
 
 
 

 
 
 
 

 

 

  

 
 

 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

ĐSTANBUL TECHNICAL UNIVERSITY ���� INFORMATICS INSTITUTE  

M.Sc. Thesis by 
Ali Argun BERBEROĞLU 

Department : Computer Science 

Programme : Computer Science 

 

JANUARY 2011 

HYPER-HEURISTICS FOR THE UNIT COMMITMENT PROBLEM 

Thesis Supervisor: Asst. Prof. Dr. A. Şima UYAR 
    
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

 
 
 
 
 

 

 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

ĐSTANBUL TECHNICAL UNIVERSITY ���� INFORMATICS INSTITUTE  
 

M.Sc. Thesis by 
Ali Argun BERBEROĞLU 

704041002 

Date of submission : 20 December 2010 
Date of defence examination: 26 January 2011 

 

Supervisor (Chairman) : Asst. Prof. Dr. A. Şima UYAR  (ITU) 
Members of the Examining Committee : Assoc. Prof. Belgin TÜRKAY (ITU) 

 Assoc. Prof. Şule ÖĞÜDÜCÜ (ITU) 
  
  

 

JANUARY 2011 
 

HYPER-HEURISTICS FOR THE UNIT COMMITMENT PROBLEM 



 



 

OCAK 2011 
 

ĐSTANBUL TEKN ĐK ÜNĐVERSĐTESĐ ���� BĐLĐŞĐM ENSTĐTÜSÜ 
 

YÜKSEK L ĐSANS TEZĐ 
Ali Argun BERBEROĞLU 

704041002 

Tezin Enstitüye Verildiği Tarih :  20 Aralık 2010 
Tezin Savunulduğu Tarih :  26 Ocak 2011 

 

Tez Danışmanı : Yrd. Doç. Dr. A. Şima UYAR (ĐTÜ)  
Diğer Jüri Üyeleri :  Doç. Dr. Belgin TÜRKAY (ĐTÜ) 

 Doç. Dr. Şule ÖĞÜDÜCÜ (ĐTÜ) 
 
 

 

ÜNĐTE PROGRAMLAMA PROBLEM Đ ĐÇĐN ÜST SEZGĐSEL YÖNTEMLER 
 





 
v 

FOREWORD 

First and foremost, I would like to thank my family for their great support during my 
whole life. This achievement would not have been possible without their support, 
encouragement and valuable suggestions. 

I would like to express my graditute to Asst. Prof. Dr. Şima Uyar for her patient 
guidance and support throughout this thesis work. I am truly very fortunate to have 
the opportunity to work with her. I found her guidance to be extremely valuable. 

I am very thankful to my managers and my collagues in Netaş. With their support, 
encouragement and understanding, I was able to attend the lectures even during some 
intensive periods of the ongoing projects. 

I am also very thankful to the entire faculty and staff members of the Computer 
Engineering Department for their help during my MSc.  

 

 

December 2010 
 

Ali Argun BERBEROĞLU 

Computer Engineer 
 

 

 



 
vi 



 
vii  

TABLE OF CONTENTS 

                                                                                                                                                 Page 

ABBREVIATIONS ................................................................................................... ix 
LIST OF TABLES .................................................................................................... xi 
LIST OF FIGURES ................................................................................................xiii 
LIST OF SYMBOLS ............................................................................................... xv 
SUMMARY ............................................................................................................xvii 
ÖZET........................................................................................................................ xxi 
1. INTRODUCTION.................................................................................................. 1 

1.1 Contribution of the Thesis.................................................................................. 2 
1.2 Outline of the Thesis .......................................................................................... 2 

2. THE UNIT COMMITMENT PROBLEM ..................... ..................................... 3 
3. RELATED WORK ON THE UCP....................................................................... 7 
4. HYPER-HEURISTICS........................................................................................ 17 

4.1 Background ...................................................................................................... 17 
4.2 Heuristics to Choose Heuristics ....................................................................... 18 

4.2.1 Constructive Hyper-heuristics.................................................................. 19 
4.2.2 Perturbative Hyper-heuristics...................................................................20 

4.2.2.1 Single Point Search Based Hyper-heuristics................................... 21 
4.2.2.2 Population Based Hyper-heuristics ................................................. 26 

4.3 Heuristics to Generate Heuristics ..................................................................... 27 
5. EXPERIMENTAL STUDY.................................................................................31 

5.1 Proposed Approach .......................................................................................... 32 
5.2 Experimental Setup .......................................................................................... 36 
5.3 Experimental Results........................................................................................ 38 

5.3.1 Performance Comparison of Different Hyper-heuristic Combinations ... 38 
5.3.2 Performance Comparison of HH with a Genetic Algorithm.................... 55 
5.3.3 Performance Comparison of HH with other Optimization Techniques... 55 

6. CONCLUSION..................................................................................................... 61 
REFERENCES......................................................................................................... 63 
APPENDICES .......................................................................................................... 67 
CURRICULUM VITAE.......................................................................................... 77 

 
 
 
 
 
 
 
 



 
viii  

 

 

 

 

 

 

 

 



 
ix

 

ABBREVIATIONS 

ACO : Ant Colony Optimization 
AM : All Moves 
ANOVA : Analysis of Variance 
CF : Choice Function 
DE : Differential Evolution 
DP : Dynamic Programming 
EDP : Economic Dispatch Problem 
ES : Evolutionary Strategies 
GA : Genetic Algorithm 
GD : Great Deluge 
GR : Greedy 
GRA : Greedy Randomized Search Algorithm 
HH : Hyper-heuristic 
ICGA : Integer Coded Genetic Algorithm 
IE : Improving and Equal 
MA : Memetic Algorithm 
LR : Lagrangian Relaxation 
PL : Priority List 
PSO : Particle Swarm Optimization 
RD : Random Descent 
RP : Random Permutation 
RPD : Random Permutation Descent 
SR : Simple Random 
SSGA : Steady State Genetic Algorithm 
OI : Only Improving 
UCP : Unit Commitment Problem 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
x 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
xi

LIST OF TABLES 

                                                                                                                                                 Page 

 
Table 5.1: Cost results for System 2 with the OI move acceptance criterion ........... 38 
Table 5.2: Cost results for System 3 with the OI move acceptance criterion ........... 40 
Table 5.3: Cost results for System 2 with the IE move acceptance criterion............ 41 
Table 5.4: Cost results for System 3 with the IE move acceptance criterion............ 42 
Table 5.5: Cost results for System 2 with the GD move acceptance criterion.......... 44 
Table 5.6: Cost results for System 3 with the GD move acceptance criterion.......... 46 
Table 5.7: Cost results for System 2 with the AM move acceptance criterion......... 48 
Table 5.8: Cost results for System 3 with the AM move acceptance criterion......... 49 
Table 5.9: The best ten heuristic selection method and move acceptance criterion    
                   combinations ........................................................................................... 51 
Table 5.10: Comparison of the cost results of GA2 and HH methods...................... 55 
Table 5.11: Cost results for System 1 ....................................................................... 56 
Table 5.12: Cost results for System 2 ....................................................................... 57 
Table 5.13: Cost results for System 3 ....................................................................... 57 
Table 5.14: Cost results for System 4 ....................................................................... 58 
Table 5.15: Cost results for System 5 ....................................................................... 58 
Table 5.16: Cost results for System 6 ....................................................................... 58 
Table 5.17: Cost results for Turkish Interconnected Power System......................... 59 
Table 5.18: Mean and the 95% confidence interval for the fitness values obtained by  
                     the HH ................................................................................................... 59 
Table A.1 : Data set for System 1 ............................................................................. 68 
Table A.2 : Data set for Turkish Interconnected Power System............................... 69 
Table A.3 : Best solution for System 2 between Hour 1 and Hour 6........................ 70 
Table A.4 : Best solution for System 2 between Hour 7 and Hour 12...................... 70 
Table A.5 : Best solution for System 2 between Hour 13 and Hour 18.................... 71 
Table A.6 : Best solution for System 2 between Hour 19 and Hour  24................... 71 
Table A.7 : Best solution for System 3 between Hour 1 and Hour 6........................ 72 
Table A.8 : Best solution for System 3 between Hour 7 and Hour 12...................... 73 
Table A.9 : Best solution for System 3 between Hour 13 and Hour 18.................... 74 
Table A.10 : Best solution for System 3 between Hour 19 and Hour 24.................. 75 
  
 
 
 
 
 
 
 
 
 



 
xii  

 



 
xiii  

LIST OF FIGURES 

                                                                                                                                                 Page 

Figure 4.1 : Hyper-heuristic framework FA .............................................................. 25 
Figure 4.2 : Hyper-heuristic framework FB .............................................................. 25 
Figure 4.3 : Hyper-heuristic framework FC .............................................................. 26 
Figure 4.4 : Hyper-heuristic framework FD .............................................................. 26 
Figure 5.1 : The binary representation of a candidate solution................................. 32 
Figure 5.2 : Mutation operator .................................................................................. 32 
Figure 5.3 : Swap-window operator.......................................................................... 33 
Figure 5.4 : Window-mutation operator ................................................................... 33 
Figure 5.5 : Swap-mutation operator ........................................................................ 34 
Figure 5.6 : Swap-window hill-climb operator......................................................... 35 
Figure 5.7 : Box-whisker plot for System 2 with OI ................................................ 39 
Figure 5.8 : Multiple comparison results for System 2 with OI ............................... 39 
Figure 5.9 : Box-whisker plot for System 3 with OI ................................................ 40 
Figure 5.10 : Multiple comparison results for System 3 with OI ............................. 41 
Figure 5.11 : Box-whisker plot for System 2 with IE............................................... 42 
Figure 5.12 : Multiple comparison results for System 2 with IE.............................. 43 
Figure 5.13 : Box-whisker plot for System 3 with IE............................................... 43 
Figure 5.14 : Multiple comparison results for System 3 with IE.............................. 44 
Figure 5.15 : Box-whisker plot for System 2 with GD............................................. 45 
Figure 5.16 : Multiple comparison results for System 2 with GD............................ 45 
Figure 5.17 : Box-whisker plot for System 3 with GD............................................. 46 
Figure 5.18 : Multiple comparison results for System 3 with GD............................ 47 
Figure 5.19 : Box-whisker plot for System 2 with AM ............................................ 48 
Figure 5.20 : Multiple comparison results for System 2 with AM ........................... 49 
Figure 5.21 : Box-whisker plot for System 3 with AM ............................................ 50 
Figure 5.22 : Multiple comparison results for System 3 with AM ........................... 50 
Figure 5.23 : Distribution of the best fifty solutions for System 2 ........................... 52 
Figure 5.24 : Distribution of the best fifty solutions for System 3 ........................... 52 
Figure 5.25 : Iteration Number versus Fitness Value curves.................................... 53 
Figure 5.26 : Multiple comparison results for System 2........................................... 54 
Figure 5.27 : Multiple comparison results for System 3........................................... 54 
  
 



 
xiv 



 
xv 

LIST OF SYMBOLS 

 
Pi 

max   : The maximum power which can be generated by unit i 
Pi 

min : The minimum power which can be generated by unit i 
CScold : The cost of a cold start-up 
CShot : The cost of a hot start-up 
tcoldstart : The number of hours a generator needs to stay offline for a coldstart 
tup : The minimum up-time 
tdown : The minimum down-time 
vj,g 

(t)   : The velocity of particle j at iteration t with respect to the gth   

                          dimension 
xj,g 

(t)   : The position of particle j at iteration t with respect to the gth  

                          dimension 
pbestj,g : The best fitness value of particle j at iteration g 
gbestg : The best fitness value of the group at iteration g 
w : The inertia weight factor 
c1 : The cognitive acceleration factor 
c2 : The social acceleration factor 
τij : Pheromone levels between node i and node j 
ηij : Heuristic information between node i and node j 
pk

ij : The probability of ant k to choose next node depending on the edge  
                           in between node i and node j of the graph 
α : The effect of pheromone level 
β : The effect of pheromone level 
ρ0 : The pheromone evaporation rate 
Vi,g   : The donor vector for individual i of generation g 
Xj,i,g   : The randomly chosen target vector for the gene location j of the  
                           individual i in generation g 
e 

–δ / t
 : The Metropolis criterion 

 
 
 



 
xvi 



  
xvii  

HYPER-HEURISTICS FOR THE UNIT COMMITMENT PROBLEM 

SUMMARY 

As the power demand varies in different periods of a day, power generation 
companies need to plan the operation periods of the generators accordingly. The 
power demand is especially high during the daytime, since the factories consume 
most of the generated electricity in that time period. However, this demand decreases 
significantly at weekends or during early morning and late evening, when people 
spend their times at home. Due to these cycles in the required power, startup and 
shutdown costs of the generating units take a huge amount in the total production 
costs. Violating generator specific operation constraints brings additional 
maintenance cost as well. 

The problem of selecting the generators to be in service and determining for how 
long they will operate over a predefined time horizon is called the Unit Commitment 
Problem (UCP). The online units must fulfill the forecasted power demand and 
reserve requirements for each time slot at minimum operating cost without violating 
any of the problem specific constraints. 

An improvement in the unit commitment schedule of the generators result in great 
economic savings in power generation cost and energy usage. Therefore, the UCP 
has attracted great commercial and academic interest and many optimization 
techniques have been applied to this problem. New algorithms have been 
implemented to obtain efficient results in large-scale power systems within a 
reasonable computation time. Several numerical optimization techniques, such as 
priority list method, dynamic programming, branch-and-bound, benders 
decomposition, tabu search, greedy algorithm, Lagrangian relaxation have been used 
for that purpose. Aside from these methods, nature insipired computing methods, 
such as ant colony optimization, particle swarm optimization, simulated annealing,  
genetic algorithms, artificial neural networks have been employed to solve the UCP. 
Operational constraints are integrated into the methods of the second group more 
effectively and the solution quality is increased.   

In this thesis, hyper-heuristic algorithms are implemented to solve the UCP. Hyper-
heuristics differ from heuristics in the set, on which they are operating. Heuristics are 
directly applied to the candidate solutions, but hyper-heuristics are employed to 
select a heuristic from a set of heuristics at each iteration of the search process. This 
selection is made either  randomly or using some performance indicators about the 
heuristics. Hyper-heuristics can be succesfully applied to a broad range of 
optimization problems, since they do not require problem specific information.  

Hyper-heuristic algorithms consist of two different mechanisms: 

1. Heuristic selection 

2. Move acceptance 
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For the heuristic selection mechanism, six different selection strategies are used in 
this study: 

1. Simple random 

2. Random descent 

3. Random permutation 

4. Random permutation descent 

5. Greedy 

6. Choice function 

In the move acceptance step, four different strategies are used: 

1. Only improving 

2. Improving and equal 

3. Great deluge 

4. All moves 

Twenty four combinations of the above listed heuristic selection and move 
acceptance strategies are applied to the UCP and their performances are investigated 
using two problem instances.  

In the first part of the experiments, random permutation descent heuristic selection 
and only improving move acceptance strategy combination achieves the best results 
among the twenty four combinations. Therefore, the performance of this algorithm is 
compared with other optimization techniques using seven problem instances taken 
from literature. 

The steps of the proposed hyper-heuristic algorithm with random permutation 
descent heuristic selection and only improving move acceptance strategy 
combination are defined as follows: 

1. An initial solution is created randomly and its fitness value is calculated. 

2. A permutation array containing the order of mutational heuristics and hill 
climbers is created randomly. 

3. A heuristic is selected with respect to the order in the permutation array and it 
is applied to the solution. 

4. If the selected heuristic is a mutational heuristic, a predefined hill climbing 
operator is applied to the solution after mutational heuristic. 

5. The fitness value of the resultant solution is calculated. 

6. The resultant solution replaces the current solution, if its fitness value is 
better than the previous one. 

In the second part of the experiments, the performance of the most efficient hyper-
heuristic algorithm is compared with the performance of a genetic algorithm, since 
these two algorithms use the same genetic operators. Hyper-heuristic method 
achieves better results than the genetic algorithm. Its superiority becomes more 
obvious with increasing problem data size. Additionally, hyper-heuristic method 
does not require system monitoring and parameter tuning during the search process. 
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In the third part, a set of experiments are performed to compare the eficiency of the 
hyper-heuristic method with previously published results. Experimental results show 
that the hyper-heuristic method achieves either the best fitness value or the second 
best fitness value in all test sets. Based on the results, it can be easily noticed that the 
hyper-heuristic algorithm is a robust and effective optimization method for varying 
data sizes. 

Consequently, it is recommended that the hyper-heuristic approach can be enhanced 
by incorporating more effective heuristics and hill climbers. The initial solution can 
be also improved using the priority list method and advanced learning techniques can 
be used for heuristic selection and move acceptance mechanisms.  
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ÜNĐTE PROGRAMLAMA PROBLEM Đ ĐÇĐN ÜST SEZGĐSEL YÖNTEMLER 

ÖZET 

Elektrik enerjisine olan ihtiyaç günün farklı saatlerinde büyük değişim 
gösterdiğinden, enerji üreten şirketlerin generatör çalışma sürelerini bu değişime 
uygun olarak planlamaları gerekmektedir. Üretilen elektriğin önemli bir kısmı 
fabrikalar tarafından tüketildiğinden enerji ihtiyacı gündüz saatlerinde daha fazla 
olmaktadır. Fakat bu ihtiyaç hafta sonları ve insanların vakitlerini evlerinde 
geçirdikleri gece geç saatlerde ve günün erken saatlerinde azalmaktadır. Enerji 
ihtiyacında görülen bu periyodik dalgalanmalardan dolayı generatörlerin devreye 
alınma ve devreden çıkarılma maliyetleri toplam enerji üretim maliyetleri içerisinde 
önemli bir pay tutar. Generatörlere ait çalışma limitlerinin ihlali de ek bir bakım 
maliyetini beraberinde getirmektedir. 

Önceden belirlenmiş bir süreç içerisinde hangi generatörlerin devreye alınacağı ve ne 
kadar süre çalışacaklarının belirlenmesi problemine ünite programlama problemi 
denir. Çalışmakta olan üniteler, herbir saat için önceden belirlenmiş olan enerji talebi 
ve rezerve ihtiyaçlarını, probleme ait hiçbir limit koşulu ihlal etmeden minimum 
çalışma maliyeti ile sağlamalıdırlar.  

Generatörlerin çalışma tarifesinde yapılacak bir iyileştirme elektrik üretim 
maliyetlerinde ve enerji kullanımında önemli oranda bir tasarrufa neden olacaktır. 
Bundan dolayı ünite programlama problemi ticari ve akademik yönden büyük ilgi 
çekmiş ve birçok optimizasyon yöntemi bu probleme uygulanmıştır. Büyük ölçekli 
enerji üretim sistemlerinde makul hesaplama sürelerinde verimli sonuçlar alabilmek 
için yeni algoritmalar geliştirilmi ştir. Öncelik listesi metodu, dinamik programlama, 
dallanma ve sınırlama, Bender ayrıştırma yöntemi, tabu araması, açgözlü arama 
algoritması, Lagrange gevşetme yaklaşımı gibi sayısal optimizasyon teknikleri bu 
amaçla kullanılmışlardır. Bu metodlardan başka, karınca kolonisi optimizasyonu, 
parçacık sürü optimizasyonu, tavlama benzetimi, genetik algoritmalar, yapay sinir 
ağları gibi doğa esinli hesaplama yöntemleri de ünite programlama problemine 
uygulanmıştır. Probleme ait kısıt koşullar ikinci gruba ait yöntemlere daha iyi adapte 
edilebildiğinden, elde edilen çözümün kalitesi de artmıştır. 

Bu tez çalışması kapsamında ünite programlama probleminin çözülebilmesi için üst 
sezgisel algoritmalar gerçeklenmiştir. Üst sezgiselleri sezgisel yöntemlerden ayıran 
en önemli fark üzerlerinde çalıştıkları elemanlardır. Sezgiseller, çözüm adaylarına 
doğrudan uygulanırlarken, üst sezgiseller arama sürecinin herbir yinelemesinde bir 
sezgisel yöntem seçmek için kullanılırlar. Bu seçim rastgele yapılabileceği gibi, 
sezgisellerle ilgili birtakım performans gösterge araçları kullanılarak da yapılabilir. 
Üst sezgiseller probleme özgü herhangi bir veriye ihtiyaç duymadıklarından 
optimizasyon problemlerinin önemli bir bölümüne başarıyla uygulanabilirler. 

Üst sezgisel algoritmalar iki farklı mekanizmadan oluşurlar: 

1. Sezgisel seçimi 
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2. Hareket kabulü 

Sezgisel seçimi mekanizması için bu çalışmada altı farklı seçim stratejisi  
kullanılmıştır: 

1. Basit rastgele  

2. Rastgele iniş 

3. Rastgele permütasyon 

4. Rastgele permütasyon iniş  

5. Açgözlü yöntemi 

6. Seçim fonksiyonu 

Hareket kabulü aşamasında dört farklı strateji kullanılmıştır: 

1. Sadece iyileştiren hareketler 

2. Đyileştiren ve denk hareketler 

3. Büyük sel 

4. Bütün hareketler 

Yukarıda belirtilen sezgisel seçimi ve hareket kabulü yöntemleri ile yirmi dört farklı 
strateji kombinasyonu oluşturulmuştur. Bu kombinasyonların gösterdiği 
performanslar ünite programlama problemine ait iki farklı veri örneği üzerinde 
incelenmiştir. 

Yapılan deneylerin ilk aşamasında, rastgele permütasyon iniş sezgisel seçim yöntemi 
ve sadece iyileştiren hareketleri kabul etme strateji kombinasyonu, yirmi dört 
kombinasyon arasında en iyi sonuçları elde etmiştir. Bundan dolayı, bu algoritmanın 
performansı, literatürde geçen yedi problem örneği kullanılarak diğer optimizasyon 
teknikleri ile karşılaştırılmıştır. Bu çalışmada önerilen üst sezgisel algoritmanın 
aşamaları aşağıda belirtilmiştir:  

1. Başlangıç çözümü rastgele bir biçimde yaratılarak, başarım değeri hesaplanır. 

2. Mutasyonel sezgisellerin ve tepe tırmanma metodlarının çözüme uygulanma 
sırasını içeren permütasyon dizisi rastgele olarak oluşturulur. 

3. Permütasyon dizisindeki sıralama doğrultusunda bir sezgisel seçilerek 
çözüme uygulanır. 

4. Seçilen sezgisel, mutasyonel sezgisel bir yöntem ise önceden tanımlanan bir 
tepe tırmanma algoritması, mutasyonel sezgiselin ardından çözüme uygulanır. 

5. Elde edilen çözümün başarım değeri hesaplanır. 

6. Elde edilen çözümün başarım değeri, önceki çözümün başarım değerinden 
daha iyi ise, yeni çözüm önceki çözümün yerine geçer. 

Deneylerin ikinci aşamasında en verimli üst sezgisel algoritmanın performansı aynı 
genetik operatörleri kullanan bir genetik algoritmanın performansı ile 
karşılaştırılmıştr. Üst sezgisel yöntem genetik algoritmadan daha iyi sonuçlar elde 
ederken, genetik algoritmaya olan üstünlüğü büyük veri içeren problemlerde daha 
belirgin hale gelmiştir. Bununla birlikte üst sezgisel yöntemler arama süreci 
esnasında sistem izleme ve parametre ayarlarına ihtiyaç duymamaktadırlar. 
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Üçüncü aşamada üst sezgisel metodun verimliliğini literatürde yayınlanmış 
sonuçlarla karşılaştırmaya yönelik testler koşulmuştur. Test sonuçları üst sezgisel 
metodun bütün test gruplarında en iyi birinci veya ikinci sonucu aldığını 
göstermektedir. Bu sonuçlardan yola çıkarak, üst sezgisel algoritmanın farklı 
büyüklükteki problemler için etkin bir optimizasyon yöntemi olduğu görülmektedir.  

Sonuç olarak, üst sezgisel yaklaşımın daha etkin sezgiseller ve tepe tırmanma 
yöntemleri kullanılarak geliştirilmesi önerilmektedir. Başlangıç çözümü, öncelik 
listesi yöntemi kullanılarak iyileştirilebilir; sezgisel seçimi ve hareket kabulü 
mekanizmalarında ileri öğrenme teknikleri kullanılarak bu yaklaşımın verimi 
arttırılabilir. 
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1.  INTRODUCTION 

This study puts forth a hyper-heuristic approach for solving the Unit Commitment 

Problem (UCP). This approach combines heuristics with local search operators. The 

UCP is a constrained optimization problem, and the aim of this problem is to 

determine start-up and shut-down schedules for a predefined number of power 

generators over a given time period with respect to several operational constraints 

and hourly varying power demands. The objective is to minimize the power 

generation costs, while providing the hourly forecasted amount of power and reserve 

requirements [1]. 

In the first step of the optimization process, operating units are determined for each 

time slot without violating any constraints. In the next step, the load demand is 

assigned to online power units. The second part of the problem is called the 

Economic Dispatch Problem and it is solved using the λ-iteration method [2]. 

Experimental results show that the hyper-heuristic approach can create cost effective 

schedules. 

In this study, hyper-heuristics are applied to the UCP, and a comprehensive analysis 

of different hyper-heuristic techniques is performed. Tests are executed using 

benchmark data taken from literature and real world data obtained from the Turkish 

interconnected power network system. The results achieved by hyper-heuristics are 

compared with the results from other optimization methods, which are applied 

previously to the UCP, to determine which algorithms are suitable for this problem. 

Reasons are investigated, why and how an algorithm achieves better results in this 

problem, and the changes in the performances of different methods are analyzed with 

respect to the increased problem data size. 

An optimal scheduling of the generators decreases the power generation costs and 

energy usage significantly. Therefore, the UCP has attracted great interest and many 

approaches have been applied to solve the problem. Lagrangian relaxation [3], 

priority lists [4], simulated annealing [5], dynamic programming [6], tabu search [7], 

branch and bound [8], benders decomposition [9], greedy algorithms [10], particle 
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swarm optimization techniques [11], evolutionary algorithms [1,12,13,14,15,16], ant 

colony optimization techniques [17] are among these approaches. 

It is nearly impossible to create a heuristic which can be successful in solving a broad 

range of optimization problems, since it requires problem specific information, test 

effort and fine tuning of certain parameters during the search [18]. Hyper-heuristics 

are proposed to overcome these limitations. Hyper-heuristics operate on a set of 

heuristics rather than on solution candidates and they select a heuristic from this set 

to apply to the individual with respect to certain criteria. Heuristic selection can be 

made either according to a feedback from previous runs about the performance and 

the elapsed time of each heuristic, according to a probability distribution or 

randomly.  

1.1 Contribution of the Thesis 

The successful application of hyper-heuristic methods to scheduling and timetabling 

problems, e.g. as in [19] has been a motivation for this study. In this study, hyper-

heuristic methods achieve good results in all test sets. Furthermore, it is also verified 

that hyper-heuristics are robust methods for large-scale problems and they obtain 

consistent results without the need of parameter tuning when compared with other 

optimization techniques. Based on the promising results, research will continue for 

further improvements.  

1.2 Outline of the Thesis 

The rest of the thesis is organized as follows. In the next section, the definition of the 

UCP is given together with its mathematical formulations. Section 3 contains 

information on the previous related work to solve the UCP. In section 4, the 

evolution of the hyper-heuristic approach is mentioned and the details of various 

hyper-heuristic methods and strategies are given. In section 5, implemented hyper-

heuristic methods and genetic operators, which are incorporated into these methods, 

are explained. Section 5 also contains the experimental results and the 

comprehensive analysis of these results. Finally, in section 6, conclusion and future 

work are stated. 
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2.  THE UNIT COMMITMENT PROBLEM 

The demand for electricity varies in different time periods of a day. During daytime, 

this demand increases; whereas, during the late evening and early morning it 

decreases. Therefore, power generation companies should plan the generation of 

power on an hourly basis. In the first step, a decision needs to be made as to which of 

the available units to turn on; and in the second step, an economical dispatch 

schedule of the units should be determined.  

The objective of the UCP is to minimize the power generation costs over a given 

time period, while providing the hourly forecasted power demand [1]. Operational 

constraints should be also considered when creating the online/offline schedule of 

each generator. A solution to the UCP contains binary decision variables 

representing the online/offline status of the generators for each time slot.  

Two main factors are forming the power generation costs, namely fuel costs and 

start-up costs [1]. Penalty factors are related to the quality of a solution. One of these 

penalty factors is defined as the demand penalty, which is taken into account, when a 

predefined hourly demand is not fulfilled by a candidate solution. The other penalty 

factor is the up/down penalty, which has a negative effect on the fitness value, when 

the up/down constraint is violated for at least one generator. The following 

parameters are used to formulate the UCP: 

• Pi(t) is the generated power by unit i at time t, 

• Fi(p) is the cost of producing  p MW power by unit i, 

• PD(t) is the power demand at time t, 

• PR(t) is the power reserve at time t, 

• CSi(t) is the start-up cost of unit i at time t, 

• xi(t) is the duration for which unit i has stayed online/offline since hour t, 

• vi(t) is the status of unit i at time t (on-off), 
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• Pi 
max  is the maximum power which can be generated by unit i, 

• Pi 
min   is the minimum power which can be generated by unit i. 

The first cost factor is the fuel cost which depends on the power generated by each 

online unit for a given hour. While solving the UCP, not only the hourly forecasted 

power demand should be fulfilled, but the power produced by each unit needs to be 

kept within its minimum and maximum values. Following objective function and 

operational constraints are taken into consideration to solve the UCP. For N power 

units at time t, the objective function is defined as given in Eq. (2.1). 

∑
=

=
N

i
tPiF it

total
F

1
))(()(min         (2.1) 

subject to following constraints shown in Eq. (2.2) and Eq. (2.3): 

∑
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)()(         (2.2) 

maxmin )( iii PtPP ≤≤         (2.3) 

According to the second formula, the total power must be equal to the demand, and 

the third formula shows that the produced power by each online unit must be within 

its maximum and minimum capacities. 

When a generator changes its status from offline to online, this brings an additional 

cost, which is called the start-up cost. The effect of the start-up cost on the fitness 

value depends on both the generator type and the amount of time a generator has 

stayed offline. This cost is calculated using the Eq. (2.4). 
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)(         (2.4) 

where tcoldstart is the number of hours that it takes for the generator to cool down and 

defines the threshold for a cold or a hot start-up depending on the generator type.  

CScold is the cost of a cold start-up and this value is used, if the thermal unit has been 

off for a number of hours, which is larger than tcoldstart; otherwise, CShot is applied as 

the cost of a hot start-up. 
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The penalty value of the up/down constraint, formulated in Eq. (2.5), is determined 

by using the minimum up/down values of each generator. The minimum up-time tup 

value defines the number of hours a generator has to stay online after it is turned-on, 

and the minimum down-time tdown defines the number of hours a generator has to 

stay offline after it is turned-off. Additional penalty cost is added to the power 

generation costs with respect to the number of up/down constraint violations. This 

constraint is based on both physical and economic considerations to prevent 

equipment fatigue and excessive maintenance costs due to frequent unit cycling. 

up
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xelse

down
tt

i
xt

i
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≥−=
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        (2.5) 

According to the fuel and start-up costs, demand and up/down penalty values, the 

objective function of the UCP for N units and T hours can be formulated as given in 

Eq. (2.6). 
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The fuel cost of generating p MW power for the i-th generator is calculated using Eq. 

(2.11). Fuel cost for the generator i depends on three parameters, a0i, a1i  and a2i, 

which are predefined for each generator type. 
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2
210 ..)( papaapF iiii ++=       (2.11) 

This part of the UCP is called the Economic Dispatch Problem (EDP), which is 

solved by lambda iteration, whose aim is to allocate the required load demand 

between the available generators while minimizing the total power generation costs 

[2]. With the lambda iteration technique an optimal lambda value is searched for. 

Algorithm 1 Lambda Iteration  
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 

select initial λ and µ; 
repeat 
      calculate Pi for each generator using dFi  / dPi  = λ; 
      calculate Ptotal ; 
      diff = PD - Ptotal; 
      if (diff < 0) then 
            λ = λ – µ; 
      else 
            λ = λ + µ; 
      endif; 
      µ = µ / 2; 
until  (diff< ε) 

The initial values of λ and µ are determined as given in Eq. (2.12) and in Eq. (2.13), 

where λmax   and  λmin   are calculated by inserting Pmax   and  Pmin  as the values of P 

respectively, after taking the derivative of Fi (p) with respect to p. 

 
λ = ( λmax   + λmin  ) / 2                 
 

     (2.12) 

µ = ( λmax   - λmin  ) / 2      (2.13) 
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3.  RELATED WORK ON THE UCP 

The most widely used optimization techniques for the UCP are mentioned in this 

section. These techniques are dynamic programming, priority list, particle swarm 

optimization, ant colony optimization, branch and bound, benders decomposition and 

evolutionary algorithms. Evolutionary algorithms are also divided into four groups 

with respect to the solution representation and genetic operators. Each of these four 

groups is explained in detail. 

The dynamic programming (DP) technique decomposes a multivariable decision 

problem as a sequence of single variable decision problems [6]. Therefore, an n 

variable problem is represented as a sequence of n single variable problems and each 

of them is solved respectively. DP separates the UCP into time slots, so that online 

units are determined one hour at a time. At the end of the time schedule, all hour-

state pairs are stored for further calculations and an array is obtained that keeps the 

continuous online and offline periods of all units to prevent the up/down constraint 

violation. 

In the first step of the DP algorithm, the minimum total production cost to reach the 

current state from the first hour of the schedule is calculated. Secondly, the state of 

the previous hour that minimizes the cost of the transition to the current state is 

determined. After collecting this information, a cost effective schedule is created by 

moving from the state with the least total cost at the final hour to the state of the 

initial hour using the optimum transition at each step [6].  

The most difficult part of applying DP methods to the UCP is storing all possible 

state combinations for each hour. Therefore, heuristics are used to limit the number 

of combinations, but they produce suboptimal solutions and decrease the 

effectiveness of the DP. In certain problem instances, some of the problem 

constraints are replaced with penalty coeffiecients to obtain a feasible solution. 
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Priority list (PL) is a fast and simple optimization technique, but it provides 

suboptimal solutions. In this method, power generators are ranked in ascending order 

with respect to the average full load cost, so that cost effective units are put in service 

first to fulfill the power demand of each time slot without violating any operational 

constraints [4]. However, resultant schedules have high power generation costs. 

Average full load cost is calculated with Eq. (3.1).  

 
(3.1) 

The particle swarm optimization (PSO) algorithm is a population based search 

algorithm, as described in Algorithm 2, which makes use of a group of particles 

corresponding to the individuals of a genetic algorithm. The initial population is 

generated randomly. Candidate solutions are represented with particles containing a 

position vector and a velocity vector [11]. After each time step, the fitness value of 

each particle is calculated. Each particle keeps its own best position with the best 

fitness value it has achieved so far. Additionally, the best fitness value of the whole 

population obtained so far is also recorded. Using the individual best position and the 

global best position, the velocity vector and the position vector of the corresponding 

particle are updated as given in Eq. (3.2) and Eq. (3.3) respectively. 

 

(3.2) 

 

(3.3) 

with j=1,2,…,n and g=1,2,…,m where n  is the number of particles in a group and m  

is the number of members in a particle.  

vj,g 
(t)  is the velocity of particle j at iteration t, xj,g 

(t)  is the position of particle j at 

iteration t, w is the inertia weight factor, c1 and c2 are cognitive and social 

acceleration factors, r1 and r2 are random numbers uniformly distributed in the range 

(0,1), pbestj,g is the best fitness value of particle j at iteration g and gbestg is the best 

fitness value of the group at iteration g. 
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Algorithm 2 Particle Swarm Optimization Algorithm 
1: 
2: 
3: 
4: 
5: 
6: 

randomly create initial population; 
repeat  
      calculate the fitness value of each particle; 
      determine the particle with the best fitness value of the generation; 
      update the position and the velocity vectors of each particle; 
until  stopping criterion is met 

Ant colony optimization (ACO) algorithm is created using the behavior of real ant 

colonies. Therefore, it is a population based search algorithm containing a learning 

mechanism. The real ants lay down a substance, called a pheromone, on the way to 

food [17]. The quantity of pheromone depends both on the length of the path and the 

quality of the food source, since the intensity of pheromone increases, when more 

ants choose the same way to reach the source [17]. 

In the first step of the ACO algorithm, the ACO parameters need to be determined. 

After initialization of these parameters, an iterative solution construction process 

starts with an empty partial solution s 
p . At each construction step, a solution 

component is added to the partial solution without violating any of the problem 

specific constraints. A solution component is selected probabilistically as given in 

Eq. (3.4). 

 

(3.4) 

where τij  is the pheromone value for component qij, n(.) is a function which assigns a 

heuristic value to the feasible solution at each iteration, α and β take positive values, 

which determine the relation between the pheromone value and the heuristic value 

[17].    

At the end of the construction process, the fitness value of the complete solution is 

calculated. The pheromone values of the solution components included in a good 

solution are increased, and the pheromone values of the remaining solution 

components are decreased with respect to Eq. (3.5) to increment the possibility of 

selecting a suitable solution component at the next iteration. To prevent rapid 

convergence of the ACO algorithm, the concept of pheromone evaporation is 

applied, where all pheromone values are decreased using a predefined evaporation 

rate between 0 and 1 [17]. 
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(3.5) 

An effective branching method is proposed in [8] which makes use of a simple 

bounding rule. In the branch-and-bound algorithm, the online/offline schedule of the 

generators is represented with the commitment matrix. Each row of the matrix shows 

the schedule of a single generator and each column represents the status of each 

generator for the corresponding time slot. This algorithm also involves the economic 

dispatch problem as a subproblem. After determining the online generators, λ 

iteration method is used to compute the dispatch cost. 

In the initial step of the branch-and-bound algorithm, the search space contains all 

feasible solutions. This space is repeatedly partitioned into smaller subsets and the 

lower bound of the cost value is calculated for each subset by ignoring the lower 

power generation limit constraint and the start-up cost [8]. After each partitioning, 

subsets with a lower bound which is higher than a known feasible solution are 

discarded. The remaining subsets are partitioned again until a feasible solution is 

found whose fitness value is smaller than the lower bound of any subset with at least 

two solutions. In other words, the lower bound belongs only to a single solution at 

the end, since it is the optimum solution of this problem.  

Benders decomposition technique is applied to the UCP in [9]. This algorithm 

consists of two levels. These levels are called as master and slave. The master level 

deals with the unit commitment of the generators to fulfill the forecasted power 

demand and the second level deals with the operational constraints, such as generator 

limits, minimum up and down time of each unit [9]. 

This decomposition method uses an iterative search process between these two 

levels. The resultant schedule of the master problem is conveyed to the slave 

problem. The slave problem is divided into 24 subproblems and these subproblems 

are solved sequentially. The slave subproblem calculates the power generation cost 

with respect to the operational constraints. The result of the subproblem is used by 

the master problem through the Benders cut to improve the current solution. This 

iterative search process stops when the fitness values achieved in the master and 

slave levels become nearly the same except for a small predefined tolerance value.   



 
11 

In literature, there are many successful evolutionary techniques to solve the UCP. 

They can be divided into four main groups with respect to the solution representation 

and genetic operators, which are applied to candidate solutions.  

In the first group, a binary chromosome is used as the candidate solution which 

represents the on/off schedule of the generators. Genetic operators are applied to 

these chromosomes. To solve the EDP in the second step of the problem, an iterative 

technique, such as lambda iteration [2], is used. Genetic algorithms [1,12], binary 

differential evolution algorithms [16] and memetic algorithms [14] are examples for 

the first group.  

Since genetic algorithms (GA), developed by Holland in 1975 [21], are commonly 

working on binary solution representation, various GAs are applied to solve the 

UDP. GA techniques have common steps. First step is the initialization, where 

individuals are created randomly with binary digits. In the second step, individuals, 

which will undergo reproduction, are selected and genetic operators are applied. In 

the last step, population replacement is performed. A basic genetic algorithm is given 

in Algorithm 3. 

There are two most commonly used population replacement methods. Either the 

whole population is replaced, or only one individual is generated and replaced with 

another individual of the population in each iteration [1]. This loop continues until 

the stopping criterion is met. This stopping criterion can be defined either as the 

number of iterations, which determines how many times selection, reproduction and 

population replacement operations take place, or as the predefined fitness value 

range. 

Algorithm 3 Basic Genetic Algorithm 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

randomly create initial population; 
repeat  
      select one mating pair; 
      generate one offspring through reproduction; 
      evaluate offspring; 
      if  offspring better than current worst individual 
            offspring replaces the worst individual; 
      endif; 
until  stopping criterion is met 
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Memetic algorithms (MAs) are defined as hybrid algorithms that combine genetic 

algorithms and local search operators [14]. A meme is defined as a contagious piece 

of information [22]. The memetic approach provides the evolution of information 

and the unit of a solution is referred to as a meme rather than a gene, since genes can 

not be changed with the experience of an individual [14]. 

In this algorithm, a randomly generated population of individuals evolves towards an 

optimal solution by undergoing a set of genetic operators, namely crossover, 

mutation and selection. Memetic algorithms incorporate the concept of memes by 

allowing individuals to change before the next population is produced. Therefore, a 

hill climbing operator is applied after the mutation to improve the fitness value of the 

resulting individual. 

In a generic MA, each candidate solution consists of a binary bit string. In the first 

step, mates are selected to reproduce new candidate solutions. After applying 

crossover and mutation operators, hill climbing operator is applied to the new 

candidate solution, which is also called as offspring. This iterative process continues 

until the stopping criterion is met as shown in Algorithm 4. 

Algorithm 4 Basic Memetic Algorithm 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

randomly generate initial population; 
calculate fitness of each individual; 
repeat 
      select mates; 
      apply crossover & mutation; 
      apply hill climbing; 
      calculate fitness; 
until  termination condition is met 
return the best solution; 

In the second approach, the chromosome consists of integers or floating points. 

These genes represent the on/off cycles of the units. The integer value can be either 

positive or negative, which corresponds to the duration of the on or off status of each 

generator. The minimum up and down constraints are preserved by using specialized 

genetic operators. The EDP also occurs in this approach, and it is commonly solved 

through lambda-iteration. Differential evolution and evolutionary strategies 

algorithms are examples for this approach.  
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Differential evolution (DE) algorithm was introduced by Storn and Price in 1996 

[23]. This algorithm is used in continuous search spaces and contains four main 

operations as given in Algorithm 5: Initialization, mutation, recombination and 

selection. These operators are applied to all individuals. In DE, each individual in the 

population, called the target vector, consists of real valued genes, Xj,i,g, where j is the 

gene location on the chromosome, i is the index of the individual and g represents the 

generation number [1,16]. 

Algorithm 5 Basic Differential Evolution Algorithm 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 

randomly generate initial population; 
evaluate population; 
repeat 
      for  population size times do 
            select next target vector; 
            randomly choose base vector; 
            donor vector = mutate (base vector); 
            trial vector = crossover (target vector, donor vector); 
            if  trial vector better than target vector 
                  select trial vector; 
            else  
                  select target vector; 
            endif; 
      endfor; 
until  stopping criterion is met 

In the mutation step, a donor vector is created using a mutation factor and different 

target vectors which are selected randomly from the population [1,16]. An example 

is given in Eq. (3.6). 

 (3.6) 

where Vi,g  is the donor vector and Xj,i,g  is the randomly chosen target vector. 

In the recombination step, which is also known as crossover,  a new vector is created 

using both the donor and the target vectors. This new vector is called the trial vector 

[1,16]. A Cr parameter is used to determine the length of the segment taken from the 

target vector. This parameter takes on values in the range [0,1]. If the uniformly 

distributed random number is less than Cr, the corresponding parameter of the trial 

vector is taken from the donor vector; otherwise, it is taken from the target vector as 

shown in Eq. (3.7). 
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In the selection step, either the target vector or the trial vector is chosen with respect 

to their fitness values as in Eq. (3.8). These steps continue until a predefined number 

of iterations have been run or until a solution in a predefined range has been 

achieved. 
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Evolutionary strategies (ES) was introduced by Rechenberg in 1973 [24]. In the 

problem representation, three different parts constitute the individuals chromosome. 

First part of the chromosome is encoded as a vector of real numbers, the second part 

contains mutation step size parameters which are associated with each gene. The 

third part represents the rotation angles of each gene. A sample chromosome in ES 

looks like the following: 

<  p1   p2  …. pn  ,   σ1   σ2  …. σn  ,   α1   α2  …. αn  > 

The aim of the ES algorithm is to optimize an objective function with respect to a set 

of control parameters. These strategy parameters are used to control statistical 

properties of the genetic operators. Since these parameters are also adapted during 

the evolution process, the genetic operators in ES are called as self-adaptive 

operators [1,25]. 

In ES, all individuals have equal probability of being selected as parents. These 

parents first go through crossover and then they go through mutation. During the 

crossover operation, each object variable of the offspring is selected usually among 

one of the two parental values for the corresponding gene location. For strategy 

parameters, the arithmetic average value of these parameters is taken. During the 

mutation operation, mutation step sizes are mutated first, then each resulting 

mutation step size is used to mutate the corresponding object variable of the 

chromosome. Algorithm 6 shows the algorithmic flow of a basic ES method. 
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Algorithm 6 Basic Evolutionary Strategies Algorithm 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

randomly generate initial population; 
calculate fitness of each individual; 
repeat 
      for  population size times do 
            randomly select one mating pair; 
            generate one offspring through reproduction; 
      endfor; 
      select individuals with respect to the population size; 
until  stopping criterion is met 

After applying crossover and mutation, λ children are created from µ parents. In the 

last step of ES, one of the two different methods is used to determine the individuals 

for the next generation. In the plus strategy, the best λ individuals are selected from 

both parents and children. In the comma strategy, individuals are selected only from 

children [25]. This loop continues until a predefined number of iterations have been 

executed. 

The third approach uses the Lagrangian relaxation (LR) technique along with a 

genetic algorithm to update the Lagrangian multipliers [3]. The LR method solves 

the UCP as if operational constraints do not exist. Therefore, the LR decomposition 

procedure creates a separate problem by embedding some constraints into the 

objective function through penalty coefficients. These penalty coefficients are called 

Lagrangian multipliers and they are determined iteratively. However, the dual 

problem has a lower dimension than the original problem. The difference between 

the original and the dual problems is defined as the duality gap, which measures the 

suboptimality of the solution [3]. 

Many studies have spent some effort to update the Lagrangian multipliers in an 

appropriate way to minimize the duality gap. Therefore, different genetic algorithms 

are integrated into the LR method to update the Lagrangian multipliers and to 

increase the efficiency of the LR method. 

The dual problem is solved in two steps. In the first step, the Lagrangian function is 

minimized under constant Lagrangian multipliers by using a two-state dynamic 

programming technique. In the second step, the Lagrangian function is maximized 

using Lagrangian multipliers, which are updated by genetic algorithms. This process, 

described in Algorithm 7, continues until the duality gap reaches a predefined value 

or until a predefined number of iterations have been run. 
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Algorithm 7 Lagrangian Relaxation Method with GA 
1: 
2: 

 
3: 

 
4: 

repeat 
      minimize the LR function by using two-state dynamic programming      
with constant Lagrangian multipliers; 
      maximize the LR function by using updated Lagrangian multipliers with 
a genetic  algorithm; 
until  stopping criterion is met 

In the last approach, each candidate solution is represented with a floating point 

chromosome. Each gene shows the load for the corresponding generator. The initial 

population is created using Lagrangian relaxation. Evolutionary programming 

method is used only for online generators, which are not working at their maximum 

load capacities. Therefore, the aim of this approach is to improve the already 

dispatched power and to minimize the penalty values which are added to the 

computations due to the operational constraints. 
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4.  HYPER-HEURISTICS 

Heuristic methods are very successful in solving complex optimization problems. 

However, heuristics require problem domain knowledge and parameter tuning during 

the search, so that it is very difficult to apply a heuristic to a new problem, or even to 

a new instance of a previously solved problem [18, 26]. To overcome this difficulty, 

hyper-heuristic methods are introduced. Hyper-heuristics do not need any problem 

specific information, since they are not directly applied to the problem; instead they 

operate on a set of heuristics to find the most suitable heuristic, or the sequence of 

heuristics during the optimization process [18, 26]. Therefore, they are using some 

performance indicators to decide which heuristic to call at each iteration. 

4.1 Background 

Two fundamental ideas about the concept of hyper-heuristics are expressed in [26]. 

According to the first fundamental idea, selecting a heuristic or creating a sequence 

of heuristics is also a search problem [26]. Due to this, the second fundamental idea 

proposes the usage of a learning mechanism to improve the search process on the set 

of heuristics [26]. Different types of hyper-heuristics are implemented based on these 

two fundamentals. 

The ideas constructing the hyper-heuristic approach are firstly used in production 

scheduling problem in 1961 by Fisher and Thompson. They proposed to combine 

different scheduling rules in a probabilistic learning method. Their study concluded 

that a random combination of scheduling rules result in better solutions than any of 

them applied separately to the problem instance [26]. 

In 1992, Storer firstly mentioned the importance of creating a sequence of heuristics 

for an efficient search algorithm [26]. He also defined the concept of neighborhoods 

within the search space, which constructs the basis of local search. In 1993, Feng 

applied a genetic algorithm, which aims at searching the space of sequences of 

heuristic selections to solve the open-shop scheduling problem [26]. Each heuristic 

selection is represented with a pair (j, h), where j is an uncompleted job and h is a 
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heuristic, which is used to select a task from the job j and to insert it into the 

schedule. The sequence of pairs provides a complete schedule. This method obtained 

very good results on different benchmark problems. In 1997, Norankov and 

Goodman made use of evolutionary algorithms to search the space of heuristic 

sequences [26]. This method is applied to the multistage flow-shop scheduling 

problem. In the first step, job orderings are determined; and in the second step, jobs 

are assigned to the machines. Experimental results showed that there was a strong 

dependency between the solution quality and the heuristic sequence applied to the 

solution. 

The term hyper-heuristic is firstly used in 2000 by Cowling, and he described the 

concept of “heuristics to choose heuristics” to solve optimization problems [27]. In 

following years, new techniques are proposed to improve hyper-heuristics. In 2002, 

the incorporation of the choice function into hyper-heuristics are investigated by 

Kendall, Cowling and Soubeiga [28]. Better results are achieved when compared 

with the results obtained by random hyper-heuristics. In 2003, tabu search is 

employed by Burke, Kendall and Soubeiga as the heuristic selection strategy [29]. 

Good results are achieved on the university course timetabling problem. In 2004, 

Kendall and Mohamad incorporated the Great Deluge algorithm as a move 

acceptance method and obtained very good results in examination timetabling [30]. 

Hyper-heuristic techniques are applied to optimization problems in two different 

ways. In the first approach, hyper-heuristics are used to select the most suitable 

heuristic from a set of heuristics for the corresponding problem state. In the second 

approach, hyper-heuristics are used to create heuristics for the purpose of obtaining 

more efficient results by specializing heuristics to the problem instance. This chapter 

includes a detailed description of these two hyper-heuristic approaches. 

4.2 Heuristics to Choose Heuristics 

When the term hyper-heuristics was first introduced in the early 2000s, this approach 

was applied to optimization problems by selecting the most suitable heuristic from a 

set of heuristics to increase the efficiency of the search algorithm. This type of hyper-

heuristics are divided into two groups as constructive and perturbative hyper-

heuristics according to the structure of the initial candidate solution [26]. 
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Constructive hyper-heuristics start with an empty solution; whereas, perturbative 

hyper-heuristics begin to work on a complete initial solution. These complete initial 

solutions are created either randomly or by satisfying some of the problem specific 

constraints to obtain better results. 

4.2.1 Constructive Hyper-heuristics 

Constructive hyper-heuristic methods start with an empty solution. At each iteration, 

a constructive heuristic is selected to build a part of the solution. This process 

continues until a complete solution is achieved. Several methods with constructive 

heuristics have been applied to timetabling, scheduling, constraint satisfaction, 

cutting and packing problems. 

Evolutionary algorithms were firstly employed in examination timetabling problems 

in 1999 by Terashina-Marin [26]. In this approach, a chromosome representation was 

used and this approach aimed at evolving the configuration of constraint satisfaction 

methods. In 2003, Ahmadi applied a variable neighborhood search algorithm to 

examination timetabling, where he combined different low-level heuristics during 

exam, period and room selections [26]. 

Graph-coloring heuristics are also used in timetabling problems, where nodes 

represent events and edges represent conflicts between events. In examination or 

course timetabling problems, two events have a conflict, if they contain the same 

student. The difficulty of an event is proportional to the number of conflicts, the 

event has with others. The most conflicting events are scheduled first into 

appropriate time slots when constructing a timetable. 

A constructive hyper-heuristic framework was implemented by Burke in 2007, which 

included the following graph coloring heuristics: Largest Saturation Degree, Largest 

Color Degree, Largest Degree, Largest Enrollment, Largest Weighted Degree [26]. 

Tabu search was used as heuristic selection strategy to create efficient sequences of 

low-level heuristics. This approach achieved promising results in course and 

examination timetabling problems. 

In 2008, Qu and Burke compared the performances of the new implemented heuristic 

selection strategies with the previously applied tabu search method [26]. These 

strategies are steepest descent method, iterated local search method and variable 
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neighborhood search. Results showed that iterated local search and variable 

neighborhood search methods were more effective than steepest descent and tabu 

search methods. The authors also investigated the effects of sequences of heuristics 

on the solution quality, and they stated that early heuristic choices in a heuristic 

sequence have a higher impact on the quality of the solution than the late heuristic 

selections. In a further study, the combinations of graph coloring heuristics in 

examination timetabling were investigated by Pillay in 2008, where each individual 

consists of a variable length string with characters representing one of the five low-

level graph coloring heuristics. This study also showed that this method was able to 

create feasible exam schedules. 

Constructive hyper-heuristics were also used in production scheduling to determine 

which dispatching rule to call at each iteration [26]. In this problem, when a machine 

completes its task, a dispatching rule calculates the priorities of each waiting job and 

assigns the job with the highest priority to this machine. Each dispatching rule has a 

different priority calculation method. Minimum release time, shortest processing 

time, longest processing time, earliest due date, latest due date, less work remaining, 

more work remaining are among these rules. Many studies showed that methods 

combining several rules or heuristics were more efficient than other methods using a 

single rule or a single heuristic. This statement was experimentally verified in 

different problem domains. 

4.2.2 Perturbative Hyper-heuristics 

Perturbative hyper-heuristics operate on a set of perturbative low-level heuristics. In 

a constructive hyper-heuristic approach, the process continues until a complete 

solution is obtained. However, perturbative hyper-heuristics operate on a complete 

solution and this process continues until the predefined stopping criterion is met. 

Perturbative approach has been successfully applied to channel assignment, 

personnel scheduling, timetabling and vehicle routing problems. In this approach, 

heuristics are mostly applied to a single candidate solution at each iteration; 

therefore, they are called as single point search based hyper-heuristics. Population 

based perturbative hyper-heuristics are also employed in optimization problems, 

especially in scheduling and timetabling problems, where each individual contains a 

sequence of heuristic selections. 



 
21 

Learning mechanism plays an important role to increase the efficiency of the 

decision making process. To incorporate the learning mechanism into the hyper-

heuristic approach, scores are assigned to each heuristic with respect to their 

performances on the quality of the solution, when they are applied to the candidate 

solution. 

4.2.2.1 Single Point Search Based Hyper-heuristics 

Single point search based hyper-heuristics consist of two mechanisms: Heuristic 

selection and move acceptance. 

For the heuristic selection process, different strategies are proposed. Simple random 

heuristic selection strategy chooses a low-level heuristic randomly at each iteration. 

Random descent has a similar usage, except that the selected heuristic is applied to 

the solution repeatedly, until no improvement is achieved. In random permutation 

strategy, a random permutation of low-level heuristics is created and each one of the 

heuristics is applied to the solution in the provided order. Random permutation 

descent also uses the randomly generated permutation, but heuristics are applied 

repeatedly, until they do not improve the solution. Greedy methods apply all low-

level heuristics to the candidate solution at each iteration and select the heuristic that 

creates the best solution. 

In the choice function heuristic selection method, each low-level heuristic is given a 

score. This score is determined using the following three performance criteria [28]. 

First criterion is the individual performance of a heuristic. Second criterion is the 

performance of a heuristic when combined with other heuristics. The last criterion is 

the elapsed time since the last heuristic has been called. At each iteration, scores are 

computed for each low-level heuristic. The formulations of the performance 

computation are given in Eqs. (4.1-4.4). 

 

(4.1) 

 

(4.2) 

 
(4.3) 
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(4.4) 

where In(hi) and Tn(hi), In(hi,hk) and Tn(hi,hk) are the change in the fitness function 

and the amount of time taken, respectively, when the nth last time the heuristic hk 

was applied either alone or after the heuristic hi. In Eq. (4.4), α, β and δ are the 

relative weight factors of each function which are used to compute the overall scores 

for each heuristic.  

In the tabu search method proposed by Burke in 2003 [29], low-level heuristics are 

ranked with respect to their scores. Additionally, this method includes a tabu list, 

which is used to exclude some of the low-level heuristics temporarily, since they did 

not improve the candidate solution in their last application. If a heuristic improves 

the solution, its score is increased; otherwise, its score is decreased. The heuristic 

with the highest score, which is not in the tabu list, is applied to the solution at each 

iteration. 

Nareyek (2003) used reinforcement learning as a heuristic selection strategy. In this 

learning process, each heuristic starts with the same initial score. The scores of the 

heuristics are changed with respect to the quality of the resulting solution when they 

are applied to the individual. During heuristic selection, either the heuristic with the 

highest score is selected or the scores are converted into probabilities and a heuristic 

is selected using the roulette wheel strategy. 

The second mechanism of single point search based hyper-heuristics is the move 

acceptance method. For the move acceptance phase, two main strategies are used. 

These are deterministic and non-deterministic strategies. In the deterministic 

strategy, the same move acceptance decision is given for the same candidate solution 

regardless of the current point in the search process. However, in the non-

deterministic strategy, different move acceptance decisions can be given for the same 

candidate solution with respect to the decision point. Therefore, time or iteration 

number is important for the decision making process. 

Three deterministic approaches are used commonly: All Moves, Only Improving 

Moves, Improving and Equal Moves. In all moves strategy, all improving and non-

improving moves are accepted; whereas, in the other two approaches either only 

improving moves or improving and equal moves are accepted. 
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One of the non-deterministic move acceptance strategies is the Monte Carlo method, 

which was proposed in 2003 by Ayob and Kendall [32]. This method accepts all 

improving moves. However, non-improving moves are accepted with respect to a 

probability function. An exponential probability function is used in this strategy as 

given in Eq. (4.5), where δ is the change in quality, t is time in minutes and Q is the 

number of successive non-improving moves. 

 
(4.5) 

In 2004, the Great Deluge move acceptance algorithm was experimented in a hyper-

heuristic approach by Kendall and Mohamad [30]. In this method, the fitness of the 

initial solution is calculated and this value is set as the initial level value. Then, the 

down rate value is determined using the Eq. (4.6). 

 
(4.6) 

where BestResult is the best result found in literature for this problem and f(s0) is the 

fitness value of the initial solution. 

After applying one of the low-level heuristics to the candidate solution, if the fitness 

value of the resultant solution is better than the level value, the level is decremented 

by the DownRate value and the resultant solution is replaced with the current 

solution; otherwise, the current solution is kept and the algorithm continues to run by 

applying another heuristic to this solution as shown in Algorithm 7. 

Algorithm 8 Great Deluge Method 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 

create randomly an initial candidate solution s0; 
calculate the fitness value of the initial solution f(s0); 
set the initial level to f(s0); 
set the DownRate value; 
repeat 
      select & apply a heuristic to the candidate solution; 
      calculate the fitness of the resultant candidate solution f(sn); 
      if (f(sn) < Level) 
            Level = Level – DownRate; 
            s0  = sn  ; 
      endif; 
until  stopping criterion is met 

Simulated annealing is another method used as a non-deterministic move acceptance 

strategy. This method was proposed by Bai and Kendall in 2005 [26]. In this method, 
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all improving moves are accepted, but non-improving moves are accepted according 

to the Metropolis criterion e 
–δ / t , where δ is the change in quality and t is the 

temperature. The temperature is decreased at each iteration using a cooling schedule. 

This criterion shows that a probabilistic decision is made to accept even a worsening 

solution. This probability does not only depend on how much worse the resultant 

solution is but also on how long the search process has been continuing. 

Late acceptance strategy was incorporated by Burke and Nykov into the hyper-

heuristic approach in 2008 [26]. This method contains a memory to keep fitness 

values of previous candidate solutions in a list of size L. At each iteration, the 

resulting candidate solution is compared with the last element of the list. If the fitness 

value of the new solution is equal to or better than the fitness value of the last 

element of the list, the new solution is added to the list as the first element and the 

last element is removed from the list. This method does not have a high 

computational expense when compared with simulated annealing and great deluge 

methods. Additionally, it also accepts worsening moves to prevent getting stuck at 

local minima. 

Another study field in a hyper-heuristic approach is how heuristic selection and 

move acceptance strategies are combined and in which order mutational heuristics 

and hill climbers are executed in a hyper-heuristic method, since they have different 

impacts on the search process. To increase the solution quality, different regions of 

the search space need to be explored and the highest points of these areas should be 

reached. This is possible, if a mutational heuristic and a hill climber operator are 

employed sequentially. Four different frameworks are defined for that purpose and 

their performances are compared in [18]. These frameworks are called as FA, FB , FC  

and FD. 

In FA  and FB , a heuristic is selected from a set of mutational heuristics and hill 

climbers. However, the FB  framework extends FA by employing a predefined hill 

climbing operator, if the selected low-level heuristic is a mutational heuristic; 

otherwise, only the selected low-level hill climbing operator is applied to the 

candidate solution before the move acceptance step. In the FC framework, a 

mutational heuristic is selected at the first step, since the heuristic set only contains 

mutational heuristics. After that, a predefined hill climbing operator is applied to the 

candidate solution. In the FD framework, firstly a mutational heuristic is selected and 
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applied to the solution. If the resultant solution is accepted, a hill climber will be 

selected and applied to this new candidate solution; otherwise, the selected hill 

climber will be applied to the previous solution. All these four frameworks are 

depicted in Figures 4.1-4.4. 
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Figure 4.1 : Hyper-heuristic framework FA 
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Figure 4.2 : Hyper-heuristic framework FB 
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Figure 4.3 : Hyper-heuristic framework FC 
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Figure 4.4 : Hyper-heuristic framework FD 

Experimental results showed that the usage of hill climbers has a positive impact on 

the quality of the solution, and it was also observed that applying a single efficient 

hill climber produces better results than using a set of hill climbers with a selection 

strategy. In this study, the FC framework achieved the best results among these four 

hyper-heuristic frameworks [18]. 

4.2.2.2 Population Based Hyper-heuristics 

Population based perturbative hyper-heuristics differ from single point search based 

hyper-heuristics, in which each individual in the population consists of a sequence of 
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integers, where each integer represents a single low-level heuristic to indicate in 

which order the heuristics are called. In 2003, Cowling applied this approach to a 

personnel scheduling problem, and he used a genetic algorithm as the heuristic 

selection mechanism [26]. This method achieved better results when compared to a 

genetic algorithm and a memetic algorithm in trainer scheduling problem. 

In 2005, Burke employed the ant colony algorithm as a hyper-heuristic to solve the 

personnel scheduling problem [26]. Each vertex represents a heuristic, and a number 

of ants are distributed among the vertices to carry candidate solutions. In this 

method, each ant applies a low-level heuristic at each encountered node to its 

solution. Burke achieved good results with this method for previously studied 

problem instances. 

4.3 Heuristics to Generate Heuristics 

Hyper-heuristics are not only used to select heuristics, but they are also used to 

generate heuristics. In this approach, hyper-heuristics operate on a set of components 

to construct heuristics instead of searching the set of complete heuristics. Therefore, 

at each iteration a new heuristic is created and a solution is obtained using this 

heuristic. This approach is applied to the following problem domains: Production 

Scheduling, Traveling Salesman Problem, Cutting and Packing, Function 

Optimization, Satisfiability, Constraint Satisfaction [26]. 

Although heuristics created by humans are designed to be effective on a set of 

problem instances, a heuristic needs to be specialized to achieve the best result for 

each problem instance respectively. Therefore, the most important advantage of the 

automated heuristic generation approach is that the heuristic implementation process 

is able to specialize a heuristic for each instance in a cost effective way.  These 

instance specific adjusted heuristics would produce better results when compared 

with human created heuristics. Experimental results also verify this approach. 

In 2005, Ho and Tay applied a genetic programming algorithm to the job shop 

scheduling problem. This algorithm acts as a hyper-heuristic and evolves composite 

dispatching rules [26]. In 2007, Jakobovic used the same approach in the parallel 

machine scheduling problem. These dispatching rules are functions, which are 

responsible for assigning scores to the jobs with respect to the problem state. When a 
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machine completes its job, an evolved dispatching rule works for each job in the 

machines queue separately, so that each job obtains a result as its score. The job with 

the highest score in the queue is assigned to the machine [26]. 

In 2005, Koza and Poli concluded with their experiments, that the best evolved 

dispatching rule achieves better results on over 85% of all the problem instances 

[26]. These experimental results also verified that genetic programming is able to 

create composite heuristics containing multiple heuristic components, which are 

more efficient than human created heuristics and reusable on different problem 

instances. 

In 2005, Oltean employed a genetic programming hyper-heuristic to generate 

evolutionary algorithms [26]. This method was successfully applied to the traveling 

salesman problem and to function optimization. In this method, each individual 

consists of a series of instructions which calculate values in a memory array with 

multiple registers. This array represents an evolutionary algorithm population where 

each register corresponds to a member of the population. Genetic operators are used 

as the instructions and they are performing their tasks on the memory array. An 

example for an instruction is given in Eq. (4.7), where the crossover operator is 

applied to two members from the memory array. This algorithm also achieved 

successful results when compared with the human made heuristics. 

 
(4.7) 

 
(4.8) 

In 2007, Burke applied genetic programming as a hyper-heuristic for one 

dimensional bin packing problem [26]. This hyper-heuristic method produces 

heuristics containing arithmetic operators and properties of the pieces and bins. At 

each iteration, a piece is placed into a bin. For each piece, created heuristics are 

applied to the bins and the bin with the highest score is selected to pack the piece in. 

Poli et al (2007) also made use of genetic programming in one dimensional bin 

packing [26]. However, this study was based on the remaining space size of each bin, 

when placing pieces into these bins. According to this approach, when a piece is 
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placed into a selected bin, the remaining space should not be smaller than the size of 

the smallest piece, which is not packed yet. 

 

 

 

 

 

 

 



 
30 

 



 
31 

5.   EXPERIMENTAL STUDY 

In this study, hyper-heuristic methods with various heuristic selection and move 

acceptance strategies are applied to the UCP. In the heuristic selection phase, six 

different strategies are applied. These are:  

• Simple Random (SR),  

• Random Descent (RD),  

• Random Permutation (RP),  

• Random Permutation Descent (RPD),  

• Choice Function (CF) , 

• Greedy (GR).  

As move acceptance criterion, four different strategies are used:  

• All Moves (AM),  

• Only Improving (OI),  

• Improving and Equal (IE),  

• Great Deluge (GD).  

Totally 24 combinations of the above listed heuristic selection and move acceptance 

mechanisms are applied to two instances of the UCP, and results obtained by these 

combinations are analyzed to determine the most efficient strategy combination for 

this problem. 

In the second part of the experiments, the performance of the most efficient hyper-

heuristic method is compared with the performance of a genetic algorithm [12] on 

different data sets, because these two methods use the same genetic operators. In the 

third part, reported results of six benchmark problem instances are given. An analysis 

is made to find out how the problem size affects the performance of each 

optimization method. In the last part, real world data is used to verify that  the 
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proposed hyper-heuristic algorithm can be successfully applied to real world 

problems. 

The proposed algorithms are coded in the C language. For all of our experiments, we 

used a single PC (2.13 GHz quad core processor with 2GBytes of main memory). 

5.1 Proposed Approach 

In the proposed approach, each candidate solution consists of binary digits with a 

length of T*N, where N is equal to the number of units and T is equal to the number 

of time slots. Figure 5.1 illustrates an example of encoding a candidate solution. 

Each hour contains N binary digits. The values 0 and 1 indicate that the generator is 

off or on for the corresponding time slot. 

 

Figure 5.1 : The binary representation of a candidate solution 

Seven heuristics are used during this iterative search process. The first two heuristics 

are classic mutation operators with a probability of 1/L and 2/L, where L is the 

solution length. 

 
 
 
 
 
 
 
 

 
 

Figure 5.2 : Mutation operator 

The third heuristic is the swap-window operator [12]. This operator selects two 

power units, a time window of width w hours and a window position between 1 and 

(H-w) randomly. Then, the digits of these two units in this time window are 

exchanged as shown in Figure 5.3. 
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Figure 5.3 : Swap-window operator 

Fourth heuristic is the window-mutation operator. This operator selects one unit, a 

time window of width w and a window position between 1 and (H-w). All 0s in this 

time window are turned to 1s, and all 1s are turned to 0s [12]. The solutions before 

mutation and after mutation are depicted in Figure 5.4. 
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Figure 5.4 : Window-mutation operator 
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Swap-mutation heuristic is a hill climbing operator. For each time slot of the 

scheduling period, one of the two operations is performed on the candidate solution 

with equal probability [12]. 

• Two units are selected randomly, and the digits for the corresponding 
hour are exchanged. 

• A unit is selected randomly and the corresponding digit for the given hour 
is turned from 0 to 1 or from 1 to 0. 

If the operation results in a better solution, the new solution is replaced with the old 

one; otherwise, the next operation is performed on the old solution. The behavior of 

this heuristic is shown in Figure 5.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5 : Swap-mutation operator 

Swap-window hill-climb heuristic is another hill climbing operator. Two units and a 

time window of width w hours is selected between 1 and H. The starting point of the 

time window is the first hour of the schedule. The digits of the two units in the time 

window are exchanged. If the fitness value of the resultant candidate solution is 

better, then the solution is kept; otherwise, previous solution is used in the next 

iteration. For the next iteration, the window is shifted one hour up, and the digit 

replacement procedure continues until the window reaches the last hour of the 

schedule [12]. Figure 5.6 shows an example of this heuristic. 
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Figure 5.6 : Swap-window hill-climb operator 

The last heuristic is the Davis Bit hill climbing operator. A permutation array is 

created randomly. A power generation unit and a time slot are selected according to 

this permutation array. Then, the corresponding digit is changed from 0 to 1 or from 

1 to 0 [18]. 

As hyper-heuristic framework, the FB framework is used [18] as explained in section  

4.  In this framework, a heuristic is selected from a set of mutational heuristics and 

hill climbers. If the selected heuristic is a mutational heuristic, then a hill climber is 

applied to the solution; otherwise, only a hill climber is applied and the fitness value 

of the resultant solution is calculated. This solution is either accepted or rejected with 

respect to its fitness value and the selected move acceptance strategy. 

In Algorithm 8, RPD heuristic selection strategy is used along with the OI move 

acceptance criterion. In the first step of this algorithm, an initial solution is created 

randomly and its fitness value is calculated. After that, the iterative search process 

starts by applying the first heuristic according to a predefined permutation of seven 

heuristics. If the heuristic does not have the hill climbing capability, Davis Bit hill 

climbing operator is applied to the candidate solution. The fitness value of the 

resulting solution is calculated. This new solution is replaced with the old one and 

the same heuristic is applied to the solution again, if the fitness value is better; 

otherwise, the old candidate solution is kept and the next heuristic in the permutation 

array is applied to the old solution. This process continues until the stopping criterion 

is met. 

 
1 
 
2 
 
3 
 
 
4 
 
 
 
N 

window 

1 2 3 4 5 6 7 8 9                                                  H 



 
36 

Algorithm 9 Proposed Hyper-heuristic Algorithm 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 

randomly create an initial solution; 
evaluate the initial solution; 
create a random permutation of all seven heuristics; 
repeat 
      select the first heuristic in the permutation; 
      repeat 
            repeat 
                  apply the selected heuristic to the solution; 
                  if  heuristic does not contain hill climbing 
                        apply Davis Bit hill climbing; 
                  endif; 
                  calculate the fitness value; 
                  if the fitness value is better 
                        accept the new solution; 
                  endif; 
            until the fitness value is no more improved 
            select the next heuristic; 
      until the last heuristic in the permutation is applied 
until  stopping criterion is met 

5.2 Experimental Setup 

Proposed hyper-heuristic algorithm is tested with six benchmark problems taken 

from literature and with real world data obtained from the Turkish interconnected 

power system.  Additionally, the performance of the hyper-heuristic algorithm is 

compared with the performance of a genetic algorithm [12] in several problem 

instances.  

In the first step of the genetic algorithm, the initial population consisting of M 

individuals is generated randomly and the fitness value of each individual is 

calculated. After two individuals are selected according to the roulette wheel parent 

selection algorithm, crossover and mutation operators are applied with certain 

probabilities [12]. This procedure is repeated until M new individuals are created. 

These new individuals replace the parents except that the best individual of the 

previous generation is also carried to the next generation [12]. 

In the genetic algorithm, selection and crossover operators result in population 

convergence; whereas, mutation is used to maintain diversity. To increase the 

effectiveness of the search, premature convergence and excessive diversity should be 

prevented. Therefore, search process is monitored by collecting statistical 

information from the individuals. The crossover probability is kept between 0.4 and 
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0.9 and the mutation probability is kept between 0.004 and 0.024 [12]. When 

premature convergence occurs, the crossover probability is decreased by 0.1 and the 

mutation probability is increased by 0.004 [12]. To prevent the excessive diversity, 

the crossover probability is increased by 0.1 and the mutation probability is 

decreased by 0.004 [12]. Swap-window and window-mutation operators are applied 

to all the population members with a probability of 0.3. Swap-mutation and swap-

window hill-climb operators are also using the same probability rate except that they 

are only applied to the best individual of every generation [12]. 

Great Deluge move acceptance strategy is one of the four strategies, which is used in 

this proposed approach. When applying this strategy to the hyper-heuristic method, 

fitness value of the initial solution needs to be calculated to determine the down rate 

[30]. Initial solution is created using the Priority List method [12], which is explained 

in section 3. The power generation units are ranked in ascending order of the average 

full load cost, so that cost effective units are committed first, and other units are set 

to online status according to this order until the load demand is met for each time slot 

respectively. Operational constraints are satisfied with this method, but resulting 

schedules contain high power production costs. 

In System 1 and the Turkish interconnected power system, as used in [1,14], and in 

System 2, System 3, System 4 and System 5, as used in [1, 3, 4, 12, 14], the best, the 

average and the worst case values are reported over 20 runs of the program. For 

System 6 [3, 12, 14], these values are determined over 10 runs of the program due to 

time constraints. 

System 1 consists of 10 units and 24 hours. Detailed data set of System 1 is given in 

Appendix A.1. The data for the other problem instances are obtained by repeating the 

number of power generation units two, four, six, eight and ten times respectively, as 

also done in [1, 3, 4, 12, 14]. Therefore, System 2 contains 20 units and 24 hours,  

System 3 contains 40 units and 24 hours, System 4 contains 60 units and 24 hours, 

System 5 contains 80 units and 24 hours and System 6 contains 100 units and 24 

hours. 

To increase the efficiency of the hyper-heuristic approach, demand and up/down 

penalty coefficients are set to 100000 to prevent infeasible candidate solutions. The 

determination of these values relies on the investigation of the previously obtained 

experimental results. 



 
38 

Number of iterations per run is set as 1000, 5000, 10000, 15000, 20000, 25000 for 

System 1, System 2, System 3, System 4, System 5, System 6, respectively. These 

numbers are determined empirically. 

5.3 Experimental Results 

In the first part of this section, System 2 and System 3 data sets are used to determine 

the most efficient strategy pair for heuristic selection and move acceptance phases. 

Statistical tests are applied to resultant solutions to compare the performance of each 

combination. These tests are performed at a confidence level of 0,95. The second and 

the third parts contain performance comparison test results of a hyper-heuristic 

algorithm with other optimization techniques using seven different problem 

instances. 

5.3.1 Performance Comparison of Different Hyper-heuristic Combinations 

Table 5.1 and 5.2 contain experimental results, which are obtained, when the OI 

move acceptance scheme is applied with 6 different heuristic selection strategies. In 

these two data sets, RPD  heuristic selection strategy achieves the overall best results. 

RP method obtains the same result for System 2, but it obtains the second best result 

for System 3. The difference percentage between RP and RPD is only 0,036 %. SR 

and RD follow these methods and GR obtains the poorest results in these two data 

sets. 

Table 5.1: Cost results for System 2 with the OI move acceptance criterion 

No Method Best Result Worst Result Average Result 
1 RPD 1125997 1128831 1127474 
2 RP 1126231 1128931 1127689 
3 SR 1127253 1129911 1128435 
4 RD 1127253 1129563 1128572 
5 CF 1127683 1148563 1133976 
6 GR 1129038 1138217 1132815 

Figure 5.7 shows the box-whisker plot of the results for System 2 with the OI move 

acceptance strategy. The one-way analysis of variance (ANOVA) test is used to 

determine whether the fitness values are the same across different heuristic selection 

methods. The p-value for this experiment is zero to four decimal places. This value 

indicates that the fitness values vary from one heuristic selection method to another.  
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Figure 5.8 shows the multiple comparison results for System 2 with the OI move 

acceptance strategy. According to the results of this test, the mean values of GR and 

CF are significantly different from RP, RPD, SR and RD. 

 

Figure 5.7 : Box-whisker plot for System 2 with OI 

 

Figure 5.8 : Multiple comparison results for System 2 with OI 
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Table 5.2: Cost results for System 3 with the OI move acceptance criterion 

No Method Best Result Worst Result Average Result 
1 RPD 2248284 2253971 2250434 
2 RP 2249099 2253057 2250835 
3 SR 2250116 2255899 2253378 
4 RD 2250875 2253851 2252456 
5 CF 2253743 2279271 2264473 
6 GR 2255837 2267460 2258998 

Figures 5.9 and 5.10 show the box-whisker plot and the multiple comparison test 

results for System 3, when the OI move acceptance strategy is applied. ANOVA 

function returns 0 as the p-value. From these results, it can be observed that the 

fitness values from different heuristic selection methods are not the same. The 

interval between the lowest and the highest fitness values of the CF method is very 

long, when compared with other methods. According to the multiple comparison test 

results, CF and GR methods have significantly different mean values from RPD. 

However, there is no statistically significant difference in terms of the mean values 

obtained by RP, RPD, SR, RD heuristic selection methods in System 2 and System 3, 

when either OI or IE is used as the move acceptance criterion. 

 

Figure 5.9 : Box-whisker plot for System 3 with OI 
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Figure 5.10 : Multiple comparison results for System 3 with OI 

The results in the Tables 5.3 and 5.4 are obtained using the IE move acceptance 

criterion. RPD and SR achieve the best result for System 2, but when the data size of 

the problem increases, the performance of SR is decreased accordingly. However, 

RPD proves its consistency by obtaining the best result in System 3 as well. RD 

achieves the second best result and GR again achieves the poorest results among 

these six heuristic selection methods. Arithmetic average of the fitness values 

obtained by the RPD method is better than the average results of other methods in 

these two data sets. 

Table 5.3: Cost results for System 2 with the IE move acceptance criterion 

No Method Best Result Worst Result Average Result 
1 RPD 1126231 1129039 1127381 
2 SR 1126231 1129317 1128190 
3 RD 1127065 1130338 1128500 
4 RP 1127253 1129837 1128510 
5 CF 1128041 1147346 1135070 
6 GR 1130520 1136545 1133359 
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Table 5.4: Cost results for System 3 with the IE move acceptance criterion 

No Method Best Result Worst Result Average Result 
1 RPD 2250070 2252741 2251331 
2 RD 2250090 2254164 2252311 
3 RP 2250837 2253019 2251510 
4 SR 2250875 2253881 2251794 
5 CF 2252492 2284777 2263464 
6 GR 2255599 2263901 2260230 

Looking at the results in Figures 5.11 to 5.14, we can see that the fitness values 

obtained with the IE move acceptance criterion for System 2 and System 3 vary from 

one heuristic selection method to another. The p-value returned by ANOVA is zero 

for both of the systems. Multiple comparison test results show, that CF and GR have 

significantly different mean values from the rest of the methods. Box-whisker plots 

also show that these two methods have longer intervals between their best and worst 

results. 

 

Figure 5.11 : Box-whisker plot for System 2 with IE 

 



 
43 

 

Figure 5.12 : Multiple comparison results for System 2 with IE 

 

Figure 5.13 : Box-whisker plot for System 3 with IE 
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Figure 5.14 : Multiple comparison results for System 3 with IE 

When the GD move acceptance strategy is applied, the RPD method obtains the best 

result in System 2. CF achieves the second best result, but its average result is the 

poorest one. In System 3, RPD, SR and RD methods achieve the same result; 

however, CF achieves the poorest best and average results in the increased data set. 

The difference percentage between RPD and CF is 0,0108% for System 2 and 

0,0931% for System 3. 

Table 5.5: Cost results for System 2 with the GD move acceptance criterion 

No Method Best Result Worst Result Average Result 
1 RPD 1125997 1129390 1127673 
2 CF 1126119 1134568 1128820 
3 RP 1126231 1129404 1127944 
4 SR 1126231 1129837 1128267 
5 RD 1127055 1129837 1128343 
6 GR 1127252 1129135 1128345 

Figure 5.15 shows the box-whisker plot for System 2, when the GD move acceptance 

strategy is used. ANOVA function returns 0.0309 as the p-value. This indicates that 

one heuristic selection method outperforms the other in the fitness values of the 

solutions it produces. 
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Figure 5.15 : Box-whisker plot for System 2 with GD 

 

Figure 5.16 : Multiple comparison results for System 2 with GD 
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Figure 5.16 shows the multiple comparison results. According to these results, RPD 

and CF have significantly different mean values. 

Table 5.6: Cost results for System 3 with the GD move acceptance criterion 

No Method Best Result Worst Result Average Result 
1 RPD 2249099 2252103 2251066 
2 RD 2249099 2253712 2251471 
3 SR 2249099 2254148 2251906 
4 RP 2249576 2253223 2251336 
5 GR 2250904 2259784 2254414 
6 CF 2251195 2272279 2259073 

Figure 5.17 illustrates the box-whisker plot of System 3.  In System 3, the p-value 

returned by ANOVA is 1.1102 e 
–15. Since it is a very small value, it shows that there 

is a statistical difference between the fitness values of the experimented methods. 

According to the multiple comparison test results, RPD and CF have significantly 

different mean values as shown in Figure 5.18.  

 

Figure 5.17 : Box-whisker plot for System 3 with GD 
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Figure 5.18 : Multiple comparison results for System 3 with GD 

GR method produces poor results with the first three move acceptance criteria, since 

it always selects the most efficient heuristic at each iteration. Heuristics with hill 

climbing capability are able to obtain better results than other heuristics; therefore, 

GR method mostly selects hill climbers among seven heuristics at each run of the 

experiment. Diversity can not be provided effectively with this method and this 

results in getting stuck at a local optimum. 

AM is not an efficient move acceptance strategy, since it accepts all non-improving 

moves without any limitation. GR achieves the best results with AM in these two 

data sets, because in GR all heuristics are applied to the solution and the heuristic 

obtaining the best fitness value is selected. At each iteration hill climbers are applied 

to the solution. Since hill climbers do not accept a worsening move,  AM selects a 

candidate solution either with a better fitness value or at least with the same fitness 

value as the previous one. 

According to the results in Table 5.7, CF achieves the second best result in System 2. 

CF method selects a heuristic with respect to the score of each heuristic from 

previous runs based on the quality of the solution, so that it applies the most efficient 
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heuristic at each iteration during the search. RPD obtains better results than RP and 

RD obtains better results than SR, since they apply a heuristic to the solution again, if 

the heuristic causes an improvement in the fitness value of the solution. 

Table 5.7: Cost results for System 2 with the AM move acceptance criterion 

No Method Best Result Worst Result Average Result 
1 GR 1135972 1182232 1157148 
2 CF 1137093 1180722 1158591 
3 RPD 1140067 1180180 1160381 
4 RP 1141958 1180711 1161860 
5 RD 1142190 1184874 1163611 
6 SR 1152371 1183624 1165224 

Box-whisker plot of System 2, obtained using the AM move acceptance strategy, is 

shown in Figure 5.19. The p-value, 0.3145, does not indicate statistically significant 

differences between the fitness values of different heuristic selection methods. In 

Figure 5.20, it can be easily observed that the mean values of CF, RPD, RP, RD and 

SR are not significantly different from GR. 

 

Figure 5.19 : Box-whisker plot for System 2 with AM 
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Figure 5.20 : Multiple comparison results for System 2 with AM 

Table 5.8 shows the experimental results for System 3, when AM is used as the move 

acceptance criterion. GR again achieves the best result in this data set in front of the 

CF method.  

Table 5.8: Cost results for System 3 with the AM move acceptance criterion 

No Method Best Result Worst Result Average Result 
1 GR 2339024 2478087 2402021 
2 CF 2341696 2482374 2404243 
3 RPD 2348286 2477003 2406051 
4 RD 2354096 2481037 2419543 
5 RP 2356811 2483620 2418755 
6 SR 2383415 2482194 2427434 

Figure 5.21 depicts the box-whisker plot for System 3. The p-value, 0. 1793, also 

verifies that there is no statistically significant difference between the fitness values 

obtained by different heuristic selection methods. In the multiple comparison test 

results, as shown in Figure 5.22, the mean value of GR is not  significantly different 

from other methods. 
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Figure 5.21 : Box-whisker plot for System 3 with AM 

 

Figure 5.22 : Multiple comparison results for System 3 with AM 
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In the first part of the experiments, the best result for System 2 is 1125997. This 

result is obtained with two different heuristic selection and move acceptance strategy 

pairs. These are RPD-OI and RPD-GD combinations. The best result for System 3 is 

2248284, and this result is obtained using RPD-OI strategy pair. Since the data set is 

increased in System 3, the efficiency of RPD-OI becomes more obvious among all 

24 strategy combinations. Four different combinations follow RPD-OI and they 

produce the same solution with the fitness value of 2249099. 

In further parts of this section, this combination is used to compare the performance 

of the hyper-heuristic (HH) approach with other optimization techniques. Table 5.9 

shows the best heuristic selection method and move acceptance criterion 

combinations for System 2 and System 3. 

Table 5.9: The best ten heuristic selection method and move acceptance criterion  

                      combinations 

System 2 System 3 
Rank 

Combination Fitness 
Rank 

Combination Fitness 

1 RPD - OI 1125997 1 RPD - OI 2248284 

2 RPD - GD 1125997    2 RP - OI 2249099 

3 RPD - OI 1126059 3 RPD - GD 2249099 

4 CF - GD 1126119 4 RD - GD 2249099 

5 RPD - OI 1126137 5 SR - GD 2249099 

6 RP - OI 1126231 6 RPD - GD 2249114 

7 RPD - IE 1126231 7 RP - OI 2249118 

8 SR - IE 1126231 8 RPD - OI 2249144 

9 SR - GD 1126231 9 RD - GD 2249149 

10 RP - GD 1126231 10 RPD - OI 2249287 

Figure 5.23 shows the distribution of the best fifty solutions of System 2 among 

several heuristic selection method and move acceptance criterion combinations. 

Seven of these fifty solutions are produced by RPD-OI pair. RPD-IE, RP-OI, RPD-

GD follow this combination with six solutions. Fourteen different combinations 

obtaining at least one solution are listed in this figure. 

Figure 5.24 shows the distribution of the best fifty solutions for System 3. RPD-OI is 

in the first place with fourteen solutions. RP-OI is the second most effective 

combination with nine solutions. This figure also verifies that the effectiveness of 
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RPD-OI becomes more significant with the increased data set. Four of the five 

combinations listed in Figure 5.23 with at most two solutions are not able to produce 

a solution which can join the top fifty list of System 3. 

 

Figure 5.23 : Distribution of the best fifty solutions for System 2 

 

Figure 5.24 : Distribution of the best fifty solutions for System 3 
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Figure 5.25 shows the iteration number versus the fitness value curves for six 

different combinations with respect to their best cost results obtained in System 3. 

CF-IE and GR-IE find the optimum fitness values earlier than other combinations, 

but they are getting stuck at local optima, since the diversity can not be provided 

with performance based heuristic selection methods in further parts of the search 

process. SR-GD, RD-GD and RP-OI achieve the second best result in System 3 and 

they obtain this solution approximately between the iteration numbers of 3000 and 

3600. RPD-OI produces the best solution in System 3 during the 8300th iteration. 

 

Figure 5.25 : Iteration Number versus Fitness Value curves 

Figures 5.26 and 5.27 show multiple comparison test results for System 2 and 

System 3. These test results are obtained using the cost values produced by six 

heuristic selection methods along with OI, IE and GD move acceptance schemes. It 

can be easily observed that CF and GR have significantly different mean values for 

OI and IE move acceptance schemes in both of the test instances. However, this 

difference is decreased when these two heuristic selection methods are used along 

with GD. 
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Figure 5.26 : Multiple comparison results for System 2 

 

Figure 5.27 : Multiple comparison results for System 3 
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5.3.2 Performance Comparison of the HH with a Genetic Algorithm 

In the second part, the performance of the HH method is compared with the 

performance of a genetic algorithm (GA2). When applying GA2 to the UCP, 

premature convergence should be prevented to make the search more efficient. 

Therefore, the iterative search process needs to be monitored; additionally, mutation 

and crossover probability rates should be adjusted to prevent the convergence. 

Although HH method uses the same genetic operators, fine tuning of certain genetic 

operator probability rates, adaptation and system monitoring are not necessary. This 

technique creates new candidate solutions with respect to the applied heuristic 

selection and move acceptance methods. 

For System 1, GA2 achieves a better result than HH, but these results are very 

similar. In the other data sets, HH obtains better results than GA2. When the size of 

the data set increases, the difference between the fitness values of GA2 and HH 

becomes more significant. The difference percentage between GA2 and HH is 

0,022% for System 2. For System 3, System 4, System 5 and System 6, these values 

are 0,16%,  0,13%,  0,22% and 0,23% respectively. For larger problems, the 

solutions using HH are better even in the worst runs than the results obtained by 

GA2. 

Table 5.10: Comparison of the cost results of GA2 and HH methods 

GA2 HH 
Units 

best worst best worst 

10 565825 570032 565827 567028 

20 1126243 1132059 1125997 1128831 

40 2251911 2259706 2248284 2253971 

60 3376625 3384252 3372040 3376043 

80 4504933 4510129 4494452 4499067 

100 5627437 5637914 5614360 5620496 

5.3.3 Performance Comparison of the HH with other Optimization Techniques 

In the third part, the performance of the HH is compared with other optimization 

algorithms using six benchmark data sets. In literature, only the best, average and 

worst fitness values are reported for the listed techniques and they are taken from the 
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papers without any modification. The algorithms in the following tables are ranked in 

decreasing order of their best fitnes values and they are abbreviated as follows:  

• LR1 is a Lagrangian Relaxation method as used in [12],  

• LR2 is a Lagrangian Relaxation method as used in [14], 

• GA1 is a standard genetic algorithm as used in [14],  

• GA2 is a genetic algorithm with special operators as used in [12],  

• GRA1 and GRA2 are the greedy randomized search methods as used in [10],   

• MA and SMA are memetic algorithms as used in [14],  

• BDE1 is a binary differential evolution methods as used in [1],  

• BDE2 is a binary differential evolution method as used in [16], 

• ES is an evolutionary strategies algorithm as used in [1],   

• SSGA is steady state genetic algorithm as used in [1],   

• ICGA is an integer coded genetic algorithm as used in [20], 

• HH is a hyper-heuristic algorithm proposed in this study. 

Table 5.11: Cost results for System 1 

Algorithm Best Result Worst Result Average Result 
LR1 565825 n/a n/a 
GRA1 565825 - - 
GA2 565825 570032 - 
BDE2 565827 566650 565965 
HH 565827 567028 566243 
MA 565827 566861 566453 
ES 565827 571312 569199 
GA1 565866 571366 567329 
BDE1 566166 - - 
ICGA 566404 - - 
SMA 566686 567822 566787 
LR2 567663 n/a n/a 

In System 1, LR1, GRA1 and GA2 obtain the best result with 565825. HH achieves 

the second best result. However, the difference percentage between these results is 

only 0.0003%. In a small data set, different algorithms obtain very similar results. 

The difference between the best and the worst value of each algorithm is also low. 
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In System 2, HH produces the overal best result. GA2 and GRA2 follow the HH 

method. The difference percentage between the cost values of HH and GA2 is 

0.022%. In System 3, HH again finds the best result in front of the SMA method. 

The difference percentage increases to 0.058% in a larger test instance. 

Table 5.12: Cost results for System 2 

Algorithm Best Result Worst Result Average Result 
HH 1125997 1128587 1127563 
GA2 1126243 1132059 - 
GRA2 1126805 - - 
ICGA 1127244 - - 
MA 1127254 1130916 1128824 
GRA1 1128160 - - 
SMA 1128192 1128403 1128213 
GA1 1128876 1131565 1130160 
LR2 1129633 n/a n/a 
LR1 1130660 n/a n/a 

Table 5.13: Cost results for System 3 

Algorithm Best Result Worst Result Average Result 
HH 2248284 2253971 2250534 
SMA 2249589 2249589 2249589 
LR2 2250223 n/a n/a 
GA2 2251911 2259706 - 
GA1 2252909 2269282 2262585 
MA 2252937 2270361 2262477 
ICGA 2254123 - - 
GRA2 2255416 - - 
LR1 2258503 n/a n/a 
GRA1 2259340 - - 

Although  LR1 and GRA1 obtain the best result in System 1, they do not perform 

well in larger data sets. On the other hand, methods with hybridization techniques, 

such as repair operators, hill climbers, specialized operators used for reproduction or 

for initial population generation, produce especially better results with increased 

problem instances. HH, SMA, LR2 are examples for these methods. In System 3, 

System 4, System 5 and System 6, HH, SMA and LR2 algorithms take the first three 

places. At each iteration, HH makes use of a hill-climbing operator; therefore, HH is 

a robust method for different problem instances with varying data sizes. 

Additionally, HH also applies mutational heuristics to maintain diversity during the 

search. 
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In System 5, SMA finds the best result in front of HH. However, HH finds the best 

result in System 4 and System 6 and SMA obtains the second best result. In all test 

sytems, the difference percentage between the best and the worst results of SMA is 

lower than the difference percentage of the best and the worst values obtained by 

HH. 

Table 5.14: Cost results for System 4 

Algorithm Best Result Worst Result Average Result 
HH 3369907 3376508 3373251 
SMA 3370595 3371272 3370820 
LR2 3374994 3374994 3374994 
GA2 3376625 3384252 - 
GA1 3377393 3401847 3394044 
ICGA 3378108 - - 
GRA1 3383290 - - 
MA 3388676 3408275 3394830 
LR1 3394066 n/a n/a 

Table 5.15: Cost results for System 5 

Algorithm Best Result Worst Result Average Result 
SMA 4494214 4494439 4494378 
HH 4494452 4499067 4496639 
LR2 4496729 4496729 4496729 
ICGA 4498943 - - 
MA 4501449 4545305 4527779 
GA2 4504933 4510129 - 
GA1 4507692 4552982 4525204 
LR1 4526022 n/a n/a 

Table 5.16: Cost results for System 6 

Algorithm Best Result Worst Result Average Result 
HH 5614360 5620496 5618418 
SMA 5616314 5616900 5616699 
LR2 5620305 5620305 5620305 
GA1 5626362 5690086 5669362 
GA2 5627437 5637914 - 
ICGA 5630838 - - 
MA 5640543 5698039 5665803 
GRA1 5669945 - - 
LR1 5657277 n/a n/a 

In the last experiment, real world data from the Turkish Interconnected Power 

System is used for the performance comparison. This data set only contains eight 

units and eight hours. According to the experimental results, both HH and BDE2 

produce the best result. ES and SSGA obtain the second best result. This experiment 
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also verifies, that the HH is able to find the optimum solution using real world data 

as well. 

Table 5.17: Cost results for Turkish Interconnected Power System 

Algorithm Best Result Worst Result Average Result 
HH 530346 530346 530346 
BDE2 530346 530346 530346 
ES 530392 530392 530392 
SSGA 530392 530392 530392 
BDE1 532142 - - 

Table 5.18 shows the 95% confidence intervals of the fitness values obtained by the 

HH for each test instance. First column gives the means and the second column gives 

the 95% confidence intervals of the means.  

Table 5.18: Mean and the 95% confidence interval for the fitness values obtained by     
the HH 

 Mean Confidence interval 
System 1  566243 [565819.8 , 566666.2] 
System 2 1127563 [1127142.96 , 1127983.04] 
System 3 2250534 [2249835.94 , 2251232.06] 
System 4 3373251 [3372450.57 , 3374051.43] 
System 5 4496639 [4495956.81 , 4497321.19] 
System 6 5618418 [5616976.15 , 5619859.85] 
System TR 530346 [530346 , 530346] 

In System 1, nine different algorithms obtain better results than the upper bound of 

the confidence interval. In System 2, only four algorithms are able to produce a 

better result than the upper bound. In System 3 and System 5, SMA and LR2 achieve 

results within the 0.95 confidence interval. In System 4 and System 6, only SMA is 

able to find solutions, whose fitness values lie between the upper and the lower 

bounds of the interval. 
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6.  CONCLUSION 

In this study, hyper-heuristic algorithms with different heuristic selection and move 

acceptance strategy combinations are implemented to solve the UCP. To determine 

the most effective hyper-heuristic combination for the UCP, experiments are 

performed using two problem instances. RPD-OI heuristic selection and move 

acceptance combination achieves the best results in these two test sets. With the 

increased data size of the problem instance, its effectiveness becomes more 

significant. Consequently, in the second and third parts of the experiments the 

performance of this combination is compared with other optimization techniques, 

which are previously applied to the UCP.  

In the first part of the experiments it is also observed, that CF and GR methods 

obtain good results in short time periods. However, the best and the average results 

produced by these two methods are not better than the results of RP, RPD, SR and 

RD. They select a heuristic according to the performance of each heuristic, but some 

heuristics can outperform the others; therefore, mutational heuristics especially have 

a small chance of being selected in further parts of the search process. Diversity can 

not be provided efficiently, and this results in getting stuck at local optima. On the 

other hand, in the RPD heuristic selection strategy even the mutational heuristics are 

applied to the solution at later stages of the search with respect to the order of the 

heuristics in the predefined permutation array, so that different regions of the search 

space are investigated to find a better solution than the globally best solution which 

is found so far. 

Statistical test results show significant statistical differences between the fitness 

values produced by different heuristic selection methods for the same move 

acceptance criterion except AM. This also verifies that one method obtains much 

better results than at least one of the remaining methods. 

After determining the most efficient strategy combination for the hyper-heuristic 

approach, the proposed hyper-heuristic algorithm is compared with a genetic 

algorithm explained in [12]. Although these two algorithms contain the same genetic 
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operators, the hyper-heuristic algorithm produces better results than the genetic 

algorithm. The difference percentage between the results obtained by these two 

methods increases with the growing data size. When the data size increases, the 

solutions achieved using the HH approach are better even in the worst runs than the 

results obtained by GA2. Additionally, the hyper-heuristic method does not require 

system monitoring and fine tuning of the genetic operator probability rates to prevent 

the convergence. 

Secondly, optimization techniques are ranked in decreasing order of their best fitness 

values using six benchmark data sets and one real world data set. The HH method 

finds consistent results in all test sets due to the incorporation of the hill-climbing 

operators. SMA and LR2 are the other two effective algorithms for the UCP. SMA 

uses specialized reproduction operators and hill climbers. It also makes use of the 

LR2 algorithm to create the initial population. HH randomly creates the initial 

population unlike in SMA, but it combines the usage of mutational heuristics with 

hill-climbing operators to search different regions of the solution space and to reach 

the highest point of the selected region. 

HH obtains impressive results in all test sets when compared with other optimization 

algorithms. The performance of this algorithm can be further enhanced by applying 

more sophisticated heuristics and hill-climbing operators. Additionally, the initial 

solution can be created using the priority list method to increase the efficiency of this 

algorithm. Effective techniques including advanced learning mechanisms can be 

used for heuristic selection and move acceptance parts as well. 
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APPENDIX A.1  

Table A.1 : Data set for System 1 

 

 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10 
Pmax  (MW) 80 85 55 55 55 
Pmin  (MW) 20 25 10 10 10 

a0 370 480 660 665 670 
a1 22.26 27.74 25.92 27.27 27.79 
a2 0.00712 0.00079 0.00413 0.00222 0.00173 

tup  (h) 3 3 1 1 1 
tdown (h) 3 3 1 1 1 
Shot  ($) 170 260 30 30 30 
Scold  ($) 340 520 60 60 60 

tcoldstart (h) 2 2 0 0 0 
Initial state  (h) -3 -3 -1 -1 -1 

 

Hour Demand 
(MW) 

Reserve 
(MW) 

Hour Demand 
(MW) 

Reserve 
(MW) 

1 700 75 13 1400 140 
2 750 75 14 1300 130 
3 850 85 15 1200 120 
4 950 95 16 1050 105 
5 1000 100 17 1000 100 
6 1100 110 18 1100 110 
7 1150 115 19 1200 120 
8 1200 120 20 1400 140 
9 1300 130 21 1300 130 
10 1400 140 22 1100 110 
11 1450 145 23 900 90 
12 1500 150 24 800 80 

 

 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 
Pmax  (MW) 455 455 130 130 162 
Pmin  (MW) 150 150 20 20 25 

a0 1000 970 700 680 450 
a1 16.19 17.26 16.60 16.50 19.70 
a2 0.00048 0.00031 0.00200 0.00211 0.00398 

tup  (h) 8 8 5 5 6 
tdown (h) 8 8 5 5 6 
Shot  ($) 4500 5000 550 560 900 
Scold  ($) 9000 10000 1100 1120 1800 

tcoldstart (h) 5 5 4 4 4 
Initial state  (h) 8 8 -5 -5 -6 
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Table A.2 : Data set for Turkish Interconnected Power System 
 

 Unit 1 Unit 2 Unit 3 Unit 4 
Pmax  (MW) 1120 1350 1432 600 
Pmin  (MW) 190 245 318 150 

a0 6995.5 7290.6 6780.5 1564.4 
a1 7.0063 7.2592 5.682 3.1288 
a2 0.0168 0.0127 0.0106 0.0139 

tup  (h) 8 1 1 10 
tdown (h) 2 0.5 0.5 3 
Shot  ($) 800 800 600 400 
Scold  ($) 1600 1600 1200 800 

tcoldstart (h) 8 1 1 10 
Initial state  (h) -4 -4 -4 -4 

 

 Unit 5 Unit 6 Unit 7 Unit 8 
Pmax  (MW) 990 420 630 630 
Pmin  (MW) 210 110 140 140 

a0 5134.1 1159.5 1697 1822.8 
a1 6.232 3.3128 3.2324 3.472 
a2 0.0168 0.021 0.013 0.0147 

tup  (h) 10 10 10 10 
tdown (h) 3 3 3 3 
Shot  ($) 500 400 400 400 
Scold  ($) 1000 800 800 800 

tcoldstart (h) 10 10 10 10 
Initial state  (h) -4 -4 -4 -4 

 

Hour Demand 
(MW) 

Reserve 
(MW) 

1 2000 200 
2 3000 300 
3 6500 650 
4 1500 150 
5 4200 420 
6 5100 510 
7 2700 270 
8 1750 175 

 

 

 

 



 
70 

APPENDIX A.2  

Table A.3 : Best solution for System 2 between Hour 1 and Hour 6 

 

 

 

 

 

 

 

 

 

Table A.4 : Best solution for System 2 between Hour 7 and Hour 12 

 

 

 

 

 

 

 

 

 

 

 

Unit Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 
1 455.00 455.00 455.00 455.00 455.00 455.00 
2 245.00 295.00 382.50 455.00 455.00 425.00 
3 0.00 0.00 0.00 0.00 0.00 0.00 
4 0.00 0.00 0.00 0.00 0.00 130.00 
5 0.00 0.00 25.00 40.00 25.00 25.00 
6 0.00 0.00 0.00 0.00 0.00 0.00 
7 0.00 0.00 0.00 0.00 0.00 0.00 
8 0.00 0.00 0.00 0.00 0.00 0.00 
9 0.00 0.00 0.00 0.00 0.00 0.00 
10 0.00 0.00 0.00 0.00 0.00 0.00 
11 455.00 455.00 455.00 455.00 455.00 455.00 
12 245.00 295.00 382.50 455.00 455.00 425.00 
13 0.00 0.00 0.00 0.00 0.00 130.00 
14 0.00 0.00 0.00 0.00 130.00 130.00 
15 0.00 0.00 0.00 40.00 25.00 25.00 
16 0.00 0.00 0.00 0.00 0.00 0.00 
17 0.00 0.00 0.00 0.00 0.00 0.00 
18 0.00 0.00 0.00 0.00 0.00 0.00 
19 0.00 0.00 0.00 0.00 0.00 0.00 
20 0.00 0.00 0.00 0.00 0.00 0.00 

Unit Hour 7 Hour 8 Hour 9 Hour 10 Hour 11 Hour 12 
1 455.00 455.00 455.00 455.00 455.00 455.00 
2 455.00 455.00 455.00 455.00 455.00 455.00 
3 0.00 130.00 130.00 130.00 130.00 130.00 
4 130.00 130.00 130.00 130.00 130.00 130.00 
5 45.00 30.00 97.50 162.00 162.00 162.00 
6 0.00 0.00 20.00 33.00 73.00 80.00 
7 0.00 0.00 25.00 25.00 25.00 25.00 
8 0.00 0.00 0.00 10.00 10.00 43.00 
9 0.00 0.00 0.00 0.00 10.00 10.00 
10 0.00 0.00 0.00 0.00 0.00 10.00 
11 455.00 455.00 455.00 455.00 455.00 455.00 
12 455.00 455.00 455.00 455.00 455.00 455.00 
13 130.00 130.00 130.00 130.00 130.00 130.00 
14 130.00 130.00 130.00 130.00 130.00 130.00 
15 45.00 30.00 97.50 162.00 162.00 162.00 
16 0.00 0.00 20.00 33.00 73.00 80.00 
17 0.00 0.00 0.00 25.00 25.00 25.00 
18 0.00 0.00 0.00 10.00 10.00 43.00 
19 0.00 0.00 0.00 0.00 10.00 10.00 
20 0.00 0.00 0.00 0.00 0.00 10.00 
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Table A.5 : Best solution for System 2 between Hour 13 and Hour 18 

 

 

 

 

 

 

 

 

 

Table A.6 : Best solution for System 2 between Hour 19 and Hour 24 

 

 

 

 

 

 

 

 

 

 

 

 

Unit Hour 13 Hour 14 Hour 15 Hour 16 Hour 17 Hour 18 
1 455.00 455.00 455.00 455.00 455.00 455.00 
2 455.00 455.00 455.00 310.00 260.00 360.00 
3 130.00 130.00 130.00 130.00 130.00 130.00 
4 130.00 130.00 130.00 130.00 130.00 130.00 
5 162.00 97.50 30.00 25.00 25.00 25.00 
6 33.00 20.00 0.00 0.00 0.00 0.00 
7 25.00 0.00 0.00 0.00 0.00 0.00 
8 10.00 0.00 0.00 0.00 0.00 0.00 
9 0.00 0.00 0.00 0.00 0.00 0.00 
10 0.00 0.00 0.00 0.00 0.00 0.00 
11 455.00 455.00 455.00 455.00 455.00 455.00 
12 455.00 455.00 455.00 310.00 260.00 360.00 
13 130.00 130.00 130.00 130.00 130.00 130.00 
14 130.00 130.00 130.00 130.00 130.00 130.00 
15 162.00 97.50 30.00 25.00 25.00 25.00 
16 33.00 20.00 0.00 0.00 0.00 0.00 
17 25.00 25.00 0.00 0.00 0.00 0.00 
18 10.00 0.00 0.00 0.00 0.00 0.00 
19 0.00 0.00 0.00 0.00 0.00 0.00 
20 0.00 0.00 0.00 0.00 0.00 0.00 

Unit Hour 19 Hour 20 Hour 21 Hour 22 Hour 23 Hour 24 
1 455.00 455.00 455.00 455.00 455.00 455.00 
2 455.00 455.00 455.00 455.00 432.50 345.00 
3 130.00 130.00 130.00 0.00 0.00 0.00 
4 130.00 130.00 130.00 130.00 0.00 0.00 
5 30.00 162.00 105.00 105.00 25.00 0.00 
6 0.00 43.00 20.00 20.00 0.00 0.00 
7 0.00 0.00 0.00 0.00 0.00 0.00 
8 0.00 10.00 10.00 0.00 0.00 0.00 
9 0.00 10.00 0.00 0.00 0.00 0.00 
10 0.00 0.00 0.00 0.00 0.00 0.00 
11 455.00 455.00 455.00 455.00 455.00 455.00 
12 455.00 455.00 455.00 455.00 432.50 345.00 
13 130.00 130.00 130.00 0.00 0.00 0.00 
14 130.00 130.00 130.00 0.00 0.00 0.00 
15 30.00 162.00 105.00 105.00 0.00 0.00 
16 0.00 43.00 20.00 20.00 0.00 0.00 
17 0.00 0.00 0.00 0.00 0.00 0.00 
18 0.00 10.00 0.00 0.00 0.00 0.00 
19 0.00 10.00 0.00 0.00 0.00 0.00 
20 0.00 10.00 0.00 0.00 0.00 0.00 
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Table A.7 : Best solution for System 3 between Hour 1 and Hour 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unit Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6 
1 455.00 455.00 455.00 455.00 455.00 455.00 
2 245.00 295.00 388.75 443.75 455.00 455.00 
3 0.00 0.00 0.00 0.00 0.00 0.00 
4 0.00 0.00 0.00 0.00 0.00 130.00 
5 0.00 0.00 0.00 25.00 57.50 27.50 
6 0.00 0.00 0.00 0.00 0.00 0.00 
7 0.00 0.00 0.00 0.00 0.00 0.00 
8 0.00 0.00 0.00 0.00 0.00 0.00 
9 0.00 0.00 0.00 0.00 0.00 0.00 
10 0.00 0.00 0.00 0.00 0.00 0.00 
11 455.00 455.00 455.00 455.00 455.00 455.00 
12 245.00 295.00 388.75 443.75 455.00 455.00 
13 0.00 0.00 0.00 0.00 0.00 0.00 
14 0.00 0.00 0.00 0.00 0.00 130.00 
15 0.00 0.00 0.00 25.00 57.50 27.50 
16 0.00 0.00 0.00 0.00 0.00 0.00 
17 0.00 0.00 0.00 0.00 0.00 0.00 
18 0.00 0.00 0.00 0.00 0.00 0.00 
19 0.00 0.00 0.00 0.00 0.00 0.00 
20 0.00 0.00 0.00 0.00 0.00 0.00 
21 455.00 455.00 455.00 455.00 455.00 455.00 
22 245.00 295.00 388.75 443.75 455.00 455.00 
23 0.00 0.00 0.00 0.00 0.00 0.00 
24 0.00 0.00 0.00 0.00 0.00 130.00 
25 0.00 0.00 25.00 25.00 57.50 27.50 
26 0.00 0.00 0.00 0.00 0.00 0.00 
27 0.00 0.00 0.00 0.00 0.00 0.00 
28 0.00 0.00 0.00 0.00 0.00 0.00 
29 0.00 0.00 0.00 0.00 0.00 0.00 
30 0.00 0.00 0.00 0.00 0.00 0.00 
31 455.00 455.00 455.00 455.00 455.00 455.00 
32 245.00 295.00 388.75 443.75 455.00 455.00 
33 0.00 0.00 0.00 0.00 0.00 130.00 
34 0.00 0.00 0.00 130.00 130.00 130.00 
35 0.00 0.00 0.00 0.00 57.50 27.50 
36 0.00 0.00 0.00 0.00 0.00 0.00 
37 0.00 0.00 0.00 0.00 0.00 0.00 
38 0.00 0.00 0.00 0.00 0.00 0.00 
39 0.00 0.00 0.00 0.00 0.00 0.00 
40 0.00 0.00 0.00 0.00 0.00 0.00 
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Table A.8 : Best solution for System 3 between Hour 7 and Hour 12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unit Hour 7 Hour 8 Hour 9 Hour 10 Hour 11 Hour 12 
1 455.00 455.00 455.00 455.00 455.00 455.00 
2 455.00 455.00 455.00 455.00 455.00 455.00 
3 0.00 130.00 130.00 130.00 130.00 130.00 
4 130.00 130.00 130.00 130.00 130.00 130.00 
5 45.00 30.00 103.75 162.00 162.00 162.00 
6 0.00 0.00 20.00 33.00 73.00 80.00 
7 0.00 0.00 0.00 25.00 25.00 25.00 
8 0.00 0.00 0.00 10.00 10.00 43.00 
9 0.00 0.00 0.00 0.00 10.00 10.00 
10 0.00 0.00 0.00 0.00 0.00 10.00 
11 455.00 455.00 455.00 455.00 455.00 455.00 
12 455.00 455.00 455.00 455.00 455.00 455.00 
13 0.00 130.00 130.00 130.00 130.00 130.00 
14 130.00 130.00 130.00 130.00 130.00 130.00 
15 45.00 30.00 103.75 162.00 162.00 162.00 
16 0.00 0.00 20.00 33.00 73.00 80.00 
17 0.00 0.00 25.00 25.00 25.00 25.00 
18 0.00 0.00 0.00 10.00 10.00 43.00 
19 0.00 0.00 0.00 0.00 10.00 10.00 
20 0.00 0.00 0.00 0.00 0.00 10.00 
21 455.00 455.00 455.00 455.00 455.00 455.00 
22 455.00 455.00 455.00 455.00 455.00 455.00 
23 130.00 130.00 130.00 130.00 130.00 130.00 
24 130.00 130.00 130.00 130.00 130.00 130.00 
25 45.00 30.00 103.75 162.00 162.00 162.00 
26 0.00 0.00 20.00 33.00 73.00 80.00 
27 0.00 0.00 0.00 25.00 25.00 25.00 
28 0.00 0.00 0.00 10.00 10.00 43.00 
29 0.00 0.00 0.00 0.00 10.00 10.00 
30 0.00 0.00 0.00 0.00 0.00 10.00 
31 455.00 455.00 455.00 455.00 455.00 455.00 
32 455.00 455.00 455.00 455.00 455.00 455.00 
33 130.00 130.00 130.00 130.00 130.00 130.00 
34 130.00 130.00 130.00 130.00 130.00 130.00 
35 45.00 30.00 103.75 162.00 162.00 162.00 
36 0.00 0.00 20.00 33.00 73.00 80.00 
37 0.00 0.00 0.00 25.00 25.00 25.00 
38 0.00 0.00 0.00 10.00 10.00 43.00 
39 0.00 0.00 0.00 0.00 10.00 10.00 
40 0.00 0.00 0.00 0.00 0.00 10.00 
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Table A.9 : Best solution for System 3 between Hour 13 and Hour 18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unit Hour 13 Hour 14 Hour 15 Hour 16 Hour 16 Hour 18 
1 455.00 455.00 455.00 455.00 455.00 455.00 
2 455.00 455.00 455.00 310.00 260.00 360.00 
3 130.00 130.00 130.00 130.00 130.00 130.00 
4 130.00 130.00 130.00 130.00 130.00 130.00 
5 162.00 103.75 30.00 25.00 25.00 25.00 
6 33.00 20.00 0.00 0.00 0.00 0.00 
7 25.00 0.00 0.00 0.00 0.00 0.00 
8 10.00 0.00 0.00 0.00 0.00 0.00 
9 0.00 0.00 0.00 0.00 0.00 0.00 
10 0.00 0.00 0.00 0.00 0.00 0.00 
11 455.00 455.00 455.00 455.00 455.00 455.00 
12 455.00 455.00 455.00 310.00 260.00 360.00 
13 130.00 130.00 130.00 130.00 130.00 130.00 
14 130.00 130.00 130.00 130.00 130.00 130.00 
15 162.00 103.75 30.00 25.00 25.00 25.00 
16 33.00 20.00 0.00 0.00 0.00 0.00 
17 25.00 0.00 0.00 0.00 0.00 0.00 
18 10.00 0.00 0.00 0.00 0.00 0.00 
19 0.00 0.00 0.00 0.00 0.00 0.00 
20 0.00 0.00 0.00 0.00 0.00 0.00 
21 455.00 455.00 455.00 455.00 455.00 455.00 
22 455.00 455.00 455.00 310.00 260.00 360.00 
23 130.00 130.00 130.00 130.00 130.00 130.00 
24 130.00 130.00 130.00 130.00 130.00 130.00 
25 162.00 103.75 30.00 25.00 25.00 25.00 
26 33.00 20.00 0.00 0.00 0.00 0.00 
27 25.00 0.00 0.00 0.00 0.00 0.00 
28 10.00 0.00 0.00 0.00 0.00 0.00 
29 0.00 0.00 0.00 0.00 0.00 0.00 
30 0.00 0.00 0.00 0.00 0.00 0.00 
31 455.00 455.00 455.00 455.00 455.00 455.00 
32 455.00 455.00 455.00 310.00 260.00 360.00 
33 130.00 130.00 130.00 130.00 130.00 130.00 
34 130.00 130.00 130.00 130.00 130.00 130.00 
35 162.00 103.75 30.00 25.00 25.00 25.00 
36 33.00 20.00 0.00 0.00 0.00 0.00 
37 25.00 25.00 0.00 0.00 0.00 0.00 
38 10.00 0.00 0.00 0.00 0.00 0.00 
39 0.00 0.00 0.00 0.00 0.00 0.00 
40 0.00 0.00 0.00 0.00 0.00 0.00 
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Table A.10 : Best solution for System 3 between Hour 19 and Hour 24 

 

 

 

Unit Hour 19 Hour 20 Hour 21 Hour 22 Hour 23 Hour 24 
1 455.00 455.00 455.00 455.00 455.00 455.00 
2 455.00 455.00 455.00 455.00 432.50 345.00 
3 130.00 130.00 130.00 0.00 0.00 0.00 
4 130.00 130.00 130.00 130.00 0.00 0.00 
5 30.00 162.00 103.75 0.00 0.00 0.00 
6 0.00 41.75 20.00 20.00 0.00 0.00 
7 0.00 0.00 0.00 0.00 0.00 0.00 
8 0.00 10.00 0.00 0.00 0.00 0.00 
9 0.00 10.00 0.00 0.00 0.00 0.00 
10 0.00 0.00 0.00 0.00 0.00 0.00 
11 455.00 455.00 455.00 455.00 455.00 455.00 
12 455.00 455.00 455.00 455.00 432.50 345.00 
13 130.00 130.00 130.00 0.00 0.00 0.00 
14 130.00 130.00 130.00 130.00 0.00 0.00 
15 30.00 162.00 103.75 67.50 25.00 0.00 
16 0.00 41.75 20.00 20.00 0.00 0.00 
17 0.00 25.00 25.00 25.00 0.00 0.00 
18 0.00 10.00 0.00 0.00 0.00 0.00 
19 0.00 10.00 0.00 0.00 0.00 0.00 
20 0.00 0.00 0.00 0.00 0.00 0.00 
21 455.00 455.00 455.00 455.00 455.00 455.00 
22 455.00 455.00 455.00 455.00 432.50 345.00 
23 130.00 130.00 130.00 0.00 0.00 0.00 
24 130.00 130.00 130.00 130.00 0.00 0.00 
25 30.00 162.00 103.75 0.00 0.00 0.00 
26 0.00 41.75 20.00 20.00 0.00 0.00 
27 0.00 0.00 0.00 0.00 0.00 0.00 
28 0.00 10.00 0.00 0.00 0.00 0.00 
29 0.00 10.00 0.00 0.00 0.00 0.00 
30 0.00 0.00 0.00 0.00 0.00 0.00 
31 455.00 455.00 455.00 455.00 455.00 455.00 
32 455.00 455.00 455.00 455.00 432.50 345.00 
33 130.00 130.00 130.00 0.00 0.00 0.00 
34 130.00 130.00 130.00 130.00 0.00 0.00 
35 30.00 162.00 103.75 67.50 25.00 0.00 
36 0.00 41.75 20.00 20.00 0.00 0.00 
37 0.00 0.00 0.00 0.00 0.00 0.00 
38 0.00 10.00 0.00 0.00 0.00 0.00 
39 0.00 10.00 0.00 0.00 0.00 0.00 
40 0.00 0.00 0.00 0.00 0.00 0.00 
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