ISTANBUL TECHNICAL UNIVERSITY % INFORMATICS INSTITUTE

HYPER-HEURISTICS FOR THE UNIT COMMITMENT PROBLEM

M.Sc. Thesis by
Ali Argun BERBERO GLU

Department : Computer Science

Programme : Computer Science

Thesis Supervisor Asst. Prof. Dr. A. Sima UYAR

JANUARY 2011






ISTANBUL TECHNICAL UNIVERSITY % INFORMATICS INSTITUTE

HYPER-HEURISTICS FOR THE UNIT COMMITMENT PROBLEM

M.Sc. Thesis by
Ali Argun BERBERO GLU

704041002

Date of submission : 20 December 2010
Date of defence examination: 26 January 2011

Supervisor (Chairman) : Asst. Prof. Dr. A.Sima UYAR (ITU)
Members of the Examining Committee : Assoc. Prof. Belgin TURKAY (ITU)
Assoc. Prof.Sule OGUDUCU (ITU)

JANUARY 2011






ISTANBUL TEKN IK UNIVERSITESI % BiLiSiM ENSTITUSU

UNITE PROGRAMLAMA PROBLEM 11ICiN UST SEZGISEL YONTEMLER

YUKSEK L iSANS TEZI
Ali Argun BERBERO GLU

704041002

Tezin Enstitiye Verildigi Tarih : 20 Aralik 2010
Tezin Savunulduysu Tarih : 26 Ocak 2011

Tez Dansmani : Yrd. Dog. Dr. A. Sima UYAR (iTU)
Diger Jiiri Uyeleri :  Dog. Dr. Belgin TURKAY (ITU)
Dog. Dr. Sule OGUDUCU (iTU)

OCAK 2011






FOREWORD

First and foremost, | would like to thank my famity their great support during my
whole life. This achievement would not have beessguae without their support,
encouragement and valuable suggestions.

| would like to express my graditute to Asst. Pf. Sima Uyar for her patient
guidance and support throughout this thesis wodmltruly very fortunate to have
the opportunity to work with her. | found her gunda to be extremely valuable.

| am very thankful to my managers and my collagnelleta. With their support,
encouragement and understanding, | was able todatite lectures even during some
intensive periods of the ongoing projects.

| am also very thankful to the entire faculty antdfsmembers of the Computer
Engineering Department for their help during my MSc

December 2010 Ali Argun BERBERGGLU
Computer Engineer



Vi



TABLE OF CONTENTS

Page
ABBREVIATIONS ..ottt e e e e e e e e e e e e e e s s s annneeeeeas iX
LIST OF TABLES ...ttt e e e Xi
LIST OF FIGURES ...ttt e e xiii
LIST OF SYMBOLS ...ttt e e e e s XV
SUMMARY ettt e e e e e e e e e e e e e e e s s e s b bt e e bt e et eeeeeeeeaaaaannnnne XVil
(@ Y74 = [P ROUNSUOTROTRORR XXi
1. INTRODUCTION. ..ottt ittt s e e e e e e e e e e e e e e e e e s senneeeees 1
1.1 Contribution of the TheSIS.......cooiiiii e 2
1.2 Outling Of the TRESIS ... 2
2. THE UNIT COMMITMENT PROBLEM ......ccccoiiiiiiiiis i 3
3. RELATED WORK ON THE UCP......cci it 7
4. HYPER-HEURISTICS. ... ..ottt 17
4.1 BaCKGrOUNG ..ottt e e e e e e e e e e eeeeeeebnnnnneeesenee 17
4.2 Heuristics t0 Ch00Se HEUNSTICS .........ccmeeiiiiiiiiiiiiiiieiieeeeeeee e 18
4.2.1 Constructive HYyper-NeuristiCS....... . 91
4.2.2 Perturbative HYper-NeUIISTICS. ........ o eeererrnniiiieeeeeeeeeeeessenennnnnnn 20.
4.2.2.1 Single Point Search Based Hyper-heuristiCS............ccccoeeeeeeee. 21
4.2.2.2 Population Based Hyper-heuristiCSs ....ccceeeeceeiieiiiiieeeeiiieeeeeii, 26
4.3 Heuristics to Generate HeuUrStICS ........coouuuuuiiiiiiiieeee e 27
5. EXPERIMENTAL STUDY ....uitititiiiiiiiiiiiiiiies et 31
5.1 Proposed APProach .......coooo oo 32
5.2 EXPEriMENtal SETUD .....uuueeeeeiiiee e s e e e e e e e e eeeeeaettan s s e e e e e e e ananeaeeeas 36
5.3 EXperimental RESUILS...........iiii e 38
5.3.1 Performance Comparison of Different Hyperftstic Combinations ... 38
5.3.2 Performance Comparison of HH with a GenetgoAthm................... 55
5.3.3 Performance Comparison of HH with other Oation Techniques... 55
6. CONCLUSION.....ccitiiiiiiiieeee e ieeee e eeaaaeessann 61
REFERENGCES. ... ..ottt e e e e e e e s e 63
APPENDICES ... oottt e e e e e e e e e e e e e e s s a e e e e eaeaaessannnes 67
CURRICULUM VITAE ...ttt 77

Vi



viii



ABBREVIATIONS

ACO
AM
ANOVA
CF
DE
DP
EDP
ES
GA
GD
GR
GRA
HH
ICGA
IE
MA
LR
PL
PSO
RD
RP
RPD
SR
SSGA
Ol
ucpP

: Ant Colony Optimization
. All Moves
: Analysis of Variance

: Choice Function

: Differential Evolution

: Dynamic Programming

: Economic Dispatch Problem

: Evolutionary Strategies

: Genetic Algorithm

: Great Deluge

: Greedy

: Greedy Randomized Search Algorithm
. Hyper-heuristic
. Integer Coded Genetic Algorithm
. Improving and Equal
: Memetic Algorithm
: Lagrangian Relaxation

. Priority List

:Particle Swarm Optimization

: Random Descent

: Random Permutation

: Random Permutation Descent
: Simple Random

: Steady State Genetic Algorithm
: Only Improving

: Unit Commitment Problem






LIST OF TABLES

Page

Table 5.1: Cost result$or System 2 with the Ol move acceptance criterion.... 38
Table 5.2: Cost resultdor System 3 with the Ol move acceptance criterion.... 40
Table 5.3: Cost result$or System 2 with the IE move acceptance criterion..... 41
Table 5.4:Cost resultdor System 3 with the IE move acceptance criterion..... 42
Table 5.5: Cost result$or System 2 with the GD move acceptance criterion... 44
Table 5.6: Cost result$or System 3 with the GD move acceptance criterion... 46
Table 5.7: Cost result$or System 2 with the AM move acceptance criterion... 48
Table 5.8: Cost result$or System 3 with the AM move acceptance criterion... 49
Table 5.9: The best ten heuristic selection method and mowegance criterion

COMDBDINALIONS ... e e e e e e eeeeennnnes 51
Table 5.10:Comparison of the cost results of GA2 and HH mésho................... 55
Table 5.11:Cost results for SYStemM 1 ........cooooi oo 56
Table 5.12:Cost results for SYStemM 2 ........ccoooo oo e 57
Table 5.13:Cost results for SYStem 3 ... 57
Table 5.14:Cost results for SYStemM 4 ........ccoooo i 58
Table 5.15:Cost results for SYStemM 5 ... 58
Table 5.16:Cost results for SYStemM 6 .........cooooo e e e e e 58
Table 5.17:Cost results for Turkish Interconnected Power &yst...............c....... 59
Table 5.18:Mean and the 95% confidence interval for the fsealues obtained by
the HH oo e e 59
Table A.1 : Data set for SYStemM L .......ccooiiiiiiiiieiceemmmm e e e e e e e e e e e 68
Table A.2 : Data set for Turkish Interconnected Power System....................... 69
Table A.3 : Best solution for System 2 between Hour 1 and Hour.................... 70
Table A.4 : Best solution for System 2 between Hour 7 and H@ur.................... 70
Table A.5 : Best solution for System 2 between Hour 13 andrH@u................... 71
Table A.6 : Best solution for System 2 between Hour 19 andrHaA................... 71
Table A.7 : Best solution for System 3 between Hour 1 and Hour.................... 72
Table A.8 : Best solution for System 3 between Hour 7 and Ha@ur.................... 73
Table A.9 : Best solution for System 3 between Hour 13 andrH@u................... 74
Table A.10 : Best solution for System 3 between Hour 19 andri2du................. 75

Xi



Xii



LIST OF FIGURES

Figure 4.1 :
Figure 4.2 :
Figure 4.3 :
Figure 4.4 :
Figure 5.1 :
Figure 5.2 :
Figure 5.3 :
Figure 5.4 :
Figure 5.5 :
Figure 5.6 :
Figure 5.7 :
Figure 5.8 :
Figure 5.9 :

Figure 5.10 :

Figure 5.11
Figure 5.12

Figure 5.13 :
Figure 5.14 :
Figure 5.15:
Figure 5.16 :

Figure 5.17
Figure 5.18

Figure 5.19 :
Figure 5.20 :
Figure 5.21 :
Figure 5.22 :

Figure 5.23
Figure 5.24

Figure 5.25:
Figure 5.26 :

Figure 5.27

Page
Hyper-heuristic frameworka........ccoooveeeeeiiiiiec e, 25
Hyper-heuristic frameworkg=. ..., 25
Hyper-heuristic frameworkd=.......ccooovveeeeeiiiiiieeee e, 26
Hyper-heuristic frameworkg= ... 26
The binary representation of a candidate solution......................... 32
([0 e i o] g o] 01T -1 o ] CH TP 32
SWaP-WINAOW OPEIALON........uueeeiiiiieieeeeeeeeeeeeeeeeeeeeeenraanra e e e e aeeaaes 33
Window-mutation OPEerator ............oovvveeimmmmmmeieeeee e e e e e e e e eeeeeeeeeiieennanns 33
SWap-Mutation OPEIALON .......cceieeeeeeeee s o e e e e e e e e e e eeeaaes 34
Swap-window hill-climb operator.............cciiiiiii 35
Box-whisker plot for System 2 with Ol .......oeeeeeiiiiiiiiiiceeeee, 39
Multiple comparison results for System 2 with Ql.................c....... 39
Box-whisker plot for System 3 with Ol .......oueeeeiiiiiiiiiicieeeee, 40
Multiple comparison results for System 3 with Ql........................ 41
:Box-whisker plot for System 2 with IE........ccceeeiiiiiiiiiiiiien, 42
Multiple comparison results for System 2 with IE......................... 43
Box-whisker plot for System 3 With [E........ccoeeeiiiiiiiiiiiiiiiiiieeeeeee, 43
Multiple comparison results for System 3 with [E......................... 44
Box-whisker plot for System 2 with GD.......cccooeviiiiiiiiiiiiiiieiiis 45
Multiple comparison results for System 2 with GD....................... 45
:Box-whisker plot for System 3 with GD..........ccvvviiiiiiiiiieieeeeee, 46
Multiple comparison results for System 3 with GD....................... a7
Box-whisker plot for System 2 with AM ........cmeeeiieeeeeiiiiiiiieiinnns 48
Multiple comparison results for System 2 with AM....................... 49
Box-whisker plot for System 3 With AM ........cmeeeiieeeeeiiiiiiiieiinnns 50
Multiple comparison results for System 3 with AM....................... 50
:Distribution of the best fifty solutions for Syste2 .......................... 52
:Distribution of the best fifty solutions for Syme3 ... 52
Iteration Number versus Fitness Value CurveS.................cccuvve.e. 53
Multiple comparison results for System 2........c.....oooviiiiiiiiinnnennn. 54
:Multiple comparison results for System 3....cccceeeieeeiiiiiiiieeeiiiiiinnnns 54

Xiii



Xiv



LIST OF SYMBOLS

p; M : The maximum power which can be generated byiunit

p,m™" : The minimum power which can be generated by iunit

CSoid : The cost of a cold start-up

CSot : The cost of a hot start-up

teoldstart : The number of hours a generator needs to stayefftir a coldstart

tup : The minimum up-time

tdown : The minimum down-time

Vig® : The velocity of particlg at iteratiort with respect to thg™
dimension

Xj g : The position of particl¢ at iteratiort with respect to thg™
dimension

pbesty : The best fitness value of partiglat iterationg

gbes} : The best fitness value of the group at iteragon

w : The inertia weight factor

cl : The cognitive acceleration factor

c2 : The social acceleration factor

Tj : Pheromone levels between nodd nodg

on : Heuristic information between nodand node

pkij : The probability of ank to choose next node depending on the edge
in between nodeand nodg of the graph

a : The effect of pheromone level

p : The effect of pheromone level

Po : The pheromone evaporation rate

Vig : The donor vector for individualof generatiory

Xijig : The randomly chosen target vector for the gendimtgof the
individuali in generatiory

e/t : The Metropolis criterion

XV



XVi



HYPER-HEURISTICS FOR THE UNIT COMMITMENT PROBLEM
SUMMARY

As the power demand varies in different periodsaofday, power generation
companies need to plan the operation periods ofgdmerators accordingly. The
power demand is especially high during the daytisiece the factories consume
most of the generated electricity in that time periHowever, this demand decreases
significantly at weekends or during early morningldate evening, when people
spend their times at home. Due to these cyclefenréquired power, startup and
shutdown costs of the generating units take a faimgeunt in the total production
costs. Violating generator specific operation crists brings additional
maintenance cost as well.

The problem of selecting the generators to be mic® and determining for how

long they will operate over a predefined time honizs called the Unit Commitment

Problem (UCP). The online units must fulfill therdoasted power demand and
reserve requirements for each time slot at mininop@rating cost without violating

any of the problem specific constraints.

An improvement in the unit commitment schedulehsd generators result in great
economic savings in power generation cost and gnesgge. Therefore, the UCP
has attracted great commercial and academic intexed many optimization
techniques have been applied to this problem. Neégorithms have been
implemented to obtain efficient results in largalsc power systems within a
reasonable computation time. Several numericalnopéition techniques, such as
priority list method, dynamic programming, branaidéound, benders
decomposition, tabu search, greedy algorithm, Lragjean relaxation have been used
for that purpose. Aside from these methods, natsgired computing methods,
such as ant colony optimization, particle swarmogation, simulated annealing,
genetic algorithms, artificial neural networks hdeen employed to solve the UCP.
Operational constraints are integrated into thehoug of the second group more
effectively and the solution quality is increased.

In this thesis, hyper-heuristic algorithms are iempénted to solve the UCP. Hyper-
heuristics differ from heuristics in the set, onieththey are operating. Heuristics are
directly applied to the candidate solutions, bupdryheuristics are employed to
select a heuristic from a set of heuristics at esghtion of the search process. This
selection is made either randomly or using sontéopeance indicators about the
heuristics. Hyper-heuristics can be succesfully liegpto a broad range of

optimization problems, since they do not requiraopem specific information.

Hyper-heuristic algorithms consist of two differenéchanisms:
1. Heuristic selection
2. Move acceptance

XVii



For the heuristic selection mechanism, six differgglection strategies are used in
this study:

Simple random

Random descent

Random permutation
Random permutation descent

o bk b PRE

Greedy
6. Choice function
In the move acceptance step, four different strasegre used:
1. Only improving
2. Improving and equal
3. Great deluge
4. All moves

Twenty four combinations of the above listed hdigisselection and move
acceptance strategies are applied to the UCP adpirformances are investigated
using two problem instances.

In the first part of the experiments, random peatiah descent heuristic selection
and only improving move acceptance strategy contibimachieves the best results
among the twenty four combinations. Therefore,gédormance of this algorithm is
compared with other optimization techniques usiages problem instances taken
from literature.

The steps of the proposed hyper-heuristic algorithith random permutation
descent heuristic selection and only improving moseceptance strategy
combination are defined as follows:

1. Aninitial solution is created randomly and its\éss value is calculated.

2. A permutation array containing the order of mutadioheuristics and hill
climbers is created randomly.

3. A heuristic is selected with respect to the ordethe permutation array and it
is applied to the solution.

4. If the selected heuristic is a mutational heurjstigoredefined hill climbing
operator is applied to the solution after mutatidreauristic

5. The fitness value of the resultant solution is alied.

6. The resultant solution replaces the current sabytib its fitness value is
better than the previous one.

In the second part of the experiments, the perfoomaf the most efficient hyper-
heuristic algorithm is compared with the performamné a genetic algorithm, since
these two algorithms use the same genetic operatdyper-heuristic method
achieves better results than the genetic algorithensuperiority becomes more
obvious with increasing problem data size. Adddibyy hyper-heuristic method
does not require system monitoring and parametenguduring the search process.

XViii



In the third part, a set of experiments are peréao compare the eficiency of the
hyper-heuristic method with previously publishedules. Experimental results show
that the hyper-heuristic method achieves eitherbns fithess value or the second
best fitness value in all test sets. Based ondkelts, it can be easily noticed that the
hyper-heuristic algorithm is a robust and effectbyimization method for varying
data sizes.

Consequently, it is recommended that the hyperisteziapproach can be enhanced
by incorporating more effective heuristics and bllimbers. The initial solution can
be also improved using the priority list method adanced learning techniques can
be used for heuristic selection and move acceptareodanisms.
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UNIiTE PROGRAMLAMA PROBLEM 1 iCiN UST SEZGISEL YONTEMLER
OZET

Elektrik enerjisine olan ihtiya¢ gunun farkll saathde blylk d@sim
gosterdginden, enerji Uretenirketlerin generator caima surelerini bu di#sime
uygun olarak planlamalari gerekmektedir. Uretildekgigin 6nemli bir kismi
fabrikalar tarafindan tuketildinden enerji ihtiyaci gindiz saatlerinde daha fazla
olmaktadir. Fakat bu ihtiya¢c hafta sonlari ve it@an vakitlerini evlerinde
gecirdikleri gece gec¢ saatlerde ve gunin erkenlesaate azalmaktadir. Enerji
ihtiyacinda gorulen bu periyodik dalgalanmalardaslagi generatorlerin devreye
alinma ve devreden cikarilma maliyetleri toplamrgrigetim maliyetleri icerisinde
onemli bir pay tutar. GeneratoOrlere ait gada limitlerinin ihlali de ek bir bakim
maliyetini beraberinde getirmektedir.

Onceden belirlenngibir siireg icerisinde hangi generatérlerin deviayeaca ve ne

kadar siure cajacaklarinin belirlenmesi problemine Unite prograndaproblemi

denir. Calgmakta olan Uniteler, herbir saat icin 6nceden leglinis olan ener;ji talebi
ve rezerve ihtiyaclarini, probleme ait hicbir linkbsulu ihlal etmeden minimum
calisma maliyeti ile sgplamalidirlar.

Generatérlerin  caima tarifesinde yapilacak bir iyigrme elektrik Gretim
maliyetlerinde ve enerji kullaniminda énemli orarula tasarrufa neden olacaktir.
Bundan dolayi Unite programlama problemi ticariakademik yonden buyuk ilgi
cekmg ve birgok optimizasyon yontemi bu probleme uygoiatir. Blyuk oOlcekli
enerji Uretim sistemlerinde makul hesaplama siralerverimli sonuclar alabilmek
icin yeni algoritmalar gegtirilmi stir. Oncelik listesi metodu, dinamik programlama,
dallanma ve sinirlama, Bender ayrma yontemi, tabu aramasi, acgozli arama
algoritmasi, Lagrange gsstme yaklaimi gibi sayisal optimizasyon teknikleri bu
amacla kullanilinglardir. Bu metodlardan kka, karinca kolonisi optimizasyonu,
parcacik surd optimizasyonu, tavlama benzetimiegkralgoritmalar, yapay sinir
aglar gibi dgza esinli hesaplama yontemleri de Unite programlgr@blemine
uygulanmgtir. Probleme ait kisit killar ikinci gruba ait yontemlere daha iyi adapte
edilebildiginden, elde edilen ¢6ziUmun kalitesi de agtmi

Bu tez cagmasi kapsaminda Unite programlama probleminin etiesi icin Ust
sezgisel algoritmalar gerceklengtii. Ust sezgiselleri sezgisel yontemlerden ayiran
en Oonemli fark Uzerlerinde cstklari elemanlardir. Sezgiseller, ¢ozim adaylarina
dogrudan uygulanirlarken, Ust sezgiseller arama stiredierbir yinelemesinde bir
sezgisel yontem sec¢cmek icin kullanilirlar. Bu segiastgele yapilabilege gibi,
sezgisellerle ilgili birtakim performans gostergaghari kullanilarak da yapilabilir.
Ust sezgiseller probleme 6zgii herhangi bir veriyjgiyac duymadiklarindan
optimizasyon problemlerinin 6nemli bir béliminedrayla uygulanabilirler.

Ust sezgisel algoritmalar iki farkl mekanizmadausarlar:
1. Sezgisel secimi
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2. Hareket kabuli

Sezgisel secimi mekanizmasi icin bu galda alti farklh segim stratejisi
kullaniimustir:

1. Basit rastgele

Rastgele ini

Rastgele permitasyon
Rastgele permutasyon gni

ok~ WD

Acg0zIli yontemi
6. Secim fonksiyonu
Hareket kabulig@amasinda dort farkli strateji kullanilgtir:
1. Sadece iyilgtiren hareketler
2. lyilestiren ve denk hareketler
3. Buylk sel
4. Butin hareketler

Yukarida belirtilen sezgisel secimi ve hareket kakydntemleri ile yirmi doért farkl
strateji kombinasyonu ojturulmuwtur. Bu kombinasyonlarin  gostegdi
performanslar Unite programlama problemine ait fiikli veri orngi Uzerinde
incelenmgtir.

Yapilan deneylerin ilk gamasinda, rastgele permuitasyon gezgisel secim yontemi
ve sadece iyigiren hareketleri kabul etme strateji kombinasyoyumi dort
kombinasyon arasinda en iyi sonuclar elde gimBundan dolayi, bu algoritmanin
performansi, literatiirde gecen yedi problem griellanilarak dger optimizasyon
teknikleri ile kagilastiriimistir. Bu calsmada Onerilen st sezgisel algoritmanin
asamalari @agida belirtiimtir:

1. Baslangic ¢cozumi rastgele bir bicimde yaratilaralsaban degeri hesaplanir.

2. Mutasyonel sezgisellerin ve tepe tirmanma metadiargc6ziime uygulanma
sirasini iceren permutasyon dizisi rastgele olafagturulur.

3. Permitasyon dizisindeki siralama gagtusunda bir sezgisel secilerek
¢6zime uygulanir.

4. Secilen sezgisel, mutasyonel sezgisel bir yonterdoreeden tanimlanan bir
tepe tirmanma algoritmasi, mutasyonel sezgiseimdan ¢éziime uygulanir.

5. Elde edilen ¢6zimun karim deeri hesaplanir.

6. Elde edilen ¢6zUmin karim deeri, 6nceki ¢c6zimin Barim degerinden
daha iyi ise, yeni ¢cozum 6nceki ¢ozUmun yerine gecge

Deneylerin ikinci @amasinda en verimli Ust sezgisel algoritmanin perémsi ayni
genetik operatorleri  kullanan bir genetik algoritnmra performansi ile
karsilastiriimistr. Ust sezgisel yontem genetik algoritmadan daiaanuclar elde
ederken, genetik algoritmaya olan ustigiltblyuk veri iceren problemlerde daha
belirgin hale gelnstir. Bununla birlikte Ust sezgisel yontemler ararmséreci
esnasinda sistem izleme ve parametre ayarlarigaghiduymamaktadirlar.
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Uclincli gamada st sezgisel metodun verirgiili literatiirde yayinlanngi
sonugclarla kawlastirmaya yonelik testler koilmustur. Test sonuglari Ust sezgisel
metodun bltin test gruplarinda en iyi birinci veydnci sonucu aldiini
gostermektedir. Bu sonuclardan yola cikarak, Ustgisel algoritmanin farkli
blyuklukteki problemler icin etkin bir optimizasygntemi oldgu gorilmektedir.

Sonug¢ olarak, ust sezgisel yaftain daha etkin sezgiseller ve tepe tirmanma
yontemleri kullanilarak geffirilmesi 6nerilmektedir. Bgangic ¢6zimu, o6ncelik
listesi yontemi kullanilarak iyikgirilebilir; sezgisel secimi ve hareket kabull
mekanizmalarinda ileri gienme teknikleri kullanilarak bu yaklanin verimi
arttirllabilir.
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1. INTRODUCTION

This study puts forth a hyper-heuristic approachsmlving the Unit Commitment
Problem (UCP). This approach combines heuristi¢h oical search operators. The
UCP is a constrained optimization problem, and #ima of this problem is to
determine start-up and shut-down schedules for ealgfined number of power
generators over a given time period with respecteieeral operational constraints
and hourly varying power demands. The objectivetasminimize the power
generation costs, while providing the hourly fosted amount of power and reserve
requirements [1].

In the first step of the optimization process, atieg units are determined for each
time slot without violating any constraints. In thext step, the load demand is
assigned to online power units. The second parthef problem is called the
Economic Dispatch Problem and it is solved using Xhteration method [2].
Experimental results show that the hyper-heurggigroach can create cost effective

schedules.

In this study, hyper-heuristics are applied to tleP, and a comprehensive analysis
of different hyper-heuristic techniques is perfodnélests are executed using
benchmark data taken from literature and real wddth obtained from the Turkish
interconnected power network system. The resulisesed by hyper-heuristics are
compared with the results from other optimizatioetimods, which are applied
previously to the UCP, to determine which algorithare suitable for this problem.
Reasons are investigated, why and how an algorgébinfeves better results in this
problem, and the changes in the performances fardift methods are analyzed with

respect to the increased problem data size.

An optimal scheduling of the generators decreasegbwer generation costs and
energy usage significantly. Therefore, the UCPdifracted great interest and many
approaches have been applied to solve the problemrangian relaxation [3],
priority lists [4], simulated annealing [5], dynasrprogramming [6], tabu search [7],
branch and bound [8], benders decomposition [Hedy algorithms [10], particle



swarm optimization techniques [11], evolutionargaaithms [1,12,13,14,15,16], ant

colony optimization techniques [17] are among thegg@roaches.

It is nearly impossible to create a heuristic whselm be successful in solving a broad
range of optimization problems, since it requiresbfem specific information, test

effort and fine tuning of certain parameters duting search [18]. Hyper-heuristics
are proposed to overcome these limitations. Hypeiribtics operate on a set of
heuristics rather than on solution candidates heg select a heuristic from this set
to apply to the individual with respect to certaniteria. Heuristic selection can be
made either according to a feedback from previons mbout the performance and
the elapsed time of each heuristic, according t@rabability distribution or

randomly.

1.1 Contribution of the Thesis

The successful application of hyper-heuristic mdghto scheduling and timetabling
problems, e.g. as in [19] has been a motivationthH@ study. In this study, hyper-
heuristic methods achieve good results in allgetd. Furthermore, it is also verified
that hyper-heuristics are robust methods for lagse problems and they obtain
consistent results without the need of parameteinguwhen compared with other
optimization techniques. Based on the promisingltesresearch will continue for

further improvements.

1.2 Outline of the Thesis

The rest of the thesis is organized as followgh&énnext section, the definition of the
UCP is given together with its mathematical forntolas. Section 3 contains
information on the previous related work to sohee tUCP. In section 4, the
evolution of the hyper-heuristic approach is memga and the details of various
hyper-heuristic methods and strategies are giversettion 5, implemented hyper-
heuristic methods and genetic operators, whichirm@rporated into these methods,
are explained. Section 5 also contains the expatsheresults and the
comprehensive analysis of these results. Finallygeiction 6, conclusion and future

work are stated.



2. THE UNIT COMMITMENT PROBLEM

The demand for electricity varies in different tiperiods of a day. During daytime,
this demand increases; whereas, during the lat@irgyeand early morning it
decreases. Therefore, power generation companmddsiplan the generation of
power on an hourly basis. In the first step, aslenineeds to be made as to which of
the available units to turn on; and in the secotep,san economical dispatch
schedule of the units should be determined.

The objective of the UCP is to minimize the powenegration costs over a given
time period, while providing the hourly forecasteower demand [1]. Operational
constraints should be also considered when cre#ti@gnline/offline schedule of
each generator. A solution to the UCP contains rigindecision variables

representing the online/offline status of the gatws for each time slot.

Two main factors are forming the power generatiosts, namely fuel costs and
start-up costs [1]. Penalty factors are relatethéoquality of a solution. One of these
penalty factors is defined as the demand penahyciwis taken into account, when a
predefined hourly demand is not fulfilled by a calade solution. The other penalty
factor is the up/down penalty, which has a negatifect on the fitness value, when
the up/down constraint is violated for at least ogenerator. The following
parameters are used to formulate the UCP:

* PBi(t) is the generated power by undt timet,

* F(p) is the cost of producing MW power by unit,

* PD(t) is the power demand at timje

* PR(t) is the power reserve at time

e Cg(t) is the start-up cost of unitat timet,

* Xxi(t) is the duration for which unithas stayed online/offline since hdur

* vj(t) is the status of unitat timet (on-off),



«  P,™ s the maximum power which can be generated biyi uni
« P,™" is the minimum power which can be generated byiunit

The first cost factor is the fuel cost which deped the power generated by each
online unit for a given hour. While solving the UQ#t only the hourly forecasted
power demand should be fulfilled, but the powerdoied by each unit needs to be
kept within its minimum and maximum values. Follagiobjective function and
operational constraints are taken into considematosolve the UCP. For N power

units at time t, the objective function is defiresigiven in Eq. (2.1).
_ N
min F . ® = i glFi (P; (1) (2.1)

subject to following constraints shown in Eq. (2a2y Eq. (2.3):

N

2. Pj(t) = PD(t) (2.2)
=1

Pimin < P| (t) < Pimax (23)

According to the second formula, the total powerstrhe equal to the demand, and
the third formula shows that the produced poweeagh online unit must be within

its maximum and minimum capacities.

When a generator changes its status from offlinenlome, this brings an additional
cost, which is called the start-up cost. The effd#cthe start-up cost on the fitness
value depends on both the generator type and tlor@nof time a generator has

stayed offline. This cost is calculated using tige .4).

CS. (1) = { CShot i Xi = tcoldstart

CS otherwise (2-4)
cold

where togstarlS the number of hours that it takes for the gewer@ cool down and
defines the threshold for a cold or a hot stardepending on the generator type.
CX.auis the cost of a cold start-up and this value edug the thermal unit has been
off for a number of hours, which is larger thasudiari Otherwise, CRyis applied as
the cost of a hot start-up.



The penalty value of the up/down constraint, foraed in Eqg. (2.5), is determined
by using the minimum up/down values of each geoerdihe minimum up-time,§
value defines the number of hours a generatordiagy online after it is turned-on,
and the minimum down-timeggdn defines the number of hours a generator has to
stay offline after it is turned-off. Additional palty cost is added to the power
generation costs with respect to the number of aydconstraint violations. This
constraint is based on both physical and econonoigsiderations to prevent

equipment fatigue and excessive maintenance casttodrequent unit cycling.

v =1 x (-0t
ese x (=12 tup (2.5)

According to the fuel and start-up costs, demandl @gw'down penalty values, the
objective function of the UCP for N units and T h®gan be formulated as given in
Eq. (2.6).

min I:total - ¢

n M-
nMMMz

F, (Py (D), (1) + €S, (1) (2.6)

li=1

subject to constraints:

N
i=1
V() P™ < R(t) <V (HR™ (2.8)
E PMaX(t).v. (t) = PD(t) + PR(t)
o Vit = (2.9)
ifv.t)=1 x (-2t

dse X (t-1) 2 tup (2.10)

The fuel cost of generating p MW power for the gmerator is calculated using Eq.
(2.11). Fuel cost for the generator i depends weettparameterspigay; and a;

which are predefined for each generator type.



F.(p)=ay +a,.p+ay,.p° (2.11)

This part of the UCP is called the Economic DispaRroblem (EDP), which is

solved by lambda iteration, whose aim is to allectie required load demand
between the available generators while minimizimg total power generation costs

[2]. With the lambda iteration technique an optidaahbda value is searched for.

Algorithm 1 Lambda Iteration

1: select initialA andy;
2: repeat

3 calculaté®, for each generator using dFdR =4,
4 calculate Ra;
5: diff = PD - Rotai;
6: if (diff < 0) then
7: A=A—p;
8 else
9: A=A+
10: endif;
11. nH=u/2;

12: yntil (Cdiff < €)

The initial values oA andp are determined as given in Eq. (2.12) and in Eq4.3),
whereAmax and Anin are calculated by inserting,& and R, as the values of P

respectively, after taking the derivative ofjy) with respect to p.

)\ = ()\max + )\min ) / 2 (2.12)

u = ()\max = )\min ) / 2 (2.13)



3. RELATED WORK ON THE UCP

The most widely used optimization techniques far WCP are mentioned in this
section. These techniques are dynamic programnpngrity list, particle swarm
optimization, ant colony optimization, branch amaibd, benders decomposition and
evolutionary algorithms. Evolutionary algorithms also divided into four groups
with respect to the solution representation ancetieroperators. Each of these four
groups is explained in detail.

The dynamic programming (DP) technique decomposesublivariable decision
problem as a sequence of single variable decisioblgms [6]. Therefore, an n
variable problem is represented as a sequenceiofjie variable problems and each
of them is solved respectively. DP separates th® Wb time slots, so that online
units are determined one hour at a time. At the @nithe time schedule, all hour-
state pairs are stored for further calculations amdarray is obtained that keeps the
continuous online and offline periods of all urtissprevent the up/down constraint

violation.

In the first step of the DP algorithm, the minimtmtal production cost to reach the
current state from the first hour of the schedsledlculated. Secondly, the state of
the previous hour that minimizes the cost of tlangition to the current state is
determined. After collecting this information, ast@ffective schedule is created by
moving from the state with the least total costhat final hour to the state of the

initial hour using the optimum transition at eatdps6].

The most difficult part of applying DP methods tetUCP is storing all possible
state combinations for each hour. Therefore, hecsisre used to limit the number
of combinations, but they produce suboptimal sohdgi and decrease the
effectiveness of the DP. In certain problem inst@ncsome of the problem

constraints are replaced with penalty coeffieciémtsbtain a feasible solution.



Priority list (PL) is a fast and simple optimizatidechnique, but it provides
suboptimal solutions. In this method, power geresaare ranked in ascending order
with respect to the average full load cost, so tiat effective units are put in service
first to fulfill the power demand of each time sleithout violating any operational
constraints [4]. However, resultant schedules hlagh power generation costs.
Average full load cost is calculated with Eq. (3.1)

Cost, = (a+ b * Pymax 4 ¢ * p,max % pmax ) / P, max (3.1)

The particle swarm optimization (PSO) algorithm aspopulation based search
algorithm, as described in Algorithm 2, which makes of a group of particles
corresponding to the individuals of a genetic atpon. The initial population is
generated randomly. Candidate solutions are repr@s$eavith particles containing a
position vector and a velocity vector [11]. Afteach time step, the fitness value of
each particle is calculated. Each particle keepwn best position with the best
fitness value it has achieved so far. Additionatlhg best fitness value of the whole
population obtained so far is also recorded. Usliregndividual best position and the
global best position, the velocity vector and tlesipon vector of the corresponding
particle are updated as given in Eq. (3.2) andE§) respectively.

1-'J,-’££f+ D p_— vj“éf) +ey *170) *(pbesfj‘g—xj’ér) )+ Cz*n()*(gbesrg—xj”g({) ) (3_2)
(+1DH _ (0 @+ D
Xi'g = Xjg + Vi (3.3)

with j=1,2,...,n and g=1,2,...,m whereis the number of particles in a group and m

is the number of members in a particle.

v, ¥ is the velocity of particle j at iteration %,, ¥ is the position of particle j at
iteration t, w is the inertia weight factor, c1 ao@ are cognitive and social
acceleration factors, r1 and r2 are random numin@fermly distributed in the range
(0,1), pbestyis the best fitness value of particle j at itematgp andgbesgis the best

fithess value of the group at iteration g.



Algorithm 2 Particle Swarm Optimization Algorithm

1: randomly create initial population;

2! repeat

3 calculate the fitness value of each particle;

4. determine the particle with the best fitnesisie of the generation;
5 update the position and the velocity vectdreach particle;

6: until stopping criterion is met

Ant colony optimization (ACO) algorithm is createding the behavior of real ant
colonies. Therefore, it is a population based $eatgorithm containing a learning
mechanism. The real ants lay down a substancedcalppheromone, on the way to
food [17]. The quantity of pheromone depends bathhe length of the path and the
guality of the food source, since the intensitypberomone increases, when more

ants choose the same way to reach the source [17].

In the first step of the ACO algorithm, the ACO aaieters need to be determined.
After initialization of these parameters, an itemtsolution construction process
starts with an empty partial solutien® . At each construction step, a solution
component is added to the partial solution withewtating any of the problem
specific constraints. A solution component is del@grobabilistically as given in
Eqg. (3.4).

7% * n(g;)P

a ]
qene Uil *N @,)P
il

p(q;ls") = 5 v, € N(sP) (3.4)
wherert; is the pheromone value for componestmy.)is a function which assigns a
heuristic value to the feasible solution at eaehation,o. andp take positive values,
which determine the relation between the pheromatee and the heuristic value
[17].

At the end of the construction process, the fitnedae of the complete solution is
calculated. The pheromone values of the solutiampmments included in a good
solution are increased, and the pheromone valueshef remaining solution
components are decreased with respect to Eq. {8.B)crement the possibility of
selecting a suitable solution component at the n&xation. To prevent rapid
convergence of the ACO algorithm, the concept oérpmone evaporation is
applied, where all pheromone values are decreasied a predefined evaporation
rate between 0 and 1 [17].



1. _[A=pP)*Ty+ p*AT if T; € sy

u (1—p)*Ty otherwise (3.5)

An effective branching method is proposed in [8]ichkhmakes use of a simple

bounding rule. In the branch-and-bound algorithme, anline/offline schedule of the

generators is represented with the commitment mdEach row of the matrix shows

the schedule of a single generator and each colapresents the status of each
generator for the corresponding time slot. Thigathm also involves the economic

dispatch problem as a subproblem. After determiniing online generators,

iteration method is used to compute the dispatsi co

In the initial step of the branch-and-bound aldont the search space contains all
feasible solutions. This space is repeatedly jpamgd into smaller subsets and the
lower bound of the cost value is calculated forheagbset by ignoring the lower
power generation limit constraint and the starteopt [8]. After each partitioning,
subsets with a lower bound which is higher thannawn feasible solution are
discarded. The remaining subsets are partitioneghagntil a feasible solution is
found whose fitness value is smaller than the Idveemd of any subset with at least
two solutions. In other words, the lower bound hgk only to a single solution at
the end, since it is the optimum solution of thislgpem.

Benders decomposition technique is applied to tl@&P Un [9]. This algorithm
consists of two levels. These levels are callethaster and slave. The master level
deals with the unit commitment of the generatorduléill the forecasted power
demand and the second level deals with the opaadtamnstraints, such as generator

limits, minimum up and down time of each unit [9].

This decomposition method uses an iterative se@rogess between these two
levels. The resultant schedule of the master probie conveyed to the slave

problem. The slave problem is divided into 24 sobfgms and these subproblems
are solved sequentially. The slave subproblem tkesithe power generation cost
with respect to the operational constraints. Theilteof the subproblem is used by
the master problem through the Benders cut to ingithe current solution. This

iterative search process stops when the fithessesahchieved in the master and
slave levels become nearly the same except foral predefined tolerance value.
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In literature, there are many successful evolutipriachniques to solve the UCP.
They can be divided into four main groups with exggo the solution representation

and genetic operators, which are applied to catelsizlutions.

In the first group, a binary chromosome is usedh&s candidate solution which
represents the on/off schedule of the generatoemet®& operators are applied to
these chromosomes. To solve the EDP in the sedepd§&the problem, an iterative
technique, such as lambda iteration [2], is useehdBc algorithms [1,12], binary
differential evolution algorithms [16] and memedilgorithms [14] are examples for

the first group.

Since genetic algorithms (GA), developed by Hollamd 975 [21], are commonly
working on binary solution representation, varidBAs are applied to solve the
UDP. GA techniques have common steps. First stefhasinitialization, where

individuals are created randomly with binary digits the second step, individuals,
which will undergo reproduction, are selected aedggic operators are applied. In
the last step, population replacement is performdoiasic genetic algorithm is given

in Algorithm 3.

There are two most commonly used population repiace methods. Either the
whole population is replaced, or only one individisagenerated and replaced with
another individual of the population in each itemat[1]. This loop continues until

the stopping criterion is met. This stopping crdaercan be defined either as the
number of iterations, which determines how manyesirselection, reproduction and
population replacement operations take place, othaspredefined fitness value

range.

Algorithm 3 Basic Genetic Algorithm

1: randomly create initial population;

2: repeat

3 select one mating pair;

4 generate one offspring through reproduction;
5 evaluate offspring;

6: if offspringbetter than current worst individual
7: offspring replaces the worst individual

8 endif;

9: until stopping criterion is met

11



Memetic algorithms (MAs) are defined as hybrid aidpns that combine genetic
algorithms and local search operators [14]. A m&defined as a contagious piece
of information [22]. The memetic approach providkee evolution of information
and the unit of a solution is referred to as a meatiger than a gene, since genes can

not be changed with the experience of an individli4).

In this algorithm, a randomly generated populatbimdividuals evolves towards an
optimal solution by undergoing a set of genetic rafms, namely crossover,
mutation and selection. Memetic algorithms incogperthe concept of memes by
allowing individuals to change before the next dapan is produced. Therefore, a
hill climbing operator is applied after the mutatim improve the fitness value of the

resulting individual.

In a generic MA, each candidate solution consi$ta binary bit string. In the first
step, mates are selected to reproduce new candsiddigions. After applying
crossover and mutation operators, hill climbing rape is applied to the new
candidate solution, which is also called as offggpriThis iterative process continues

until the stopping criterion is met as shown in @tihm 4.

Algorithm 4 Basic Memetic Algorithm

randomly generate initial population;
calculate fitness of each individual,
repeat

4 select mates;

5 apply crossover & mutation;

6: apply hill climbing;
7

8

9

calculate fitness;
until termination condition is met
return the best solution;

In the second approach, the chromosome consistatefers or floating points.
These genes represent the on/off cycles of the.uhiite integer value can be either
positive or negative, which corresponds to the tilomaof the on or off status of each
generator. The minimum up and down constraintgpeeserved by using specialized
genetic operators. The EDP also occurs in thisagmbr, and it is commonly solved
through lambda-iteration. Differential evolution danevolutionary strategies

algorithms are examples for this approach.

12



Differential evolution (DE) algorithm was introdutdy Storn and Price in 1996
[23]. This algorithm is used in continuous searplaces and contains four main
operations as given in Algorithm 5: Initializatiomutation, recombination and
selection. These operators are applied to all iddals. In DE, each individual in the
population, called the target vector, consistseaf walued genes,; %, where j is the

gene location on the chromosome, i is the index@individual and g represents the

generation number [1,16].

Algorithm 5 Basic Differential Evolution Algorithm

1: randomly generate initial population;
2. evaluate population;
3: repeat

4: for population sizéimes do
5: select next target vector;
6: randomly choose base vector;
7: donor vector = mutate (base vector);
8: trial vector = crossover (target vector, donor gegt
9: if trial vectorbetter than target vector
10: select trial vector;
11: else
12: select target vector;
13: endif;
14: endfor,

15: until stopping criterion is met

In the mutation step, a donor vector is createdguai mutation factor and different
target vectors which are selected randomly frompiygulation [1,16]. An example
is given in Eq. (3.6).

V. =X, +FX

i,g r0, g rl,g X

J'Z,g) (3.6)

where V4 is the donor vector and; is the randomly chosen target vector.

In the recombination step, which is also knownrassover, a new vector is created
using both the donor and the target vectors. Tévg vector is called the trial vector
[1,16]. A Cr parameter is used to determine thgtleof the segment taken from the
target vector. This parameter takes on values enrémge [0,1]. If the uniformly
distributed random number is less than Cr, theesponding parameter of the trial
vector is taken from the donor vector; otherwisés taken from the target vector as
shown in Eq. (3.7).
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(3.7)

! _ Vj,i,g |f(randj(0,1)sCr O”:Jrand)
ii,g otherwise

X. .
)9
In the selection step, either the target vectdhertrial vector is chosen with respect
to their fitness values as in Eqg. (3.8). Thesesstgmtinue until a predefined number

of iterations have been run or until a solutionanpredefined range has been

achieved.

g

X. otherwise
i,g

u. if (fitness(V. )< fithess(X. ))
X = "9 "9 (3.8)
Lg+1l
Evolutionary strategies (ES) was introduced by Rablerg in 1973 [24]. In the
problem representation, three different parts c¢utstthe individuals chromosome.
First part of the chromosome is encoded as a vett@al numbers, the second part
contains mutation step size parameters which asecaded with each gene. The
third part represents the rotation angles of eategA sample chromosome in ES

looks like the following:

<P P ...k, 01 G2 ....0p, Og Op ....0n >

The aim of the ES algorithm is to optimize an obyecfunction with respect to a set
of control parameters. These strategy parametersused to control statistical
properties of the genetic operators. Since thesanpeters are also adapted during
the evolution process, the genetic operators in d&S called as self-adaptive

operators [1,25].

In ES, all individuals have equal probability ofilgp selected as parents. These
parents first go through crossover and then theyhgough mutation. During the
crossover operation, each object variable of tiigpahg is selected usually among
one of the two parental values for the correspandjene location. For strategy
parameters, the arithmetic average value of thesangeters is taken. During the
mutation operation, mutation step sizes are mutdied, then each resulting
mutation step size is used to mutate the correspgndbject variable of the

chromosome. Algorithm 6 shows the algorithmic flofaa basic ES method.
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Algorithm 6 Basic Evolutionary Strategies Algorithm

1: randomly generate initial population;
2: calculate fitness of each individual;
3: repeat

4 for population sizéimes do

5: randomly select one mating pair;

6: generate one offspring through repréidag

7 endfor;

8 select individuals with respect to the populatices
9: until stopping criterion is met

After applying crossover and mutatidnchildren are created from parents. In the
last step of ES, one of the two different meth@dssed to determine the individuals
for the next generation. In the plus strategy,ldbst) individuals are selected from
both parents and children. In the comma strategliyiduals are selected only from
children [25]. This loop continues until a predefinnumber of iterations have been

executed.

The third approach uses the Lagrangian relaxatid®) technique along with a
genetic algorithm to update the Lagrangian mukigli[3]. The LR method solves
the UCP as if operational constraints do not eXieerefore, the LR decomposition
procedure creates a separate problem by embeddimg €onstraints into the
objective function through penalty coefficients.eBb penalty coefficients are called
Lagrangian multipliers and they are determinedatteely. However, the dual
problem has a lower dimension than the originabj@mm. The difference between
the original and the dual problems is defined asdhality gap, which measures the

suboptimality of the solution [3].

Many studies have spent some effort to update #hgrdngian multipliers in an
appropriate way to minimize the duality gap. Theref different genetic algorithms
are integrated into the LR method to update therdragjan multipliers and to

increase the efficiency of the LR method.

The dual problem is solved in two steps. In thstfatep, the Lagrangian function is
minimized under constant Lagrangian multipliers using a two-state dynamic
programming technique. In the second step, thedmgan function is maximized
using Lagrangian multipliers, which are updatedybpetic algorithms. This process,
described in Algorithm 7, continues until the dtyafjap reaches a predefined value

or until a predefined number of iterations havenbem.
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Algorithm 7 Lagrangian Relaxation Method with GA

1: repeat

2: minimize the LR function by using two-stagmemic programming
with constant Lagrangian multipliers;

3: maximize the LR function by using updated Lagrangraultipliers with

a genetic algorithm;
4: until stopping criterion is met

In the last approach, each candidate solution psesented with a floating point
chromosome. Each gene shows the load for the pame#gng generator. The initial
population is created using Lagrangian relaxati@volutionary programming
method is used only for online generators, whiarat working at their maximum
load capacities. Therefore, the aim of this apgmo&c to improve the already
dispatched power and to minimize the penalty valugdéch are added to the

computations due to the operational constraints.
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4. HYPER-HEURISTICS

Heuristic methods are very successful in solvinghglex optimization problems.

However, heuristics require problem domain knowéedgd parameter tuning during
the search, so that it is very difficult to appljeuristic to a new problem, or even to
a new instance of a previously solved problem PE, To overcome this difficulty,

hyper-heuristic methods are introduced. Hyper-tstiagd do not need any problem
specific information, since they are not directhphed to the problem; instead they
operate on a set of heuristics to find the modiablé heuristic, or the sequence of
heuristics during the optimization process [18,. Z8jerefore, they are using some

performance indicators to decide which heuristicdlh at each iteration.

4.1 Background

Two fundamental ideas about the concept of hyparistecs are expressed in [26].

According to the first fundamental idea, selectinfeuristic or creating a sequence
of heuristics is also a search problem [26]. Duéhts, the second fundamental idea
proposes the usage of a learning mechanism to raghe search process on the set
of heuristics [26]. Different types of hyper-hetidgs are implemented based on these

two fundamentals.

The ideas constructing the hyper-heuristic appraaehfirstly used in production
scheduling problem in 1961 by Fisher and Thompddrey proposed to combine
different scheduling rules in a probabilistic laaghnmethod. Their study concluded
that a random combination of scheduling rules tesubetter solutions than any of

them applied separately to the problem instancg [26

In 1992, Storer firstly mentioned the importancecdating a sequence of heuristics
for an efficient search algorithm [26]. He alsoidedl the concept of neighborhoods
within the search space, which constructs the bafslecal search. In 1993, Feng
applied a genetic algorithm, which aims at seagghime space of sequences of
heuristic selections to solve the open-shop scieglgroblem [26]. Each heuristic

selection is represented with a pair (j, h), wheilkean uncompleted job and h is a
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heuristic, which is used to select a task from jie j and to insert it into the
schedule. The sequence of pairs provides a comgdberule. This method obtained
very good results on different benchmark problerms.1997, Norankov and
Goodman made use of evolutionary algorithms tocbedine space of heuristic
sequences [26]. This method is applied to the stalje flow-shop scheduling
problem. In the first step, job orderings are deiaed; and in the second step, jobs
are assigned to the machines. Experimental reshtisred that there was a strong
dependency between the solution quality and theigteusequence applied to the

solution.

The term hyper-heuristic is firstly used in 2000 ®gwling, and he described the
concept of “heuristics to choose heuristics” toveabptimization problems [27]. In
following years, new techniques are proposed taravg hyper-heuristics. In 2002,
the incorporation of the choice function into hybewuristics are investigated by
Kendall, Cowling and Soubeiga [28]. Better resute achieved when compared
with the results obtained by random hyper-heusstim 2003, tabu search is
employed by Burke, Kendall and Soubeiga as theisteuselection strategy [29].
Good results are achieved on the university cotirsetabling problem. In 2004,
Kendall and Mohamad incorporated the Great Delutgorihm as a move

acceptance method and obtained very good resudteaimination timetabling [30].

Hyper-heuristic techniques are applied to optinidzatproblems in two different

ways. In the first approach, hyper-heuristics aseduto select the most suitable
heuristic from a set of heuristics for the corragfing problem state. In the second
approach, hyper-heuristics are used to create dtimsrifor the purpose of obtaining
more efficient results by specializing heuristioghie problem instance. This chapter

includes a detailed description of these two hypairristic approaches.

4.2 Heuristics to Choose Heuristics

When the term hyper-heuristics was first introduirethe early 2000s, this approach
was applied to optimization problems by selectimg nost suitable heuristic from a
set of heuristics to increase the efficiency ofgbharch algorithm. This type of hyper-
heuristics are divided into two groups as consivactand perturbative hyper-
heuristics according to the structure of the ihit@andidate solution [26].
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Constructive hyper-heuristics start with an empbjutson; whereas, perturbative
hyper-heuristics begin to work on a complete ihg@ution. These complete initial
solutions are created either randomly or by satighigome of the problem specific

constraints to obtain better results.

4.2.1 Constructive Hyper-heuristics

Constructive hyper-heuristic methods start witreaapty solution. At each iteration,
a constructive heuristic is selected to build at pdrthe solution. This process
continues until a complete solution is achievedieBa methods with constructive
heuristics have been applied to timetabling, schmeglu constraint satisfaction,

cutting and packing problems.

Evolutionary algorithms were firstly employed inagwination timetabling problems
in 1999 by Terashina-Marin [26]. In this approaalthromosome representation was
used and this approach aimed at evolving the cordtgn of constraint satisfaction
methods. In 2003, Ahmadi applied a variable neighbod search algorithm to
examination timetabling, where he combined différienv-level heuristics during

exam, period and room selections [26].

Graph-coloring heuristics are also used in timatgblproblems, where nodes
represent events and edges represent conflictsebrtwvents. In examination or
course timetabling problems, two events have aliconif they contain the same
student. The difficulty of an event is proportiorial the number of conflicts, the
event has with others. The most conflicting eveate scheduled first into

appropriate time slots when constructing a timetabl

A constructive hyper-heuristic framework was impéted by Burke in 2007, which
included the following graph coloring heuristicsaargest Saturation Degree, Largest
Color Degree, Largest Degree, Largest Enrolimeatgést Weighted Degree [26].
Tabu search was used as heuristic selection syr&tegreate efficient sequences of
low-level heuristics. This approach achieved pramgisresults in course and

examination timetabling problems.

In 2008, Qu and Burke compared the performancéseofiew implemented heuristic
selection strategies with the previously appliedutasearch method [26]. These
strategies are steepest descent method, iteratadl $earch method and variable
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neighborhood search. Results showed that iterateadl Isearch and variable
neighborhood search methods were more effective sit@epest descent and tabu
search methods. The authors also investigatedftbets of sequences of heuristics
on the solution quality, and they stated that e&ewuristic choices in a heuristic
sequence have a higher impact on the quality okthetion than the late heuristic
selections. In a further study, the combinationsgodph coloring heuristics in
examination timetabling were investigated by Piliay2008, where each individual
consists of a variable length string with charactepresenting one of the five low-
level graph coloring heuristics. This study alsowéd that this method was able to
create feasible exam schedules.

Constructive hyper-heuristics were also used irdpection scheduling to determine
which dispatching rule to call at each iteratiof][dn this problem, when a machine
completes its task, a dispatching rule calculdtesptiorities of each waiting job and
assigns the job with the highest priority to thiaamine. Each dispatching rule has a
different priority calculation method. Minimum relee time, shortest processing
time, longest processing time, earliest due datest due date, less work remaining,
more work remaining are among these rules. Mangliesushowed that methods
combining several rules or heuristics were moreiefit than other methods using a
single rule or a single heuristic. This statemeratsvwexperimentally verified in

different problem domains.

4.2.2 Perturbative Hyper-heuristics

Perturbative hyper-heuristics operate on a seedibative low-level heuristics. In
a constructive hyper-heuristic approach, the possntinues until a complete
solution is obtained. However, perturbative hypeuwistics operate on a complete
solution and this process continues until the ffiedd stopping criterion is met.
Perturbative approach has been successfully apgleedchannel assignment,
personnel scheduling, timetabling and vehicle raugproblems. In this approach,
heuristics are mostly applied to a single candidsdéution at each iteration;
therefore, they are called as single point seaaded hyper-heuristics. Population
based perturbative hyper-heuristics are also emsplayp optimization problems,
especially in scheduling and timetabling problemisere each individual contains a

sequence of heuristic selections.
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Learning mechanism plays an important role to iaseethe efficiency of the
decision making process. To incorporate the legrmrechanism into the hyper-
heuristic approach, scores are assigned to eachistieuwith respect to their
performances on the quality of the solution, whesytare applied to the candidate

solution.
4.2.2.1Single Point Search Based Hyper-heuristics

Single point search based hyper-heuristics cordigivo mechanisms: Heuristic

selection and move acceptance.

For the heuristic selection process, differenttstii@s are proposed. Simple random
heuristic selection strategy chooses a low-leverisgc randomly at each iteration.
Random descent has a similar usage, except thaetheted heuristic is applied to
the solution repeatedly, until no improvement ifieced. In random permutation
strategy, a random permutation of low-level heigssis created and each one of the
heuristics is applied to the solution in the pr@ddorder. Random permutation
descent also uses the randomly generated permytdtid heuristics are applied
repeatedly, until they do not improve the soluti@reedy methods apply all low-
level heuristics to the candidate solution at atertation and select the heuristic that

creates the best solution.

In the choice function heuristic selection metheach low-level heuristic is given a
score. This score is determined using the follovtimge performance criteria [28].
First criterion is the individual performance ofhauristic. Second criterion is the
performance of a heuristic when combined with otiauristics. The last criterion is
the elapsed time since the last heuristic has baked. At each iteration, scores are
computed for each low-level heuristic. The formiias of the performance
computation are given in Egs. (4.1-4.4).

Sy =3 a1 (h)IT, (h) (4.1)
flhh) =3 BT 1, k) 1T, (i) (4.2)
fj(.-"zj) = e!ap.scedﬂme(hi) (4.3)

21



where }(h) and Ty(h), In(hi,hk) and T(hi,h) are the change in the fitness function
and the amount of time taken, respectively, whenrth last time the heuristig h
was applied either alone or after the heuristiclin Eq. (4.4),a, B andé are the
relative weight factors of each function which ased to compute the overall scores

for each heuiristic.

In the tabu search method proposed by Burke in 2P9B low-level heuristics are
ranked with respect to their scores. Additionathis method includes a tabu list,
which is used to exclude some of the low-level lstigs temporarily, since they did
not improve the candidate solution in their lagplegation. If a heuristic improves
the solution, its score is increased; otherwise sdore is decreased. The heuristic
with the highest score, which is not in the talst, lis applied to the solution at each

iteration.

Nareyek (2003) used reinforcement learning as aisteuselection strategy. In this
learning process, each heuristic starts with timeesmnitial score. The scores of the
heuristics are changed with respect to the quafityhe resulting solution when they
are applied to the individual. During heuristicesstion, either the heuristic with the
highest score is selected or the scores are caaventio probabilities and a heuristic

is selected using the roulette wheel strategy.

The second mechanism of single point search bagpédrimeuristics is the move
acceptance method. For the move acceptance phasendin strategies are used.
These are deterministic and non-deterministic esjias. In the deterministic
strategy, the same move acceptance decision ia fpveéhe same candidate solution
regardless of the current point in the search mcddowever, in the non-
deterministic strategy, different move acceptamaa@gions can be given for the same
candidate solution with respect to the decisiomporlherefore, time or iteration

number is important for the decision making process

Three deterministic approaches are used commorlyMAves, Only Improving
Moves, Improving and Equal Moves. In all movestswgg, all improving and non-
improving moves are accepted; whereas, in the diherapproaches either only

improving moves or improving and equal moves acepted.
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One of the non-deterministic move acceptance gfiegas the Monte Carlo method,
which was proposed in 2003 by Ayob and Kendall [3H)is method accepts all
improving moves. However, non-improving moves aceeated with respect to a
probability function. An exponential probabilityrfation is used in this strategy as
given in Eq. (4.5), wher& is the change in quality, t is time in minutes &ds the

number of successive non-improving moves.

‘B — 810 (45)

In 2004, the Great Deluge move acceptance algontiasiexperimented in a hyper-
heuristic approach by Kendall and Mohamad [30}this method, the fithess of the
initial solution is calculated and this value i ae the initial level value. Then, the

down rate value is determined using the Eqg. (4.6).
DownRate = (f(s,) — Best Result) INumberoffterations (4.6)

where BestResult is the best result found in litesfor this problem and fsis the

fitness value of the initial solution.

After applying one of the low-level heuristics teetcandidate solution, if the fitness
value of the resultant solution is better thanldwel value, the level is decremented
by the DownRate value and the resultant solutiomefgaced with the current

solution; otherwise, the current solution is kemd #he algorithm continues to run by

applying another heuristic to this solution as shawAlgorithm 7.

Algorithm 8 Great Deluge Method

1: create randomly an initial candidate solutign s
2: calculate the fitness value of the initial soluti¢s);
3: set the initial level to f(g;
4: set the DownRate value;
5! repeat
6: select & apply a heuristic to the candidatietson;
7: calculate the fitness of the resultant caaidicolution f(9);
8: if (f(sn) < Level)
9: Level = Level — DownRate;
10: 8=%;
11: endif;

12: until stopping criterion is met

Simulated annealing is another method used as -@@k@nministic move acceptance
strategy. This method was proposed by Bai and Kemd2005 [26]. In this method,
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all improving moves are accepted, but non-improvimgyes are accepted according
to the Metropolis criterion @ ' ', wheres is the change in quality and t is the
temperature. The temperature is decreased at &giatian using a cooling schedule.

This criterion shows that a probabilistic decisisrmade to accept even a worsening
solution. This probability does not only depend lmw much worse the resultant

solution is but also on how long the search probassbeen continuing.

Late acceptance strategy was incorporated by Barige Nykov into the hyper-

heuristic approach in 2008 [26]. This method caorgaa memory to keep fithess
values of previous candidate solutions in a listsafe L. At each iteration, the
resulting candidate solution is compared with tst Element of the list. If the fithess
value of the new solution is equal to or bettemtliae fithess value of the last
element of the list, the new solution is addedht list as the first element and the
last element is removed from the list. This methdoes not have a high

computational expense when compared with simulatetealing and great deluge
methods. Additionally, it also accepts worseningve®to prevent getting stuck at

local minima.

Another study field in a hyper-heuristic approashhow heuristic selection and
move acceptance strategies are combined and irhvander mutational heuristics
and hill climbers are executed in a hyper-heuristethod, since they have different
impacts on the search process. To increase théaolyuality, different regions of
the search space need to be explored and the highiess of these areas should be
reached. This is possible, if a mutational hewrisind a hill climber operator are
employed sequentially. Four different frameworks defined for that purpose and
their performances are compared in [18]. Thesedraonks are called asnFFs, Fc
and b,

In F» and R, a heuristic is selected from a set of mutatidmalristics and hill
climbers. However, thegF framework extends fFy employing a predefined hill
climbing operator, if the selected low-level heticisis a mutational heuristic;
otherwise, only the selected low-level hill climgiroperator is applied to the
candidate solution before the move acceptance dtephe K framework, a
mutational heuristic is selected at the first s@pc¢e the heuristic set only contains
mutational heuristics. After that, a predefined dimbing operator is applied to the

candidate solution. In thesframework, firstly a mutational heuristic is seksttand
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applied to the solution. If the resultant solutisnaccepted, a hill climber will be
selected and applied to this new candidate solutotherwise, the selected hill
climber will be applied to the previous solutionll Ahese four frameworks are

depicted in Figures 4.1-4.4.

L

Select & Apply

Mutational
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Hill Climbers
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Figure 4.1 : Hyper-heuristic frameworka
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Figure 4.2 :Hyper-heuristic frameworks
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Figure 4.3 : Hyper-heuristic framework:
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Figure 4.4 :Hyper-heuristic framework,

Experimental results showed that the usage othilibers has a positive impact on
the quality of the solution, and it was also obedrthat applying a single efficient
hill climber produces better results than usingetads hill climbers with a selection
strategy. In this study, thecFramework achieved the best results among these fou
hyper-heuristic frameworks [18].

4.2.2.2Population Based Hyper-heuristics

Population based perturbative hyper-heuristicedififom single point search based
hyper-heuristics, in which each individual in th@pplation consists of a sequence of
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integers, where each integer represents a singldelel heuristic to indicate in
which order the heuristics are called. In 2003, @wyvapplied this approach to a
personnel scheduling problem, and he used a gealgarithm as the heuristic
selection mechanism [26]. This method achievedebe#isults when compared to a

genetic algorithm and a memetic algorithm in traseheduling problem.

In 2005, Burke employed the ant colony algorithmadsyper-heuristic to solve the
personnel scheduling problem [26]. Each vertexesgmts a heuristic, and a number
of ants are distributed among the vertices to camagdidate solutions. In this
method, each ant applies a low-level heuristic atheencountered node to its
solution. Burke achieved good results with this hodt for previously studied

problem instances.

4 3 Heuristics to Generate Heuristics

Hyper-heuristics are not only used to select haasisbut they are also used to
generate heuristics. In this approach, hyper-hicsisperate on a set of components
to construct heuristics instead of searching tlhie@&eomplete heuristics. Therefore,
at each iteration a new heuristic is created arsblation is obtained using this
heuristic. This approach is applied to the follogviproblem domains: Production
Scheduling, Traveling Salesman Problem, Cutting aRdcking, Function
Optimization, Satisfiability, Constraint Satisfamti[26].

Although heuristics created by humans are desigoele effective on a set of
problem instances, a heuristic needs to be spsethlio achieve the best result for
each problem instance respectively. Thereforebst important advantage of the
automated heuristic generation approach is thahéeistic implementation process
is able to specialize a heuristic for each instaimca cost effective way. These
instance specific adjusted heuristics would prodoeter results when compared

with human created heuristics. Experimental reu#is verify this approach.

In 2005, Ho and Tay applied a genetic programmilggprahm to the job shop
scheduling problem. This algorithm acts as a hyperistic and evolves composite
dispatching rules [26]. In 2007, Jakobovic used shee approach in the parallel
machine scheduling problem. These dispatching rales functions, which are

responsible for assigning scores to the jobs vadipect to the problem state. When a
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machine completes its job, an evolved dispatchilg works for each job in the
machines queue separately, so that each job olata@sult as its score. The job with

the highest score in the queue is assigned to gohime [26].

In 2005, Koza and Poli concluded with their expenms, that the best evolved
dispatching rule achieves better results on ovéb &b all the problem instances
[26]. These experimental results also verified thpanetic programming is able to
create composite heuristics containing multiple ristic components, which are
more efficient than human created heuristics andaele on different problem

instances.

In 2005, Oltean employed a genetic programming hjeeristic to generate
evolutionary algorithms [26]. This method was swstelly applied to the traveling
salesman problem and to function optimization. His tmethod, each individual
consists of a series of instructions which cal@ahdlues in a memory array with
multiple registers. This array represents an ewaary algorithm population where
each register corresponds to a member of the piqul&enetic operators are used
as the instructions and they are performing thesk$é on the memory array. An
example for an instruction is given in Eq. (4.7here the crossover operator is
applied to two members from the memory array. Tdlgorithm also achieved

successful results when compared with the humarerhadristics.
reg|[ 1| = crossover(reg|7|,reg[3]) (4.7)
reg|3| = mutate(reg|5]) (4.8)

In 2007, Burke applied genetic programming as aeheuristic for one
dimensional bin packing problem [26]. This hypetstic method produces
heuristics containing arithmetic operators and progs of the pieces and bins. At
each iteration, a piece is placed into a bin. Farhepiece, created heuristics are

applied to the bins and the bin with the highesteds selected to pack the piece in.

Poli et al (2007) also made use of genetic progrenmgnmn one dimensional bin
packing [26]. However, this study was based ornréineaining space size of each bin,

when placing pieces into these bins. Accordinghis aipproach, when a piece is
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placed into a selected bin, the remaining spacaldhwt be smaller than the size of
the smallest piece, which is not packed yet.
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5. EXPERIMENTAL STUDY

In this study, hyper-heuristic methods with varidusuristic selection and move
acceptance strategies are applied to the UCP.drh#uristic selection phase, six

different strategies are applied. These are:
* Simple Random (SR),
« Random Descent (RD),
* Random Permutation (RP),
* Random Permutation Descent (RPD),
* Choice Function (CF),
* Greedy (GR).
As move acceptance criterion, four different sgede are used:
* All Moves (AM),
e Only Improving (Ol),
* Improving and Equal (IE),
* Great Deluge (GD).

Totally 24 combinations of the above listed hetgiselection and move acceptance
mechanisms are applied to two instances of the A@&,results obtained by these
combinations are analyzed to determine the mostiesit strategy combination for
this problem.

In the second part of the experiments, the perfoomaf the most efficient hyper-
heuristic method is compared with the performanica genetic algorithm [12] on
different data sets, because these two methodthesame genetic operators. In the
third part, reported results of six benchmark peabinstances are given. An analysis
is made to find out how the problem size affecte therformance of each

optimization method. In the last part, real worlatad is used to verify that the
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proposed hyper-heuristic algorithm can be succhgstpplied to real world
problems.

The proposed algorithms are coded in the C languwemeall of our experiments, we

used a single PC (2.13 GHz quad core processord@Bytes of main memory).

5.1 Proposed Approach

In the proposed approach, each candidate solutosists of binary digits with a
length of T*N, where N is equal to the number oitsiiand T is equal to the number
of time slots. Figure 5.1 illustrates an exampleentoding a candidate solution.
Each hour contains N binary digits. The values @ &indicate that the generator is
off or on for the corresponding time slot.

Hour 1 Hour 2 Hour 24

Figure 5.1 : The binary representation of a candidate solution

Seven heuristics are used during this iterativecbegarocess. The first two heuristics
are classic mutation operators with a probabilityld. and 2/L, where L is the

solution length.

2 3 L-2 L
0 1{0(1
2 A
v 4
11 01 0|01
1 2 3 L-2 L

Figure 5.2 : Mutation operator

The third heuristic is the swap-window operator][1Phis operator selects two
power units, a time window of width w hours and iadow position between 1 and
(H-w) randomly. Then, the digits of these two units this time window are

exchanged as shown in Figure 5.3.

32



123456789 H

1

— 2
AAAA

3
VVVY

> 4

H_/

window

N

Figure 5.3 : Swap-window operator

Fourth heuristic is the window-mutation operatohisToperator selects one unit, a
time window of width w and a window position betwet and (H-w). All Os in this
time window are turned to 1s, and all 1s are tuiweds [12]. The solutions before

mutation and after mutation are depicted in Figude

12345678 H
1
—>» 2 101
ﬂ_/
window
N
Solution before Mutation
1
— 2 g1cC
ﬂ_/
window
N

Solution after Mutation

Figure 5.4 :Window-mutation operator
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Swap-mutation heuristic is a hill climbing operatéior each time slot of the
scheduling period, one of the two operations i$goered on the candidate solution
with equal probability [12].
e« Two units are selected randomly, and the digitsthar corresponding
hour are exchanged.

* A unitis selected randomly and the correspondigg tbr the given hour
Is turned from O to 1 or from 1 to O.

If the operation results in a better solution, ti@ev solution is replaced with the old
one; otherwise, the next operation is performedhenold solution. The behavior of

this heuristic is shown in Figure 5.5.

123456789 H
1 _’QFO
— 2 0
A
3
\ 4
—> 4 1
N

Figure 5.5 : Swap-mutation operator

Swap-window hill-climb heuristic is another hillitibing operator. Two units and a
time window of width w hours is selected betweesntl H. The starting point of the
time window is the first hour of the schedule. Thegits of the two units in the time
window are exchanged. If the fithess value of tesultant candidate solution is
better, then the solution is kept; otherwise, prasisolution is used in the next
iteration. For the next iteration, the window isf&d one hour up, and the digit
replacement procedure continues until the windoaches the last hour of the

schedule [12]. Figure 5.6 shows an example ofttbigistic.
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Figure 5.6 : Swap-window hill-climb operator

The last heuristic is the Davis Bit hill climbingperator. A permutation array is

created randomly. A power generation unit and & talot are selected according to
this permutation array. Then, the correspondingt tigchanged from 0 to 1 or from

1to 0[18].

As hyper-heuristic framework, the; Framework is used [18] as explained in section
4. In this framework, a heuristic is selected framset of mutational heuristics and
hill climbers. If the selected heuristic is a migaal heuristic, then a hill climber is

applied to the solution; otherwise, only a hillneber is applied and the fithess value
of the resultant solution is calculated. This Soluis either accepted or rejected with

respect to its fitness value and the selected raogeptance strategy.

In Algorithm 8, RPD heuristic selection strategyuised along with the Ol move
acceptance criterion. In the first step of thisoaltpm, an initial solution is created
randomly and its fitness value is calculated. Afteat, the iterative search process
starts by applying the first heuristic accordingatpredefined permutation of seven
heuristics. If the heuristic does not have the dlithbing capability, Davis Bit hill
climbing operator is applied to the candidate soitut The fithess value of the
resulting solution is calculated. This new solutisrreplaced with the old one and
the same heuristic is applied to the solution agdinhe fithess value is better;
otherwise, the old candidate solution is kept dn&drtext heuristic in the permutation
array is applied to the old solution. This processtinues until the stopping criterion

is met.
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Algorithm 9 Proposed Hyper-heuristic Algorithm

1: randomly create an initial solution;
2: evaluate the initial solution;
3. create a random permutation of all seven heurjstics
4: repeat
5: select the first heuristic in the permutation;
6: repeat
7 repeat
8 apply the selected heuristic to the solution;
9: if heuristic does not contain hill climbing
10: apply Davis Bit hill clirnmug;
11: endif;
12: calculate the fitness value
13: ithe fitness value is better
14: accept the new solution;
15: endif;
16: untilthe fitness value is no more improved
17: select the next heuristic;
18: until the last heuristic in the permutation is applied

19: until stopping criterion is met

5.2 Experimental Setup

Proposed hyper-heuristic algorithm is tested with lenchmark problems taken
from literature and with real world data obtainednfi the Turkish interconnected
power system. Additionally, the performance of thger-heuristic algorithm is
compared with the performance of a genetic algoriffi2] in several problem

instances.

In the first step of the genetic algorithm, thetiali population consisting of M
individuals is generated randomly and the fithesdues of each individual is
calculated. After two individuals are selected adow to the roulette wheel parent
selection algorithm, crossover and mutation opesatre applied with certain
probabilities [12]. This procedure is repeated luktinew individuals are created.
These new individuals replace the parents excegit ttie best individual of the

previous generation is also carried to the nexegsron [12].

In the genetic algorithm, selection and crossoveerators result in population
convergence; whereas, mutation is used to mairdaiersity. To increase the
effectiveness of the search, premature convergamg@xcessive diversity should be
prevented. Therefore, search process is monitorgd cbllecting statistical

information from the individuals. The crossover lpability is kept between 0.4 and
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0.9 and the mutation probability is kept betweef08. and 0.024 [12]. When
premature convergence occurs, the crossover pidpabidecreased by 0.1 and the
mutation probability is increased by 0.004 [12]. fi@vent the excessive diversity,
the crossover probability is increased by 0.1 ahd mutation probability is

decreased by 0.004 [12]. Swap-window and windowatnn operators are applied
to all the population members with a probability®8. Swap-mutation and swap-
window hill-climb operators are also using the sgr@bability rate except that they

are only applied to the best individual of everpgmation [12].

Great Deluge move acceptance strategy is one dbthestrategies, which is used in
this proposed approach. When applying this strateghe hyper-heuristic method,
fitness value of the initial solution needs to laécalated to determine the down rate
[30]. Initial solution is created using the Prigritist method [12], which is explained
in section 3. The power generation units are ramkedcending order of the average
full load cost, so that cost effective units arencaitted first, and other units are set
to online status according to this order until liteed demand is met for each time slot
respectively. Operational constraints are satisfth this method, but resulting

schedules contain high power production costs.

In System 1 and the Turkish interconnected powstesy, as used in [1,14], and in
System 2, System 3, System 4 and System 5, asnugeds3, 4, 12, 14], the best, the
average and the worst case values are reported2@veunns of the program. For
System 6 [3, 12, 14], these values are determined 10 runs of the program due to

time constraints.

System 1 consists of 10 units and 24 hours. Deltaiégéa set of System 1 is given in
Appendix A.1. The data for the other problem instanare obtained by repeating the
number of power generation units two, four, sighe¢iand ten times respectively, as
also done in [1, 3, 4, 12, 14]. Therefore, Systegoftains 20 units and 24 hours,
System 3 contains 40 units and 24 hours, Systeontainis 60 units and 24 hours,
System 5 contains 80 units and 24 hours and Sy6teontains 100 units and 24

hours.

To increase the efficiency of the hyper-heuristopraach, demand and up/down
penalty coefficients are set to 100000 to prevefdasible candidate solutions. The
determination of these values relies on the ingattin of the previously obtained

experimental results.
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Number of iterations per run is set as 1000, 500000, 15000, 20000, 25000 for
System 1, System 2, System 3, System 4, Systergster8 6, respectively. These

numbers are determined empirically.

5.3 Experimental Results

In the first part of this section, System 2 andt&ys3 data sets are used to determine
the most efficient strategy pair for heuristic sélen and move acceptance phases.
Statistical tests are applied to resultant solgtimncompare the performance of each
combination. These tests are performed at a cardelievel of 0,95. The second and
the third parts contain performance comparison testlts of a hyper-heuristic
algorithm with other optimization techniques usisgven different problem

instances.

5.3.1 Performance Comparison of Different Hyper-herstic Combinations

Table 5.1 and 5.2 contain experimental resultsciwtdare obtained, when the Ol
move acceptance scheme is applied with 6 diffenentistic selection strategies. In
these two data sets, RPD heuristic selectionegfyatichieves the overall best results.
RP method obtains the same result for System 2t bbtains the second best result
for System 3. The difference percentage betweemfRPRPD is only 0,036 %. SR
and RD follow these methods and GR obtains thegsbaesults in these two data

sets.

Table 5.1: Cost resultgor System 2 with the Ol move acceptance criterion

No Method Best Result  Worst Result  Average Result
1 RPD 1125997 1128831 1127474
2 RP 1126231 1128931 1127689
3 SR 1127253 1129911 1128435
4 RD 1127253 1129563 1128572
5 CF 1127683 1148563 1133976
6 GR 1129038 1138217 1132815

Figure 5.7 shows the box-whisker plot of the restdr System 2 with the Ol move
acceptance strategy. The one-way analysis of \a@idANOVA) test is used to
determine whether the fitness values are the sanossadifferent heuristic selection
methods. The p-value for this experiment is zerfoto decimal places. This value
indicates that the fitness values vary from oneisga selection method to another.
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Figure 5.8 shows the multiple comparison resultsSgstem 2 with the Ol move
acceptance strategy. According to the resultsisftdst, the mean values of GR and
CF are significantly different from RP, RPD, SR &id.
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Figure 5.7 : Box-whisker plot for System 2 with Ol
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Figure 5.8 : Multiple comparison results for System 2 with Ol
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Table 5.2: Cost resultgor System 3 with the Ol move acceptance criterion

No Method Best Result  Worst Result Average Result
1 RPD 2248284 2253971 2250434
2 RP 2249099 2253057 2250835
3 SR 2250116 2255899 2253378
4 RD 2250875 2253851 2252456
5 CF 2253743 2279271 2264473
6 GR 2255837 2267460 2258998

Figures 5.9 and 5.10 show the box-whisker plot #red multiple comparison test
results for System 3, when the Ol move acceptatregegy is applied. ANOVA
function returns 0 as the p-value. From these t®siil can be observed that the
fitness values from different heuristic selectiorethods are not the same. The
interval between the lowest and the highest fitnedges of the CF method is very
long, when compared with other methods. Accordmthe multiple comparison test
results, CF and GR methods have significantly tbffié mean values from RPD.
However, there is no statistically significant di#nce in terms of the mean values
obtained by RP, RPD, SR, RD heuristic selectiorhod in System 2 and System 3,

when either Ol or IE is used as the move acceptaritegion.
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Figure 5.9 : Box-whisker plot for System 3 with Ol
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Figure 5.10 :Multiple comparison results for System 3 with Ol

The results in the Tables 5.3 and 5.4 are obtaus#ag the IE move acceptance
criterion. RPD and SR achieve the best result f@tedn 2, but when the data size of
the problem increases, the performance of SR isedeed accordingly. However,

RPD proves its consistency by obtaining the bestiltan System 3 as well. RD

achieves the second best result and GR again a&shibe poorest results among
these six heuristic selection methods. Arithmeterage of the fithess values
obtained by the RPD method is better than the geerasults of other methods in

these two data sets.

Table 5.3: Cost resultgor System 2 with the IE move acceptance criterion

No Method Best Result Worst Result  Average Result
1 RPD 1126231 1129039 1127381
2 SR 1126231 1129317 1128190
3 RD 1127065 1130338 1128500
4 RP 1127253 1129837 1128510
5 CF 1128041 1147346 1135070
6 GR 1130520 1136545 1133359
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Table 5.4: Cost resultgor System 3 with the IE move acceptance criterion

No Method Best Result Worst Result  Average Result
1 RPD 2250070 2252741 2251331
2 RD 2250090 2254164 2252311
3 RP 2250837 2253019 2251510
4 SR 2250875 2253881 2251794
5 CF 2252492 2284777 2263464
6 GR 2255599 2263901 2260230

Looking at the results in Figures 5.11 to 5.14, ea® see that the fitness values
obtained with the IE move acceptance criterionSgstem 2 and System 3 vary from
one heuristic selection method to another. Thelpeveeturned by ANOVA is zero
for both of the systems. Multiple comparison testutts show, that CF and GR have
significantly different mean values from the reétlee methods. Box-whisker plots
also show that these two methods have longer ialtebetween their best and worst

results.
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Figure 5.11 :Box-whisker plot for System 2 with IE
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Figure 5.12 :Multiple comparison results for System 2 with IE
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Figure 5.13 :Box-whisker plot for System 3 with IE
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Figure 5.14 :Multiple comparison results for System 3 with IE

When the GD move acceptance strategy is appliedRBPD method obtains the best
result in System 2. CF achieves the second beglt,résit its average result is the
poorest one. In System 3, RPD, SR and RD methob®\ar the same result;
however, CF achieves the poorest best and aveeagés in the increased data set.
The difference percentage between RPD and CF i$08% for System 2 and
0,0931% for System 3.

Table 5.5: Cost resultgor System 2 with the GD move acceptance criterion

No Method Best Result  Worst Result Average Result
1 RPD 1125997 1129390 1127673

2 CF 1126119 1134568 1128820

3 RP 1126231 1129404 1127944

4 SR 1126231 1129837 1128267

5 RD 1127055 1129837 1128343

6 GR 1127252 1129135 1128345

Figure 5.15 shows the box-whisker plot for Systemwl2en the GD move acceptance
strategy is used. ANOVA function returns 0.0309tees p-value. This indicates that
one heuristic selection method outperforms the rothethe fitness values of the

solutions it produces.
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Figure 5.16 :Multiple comparison results for System 2 with GD
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Figure 5.16 shows the multiple comparison reséltsording to these results, RPD
and CF have significantly different mean values.

Table 5.6: Cost resultgor System 3 with the GD move acceptance criterion

No Method Best Result  Worst Result  Average Result
1 RPD 2249099 2252103 2251066
2 RD 2249099 2253712 2251471
3 SR 2249099 2254148 2251906
4 RP 2249576 2253223 2251336
5 GR 2250904 2259784 2254414
6 CF 2251195 2272279 2259073

Figure 5.17 illustrates the box-whisker plot of ®ys 3. In System 3, the p-value

15 Since itis a very small value, it shows thate¢he

returned by ANOVA isl.1102e
is a statistical difference between the fitnessieslof the experimented methods.
According to the multiple comparison test resuR®D and CF have significantly

different mean values as shown in Figure 5.18.
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Figure 5.17 :Box-whisker plot for System 3 with GD
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Figure 5.18 :Multiple comparison results for System 3 with GD

GR method produces poor results with the firstehm®ve acceptance criteria, since
it always selects the most efficient heuristic atle iteration. Heuristics with hill
climbing capability are able to obtain better réswhan other heuristics; therefore,
GR method mostly selects hill climbers among selveuristics at each run of the
experiment. Diversity can not be provided effediivevith this method and this

results in getting stuck at a local optimum.

AM is not an efficient move acceptance strategycesiit accepts all non-improving
moves without any limitation. GR achieves the lresults with AM in these two
data sets, because in GR all heuristics are appdig¢de solution and the heuristic
obtaining the best fitness value is selected. Aheteration hill climbers are applied
to the solution. Since hill climbers do not accaptorsening move, AM selects a
candidate solution either with a better fithessugabr at least with the same fitness

value as the previous one.

According to the results in Table 5.7, CF achiethessecond best result in System 2.
CF method selects a heuristic with respect to ttmresof each heuristic from

previous runs based on the quality of the solutsonthat it applies the most efficient
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heuristic at each iteration during the search. RBRins better results than RP and
RD obtains better results than SR, since they apblguristic to the solution again, if

the heuristic causes an improvement in the fitwafise of the solution.

Table 5.7: Cost resultgor System 2 with the AM move acceptance criterion

No Method Best Result  Worst Result  Average Result
1 GR 1135972 1182232 1157148
2 CF 1137093 1180722 1158591
3 RPD 1140067 1180180 1160381
4 RP 1141958 1180711 1161860
5 RD 1142190 1184874 1163611
6 SR 1152371 1183624 1165224

Box-whisker plot of System 2, obtained using the AMve acceptance strategy, is
shown in Figure 5.19. The p-value, 0.3145, doesimtitate statistically significant

differences between the fitness values of diffetestristic selection methods. In
Figure 5.20, it can be easily observed that thennvedues of CF, RPD, RP, RD and

SR are not significantly different from GR.
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Figure 5.19 :Box-whisker plot for System 2 with AM
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Figure 5.20 :Multiple comparison results for System 2 with AM

Table 5.8 shows the experimental results for Sy@ewhen AM is used as the move
acceptance criterion. GR again achieves the bssltiia this data set in front of the
CF method.

Table 5.8: Cost resultgor System 3 with the AM move acceptance criterion

No Method Best Result  Worst Result  Average Result
1 GR 2339024 2478087 2402021
2 CF 2341696 2482374 2404243
3 RPD 2348286 2477003 2406051
4 RD 2354096 2481037 2419543
5 RP 2356811 2483620 2418755
6 SR 2383415 2482194 2427434

Figure 5.21 depicts the box-whisker plot for Systénirhe p-value, 0. 1793, also
verifies that there is no statistically significatitference between the fitness values
obtained by different heuristic selection methoksthe multiple comparison test
results, as shown in Figure 5.22, the mean valugPis not significantly different
from other methods.
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Figure 5.21 :Box-whisker plot for System 3 with AM
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Figure 5.22 :Multiple comparison results for System 3 with AM
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In the first part of the experiments, the best Itefr System 2 is 1125997. This
result is obtained with two different heuristicesgtion and move acceptance strategy
pairs. These are RPD-OIl and RPD-GD combinations. st result for System 3 is
2248284, and this result is obtained using RPDtftegy pair. Since the data set is
increased in System 3, the efficiency of RPD-Oldmees more obvious among all
24 strategy combinations. Four different combinagidollow RPD-OI and they

produce the same solution with the fitness valuz240099.

In further parts of this section, this combinatisrused to compare the performance
of the hyper-heuristic (HH) approach with otheriomation techniques. Table 5.9
shows the best heuristic selection method and mageeptance criterion

combinations for System 2 and System 3.

Table 5.9: The best ten heuristic selection method and mowepaance criterion
combinations

System 2 System 3

Rank L . Rank L .
Combination Fitness Combination Fitness
1 RPD - Ol 1125997 1 RPD - Ol 2248284
2 RPD - GD 1125997 2 RP - Ol 2249099
3 RPD - Ol 1126059 3 RPD - GD 2249099
4 CF-GD 1126119 4 RD - GD 2249099
5 RPD - Ol 1126137 5 SR -GD 2249099
6 RP - Ol 1126231 6 RPD - GD 2249114
7 RPD - IE 1126231 7 RP - Ol 2249118
8 SR-IE 1126231 8 RPD - Ol 2249144
9 SR -GD 1126231 9 RD - GD 2249149
10 RP - GD 1126231 10 RPD - Ol 2249287

Figure 5.23 shows the distribution of the bestyféblutions of System 2 among
several heuristic selection method and move acoeetariterion combinations.
Seven of these fifty solutions are produced by RBpair. RPD-IE, RP-OIl, RPD-
GD follow this combination with six solutions. Feeen different combinations

obtaining at least one solution are listed in figare.

Figure 5.24 shows the distribution of the besyfdblutions for System 3. RPD-Ol is
in the first place with fourteen solutions. RP-Ql the second most effective
combination with nine solutions. This figure alserifies that the effectiveness of
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RPD-OIl becomes more significant with the increadath set. Four of the five
combinations listed in Figure 5.23 with at most tsadutions are not able to produce

a solution which can join the top fifty list of Sgs 3.
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Figure 5.25 shows the iteration number versus ttreds value curves for six
different combinations with respect to their besstcresults obtained in System 3.
CF-IE and GR-IE find the optimum fitness valueslieaithan other combinations,
but they are getting stuck at local optima, sintwe diversity can not be provided
with performance based heuristic selection methodfurther parts of the search
process. SR-GD, RD-GD and RP-OI achieve the sebestresult in System 3 and
they obtain this solution approximately between iteeation numbers of 3000 and
3600. RPD-OI produces the best solution in SystetarBig the 8300 iteration.
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Figure 5.25 :Iteration Number versus Fitness Value curves

Figures 5.26 and 5.27 show multiple comparison testlts for System 2 and
System 3. These test results are obtained usingdbe values produced by six
heuristic selection methods along with Ol, IE anld @ove acceptance schemes. It
can be easily observed that CF and GR have signific different mean values for
Ol and IE move acceptance schemes in both of thteitstances. However, this
difference is decreased when these two heuristectsen methods are used along

with GD.
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5.3.2 Performance Comparison of the HH with a Genéat Algorithm

In the second part, the performance of the HH nuktlso compared with the
performance of a genetic algorithm (GA2). When gwimg GA2 to the UCP,

premature convergence should be prevented to ntakeseéarch more efficient.
Therefore, the iterative search process needs todmtored; additionally, mutation
and crossover probability rates should be adjustegrevent the convergence.
Although HH method uses the same genetic operdinestuning of certain genetic
operator probability rates, adaptation and systemitoring are not necessary. This
technique creates new candidate solutions witheatspp the applied heuristic
selection and move acceptance methods.

For System 1, GA2 achieves a better result than blH,these results are very
similar. In the other data sets, HH obtains betsults than GA2. When the size of
the data set increases, the difference betweeriitttess values of GA2 and HH
becomes more significant. The difference percentaggveen GA2 and HH is
0,022% for System 2. For System 3, System 4, SyStamd System 6, these values
are 0,16%, 0,13%, 0,22% and 0,23% respectivety. Iarger problems, the
solutions using HH are better even in the worstsrtivan the results obtained by
GA2.

Table 5.10:Comparison of the cost results of GA2 and HH meshod
GA2 HH

best worst best worst

Units

10 565825 570032 565827 567028
20 1126243 1132059 1125997 1128831
40 2251911 2259706 2248284 2253971
60 3376625 3384252 3372040 3376043
80 4504933 4510129 4494452 4499067
100 5627437 5637914 5614360 5620496

5.3.3 Performance Comparison of the HH with other @timization Techniques

In the third part, the performance of the HH is pamed with other optimization
algorithms using six benchmark data sets. In liteega only the best, average and

worst fitness values are reported for the listethéques and they are taken from the
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papers without any modification. The algorithmgha following tables are ranked in
decreasing order of their best fithes values aay #ne abbreviated as follows:

LR1 is a Lagrangian Relaxation method as useddh [1

* LR2is a Lagrangian Relaxation method as used4h [1

* GAlis a standard genetic algorithm as used in,[14]

* GAZ2 is a genetic algorithm with special operat@sised in [12],
* GRAL and GRA2 are the greedy randomized searchadgtiis used in [10],
* MA and SMA are memetic algorithms as used in [14],

* BDEL1 is a binary differential evolution methodsuged in [1],
 BDE2 is a binary differential evolution method &&d in [16],

* ES is an evolutionary strategies algorithm as us¢ti],

» SSGA is steady state genetic algorithm as uset]]jn [

* ICGA s an integer coded genetic algorithm as usga0],

* HHis a hyper-heuristic algorithm proposed in #tisdy.

Table 5.11:Cost results for System 1

Algorithm Best Result Worst Result  Average Result

LR1 565825 n/a n/a
GRA1 565825 - -
GA2 565825 570032 -
BDE2 565827 566650 565965
HH 565827 567028 566243
MA 565827 566861 566453
ES 565827 571312 569199
GAl 565866 571366 567329
BDE1 566166 - -
ICGA 566404 - -
SMA 566686 567822 566787
LR2 567663 n/a n/a

In System 1, LR1, GRA1 and GA2 obtain the bestltasith 565825. HH achieves
the second best result. However, the differencegmage between these results is
only 0.0003%. In a small data set, different aldns obtain very similar results.

The difference between the best and the worst \@fleach algorithm is also low.
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In System 2, HH produces the overal best result2 @Ad GRA2 follow the HH
method. The difference percentage between the v@ises of HH and GA2 is
0.022%. In System 3, HH again finds the best rasuftont of the SMA method.

The difference percentage increases to 0.058%argar test instance.

Table 5.12:Cost results for System 2

Algorithm Best Result Worst Result  Average Result
HH 1125997 1128587 1127563
GA2 1126243 1132059 -
GRA2 1126805 - -
ICGA 1127244 - -
MA 1127254 1130916 1128824
GRAl 1128160 - -
SMA 1128192 1128403 1128213
GAl 1128876 1131565 1130160
LR2 1129633 n/a n/a
LR1 1130660 n/a n/a
Table 5.13:Cost results for System 3
Algorithm Best Result Worst Result  Average Result
HH 2248284 2253971 2250534
SMA 2249589 2249589 2249589
LR2 2250223 n/a n/a
GA2 2251911 2259706 -
GAl 2252909 2269282 2262585
MA 2252937 2270361 2262477
ICGA 2254123 - -
GRA2 2255416 - -
LR1 2258503 n/a n/a
GRA1 2259340 - -

Although LR1 and GRAL obtain the best result irst8gn 1, they do not perform
well in larger data sets. On the other hand, metheith hybridization techniques,
such as repair operators, hill climbers, specidligperators used for reproduction or
for initial population generation, produce espdgiddetter results with increased
problem instances. HH, SMA, LR2 are examples f@séhmethods. In System 3,
System 4, System 5 and System 6, HH, SMA and LB@rithms take the first three
places. At each iteration, HH makes use of a HiitMging operator; therefore, HH is
a robust method for different problem instanceshwitarying data sizes.
Additionally, HH also applies mutational heuristicsmaintain diversity during the

search.
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In System 5, SMA finds the best result in frontH. However, HH finds the best
result in System 4 and System 6 and SMA obtainséoend best result. In all test
sytems, the difference percentage between theanelsthe worst results of SMA is

lower than the difference percentage of the bedtthe worst values obtained by
HH.

Table 5.14:Cost results for System 4

Algorithm Best Result Worst Result  Average Result
HH 3369907 3376508 3373251
SMA 3370595 3371272 3370820
LR2 3374994 3374994 3374994
GA2 3376625 3384252 -
GAl 3377393 3401847 3394044
ICGA 3378108 - -
GRAl 3383290 - -
MA 3388676 3408275 3394830
LR1 3394066 n/a n/a
Table 5.15:Cost results for System 5
Algorithm Best Result Worst Result  Average Result
SMA 4494214 4494439 4494378
HH 4494452 4499067 4496639
LR2 4496729 4496729 4496729
ICGA 4498943 - -
MA 4501449 4545305 4527779
GA2 4504933 4510129 -
GAl 4507692 4552982 4525204
LR1 4526022 n/a n/a
Table 5.16:Cost results for System 6
Algorithm Best Result Worst Result  Average Result
HH 5614360 5620496 5618418
SMA 5616314 5616900 5616699
LR2 5620305 5620305 5620305
GAl 5626362 5690086 5669362
GA2 5627437 5637914 -
ICGA 5630838 - -
MA 5640543 5698039 5665803
GRAl 5669945 - -
LR1 5657277 n/a n/a

In the last experiment, real world data from therkKidh Interconnected Power
System is used for the performance comparison. @aia set only contains eight
units and eight hours. According to the experimlergaults, both HH and BDE2
produce the best result. ES and SSGA obtain thengegest result. This experiment
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also verifies, that the HH is able to find the aptm solution using real world data
as well.

Table 5.17:Cost results for Turkish Interconnected Power Sgste

Algorithm Best Result Worst Result  Average Result

HH 530346 530346 530346
BDE2 530346 530346 530346
ES 530392 530392 530392
SSGA 530392 530392 530392
BDE1 532142 - -

Table 5.18 shows the 95% confidence intervals effitmess values obtained by the
HH for each test instance. First column gives tleans and the second column gives
the 95% confidence intervals of the means.

Table 5.18:Mean and the 95% confidence interval for the fisnesmlues obtained by

the HH

Mean Confidence interval
System 1 566243 [565819.8 , 566666.2]
System 2 1127563 [1127142.96 , 1127983.04]
System 3 2250534 [2249835.94 , 2251232.06]
System 4 3373251 [3372450.57 , 3374051.43]
System 5 4496639 [4495956.81 , 4497321.19]
System 6 5618418 [5616976.15 , 5619859.85]
System TR 530346 [530346 , 530346]

In System 1, nine different algorithms obtain betesults than the upper bound of
the confidence interval. In System 2, only fouraasitpms are able to produce a
better result than the upper bound. In System 3System 5, SMA and LR2 achieve
results within the 0.95 confidence interval. In t8ys 4 and System 6, only SMA is
able to find solutions, whose fitness values liéween the upper and the lower
bounds of the interval.
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6. CONCLUSION

In this study, hyper-heuristic algorithms with éifént heuristic selection and move
acceptance strategy combinations are implementsolt@ the UCP. To determine
the most effective hyper-heuristic combination fibe UCP, experiments are
performed using two problem instances. RPD-OI fs#igriselection and move
acceptance combination achieves the best resultsese two test sets. With the
increased data size of the problem instance, itectefeness becomes more
significant. Consequently, in the second and tlpedts of the experiments the
performance of this combination is compared witheotoptimization techniques,

which are previously applied to the UCP.

In the first part of the experiments it is also etved, that CF and GR methods
obtain good results in short time periods. Howetlee, best and the average results
produced by these two methods are not better tmamesults of RP, RPD, SR and
RD. They select a heuristic according to the pentorce of each heuristic, but some
heuristics can outperform the others; thereforetatianal heuristics especially have
a small chance of being selected in further pdrthe search process. Diversity can
not be provided efficiently, and this results irttog stuck at local optima. On the
other hand, in the RPD heuristic selection straegn the mutational heuristics are
applied to the solution at later stages of thedearth respect to the order of the
heuristics in the predefined permutation arraythed different regions of the search
space are investigated to find a better soluti@am tthe globally best solution which

is found so far.

Statistical test results show significant statatidifferences between the fitness
values produced by different heuristic selectionthods for the same move
acceptance criterion except AM. This also verifieat one method obtains much

better results than at least one of the remainiathods.

After determining the most efficient strategy condiion for the hyper-heuristic
approach, the proposed hyper-heuristic algorithmcasnpared with a genetic

algorithm explained in [12]. Although these two@ithms contain the same genetic
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operators, the hyper-heuristic algorithm producegieb results than the genetic
algorithm. The difference percentage between tlselt® obtained by these two
methods increases with the growing data size. Wthendata size increases, the
solutions achieved using the HH approach are betten in the worst runs than the
results obtained by GA2. Additionally, the hyperhstic method does not require
system monitoring and fine tuning of the genetierapor probability rates to prevent

the convergence.

Secondly, optimization techniques are ranked imedesing order of their best fithess
values using six benchmark data sets and one redd \data set. The HH method
finds consistent results in all test sets due ®ititorporation of the hill-climbing
operators. SMA and LR2 are the other two effectilgorithms for the UCP. SMA
uses specialized reproduction operators and hitibgrs. It also makes use of the
LR2 algorithm to create the initial population. Hidndomly creates the initial
population unlike in SMA, but it combines the usademutational heuristics with
hill-climbing operators to search different regiasfghe solution space and to reach

the highest point of the selected region.

HH obtains impressive results in all test sets wtmmpared with other optimization
algorithms. The performance of this algorithm canflrther enhanced by applying
more sophisticated heuristics and hill-climbing m@pers. Additionally, the initial
solution can be created using the priority listmoetto increase the efficiency of this
algorithm. Effective techniques including advandedrning mechanisms can be
used for heuristic selection and move acceptancte ps well.
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APPENDIX A.1
Table A.1 : Data set for System 1

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5
Pmax (MW) 455 455 130 130 162
Prmin (MW) 150 150 20 20 25
a0 1000 970 700 680 450
& 16.19 17.26 16.60 16.50 19.70
2 0.00048 0.00031 0.00200 0.00211 0.00398
tup (N) 8 8 5 5 6
taown (D) 8 8 5 5 6
Shot ($) 4500 5000 550 560 900
Scold ($) 9000 10000 1100 1120 1800
tcoldstart(h) 5 5 4 4 4
Initial state (h) 8 8 -5 -5 -6

Unit 6 Unit 7 Unit 8 Unit 9 Unit 10

Pmax (MW) 80 85 55 55 55
Prmin (MW) 20 25 10 10 10
a0 370 480 660 665 670
a 22.26 27.74 25.92 27.27 27.79
2 0.00712 0.00079 0.00413 0.00222 0.00173
tup () 3 3 1 1 1
taown (h) 3 3 1 1 1
Shot ($) 170 260 30 30 30
Scold ($) 340 520 60 60 60
tcoldstart(h) 2 2 0 0 0
Initial state (h) -3 -3 -1 -1 -1
Hour Demand Reserve Hour Demand Reserve
(MW) (MW) (MW) (MW)
1 700 75 13 1400 140
2 750 75 14 1300 130
3 850 85 15 1200 120
4 950 95 16 1050 105
5 1000 100 17 1000 100
6 1100 110 18 1100 110
7 1150 115 19 1200 120
8 1200 120 20 1400 140
9 1300 130 21 1300 130
10 1400 140 22 1100 110
11 1450 145 23 900 90
12 1500 150 24 800 80
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Table A.2 : Data set for Turkish Interconnected Power System

Unit 1 Unit 2 Unit 3 Unit 4
Pmax (MW) 1120 1350 1432 600
Prmin (MW) 190 245 318 150
) 6995.5 7290.6 6780.5 1564.4
a 7.0063 7.2592 5.682 3.1288
2 0.0168 0.0127 0.0106 0.0139
tup () 8 1 1 10
tgown (D) 2 0.5 0.5 3
Shot ($) 800 800 600 400
Scold ($) 1600 1600 1200 800
tcoldstart(h) 8 1 1 10
Initial state (h) -4 -4 -4 -4
Unit 5 Unit 6 Unit 7 Unit 8
Prmax (MW) 990 420 630 630
Prin (MW) 210 110 140 140
& 5134.1 1159.5 1697 1822.8
a 6.232 3.3128 3.2324 3.472
& 0.0168 0.021 0.013 0.0147
tup () 10 10 10 10
taown (h) 3 3 3 3
Shot ($) 500 400 400 400
Scold ($) 1000 800 800 800
teowdstart() 10 10 10 10
Initial state (h) -4 -4 -4 -4
Hour Demand Reserve
(MW) (MW)
1 2000 200
2 3000 300
3 6500 650
4 1500 150
5 4200 420
6 5100 510
7 2700 270
8 1750 175
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APPENDIX A.2
Table A.3 : Best solution for System 2 between Hour 1 and Hour

Unit Hourl Hour2 Hour3 Hour4 Hour5 Hour6
1 455,00 455.00 455.00 455.00 455.00 455.00
2 245.00 295.00 382.50 455.00 455.00 425.00
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 130.00
5 0.00 0.00 25.00 40.00 25.00 25.00
6 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00
11  455.00 455.00 455.00 455.00 455.00 455.00
12 245.00 295.00 382.50 455.00 455.00 425.00
13 0.00 0.00 0.00 0.00 0.00 130.00
14 0.00 0.00 0.00 0.00 130.00 130.00
15 0.00 0.00 0.00 40.00 25.00 25.00
16 0.00 0.00 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00

Table A.4 : Best solution for System 2 between Hour 7 and H@ur

Unit Hour7 Hour8 Hour9 Hour10Hour 11 Hour 12
1 455,00 455.00 455.00 455.00 455.00 455.00
2 455.00 455.00 455.00 455.00 455.00 455.00
3 0.00 130.00 130.00 130.00 130.00 130.00
4 130.00 130.00 130.00 130.00 130.00 130.00
5 45.00 30.00 97.50 162.00 162.00 162.00
6 0.00 0.00 20.00 33.00 73.00 80.00
7 0.00 0.00 25.00 25.00 25.00 25.00
8 0.00 0.00 0.00 10.00 10.00 43.00
9 0.00 0.00 0.00 0.00 10.00 10.00
10 0.00 0.00 0.00 0.00 0.00 10.00
11  455.00 455.00 455.00 455.00 455.00 455.00
12 455.00 455.00 455.00 455.00 455.00 455.00
13 130.00 130.00 130.00 130.00 130.00 130.00
14 130.00 130.00 130.00 130.00 130.00 130.00
15 45.00 30.00 97.50 162.00 162.00 162.00
16 0.00 0.00 20.00 33.00 73.00 80.00
17 0.00 0.00 0.00 25.00 25.00 25.00
18 0.00 0.00 0.00 10.00 10.00 43.00
19 0.00 0.00 0.00 0.00 10.00 10.00
20 0.00 0.00 0.00 0.00 0.00 10.00
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Table A.5 : Best solution for System 2 between Hour 13 and H@&ur

Unit Hour 13 Hour 14 Hour 15 Hour 16 Hour 17 Hour 18

1 455.00 455.00 455.00 455.00 455.00 455.00
2 455.00 455.00 455.00 310.00 260.00 360.00
3 130.00 130.00 130.00 130.00 130.00 130.00
4 130.00 130.00 130.00 130.00 130.00 130.00
5 162.00 97.50 30.00 25.00 25.00 25.00
6 33.00 20.00 0.00 0.00 0.00 0.00

7 25.00 0.00 0.00 0.00 0.00 0.00

8 10.00 0.00 0.00 0.00 0.00 0.00

9 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00
11 455.00 455.00 455.00 455,00 455.00 455.00
12 455.00 455.00 455.00 310.00 260.00 360.00
13 130.00 130.00 130.00 130.00 130.00 130.00
14 130.00 130.00 130.00 130.00 130.00 130.00
15 162.00 97.50 30.00 25.00 25.00 25.00
16 33.00 20.00 0.00 0.00 0.00 0.00
17 25.00 25.00 0.00 0.00 0.00 0.00
18 10.00 0.00 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00

Table A.6 : Best solution for System 2 between Hour 19 and Rdur

Unit Hour 19 Hour 20 Hour 21 Hour 22 Hour 23 Hour 24

1 455.00 455.00 455.00 455.00 455.00 455.00

2 455.00 455.00 455.00 455,00 432,50 345.00

3 130.00 130.00 130.00 0.00 0.00 0.00
4 130.00 130.00 130.00 130.00 0.00 0.00
5 30.00 162.00 105.00 105.00 25.00 0.00
6 0.00 43.00 20.00 20.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.00 0.00

8 0.00 10.00 10.00 0.00 0.00 0.00

9 0.00 10.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00
11 455.00 455.00 455.00 455.00 455.00 455.00
12 455.00 455.00 455.00 455,00 432,50 345.00
13 130.00 130.00 130.00 0.00 0.00 0.00
14 130.00 130.00 130.00 0.00 0.00 0.00
15 30.00 162.00 105.00 105.00 0.00 0.00
16 0.00 43.00 20.00 20.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.00 0.00
18 0.00 10.00 0.00 0.00 0.00 0.00
19 0.00 10.00 0.00 0.00 0.00 0.00
20 0.00 10.00 0.00 0.00 0.00 0.00
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Table A.7 : Best solution for System 3 between Hour 1 and Hour

Unit Hourl Hour2 Hour3 Hour4 Hour5 Hourb6

1 455.00 455.00 455.00 455.00 455.00 455.00
2 245.00 295.00 388.75 443.75 455.00 455.00
3 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00 130.00
5 0.00 0.00 0.00 25.00 57.50 27.50
6 0.00 0.00 0.00 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.00 0.00

8 0.00 0.00 0.00 0.00 0.00 0.00

9 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00
11 455.00 455.00 455.00 455.00 455.00 455.00
12 245.00 295.00 388.75 443.75 455.00 455.00
13 0.00 0.00 0.00 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.00 130.00
15 0.00 0.00 0.00 25.00 57.50 27.50
16 0.00 0.00 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00
21  455.00 455.00 455.00 455.00 455.00 455.00
22 245.00 295.00 388.75 443.75 455.00 455.00
23 0.00 0.00 0.00 0.00 0.00 0.00
24 0.00 0.00 0.00 0.00 0.00 130.00
25 0.00 0.00 25.00 25.00 57.50 27.50
26 0.00 0.00 0.00 0.00 0.00 0.00
27 0.00 0.00 0.00 0.00 0.00 0.00
28 0.00 0.00 0.00 0.00 0.00 0.00
29 0.00 0.00 0.00 0.00 0.00 0.00
30 0.00 0.00 0.00 0.00 0.00 0.00
31 455.00 455.00 455.00 455.00 455.00 455.00
32 245.00 295.00 388.75 443.75 455.00 455.00
33 0.00 0.00 0.00 0.00 0.00 130.00
34 0.00 0.00 0.00 130.00 130.00 130.00
35 0.00 0.00 0.00 0.00 57.50 27.50
36 0.00 0.00 0.00 0.00 0.00 0.00
37 0.00 0.00 0.00 0.00 0.00 0.00
38 0.00 0.00 0.00 0.00 0.00 0.00
39 0.00 0.00 0.00 0.00 0.00 0.00
40 0.00 0.00 0.00 0.00 0.00 0.00
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Table A.8 : Best solution for System 3 between Hour 7 and H&ur

Unit Hour7 Hour8 Hour 9 Hour 10Hour 11 Hour 12
1 455.00 455.00 455.00 455.00 455.00 455.00
2 455.00 455.00 455.00 455.00 455.00 455.00
3 0.00 130.00 130.00 130.00 130.00 130.00
4 130.00 130.00 130.00 130.00 130.00 130.00
5 45.00 30.00 103.75 162.00 162.00 162.00
6 0.00 0.00 20.00 33.00 73.00 80.00
7 0.00 0.00 0.00 25.00 25.00 25.00
8 0.00 0.00 0.00 10.00 10.00 43.00
9 0.00 0.00 0.00 0.00 10.00 10.00
10 0.00 0.00 0.00 0.00 0.00 10.00
11  455.00 455.00 455.00 455,00 455.00 455.00
12 455.00 455.00 455.00 455.00 455.00 455.00
13 0.00 130.00 130.00 130.00 130.00 130.00
14 130.00 130.00 130.00 130.00 130.00 130.00
15 45.00 30.00 103.75 162.00 162.00 162.00
16 0.00 0.00 20.00 33.00 73.00 80.00
17 0.00 0.00 25.00 25.00 25.00 25.00
18 0.00 0.00 0.00 10.00 10.00 43.00
19 0.00 0.00 0.00 0.00 10.00 10.00
20 0.00 0.00 0.00 0.00 0.00 10.00
21  455.00 455.00 455.00 455.00 455.00 455.00
22 455.00 455.00 455.00 455,00 455.00 455.00
23 130.00 130.00 130.00 130.00 130.00 130.00
24  130.00 130.00 130.00 130.00 130.00 130.00
25 45.00 30.00 103.75 162.00 162.00 162.00
26 0.00 0.00 20.00 33.00 73.00 80.00
27 0.00 0.00 0.00 25.00 25.00 25.00
28 0.00 0.00 0.00 10.00 10.00 43.00
29 0.00 0.00 0.00 0.00 10.00 10.00
30 0.00 0.00 0.00 0.00 0.00 10.00
31 455.00 455.00 455.00 455.00 455.00 455.00
32 455.00 455.00 455.00 455,00 455.00 455.00
33 130.00 130.00 130.00 130.00 130.00 130.00
34 130.00 130.00 130.00 130.00 130.00 130.00
35 45.00 30.00 103.75 162.00 162.00 162.00
36 0.00 0.00 20.00 33.00 73.00 80.00
37 0.00 0.00 0.00 25.00 25.00 25.00
38 0.00 0.00 0.00 10.00 10.00 43.00
39 0.00 0.00 0.00 0.00 10.00 10.00
40 0.00 0.00 0.00 0.00 0.00 10.00

73



Table A.9 : Best solution for System 3 between Hour 13 and H@&ur

Unit Hour 13 Hour 14 Hour 15 Hour 16 Hour 16 Hour 18
1 455.00 455.00 455.00 455.00 455.00 455.00
2 455.00 455.00 455.00 310.00 260.00 360.00
3 130.00 130.00 130.00 130.00 130.00 130.00
4 130.00 130.00 130.00 130.00 130.00 130.00
5 162.00 103.75 30.00 25.00 25.00 25.00
6 33.00 20.00 0.00 0.00 0.00 0.00
7 25.00 0.00 0.00 0.00 0.00 0.00
8 10.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00
11 455.00 455.00 455.00 455.00 455.00 455.00
12 455.00 455.00 455.00 310.00 260.00 360.00
13 130.00 130.00 130.00 130.00 130.00 130.00
14 130.00 130.00 130.00 130.00 130.00 130.00
15 162.00 103.75 30.00 25.00 25.00 25.00
16 33.00 20.00 0.00 0.00 0.00 0.00
17 25.00 0.00 0.00 0.00 0.00 0.00
18 10.00 0.00 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00
21 455.00 455.00 455.00 455.00 455.00 455.00
22 455.00 455.00 455.00 310.00 260.00 360.00
23 130.00 130.00 130.00 130.00 130.00 130.00
24 130.00 130.00 130.00 130.00 130.00 130.00
25 162.00 103.75 30.00 25.00 25.00 25.00
26 33.00 20.00 0.00 0.00 0.00 0.00
27 25.00 0.00 0.00 0.00 0.00 0.00
28 10.00 0.00 0.00 0.00 0.00 0.00
29 0.00 0.00 0.00 0.00 0.00 0.00
30 0.00 0.00 0.00 0.00 0.00 0.00
31 455.00 455.00 455.00 455.00 455.00 455.00
32 455.00 455.00 455.00 310.00 260.00 360.00
33 130.00 130.00 130.00 130.00 130.00 130.00
34 130.00 130.00 130.00 130.00 130.00 130.00
35 162.00 103.75 30.00 25.00 25.00 25.00
36 33.00 20.00 0.00 0.00 0.00 0.00
37 25.00 25.00 0.00 0.00 0.00 0.00
38 10.00 0.00 0.00 0.00 0.00 0.00
39 0.00 0.00 0.00 0.00 0.00 0.00
40 0.00 0.00 0.00 0.00 0.00 0.00
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Table A.10 : Best solution for System 3 between Hour 19 and Fdur

Unit Hour 19 Hour 20 Hour 21 Hour 22 Hour 23 Hour 24

1 455.00 455.00 455.00 455.00 455.00 455.00
2 455.00 455.00 455.00 455.00 43250 345.00
3 130.00 130.00 130.00 0.00 0.00 0.00
4 130.00 130.00 130.00 130.00 0.00 0.00
5 30.00 162.00 103.75 0.00 0.00 0.00
6 0.00 41.75 20.00 20.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 10.00 0.00 0.00 0.00 0.00
9 0.00 10.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00
11 455.00 455.00 455.00 455,00 455.00 455.00
12 455.00 455.00 455.00 455.00 43250 345.00
13 130.00 130.00 130.00 0.00 0.00 0.00
14 130.00 130.00 130.00 130.00 0.00 0.00
15 30.00 162.00 103.75 67.50 25.00 0.00
16 0.00 41.75 20.00 20.00 0.00 0.00
17 0.00 25.00 25.00 25.00 0.00 0.00
18 0.00 10.00 0.00 0.00 0.00 0.00
19 0.00 10.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00
21 455.00 455.00 455.00 455.00 455.00 455.00
22 455.00 455.00 455.00 455,00 43250 345.00
23 130.00 130.00 130.00 0.00 0.00 0.00
24 130.00 130.00 130.00 130.00 0.00 0.00
25 30.00 162.00 103.75 0.00 0.00 0.00
26 0.00 41.75 20.00 20.00 0.00 0.00
27 0.00 0.00 0.00 0.00 0.00 0.00
28 0.00 10.00 0.00 0.00 0.00 0.00
29 0.00 10.00 0.00 0.00 0.00 0.00
30 0.00 0.00 0.00 0.00 0.00 0.00
31 455.00 455.00 455.00 455.00 455.00 455.00
32 455.00 455.00 455.00 455,00 43250 345.00
33 130.00 130.00 130.00 0.00 0.00 0.00
34 130.00 130.00 130.00 130.00 0.00 0.00
35 30.00 162.00 103.75 67.50 25.00 0.00
36 0.00 41.75 20.00 20.00 0.00 0.00
37 0.00 0.00 0.00 0.00 0.00 0.00
38 0.00 10.00 0.00 0.00 0.00 0.00
39 0.00 10.00 0.00 0.00 0.00 0.00
40 0.00 0.00 0.00 0.00 0.00 0.00
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