem
4.8. According to Corollary 4.14, M is the product surface of two plane circles
with different radii. O

Lemma 6.5. [11] If M is a null 2-type submanifold of R™, then we have
tr(VAy) =0 and APH = (), — |Au||*)H + A(H)

Proof : If M is of null 2-type, from (6.1) we find —nH = Az = Az, = \z,

1 1
and AH = ——\,Az, = ——)\,Az. So we have
n n

AH = \H (6.8)
Therefore, by applying formula (3.2), we obtain
MNH =APH + ||Au|*H + A(H) + tr(VAg). (6.9)

Because tr(VAy) is tangent to M and all other terms in (6.9) are normal to M,

formula (6.9) implies the lemma. O

Theorem 6.6. [11] Let M be a 2-type submanifold in R™ with parallel mean
curvature vector. Then either M is spherical and non-null or M is a 2-type

submanifold with |[Ax ||*> = A\, which is a nonzero constant.

Proof : This theorem follows from Theorem 6.1 and Lemma 6.5, since the

parallelism of H implies APH = 0. O]

The following theorem is a generalization of Theorem 6.4 which gives a complete

classification of 2-type surfaces with parallel mean curvature vector.

Theorem 6.7. [11] Let M be a surface in R™ with parallel mean curvature

vector. Then M is of 2-type if and only if M is one of the following two surfaces:
(a) an open portion of the product surface of two plane circles with different
radii;

(b) an open portion of a circular cylinder.
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Proof : Let M be a 2-type surface in R” with parallel mean curvature vector.
Then by Theorem 2.12, M must lie either in a 3-dimensional linear subspace R?
with constant mean curvature or in a hypersphere S? in a 4-dimensional linear
subspace R* of R™ with constant mean curvature. According to Theorem 6.1,

M is either spherical or null. We consider these two cases separately.

Case (1): M is null. In this case Theorem 6.1 implies that M can not be
spherical, so M can not lie in a hypersphere S? in R* and it must lie in a
3-dimensional linear subspace R3. Let es; be the unit normal to M in R3 and
{e1, ea} be the principle directions for A3 with corresponding principle curvatures
{u1, po}. From Theorem 6.6, we see that ||A3]|* = A, where )\, is a nonzero
constant. Since M is a hypersurface in R3, we have h(X,Y) = (h(X,Y), e3)e3 =
h3(X,Y )es for any vector fields X and Y tangent to M. Then ||h]|? = || A3 is

constant. From the equation of Gauss (2.4), we have

R(X,Y,Y,X) = R(X,Y,Y, X)+{(h(X,Y),h(X,Y))—(h(X, X), h(Y,Y)). (6.10)

If X and Y are orthogonal unit vectors, the sectional curvature of M is given by
K(X,Y) = R(X,Y,Y, X). Because M is a surface, sectional curvature at each
point of M is equal to its Gaussian curvature at that point. Moreover we have
h(ei,ej) = (h(e;,ej), es)es = (Ase;, ej)es = pi{e;, e)es. Substituting X = ey and
Y = ey in (6.10) we have

K(ep,e0) = K(ep,e2)+ (h(er,e2),h(er,e2)) — (h(er,er), h(es,e)).

= K(es,e;) — pipt;

The sectional curvature of R? is zero, so we have K(e1,ez) = ppre. On the other

hand,

2

IPI? = 1 4s]1* = te(A3) = D (Aleis ei) = i + 15

i=1
and the constancy of ||h|* implies that pu? + u3 is constant. M has constant
mean curvature, so we have 2|H| = trAs = p; + ps = constant. Consequently,

we see that pu; and pp are constants and therefore the Gaussian curvature
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K(ey,es) = pyps of M is a constant. M is nonminimal in R™, because minimal
surfaces of R™ are null 1-type. By Proposition 2.14, since M is a nonminimal
surface of R™ with parallel mean curvature, it can be either a minimal surface of
a small hypersphere of R™, or an open piece of the product of two plane circles,
or an open piece of a circular cylinder. But minimal surfaces of S™~! are of
non-null 1-type, hence M is either an open piece of the product of two plane
circles, or an open piece of a circular cylinder. In the first case, the radii of the

two plane circles must be different, since M is of 2-type.

Case (2): M is spherical and mnon-null. In this case M can not lie in a
3-dimensional linear subspace R® of R™. Because if it does, M lies in the
intersection of a hypersphere S™~! and R3, in other words, M lies in a small
hypersphere of the totally geodesic submanifold R* of R™. Then, since M is a
surface, it becomes a 2-sphere of R™ and consequently a small hypersphere of R3,
which is of 1-type. Therefore M is non-null and lies in a 3-sphere S3. Without
loss of generality we may assume that S® is of radius one and is centered at the
origin. Since the mean curvature vector H of M in R™ and the mean curvature
vector H' = o/€ of M in S? are related by H = H' —z, the constancy of a implies

the constancy of o/. Let {e3,e,} be an orthonormal normal basis of M in R,

/
where e3 = — and ey = & 04;1:‘ We have
Q@
2 2
1
1As]* = tx(A3) = Z<A§eiaei> 2 Z(AH%AHBD
i=1 i=1
12
= D7 (@) (Acer Aces) + 20" (Ages, i) + (evver))
i=1
1
= @((O/)QllAsIIQ +4(a')? +2)
and
1
| As||*H = @((O/)QIII‘QH2 +4(a')? +2)(H' —x) (6.11)

By using (3.10) we obtain
/

A(H) = A(H') + (trAgAs)es = —([[Ael® = 2(a/)*)es

(4¢P 20 ST,

ele.e]®”



1 (O/)2 (0/)2 (a/)Q
A(H) = EHAgH?H’ -2 = H + — HAgu%—z?a:. (6.12)

Taking the sum of (6.11) and (6.12), we get

a)?+1 a)? o2y,
Jaer + A = (U age 200 2y
1 / /
+@(—2(oz)4—4(oz)2—2)x

2
= ||h|]PH - g((o/)‘l +2(e)? 4+ 1)z = ||h]|*H’ — 202

Substituting the above result in (6.6) yields

ApAq
2

|hlPH —2(H, HYr = (A, + \)(H — x) + (x — o). (6.13)

Because M is non-null, we have A\,)\, # 0, so taking the inner product of both

sides of (6.13) with = we get

(IRIPH — 2(H, H)z,2) = (O + A)H = 2)+ 2250 — ) ),
—2(H,H) = —(\,+X\,)+ A”;" — (z, 10).

Since the mean curvature of M is constant, (x, z¢) is constant. We assume that
zog # 0. Then we have (z,z¢) = |z||zo| cos@ = constant, where 6 is the angle
between the vectors z and zg in R*. Hence |z|cos @ is constant and this implies
that M is contained in a hyperplane of R* which is normal to zo. M lies in the
intersection of S* and this hyperplane, so M is a small hypersphere of S? which
implies that M is of 1-type. But this is a contradiction, so we must have zy = 0.

Applying in (6.13) yields ||h]|> = A\, + A;. On the other hand, we have

2
1217 = 1 A¢® +2 = tr(AD) +2= ) {Acer, Ages) +2 =41} + 45 +2,

i=1
As aresult u? +p3 is constant, and together with the constancy of p1 + s = 20/,
it implies that s, and ps are also constants. If we let K (e, e;) be the sectional
curvature of S* and K(ej,e;) be the Gaussian curvature of M, then from
K(eq,e5) = K(e1, ea) — iz, we see that Gaussian curvature of M is a constant.

By Proposition 2.13, if the Gaussian curvature of M is nonzero, then M is a
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hypersphere of S3, but this implies that M is of 1-type, which can not be the
case. The Gaussian curvature of M is zero and hence the curvature tensor of M
vanishes and M is a flat surface. Therefore, M is an open portion of the product

of two plane circles with different radii ([2], p. 69, problem 8).

The converse follows from Corollary 4.14. O]
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7. RESULTS AND DISCUSSION

Let M be a compact hypersurface of a hypersphere S**! such that M is not a
small sphere of S"*1. Then, M is mass-symmetric and of 2-type if and only if
M has nonzero constant mean curvature and constant scalar curvature. Also, if
M has nonzero constant mean curvature and constant scalar curvature, then the
mean and scalar curvatures of M are completely determined by the eigenvalues

of the Laplacian of M.

Let M be a compact hypersurface of S**! with at most two distinct principal
curvatures. Then, M is of 2-type if and only if M is a product of two spheres

with appropriate radii.

There are no compact hypersurfaces of constant mean curvature in S"*! which

are of 3-type and there are no spherical hypersurfaces of null 2-type.

Some of the results on hypersurfaces of a hypersphere can be generalized
to submanifolds of a hypersphere with codimension two in the hypersphere
under some conditions. Especially, a classification of submanifolds M™ of the

hypersphere S"2 with at most two distinct principal curvatures can be studied.
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