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MEMS ANAHTARLARIN KAPANMA OLGUSUNUN TASARIM VE 
SİMÜLASYONU 

ÖZET 

Son yıllarda mikro elektromekanik sistemler (MEMS) çok fazla uygulama alanına 
sahip olmuştur. Savunma, sağlık, otomotiv ve uzay ve havacılık uygulamaları örnek 
olarak verilebilir. Geniş çaptaki uygulama alanları MEMS’in düşük maliyeti, küçük 
boyutu ve düşük ağırlığı sonucu ortaya çıkmıştır. Ayrıca MEMS sadece mekanik 
değil elektriksel parçalar da içermektedir. Bir diğer çok kullanışlı teknoloji titreşim 
kaynaklarını kullanarak enerji üreten güç harmanlayıcı aletlerdir. İyi bilinmektedir 
ki, düşük enerji tüketimine ve yüksek izolasyona bağlı olarak, MEMS anahtarlar 
geleneksel anahtarların yerini almıştır. Bu çalışma bir güç harmanlayıcı sistem için 
bir MEMS anahtarının tasarım ve simülasyonunu içermektedir. Bu anahtar güç 
harmanlayıcı sistem tarafından üretilen gerilim ile elektrostatik olarak hareket 
ettirilir. Bu hareket olayı kapanma olgusunu getirir. Güç harmanlayıcı sistem 
tarafından üretilen gerilim 0,6-1V gibi düşük bir aralığa sahiptir. Dolayısıyla, 
kapanma gerilimi aralığına uygun olan kullanılacak anahtarın boyutuna ve 
malzemesine karar vermek için optimizasyon gerekmektedir. Bu optimizasyonda 
kapanma gerilimi kapalı formdaki modeli kullanılmaktadır. Bu anahtar rezonans 
frekanslarından uzakta çalışmalıdır. Bu kısıtlamaya bağlı olarak, rezonans frekans 
analizi yapılmalıdır ve hangi boyutların ve malzemelerin uygun olduğuna karar 
verilmelidir. Bunun yanında biz bu anahtardan histeritik bir davranış bekleriz, yani 
kapanma ve açma gerilimleri farkı olmalıdır. Sistem titreşimli bir ortamda olacağı 
için sadece elektriksel değil, mekanik analizler de anahtarın dayanıklı olup 
olmadığına karar vermede büyük rol oynamaktadır. Bu mekanik analizler anahtarın 
titreşim altındaki uç sapması ve ani ivmelere verdiği basamak cevabı içermektedir. 
Uç sapmasının analizleri gözlemlendikten sonra titreşim altında kapanma geriliminin 
değişimleri elde edilebilir. Ani ivmelerin analizi anahtarın ivmeler altında dayanıklı 
olup olmadığını görmek ve kritik sönüm katsayısının değerini elde etmek için 
gereklidir. Özel olarak incelen farklı simülasyonlar güç harmanlayıcı sistem için en 
uygun MEMS anahtarın elde etmek için önemli sonuçlar getirmektedir. 
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DESIGN AND SIMULATION OF PULL-IN PHENOMENON OF MEMS 
SWITCHES 

SUMMARY 

In recent years, micro-electro-mechanical systems (MEMS) have had lots of 
application areas. Defense, medical, communication, automotive, and aerospace 
applications can be given as examples. Wide range of application areas has occurred 
as a result of nearly low-cost, small size and light weight of MEMS. Also, MEMS 
includes not only mechanical but also electrical components.  Another the most useful 
technology is power harvesting devices using vibration sources to generate energy. It 
is well known that due to low-power consumption and high isolation, MEMS 
switches have taken the place of conventional switches. This study contains the 
design and simulation of a MEMS switch for a power harvesting system. This switch 
is electro-statically actuated by the voltage generated by the harvesting system. This 
actuation event brings the pull-in phenomenon. The generated voltage by the power 
harvester system has a low range that is 0.6-1V. Thus, an optimization is required to 
decide the size of the switch and the material that will be used that are suitable for 
pull-in voltage range. For this optimization, a closed form model of pull-in voltage is 
used. The switch should work far away from resonant frequencies. Due to this 
constraint, a resonant frequency analysis must be investigated and it is required to 
decide which sizes and materials are convenient. What is more, we want the switch 
to have a hysteretic behavior meaning that pull-in and pull-out voltages should be 
different. As the system will be in a vibrating environment, not only electrical but 
also mechanical analysis plays a big role to decide whether the switch is robust, or 
not. These mechanical analyses contain tip deflection of the switch under vibrations 
and step response under instant accelerations. Observing tip deflection analysis, pull-
in voltage changes under vibrations can be obtained. Analysis of instant accelerations 
is useful to see whether the switch is robust under accelerations or not, and to obtain 
the critical damping constant value. Several simulations examined particularly bring 
prominent conclusions to obtain the most suitable MEMS switch for the power 
harvesting system. 
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1. INTRODUCTION 

1.1 Background and Motivation 

In recent years, micro-electro-mechanical systems (MEMS) have made a 

breakthrough and brought many defense, medical, and commercial applications. 

Their low cost, small size, low-energy consumption, and life-time have made it so 

usable in novel devices. The applications of MEMS can be seen in lots of areas of the 

life [1]. In these areas, most probably they replace traditional devices. For example, 

in medical applications, MEMS have a wide range of usage such as Bio-mems, 

hearing and seeing aids, DNA sequencing, and bio-sensors. In information 

technology, MEMS brought new challenges by enabling smart products. On the other 

hand, simulation tools have not been developed as much as MEMS [2]. MEMS 

devices are still being fabricated by trial and error. Since, the design process of 

MEMS contains different layers such as fluidics, thermal effects, electrostatics, and 

mechanics.  Therefore, these domains are taken into consideration to simulate the 

performance of finished devices. 

Another fast growing area is the energy harvesting systems which are so useful for 

wireless sensor network nodes. Fixed energy alternatives such as batteries and fuel 

cells are impractical for wireless devices. There are several power generating devices 

using solar energy, thermal energy, and vibration based energy.  All methods have 

different requirements; solar methods require enough light energy, thermal methods 

need enough temperature variation, and vibration-based methods need enough 

vibration sources. It is clear that vibration sources are more common. Thus, 

designing an energy harvesting device would be so valuable for long term use that is 

important for wireless applications. 

The interest of this thesis lays in the design of a MEMS switch for a power 

harvesting system. The main component of this system is a MEMS device with a 

100µm wide, 5µm thick and 3mm long tethers sharing a 2.5mm wide, 2.5mm long, 

and 500µm thick proof-mass [3]. When the system vibrates, an alternating voltage is 
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generated. Thus, a MEMS switch is required for this system. Since the mid eighties 

mechanical resonators have been widely used as transducers in mechanical micro 

sensors [1]. Due to their advantages like low-power consumption, high isolation, 

MEMS switches replace the conventional switches. Electrostatic actuation is the 

most preferable actuation method in MEMS because of its simplicity and high 

efficiency [4]. The pull-in phenomenon that will be examined in this thesis occurs 

under electrostatic actuation. Also, fundamental frequencies of MEMS switches will 

be observed. As the power harvesting device will be in a vibrating environment, 

some dynamic analysis such as tip deflection and step acceleration responses will be 

investigated. What is more, MEMS switches can be produced from different 

materials, thus all analyses will be examined for each material in this thesis. 

1.2 Pull-in Phenomenon in MEMS 

In this section, we give a brief introduction to common phenomenon in MEMS, 

which is found nearly in the majority of MEMS devices. Thus, before designing a 

MEMS device, it is prominent to understand this phenomenon. When a voltage is 

applied to parallel plates, electrostatic force occurs and reduces the gap between 

these two plates. If voltage increases, eventually two plates touch together. This 

phenomenon is known as ‘pull-in,’ and the critical voltage associated with it is called 

‘pull-in voltage’ [2]. Simulating pull-in structure plays an important role in the 

design of MEMS devices. 

Many models have been presented to model the pull-in phenomenon and the static 

and dynamic behavior of electrically actuated micro beams. A closed form model for 

pull-in voltage is given in [5]. Here, we use this closed form model of pull-in voltage 

to optimize the size of required cantilever beam for power harvesting system 

generating approximately 0.6-1V. Also, effects of different sizes and different 

materials on the pull-in point are examined.  

1.3 Thesis Objectives and Organization  

The objectives of this thesis are: 

• To model and simulate accurately the pull-in dynamics, optimize the size of 

the cantilever beam that is suitable for voltage range of power harvester, and 
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see the pull-in point change for different materials and different design sizes, 

and propose a novel MEMS switch actuated by a voltage load lower than the 

traditionally used voltage. 

• To express analytically the natural frequencies of the cantilever beam and 

fixed-fixed beam, see how different sizes and different materials change their 

value, and observe if they are suitable for working conditions of power 

harvesting system. 

• To observe the reaction of cantilever beam under sinusoidal vibrations that is 

important to see whether the switch pulls in before the required voltage, or 

not, and from this observation obtain the tip deflection of the beam for zero 

voltage and an applied voltage is less than the pull-in voltage. 

• To check the responses of step accelerations affecting the base of the beam, 

decide whether the beam is robust under different accelerations, or not, and 

obtain the critical damping constant value that cause an overshoot in the step 

response of the beam. 

• To study the hysteresis cycle of MEMS switches beams having a dielectric 

space on the ground plane and after observing studies and experiments that 

have been examined in previous papers, propose a hysteresis range for the 

cantilever beam we are interested in and to obtain resistance values of 

cantilever beams and decide which one is suitable.    

The organization of the thesis is as follows. In Chapter 2, we present a general 

overview of MEMS, its wide range of applications and its market and industry 

structure. Also, we give valuable information about analysis and design principles of 

MEMS devices. In Chapter 3, we present the modeling and simulation studies of 

MEMS switch that is required for power harvesting system. In this chapter, thesis 

objectives are investigated particularly and one by one. Finally, a summary of the 

conclusions, together with possible future work is given in Chapter 4.   
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2. MEMS OVERVIEW  

2.1 Introduction 

Trend of the developing technology needs new challenges and capabilities to provide 

the requirements of people. One of fast growing technologies is information systems 

providing new opportunities for every day life. To bring these opportunities, 

information systems need sensing and acting capabilities. These needs give a great 

motivation to research new engineering systems by using MEMS [6]. 

All components in MEMS have dimensions that are measured in microns.  MEMS 

have different fabrication processes and applications [6]. Fabrication process of 

MEMS provides the use of integrated electromechanical systems by miniaturization 

of multiple components. MEMS makes possible the realization of a complete system 

in a chip enables the development of smart products. Using opportunities of 

fabrication methods, MEMS involves both mechanical and electrical components as it 

can be seen in Figure 2.1 [7]. 

Figure 2.1: The Content of Micro-Electro-Mechanical Systems [7] 

2.2 Application of MEMS 

MEMS devices have several applications areas such as automobiles, communication, 

and medical usage. Because MEMS devices have nearly low-cost, small size and light 

weight in application systems, they produce new capabilities and increase the 
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operational performance and lifetimes of existing products and systems. For 

example, MEMS will make possible complete inertial navigation units on a 

chip, composed of multiple integrated MEMS accelerometers and gyroscopes 

[6]. Another example can be given from medical applications as researching new 

ways and using micro-electromechanical systems to potentially produce complex 

organs, such as kidneys and livers. In addition to these applications, there are 

several technologies and products using MEMS [6,8]: 

• distributed unattended sensors for asset tracking, border control, envi 

ronmental monitoring, security surveillance and process control, 

• integrated fluidic systems for miniature analytical instruments, chip- 

based DNA processing & sequencing, propellant and combustion 

control, chemical factories on chip, 

• low-power, high-resolution, small-area displays for workstation and por 

table, personal information systems, 

• embedded sensors and actuators for condition-based maintenance  of 

machines & structures and on-demand amplified structural strength 

in lower-weight systems and disaster-resistant building, 

• mass data storage devices using magnetic and atomic scale patterning for 

storage densities of terabytes per square centimeter, 

• integrated micro-opto-mechanical components for low-power optical com 

munication, displays and fiber-optic switches/modulators, and 

• radio frequency and wireless for relay & switching matrices, reconfig- 

urable antennas, switched filter banks, electromechanical front-end RF 

filtering and demodulation 

2.3 MEMS Market and Industry Structure 

Estimations show that for the near future MEMS products will have a fast 

increase on all over the world. Recent forecasts imply that the growth of the 

market potential of MEMS products reaches $10billion by the year 2006 as it can be 

seen in Figure 2.2 [9]. This extended growth of MEMS market can be explained as it 

does not have only one application area. Currently, the majority of MEMS products are 
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sensors that are used in lots of systems. Thus, advantages of MEMS increase not only 

its market structure but also market of other sectors using it. 

 

Figure 2.2: Projected Growth of Worldwide MEMS Market [9]  

Figure 2.3: 2006 MEMS Market Share Projection [9] 

The companies producing MEMS products are manufacturers of sensors, 

industrial and residential control systems, electronic components, automotive and 

aerospace electronics, and biomedical products. 2006 MEMS market share 

projection can be seen in the Figure 2.3 [9]. For example, companies fabricating 

MEMS devices include Honeywell, Motorola, Hewlett-Packard, Analog Devices, 

Siemens, Hitachi, Texas Instruments, Lucas Xerox, and Rockwell [6].  The current 

situation of MEMS industry is so strong to provide needs of the world. Also, the 
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number of MEMS companies is increasing on all over the world. Thus, 

employment grows in the MEMS industry with demand for new products and 

solutions using MEMS.  

The market and industry structure of MEMS are feeding each other. An increase 

in one of them causes an increase in other one. May be, in the foreseeable future, 

MEMS companies will increase and employ lots of people.  

2.4 Analysis and Design Principles of MEMS Devices 

2.4.1 Principles of MEMS Devices 

Micro-electro-mechanical systems involve micro actuators, micro sensors, and 

micro electronic circuits as it can be shown in Figure 2.4 [10]. MEMS devices have 

not only mechanical interaction with surroundings but also electrical or other non-

mechanical interaction between their components [10]. 

 

Figure 2.4: Basic Illustration of a MEMS Device [10] 

In measurement systems, mechanical sensors are used to measure the 

movement of mechanical structures. Other parameters like temperature, 

pressure, acceleration can be detected either by mechanical sensors or by solid-

Micro mechanical actuators 

Solid-state and micro 
mechanical sensors 

Microelectronic circuits 

Signal flow 

Mechanical 
interaction 
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state sensors. Several methods can be used to drive and control micro 

mechanical actuators. However, recently, the most preferable method is 

electrostatic actuation. Regarding to given information above, the analysis and 

design principles of MEMS device can be divided to three basic categories: the 

dynamics of micro mechanical structure, the sensing scheme and 

microelectronics, as schematically shown in Figure 2.5 [10]. Needs like 

'product performance', 'quality', 'time to produce', 'development cost', 'development 

risks' have more impact on the development of MEMS products because today's 

products are more complex [10]. 

 

Figure 2.5: Basic Analysis and Design Principles of MEMS [10] 

2.4.2 Design Methodology for MEMS 

 

Figure 2.6: Design Trade-off for MEMS [11] 

There are several effects that should be taken into consideration during the 

development of MEMS products. These effects are specified by a trade-off as 

shown in Figure 2.6 [11]. Each part of this relation is related to each other and is 
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influenced by the others. Design process starts with system requirements by the design 

on system level [11]. Requirements of the system where MEMS will be used should be 

analyzed. Then, which sensing element, sensing circuit, and technology provide the 

needs of the function of the MEMS product should be investigated. Thereby, the 

manufacturing process can be started. If the components of the product are tested 

successfully, they are assembled. Thereafter, this process is finished by the fabricated 

product. Due to some problems during tests, development process does not go 

forward. The design process of micro electromechanical structures takes time and 

brings additional costs. Thus, to avoid problems, before fabrication process, 

simulations should be examined carefully. 
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3. MODELING AND SIMULATION OF MEMS SWITCHES 

It is so obvious that several advantages of MEMS switches like low energy 

consumption, low cost, and easy fabrication have increased their usage instead 

of traditional switching components and the electrostatic MEM switches 

applications in micro-electromechanical systems (MEMS). Electrostatic MEM 

switches play a big role in the function of micro-electromechanical systems [12].    

3.1 The System Concerning MEMS Switch 

 

Figure 3.1: System Overview [13] 

The ultimate goal of this investigation is to design a MEMS switch for a power 

harvesting system. One of the main components of the harvesting system is a MEMS 

device with a 100µm wide, 5µm thick and 3mm long tethers sharing a 2.5mm wide, 

2.5mm long, and 500µm thick proof-mass. Beams of this device are covered by a 

thin film of piezoelectric material. So, under vibrations it oscillates and the stress on 

the piezoelectric material generates an alternating voltage. This voltage is rectified 

by a diode bridge and stored on a capacitor CS. Due to the fact that the voltage on 

that capacitor changes related to the circuit loading and vibration amplitude, a 

voltage-controlled switch is required. When the required operational voltage level is 
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reached, this switch connects the capacitor to the circuitry. When the voltage level is 

less than this point, the switch is off and the storage capacitor is charged. To prevent 

damage to the MEMS harvester, the displacement of the cantilever beam is limited 

by the device's package. The peak-to-peak AC voltage levels of 0.6-1V are possible 

to be generated by the harvesting system. This voltage range was limited to 1-1.5V in 

order to make it suitable for use of the sensor circuitry. A bandgap reference circuit 

is used as a temperature sensor. Temp signal is produced by a voltage controlled 

oscillator that converts the temperature measurements into a digital square wave. 

MEMS part of the system has been designed and primary beams were fabricated as 

shown in Figure 3.1 [13]. Early measurements for the mechanical part indicated that 

we are able to obtain power levels of 30µW from a mm3 device [13]. In this study, 

the needed MEMS switch is optimized and  designed after some observations for 

pull-in analysis, resonant frequency analysis, effect of the different sizes of the 

switch, tip deflection analysis, analysis for different materials, damping factor and 

step responses, and hysteresis and resistance considerations.      

3.2 Pull-in Phenomenon of MEMS Switches 

Micro cantilever beams are commonly used in MEMS based capacitive-type sensors 

and actuators. The majority of these devices work in the constant voltage. 

However, the electrostatic force associated with the applied voltage is nonlinear and 

brings the well-known phenomenon of 'pull-in' [5]. One of the most important parts 

of electrostatic MEM actuators is the pull-in phenomenon. Pull-in phenomenon is an 

instability which is produced by the interaction of the elastic and electrostatic forces 

when the electrostatic forces are related to the applied voltage. Thus, the applied 

voltage that causes to pull-in phenomenon can be called "pull-in voltage". In the 

MEMS switches, the pull-in voltage causes them to close. As a result of the small size 

of the MEM actuators, other factor such as residual stress in thin films, fringing-field 

effect and axial stress can affect the pull-in voltage [12]. The determination of the pull-

in voltage is important in the sensor or actuator design process to determine the 

sensitivity, frequency response, and the dynamic response of the switch. Material 

properties like Young's modulus and the residual stress of micro-fabricated thin films 

can be decided by using the pull-in voltage [5]. 
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Considering a piston like motion of the beam having a linear spring constant, the 

widely used parallel-plate approximation method of pull-in voltage calculation says 

that the pull-in occurs when the movable structure exceeds one-third of the air-gap. 

This method ignores the effects of the fringing field capacitance. However, for small 

electrode widths, the fringing field capacitance can cause an increase in the total 

capacitance [5]. The pull-in voltage of electro-statically actuated cantilever beams 

can be calculated by using a closed-form model that takes fringing field capacitance 

into consideration. 

MEM switches bring some problems such as high applied voltage, relatively low 

speed and low power levels. Recently, several studies have been done to solve these 

problems. To decrease the actuation voltage, some methods can be used such as [12]: 

I. Decreasing the air gap between the fixed plate and the beam  

II. Increasing the electrostatic area 

III. Decreasing the spring constant of the beams  

Applying the compressive and tensile axial forces in the fixed-fixed and cantilever 

beam can be one of the ways to decrease the spring constant of the beams.  

Before going the analysis of MEMS switches, it is useful to review the familiar 

harmonic resonator shown in Figure 3.2 [14]. 

The equation of motion for a mass-spring-dash pot is  

)cos(
2

2

tFkx
t

x
b

dt

x
m ωω=+

∂

∂
+

∂
                                                       (3.1) 

where x is the motion of the mass m, b damping coefficient, k is the spring constant, 

and Fω is the magnitude of the forcing term at frequency ω [14]. It is useful to define 

resonant frequency 
m

k
=0ω  and the quality factor 

b

m
Q 0ω

=  . Solving the Eq. (3.1) 

for the amplitude of vibrations gives Eq. (3.2) [14]. 
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Figure 3.2:  Harmonic Resonator and Its Frequency Response [14] 

3.2.1 Cantilever Beam Equation 

A typical geometry of a MEMS switch composed of a cantilever beam separated by 

a dielectric spacer from a fixed ground plane can be seen in Figure 3.3a [5]. As a 

result of applied voltage, an electrostatic force occurs and causes the beam pull down 

to the fixed ground plane.  

The fixed end of the beam is thought to be at infinity whereas the free end is finite. 

Under this assumption, the fringing fields at the fixed end can be neglected. Thus, 

the total capacitance between the cantilever beam and the ground plane consists of 

the parallel plate capacitance, the fringing field capacitance due to the width of the 

beam, the fringing field capacitance due to the beam thickness, and the fringing 

field capacitance at the free end as shown in Figure 3.4 [5]. 

The capacitance between the cantilever beam and the fixed ground plane can be 

expressed as: 























+








++=

5.0

0

25.0

00

0 06.106.177.0
d

h

d

w

d

w
lC rCB εε                                 (3.3) 

where l,w, and h represent the length, width, and thickness, respectively [5]. Єr and 

d0 are the dielectric constant and the thickness of the dielectric medium, respectively. 

After taking fringing field capacitance into consideration, using Єr=1 for air, Eq. 

(3.3) can be modified for the cantilever beam geometry shown in Figure 3.4 as: 
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where the last term in Eq. (3.4) represents the fringing field capacitance at the free 

end of the beam [5]. The associated electrostatic force where V is the bias voltage 

thus can be evaluated from Eq. (3.4) [5]. 


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dz

d
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Figure 3.3: (a) A Cantilever Beam Separated from a Fixed Ground Plane by a 
Dielectric Spacer, (b) A Conceptual Diagram Shows the Deformed Beam Due to an 

Electrostatic Force When Biased Oppositely Using a Constant Drive Voltage [5] 

 

Figure 3.4: Electric Flux Lines of a Cantilever Beam [5] 

3.2.2 Pull-in Voltage Closed Form Model 

An expression for a uniform pressure P causing a cantilever tip deflection of z can 

be derived as: 

z
l

hE

wl

Kz
P

4

3

3

~
2

==                                                                                                     (3.6) 

where K is the spring constant of the beam, z is the cantilever tip deflection. The 

effective modulus, Ĕ equals to the plate modulus E/(l-v
2)for wide beams 

(w>5h) where v represents the Poisson ratio [5]. For narrow beams (w < 5h ), E 

simply becomes the Young's modulus E. For a cantilever beam, the electrostatic 

pressure becomes non-uniform due to a redistribution of the charges as the beam 
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deforms. As a result, the tip of the cantilever will get a higher pressure compared to 

the region close to the fixed end as shown in Figure 3.5 [5]. 

 

Figure 3.5: Non-Uniform Profile of the Electrostatic Pressure for a Cantilever Beam 
(left). Uniform Electrostatic Pressure Profile for a Parallel Plate Geometry (right) 

[5] 

Thus to calculate the deflection of a cantilever beam actuated by the electrostatic 

force, it is necessary to obtain a uniform, linear model of the electrostatic force that 

can be used in Eq. (3.6). A uniform linearized model of the electrostatic pressure can 

be derived by linearizing the electrostatic force about the zero deflection point, i.e., 

z0 = 0 as shown in Figure 3.6 [5]. 

 

Figure 3.6: Linearization of the Electrostatic Force about Zero Displacement [5] 

After some linearizations and due to the equilibrium at pull-in, we can obtain the 

closed-form expression of pull-in voltage VPI as in [5]. 
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COMSOL Multiphysics program calculates the pull-in voltage by using the 

following formula, 
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where c1 = 0.07, c2 = 1.00, and c3 = 0.42; d0 is the initial gap between the beam and 

the ground plane. B comes from  

3
0

3~
dhEB =                                                                                                           (3.9) 

Due to the design constraints, the maximum voltage that can be produced by MEMS 

harvester is 1 volt. Thus, the pull-in voltage can not take a value more than 1 volt. 

Our first design constraint is the pull-in voltage. After observing the size values of 

cantilever beam taken in [5], we have taken the value range of length (l) and width 

(w) are 20µm ≤ w ≤ 50 µm, 200 µm ≤ l ≤ 500 µm.  For fixed thickness (h) and initial 

gap (d0), the value change of pull-in voltage related to the different values of length 

(l) and width (w) can be seen in the Figure 3.7.  
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Figure 3.7: The Value Change of Pull-in Voltage for Fixed h and d0 

By using this figure, we can obtain the optimum values of pull-in voltage, width (w), 

and length (l).  As it is mentioned before, our optimization constraint is that pull-in 

voltage can not take a value more than 1V. Polysilicon can be used to fabricate the 

cantilever beam. Its density is d = 2330 kg/m3
, Young’s modulus E = 131x109 Pa, 

Poisson’s ratio v = 0.27. Three cases have been checked for fixed thickness (h) value 

and different values of initial gap (d0). Thus, Table 3.1 has been attained related to 
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the optimization for three cases. MATLABTM code related to pull-in voltage and its 

optimization can be seen in Appendix A.  

Table 3.1: The Optimum Values of Pull-in Voltage, Width, Length Regarding to 
Three Different Values of Initial Gap for Fixed Thickness 

Common Parameters are E = 131Gpa, ν = 0.27, d = 2330 kg/m3 and h = 1µm 
 Optimum VPI 

related to 
closed form 

formula 

Optimum VPI 
related to 
COMSOL 
Program 

Optimum 
 width (w) 

Optimum 
 length (l) 

Case-1 
d0 = 1 µm 

0.9881 volt 0.9849 volt 50 µm 260 µm 

Case-2 
d0 = 1.5 µm 

0.9978 volt 0.9964 volt 50 µm 350 µm 
 

Case-3 
d0 = 2 µm 

1 volt 1 volt 24 µm 430 µm 

For case-1 and case-2 and their optimum values, we can simulate the cantilever beam 

by using Comsol Multiphysics program. Related to the simulation, obtained pull-in 

graphs are observed as in the Figure 3.8 and Figure 3.9. After obtaining these two 

figures, it can be said that it is unnecessary to simulate pull-in of the cantilever beam 

for case-3 where pull-in voltage is equal to 1V. 

 

Figure 3.8: The Displacement Change Due to the Pull-in Voltage for Case-1   
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Figure 3.9: The Displacement Change Due to the Pull-in Voltage for Case-2   

If we make the cantilever beam from Polysilicon, case-1 seems well suited to our 

design considerations. We know that the required switch for our system can be a 

fixed-fixed beam. But After observing the pull-in graph for a fixed-fixed beam as in 

Figure 3.10, it can be said that pull-in point is too high for the voltage range of the 

power harvesting system. 

 

Figure 3.10: The Displacement Change of a Fixed-Fixed Beam Due to the Pull-in 
Voltage for Case-1   
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We can use different materials for the beam like Aluminum and Gold. The results of 

optimum values for these materials have been obtained as in the Table 3.2 and Table 

3.3. Observing the results in tables, optimum design values for cantilever beams 

made of Aluminum and Gold are in case-2 where pull-in voltage is less than 1V and 

pull-in voltages in other cases. 

Table 3.2: The Optimum Values of Pull-in Voltage for Aluminum Cantilever Beam, 
Width, Length Regarding to Three Different Values of Initial Gap for Fixed 

Thickness 

Common Parameters are E = 70 Gpa, ν = 0.33, d = 2700 kg/m3 and h = 1µm 
 Optimum VPI 

related to 
closed form 

formula 

Optimum VPI 
related to 
COMSOL 
Program 

Optimum 
width (w) 

Optimum 
length (l) 

Case-1 
d0 = 1 µm 

1.01 Volt 1.01 Volt 20 µm 220 µm 

Case-2 
d0 = 1.5 µm 

0.9998 Volt 1.003 Volt 23 µm 300 µm 
 

Case-3 
d0 = 2 µm 

1.002 Volt 1.009 Volt 20 µm 370 µm 

Table 3.3: The Optimum Values of Pull-in Voltage for Gold Cantilever Beam, 
Width, Length Regarding to Three Different Values of Initial Gap for Fixed 

Thickness 

Common Parameters are E = 70 Gpa,  ν= 0.44 d = 19300 kg/m3 and h = 1µm 
 Optimum VPI 

related to 
closed form 

formula 

Optimum VPI 
related to 
COMSOL 
Program 

Optimum 
width (w) 

Optimum 
length (l) 

Case-1 
d0 = 1 µm 

0.9897 Volt 0.9865 Volt 50 µm 230 µm 

Case-2 
d0 = 1.5 µm 

0.997 Volt 0.9955 Volt 50 µm 310 µm 
 

Case-3 
d0 = 2 µm 

1 Volt 1 Volt 21 µm 380 µm 

The displacement under the pull-in voltage for cantilever beams made of Polysilicon, 

Aluminum and Gold for l=260µm, w=50 µm, h=1 µm, d0=1 µm can be observed as 

in the Figure 3.11. Thus, under the same design values making the beam from 

aluminum brings great advantage regarding to the pull-in voltage. However, to be 

able to say that we should make the beam from aluminum, other analyses should also 

be examined. 
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Figure 3.11: The Displacement Under the Pull-in Voltage for Cantilever Beams 
Made of Polysilicon, Aluminum and Gold for l=260µm, w=50 µm, h=1 µm, d0=1 µm 

3.3 Resonant Frequency Analysis for MEMS Switches 

Resonance is a tendency of a system to oscillate at maximum amplitude at a certain 

frequency. This frequency is known as the system’s natural frequency of vibration, 

resonant frequency, or eigenfrequency. Regarding to the design considerations, we 

will examine resonant frequencies of cantilever beams and fixed-fixed beams. 

Consider a cantilever beam with mass per length ρ as in Figure 3.12. Assume that the 

beam has a uniform cross section. The natural frequency formula and the effective 

mass formula for a cantilever beam is given in Eq. (3.10) and Eq. (3.11), 

respectively. Obtaining procedure of these two formulas can be observed in 

Appendix B. 

 

Figure 3.12: A Cantilever Beam with Mass per Length ρ, Modulus E, and Inertial 
Moment I  
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Consider a fixed-fixed beam with a uniform mass density and a uniform cross 

section. The natural frequency formula and effective mass formula for a fixed-fixed 

beam is given in Eq. (3.12) and Eq. (3.13), respectively. Obtaining procedure of 

these two formulas can be observed in Appendix C. 
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We can apply the resonant frequency analysis by using these formulas. As it is 

mentioned before the value ranges of length (l) and width (w) are 20x10-6 ≤ w ≤ 

50x10-6 and 200x10-6 ≤ l ≤ 500x10-6.  For fixed thickness (h) and initial gap (d0), the 

value change of resonant frequencies of cantilever beam and fixed-fixed beam 

related to the different values of length (l) and width (w) can be seen in Figure 3.13 

and Figure 3.14, respectively. MATLABTM code related to resonant frequency 

analysis can be seen in Appendix A.  
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Figure 3.13: The Value Change of Resonant Frequencies of the Cantilever Beam for 
Fixed Thickness (h) and Initial Gap (d0) 
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Figure 3.14: For Fixed Thickness (h) and Initial Gap (d0), The Value Change of 
Resonant Frequencies of the Fixed-Fixed Beam 

During actuation, not all parts of it move, thus there exists an effective mass for a 

beam. For fixed thickness (h) and initial gap (d0), the effective mass values of 

cantilever beam and fixed-fixed beam related to the different values of length (l) and 

width (w) can be seen in Figure 3.15 and Figure 3.16, respectively.  
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Figure 3.15: For Fixed Thickness (h) and Initial Gap (d0), the Effective Mass Values 
of the Cantilever Beam Related to the Different Values of Length (l) and Width (w) 
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Figure 3.16: For Fixed Thickness (h) and Initial Gap (d0), the Effective Mass Values 
of the Fixed-Fixed Beam Related to the Different Values of Length (l) and Width (w) 

After comparing the resonant frequency values obtained from formulas with the 

results of Comsol, it is seen that all results are same. At this condition we can obtain 

resonant frequencies of cantilever beam and fixed-fixed beam for optimum values of 

length (l) and width (w) and fixed values of fixed thickness (h) and initial gap (d0) as 

in Table 3.4. 

Table 3.4:  Resonant Frequencies of Polysilicon Cantilever Beam and Fixed-Fixed 
Beam for Optimum Values of Length (l) and Width (w) and Fixed Values of 

Thickness (h) and Initial Gap (d0) 

Common Parameters are E = 131Gpa, ν = 0.27, d = 2330 kg/m3 and h = 1µm 
 Resonant 

Frequency of 
Cantilever 

Beam 

Resonant 
Frequency of 
Fixed-Fixed 

Beam 

For Optimum 
width (w) 

For Optimum 
length (l) 

Case-1 
d0 = 1 µm 

18,607 KHz 118,41 KHz 50 µm 260 µm 

Case-2 
d0 = 1.5 µm 

10,268 KHz 65,34 KHz 50 µm 350 µm 
 

Case-3 
d0 = 2 µm 

6,02 KHz 43,29 KHz 24 µm 430 µm 
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Table 3.5:  Resonant Frequencies of Aluminum Cantilever Beam and Fixed-Fixed 
Beam for Optimum Values of Length (l) and Width (w) and Fixed Values of 

Thickness (h) and Initial Gap (d0) 

Common Parameters are E = 70, ν = 0.33, d = 2700  kg/m3 and h = 1µm 
 Resonant 

Frequency 
of Cantilever 

Beam 

Resonant 
Frequency 
of Fixed-

Fixed Beam 

For 
Optimum 
width (w) 

For 
Optimum 
length (l) 

Case-1 
d0 = 1 µm 

12,2 KHz 114,55 KHz 20 µm 220 µm 

Case-2 
d0 = 1.5 µm 

9,68 KHz 61,60 KHz 23 µm 300 µm 
 

Case-3 
d0 = 2 µm 

6.36 KHz 40,49 KHz 20 µm 370 µm 

We can use different materials for the beam like Aluminum and Gold. The results of 

resonant frequency values for these materials have been obtained as in the Table 3.5 

and Table 3.6. As it can be seen from the tables, resonant frequencies of cantilever 

beam and fixed-fixed beam are in the KHz values which are so convenient for 

operating conditions of the beams. It is prominent that beams should not make 

significant displacement at these frequencies. These results demonstrate that 

producing cantilever beam from Polysilicon is the most preferable. However, there is 

not much difference between resonant frequencies of Aluminum cantilever beam and 

Polysilicon cantilever beam. 

Table 3.6:  Resonant Frequencies of Gold Cantilever Beam and Fixed-Fixed Beam 
for Optimum Values of Length (l) and Width (w) and Fixed Values of Thickness (h) 

and Initial Gap (d0) 

Common Parameters are E = 70 Gpa, ν = 0.33, d = 19300 kg/m3 and h = 1µm 
 Resonant 

Frequency of 
Cantilever 

Beam 

Resonant 
Frequency of 
Fixed-Fixed 

Beam 

For Optimum 
width (w) 

For Optimum 
length (l) 

Case-1 
d0 = 1 µm 

4,55 KHz 41,2 KHz 50 µm 230 µm 

Case-2 
d0 = 1.5 µm 

3,56 KHz 22,68 KHz 50 µm 310 µm 
 

Case-3 
d0 = 2 µm 

2,37 KHz 15,09 KHz 21 µm 380 µm 
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3.4 Analysis for Different Sizes  

Analysis for different sizes brings benefits for designing the beam in optimum limits. 

In this part of the study, we will only work with the cantilever beam made of 

Polysilicon. Since, it is not important which material is used, the only information we 

want to know is how different sizes of the cantilever beam make influence on the 

pull-in voltage. First of all, we will observe the displacement change under the 

voltage for different width values when l=260µm, h=1 µm, d0=1 µm. However, at 

this condition we can see in the Figure 3.17 that the pull-in voltage does not change 

significantly for width values that are 20 µm, 50 µm, 100 µm. Thus, it can be said 

that increase or decrease in the width value can not change pull-in voltage while 

other size values are constant. 

In the Figure 3.18, we can see how the pull-in voltage changes for different initial 

gap values when l=260µm, w=50 µm, h=1 µm. It is clear that the required pull-in 

voltage increases with the increment of the initial gap for l=260µm, w=50 µm, h=1 

µm. Thus, the optimum initial gap value for the beam is d0=1 µm where the pull-in 

voltage is approximately 1V. 
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Figure 3.17: The Pull-in Voltage Changes for Different Width Values When 
l=260µm, h=1 µm, d0=1 µm 
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Figure 3.18: The Pull-in Voltage Changes for Different Initial Gap Values When 
l=260µm, w=50 µm, h=1 µm 

In the Figure 3.19, we can see how the pull-in voltage changes for different thickness 

values when l=260µm, w=50 µm, d0=1 µm. It demonstrates that the required pull-in 

voltage increases with the increment of the thickness for l=260µm, w=50 µm, d0=1 

µm. Thus, the optimum thickness value for the beam is h=1 µm where the pull-in 

voltage is approximately 1V. 
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Figure 3.19: The Pull-in Voltage Changes for Different Thickness Values When 
l=260µm, w=50 µm, d0=1 µm 
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3.5 Tip Deflection Analysis 

The reaction of cantilever beam should be observed under sinusoidal displacements 

and step accelerations to the base. From this observation we will obtain tip deflection 

of the beam that is the difference between the displacements at the free end of the 

beam and at the fixed end of the beam. Tip deflection is important while designing a 

MEMS switch. By investigating these parameters, we will be able to make our beam 

robust. This investigation contains vibration analysis at zero voltage and at voltages 

less than the pull-in voltage. Applying the superposition method to the tip deflection 

analysis can be useful that means: firstly, we will assume that voltage is zero and 

there is a vibration affecting the base of the cantilever beam, then we will assume 

that there is no vibration and the voltage is less than the pull-in voltage. After 

calculating tip deflections for both cases, we will add them to obtain the total tip 

deflection.  

At first, we will calculate the tip deflection by assuming voltage is zero and there is a 

vibration V(t)=A0sin(wt) affecting the base of the cantilever beam as in the Figure 

3.20 [15].  

 

Figure 3.20:  A Cantilever Beam Being Affected by a Vibration from Its Base [15] 

Assuming the Young’s modulus E, the moment of inertia I, and the cross sectional 

area A, the dynamic behavior of cantilever beam can be described as: 
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where ρ is the mass density of the beam, α is the mass damping coefficient and β is 

the stiffness damping coefficient [16].  After obtaining homogenous solution of Eq. 

(3.14), the tip deflection formula can be expressed as in Eq. (3.15)  [16]. 

1coshcos

coshcos
)( 0

+

+
=

kLkL

kLkL
ALV                                                                                  (3.15) 

where  

EIIj
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k

+

−
=

ωβ

ωαρω 2
4                                                                                                 (3.16) 

In the Figure 3.21, we can observe tip deflection of the beam when the base 

displacement is 100 µm at 200 Hz for case-1 where l=260µm, w=50 µm, d0=1 µm, 

and h=1 µm. Also, we can see the tip deflection changes for different amplitudes in 

the Figure 3.22. MATLABTM code of tip deflection analysis is given in Appendix D. 

According to the Figure 3.21, we can say that when a vibration affects the base of the 

cantilever beam that has amplitude of 100µm and frequency of 200 Hz, the tip 

deflection is 14.11 nm. This result is convenient for our design when voltage equals 

to zero. The tip deflection should also be examined for V< Vpull-in.  
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Figure 3.21: The Tip Deflection of the Beam When the Base Displacement is 100µm 
at 200 Hz for l=260µm, w=50 µm, d0=1 µm, and h=1 µm 
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Figure 3.22: The Tip Deflection Change for Different Amplitudes of Vibration 

It is useful to observe tip deflection values for cantilever beam made of Aluminum 

and Gold, too. We can see the results in the Figure 3.23. As it can be seen in the 

figure, the cantilever beam made up from gold has the biggest tip deflections at the 

resonant frequencies which are greater than 1 KHz. 

 

Figure 3.23: Tip Deflection Values of Beams Made up from Three Materials for 
l=260µm, w=50 µm, h=1 µm, d0=1 µm, When a Vibration Affects at Base of the 

Cantilever Beam that has Amplitude of 100µm and Frequency of 200 Hz  
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In the second case, assuming that there is no vibration and the voltage is not zero, 

there exists a force F due to the voltage at the free end of the beam as can be seen in 

Figure 3.24 [15]. The larger the voltage, the greater the deflection v(x). 

 

Figure 3.24: The Cantilever Beam Deflection Under Force at the Free End [15] 

Force “F”can be expressed as: 

kxF −=                                                                                                                  (3.17) 

where “k” is the spring constant of the cantilever beam and “x” is the deflection 

under applied voltage. The curvature of the beam κ is equal to the second derivative 

of the tip deflection [15]: 
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The curvature can also be related to bending moment M and the flexural rigidity ExI 

[15]: 
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The bending moment can be related to the shear force S, and the lateral load q on the 

beam [15]. Thus, 
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For the force shown in Figure 3.24, according to the reference [15], the distributed 

load, shear force, and bending moment are:  
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Thus, according to the reference [15] the solution of Eq. (3.20) is  
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And at the free end of the beam, the displacement is 
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Figure 3.25: The Displacement for l= 260µm, w=50 µm, d0=1 µm, and h=1 µm 
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The force “F” will be obtained from the displacement occurred due to the voltage 

while there is no vibration. We know that for l= 260µm, w=50 µm, d0=1 µm, and h=1 

µm, the displacement is like as in the Figure 3.25. 

At this condition, the pull-in voltage is 0.98 Volt. We can choose 0.95 Volt for our 

analysis. By using data cursor, we can see that the deflection at 0.95 Volt is -0.3166 

µm. The spring constant of the beam is, 

3
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where Eeff is the effective modulus of the beam. For l= 260µm, w=50 µm, d0=1 µm, 

and h=1 µm, the force is, 
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At this condition, the tip deflection at the free end of the beam becomes, 
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Figure 3.26: The Tip Deflection of The Beam When The Base Displacement is 
100µm at 200 Hz for l=260µm, w=50 µm, d0=1 µm, and h=1 µm and Voltage is 0.95 

Volt 
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It is logical that the tip deflection is approximately equal to the deflection of the 

beam. Then, as we have mentioned before, using super position method, adding each 

deflection of both cases can give the tip deflection while there are a vibration and an 

applied voltage to the beam. For l= 260µm, w=50 µm, d0=1 µm, and h=1 µm, the tip 

deflection under 0.95 Volt and a vibration having 100x10-6 amplitude and 200 Hz 

frequency can be seen in the Figure 3.26. Also, we can see the tip deflection changes 

for different amplitudes of vibration in the Figure 3.27. 
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Figure 3.27: The Tip Deflection Change for Different Amplitudes of Vibration and 
for 0.95 Volt 

Observing the figures, we can say that when a vibration affects at the base of the 

cantilever beam that has 100µm amplitude and 200Hz frequency while the voltage is 

0.95 Volt, the tip deflection is 0.3307 µm. This result is good as the tip deflection is 

less than pull-in gap, although it is the worst case for our design. 

If we want to see how the pull-in changes that when a vibration affects at the base of 

the cantilever beam that has 100µm amplitude and 200Hz frequency under increasing 

voltage by using Comsol, we must take F that is the force caused by the tip deflection 

when only vibration affects the beam and its change due to the frequency can be seen 

in the Figure 3.28. At this force expression, the value that we are interested is the 

force at 200 Hz that is F= 1.412x10-9 N. Putting this value to our simulation on 
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Comsol, we can obtain the pull-in graph as in the Figure 3.29 with comparison to 

pull-in graph without vibration for l= 260µm, w=50 µm, d0=1 µm, and h=1 µm. 
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Figure 3.28: The Force Caused by the Tip Deflection When Only Vibration Affects 
the Beam 
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Figure 3.29: The Comparison of the Displacement Without a Vibration and Under 
Vibration That Has a Force F= 1.412x10-9 N at The Free End of the Beam 
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It is clear that there is not more difference between two conditions. Thus, vibration 

does not affect deflection and pull-in voltage so much. This result is prominent for 

our design as it indicates that our design sizes are robust under a vibration having 

100x10-6 amplitude and 200 Hz frequency if we produce the beam from Polysilicon.   

Under this vibration the pull-in voltage becomes 0.97 Volt while the pull-in voltage 

is 0.98 Volt under no vibration. 

If want to produce the beam from Aluminum, we know that under no vibration the 

pull-in voltage is approximately 0.73 Volt. Assuming applied voltage is 0.7 volt and 

a vibration affecting the base of the beam has 100µm amplitude and 200Hz 

frequency, the tip deflection of the cantilever beam becomes as in the Figure 3.30.  
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Figure 3.30: The Tip Deflection of the Beam Made of Aluminum When the Base 
Displacement is 100µm at 200 Hz for l=260µm, w=50 µm, d0=1 µm, and h=1 µm 

and Voltage is 0.7 Volt 

Observing the figure, we can say that when a vibration affects the base of the 

cantilever beam that has 100µm amplitude and 200 Hz frequency while the voltage is 

0.7 Volt, the tip deflection is 0.3141 µm. This result is so good since the tip 

deflection is less than pull-in gap, although it is the worst case for our design. If we 

want to see how the pull-in changes that when a vibration affects at the base of the 

cantilever beam that has 100µm amplitude and 200 Hz frequency under increasing 
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voltage by using Comsol, we must take F that is the force caused by the tip deflection 

when only vibration affects the beam and its change due to the frequency can be seen 

in the Figure 3.31. At this force expression, the value that we are interested is the 

force at 200 Hz that is F= 8.013x10-10 N. Putting this value to our simulation on 

Comsol, we can obtain the pull-in graph as in the Figure 3.32 with comparison to 

pull-in graph without vibration for l= 260µm, w=50 µm, d0=1 µm, and h=1 µm. 
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Figure 3.31: The Force Caused by the Tip Deflection When Only Vibration Affects 
the Beam Made of Aluminum 
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Figure 3.32: The Comparison of the Displacement Without a Vibration and Under 
Vibration that has a Force F= 8.013x10-10 N at the Free End of the Beam Made of 

Aluminum 
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It can be said that the vibration does not make more difference between two 

conditions for a cantilever beam made of Aluminum.  Under this vibration the pull-in 

voltage becomes 0.72 Volt while the pull-in voltage is 0.73 Volt under no vibration. 

As we know, under no vibration the pull-in voltage for a cantilever beam made of 

Gold is 0.77 Volt. Assuming that while applied voltage is 0.73, a vibration affects the 

base of the cantilever beam that has 100µm amplitude and 200 Hz frequency, the tip 

deflection can be seen in Figure 3.33. The figure shows that when a vibration affects 

at the base of the cantilever beam that has 100µm amplitude and 200 Hz frequency 

while the voltage is 0.73 Volt, the tip deflection is 0.3061 µm. This value is 

convenient for our design as it is less than the pull-in gap. It can be useful to see how 

the pull-in changes that when a vibration affects at the base of the cantilever beam 

that has 100µm amplitude and 200 Hz frequency under increasing voltage by using 

Comsol, we must take F that is the force caused by the tip deflection when only 

vibration affects the beam and its change due to the frequency can be seen in the 

Figure 3.34. At this force expression, the value that we are interested is the force at 

200 Hz that is F= 1.041x10-9 N. Putting this value to our simulation on Comsol, we 

can obtain the pull-in graph as in the Figure 3.35 with comparison to pull-in graph 

without vibration for l= 260µm, w=50 µm, d0=1 µm, and h=1 µm. 
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Figure 3.33: The Tip Deflection of the Beam Made of Gold When the Base 
Displacement is 100µm at 200 Hz for l=260µm, w=50 µm, d0=1 µm, and h=1 µm 

and Voltage is 0.73 Volt 



 38 

As it can be seen in the Figure 3.35, there exists no more difference between two 

conditions for a cantilever beam made of Gold. Under this vibration the pull-in 

voltage becomes 0.76 Volt while the pull-in voltage is 0.77 Volt under no vibration. 
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Figure 3.34: The Force Caused by the Tip Deflection When Only Vibration Affects 
the Beam Made of Gold 
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Figure 3.35: The Comparison of the Displacement Without a Vibration and Under 
Vibration that has a Force F= 1.041x10-9 N at the Free End of the Beam Made of 

Gold 
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Regarding to the tip deflection results and the pull-in voltage results for different 

materials under a vibration, it can be said that it does not make so difference to 

produce the cantilever beam from Polysilicon, Aluminum or Gold. All results 

demonstrate that our design sizes are robust under a vibration having 100µm 

amplitude and 200 Hz frequency even if we produce the beam from Polysilicon, 

Aluminum or Gold. The percentage of pull-in point changes for different materials 

can be seen in Table 3.7. The minimum percentage change is for a cantilever beam 

made of Polysilicon and the maximum is for a cantilever beam made of Aluminum. 

Thus, it may be advantageous to produce the cantilever beam from Polysilicon. 

Table 3.7: The Comparison of Pull-in Point Changes for Conditions Under Vibration 
and No Vibration 

Cantilever Beam 
Pull-in Voltage 
(No Vibration) 

Pull-in Voltage 
 (Vibration at 

200Hz with 100 
µm amplitude) 

Percentage of 
Pull-in Voltage 

Change 

Polysilicon 0.98 Volt 0.97 Volt % 1 
Aluminum 0.73 Volt 0.72 Volt % 1.37 

Gold 0.77 Volt 0.76 Volt % 1.30 

3.6 Damping Factor and Response to Accelerations 

Table 3.8: Common Sources of Vibrations [17] 

Vibration Source Frequency of Peak 
(Hz) 

Peak Acceleration 
(m/s2) 

Kitchen Blender 
Casing 

121 6.4 

Clothes Dryer 121 3.5 
Door Frame (just after 

door closes) 
125 3 

Small Microwave 
Oven 

121 2.25 

HVAC Vents in Office 
Building 

60 0.2-1.5 

Bread Maker 121 1.03 

External Windows 
(size 2ftx3ft) next to a 

busy street 

100 0.7 

Notebook Computer 
while CD is being read 

75 0.6 

Washing Machine 109 0.5 

Refrigerator 240 0.1 
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One of the ultimate goals of designing a cantilever beam is to check the responses of 

step accelerations affecting the base of the beam. In this analysis, we get “g” as the 

acceleration of the gravity whose value is 10 m/s2. Observing the step responses of 

the beam for different values of acceleration and damping constant is so valuable for 

our design. Then, the designer can decide whether the beam is robust under different 

accelerations, or not, and obtain the critical damping constant value that cause an 

overshoot in the step response of the beam. In this analysis, peak values of vibrations 

should be taken into consideration after reviewing common sources of vibrations as 

in Table 3.8 [17].  Peak accelerations of vibrations sources are assumed in the range 

of 0-10g. Also, response of the cantilever beam under crash effects will be examined. 

response for different accelerations and damping constants
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Figure 3.36: The Step Responses for Different Values of Acceleration and Damping 
Constant for a Cantilever Beam Made of Polysilicon 

First of all, this analysis will be applied to the cantilever beam made of Polysilicon 

whose optimum sizes have been obtained in the previous parts of this study. The step 

responses for different values of acceleration and damping constant for the optimum 

sizes of l=260µm, w=50 µm, d0=1 µm, and h=1 µm can be seen in the Figure 3.36. A 

decrease in the value of damping constant only makes a decrease in the value of step 

response time. Also, increasing the acceleration value only increases the settling 
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value of step response. Changing the value of the damping constant does not affect 

the settling value. The settling value of the beam for 10g is approximately 0.03 µm 

which is so good for our design. 

To obtain the critical damping constant value, the damping ratio should be 

considered. Assuming the beam will make 3% overshoot, from Eq. (3.32) where Mp 

is the maximum value of the step response, the critical damping ratio can be 

obtained. 
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Obtaining the critical damping ratio, using Eq. (3.33) where “k” is spring constant of 

the beam and “m” is the mass of the beam, the critical damping constant “b” can be 

calculated. 
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Figure 3.37: The Step Responses for Different Values of Acceleration at Critical 
Damping Constant for a Cantilever Beam Made of Polysilicon 
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For optimum design values, the critical damping constant for the cantilever beam 

made of Polysilicon becomes 2.598x10-6 Ns/m. For this value, the step responses for 

different accelerations can be seen in Figure 3.37. This result indicates that values of 

damping constant less than the critical damping constant value cause an overshoot in 

the step response of the beam. Thus, while designing a cantilever beam from 

Polysilicon for our optimum values this critical damping constant value should be 

considered. 

It is so useful to obtain the critical damping constant values for cantilever beam made 

of different materials. At first, assuming the beam will make 3% overshoot, for 

optimum design values, the critical damping constant for the cantilever beam made 

of Aluminum becomes 2.086x10-6 Ns/m. For this value, the step responses for 

different accelerations can be seen in Figure 3.38. This result also indicates that 

values of damping constant less than the critical damping constant value cause an 

overshoot in the step response of the beam. Thus, while designing a cantilever beam 

from aluminum for our optimum values this critical damping constant value should 

be considered. Furthermore, the settling value of the beam for 10g is approximately 

0.021 µm that is convenient for our design. 

0 1 2

x 10
-4

0

1

2

3

4

5

6

7
x 10

-8 response for different accelerations at critical damping

Step Response

Time (sec)

A
m

p
lit

u
d
e

1g

2g

3g

5g

10g

 

Figure 3.38: The Step Responses for Different Values of Acceleration at Critical 
Damping Constant for a Cantilever Beam Made of Aluminum 
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After the analysis for Aluminum, applying the same one for the cantilever beam 

made of Gold can be so useful to compare the results of the analysis for different 

materials.  Assuming the beam will make 3% overshoot, for optimum design values, 

the critical damping constant for the cantilever beam made of Gold becomes 

5.862x10-6 Ns/m. For this value, the step responses for different accelerations can be 

seen in Figure 3.39. This result also indicates that while designing a cantilever beam 

from gold for our optimum values, designer should consider that values of damping 

constant less than the critical damping constant value cause an overshoot in the step 

response of the beam. Furthermore, the settling value of the beam for 10g is 

approximately 0.36 µm that is not convenient for our design. 
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Figure 3.39: The Step Responses for Different Values of Acceleration at Critical 
Damping Constant for a Cantilever Beam Made of Gold 

The different results for different design considerations can be used to make a 

comparison table like Table 3.9. As it can be seen, assuming that maximum 10g 

acceleration affects the base of the beam, the worst result is for the cantilever beam 

made of gold and the best results are for the cantilever beams made of aluminum and 

Polysilicon. Considering one of the main goals of designing our cantilever beam that 

is to make it robust under step accelerations, making the cantilever beam from 

Polysilicon or aluminum is so advantageous not only for critical damping value but 

also for maximum deflection at these accelerations. 
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Table 3.9: The Comparison of Critical Damping Constants and Deflections at 10g 
for Different Cantilever Beams 

Cantilever Beam Polysilicon Aluminum Gold 
Critical Damping 

Constant 
 

2.598x10-6 
Ns/m 

 
2.086x10-6 

Ns/m 

 
5.862x10-6 

Ns/m 

Maximum 
Deflection at 10g 

Acceleration 

 
0.03 µm 

 
0.062 µm 

 
0.36 µm 

Assume that power harvesting device is used in packaging industry and one of the 

regarding packages drops to the ground from one meter. In mechanical analysis of 

the crash of two rigid materials, the simulation time is taken as 10ms. The package 

has a velocity as 4,4m/s when it reaches to the ground. Thus, instant acceleration 

occurred on the package can be calculated as approximately 44g. Considering the 

errors, we can make simulations for 50g. Related to the previous results, we can 

make simulation to see responses of cantilever beams made of Polysilicon and 

Aluminum to an instant acceleration, so it is unnecessary to make simulations for 

other cases. Looking the results as in Figure 3.40 and considering the worst cases, 

under accelerations the most suitable design is Polysilicon cantilever beam.   

 

Figure 3.40: The Responses of Polysilicon and Aluminum Cantilever Beams Under 
50g Acceleration 
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Acceleration is either a short-time and fast varying effect or a changing effect. It can 

not be constant over a long period. Therefore, after acceleration signal, the beam 

oscillates and settles down its zero position [10].  For a spring mass system as in 

Figure 3.2, the balanced position of the mass is taken as x=0. If the effect of damping 

is considered, the oscillation will finish and the mass will eventually settle at x=x0 

when the energy is completely consumed by the damping. Thus, the response of the 

system to a step acceleration or force is strongly dependent on the damping. Other 

characteristics of the system like stiffness do not affect the step response. Decreasing 

the stiffness of the beam does not affect the maximum deflection of the beam and 

oscillation [10]. The response of the beam made of Polysilicon to 10g step 

acceleration for different damping ratios can be observed in Figure 3.41. It is clear 

that if the beam is required not to make more oscillation, the damping ratio should be 

settled around 0.7 values.  

 

Figure 3.41: The Response of the Beam Made of Polysilicon to 10g Step 
Acceleration for Different Damping Ratios 

3.7 Hysteresis and Resistance Considerations 

Lots of the electrostatic actuators can be modeled as a mobile plate attached to a 

spring as in the Figure 3.42 [18]. At equilibrium voltage V=0 and capacitor gap is g 

(z=0). The capacitor formula is [18] 
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Figure 3.42: Model of an Electrostatic Actuator [18] 

When a voltage V is applied, the electrostatic force causes the reduction of the 

capacitor gap and the spring force induced by the plate displacement tends to 

counteract the electrostatic force effects. Eq. (3.36) gives the electrostatic force and 

Eq. (3.37) gives spring force [2]. 
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kzFsp −=                                                                  (3.37) 

The equilibrium graph can be seen in Figure 3.43 [18] and the equilibrium position z 

of the plate versus V voltage is given by, 

0=+ spel FF                                                                (3.38) 

 

Figure 3.43: The Equilibrium Graph [18] 
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At low voltage there are two equilibrium positions. One is stable the other is 

unstable. At higher voltage there is no more equilibrium position. The electrostatic 

force is always greater than the spring force: the mobile plate is pulled down to the 

fixed plate. This effect is called as pull-in effect and occurs for a voltage greater than 

the pull-in voltage Vpull-in. Note that for this type of electrostatic actuator it is 

necessary to insulate the two plates to avoid electrical short circuit when the pull-in 

effect occurs [2].  

Equilibrium positions and pull-in voltage are deduced from the equation Fel + Fsp = 0, 

which leads to the Figure 3.44 [18]. Stable equilibrium positions exist only in the 

region 0<z<g/3. The pull-in voltage is calculated at the limit of the stable region 

[18]: 

320

27

4

2
gV

k

S
inpull =−

ε
                                                                       (3.39) 

S

kg
V inpull

0

3

27

8

ε
=−                                                                                              (3.40) 

 

Figure 3.44: The Graph Leaded by Fel + Fsp = 0 Deduces Equilibrium Positions and 
Pull-in Voltage [18] 

When the pull-in effect occurs, the mobile plate is pulled down to the insulator layer 

of the fixed plate. As the plate gap is very small, the electrostatic force is very large, 

much more important than the spring force. The voltage has to be reduced to allow 
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the separation of the two plates, which is called the pull-out voltage. The pull-out 

situation is illustrated in the Figure 3.45 [18]. Below the pull-out voltage the spring 

force becomes larger than the electrostatic force at closed gap and can separate the 

two plates. From the equilibrium of the forces, the pull-out voltage can be obtained 

as [18]: 

kg
t

S
V

ox

x

outpull =− 2
02
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1 εε
                                                           (3.41) 
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22
=−                                                             (3.42) 

 

Figure 3.45: The Graph of the Pull-out Situation [18] 

The changes in the applied voltage causes a hysteresis for the actuator as illustrated 

in Figure 3.46 [18]. At the first region the voltage increases and the mobile plate 

moves down. At the end of the second region pull-in occurs. When the voltage is 

reduced, pull-out occurs at the end of the third region. These events bring a 

hysteresis cycle for an electrostatic actuator. 
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Figure 3.46: The Illustration of the Hysteresis Cycle [18] 

All information given above is valid for cantilever beams having a dielectric space 

on the ground plane. However, the cantilever beam that is required for our system 

does not contain any dielectric space. Also, there is no model in the literature for the 

type of cantilever beams we are interested in. We know the point where our 

cantilever beam pulls in, but it is uncertain at which voltage our cantilever beam 

pulls out. Thus, we can give an estimation or percentage between pull-in and pull-out 

voltages by observing studies and experiments that have been examined in previous 

papers.  

The cantilever beam we are concerned can be seen as a micro relay, so we can take 

papers that studied the micro relays into consideration. A micro relay has been 

designed in [19]. In this paper, the relay demonstrates hysteresis and pulls down at 

82V and pulls up at around 76V, which gives a ratio between pull-up and pull-down 

that is approximately 0.92. Also, micromechanical relays have been examined in 

[20]. In this article, for a constant voltage applied on the working port, the measured 

pull-in voltage can be taken as 44.5V and the measured pull-out voltage can be taken 

as 40V, that gives the ratio between pull-out and pull-in that is 0.89. In other paper 

that is [21], the pull-in and pull-out voltages of some micro actuators have been 

analyzed regarding to the hysteresis. In this analysis, a stopper has been used to limit 

the displacement of the movable part, not the cause of the hsyteresis, only determines 

the hysteresis magnitude. The experimental results of this article shows that for the 
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asymmetrically designed micro actuator the ratio between the pull-out and pull-in 

voltages is approximately 0.98 and for the symmetrically designed micro actuator the 

ratio is around 0.85. Observed information from these papers can be seen in Table 

3.10.  

Table 3.10: Observed Information from Some Papers 

 Vpull-in Vpull-out Vpull-out / Vpull-in 

Paper [19] 82V 76V 0.92 

Paper [20] 44.5V 40V 0.89 

Paper [21] 
(asymmetrically) 

9.34V 9.27V 0.98 

Paper [21] 

(symmetrically) 

11.89V 10.15V 0.85 

Furthermore, electro-statically actuated micromechanical switches have been 

examined in [22]. This paper indicates that if the contact resistance is very high, the 

micro switches pull out at nearly the same voltage at which they pull in. Also, it adds 

that when the contact resistance is small, the pull-out voltage becomes smaller-

indicating the existence of adhesive forces which tend to hold the switches closed. 

All results gathered from different papers conclude that to make the hysteresis 

possible we should make the contact resistance of our cantilever beam relatively 

small. Modeling contact resistance has 3 steps: finding the contact force as a function 

of applied voltage, finding contact area as a function of the contact force, and 

calculating the contact resistance as a function of the contact area [22]. Thus, the 

pull-in and pull-out voltages will be different and the pull-out voltage of our 

cantilever beam may be assumed as in the region 80% of Vpull-in ≤ Vpull-out ≤ 98% of 

Vpull-in. 

The situation of the whole system for on and off positions of the switch can be seen 

in Figure 3.47. At this condition, calculating the resistance of cantilever beams made 

of Polysilicon, Aluminum, and Gold brings useful information for electrical 

properties of power harvesting system. It is required that the resistance of the switch 

should be higher than assumed equivalent resistance of the circuit. We want that the 

current on the circuit must be approximately 10µA. Thus, if the applied voltage is 

1V, equivalent resistance of the circuit is required to be approximately 100kΩ. When 
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the switch pulls in, the switch becomes parallel to the circuit and brings a switch 

resistance that is parallel to the circuit. If we want to ignore the current on the switch, 

we should take the switch resistance higher than equivalent resistance of the circuit 

which is assumed to be approximately 100kΩ.  

 
(a) 

 
(b) 

Figure 3.47: (a) The System While Switch is Off (b) The System While the Switch 
is On Position 

 

Figure 3.48: The Resistivity Change of Polysilicon Related to Phosphorus 
Concentration [23] 
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Resistivity of polysilicon can be decreased by doping with phosphorus. The 

resistivity change of Polysilicon by phosphorus concentration can be seen in Figure 

3.48 where AP refers to APCVD (Atmospheric Pressure Chemical Vapor 

Deposition) and LP refers to LPCVD (Low Pressure Chemical Vapor Deposition) 

[23]. The concept for the most suitable cantilever beam can be seen in Figure 3.49. 

We have taken the length of the electrode below the beam as 50µm. Taking 

phosphorus concentration approximately 5x1016cm-3 where the resistivity of 

polysilicon takes its value around 25x103Ω.m. Calculated resistance values of 

cantilever beams that we are concerned can be seen in Table 3.11. These values 

should be taken into consideration while designing power harvester system. 

Considering the requirements for our system, results in the table shows that using 

Polysilicon to fabricate the MEMS switch is convenient to obtain a switch whose 

resistance is relatively high and the current on it that is approximately 0.1µA can be 

negligible after comparing with the current that the current on the circuit. 

 

Figure 3.49: The Concept for the Most Suitable Cantilever Beam 

Table 3.11: Resistance Values of Cantilever Beams 

Cantilever Beam Resistivity of Used Material 
(Ω.m) 

Resistance 
(Ω) 

Polysilicon Cantilever Beam 

(Phosphorus Concentration 
5x1016 cm-3) 

~25x103 10x106 

Aluminum Cantilever Beam 2.82x10-8 11.2x10-6 

Gold Cantilever Beam 2.44x10-8 9.7x10-6 
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4. CONCLUSION AND FUTURE WORK 

The main goal of this work is to design a novel MEMS switch for a power harvesting 

system whose core is a MEMS device with a 100µm wide, 5µm thick and 3mm long 

tethers sharing a 2.5mm wide, 2.5mm long, and 500µm thick proof-mass, generating 

approximately 0.6-1V when it vibrates. Some conclusions with respect to the design 

and simulation of a MEMS switch can be drawn from the presented work. 

Using closed form model of pull-in voltage, we simulated pull-in dynamics and 

optimize the size of the switch to make it suitable for voltage range of power 

harvester. Observing simulation results, we saw that a fixed-fixed beam is not 

applicable for our system because it needs higher pull-in voltage, approximately 

2.5V. Also, simulation results shows that the most suitable size for a cantilever beam 

made of Polysilicon is l=260µm, w=50 µm, h=1 µm, d0=1 µm. Analysis for different 

sizes demonstrates that increase or decrease in the width value can not change pull-in 

voltage while other size values are constant, the optimum initial gap value is d0=1 

µm, and optimum thickness value h=1 µm. Moreover, analysis for different materials 

brings that under the same design values making the beam from aluminum brings 

great advantage regarding to the pull-in voltage. 

We presented analytical expressions for the natural frequencies and effective masses 

of a cantilever beam and a fixed-fixed beam. Simulations show that resonant 

frequencies of cantilever beam and fixed-fixed beam are in the KHz values that are 

so convenient for operating conditions of the system which are in the range of 100-

200Hz values. Also, related to the simulation results, producing cantilever beam 

from Polysilicon is the most preferable. However, there is no more difference 

between resonant frequencies of Aluminum cantilever beam and Polysilicon 

cantilever beam. 

To see if the cantilever beam is robust or not, we observed the responses of the 

cantilever beam under vibrations. This observation contains vibration analysis at zero 

voltage and at voltage is less than pull-in voltage. Simulations for Polysilicon, 
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Aluminum, and Gold cantilever beams are approximately same. It can be said that it 

does not make so difference to produce the cantilever beam from Polysilicon, 

Aluminum or Gold with respect to the tip deflection results and the pull-in voltage 

results for different materials under a vibration. However, the minimum percentage 

change of pull-in voltage is for a cantilever beam made of Polysilicon and the 

maximum is for a cantilever beam made of Aluminum. Thus, it may be advantageous 

to produce the cantilever beam from Polysilicon. 

To decide whether the beam is robust under different accelerations, or not, and obtain 

the critical damping constant, we checked the step responses of the beam for 

different values of acceleration. Simulations results indicate that producing the 

cantilever beam from Polysilicon or aluminum is so advantageous not only for 

critical damping value but also for maximum deflection at these accelerations. 

Furthermore, simulations states that using Polysilicon makes the cantilever beam so 

convenient for crash conditions which high accelerations occur.  

Considering that the power harvesting device will be used in vibration environments 

and this system needs a switch whose resistance is in high values, above results 

indicate that fabricating the cantilever beam from Polysilicon whose l=260µm, w=50 

µm, h=1 µm, d0=1 µm is the most preferable choice as it is so robust and the most 

suitable for vibration conditions and voltage range of power harvesting device. Also, 

its resistance is around 10MΩ showing that the current on it can be neglected after 

comparing with the current that the current on the circuit. Moreover, to get a 

hysteresis cycle the contact resistance of the cantilever beam should be small. 

Knowing that the pull-in voltage of the Polysilicon cantilever beam is approximately 

0.98V, our estimation for pull-out voltage is Vpull-out ≥ 0.7V. 

The future work includes the fabrication of the cantilever beam and its reliability 

studies. To fabricate the cantilever beam from Polysilicon, we should use surface 

micromachining process as illustrated in Appendix E. Fabricated cantilever beam 

should be tested in vibration environments and under accelerations in real conditions. 
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APPENDIX A 

%%M-File of Pull-in voltage calculations, the optimization of the %% 

%%sizes of cantilever beam, and resonant frequency calculations   %% 
 

clear; 
clc; 

  
%%material properties%% 
eps=8.85e-12;  
E=131e9;                    %% young modulus 
v=0.27;                     %% poission's ratio 
dens =2330 ;                %% density 

  
w=20e-6:1e-6:50e-6;         %% width 
l=200e-6:10e-6:500e-6;      %% length    
w_size=size(w); 
l_size=size(l); 

  
h=input('please give the thickness value\n'); 
d0=input('please give the initial gap value\n'); 
h(1:w_size(2),1)=h; 
d0(1:w_size(2),1)=d0; 

  
for i=1:w_size(2) 
    for j=1:l_size(2) 
    w_plot(i)=w(i); 
     if w(i) >= 5*h(i) 
        E_eff(i)=E/(1-v^2); 
    else 
        E_eff(i)=E; 
    end 

bracket(i,j)=5/6/d0(i)^2+0.19/d0(i)^1.25/w(i)^0.75+0.19/d0(i)^

1.25/l(j)^0.75+0.4*h(i)^0.5/d0(i)^1.5/w(i); 
     

VPI(i,j)=sqrt(2*E_eff(i)*h(i)^3*d0(i)/(8.37*eps*l(j)^4*bracket

(i))); 

     
I(i,j) = (w(i)*h(i)^3)/12;         %% area moment of inertia 

of the cross section 
m(i,j) = dens*w(i)*l(j)*h(i);      %% mass 

  
freq_cant(i,j)= (1/(2*pi))*(3.5156 

*sqrt(E_eff(i)*I(i)/((m(i)/l(j))*l(j)^4))); 
freq_fixed(i,j)=(1/(2*pi))*(22.373*sqrt(E_eff(i)*I(i)/((m(i)/l

(j))*l(j)^4))); 
     meff_cant(i,j)= 0.2427*m(i); 
     meff_fixed(i,j)=0.0959*m(i); 

    
    end 
end 
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mesh(w,l,VPI) 
xlabel('Width') 
ylabel('Length') 
zlabel('Pull-in Voltage') 

  
mesh(w,l,freq_cant) 
title('resonant frequency change of cantilever beam for different 

values of length (l) and width (w)') 
xlabel('Width') 
ylabel('Length') 
zlabel('Frequency') 

  
figure,mesh(w,l,freq_fixed) 
title('resonant frequency change of fixed-fixed beam for different 

values of length (l) and width (w)') 
xlabel('Width') 
ylabel('Length') 
zlabel('Frequency') 

  
figure,mesh(w,l,meff_cant) 
title('Effective mass of cantilever beam for different values of 

length (l) and width (w)') 
xlabel('Width') 
ylabel('Length') 
zlabel('effective mass') 

  
figure,mesh(w,l,meff_fixed) 
title('Effective mass of fixed-fixed beam for different values of 

length (l) and width (w)') 
xlabel('Width') 
ylabel('Length') 
zlabel('effective mass') 

  
%%% Finding optimum sizes %%% 
fopt = abs(VPI-1); 

  
x=min(min(fopt)); 
[r,c]=find(fopt==x); 
rc = [r c]; 

  
wopt=w(rc(1,1)); 
sprintf('The optimum value of width : %d',wopt) 
lopt=l(rc(1,2)); 
sprintf('The optimum value of length : %d',lopt) 
VPIopt=VPI(rc(1,1),rc(1,2)); 
sprintf('The optimum value of Pull-in Voltage : %d',VPIopt) 

  
h=h(1,1); 
d0=d0(1,1); 

  
    if wopt >= 5*h 
        E_eff=E/(1-v^2); 
    else 
        E_eff=E; 
    end 

     
%Pull-in voltage calculation referenced to the Comsol % 
B=E_eff*h^3*d0^3; 
Vpi=sqrt((4*0.07*B)/(eps*lopt^4*(1+0.42*d0/wopt))); 
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sprintf('The optimum value of Pull-in Voltage related to the COMSOL 

: %d',Vpi) 

  
k = (E_eff*wopt*h^3)/(4*lopt^3);               %% spring constant 
b = 0.01;                                      %% damping factor 
m = dens*wopt*lopt*h;                          %% mass 
I = (wopt*h^3)/12;                             %%area moment of 

inertia of the cross section 
 

%% Resonant frequency calculations %%%%%%%%%% 
freq_cant= (1/(2*pi))*(3.5156 *sqrt(E_eff*I/((m/lopt)*lopt^4))); 
sprintf('The resonant frequency for cantilever beam : %d',freq_cant) 
freq_fixed= (1/(2*pi))*(22.373*sqrt(E_eff*I/((m/lopt)*lopt^4))); 
sprintf('The resonant frequency for fixed-fixed beam : 

%d',freq_fixed) 
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APPENDIX B 

Consider a cantilever beam with mass per length ρ. Assume that the beam has a 
uniform cross section. Let’s determine the natural frequency and find the effective 
mass, where the distributed mass is represented by a discrete, end-mass. 

The governing differential equation is 
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Let “c” be a constant. 
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Separate the time variable. 
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Separate the spatial variable. 
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A solution for Eq. (B.10) is 

( ) ( ) ( ) ( )xaxaxaxaxY ββββ cossincoshsinh)( 4321 +++=                                   (B.11) 

( ) ( ) ( ) ( )xaxaxaxa
dx

xdY
ββββββββ sincossinhcosh

)(
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Substitute Eq. (B.15) and Eq. (B.11) into Eq. (B.10). 
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The equation is satisfied if 
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The boundary conditions at the fixed end x=0 are 

 y(0) = 0    (zero displacement)                                                         (B.20) 
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0
0

=
=xdx

dy
  (zero slope)                                                                                        (B.21) 

The boundary conditions at the free end x=L are 

0
2

2

=
=Lx

dx

yd
     (zero bending moment )                                                              (B.22) 

0
3

3

=
=Lx

dx

yd
     (zero shear force)                                                                         (B.23) 

Apply Eq. (B.20) to Eq. (B.11) 

042 =+ aa                                                                                                            (B.24) 

24 aa −=                                                                                                                (B.25) 

Apply Eq. (B.21) to Eq. (B.12) 

031 =+ aa                                                                                              (B.26) 

13 aa −=                                                                                   (B.27) 

Apply  Eq. (B.22) to Eq. (B.13) 

( ) ( ) ( ) ( ) 0cossincoshsinh 4321 =−−+ LaLaLaLa ββββ                                       (B.28) 

Apply  Eq. (B.23) to Eq. (B.14) 

( ) ( ) ( ) ( ) 0sincossinhcosh 4321 =+−+ LaLaLaLa ββββ                                       (B.29) 

Apply Eq. (B.25) and Eq. (B.27) to Eq. (B.28) 

( ) ( ) ( ) ( ) 0cossincoshsinh 2121 =+++ LaLaLaLa ββββ                                       (B.30) 

( ) ( ){ } ( ) ( ){ } 0coscoshsinsinh 21 =+++ LLaLLa ββββ                                           (B.31) 

Apply Eq. (B.25) and Eq. (B.27) to Eq. (B.29) 

( ) ( ) ( ) ( ) 0sincossinhcosh 2121 =−++ LaLaLaLa ββββ                                       (B.32) 

( ) ( ){ } ( ) ( ){ } 0sinhsincoscosh 21 =+−++ LLaLLa ββββ                                        (B.33) 

Form Eq. (B.31) and Eq. (B.33) into a matrix format 

( ) ( )
( ) ( )





+

+

LL

LL

ββ

ββ

coscosh

sinsinh
    

( ) ( )
( ) ( )



+−

+

LL

LL

ββ

ββ

sinhsin

coscosh









2

1

a

a
= 









0

0
                                    (B.34) 



 63 

By inspection, Eq. (B.34) can only be satisfied if a1= 0 and a2 = 0. Set the 
determinant to zero in order to obtain a nontrivial solution. 

( ) ( ){ } ( ) ( ){ } 0coscoshsinhsin 222 =+−+− LLLL ββββ                                            (B.35) 

( ) ( ){ } ( ) ( ) ( ) ( ){ } 0coshcoshcos2cossinhsin 2222 =++−+− LLLLLL ββββββ       (B.36) 

( ) ( ) ( ) ( ) ( ) ( ) 0coshcoshcos2cossinhsin 2222 =−−−+− LLLLLL ββββββ           (B.37) 

( ) ( ) 0coshcos22 =−− LL ββ                                                                                 (B.38) 

( ) ( ) 0coshcos1 =+ LL ββ                                                                                       (B.39) 

( ) ( ) 1coshcos −=LL ββ                                                                                           (B.40) 

There are multiple roots that satisfy Eq. (B.40). Thus, a subscript should be added as 
shown in Eq. (B.41). 

( ) ( ) 1coshcos −=LL nn ββ                                                                                       (B.41) 

The subscript is an integer index. The root can be determined through a combination 
of graphing and numerical methods. The Newton-Rhapson is an example of an 
appropriate numerical method. The roots of Eq. (B.41) are summarized in Table-B.1. 

Table B.1: The Roots of Eq. (B.41) 

Roots 
Index βnL 
n=1 1.87510 
n=2 4.69409 
n≥3 (2n-1)π/2 

Note: the root value for n≥3 is approximate. 

Rearrange Eq. (B.19) as follows 









=

ρ
β

EI
c n

42                                                                                                        (B.42) 

Substitute Eq. (B.42) to Eq. (B.8) 
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Eq. (B.43) is satisfied by 
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The natural frequency term wn is thus 

ρ
β

EI
w nn

2
=                                                                                                       (B.45) 

Substitute the value for the fundamental frequency from Table B.1. 
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The effective mass meff at the end of the beam is thus 
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Lmeff ρ2427.0=                                                                                                    (B.50) 
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APPENDIX C 

Consider a fixed-fixed beam with a uniform mass density and a uniform cross 

section. The governing differential equation is  
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The spatial equation is 
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The boundary conditions for fixed-fixed beam are 

0)0( =Y                                                                                                                  (C.3) 

0
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=
=xdx

xdY
                                                                                                         (C.4) 

0)( =LY                                                                                                (C.5) 

0
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=
=Lxdx
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Eigenvector has the form 

 ( ) ( ) ( ) ( )xaxaxaxaxY ββββ cossincoshsinh)( 4321 +++=                                    (C.7)                                     

( ) ( ) ( ) ( )xaxaxaxa
dx

xdY
ββββββββ sincossinhcosh

)(
4321 −++=                        (C.8) 
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2
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2
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2
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−−+=              (C.9) 

0)0( =Y                                                                                                    (C.10)                    

042 =+ aa                                                                                                            (C.11) 

42 aa −=                                                                                                                (C.12) 
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0
)(

0
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=xdx
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                                                                                                       (C.13) 

0** 31 =+ ββ aa                                                                                                 (C.14) 

031 =+ aa                                                                                                             (C.15) 

31 aa −=                                                                                                                (C.16) 

( ) ( ){ } ( ) ( ){ }xxaxxaxY ββββ coscoshsinsinh)( 21 −+−=                                        (C.17) 

( ) ( ){ } ( ) ( ){ }xxaxxa
dx

xdY
ββββββ sinsinh*coscosh*

)(
21 ++−=                         (C.18) 
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( ) ( ){ } ( ) ( ){ } 0coscoshsinsinh 21 =−+− LLaLLa ββββ                                           (C.20) 

0
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=
=Lxdx
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                                                                                                       (C.21) 

 ( ) ( ){ } ( ) ( ){ } 0sinsinh*coscosh* 21 =++− LLaLLa ββββββ                              (C.22) 

Form Eq. (C.20) and Eq. (C.22) into a matrix format 
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Set the determinant to zero in order to obtain a nontrivial solution. 

( ) ( ){ } ( ) ( ){ } ( ) ( ){ } 0coscoshsinsinh*sinsinh 2
=−−+− LLLLLL ββββββ              (C.24) 

( ) ( ) ( ) ( ) ( ) ( ) 0coscoshcos2coshsinsinh 2222 =−+−− LLLLLL ββββββ              (C.25) 

( ) ( ) 02coshcos2 =−LL ββ                                                                                    (C.26) 

( ) ( ) 01coshcos =−LL ββ                                                                                       (C.27) 

The roots can be found via the Newton-Raphson Method. The first root is  
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The stiffness at the center of the beam is 

3
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The effective mass meff at the center of the beam is thus 
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Lmeff ρ0959.0=                                                                                                   (C.35)                         
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APPENDIX D 

%%%%%%% Function for tip deflection analysis %%%%%%%%%%%%%% 

  
function [tip_defl_amp]=silicon_cantilever_tip_deflection(L,W,H, 

input_def_amp, input_def_freq) 

  
%%%%dimensions 
%L=length 
%W=width 
%H=thickness 

  
%%%%% Material Properties 
E = 131e9; %%% Young's Modulus 
rho =2331; %%% density 

  
% Calculations 
I=(L/12)*W*(H^3);% Area moment of Inertia 
Area=W*H; % Area 
mass=rho*L*W*H; % Mass 

  
% Damping coefficient 
beta=0; %%%0.01; 
alfa=0.001; 

  
%frequency range 
w = 2*pi*input_def_freq; 

  
k=((rho.*Area.*(w.^2)-alfa.*j*w)./(E.*I+beta.*I*j.*w)).^0.25; 

  
% introducing new variables 
c=cos(k*L); 
ch=cosh(k*L); 
s=sin(k*L); 
sh=sinh(k*L); 

  
%Tip deflection 
tip_amp=((input_def_amp.*(c+ch)./(c.*ch+1))); 

  
%%% Function output 
tip_defl_amp = abs(input_def_amp-tip_amp); 

  
%%%%%%% Commands that are used in command window %%%%%%%%%%  
%freq = logspace(0,6,1000); 
%input_def = 200*200*100e-6./freq/freq; 
%defl = silicon_cantilever_tip_deflection(350e-6, 50e-6, 2e-6, 

input_def, freq); 
%semilogx(freq, defl); 
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APPENDIX E 

 

Figure E.1: The Fabrication Process for The Concept of The Cantilever Beam 

A single cycle in common surface micro-machining process is illustrated in Figure 
E.1. The process to build our concept for the cantilever beam begins with putting an 
electrode on wafer (a). Then, the sacrificial material layer (silicon dioxide) is 
patterned on all over the surface (b).  To make an electrode available below the beam, 
sacrificial material layer is etched by using photolithography (c). An electrode is put on 
the etched surface (d). Next, to realize the cantilever beam, the sacrificial material 
layer (silicon dioxide) is etched by using photolithography (e, f). After that, the 
structural material (polysilicon) is deposited over the entire surface and then patterned 
and etched in the shape of the cantilever beam and base, also an electrode is put on the 
beam part (g). Finally, the polysilicon is released by removing the remaining and 
underlying silicon dioxide (h). 
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