
ISTANBUL TECHNICAL UNIVERSITY ? INSTITUTE OF SCIENCE AND TECHNOLOGY

SPHERICAL FINITE TYPE

HYPERSURFACES

MSc Thesis by

Selin Taşkent
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SONLU TİPTEN KÜRESEL HİPERYÜZEYLER

ÖZET

Bu tez çalışmasında, Öklid uzayının hiperkürelerinin sonlu tipten alt
manifoldlarının (özellikle hiperyüzeylerinin) sınıflandırılması kısa bir şekilde
incelenmiştir. Öklid uzayının bir hiperküresinin kompakt bir hiperyüzeyinin,
küçük hiperküre olmaması durumunda, 2-tipinden ve kütlesel-simetrik olması
için gerek ve yeter koşul, ortalama ve skaler eğriliklerinin sabit olmasıdır.
Bu sonuç bize, bir hiperkürenin sonlu tipten kompakt izoparametrik bir
hiperyüzeyinin, 1 veya 2 tipinden olması gerektiğini gösterir. Öklid
uzayının bir hiperküresinin kompakt 2-tipinden bir hiperyüzeyi, ancak ve
ancak kütlesel-simetrik ise sabit ortalama eğriliğe sahip olabilir. Bu genel
sonuç kullanılarak, bir hiperkürenin Dupin hiperyüzeyleri ve izoparametrik
hiperyüzeyleri arasında, 2-tipinden olmayı içeren bir bağlantı verilmiştir.
Bunlara ek olarak, bir hiperkürenin kompakt 2-tipinden bir Dupin hiperyüzeyinin
sabit ortalama eğriliğe sahip olacağı gösterilmiştir.

En fazla iki asal eğriliğe sahip küresel bir hiperyüzeyin 2-tipinden olması için
gerek ve yeter koşul, uygun yarıçaplı iki kürenin çarpımı olarak yazılabilmesidir.
Bunun yanı sıra, 2-tipinden küresel birçok hiperyüzeyin kütlesel-simetrik olduğu,
ve 2-tipinden kütlesel simetrik küresel bir hiperyüzeyin umbilik noktasının
bulunmadığı gösterilmiştir.

Öklid uzayının paralel ortalama eğrilik vektörüne sahip 2-tipinden bir alt
manifoldu, küresel veya sıfırlı tipinden olmak zorundadır. Bu sonucu kullanarak,
paralel eğrilik vektörüne sahip 2-tipinden yüzeylerin tam bir sınıflandırması
verilmiştir.



SPHERICAL FINITE TYPE HYPERSURFACES

SUMMARY

In this thesis, we give a short survey on the classification of finite type
submanifolds (especially hypersurfaces) of hyperspheres of a Euclidean space.
A compact hypersurface of a hypersphere of a Euclidean space Rm is
mass-symmetric and is of 2-type if and only if it has constant mean curvature
and constant scalar curvature unless it is a small hypersphere. This result shows
that a compact isoparametric hypersurface of a hypersphere is either of 1-type or
of 2-type. A compact, 2-type hypersurface of a hypersphere in Rm has constant
mean curvature if and only if it is mass-symmetric. Using this general result,
a relation between Dupin hypersurfaces and isoparametric hypersurfaces in a
hypersphere involving 2-typeness is given. Moreover, it is shown that a compact
2-type Dupin hypersurface of a hypersphere has constant mean curvature.

A hypersurface of a hypersphere with at most two distinct principal curvatures is
of 2-type if and only if it is the product of two spheres of appropriate radii. It is
shown that many 2-type hypersurfaces of a hypersphere are mass-symmetric and
that, mass-symmetric, 2-type hypersurfaces of a hypersphere have no umbilical
point.

Furthermore, a 2-type submanifold (not necessarily compact) in Rm with parallel
mean curvature vector, is either spherical or null. By applying this result a
complete classification of 2-type surfaces with parallel mean curvature vector is
given.



1. INTRODUCTION

The notion of finite type submanifolds and maps in Euclidean space was

introduced by B.Y. Chen in the late seventies, and it has become a useful tool

for investigation of submanifolds. A submanifold M of a Euclidean space Rm is

said to be of finite type if the position vector of M in Rm can be expressed as a

finite sum of Rm-valued maps on M , such that for each one of these maps, every

component function of the map lays in the same eigenspace of the Laplacian

∆, which acts on smooth functions on M . If one of the nonconstant maps is

harmonic, then the submanifold M is said to be of null finite type.

The first results on the finite type submanifolds were collected in the book

[1] more than twenty years ago. Since that time the subject has had a rapid

development. In a survey article [8], B.Y. Chen reported the progress made by

various geometers on the subject up to year 1996. The most of the references on

this subject can be seen in [8].

The concept of finite type is the natural extension of minimal submanifolds.

The class of submanifolds of finite type consists of nice submanifolds of the

Euclidean space. For example, all minimal submanifolds of a Euclidean space

and all minimal submanifolds of hyperspheres of a Euclidean space are of 1-type

and vice versa. Also, all parallel submanifolds of a Euclidean space are of finite

type. Furthermore, circular cylinders and helical cylinders are of null 2-type, and

results on null 2-type submanifolds can be seen in [6, 7, 9].

The purpose of this thesis is to give a short survey on finite type compact

submanifolds of hyperspheres of a Euclidean space. The second chapter is

devoted to prelimineries and some results on submanifolds.
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In Chapter 3, we give the evaluation of the Laplacian of the mean curvature

vector of a spherical submanifold because it plays an important role in finite

type theory.

In Chapter 4, we are concerned with compact mass-symmetric 2-type

submanifolds of a hypersphere of a Euclidean space. It is shown that, for

a compact hypersurface M of Sm−1 in Rm, if M has nonzero constant mean

curvature and constant scalar curvature, then both the mean and scalar

curvatures are completely determined by the eigenvalues of the Laplacian.

Moreover, it is proved that, a compact hypersurface M of a hypersphere with at

most two distinct principal curvatures is of 2-type if and only if M is the product

of two spheres with appropriate radii.

In Chapter 5, we give some results on isoparametric and Dupin hypersurfaces

involving finite typeness.

In Chapter 6, we study 2-type submanifolds of Euclidean spaces. A 2-type

submanifold M of Rm with parallel mean curvature vector is either spherical

or it is of null 2-type. Also, it is shown that there are no spherical hypersurfaces

of null 2-type. Applying these results, a complete classification of 2-type surfaces

with parallel mean curvature vector is given.

In Chapter 7, we give results and discussion.
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2. PRELIMINERIES

Let M be an n-dimensional manifold embedded in an m-dimensional Riemannian

manifold M̄ . Then the submanifold M is also a Riemannian manifold with the

induced Riemannian metric. Let X and Y be two vector fields on M . Then we

have

∇XY = ∇XY + h(X, Y ), (2.1)

where ∇ is the Riemannian connection defined on M̄ , ∇ is the induced

Riemannian connection on M , and h is the second fundamental form of the

submanifold M . Let ξ be a normal vector field on M and X be a tangent vector

field on M . Then ∇Xξ can be decomposed as

∇Xξ = −AξX + DXξ (2.2)

where Aξ and D are the Weingarten map of M with respect to ξ, and the normal

connection in the normal bundle TM⊥ of M in M̄ , respectively. The equations

(2.1) and (2.2) are called the Gauss and Weingarten formulas.

The curvature tensor of the Riemannian manifold M̄ is given by

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z (2.3)

for any vector fields X, Y and Z on the submanifold M . Similarly, the curvature

tensor of the submanifold M is given by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

For any vector field W on M , if we write R̄(X, Y, Z, W ) = 〈R̄(X, Y )Z,W 〉 and

R(X,Y, Z, W ) = 〈R(X, Y )Z,W 〉, then we have

R̄(X, Y, Z, W ) = R(X, Y, Z, W ) + 〈h(X,Z), h(Y, W )〉 − 〈h(X, W ), h(Y, Z)〉,

(2.4)
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which is called the Gauss equation. Let ξ1, . . . , ξm−n be an orthonormal normal

basis for the normal bundle of M in M̄ and let hα (α = 1, . . . ,m − n) be the

corresponding second fundamental forms, that is, h(X,Y ) =
∑

α

hα(X,Y )ξα.

The normal component of R(X, Y )Z is given by(
R(X, Y )Z

)N
= (∇Xh)(Y, Z)− (∇Y h)(X, Z) (2.5)

where the covariant derivative of h, denoted by (∇Xh), is defined as

(∇Xh)(Y, Z) =
∑

α

(
DX(hα(Y, Z)ξα)− hα(∇XY, Z)ξα − hα(Y,∇XZ)ξα

)
=

∑
α

(∇Xhα)(Y, Z)ξα +
∑

α

hα(Y, Z)DXξα (2.6)

The equation (2.5) is called the Codazzi equation. If the ambient space M̄ is a

space of constant curvature, then Codazzi equation can be written as

(∇XAξ)Y − ADXξY = (∇Y Aξ)X − ADY ξX. (2.7)

Given two vectors X and Y in Tp(M) and an orthonormal basis e1, . . . , en of

Tp(M), we define the Ricci tensor S and the scalar curvature ρ by

S(X,Y ) =
n∑

i=1

〈R(ei, X)Y, ei〉,

ρ =
1

n(n− 1)

n∑
i=1

S(ei, ei).

The mean curvature vector H of M in M̄ is given by

H =
1

n
trh, (2.8)

and if en+1, . . . , em are orthogonal unit normal vector fields of M in M̄ such that

en+1 is parallel to the mean curvature vector H of M , the allied mean curvature

vector A(H) of M in M̄ is defined as

A(H) =
m∑

β=n+2

trAHAβeβ.

Let M be an n–dimensional, oriented Riemannian manifold. We choose an

orthonormal local basis e1, . . . , en whose orientation is the same with that of
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M . Denote by w1, . . . , wn the dual basis of e1, . . . , en. Then w1 ∧ . . . ∧ wn is

the volume element of M . Since w1, . . . , wn form a local basis of
∧1(M), every

p-form α on M can be expressed locally as

α =
∑

1≤i1<···<ip≤n

ai1···ipw
i1 ∧ · · · ∧ wip . (2.9)

The Hodge star isomorphism, ∗ :
∧p(M) →

∧n−p(M), from p-forms into

(n− p)-forms is defined as

∗α =
∑

1≤j1<··· .<jn−p≤n

εi1...ip j1...jn−pai1...ipw
j1 ∧ . . . ∧ win−p , (2.10)

where εi1...ip j1...jn−p is zero if i1 . . . ip j1 . . . jn−p do not form a permutation of

{1, . . . , n}, and is equal to 1 or −1 according to whether the permutation is even

or odd. The form ∗α is called the adjoint of the form α. The adjoint of 1 is

just the volume element, ∗1 = w1 ∧ . . . ∧ wn, and adjoint of any function is its

product with the volume element.

Let α and β be p-forms given by

α =
∑

ai1...ipw
i1 ∧ . . . ∧ wip and β =

∑
bj1...jpw

j1 ∧ . . . ∧ wjp .

Then we have

α ∧ ∗β =
( ∑

i1<···<ip

ai1...ipw
i1 ∧ . . . ∧ wip

)
∧
( ∑

k1<··· .<kn−p

εj1...jp k1...kn−p bj1...jpw
k1 ∧ . . . ∧ wkn−p

)
=

∑
k1<··· .<kn−p

εi1...ip k1...kn−p ai1...ip bi1...ipw
i1 ∧ . . . ∧ wip ∧ wk1 ∧ . . . ∧ wkn−p

=
∑

i1<···<ip

ai1...ip bi1...ip w1 ∧ w2 ∧ . . . ∧ wn

=
∑

i1<··· .<ip

ai1...ip bi1...ip ∗ 1. (2.11)

For any two p-forms α and β on M , a (global) scalar product of α and β is

defined by

(α, β) =

∫
M

α ∧ ∗β, (2.12)
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whenever the integral converges. Two forms are orthogonal if their scalar product

is zero. Using the star operator and the differential operator, the co-differential

operator δ :
∧p(M) →

∧p−1(M) is defined as

δα = (−1)np+n+1 ∗ d ∗ α,

where α is a p-form on M . It follows from straightforward computation that,

∗δα = (−1)pd ∗ α and ∗ dα = (−1)p+1δ ∗ α. (2.13)

Using the operators d and δ we define an operator ∆ by

∆ = dδ + δd.

Then ∆ maps p-forms into p-forms. The operator ∆ is called the Laplacian of

M . A p-form α on M is called harmonic if ∆α = 0.

Proposition 2.1. [1] If M is a compact, oriented Riemannian manifold, and α

and β are two forms of degree p and p + 1 respectively, then we have

(dα, β) = (α, δβ), (2.14)

i.e., the operator δ is the adjoint of d. Consequently the Laplacian ∆ is

self-adjoint.

Proof : The manifold M is compact without boundary, so the Stokes theorem

implies ∫
M

d(α ∧ ∗β) = 0

Since d(α ∧ ∗β) = dα ∧ ∗β + (−1)pα ∧ d(∗β), we have∫
M

dα ∧ ∗β = (−1)p−1

∫
M

α ∧ d(∗β).

The two forms dα and β are of degree p+1, so we can write

∫
M

dα ∧ ∗β = (dα, β).

On the other hand, from (2.13), we have d(∗β) = (−1)p+1 ∗ δβ, which yields

(−1)p−1

∫
M

α ∧ d(∗β) = (−1)p−1(−1)p−1

∫
M

α ∧ ∗(δβ) = (α, δβ).

6



Combining these results, we obtain (2.14). Moreover, we have

(∆α, β) = (dδα, β) + (δdα, β) = (α, dδβ) + (α, δdβ) = (α, ∆β),

hence ∆ is self-adjoint.

Theorem 2.2. [1] On a compact, oriented Riemannian manifold M , a form α

is harmonic if and only if dα = δα = 0.

Proof : Let α be a p-form on M . Then Proposition 2.1 implies

(∆α, α) = (dδα, α) + (δdα, α) = (δα, δα) + (dα, dα).

Since for any form γ we have (γ, γ) ≥ 0 and we have (γ, γ) = 0 if and only if

γ = 0, we conclude that α is harmonic if and only if dα = δα = 0.

Corollary 2.3. [1] Let f ∈
∧0(M), where M is a compact Riemannian manifold.

Then f is harmonic if and only if it is constant.

Proof : If f is harmonic, from Theorem 2.2 we have df = 0, which implies that

f is constant. Conversely, let f be constant and w1 ∧ . . . ∧ wn be the volume

element on M . Then we have df = 0 and

δf = (−1)n+1 ∗ d ∗ f = (−1)n+1 ∗ d(fw1 ∧ . . . ∧ wn) = 0.

From Theorem 2.2, we see that f is harmonic.

Corollary 2.4. [1] If f is a differentiable function on a compact, oriented

Riemannian manifold M , then we have∫
M

∆f ∗ 1 = 0.

Proof : Since f is a 0-form, ∆f = δdf . Then using Proposition 2.1, we have∫
M

∆f ∗ 1 =

∫
M

δdf ∗ 1 = (δdf, 1) = (df, d1) = 0.
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Proposition 2.5. [1] Let x : M → Rm be an isometric immersion of a compact

n-dimensional Riemannian manifold M into Rm. Then we have∫
M

(1 + 〈x, H〉) ∗ 1 = 0.

Proof : Because ∆x = −nH, we have

n

∫
M

〈x, H〉 ∗ 1 = −
∫

M

〈x, ∆x〉 ∗ 1 = −
∫

M

〈(x1, . . . , xm), (∆x1, . . . , ∆xm)〉 ∗ 1

= −
m∑

i=1

∫
M

xi∆xi ∗ 1 = −
m∑

i=1

∫
M

∆xi ∧ ∗xi = −
m∑

i=1

(∆xi, xi)

= −
m∑

i=1

(δdxi, xi) = −
m∑

i=1

(dxi, dxi),

n

∫
M

〈x, H〉 ∗ 1 = −
m∑

i=1

(dxi, dxi). (2.15)

The 1-form dxi can be written in terms of the dual basis w1, . . . , wn as dxi =
n∑

j=1

dxi(ej)w
j =

n∑
j=1

ej(xi)w
j. Substituting this in (dxi, dxi) we have

(dxi, dxi) =

∫
M

dxi ∧ ∗(dxi) =

∫
M

( n∑
k=1

ek(xi)w
k
)
∧ ∗
( n∑

j=1

ej(xi)w
j
)

=

∫
M

( n∑
k=1

ek(xi)w
k
)
∧
( ∑

l1<...<ln−1

εj l1...ln−1ej(xi)

w1 ∧ . . . ∧ w̃j ∧ . . . ∧ wn
)
,

where w̃j means that wj is missing. Hence,

(dxi, dxi) =

∫
M

( n∑
k=1

ek(xi)w
k
)
∧
( n∑

j=1

(−1)j−1ej(xi)w
1 ∧ · · · ∧ w̃j ∧ · · · ∧ wn

)
=

∫
M

(∑
k, j

(−1)j−1ek(xi)ej(xi)w
k ∧ (w1 ∧ · · · ∧ w̃j ∧ · · · ∧ wn)

)
=

∫
M

( n∑
j=1

(−1)j−1(ej(xi))
2wj ∧ (w1 ∧ · · · ∧ w̃j ∧ · · · ∧ wn)

)
=

∫
M

( n∑
j=1

(−1)j−1(−1)j−1(ej(xi))
2w1 ∧ · · · ∧ wn

)
(dxi, dxi) =

∫
M

n∑
j=1

(ej(xi))
2 ∗ 1. (2.16)
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Let y1, . . . , yn be a local coordinate system on M ,
∂

∂y1

, . . . ,
∂

∂yn

be the local

coordinate base field and dy1, . . . , dyn be the corresponding dual base field. Then

any 1-form w on M can be expressed locally in this basis as w =
n∑

j=1

w(
∂

∂yj

)dyj.

So we can write

dxi =
n∑

j=1

dxi(
∂

∂yj

)dyj =
n∑

j=1

∂xi

∂yj

dyj.

We denote by gij = 〈 ∂

∂yi

,
∂

∂yj

〉 the components of the metric tensor with

respect to the coordinates y1, . . . , yn, and by gij the inverse of gij. Since

the basis e1, . . . , en is orthonormal, we have 〈ek, el〉 = δkl. Let η and γ be

two 1-forms on M . Then we can write η =
∑

k

η(
∂

∂yk

)dyk =
∑

k

η(ek)w
k and

γ =
∑

l

γ(
∂

∂yl

)dyl =
∑

l

γ(el)w
l. We know that an inner product of two 1-forms

is defined as

〈η, γ〉 =
∑
k, l

gklη(
∂

∂yk

)γ(
∂

∂yl

),

so we see that 〈η, γ〉 =
∑
k, l

δklη(ek)γ(el) =
∑

k

η(ek)γ(ek). Therefore we find

〈dxi, dxi〉 =
∑
k,l

gkldxi(
∂

∂yk

)dxi(
∂

∂yl

) =
∑

k

(ek(xi))
2. (2.17)

Combining (2.15), (2.16) and (2.17) we obtain

n

∫
M

〈x, H〉dV = −
m∑

i=1

∫
M

( n∑
k=1

(ek(xi))
2
)
∗ 1

= −
n∑

i=1

∫
M

(∑
k,l

gkldxi(
∂

∂yk

)dxi(
∂

∂yl

)
)
∗ 1 = −

m∑
i=1

∫
M

(∑
k,l

gkl ∂xi

∂yk

∂xi

∂yl

)
∗ 1

= −
∫

M

(∑
k,l

gkl
〈(∂x1

∂yk

,
∂x2

∂yk

, · · · ,
∂xm

∂yk

)
,
(∂x1

∂yl

,
∂x2

∂yl

, · · · ,
∂xm

∂yl

)〉)
∗ 1

= −
∫

M

(∑
k,l

gklgkl

)
∗ 1 = −n

∫
M

∗1

and the proof is completed.

Let M be a connected (not necessarily compact) submanifold of Rm and x : M →

Rm be an isometric immersion of M into Rm. If e1, . . . , en is an orthonormal local
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frame field tangent to M , then the Laplacian ∆ of M , which acts on smooth

functions C∞ (M) on M , is given by

∆ =
n∑

i=1

(∇ei
ei − eiei).

If the position vector x of a submanifold M in Rm can be written as

x = x0 +

q∑
t=p

xt, ∆xt = λtxt, (2.18)

where q is finite, then M is said to be of finite type, or of order [p, q]. Here x0

is a constant map and xt’s are non-constant maps. A submanifold M is said to

be of k-type, if there are k nonzero xt’s in (2.18), where k is a natural number.

A k-type submanifold is null if one of the xt’s is harmonic. If a submanifold M

is compact, then every eigenvalue λt of the Laplacian is nonnegative, and on M

only the constant functions are harmonic. So a compact submanifold M can not

be null. In this case, the constant vector x0 in (2.18) becomes the center of mass

of M in Rm. A submanifold M is of null 1-type if and only if it is a minimal

submanifold of Rm. Moreover, a submanifold of Rm is non-null 1-type if and

only if it is a minimal submanifold of a hypersphere of Rm.

We give the main theorems about finite typeness of an isometric immersion of a

compact Riemannian manifold M into Rm omitting their proofs.

Theorem 2.6. [1] Let x : M → Rm be an isometric immersion of a compact

Riemannian manifold M into Rm. Then M is of finite type if and only if there

is a non-trivial polynomial P such that P (∆)H = 0 (or P (∆)(x − x0) = 0).

In other words, M is of finite type if and only if the mean curvature vector H

satisfies a differential equation of the form

∆kH + c1∆
k−1H + · · ·+ ck−1∆H + ckH = 0

for some integer k ≥ 1 and some real numbers c1, . . . , ck.

Theorem 2.7. [12] Let M be a finite type submanifold of Rm. Denote by Pm(t)

a monic polynomial of least degree with Pm(∆)H = 0. Then we have

10



(a) the polynomial Pm(t) is unique,

(b) if Q is a polynomial with Q(∆)H = 0, then Pm(t) is a factor of Q, and

(c) M is of k-type if and only if degPm = k.

Example. (A Flat Torus in R6) We consider the immersion x : T 2 → R6 defined

by

x(s, t) = (a sin s, b sin s sin
t

b
, b sin s cos

t

b
, a cos s, b cos s sin

t

b
, b cos s cos

t

b
).

(2.19)

Assume that a2 + b2 = 1 and a, b > 0. The coordinate base fields of the tangent

bundle are

e1 = (a cos s, b cos s sin
t

b
, b cos s cos

t

b
,−a sin s,−b sin s sin

t

b
,−b sin s cos

t

b
),

e2 = (0, sin s cos
t

b
,− sin s sin

t

b
, 0, cos s cos

t

b
,− cos s sin

t

b
).

We can see that e1, e2 form an orthonormal basis. We have

∇e1e1 = (−a sin s,−b sin s sin
t

b
,−b sin s cos

t

b
,−a cos s,−b cos s sin

t

b
,

−b cos s cos
t

b
),

∇e1e2 = ∇e2e1 = (0, cos s cos
t

b
,− cos s sin

t

b
, 0,− sin s cos

t

b
, sin s sin

t

b
),

∇e2e2 = (0,−1

b
sin s sin

t

b
,−1

b
sin s cos

t

b
, 0,−1

b
cos s sin

t

b
,−1

b
cos s cos

t

b
).

Using ∇ei
ej = 〈∇ei

ej, e1〉e1 + 〈∇ei
ej, e2〉e2, we find that ∇ei

ej = 0 for i, j = 1, 2.

In local coordinates, the Laplace operator takes the form

∆ = −
( ∂2

∂s2
+

∂2

∂t2
)
.

From (2.1) and (2.8) we obtain

H = −x

2
− 1

2b
(0, sin s sin

t

b
, sin s cos

t

b
, 0, cos s sin

t

b
, cos s cos

t

b
).

Applying the Laplacian we have

∆H = −(1 +
1

b2
)H +

a

2b2
(sin s, 0, 0, cos s, 0, 0),

∆2H = −(1 +
1

b2
)2H +

a

2b2
(2 +

1

b2
)(sin s, 0, 0, cos s, 0, 0).
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Consequently we have

∆2H − (2 +
1

b2
)∆H + (1 +

1

b2
)H = 0.

This shows that T 2 is of 2-type in R6.

Let v1 and v2 be two Rm-valued functions on M . An inner product of v1 and v2

is defined by

(v1, v2) =

∫
M

〈v1, v2〉dV, (2.20)

where 〈v1, v2〉 denotes the Euclidean inner product of v1 and v2.

Lemma 2.8. [1] Let x : M → Rm be an isometric immersion of a compact

Riemannian manifold M into Rm. Then we have (xt, xs) = 0 for t 6= s, where xt

is given as in (2.18).

Proof : We can write (2.18) in vector form as

(x1, . . . , xm) = (x01, . . . , x0m) +

q∑
t=p

(xt1, . . . , xtm).

Since ∆ is self adjoint, using (2.20) and (2.12) we have

λt(xt, xs) = λt

∫
M

(∑
i

xtixsi

)
dV = λt

∑
i

(xti, xsi)

=
∑

i

(λtxti, xsi) =
∑

i

(∆xti, xsi) =
∑

i

(xti, ∆xsi)

=
∑

i

(xti, λsxsi) = λs

∫
M

(∑
i

xtixsi

)
dV = λs(xt, xs).

But we have λt 6= λs for t 6= s, hence (xt, xs) = 0.

We give some theorems without proofs for later use.

Lemma 2.9. [1] Let M be a compact minimal submanifold of a hypersphere

Sm−1(r) in Rm. Then M is mass-symmetric in Sm−1(r).

An m-dimensional complete Riemannian manifold of constant curvature k is

called a space form and it is denoted by Rm(k).
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Proposition 2.10. [1] An n-dimensional totally umbilical submanifold M in the

real space form Rm(k) is either totally geodesic in Rm(k) or contained in a small

hypersphere of an (n+1)-dimensional totally geodesic submanifold of Rm(k).

Proposition 2.11. [1] Let M be a pseudo-umbilical submanifold of the real

space form Rm(k). If M has parallel mean curvature vector, then either M is

a minimal submanifold of Rm(k), or M is a minimal submanifold of a small

hypersphere of Rm(k).

Theorem 2.12. [2] Let M be a surface in an m-dimensional space form Rm(k)

of curvature k. If the mean curvature vector H is parallel in the normal bundle,

then M is one of the following surfaces;

(a) minimal surfaces of Rm(k),

(b) minimal surfaces of a small hypersphere of Rm(k), or

(c) surfaces with constant mean curvature |H| in a 3-sphere of Rm(k).

Proposition 2.13. [2] Let M be a surface in a 3-dimensional space form

R3(k) with constant mean curvature |H|. If M has nonzero constant Gaussian

curvature, then M is contained in a hypersphere of R3(k).

Proposition 2.14. [2] The minimal surfaces of a small hypersphere of a

Euclidean m-space Rm, the open pieces of the product of two plane circles, and

the open pieces of a circular cylinder are the only nonminimal surfaces in Rm

with parallel mean curvature vector and constant Gaussian curvature.
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3. THE LAPLACIAN OF THE MEAN CURVATURE VECTOR

In this section we give the evaluation of the Laplacian of the mean curvature

vector of a spherical submanifold.

Lemma 3.1. [1] Let M be an n-dimensional submanifold of a hypersphere

Sm−1(r) of radius r in Rm centered at the origin. Then we have

∆H = ∆D′
H ′ +A′(H ′) + tr(∇AH) + α′(‖Aξ‖2 +

n

r2
)ξ − nα2

r2
x, (3.1)

where ∇AH = ∇AH + ADH .

Proof: We denote by ∇′ and ∇ the connections of Sm−1 and M . Let H, h, A

and D be the mean curvature vector, second fundamental form, the Weingarten

map and the normal connection of M in Rm; H ′, h′, A′ and D′ be those of M in

Sm−1, respectively. Let α and α′ be the lengths of H and H ′ respectively and ξ

be the unit normal vector field ξ =
H ′

α′
. Then we have Aξ = A′

ξ and Dξ = D′ξ.

For an n-dimensional submanifold M of Rm we have

∆H = ∆DH + ‖AH
α
‖2H +A(H) + tr(∇AH). (3.2)

Let {ηn+1, ηn+2, . . . , ηm} be an orthonormal normal basis of M in Rm such that

ηm =
x

r
. Then we have

H =
1

n

m∑
β=n+1

trAβηβ =
1

n

(
trAx

r

x

r
+

m−1∑
β=n+1

trAβηβ

)
= H ′ − x

r2
. (3.3)

If we apply the Laplacian of the normal bundle of M in Rm to the mean curvature

vector H, we write

∆DH =
n∑

i=1

D∇eiei
H −Dei

Dei
H, (3.4)
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where e1, . . . , en is an orthonormal tangent basis of M . Since D′
ei
H ′ is a vector

normal to M and tangent to Sm−1, we have Dei
D′

ei
H ′ = D′

ei
D′

ei
H ′. We also see

from Dx = 0 that D∇eiei
H = D∇eiei

(H ′− x

r2
) = D∇eiei

H ′ = D′
∇eiei

H ′. Applying

these in (3.4), we find ∆DH = ∆D′
H ′.

We choose an orthonormal normal basis {en+1, ...., em} of M such that

en+1 =
H

α
=

1

α
(α′ξ − x

r2
) and en+2 =

1

rα
(ξ + α′x), (3.5)

where α2 = (α′)2 +
1

r2
. We can see from the definitions of en+1 and en+2 that, at

each point of M , the two sets of vectors {en+1, en+2} and {x

r
, ξ} span the same

subspace of the normal space of M in Rm. Hence {x

r
, ξ, en+3, ...., em} is also an

orthonormal normal basis of M . The allied mean curvature vector of M in Sm−1

is given in this basis by

A′(H ′) =
m∑

β=n+3

tr(AH′Aβ)eβ. (3.6)

On the other hand, when en+1 and en+2 are chosen as in (3.5), we can write the

allied mean curvature vector of M in Rm as

A(H) =
m∑

β=n+2

tr(AHAβ)eβ. (3.7)

Moreover, we have

A(H) = tr(AHAn+2)en+2 +
m∑

β=n+3

tr(AHAβ)eβ

= tr(AHAn+2)en+2 +
m∑

β=n+3

(
tr(AH′Aβ) +

1

r2
trAβ

)
eβ.

Since H = αen+1, we obtain trAβ = 0 for β = n + 3, . . . ,m. Using (3.6) we find

A(H) = tr(AHAn+2)en+2 +A′(H ′). (3.8)
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A direct computation gives

tr(AHAn+2) =
n∑

i=1

〈AHAn+2ei, ei〉

=
n∑

i=1

1

rα

(
α′〈AξAξ+α′xei, ei〉 −

1

r2
〈AxAξ+α′xei, ei〉

)
=

α′

rα
tr(A2

ξ) +
1

rα

n∑
i=1

(
1

r2
− (α′)2)〈Aξei, ei〉 −

α′

r3α

n∑
i=1

〈ei, ei〉

=
α′

rα
‖Aξ‖2 +

1

rα
(

1

r2
− (α′)2)trAξ −

nα′

r3α
.

Since trAξ = nα′, we have

tr(AHAn+2) =
α′

rα
(‖Aξ‖2 − n(α′)2). (3.9)

Substituting (3.9) in (3.8) gives

A(H) = A′(H ′) +
α′

rα
(‖Aξ‖2 − n(α′)2)en+2. (3.10)

Applying (3.10) in (3.2), we obtain

∆H = ∆D′
H ′+tr(∇AH)+‖AH

α
‖2H +A′(H ′)+

α′

rα
(‖Aξ‖2−n(α′)2)en+2. (3.11)

From (3.3) and (3.5), we also find,

α2‖AH
α
‖2 = α2tr(AH

α
AH

α
) =

n∑
i=1

〈AHAHei, ei〉

=
n∑

i=1

〈AH′− x
r2

AH′− x
r2

ei, ei〉 = (α′)2‖Aξ‖2 +
2α′

r2
trAξ +

n

r4
,

‖AH
α
‖2 =

1

α2

(
(α′)2‖Aξ‖2 +

2n(α′)2

r2
+

n

r4

)
. (3.12)
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If we substitute (3.12) in (3.11), we get

∆H = ∆D′
H ′ + tr(∇AH) +A′(H ′) +

α′

α2

(
(α′)2‖Aξ‖2 +

2n(α′)2

r2
+

n

r4

)
ξ

− 1

α2r2

(
(α′)2‖Aξ‖2 +

2n(α′)2

r2
+

n

r4

)
x +

α′

rα
(‖Aξ‖2 − n(α′)2)(

ξ + α′x

rα
)

= ∆D′
H ′ + tr(∇AH) +A′(H ′) +

α′3r2 + α′

r2α2
‖Aξ‖2ξ + (

n(α′)3

r2α2
+

nα′

α2r4
)ξ

−
(2n(α′)2

α2r4
+

n

α2r6
+

n(α′)4

α2r2

)
x

= ∆D′
H ′ + tr(∇AH) +A′(H ′) + α′‖Aξ‖2ξ +

nα′

r2
ξ

− n

r4α2

(
α2 + (α′)2((α′)2 +

1

r2
)r2
)
x

= ∆D′
H ′ + tr(∇AH) +A′(H ′) + α′‖Aξ‖2ξ +

nα′

r2
ξ − nr2α2

r4α2
((α′)2 +

1

r2
)x

= ∆D′
H ′ + tr(∇AH) +A′(H ′) + α′‖Aξ‖2ξ +

nα′

r2
ξ − nα2

r2
x.

Consequently we have (3.1).

Moreover, if r = 1, then using H = H ′ − x, the equation (3.1) becomes

∆H = ∆D′
H ′ + tr(∇AH) +A′(H ′) + (‖Aξ‖2 + n)H + (‖Aξ‖2 −n(α′)2)x. (3.13)

Lemma 3.2. [3] Let M be an n-dimensional submanifold of Sm−1(1) in Rm.

Then we have

tr(∇AH) =
n

2
grad α2 + 2trADH′ (3.14)

Proof: Let E1,E2,....,En be orthonormal eigenvectors of A′
ξ = Aξ and

ρ1, ρ2, . . . , ρn be the corresponding eigenvalues. Since

AH′Ei = α′ρiEi (3.15)

and

∇Ei
Ej =

∑
wk

j (Ei)Ek, (3.16)

we obtain

(∇Ei
AH′)Ej = ρj(Eiα

′)Ej + α′(Eiρj)Ej +
∑

k

α′(ρj − ρk)w
k
j (Ei)Ek. (3.17)
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Combining the Codazzi equation (2.7) and (3.17) we have

ADEi
ξEj − ADEj

ξEi = (∇Ei
Aξ)Ej − (∇Ej

Aξ)Ei

= (Eiρj)Ej − (Ejρi)Ei

+
∑

k

(
(ρj − ρk)w

k
j (Ei)− (ρi − ρk)w

k
i (Ej)

)
Ek,(3.18)

whenever α′ 6= 0.

If we take the inner product of both sides of (3.18) with Ei, we find

−(Ejρi) + (ρj − ρi)w
i
j(Ei)− (ρi − ρi)w

i
i(Ej) = 〈ADEi

ξEj − ADEj
ξEi, Ei〉,

(ρi − ρj)w
j
i (Ei) = (Ejρi) + 〈ADEi

ξEj − ADEj
ξEi, Ei〉 i 6= j. (3.19)

Noting that ∇AH = ∇AH + ADH and applying H = H ′ − x, Ax = −I and

Dx = 0 in tr(∇AH) =
∑
i

((∇Ei
AH)Ei + ADEi

HEi), we have

tr(∇AH) =
∑

i

((∇Ei
AH′)Ei + ADEi

H′Ei) (3.20)

If we put j = i in (3.17), we obtain

(∇Ei
AH′)Ei = ρi(Eiα

′)Ei + α′(Eiρi)Ei +
∑

k

α′(ρk − ρi)w
i
k(Ei)Ek.

Substituting the above equation in (3.20) gives

tr(∇AH) =
∑

i

(
ρi(Eiα

′) + α′(Eiρi) +
∑

k

α′(ρk − ρi)w
i
k(Ek)

)
Ei

+
∑

i

Aα′DEi
ξ+(Eiα′)ξEi

=
∑

i

(
ρi(Eiα

′) + α′(Eiρi) +
∑

k

α′(ρk − ρi)w
i
k(Ek)

)
Ei

+α′trADξ +
∑

i

(Eiα
′)ρiEi

Consequently we have

tr(∇AH) = α′trADξ+
∑

i

(
2(Eiα

′)ρi+α′(Eiρi)+
∑

k

α′(ρk−ρi)w
i
k(Ek)

)
Ei. (3.21)
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Substituting (3.19) into (3.21) and making a direct computation we find

tr(∇AH) = α′trADξ +
∑

i

(
2(Eiα

′)ρi + α′(Eiρi)

+
∑
k, k 6=i

α′(Eiρk + 〈ADEk
ξEi, Ek〉 − 〈ADEi

ξEk, Ek〉)
)
Ei

= α′trADξ +
∑

i

(Eiα
′)ρiEi +

∑
i

(
(Eiα

′)ρi + α′(Eiρi)

+
∑
k, k 6=i

α′(Eiρk)
)
Ei +

∑
i, k,k 6=i

α′〈ADEk
ξEi, Ek〉Ei

−
∑

i, k,k 6=i

α′〈ADEi
ξEk, Ek〉Ei

= trADH′ +
∑

i

(Eiα
′)ρiEi + α′trADξ − α′

∑
i

〈ADEi
ξEi, Ei〉Ei

+
∑

i

(
α′(Eiρi) +

∑
k, k 6=i

α′(Eiρk)
)
Ei − nα′

∑
i

〈H, DEi
ξ〉Ei

+α′
∑

i

〈ADEi
ξEi, Ei〉Ei

= 2trADH′ − nα′
∑

i

〈H, DEi
ξ〉Ei +

∑
i

α′(Eiρi)Ei +
∑
i, k

α′(Eiρk)Ei

where we have used the following statements,∑
i, k, k 6=i

〈ADEk
ξEi, Ek〉Ei = trADξ −

∑
i

〈ADEi
ξEi, Ei〉

and ∑
i, k, k 6=i

〈ADEi
ξEk, Ek〉Ei =

∑
i

〈nH,DEi
ξ〉Ei −

∑
i

〈ADEi
ξEi, Ei〉Ei.

Hence, considering ∑
i, k

(Eiρk)Ei = n
∑

i

(Eiα
′)Ei,

we obtain

tr(∇AH) = 2trADH′ − nα′
∑

i

〈H, DEi
ξ〉Ei + nα′

∑
i

Ei(α
′)Ei. (3.22)

On the other hand, we have

〈H, DEi
ξ〉 = 〈H ′, D′

Ei
ξ〉 = α′〈ξ,−A′

ξEi + D′
Ei

ξ〉

= α′〈ξ,∇′
Ei

ξ〉 =
α′

2
Ei〈ξ, ξ〉 = 0
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and

nα′
∑

i

(Eiα
′)Ei =

n

2

∑
i

(Eiα
2)Ei =

n

2

∑
i

dα2(Ei)Ei

=
n

2

∑
i

〈gradα2, Ei〉Ei =
n

2
gradα2.

Substituting these in (3.22), we obtain (3.14).

Corollary 3.3. [4] Let M be a hypersurface of Sn+1(1) in Rn+2. Then we have

∆H = ∆D′
H ′ +

n

2
grad α2 + 2trADH′ + (‖Aξ‖2 + n)H ′ − nα2x. (3.23)

Lemma 3.4. [3] If M is a submanifold of Sm−1 with parallel mean curvature

vector H ′ (or H) then tr(∇AH) = 0.

Proof : The mean curvature vector is parallel, so we have DH ′ = 0, which

implies trADH′ = 0. On the other hand, since α′ is constant, we have
n

2
gradα2 =

n

2
grad((α′)2 + 1) = 0.

Corollary 3.5. [3] If M is a hypersurface of Sn+1 in Rn+2 with constant mean

curvature, then tr(∇AH) = 0.
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4. COMPACT SPHERICAL SUBMANIFOLDS OF FINITE TYPE

In this section we study properties of compact spherical submanifolds of finite

type in Rm. We give some relations between the eigenvalues of the Laplacian

and the mean and scalar curvatures of a spherical submanifold of Rm.

Theorem 4.1. [3] Let M be a compact, n-dimensional submanifold of a

hypersphere Sm−1 in Rm such that M is not of 1-type and the mean curvature

vector H ′ is parallel. Then M is mass-symmetric and of 2-type if and only if M

is an A-submanifold of Sm−1 and ‖AH′‖ is constant.

Proof: Assume that Sm−1 is centered at the origin with radius 1. Since H ′ is

parallel, we have 4D′
H ′ = 0 and Lemma 3.4 implies that tr(∇AH) = 0. So

(3.13) becomes

∆H = A′(H ′) + (‖Aξ‖2 + n)H + (‖Aξ‖2 − n(α′)2)x. (4.1)

Let e1, e2, . . . en be an orthonormal local tangent basis on M . If AH′ has constant

length, then since

‖AH′‖2 = tr(A2
H′) = (α′)2

n∑
i=1

〈Aξei, Aξei〉 = (α′)2‖Aξ‖2,

(α′)2‖Aξ‖2 is also constant. Here α′ is a nonzero constant, because if α′ = 0,

then M is minimal in Sm−1 and a compact minimal submanifold of a hypersphere

of Rm is of 1-type. But this contradicts with our assumption, hence α′ 6= 0 and

‖Aξ‖2 is a constant.

If M is an A-submanifold of Sm−1 and ‖AH′‖ is constant, from (4.1) we have

∆H = bH + cx, (4.2)
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where b = ‖Aξ‖2 + n and c = ‖Aξ‖2 − n(α′)2 are constants. Integrating both

sides of (4.2) on M , we find∫
M

∆HdV = b

∫
M

HdV + c

∫
M

xdV. (4.3)

The integral on the left hand side is zero by Corollary 2.4 and the first integral

on the right hand side is zero by Corollary 2.4 since ∆x = −nH. So we obtain

c

∫
M

xdV = 0. (4.4)

We know that the center of mass x0 of M in Rm is given by

x0 =

∫
M

xdV∫
M

dV
.

If c 6= 0, from (4.4) we see that x0 = 0, which implies M is mass-symmetric.

If c = 0, we have ‖Aξ‖2 = n(α′)2. Let E1, E2, ...., En be the principal vector fields

of Aξ and ρ1, ρ2, ...., ρn be the corresponding principal curvatures. Then we have

‖Aξ‖2 = tr(A2
ξ) =

n∑
i=1

〈A2
ξ(Ei), Ei〉 =

n∑
i=1

ρi
2.

On the other hand we have

n(α′)2 = n(
1

n
trAξ)

2 = n(
1

n

∑
i

〈Aξ(Ei), Ei〉)2 =
1

n
(
∑

i

ρi)
2.

Substituting these in ‖Aξ‖2 = n(α′)2, we obtain

ρ2
1 + ρ2

2 + · · ·+ ρ2
n =

1

n
(ρ1 + ρ2 + ... + ρn)2

which holds if and only if ρ1 = ρ2 = · · · = ρn. But this implies that AH′ = (α′)2I,

that is, M is pseudo-umbilical in Sm−1. Since H ′ is parallel, Proposition 2.11

implies that M is of 1-type which is a contradiction to our assumption. Thus

x0 = 0, M is mass-symmetric in Sm−1. By applying (4.2) and Theorem 2.6, we

conclude that M is of 2-type.
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Conversely, if M is mass-symmetric and of 2-type, then by Theorem 2.6, there

exists constants b and c such that ∆H = bH + cx. Combining this with (4.1),

we have

∆H = A′(H ′) + (‖Aξ‖2 + n)H + (‖Aξ‖2 − n(α′)2)x = bH + cx

Since H = H ′ − x and A′(H ′) is normal to H ′ and tangent to Sm−1, we see that

A′(H ′) = 0. From the above equation , we also see that bH ′ = (‖Aξ‖2 + n)H ′.

As M is of 2-type, we have H ′ 6= 0 and ‖Aξ‖2 = b−n, which is a constant. From

‖Aξ‖2 − n(α′)2 = c, we have α′=constant. Consequently ‖AH′‖2 = (α′)2‖Aξ‖2 is

constant.

The second fundamental form h of a submanifold M of a Riemannian manifold

M̄ is parallel if we have

(∇Zh)(X, Y ) = DZh(X, Y )− h(∇ZX, Y )− h(X,∇ZY ) = 0,

for any vector fields X, Y and Z tangent to M. A submanifold is called a parallel

submanifold if it has parallel second fundamental form. Let M be a parallel

submanifold of M̄ and let e1, e2, . . . , en be an orthonormal local tangent basis of

M . Using ∇ek
ei =

n∑
j=1

wj
i (ek)ej, we have

Dek
H = Dek

( 1

n

n∑
i=1

h(ei, ei)
)

=
1

n

n∑
i=1

(h(∇ek
ei, ei) + h(ei,∇ek

ei)) =
2

n

n∑
i,j=1

wj
i (ek)h(ej, ei)

=
2

n

∑
i<j

(wj
i (ek) + wi

j(ek))h(ej, ei) = 0

Therefore, a parallel submanifold has parallel mean curvature vector. If we write

H = βη where η is the unit vector in the direction of H, then ‖AH‖2 = β2‖Aη‖2

is constant because β is constant and for any vector field X tangent to M we
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have,

X‖Aη‖2 = X
∑

i

〈A2
ηei, ei〉 = X

∑
i,j

〈Aηei, ej〉2

= X
∑
i,j

〈h(ei, ej), η〉2 = X
∑
i,j

(hη
ij)

2 = 2
∑
i,j

hη
ijX(hη

ij)

= 2
∑
i,j

hη
ij〈DXh(ei, ej), η〉 = 2

∑
i,j

hη
ij〈h(∇Xei, ej) + h(ei,∇Xej), η〉

= 2
∑
i,j,k

hη
ij〈wk

i (X)h(ek, ej), η〉+ 2
∑
i,j,k

hη
ij〈wk

j (X)h(ei, ek), η〉

= 4
∑
i,j,k

hη
ijw

k
i (X)〈h(ej, ek), η〉 = 4

∑
j, i<k

hη
ijh

η
jk(w

k
i (X) + wi

k(X)) = 0.

Corollary 4.2. [3] If M is a compact parallel submanifold of Sm−1, then M is

an A-submanifold of Sm−1 if and only if M is mass-symmetric and M is either

of 1 or 2-type in Rm.

Proof : Let M be an A-submanifold of Sm−1. Since M is a parallel submanifold,

the mean curvature vector is parallel and ‖AH′‖2 = (α′)2‖Aξ‖2 is constant. If

α′ = 0, then M is minimal in Sm−1, hence it is of 1-type. Also, by Lemma 2.9, M

is mass-symmetric in Sm−1. Let α′ 6= 0, then from the proof of Theorem 4.1, we

see that ∆H = bH + cx, where b and c are constants. Thus from (4.3), we have

c

∫
M

xdV = 0.

If c=0, M is pseudoumbilical. Since the mean curvature vector is parallel, by

Proposition 2.11, M is a minimal submanifold of a small hypersphere Sm−2(c0),

(c0 < 1) of Sm−1(1), which implies that M is mass-symmetric in Sm−2(c0). On

the other hand, if c 6= 0, since we have A′(H ′) = 0 and ‖AH′‖ is constant,

by Theorem 4.1, M is mass-symmetric and is of 2-type. Conversely, let M be

mass-symmetric in Sm−1 and be of 1 or 2-type in Rm. If M is of 1-type, then

we have ∆H = aH for some constant a. Then from (4.1), we get A′(H ′) = 0.

Finally, if M is of 2-type, it follows from Theorem 4.1 that A′(H ′) = 0.

Theorem 4.3. [3] Let M be a compact hypersurface of a hypersphere Sn+1 such

that M is not a small hypersphere of Sn+1. Then, M is mass-symmetric and of
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2-type if and only if M has nonzero constant mean curvature α′ and constant

scalar curvature.

Proof : Without loss of generality we may assume that Sn+1 in Rn+2 is

centered at the origin with radius 1. Assume that M is of 2-type in Rn+2 and

mass-symmetric in Sn+1(1). As M is a hypersurface of Sn+1, A′(H ′) = 0 on M .

{ξ, x} is an orthonormal normal basis of M in Rn+2 so, for any vector fields X

and Y tangent to M , we can write the second fundamental form of M as

h(X, Y ) = 〈h(X, Y ), ξ〉ξ + 〈h(X,Y ), x〉x = hξ(X, Y )ξ + hx(X, Y )x.

Let e1, e2, . . . , en be an orthonormal tangent basis of M and ‖h‖ denote the length

of the second fundamental form which is given by ‖h‖2 =
∑
i, j

((hξ
ij)

2+(hx
ij)

2) where

hξ
ij = hξ(ei, ej) and hx

ij = hx(ei, ej). Then we have

‖h‖2 =
∑
i, j

((〈Aξei, ej〉)2 + (〈Axei, ej〉)2) = ‖Aξ‖2 + n.

Using α2 = (α′)2 + 1 and ‖h‖2 = ‖Aξ‖2 + n, we can write

‖Aξ‖2 − n(α′)2 = ‖h‖2 − nα2. (4.5)

Since M is of 2-type we have ∆H = bH + c(x−x0), where b and c are constants

and x0 is the center of mass of M in Rn+2, Moreover we have x0 = 0 because M

is mass-symmetric in Sn+1.

Substituting A′(H ′) = 0 and (4.5) in (3.13), and combining with ∆H = bH +cx,

we obtain

∆D′
H ′ + tr(∇AH) + ‖h‖2H + (‖h‖2 − nα2)x = bH + cx. (4.6)

Since tr(∇AH) is tangent to M and other terms in (4.6) are normal to M , we

get tr(∇AH) = 0. If we put H = H ′ − x in (4.6) we have

∆D′
H ′ + ‖h‖2H ′ − nα2x = bH ′ + (c− b)x. (4.7)
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∆D′
H ′ is parallel to H ′ so we find nα2 = b− c, which implies that α′ is constant.

Therefore H ′ is parallel and ∆D′
H ′ = 0. Because M is of 2-type, α′ is nonzero,

so (4.7) yields ‖h‖2 = b. Since the scalar curvature satisfies

n(n− 1)ρ = n2α2 − ‖h‖2, (4.8)

ρ is also constant.

Conversely if M has constant scalar curvature and nonzero constant mean

curvature α′, then the mean curvature vector H ′ is parallel, hence ∆D′
H ′ = 0

and tr(∇AH) = 0 by Lemma 3.4. Also M is an A-submanifold of Sn+1 because

M is a hypersurface. From (4.8), we see that ‖h‖2 is constant. As a result we

have

∆H = ‖h‖2H + (‖h‖2 − nα2)x = bH + cx

where b and c are constants. From the proof of Theorem 4.1, we know that if

c 6= 0, M is mass-symmetric in Sn+1 and is of 2-type in Rn+2. If c = 0, then M is

of 1-type, which implies that it is a minimal submanifold of a hypersphere S̄n+1

in Rn+2 and M lies in the intersection of S̄n+1 and Sn+1. Then M is either a

great or a small hypersphere of Sn+1. M can not be a great hypersphere of Sn+1

because great hyperspheres of a space form are totally geodesic, thus minimal

in Sn+1, but we assumed that α′ is nonzero. Finally, M can not be a small

hypersphere of Sn+1, because this contradicts to our assumption.

Theorem 4.4. [1] Let M be an n-dimensional compact submanifold of a

hypersphere Sm(r) of radius r in Rm+1. Then

(1) if M is of finite type, then λq ≥
n

r2
and λq =

n

r2
if and only if M is of 1-type,

(2) if M is mass-symmetric in Sm(r), then λ1 ≤ λp ≤
n

r2
and λp =

n

r2
if and only

if M is minimal in Sm(r) and hence M is of 1-type.

Proof : It is known that for a compact submanifold M of Rm+1, we have∫
M

|H|kdV ≤ (
λq

n
)

k
2 vol(M) k = 1, 2, 3 or 4. (4.9)
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equality holding for some k = 1, 2, 3 or 4, if and only if M is of order q. (for the

proof, see [1], p 296) We also have

|H|2 = |H ′|2 +
1

r2
. (4.10)

From (4.9) and (4.10), we find

(
1

r2
)vol(M) ≤

∫
M

|H|2dV ≤ (
λq

n
)vol(M). (4.11)

This shows that λq ≥
n

r2
. If λq =

n

r2
, then (4.10) and (4.11) implies H ′ = 0. So

M is minimal in Sm and is of 1-type. The converse of this is clear.

For statement (2), we assume that the centroid of M is the center of Sm(r) and

without loss of generality we may assume that Sm(r) is centered at the origin.

Then we have x =

q∑
t=p

xt. From ∆x = −nH, Proposition 2.5 and Lemma 2.8 we

have

nvol(M) = −n

∫
M

〈x, H〉dV = (x, ∆x)

= (

q∑
t=p

xt,

q∑
s=p

λsxs) =

q∑
t=p

λt(xt, xt)

≥ λp

q∑
t=p

(xt, xt) = λp(

q∑
t=p

xt,

q∑
s=p

xs) = λp(x, x) = λp‖x‖2,

nvol(M) ≥ λp‖x‖2. (4.12)

Since M lies in Sm(r), using (2.20) we find

‖x‖2 = (x, x) =

∫
M

〈x, x〉dV =

∫
M

( m∑
i=1

x2
i

)
dV = r2vol(M).

Thus, by (4.12) we obtain
n

r2
≥ λp. (4.13)

If the equality of (4.13) holds, then the inequality of (4.12) becomes equality and

M is of 1-type. The converse of this is clear.

Combining Theorem 4.3 and Theorem 4.4 we obtain the following:

27



Corollary 4.5. [3] Let M be a compact hypersurface of Sn+1(1). If M has

constant mean curvature and constant scalar curvature, then either M is a small

hypersphere or the eigenvalue λp of ∆ on M satisfies λp ≤ n. Equality holds if

and only if M is minimal in Sn+1 and M is of 1-type in Rn+2.

Theorem 4.6. [3] Let M be a compact hypersurface of Sn+1(1) such that M

is not a small hypersphere. If M has nonzero constant mean curvature α′ and

constant scalar curvature ρ, then both α′ and ρ are completely determined by

the order of M . We have

(α′)2 = (1− λp

n
)(

λq

n
− 1), (4.14)

ρ =
1

n
(λp + λq)−

λpλq

n(n− 1)
, (4.15)

‖h‖2 = λp + λq. (4.16)

Proof : Without loss of generality we may assume that Sn+1(1) is centered at the

origin. It follows from Theorem 4.1 that M is mass-symmetric and is of 2-type.

Since M is of 2-type, by Theorem 2.6, there exists a unique monic polynomial

P (t) = t2 + bt + c such that P (∆)x = 0 and ∆H = −bH +
c

n
x. Combining this

with (3.1), we have

∆D′
H ′+A′(H ′)+tr(∇AH)+(‖Aξ‖2 +n)H ′−nα2x+bH ′−bx− c

n
x = 0. (4.17)

The two distinct real roots of the polynomial P (t) correspond to the two

eigenvalues λp and λq of the Laplacian of M which satisfy ∆xp = λpxp and

∆xq = λqxq. Hence we can write P (t) = t2 + bt + c = (t − λp)(t − λq) and we

obtain

b = −(λp + λq) and c = λpλq. (4.18)

The sum of the terms normal to Sn+1 in (4.17) vanishes, so we have

(α′)2 = − b

n
− c

n2
− 1 =

λp + λq

n
− λpλq

n2
− 1 = (1− λp

n
)(

λq

n
− 1).

We have tr(∇AH) = 0 because it is the only term tangent to M in (4.17). Since

M is a hypersurface in Sn+1 we have A′(H ′) = 0. Moreover α′ is constant on M ,
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so we get D′H ′ = 0, hence ∆D′
H ′ = 0. Applying these in (4.17) gives

(‖Aξ‖2 + n)H ′ + bH ′ = (‖Aξ‖2 + n)H ′ − (λp + λq)H
′ = 0

Consequently we have ‖h‖2 = ‖Aξ‖2 + n = λp + λq. On the other hand using

(4.8), we find

ρ =
1

n(n− 1)
(n2(α′)2 + n2 − ‖h‖2) =

1

n(n− 1)
((n− 1)(λp + λq)− λpλq),

=
λp + λq

n
− λpλq

n(n− 1)
,

which completes the proof.

Assume that M is a compact 2-type submanifold of Sm−1(1). Then we have

∆H = bH + c(x− x0) (4.19)

where x0 is the center of mass of M in Rm and b and c are constants given by

b = λp + λq and c =
λpλq

n
.

Since the mean curvature vectors of M in Rm and Sm−1(1) are related by

H = H ′ − x, then (3.1) and (4.19) yield

∆D′
H ′ + tr(∇AH) +A′(H ′) + (‖Aξ‖2 + n)H ′ − bH ′ = nα2x− bx + c(x− x0).

Taking the inner product of both sides of the above equation with x, we have

c〈x0, x〉 = nα2 − b + c. (4.20)

If α is constant, then 〈x0, x〉 = |x0||x| cos θ is a constant, where θ denotes the

angle between the vectors x0 and x in Rm. If 〈x0, x〉 = 0, then we can have

|x0| = 0, which implies that M is mass-symmetric in Sm−1. If |x0| 6= 0 and

|x| cos θ = 0, since x is the position vector of M in Rm, |x| is nonzero and we have

cos θ = 0, that is, the point x is contained in the hyperplane which passes through

the origin and is normal to the vector x0. This implies that M is contained in this

hyperplane, but since |x0| 6= 0, x0 is not in this hyperplane, which contradicts

with x0 being the center of mass of M in Rm. Thus, if 〈x0, x〉 = 0, then M is
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mass-symmetric in Sm−1. On the other hand, if 〈x0, x〉 6= 0, then M lies in the

hyperplane which is defined by (4.20). This hyperplane is normal to the vector

x0. Moreover, x0 becomes the centroid of the small hypersphere which is the

intersection of this hyperplane and Sm−1. Thus M is mass-symmetric in this

hypersphere.

Consequently we obtain the following.

Lemma 4.7. [4] Let M be a compact 2-type submanifold of Sm−1(1) in Rm. If M

has constant mean curvature, then either M is mass-symmetric in Sm−1(1) or M

is contained in a small hypersphere of Sm−1(1) as a mass-symmetric submanifold.

Theorem 4.8. [4] Let M be a compact hypersurface of Sn+1 in Rn+2. Then we

have

(1) if M is of 2-type, then mean curvature of M is constant if and only if M is

mass-symmetric in Sn+1;

(2) if M is of 3-type then either M is non-mass-symmetric in Sn+1 or M has

nonconstant mean curvature.

Proof : Let M be a compact hypersurface of a hypersphere Sn+1 in Rn+2.

Without loss of generality, we may assume that Sn+1 is the unit hypersphere

centered at the origin. If M is of 2-type and it has constant mean curvature, then

by Lemma 4.7, either M is mass-symmetric in Sn+1 or it is a small hypersphere

of Sn+1. We have H = H ′ − x and since M is a hypersurface in Sn+1, at each

point of M , the vectors H ′ and x span the normal space of M in Rn+2. If M is a

small hypersphere of Sn+1, then M is the intersection of Sn+1 with a hyperplane

of Rn+2. Denote the normal vector of this hyperplane by a. Since M also lies in

this hyperplane, a is in the normal space of M in Rn+2, therefore we can write

a = c1x + c2H
′. Then we get

H = H ′ − x =
a

c2

− (
c1

c2

+ 1)x.

Applying the Laplace operator to this equation, we obtain

∆H = −(
c1

c2

+ 1)∆x = (
c1

c2

+ 1)nH,
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which implies that a small hypersphere of Sn+1 is of 1-type. But this contradicts

with the assumption that M is of 2-type, hence M can not be a small hypersphere

of Sn+1. Therefore, a compact 2-type hypersurface M of Sn+1 with constant

mean curvature is mass-symmetric. Conversely if M is a mass-symmetric 2-type

hypersurface, then Theorem 4.3 implies that M has constant mean curvature.

Now we prove statement (2). Assume that M is of 3-type, the mean curvature

α′ of M in Sn+1 is constant, and M is mass-symmetric in Sn+1. Then it is clear

that α′ is nonzero. Since α′ is constant and M is a hypersurface in Sn+1, we have

D′H ′ = 0 and A′(H ′) = 0. Thus Corollary 3.3 and ‖h‖2 = ‖Aξ‖2 + n imply

∆H = ‖h‖2H ′ − nα2x. (4.21)

Applying the Laplace operator to (4.21) yields

∆2H = ∆(‖h‖2H ′ − nα2x) = ∆(‖h‖2H + ‖h‖2x− nα2x). (4.22)

We want to find an expression for ∆(fH) where f ε C∞(M). Let a be a constant

vector in Rn+2, then 〈fH, a〉 becomes a smooth function on M and we can write

∆〈fH, a〉 =
n∑

i=1

((∇ei
ei)〈fH, a〉 − eiei〈fH, a〉).

We have

(∇ei
ei)〈fH, a〉 = 〈−AfH(∇ei

ei) + D∇eiei
fH, a〉,

and therefore,

∆fH =
n∑

i=1

(D∇eiei
fH −Dei

Dei
fH)

+
n∑

i=1

((∇ei
AfH)ei + ADeifHei + h(ei, AfHei))

=
n∑

i=1

(
(∇ei

ei)fH + fD∇eiei
H − ei(eif)H − (eif)Dei

H

−(eif)Dei
H − fDei

Dei
H + (eif)AHei + f∇ei

(AHei)− fAH(∇ei
ei)

+(eif)AHei + fADeiH
ei + fh(ei, Ahei)

)
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=
n∑

i=1

(
((∇ei

ei)f − ei(eif))H + f(D∇eiei
H −Dei

Dei
H +∇ei

(AHei)

−AH(∇ei
ei) + ADeiH

ei + h(ei, AHei))

+(eif)(−Dei
H −Dei

H + AHei + AHei)
)

∆fH = (∆f)H + f(∆H) +
n∑

i=1

2(eif)(AHei −Dei
H). (4.23)

Substituting ‖h‖2 for f in (4.23) and using Dei
H = Dei

H ′ = D′
ei
H ′ = 0, we

obtain

∆(‖h‖2H) = (∆‖h‖2)H + ‖h‖2(∆H) +
n∑

i=1

2(ei‖h‖2)AHei

= (∆‖h‖2)H + ‖h‖2(∆H) + 2AH(
n∑

i=1

(ei‖h‖2)ei)

= (∆‖h‖2)H + ‖h‖2(∆H) + 2AH(grad‖h‖2). (4.24)

On the other hand for any fε C∞(M), we have

∆(fx) =
n∑

i=1

((∇ei
ei)fx + fD∇eiei

x−Dei
((eif)x + fDei

x)

+∇ei
(Afxei)− Afx(∇ei

ei) + A(eif)x+fDeix
ei + fh(ei, Axei)).

Substituting Dei
x = 0 and Ax = −I above, we obtain

∆(fx) = (∆f)x− 2
n∑

i=1

(eif)ei − f
n∑

i=1

h(ei, ei) = (∆f)x− 2gradf − nfH.

As a result we get

∆(‖h‖2x) = (∆‖h‖2)x− 2grad‖h‖2 − ‖h‖2nH. (4.25)

Lastly, since α2 is constant and ∆ is linear, we have

∆(nα2x) = nα2∆x = nα2(−nH) = −n2α2H. (4.26)

Noting that

AH(grad‖h‖2) = AH′(grad‖h‖2)− Ax(grad‖h‖2) = AH′(grad‖h‖2) + grad‖h‖2
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and substituting (4.23), (4.24) and (4.25) in (4.22), we get

∆2H = (∆‖h‖2)H + ‖h‖2(∆H) + 2AH(grad‖h‖2) + (∆‖h‖2)x

−2grad‖h‖2 − ‖h‖2nH + n2α2H

= (∆‖h‖2)H ′ − (∆‖h‖2)x + ‖h‖2(∆H) + 2AH′(grad‖h‖2) + 2grad‖h‖2

+(∆‖h‖2)x− 2grad‖h‖2 − ‖h‖2nH + n2α2H

= (∆‖h‖2)H ′ + ‖h‖2(‖h‖2H + ‖h‖2x− nα2x) + 2AH′(grad‖h‖2)

−‖h‖2nH + n2α2H,

and hence,

∆2H = (∆‖h‖2+‖h‖4−n‖h‖2+n2α2)H ′−(n‖h‖2(α′)2+n2α2)x+2AH′(grad‖h‖2).

(4.27)

Moreover, since M is of 3-type and mass-symmetric, there exists a polynomial

P (t) = t3 +a1t
2 +a2t+a3 such that P (∆)x = 0. If we put ∆x = −nH, we obtain

∆2H = c1∆H + c2H + c3x, (4.28)

where c1, c2 and c3 are constants. Substituting (4.21) into (4.28) we have

∆2H = c1(‖h‖2H ′ − nα2x) + c2H
′ − c2x + c3x,

= (c1‖h‖2 + c2)H
′ + (−c1nα2 − c2 + c3)x. (4.29)

Equating the terms normal to Sn+1 in (4.27) and (4.29) gives

−n(α′)2‖h‖2 = n(n− c1)α
2 − c2 + c3. (4.30)

So ‖h‖2 is constant, hence from (4.8), we see that M has constant scalar

curvature. Therefore, by applying Theorem 4.3 we conclude that M is of 2-type.

This is a contradiction.

Corollary 4.9. [3] If M is a 2-type compact hypersurface of Sn+1 and M has

constant mean curvature, then M has constant scalar curvature.
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Proof: By Theorem 4.8 we see that M is mass-symmetric. According to

Theorem 4.3 M has constant scalar curvature.

Let M be a compact 2-type hypersurface of Sn+1 in Rn+2. We assume that Sn+1

is of radius one and is centered at the origin. From Corollary 3.3 we have

〈∆H, x〉 = −nα2. (4.31)

Also, taking the inner product of both sides of (4.19) with the position vector x

gives

〈∆H, x〉 = −b + c− c〈x, x0〉. (4.32)

If we take the inner product of both sides of (4.19) with a vector field X tangent

to M , we get

〈∆H, X〉 = −c〈x0, X〉. (4.33)

We denote by (∆H)T the component of ∆H tangent to M . Let e1, . . . , en be

an orthonormal tangent basis of M . Then we can write (∆H)T =
n∑

i=1

〈∆H, ei〉ei.

Applying (4.33), we find (∆H)T = −
n∑

i=1

c〈x0, ei〉ei. On the other hand , from

(4.20) we see that ei(c〈x, x0〉) = ei(nα2 + c− b). So we have

nei(α
2) = c〈∇ei

x, x0〉 = c〈ei, x0〉.

Combining our results we get

(∆H)T = −
n∑

i=1

c〈x0, ei〉ei = −n
n∑

i=1

ei(α
2)ei = −ngrad(α2) = −ngrad(α2).

(4.34)

The only terms tangent to M on the right hand side of (3.23) are
n

2
grad(α2)

and 2trADH′ . So from (4.34) we can write

trADH′ = −3n

4
grad α2. (4.35)

Let E1, E2, . . . , En be orthonormal principle directions of Aξ with principal

curvatures µ1, µ2, . . . , µn respectively. Then from (4.35) we find

trADH′ = −3n

4
gradα2 = −3n

4

∑
Ei(α

2)Ei = −3n

2

∑
α′Ei(α

′)Ei. (4.36)
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On the other hand, from the definition of trADH′ , we write

trADH′ =
n∑

i=1

ADEi
H′Ei =

n∑
i=1

(AEi(α′)ξEi + Aα′DEi
ξEi) =

n∑
i=1

(Eiα
′)µiEi. (4.37)

Combining (4.36) and (4.37) we find

(2µi + 3nα′)(Eiα
′) = 0 (i = 1, ....n) (4.38)

Lemma 4.10. [4] Let M be a compact 2-type hypersurface of Sn+1(1). Then

grad(α′)2 is a principal direction of Aξ with principal curvature −3nα′

2
on the

set U = {u ε M | grad(α′)2 6= 0 at u}.

Proof : Since α′ is not constant on U , we can not have Eiα
′ = 0 for all i1 . . . n.

Therefore, using (4.38) we get

Aξ(grad(α′)2) =
n∑

i=1

Ei(α
′)2AξEi =

n∑
i=1

2α′(Eiα
′)µiEi

= −
n∑

i=1

α′3nα′(Eiα
′)Ei = −3nα′

2
grad(α′)2.

Now we give a general lemma on 2-type hypersurfaces.

Lemma 4.11. [4] Let M be a compact 2-type hypersurface of Sn+1 in Rn+2. Then

either M has constant mean curvature or U = {u ε M | grad(α′)2 6= 0 at u} is

dense in M , that is, the closure of U is M .

Proof : Let M be a 2-type hypersurface of Sn+1. We assume that U is

neither empty nor dense in M . Since U is nonempty, the mean curvature α′

is not constant on M and hence, by Theorem 4.8, M is not mass-symmetric

in Sn+1, that is, x0 6= 0, and M − U has nonempty interior. Let V be a

component of int(M − U). Then α′ is constant on V . From (4.20), we see

that 〈x, x0〉 = |x||x0| cos θ is constant on V, where θ is the angle between the

vectors x and x0 in Rn+2. Here x0 is nonzero because M is not mass-symmetric
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in Sn+1. We see that V is contained in a hyperplane of Rn+2 which is normal to

the vector x0. Therefore V is an open portion of a small hypersphere of Sn+1 and

consequently V is totally umbilical in Sn+1. For any vector field X tangent to

M , we have AξX = µX on V. So, on V we have α′ =
1

n
trAξ = µ which implies

that µ1 = µ2 = · · · = µn = α′ on V. Thus, by considering Lemma 4.10, we have

−3nα′

2
= µ1 = µ2 = · · · = µn = α′ on U . This is a contradiction and Lemma

4.11 is proved.

Let M be a compact 2-type hypersurface of Sn+1(1) in Rn+2. Then from (4.19),

(4.35) and Corollary 3.3, we find

cx0 = −∆D′
H ′ + ngrad(α2) + (b− ‖h‖2)H ′ + (nα2 + c− b)x. (4.39)

Thus we have

−c〈x0, H〉 = 〈∆D′
H ′, H ′〉+ (‖h‖2 − b)(α′)2 + nα2 + c− b. (4.40)

Since

∆〈x, x0〉 = 〈∆x, x0〉 = −n〈H, x0〉,

Using (4.20), we find

−c〈x0, H〉 = ∆α2. (4.41)

Consequently, (4.40) and (4.41) yield

∆α2 = 〈∆D′
H ′, H ′〉+ (‖h‖2 − b)(α′)2 + nα2 + c− b. (4.42)

As before, let α′ be the local function defined by H ′ = α′ξ and let e1, e2, . . . , en

form an orthonormal tangent basis for M . Then we have α2 = (α′)2 + 1, and

∆α2 = ∆(α′)2 =
n∑

i=1

(∇ei
ei − eiei)(α

′)2 =
n∑

i=1

(
2α′(∇ei

eiα
′)− ei(2α

′eiα
′)
)

=
n∑

i=1

(2α′(∇ei
eiα

′ − ei(eiα
′))− 2(eiα

′)2)

= 2α′∆α′ − 2|gradα′|2, (4.43)
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where we have put

n∑
i=1

(eiα
′)2 = 〈

n∑
i=1

(eiα
′)ei,

n∑
j=1

(ejα
′)ej〉 = 〈gradα′, gradα′〉 = |gradα′|2.

We also have

〈H ′, ∆D′
H ′〉 = 〈H ′,

n∑
i=1

(D′
∇eiei

H ′ −D′
ei
D′

ei
H ′)〉

=
n∑

i=1

〈H ′, (∇ei
eiα

′)ξ + α′D′
∇eiei

ξ − (eiα
′)D′

ei
ξ − (eieiα

′)ξ

−α′D′
ei
D′

ei
ξ − (eiα

′)D′
ei
ξ〉

= 〈α′ξ, α′∆α′ +
n∑

i=1

(
α′(D′

∇eiei
ξ −D′

ei
D′

ei
ξ)− 2eiα

′D′
ei
ξ
)
〉.

Since M is a hypersurface of Sn+1, we have D′ξ = 0, thus

〈H ′, ∆D′
H ′〉 = α′∆α′. (4.44)

Using (4.42), (4.43) and (4.44), we find

1

2
∆α2 = |gradα′|2 + (‖h‖2 − b)(α′)2 + nα2 + c− b. (4.45)

Let U = {u ε M | grad(α′)2 6= 0 at u} be dense in M . Then grad(α′)2 is a

principal direction on U . Since grad(α′)2 = 2α′gradα′, then gradα′ is parallel to

grad(α′)2. Let E1, E2, · · · , En be orthonormal principal directions with principal

curvatures µ1, µ2, · · · , µn respectively, and E1 is assumed to be in the direction

of gradα′. From (4.39), we find

0 = Ej(cx0) = n∇Ej
(gradα2) +∇Ej

(b− ‖h‖2)α′ξ −∇Ej
(∆D′

H ′)

+∇Ej
(nα2 + c− b)x. (4.46)

Since E1 is parallel to gradα2, we have gradα2 = (E1α
2)E1, and using

∇Ei
Ej =

∑
k

wk
j (Ei)Ek (i, j, k = 1, . . . , n), (4.47)
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we have

∇Ej
(gradα2) = ∇Ej

((E1α
2)E1) = Ej(E1α

2)E1 + (E1α
2)∇Ej

E1

= Ej(E1α
2)E1 + (E1α

2)
(
∇Ej

E1 + h(Ej, E1)
)

= Ej(E1α
2)E1 + (E1α

2)
n∑

k=2

wk
1(Ej)Ek

+(E1α
2)
(
〈AξEj, E1〉ξ + 〈AxEj, E1〉x

)
= Ej(E1α

2)E1 + (E1α
2)

n∑
k=2

wk
1(Ej)Ek.

If we substitute this in (4.46), we get

0 = n
(
Ej(E1α

2)E1 + E1(α
′)2

n∑
k=2

wk
1(Ej)Ek

)
− Aα′(b−‖h‖2)ξEj

+DEj
α′(b− ‖h‖2)ξ −∇Ej

[ n∑
l=1

(α′D′
∇El

El
ξ) + (∇El

Elα
′)ξ

−D′
El

((E1α
′)ξ + α′DEl

ξ)
]
− A(nα2+c−b)xEj + DEj

(nα2 + c− b)x

Because M is a hypersurface in Sn+1, we have Dξ = D′ξ = 0, and therefore we

get

0 = n
(
Ej(E1α

2)E1 + E1(α
′)2

n∑
k=2

wk
1(Ej)Ek

)
− α′(b− ‖h‖2)AξEj

+Ej(α
′(b− ‖h‖2))ξ −∇Ej

( n∑
l=1

(∇El
El)α

′ξ − (ElElα
′)ξ
)

−(nα2 + c− b)AxEj + Ej(nα2 + c− b)x + (nα2 + c− b)DEj
x

= n
(
Ej(E1α

2)E1 + E1(α
′)2

n∑
k=2

wk
1(Ej)Ek

)
− µjα

′(b− ‖h‖2)Ej

+Ej(α
′b− α′‖h‖2)ξ −∇Ej

(∆α′ξ) + (nα2 + c− b)Ej + Ej(nα2 + c− b)x

= n
(
Ej(E1α

2)E1 + E1(α
′)2

n∑
k=2

wk
1(Ej)Ek

)
− µjα

′(b− ‖h‖2)Ej

+Ej(α
′b− α′‖h‖2)ξ − (Ej∆α′)ξ + ∆α′AξEj + (nα2 + c− b)Ej

+Ej(nα2 + c− b)x.
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Consequently we obtain

0 = n
(
Ej(E1α

2)E1 + E1(α
′)2

n∑
k=2

wk
1(Ej)Ek

)
− (α′b− ‖h‖2α′ −∆α′)µjEj

+Ej(α
′(b− ‖h‖2)−∆α′)ξ + (nα2 + c− b)Ej + Ej(nα2 + c− b)x j > 1

(4.48)

on U .

By taking the inner product of (4.48), with Ej, we obtain

0 = 2n(E1α
′)α′wj

1(Ej)− µj(bα
′ − ‖h‖2α′ −∆α′) + nα2 + c− b, j > 1 (4.49)

on U .

Theorem 4.12. [12] Let M be a hypersurface in Rn+1(k) whose principal

curvatures are constant. If exactly two are distinct, then M is locally isometric

to the product of two spaces of constant curvature.

Theorem 4.13. [4] Let M be a compact hypersurface of Sn+1(1) with at

most two distinct principal curvatures. Then M is of 2-type if and only if

M is the product of two spheres Sp(r1) × Sn−p(r2) such that r2
1 + r2

2 = 1 and

(r1, r2) 6=
(√p

n
,

√
n− p

n

)
.

Proof : We assume that M is a compact 2-type hypersurface in Sn+1(1) with at

most two distinct principal curvatures.

If the mean curvature α′ of M in Sn+1 is non-constant, then according to

Lemma 4.11, the open subset U = {u ε M | grad(α′)2 6= 0 at u} is dense in M .

From Lemma 4.10 we know that grad(α′)2 is a principal direction on U with

corresponding principal curvature −3nα′

2
. Since grad(α′)2 = 2α′gradα′, we see

that gradα′ is also a principal direction with principal curvature µ1 = −3nα′

2
on

U . First we will show that the multiplicity of µ1 is one on U .

Since M is a hypersurface of Sn+1(1), from Codazzi equation (2.7) we have

(∇XAξ)Y = (∇Y Aξ)X (4.50)
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for X, Y tangent to M . Let E1, . . . , En be orthonormal principal directions on M

such that E1 = gradα′, and µ1, . . . , µn be the corresponding principal curvatures.

We have

(∇Ej
Aξ)Ei = ∇Ej

(AξEi)− Aξ(∇Ej
Ei) = ∇Ej

(µiEi)− Aξ(
∑

k

wk
i (Ej)Ek)

= (Ejµi)Ei + µi

∑
k

wk
i (Ej)Ek −

∑
k

wk
i (Ej)µkEk

= (Ejµi)Ei +
∑

k

wk
i (Ej)(µi − µk)Ek. (4.51)

Applying (4.50) and (4.51), we obtain

(Ejµi)Ei − (Eiµj)Ej =
∑

k

(
wk

j (Ei)(µj − µk)− wk
i (Ej)(µi − µk)

)
Ek.

For i 6= j and k = i we have

Ej(µi) = wj
i (Ei)(µi − µj). (4.52)

Since gradα′ =
∑
i

Ei(α
′)Ei and E1 = gradα′, it is clear that gradα′ = E1(α

′)E1

and Eiα
′ = 0 for i = 2, . . . , n. Moreover, we must have E1α

′ 6= 0 because we

have assumed that mean curvature is nonconstant on M . Let the multiplicity

of µ1 = −3nα′

2
be ≥ 2 and let E2 be a principal direction with µ2 = µ1. Then

(4.52) yields

E1µ2 = (µ2 − µ1)w
1
2(E2) = 0,

which implies that E1µ2 = E1µ1 = 0. But this contradicts with the nonconstancy

of α′. Therefore the multiplicity of µ1 is one on U . Since M has at most two

distinct principal curvatures, and the mean curvature is given by α′ =
1

n
trAξ =

1

n

n∑
i=1

µi, then we have

µ1 = −3nα′

2
and µ2 = · · · = µn =

5nα′

2(n− 1)
. (4.53)

If we put j = 1 in (4.52) and substitute (4.53) in (4.52), we have

E1(µi) = wi
1(Ei)(µ1 − µi) (i = 2, . . . , n),

E1

( 5nα′

2(n− 1)

)
= wi

1(Ei)
(
− 3nα′

2
− 5nα′

2(n− 1)

)
,

5E1α
′ = −(3n + 2)α′wi

1(Ei) (i = 2, . . . , n). (4.54)

40



on U . Consequently by using the equation |gradα′| = E1α
′, (4.49) and (4.54),

we get

0 = − 10n

3n + 2
|gradα′|2 − 5nα′

2(n− 1)
(bα′ − ‖h‖2α′ −∆α′) + nα2 + c− b (4.55)

on U . Since the right hand side of (4.55) is a well defined continuous function

on M and U is dense in M , the equation (4.55) holds on the whole hypersurface

M . Equation (4.55) yields

α′∆α′ =
4(n− 1)

3n + 2
|gradα′|2 + (b− ‖h‖2)(α′)2 − 2(n− 1)

5n
(nα2 + c− b).

Since from (4.43) we have α′∆α′ = |gradα′|2 +
1

2
∆(α′)2, substituting this in the

above equation and making a direct computation we get

1

2
∆(α′)2 =

n− 6

3n + 2
|gradα′|2 + (b− ‖h‖2)(α′)2 − 2(n− 1)

5n
(nα2 + c− b). (4.56)

Combining (4.45) and (4.56), we obtain

∆(α′)2 =
4(n− 1)

3n + 2
|gradα′|2 +

3n + 2

5n
(nα2 + c− b). (4.57)

Multiplying both sides of (4.57) with (3n+2)5n and applying Corollary 2.4 gives

20n(n− 1)

∫
M

|gradα′|2dV + (3n + 2)2

∫
M

(nα2 + c− b)dV = 0. (4.58)

On the other hand, integrating both sides of (4.20) we have∫
M

(nα2 + c− b)dV =

∫
M

c〈x, x0〉dV (4.59)

where

x0 =

∫
M

xdV∫
M

dV
,

from which it follows that

〈x0, x0〉
∫
M

dV =

∫
M

〈x0, x〉dV. (4.60)
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If we substitute (4.60) in (4.59), we obtain∫
M

(nα2 + c− b)dV = c〈x0, x0〉
∫
M

dV . (4.61)

Therefore by using (4.58) and (4.61) we have∫
M

(
20n(n− 1)|gradα′|2 + (3n + 2)2c〈x0, x0〉

)
dV = 0.

This gives ∫
M

c〈x0, x0〉dV = 0,

which implies that x0 = 0. Since M is a compact 2-type mass-symmetric

hypersurface of Sn+1, it follows from Theorem 4.3 that, M has nonzero constant

mean curvature and constant scalar curvature ρ. But this is a contradiction with

our assumption that α′ is non-constant. Therefore the mean curvature α′ must

be constant on M .

By Theorem 4.8, a compact 2-type hypersurface of Sn+1 with constant mean

curvature is mass-symmetric and hence, by Theorem 4.3 , it has constant scalar

curvature ρ. If M has only one principal curvature, then M is totally umbilical

in Sn+1, hence it is pseudo umbilical. Moreover, constancy of α′ implies that H ′

is parallel because M is a hypersurface of Sn+1. So Proposition 2.11 implies that

M is of 1-type, therefore M must have exactly two distinct principal curvatures.

On the other hand, since the scalar curvature is constant, from (4.8), we see that

‖h‖2 = ‖Aξ‖2 + n = kµ1
2 + lµ2

2 + n (where k + l = n) is constant and this,

together with the constancy of α′ =
1

n
(kµ1 + lµ2), imply that M has exactly

two distinct constant principal curvatures. So M is the product of two spheres,

M = Sp(r1) × Sn−p(r2). Since M is a nonminimal hypersurface of Sn+1(1), we

have r2
1 + r2

2 = 1 and (r1, r2) 6=
(√p

n
,

√
n− p

n

)
.

Conversely, since Sp(r1) and Sn−p(r2) have constant principal curvatures, the

product manifold Sp(r1) × Sn−p(r2) has constant principal curvatures. By a

direct computation it can be shown that the condition (r1, r2) 6=
(√p

n
,

√
n− p

n

)
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implies that M = Sp(r1) × Sn−p(r2), r2
1 + r2

2 = 1 is not minimal in Sn+1(1).

Therefore, Theorem 4.3 implies that M is of 2-type.

Corollary 4.14. [1] Let M be a compact, mass-symmetric surface of S3(r) in

R4. Then M is of 2-type if and only if M is the product of two plane circles of

different radii, that is, M = S1(a)× S1(b), a 6= b.

Let M be a 2-type hypersurface of a unit hypersphere Sn+1(1). We have

∆D′
H ′ =

n∑
i=1

(D′
∇eiei

H ′ −D′
ei
D′

ei
H ′)

=
n∑

i=1

(α′D′
∇eiei

ξ + (∇ei
ei)α

′ξ −D′
ei
(α′D′

ei
ξ + (eiα

′)ξ))

=
n∑

i=1

((∇ei
ei)α

′ξ − (eiα
′)D′

ei
ξ − eieiα

′ξ)

=
n∑

i=1

((∇ei
ei)α

′ − eieiα
′)ξ = (∆α′)ξ. (4.62)

Hence from (3.23) we get

〈∆H, ξ〉 = 〈(∆α′)ξ +
n

2
gradα2 + 2trAD′H′ + ‖h‖2H ′ − nα2x, ξ〉,

= 〈(∆α′)ξ + ‖h‖2H ′, ξ〉.

On the other hand, taking the inner product of (4.19) with ξ gives

〈∆H, ξ〉 = 〈bH ′ + (c− b)x− cx0, ξ〉 = 〈bH ′, ξ〉 − 〈cx0, ξ〉

Combining these, we obtain

c〈x0, ξ〉 = (b− ‖h‖2)α′ −∆α′. (4.63)

Lemma 4.15. [12] Let M be a compact 2-type hypersurface of Sn+1 in Rn+2.

Then we have∫
M

(‖h‖2 − b)(α′)2dV +

∫
M

|gradα′|2dV + c|x0|2volM = 0 (4.64)
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Proof : Let M be a compact 2-type hypersurface of a unit hypersphere Sn+1(1).

Applying Corollary 2.4 to (4.43) we obtain∫
M

α′∆α′dV =

∫
M

|gradα′|2dV. (4.65)

Using (4.60), we get∫
M

〈x0, H〉dV =

∫
M

〈x0, H
′ − x〉dV =

∫
M

〈x0, H
′〉dV − |x0|2volM. (4.66)

Moreover by Corollary 2.4, we have∫
M

〈x0, H〉dV =

∫
M

〈x0,−
1

n
∆x〉dV = 0. (4.67)

It follows from (4.66) and (4.67) that∫
M

〈x0, H
′〉dV = |x0|2volM. (4.68)

From (4.63), (4.65) and (4.68) we find (4.64).

We also need the following theorem (Proof can be seen in [10]).

Theorem 4.16. [10] If M is a compact 2-type hypersurface of a unit hypersphere

Sn+1(1) in Rn+2, then we have λp < n < λq.

Theorem 4.17. [12] Let M be a compact hypersurface of a hypersphere Sn+1

in Rn+2. If M is of 2-type and

(λp + λq)−
9n + 16

(3n + 2)2
λpλq ≥ n,

then M is mass-symmetric.

Proof : We assume that M is a compact 2-type hypersurface of a hypersphere

Sn+1 in Rn+2 and it is not mass-symmetric. Then by Theorem 4.8, M has

non-constant mean curvature. From Lemma 4.11 we see that the open set

U = {u ε M | grad(α′)2 6= 0 at u} is dense in M . By Lemma 4.10, gradα′ is

a principal direction with principal curvature −3nα′

2
on U . Let E1, E2, . . . , En

be orthonormal principal directions with principal curvatures µ1, µ2, . . . , µn
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respectively, and E1 is assumed to be in the direction of gradα′. From the proof

of Theorem 4.13 we know that the multiplicity of µ1 is one on U . Therefore we

get

‖h‖2 − n = ‖Aξ‖2 =
n∑

i=1

µ2
i = (−3nα′

2
)2 +

n∑
i=2

µ2
i =

9n2(α′)2

4
+

n∑
i=2

µ2
i .

On the other hand we have

(n− 1)
n∑

i=2

µ2
i ≥ (

n∑
i=2

µi)
2 = (trAξ − µ1)

2 = (nα′ +
3nα′

2
)2 =

25n2(α′)2

4
.

Thus we obtain

‖h‖2 − n ≥ 9n2(α′)2

4
+

25n2(α′)2

4(n− 1)
=

9n + 16

4(n− 1)
n2(α′)2,

from which it follows∫
M

(‖h‖2 − b)(α′)2dV =

∫
M

(‖h‖2 − n + (n− b))(α′)2dV

≥
∫

M

( 9n + 16

4(n− 1)
n2(α′)2 + n− b

)
(α′)2dV

=
9n + 16

4(n− 1)
n2

∫
M

(α′)4dV + (n− b)

∫
M

(α′)2dV,∫
M

(‖h‖2 − b)(α′)2dV ≥ 9n + 16

4(n− 1)
n2

∫
M

(α′)4dV + (n− b)

∫
M

(α′)2dV. (4.69)

From (4.20), (4.60) and α2 = (α′)2 + 1, we get

c|x0|2volM =

∫
M

c〈x0, x〉dV =

∫
M

(nα2 + c− b)dV

= n

∫
M

(α′)2dV + (n + c− b)volM, (4.70)

Expanding the left hand side of [n(α′)2 + (n + c− b)]2 ≥ 0 and integrating it on

M with use of (4.70), we get∫
M

(n2(α′)4 + 2n(α′)2(n + c− b) + (n + c− b)2)dV ≥ 0,

n2

∫
M

(α′)4dV ≥ −(n + c− b)
(
2n

∫
M

(α′)2dV + (n + c− b)volM
)
,

n2

∫
M

(α′)4dV ≥ (b− n− c)(2c|x0|2 + (b− n− c))volM. (4.71)
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From (4.69), (4.70) and (4.71), we see that∫
M

(‖h‖2−b)(α′)2dV ≥ (3n + 2)2

4(n− 1)

(
b−n− 9n + 16

(3n + 2)2
nc
) 1

n
(c|x0|2 +b−n−c)volM

+
9n + 16

4(n− 1)
(b− n− c)c|x0|2volM. (4.72)

Using Theorem 4.16, we see that

b− c− n = (λp + λq)−
λpλq

n
− n =

1

n
(n− λp)(λq − n) > 0. (4.73)

By the hypothesis, we have

n ≤ (λp + λq)−
9n + 16

(3n + 2)2
λpλq = b− 9n + 16

(3n + 2)2
cn,

0 ≤ b− n− 9n + 16

(3n + 2)2
cn.

By combining this with (4.72) and (4.73) we may find∫
M

(‖h‖2 − b)(α′)2dV > 0.

But this contradicts with Lemma 4.15, so M has to be mass-symmetric.

Theorem 4.18. [12] Let M be a compact and mass-symmetric hypersurface of

a hypersphere Sn+1(1) in Rn+2. If M is of 2-type, then M has no umbilical point.

Proof : If a point p in M is an umbilical point, for any vector X tangent to

M at p, we have AξX = µX where µ is a constant. Since α′ = µ at p we have

‖h‖2 − n = ‖Aξ‖2 =
n∑

i=1

µ2
i = nµ2 = n(α′)2 (4.74)

at p. On the other hand, by Theorem 4.6, we know that

n(α′)2 = λp + λq −
λpλq

n
− n

and

‖h‖2 = λp + λq,

from which together with (4.74), we obtain

λp + λq − n = λp + λq −
λpλq

n
− n
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which implies that
λpλq

n
= 0. This is a contradiction because both λp and λq

must be nonzero since M is not of null 2-type.

In Theorem 4.8, it was proved that, there is no compact, mass-symmetric

hypersurface of constant mean curvature in Sn+1 which is of 3-type. Now we

give a more restrictive theorem.

Theorem 4.19. [12] There is no compact hypersurface of constant mean

curvature in Sn+1 which is of 3-type.

Proof : Let M be a compact hypersurface of a hypersphere Sn+1 which is of

3-type and has constant mean curvature α′. Since α′ is constant and M is a

hypersurface, we have D′H ′ = ∆D′
H ′ = trAD′H′ = 0, and gradα′ = 0. Then

Corollary 3.3 gives

∆H = ‖h‖2H ′ − nα2x. (4.75)

On the other hand, from Theorem 2.6 and Theorem 2.7, there exist nonzero

constants c1, c2 and c3 such that

∆2H = c1∆H + c2H + c3(x− x0) (4.76)

Substituting (4.75) and H = H ′ − x in (4.76) we have

∆2H = c1(‖h‖2H ′ − nα2x) + c2(H
′ − x) + c3(x− x0),

= (c1‖h‖2 + c2)H
′ + (−c1nα2 − c2 + c3)x− c3x0. (4.77)

Taking the inner product of (4.27) and (4.77) with ξ and equalizing them, we

have

α′(∆‖h‖2 + ‖h‖4 − n‖h‖2 + n2α2) = α′(c1‖h‖2 + c2)− c3〈x0, ξ〉. (4.78)

Similarly, taking the inner product of (4.27) and (4.77) with x and equalizing

them, we obtain

n(α′)2‖h‖2 + n2α2 = c1nα2 + c2 − c3 + c3〈x0, x〉. (4.79)
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Applying the Laplace operator to both sides of (4.79) gives

n(α′)2∆‖h‖2 = c3∆〈x0, x〉 = c3〈x0, ∆x〉 = c3〈x0,−nH〉,

= −c3α
′〈x0, ξ〉+ c3〈x0, x〉. (4.80)

From (4.78) we see that

(α′)2∆‖h‖2 = −(α′)2(‖h‖4 − n‖h‖2 + n2α2) + (α′)2(c1‖h‖2 + c2)− α′c3〈x0, ξ〉.

Combining this with (4.80), we have

(α′)2(‖h‖4 − c1‖h‖2 − c2 − n‖h‖2 + n2α2) = −c3〈x0, x〉. (4.81)

On the other hand, from (4.79) we have

−n(α′)2‖‖2 − n2α2 + c1nα2 + c2 − c3 = −c3〈x0, x〉.

If we combine this with (4.81) we get

(α′)2‖h‖4 − c1(α
′)2‖h‖2 + n2α4 − c1nα2 − c2α

2 + c3 = 0

So (α′)2‖h‖4 − c1(α
′)2‖h‖2 is a constant. Since M is of 3-type, α′ is a nonzero

constant and h has constant length. Hence the scalar curvature of M is also

constant. By Theorem 4.3, M is of 2-type. This is a contradiction, so α′ can not

be constant.
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5. FINITE TYPE ISOPARAMETRIC AND DUPIN

HYPERSURFACES OF A HYPERSPHERE

A hypersurface M of Sn+1 is called an isoparametric hypersurface if M has

constant principal curvatures. Isoparametric hypersurfaces have constant mean

curvature and constant scalar curvature. A hypersurface M of Sn+1 is called a

Dupin hypersurface if the multiplicities of the principal curvatures are constant

and each principal curvature is constant along its principal direction.

Lemma 5.1. [3] If M is a compact isoparametric hypersurface of Sn+1(1), then

we have

(a) M is mass-symmetric in Sn+1(1) or a small hypersphere,

(b) M is either of 1 or 2-type,

(c) the mean curvature, the scalar curvature and the length of the second

fundamental form are completely determined by the order of M in Rn+2, and

(d) if M is not a small hypersphere of Sn+1(1), then λp ≤ n, equality holding

when and only when M is of 1-type.

Proof : For the proof of statements (a) and (b), let ρ1, . . . , ρn be the principal

curvatures of M in Sn+1(1). As M is an isoparametric hypersurface, the mean

curvature α′ =
1

n

∑
i

ρi is a constant, and hence the mean curvature vector H ′

is parallel. Since ‖Aξ‖2 =
1

n

∑
i

ρi
2 and ‖h‖2 = ‖Aξ‖2 + n, from (4.8), we see

that the scalar curvature is also constant. As M is a hypersurface, it is an

A-submanifold. If we have α′ = 0, then M is mass-symmetric in Sn+1(1) and it

is of 1-type. If α′ 6= 0, then from (3.23), we can write ∆H = bH +cx where b and

c are constants. From the proof of Theorem 4.1 we see that if c 6= 0, then M is
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mass-symmetric in Sn+1(1) and is of 2-type, and c = 0 implies that M is pseudo

umbilical and of 1-type. In the latter case, M is minimal in another hypersphere

S̄n+1, and hence it is a small hypersphere in Sn+1(1).

For the proof of statement (c), if α′ 6= 0 and M is not a small hypersphere,

then by Theorem 4.6, α′ and ρ are completely determined by the order of

M . On the other hand, if M is of 1-type, we have ∆H = λpH, hence (3.23)

gives ‖h‖2 = ‖Aξ‖2 + n = λp and ‖Aξ‖2 = n(α′)2. If α′ = 0, (4.8) implies

ρ =
1

n(n− 1)
(n2 − λ2

p). If α′ 6= 0 and M is a small hypersphere in Sn+1(1), then

it is totally umbilical and hence ρ1 = · · · = ρn. In this case since ‖Aξ‖2 = nρ2
1

we have nρ2
1 + n = ‖h‖2 = λp. So we obtain ρ1 =

√
λp − n

n
, which implies that

α′ = ρ1 =

√
λp − n

n
. Using (4.8), we see that the scalar curvature can also be

written in terms of λp. Statement (d) follows from statement (a) and Theorem

4.4.

Theorem 5.2. [3] Let M be a compact Dupin hypersurface of Sn+1 such that

M is not of 1-type and it has at most 3 distinct principal curvatures. Then M

is isoparametric if and only if M is of 2-type and it is mass-symmetric in Sn+1.

Proof : Let M be a compact Dupin hypersurface of Sn+1 such that M is not

of 1-type and it has at most 3 distinct principal curvatures. Then M has 2 or 3

distinct principal curvatures. Assume that M has 3 distinct principal curvatures

ρ1, ρ2 and ρ3 with multiplicities m1, m2 and m3, respectively. Then we have

nα′ = m1ρ1 + m2ρ2 + m3ρ3, (5.1)

‖Aξ‖2 = m1ρ1
2 + m2ρ2

2 + m3ρ3
2. (5.2)

If M is of 2-type and mass-symmetric in Sn+1, then Theorem 4.3 implies that

both α′ and ‖Aξ‖ are constant. Let E1 be an eigenvector with eigenvalue ρ1.

Then by the definition of Dupin hypersurface, we have E1ρ1 = 0. Thus (5.1) and

(5.2) imply
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E1(nα′) = m2(E1ρ2) + m3(E1ρ3) = 0, (5.3)

and

E1(‖Aξ‖2) = 2m2ρ2(E1ρ2) + 2m3ρ3(E1ρ3) = 0. (5.4)

Since ρ2 and ρ3 are different, (5.3) and (5.4) give E1ρ2 = E1ρ3 = 0. Similarly

if E2 and E3 are eigenvectors with eigenvalues ρ2 and ρ3 respectively, we have

E2ρ1 = E2ρ3 = E3ρ1 = E3ρ2 = 0. Because E1ρ1 = E2ρ2 = E3ρ3 = 0, we

conclude that ρ1, ρ2 and ρ3 are constant. Therefore M is isoparametric. If M

has 2 distinct principal curvatures and it is of 2-type, then by Theorem 4.3, it is

clear that M is isoparametric. The converse of this follows from Lemma 5.1.

Theorem 5.3. [4] If M is a compact 2-type Dupin hypersurface of Sn+1, then

M has constant mean curvature. And hence, it is mass-symmetric in Sn+1.

Proof : If M is a Dupin hypersurface of Sn+1, then the multiplicities of the

principal curvatures are constant and the principal curvatures are constant along

their principal directions. We define E1 =
grad(α′)2

|grad(α′)2|
on U , where U is given

in Lemma 4.10. Then according to Lemma 4.10, E1 is a principal direction

on U with AξE1 = −3nα′

2
E1, and since M is a Dupin hypersurface, we have

E1(α
′) = 0. So we get

E1(α
′) =

grad(α′)2

|grad(α′)2|
(α′) =

1

|grad(α′)2|

n∑
i=1

Ei(α
′)2Ei(α

′) = 0.

Since grad(α′)2 is parallel to E1, from the definition of grad(α′)2, we see that

E2(α
′) = E3(α

′) = · · · = En(α′) = 0 on U . But this implies that grad(α′)2 = 0

on U , which is a contradiction . Consequently, the subset U is empty. Thus M

has constant mean curvature. And hence M is mass-symmetric in Sn+1.
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6. 2-TYPE SUBMANIFOLDS OF Rm

A 2-type submanifold of Rm with parallel mean curvature vector is either

spherical or null. Using this result, we give a complete classification of 2-type

surfaces with parallel mean curvature vector.

If M is an n-dimensional null 2-type submanifold of Rm. Then we can write the

position vector x of M in Rm as,

x = x0 + xp + xq, ∆xp = 0, ∆xq = λqxq (6.1)

where x0 is a constant vector, and xp and xq are nonconstant maps from M into

Rm.

Theorem 6.1. [11] Let M be a 2-type submanifold of Rm. If M has parallel

mean curvature vector, then one of the following two cases occurs;

(a) M is spherical,

(b) M is of null 2-type.

In particular, if M is compact then M is spherical and mass-symmetric.

Proof : Let en+1, . . . , em be an orthonormal normal basis of M such that

en+1 is parallel to H. If H is parallel, we see that ∆DH = 0 and by Lemma 3.4,

tr(∇AH) = 0. Then (3.2) becomes

∆H = ‖AH
α
‖2H +A(H). (6.2)

If M is of 2-type in Rm, then the position vector x of M in Rm can be written as

x− x0 = xp + xq, ∆xp = λpxp, ∆xq = λqxq. (6.3)
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We have ∆x = ∆(xp +xq) = λpxp +λqxq and ∆2x = λ2
pxp +λ2

qxq. So we see that

(λp + λq)∆x− λpλq(x− x0) = λ2
pxp + λ2

qxq + λpλq(xp + xq)− λpλq(x− x0)

= λ2
pxp + λ2

qxq = ∆2x.

Hence,

∆2x = (λp + λq)∆x− λpλq(x− x0). (6.4)

Since ∆x = −nH, we find

∆H = (λp + λq)H +
λpλq

n
(x− x0). (6.5)

Combining this with (6.2), we see that a 2-type submanifold M of Rm with

parallel mean curvature vector satisfies

‖AH
α
‖2H +A(H) = (λp + λq)H +

λpλq

n
(x− x0). (6.6)

The terms on the left hand side of (6.6) are linearly independent and are normal

to M . We have either λpλq = 0, which implies that M is of null 2-type, or x−x0

is normal to M . If the second case occurs, then for any vector field Y tangent to

M we have Y 〈x− x0, x− x0〉 = 2〈∇Y (x− x0), x− x0〉 = 2〈Y, x− x0〉 = 0. Hence

〈x−x0, x−x0〉 is a positive constant, and M is contained in a hypersphere Sm−1

centered at x0. In particular if M is compact, M can not be null and the term

x0 in (6.3) corresponds to the center of mass of M in Rm. So the constancy of

〈x− x0, x− x0〉 implies that M is mass-symmetric in Sm−1.

Corollary 6.2. [11] Every 2-type compact hypersurface of Rm has non-constant

mean curvature.

Proof : For a hypersurface M of Rm, the constancy of mean curvature is

equivalent to the parallelism of the mean curvature vector. A compact 2-type

submanifold of Rm with DH = 0 is contained in a hypersphere Sm−1. Since M

is a hypersurface in Rm, M is an open portion of Sm−1, and so M is of 1-type.

This is a contradiction.

Proposition 6.3. [10] There is no spherical hypersurface of null 2-type.
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Proof : Let M be a hypersurface of the unit sphere Sn+1 in Rn+2. If M

is of 2-type, then substituting λp + λq = b and
λpλq

n
= c in (6.5), we get

∆H = bH + c(x − x0). Using this, (4.35) and Corollary 3.3, we can obtain

equation (4.39) for the case when M is not necessarily compact. Combining

(4.39) and (4.62), we find

c(x− x0) = −ngradα2 +
(
∆α′ + ‖h‖2α′ − bα′

)
ξ + (b− nα2)x. (6.7)

If M is of null 2-type, we have c = 0. So the coefficient of x in (6.7) vanishes

and α is constant. Since M is a hypersurface, the constancy of α′ implies that

the mean curvature vector is parallel. Then it follows from Theorem 6.1 that M

can not be spherical, which contradicts to our assumption.

Theorem 6.4. [11] Let M be a compact 2-type surface in Rm. Then M has

parallel mean curvature vector if and only if M is the product of two plane circles

with different radii.

Proof : If M is a surface in a space form Rm(k) with parallel mean curvature

vector, then by Theorem 2.12, M is one of the following:

(i) a minimal surface of Rm(k),

(ii) a minimal surface of a small hypersphere of Rm(k),

(iii) a surface with constant mean curvature |H| in a 3-sphere of Rm(k) (great

or small).

Here k=0 and Rm(k) = Rm, so if M is a minimal surface of Rm, then M is of

null 1-type. A small hypersphere of Rm is a usual hypersphere of Rm, so if M

is a minimal surface of a hypersphere, then M is of non-null 1-type. Hence M

can not be one of (i) or (ii). A great 3-sphere of Rm is a linear 3-dimensional

subspace R3 of Rm, and a small 3-sphere of Rm is a hypersphere S3 of R4 in

Rm. Therefore M is a surface in either R3 or S3. If M lies in R3 and M is

compact and is of 2-type with parallel mean curvature, then by Theorem 6.1, M

is spherical, and hence it is a 2-sphere of Rm. In this case M is of 1-type, which
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is a contradiction. If M lies in S3, then since M is compact and is of 2-type

with parallel mean curvature vector, M is mass-symmetric in S3 by Theorem

4.8. According to Corollary 4.14, M is the product surface of two plane circles

with different radii.

Lemma 6.5. [11] If M is a null 2-type submanifold of Rm, then we have

tr(∇AH) = 0 and ∆DH = (λp − ‖AH
α
‖2)H +A(H)

Proof : If M is of null 2-type, from (6.1) we find −nH = ∆x = ∆xq = λqxq

and ∆H = − 1

n
λq∆xq = − 1

n
λq∆x. So we have

∆H = λqH (6.8)

Therefore, by applying formula (3.2), we obtain

λqH = ∆DH + ‖AH
α
‖2H +A(H) + tr(∇AH). (6.9)

Because tr(∇AH) is tangent to M and all other terms in (6.9) are normal to M ,

formula (6.9) implies the lemma.

Theorem 6.6. [11] Let M be a 2-type submanifold in Rm with parallel mean

curvature vector. Then either M is spherical and non-null or M is a 2-type

submanifold with ‖AH
α
‖2 = λq which is a nonzero constant.

Proof : This theorem follows from Theorem 6.1 and Lemma 6.5, since the

parallelism of H implies ∆DH = 0.

The following theorem is a generalization of Theorem 6.4 which gives a complete

classification of 2-type surfaces with parallel mean curvature vector.

Theorem 6.7. [11] Let M be a surface in Rm with parallel mean curvature

vector. Then M is of 2-type if and only if M is one of the following two surfaces:

(a) an open portion of the product surface of two plane circles with different

radii;

(b) an open portion of a circular cylinder.
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Proof : Let M be a 2-type surface in Rm with parallel mean curvature vector.

Then by Theorem 2.12, M must lie either in a 3-dimensional linear subspace R3

with constant mean curvature or in a hypersphere S3 in a 4-dimensional linear

subspace R4 of Rm with constant mean curvature. According to Theorem 6.1,

M is either spherical or null. We consider these two cases separately.

Case (1): M is null. In this case Theorem 6.1 implies that M can not be

spherical, so M can not lie in a hypersphere S3 in R4 and it must lie in a

3-dimensional linear subspace R3. Let e3 be the unit normal to M in R3 and

{e1, e2} be the principle directions for A3 with corresponding principle curvatures

{µ1, µ2}. From Theorem 6.6, we see that ‖A3‖2 = λq, where λq is a nonzero

constant. Since M is a hypersurface in R3, we have h(X, Y ) = 〈h(X, Y ), e3〉e3 =

h3(X, Y )e3 for any vector fields X and Y tangent to M . Then ‖h‖2 = ‖A3‖2 is

constant. From the equation of Gauss (2.4), we have

R(X, Y, Y, X) = R(X, Y, Y, X)+〈h(X, Y ), h(X, Y )〉−〈h(X,X), h(Y, Y )〉. (6.10)

If X and Y are orthogonal unit vectors, the sectional curvature of M is given by

K(X, Y ) = R(X, Y, Y, X). Because M is a surface, sectional curvature at each

point of M is equal to its Gaussian curvature at that point. Moreover we have

h(ei, ej) = 〈h(ei, ej), e3〉e3 = 〈A3ei, ej〉e3 = µi〈ei, ej〉e3. Substituting X = e1 and

Y = e2 in (6.10) we have

K(e1, e2) = K(e1, e2) + 〈h(e1, e2), h(e1, e2)〉 − 〈h(e1, e1), h(e2, e2)〉.

= K(ei, ej)− µiµj

The sectional curvature of R3 is zero, so we have K(e1, e2) = µ1µ2. On the other

hand,

‖h‖2 = ‖A3‖2 = tr(A2
3) =

2∑
i=1

〈A2
3ei, ei〉 = µ2

1 + µ2
2

and the constancy of ‖h‖2 implies that µ2
1 + µ2

2 is constant. M has constant

mean curvature, so we have 2|H| = trA3 = µ1 + µ2 = constant. Consequently,

we see that µ1 and µ2 are constants and therefore the Gaussian curvature
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K(e1, e2) = µ1µ2 of M is a constant. M is nonminimal in Rm, because minimal

surfaces of Rm are null 1-type. By Proposition 2.14, since M is a nonminimal

surface of Rm with parallel mean curvature, it can be either a minimal surface of

a small hypersphere of Rm, or an open piece of the product of two plane circles,

or an open piece of a circular cylinder. But minimal surfaces of Sm−1 are of

non-null 1-type, hence M is either an open piece of the product of two plane

circles, or an open piece of a circular cylinder. In the first case, the radii of the

two plane circles must be different, since M is of 2-type.

Case (2): M is spherical and non-null. In this case M can not lie in a

3-dimensional linear subspace R3 of Rm. Because if it does, M lies in the

intersection of a hypersphere Sm−1 and R3, in other words, M lies in a small

hypersphere of the totally geodesic submanifold R3 of Rm. Then, since M is a

surface, it becomes a 2-sphere of Rm and consequently a small hypersphere of R3,

which is of 1-type. Therefore M is non-null and lies in a 3-sphere S3. Without

loss of generality we may assume that S3 is of radius one and is centered at the

origin. Since the mean curvature vector H of M in Rm and the mean curvature

vector H ′ = α′ξ of M in S3 are related by H = H ′−x, the constancy of α implies

the constancy of α′. Let {e3, e4} be an orthonormal normal basis of M in R4,

where e3 =
H

α
and e4 =

ξ + α′x

α
. We have

‖A3‖2 = tr(A2
3) =

2∑
i=1

〈A2
3ei, ei〉 =

1

α2

2∑
i=1

〈AHei, AHei〉

=
1

α2

2∑
i=1

(
(α′)2〈Aξei, Aξei〉+ 2α′〈Aξei, ei〉+ 〈ei, ei〉

)
=

1

α2
((α′)2‖Aξ‖2 + 4(α′)2 + 2)

and

‖A3‖2H =
1

α2

(
(α′)2‖Aξ‖2 + 4(α′)2 + 2

)
(H ′ − x) (6.11)

By using (3.10) we obtain

A(H) = A′(H ′) + (trAHA4)e4 =
α′

α
(‖Aξ‖2 − 2(α′)2)e4

=
α′

α
(‖Aξ‖2 − 2(α′)2)

ξ + α′x

α
,
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A(H) =
1

α2
‖Aξ‖2H ′ − 2

(α′)2

α2
H ′ +

(α′)2

α2
‖Aξ‖2x− 2

(α′)2

α2
x. (6.12)

Taking the sum of (6.11) and (6.12), we get

‖A3‖2H +A(H) =
((α′)2 + 1

α2
‖Aξ‖2 + 2

(α′)2

α2
+

2

α2

)
H ′

+
1

α2

(
− 2(α′)4 − 4(α′)2 − 2

)
x

= ‖h‖2H ′ − 2

α2

(
(α′)4 + 2(α′)2 + 1

)
x = ‖h‖2H ′ − 2α2

Substituting the above result in (6.6) yields

‖h‖2H ′ − 2〈H, H〉x = (λp + λq)(H
′ − x) +

λpλq

2
(x− x0). (6.13)

Because M is non-null, we have λpλq 6= 0, so taking the inner product of both

sides of (6.13) with x we get

〈‖h‖2H ′ − 2〈H, H〉x, x〉 = 〈(λp + λq)(H
′ − x) +

λpλq

2
(x− x0), x〉,

−2〈H, H〉 = −(λp + λq) +
λpλq

2
− 〈x, x0〉.

Since the mean curvature of M is constant, 〈x, x0〉 is constant. We assume that

x0 6= 0. Then we have 〈x, x0〉 = |x||x0| cos θ = constant, where θ is the angle

between the vectors x and x0 in R4. Hence |x| cos θ is constant and this implies

that M is contained in a hyperplane of R4 which is normal to x0. M lies in the

intersection of S3 and this hyperplane, so M is a small hypersphere of S3 which

implies that M is of 1-type. But this is a contradiction, so we must have x0 = 0.

Applying in (6.13) yields ‖h‖2 = λp + λq. On the other hand, we have

‖h‖2 = ‖Aξ‖2 + 2 = tr(A2
ξ) + 2 =

2∑
i=1

〈Aξei, Aξei〉+ 2 = µ2
1 + µ2

2 + 2,

As a result µ2
1 +µ2

2 is constant, and together with the constancy of µ1 +µ2 = 2α′,

it implies that µ1 and µ2 are also constants. If we let K(e1, e2) be the sectional

curvature of S3 and K(e1, e2) be the Gaussian curvature of M , then from

K(e1, e2) = K(e1, e2)−µ1µ2, we see that Gaussian curvature of M is a constant.

By Proposition 2.13, if the Gaussian curvature of M is nonzero, then M is a
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hypersphere of S3, but this implies that M is of 1-type, which can not be the

case. The Gaussian curvature of M is zero and hence the curvature tensor of M

vanishes and M is a flat surface. Therefore, M is an open portion of the product

of two plane circles with different radii ([2], p. 69, problem 8).

The converse follows from Corollary 4.14.
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7. RESULTS AND DISCUSSION

Let M be a compact hypersurface of a hypersphere Sn+1 such that M is not a

small sphere of Sn+1. Then, M is mass-symmetric and of 2-type if and only if

M has nonzero constant mean curvature and constant scalar curvature. Also, if

M has nonzero constant mean curvature and constant scalar curvature, then the

mean and scalar curvatures of M are completely determined by the eigenvalues

of the Laplacian of M .

Let M be a compact hypersurface of Sn+1 with at most two distinct principal

curvatures. Then, M is of 2-type if and only if M is a product of two spheres

with appropriate radii.

There are no compact hypersurfaces of constant mean curvature in Sn+1 which

are of 3-type and there are no spherical hypersurfaces of null 2-type.

Some of the results on hypersurfaces of a hypersphere can be generalized

to submanifolds of a hypersphere with codimension two in the hypersphere

under some conditions. Especially, a classification of submanifolds Mn of the

hypersphere Sn+2 with at most two distinct principal curvatures can be studied.
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