

ĐSTANBUL TECHNICAL UNIVERSITY ���� INFORMATICS INSTITUTE

M.Sc. Thesis by
Ali Argun BERBEROĞLU

Department : Computer Science

Programme : Computer Science

JANUARY 2011

HYPER-HEURISTICS FOR THE UNIT COMMITMENT PROBLEM

Thesis Supervisor: Asst. Prof. Dr. A. Şima UYAR

ĐSTANBUL TECHNICAL UNIVERSITY ���� INFORMATICS INSTITUTE

M.Sc. Thesis by
Ali Argun BERBEROĞLU

704041002

Date of submission : 20 December 2010
Date of defence examination: 26 January 2011

Supervisor (Chairman) : Asst. Prof. Dr. A. Şima UYAR (ITU)
Members of the Examining Committee : Assoc. Prof. Belgin TÜRKAY (ITU)

 Assoc. Prof. Şule ÖĞÜDÜCÜ (ITU)

JANUARY 2011

HYPER-HEURISTICS FOR THE UNIT COMMITMENT PROBLEM

OCAK 2011

ĐSTANBUL TEKN ĐK ÜNĐVERSĐTESĐ ���� BĐLĐŞĐM ENSTĐTÜSÜ

YÜKSEK L ĐSANS TEZĐ
Ali Argun BERBEROĞLU

704041002

Tezin Enstitüye Verildiği Tarih : 20 Aralık 2010
Tezin Savunulduğu Tarih : 26 Ocak 2011

Tez Danışmanı : Yrd. Doç. Dr. A. Şima UYAR (ĐTÜ)
Diğer Jüri Üyeleri : Doç. Dr. Belgin TÜRKAY (ĐTÜ)

 Doç. Dr. Şule ÖĞÜDÜCÜ (ĐTÜ)

ÜNĐTE PROGRAMLAMA PROBLEM Đ ĐÇĐN ÜST SEZGĐSEL YÖNTEMLER

v

FOREWORD

First and foremost, I would like to thank my family for their great support during my
whole life. This achievement would not have been possible without their support,
encouragement and valuable suggestions.

I would like to express my graditute to Asst. Prof. Dr. Şima Uyar for her patient
guidance and support throughout this thesis work. I am truly very fortunate to have
the opportunity to work with her. I found her guidance to be extremely valuable.

I am very thankful to my managers and my collagues in Netaş. With their support,
encouragement and understanding, I was able to attend the lectures even during some
intensive periods of the ongoing projects.

I am also very thankful to the entire faculty and staff members of the Computer
Engineering Department for their help during my MSc.

December 2010

Ali Argun BERBEROĞLU

Computer Engineer

vi

vii

TABLE OF CONTENTS

 Page

ABBREVIATIONS ... ix
LIST OF TABLES .. xi
LIST OF FIGURES ..xiii
LIST OF SYMBOLS ... xv
SUMMARY ..xvii
ÖZET.. xxi
1. INTRODUCTION.. 1

1.1 Contribution of the Thesis.. 2
1.2 Outline of the Thesis .. 2

2. THE UNIT COMMITMENT PROBLEM 3
3. RELATED WORK ON THE UCP... 7
4. HYPER-HEURISTICS.. 17

4.1 Background .. 17
4.2 Heuristics to Choose Heuristics ... 18

4.2.1 Constructive Hyper-heuristics.. 19
4.2.2 Perturbative Hyper-heuristics...20

4.2.2.1 Single Point Search Based Hyper-heuristics................................... 21
4.2.2.2 Population Based Hyper-heuristics ... 26

4.3 Heuristics to Generate Heuristics ... 27
5. EXPERIMENTAL STUDY...31

5.1 Proposed Approach .. 32
5.2 Experimental Setup .. 36
5.3 Experimental Results.. 38

5.3.1 Performance Comparison of Different Hyper-heuristic Combinations ... 38
5.3.2 Performance Comparison of HH with a Genetic Algorithm.................... 55
5.3.3 Performance Comparison of HH with other Optimization Techniques... 55

6. CONCLUSION... 61
REFERENCES... 63
APPENDICES .. 67
CURRICULUM VITAE.. 77

viii

ix

ABBREVIATIONS

ACO : Ant Colony Optimization
AM : All Moves
ANOVA : Analysis of Variance
CF : Choice Function
DE : Differential Evolution
DP : Dynamic Programming
EDP : Economic Dispatch Problem
ES : Evolutionary Strategies
GA : Genetic Algorithm
GD : Great Deluge
GR : Greedy
GRA : Greedy Randomized Search Algorithm
HH : Hyper-heuristic
ICGA : Integer Coded Genetic Algorithm
IE : Improving and Equal
MA : Memetic Algorithm
LR : Lagrangian Relaxation
PL : Priority List
PSO : Particle Swarm Optimization
RD : Random Descent
RP : Random Permutation
RPD : Random Permutation Descent
SR : Simple Random
SSGA : Steady State Genetic Algorithm
OI : Only Improving
UCP : Unit Commitment Problem

x

xi

LIST OF TABLES

 Page

Table 5.1: Cost results for System 2 with the OI move acceptance criterion 38
Table 5.2: Cost results for System 3 with the OI move acceptance criterion 40
Table 5.3: Cost results for System 2 with the IE move acceptance criterion............ 41
Table 5.4: Cost results for System 3 with the IE move acceptance criterion............ 42
Table 5.5: Cost results for System 2 with the GD move acceptance criterion.......... 44
Table 5.6: Cost results for System 3 with the GD move acceptance criterion.......... 46
Table 5.7: Cost results for System 2 with the AM move acceptance criterion......... 48
Table 5.8: Cost results for System 3 with the AM move acceptance criterion......... 49
Table 5.9: The best ten heuristic selection method and move acceptance criterion
 combinations ... 51
Table 5.10: Comparison of the cost results of GA2 and HH methods...................... 55
Table 5.11: Cost results for System 1 ... 56
Table 5.12: Cost results for System 2 ... 57
Table 5.13: Cost results for System 3 ... 57
Table 5.14: Cost results for System 4 ... 58
Table 5.15: Cost results for System 5 ... 58
Table 5.16: Cost results for System 6 ... 58
Table 5.17: Cost results for Turkish Interconnected Power System......................... 59
Table 5.18: Mean and the 95% confidence interval for the fitness values obtained by
 the HH ... 59
Table A.1 : Data set for System 1 ... 68
Table A.2 : Data set for Turkish Interconnected Power System............................... 69
Table A.3 : Best solution for System 2 between Hour 1 and Hour 6........................ 70
Table A.4 : Best solution for System 2 between Hour 7 and Hour 12...................... 70
Table A.5 : Best solution for System 2 between Hour 13 and Hour 18.................... 71
Table A.6 : Best solution for System 2 between Hour 19 and Hour 24................... 71
Table A.7 : Best solution for System 3 between Hour 1 and Hour 6........................ 72
Table A.8 : Best solution for System 3 between Hour 7 and Hour 12...................... 73
Table A.9 : Best solution for System 3 between Hour 13 and Hour 18.................... 74
Table A.10 : Best solution for System 3 between Hour 19 and Hour 24.................. 75

xii

xiii

LIST OF FIGURES

 Page

Figure 4.1 : Hyper-heuristic framework FA .. 25
Figure 4.2 : Hyper-heuristic framework FB .. 25
Figure 4.3 : Hyper-heuristic framework FC .. 26
Figure 4.4 : Hyper-heuristic framework FD .. 26
Figure 5.1 : The binary representation of a candidate solution................................. 32
Figure 5.2 : Mutation operator .. 32
Figure 5.3 : Swap-window operator.. 33
Figure 5.4 : Window-mutation operator ... 33
Figure 5.5 : Swap-mutation operator .. 34
Figure 5.6 : Swap-window hill-climb operator... 35
Figure 5.7 : Box-whisker plot for System 2 with OI .. 39
Figure 5.8 : Multiple comparison results for System 2 with OI 39
Figure 5.9 : Box-whisker plot for System 3 with OI .. 40
Figure 5.10 : Multiple comparison results for System 3 with OI 41
Figure 5.11 : Box-whisker plot for System 2 with IE... 42
Figure 5.12 : Multiple comparison results for System 2 with IE.............................. 43
Figure 5.13 : Box-whisker plot for System 3 with IE... 43
Figure 5.14 : Multiple comparison results for System 3 with IE.............................. 44
Figure 5.15 : Box-whisker plot for System 2 with GD... 45
Figure 5.16 : Multiple comparison results for System 2 with GD............................ 45
Figure 5.17 : Box-whisker plot for System 3 with GD... 46
Figure 5.18 : Multiple comparison results for System 3 with GD............................ 47
Figure 5.19 : Box-whisker plot for System 2 with AM .. 48
Figure 5.20 : Multiple comparison results for System 2 with AM 49
Figure 5.21 : Box-whisker plot for System 3 with AM .. 50
Figure 5.22 : Multiple comparison results for System 3 with AM 50
Figure 5.23 : Distribution of the best fifty solutions for System 2 52
Figure 5.24 : Distribution of the best fifty solutions for System 3 52
Figure 5.25 : Iteration Number versus Fitness Value curves.................................... 53
Figure 5.26 : Multiple comparison results for System 2... 54
Figure 5.27 : Multiple comparison results for System 3... 54

xiv

xv

LIST OF SYMBOLS

Pi

max : The maximum power which can be generated by unit i
Pi

min : The minimum power which can be generated by unit i
CScold : The cost of a cold start-up
CShot : The cost of a hot start-up
tcoldstart : The number of hours a generator needs to stay offline for a coldstart
tup : The minimum up-time
tdown : The minimum down-time
vj,g

(t) : The velocity of particle j at iteration t with respect to the gth

 dimension
xj,g

(t) : The position of particle j at iteration t with respect to the gth

 dimension
pbestj,g : The best fitness value of particle j at iteration g
gbestg : The best fitness value of the group at iteration g
w : The inertia weight factor
c1 : The cognitive acceleration factor
c2 : The social acceleration factor
τij : Pheromone levels between node i and node j
ηij : Heuristic information between node i and node j
pk

ij : The probability of ant k to choose next node depending on the edge
 in between node i and node j of the graph
α : The effect of pheromone level
β : The effect of pheromone level
ρ0 : The pheromone evaporation rate
Vi,g : The donor vector for individual i of generation g
Xj,i,g : The randomly chosen target vector for the gene location j of the
 individual i in generation g
e

–δ / t
 : The Metropolis criterion

xvi

xvii

HYPER-HEURISTICS FOR THE UNIT COMMITMENT PROBLEM

SUMMARY

As the power demand varies in different periods of a day, power generation
companies need to plan the operation periods of the generators accordingly. The
power demand is especially high during the daytime, since the factories consume
most of the generated electricity in that time period. However, this demand decreases
significantly at weekends or during early morning and late evening, when people
spend their times at home. Due to these cycles in the required power, startup and
shutdown costs of the generating units take a huge amount in the total production
costs. Violating generator specific operation constraints brings additional
maintenance cost as well.

The problem of selecting the generators to be in service and determining for how
long they will operate over a predefined time horizon is called the Unit Commitment
Problem (UCP). The online units must fulfill the forecasted power demand and
reserve requirements for each time slot at minimum operating cost without violating
any of the problem specific constraints.

An improvement in the unit commitment schedule of the generators result in great
economic savings in power generation cost and energy usage. Therefore, the UCP
has attracted great commercial and academic interest and many optimization
techniques have been applied to this problem. New algorithms have been
implemented to obtain efficient results in large-scale power systems within a
reasonable computation time. Several numerical optimization techniques, such as
priority list method, dynamic programming, branch-and-bound, benders
decomposition, tabu search, greedy algorithm, Lagrangian relaxation have been used
for that purpose. Aside from these methods, nature insipired computing methods,
such as ant colony optimization, particle swarm optimization, simulated annealing,
genetic algorithms, artificial neural networks have been employed to solve the UCP.
Operational constraints are integrated into the methods of the second group more
effectively and the solution quality is increased.

In this thesis, hyper-heuristic algorithms are implemented to solve the UCP. Hyper-
heuristics differ from heuristics in the set, on which they are operating. Heuristics are
directly applied to the candidate solutions, but hyper-heuristics are employed to
select a heuristic from a set of heuristics at each iteration of the search process. This
selection is made either randomly or using some performance indicators about the
heuristics. Hyper-heuristics can be succesfully applied to a broad range of
optimization problems, since they do not require problem specific information.

Hyper-heuristic algorithms consist of two different mechanisms:

1. Heuristic selection

2. Move acceptance

xviii

For the heuristic selection mechanism, six different selection strategies are used in
this study:

1. Simple random

2. Random descent

3. Random permutation

4. Random permutation descent

5. Greedy

6. Choice function

In the move acceptance step, four different strategies are used:

1. Only improving

2. Improving and equal

3. Great deluge

4. All moves

Twenty four combinations of the above listed heuristic selection and move
acceptance strategies are applied to the UCP and their performances are investigated
using two problem instances.

In the first part of the experiments, random permutation descent heuristic selection
and only improving move acceptance strategy combination achieves the best results
among the twenty four combinations. Therefore, the performance of this algorithm is
compared with other optimization techniques using seven problem instances taken
from literature.

The steps of the proposed hyper-heuristic algorithm with random permutation
descent heuristic selection and only improving move acceptance strategy
combination are defined as follows:

1. An initial solution is created randomly and its fitness value is calculated.

2. A permutation array containing the order of mutational heuristics and hill
climbers is created randomly.

3. A heuristic is selected with respect to the order in the permutation array and it
is applied to the solution.

4. If the selected heuristic is a mutational heuristic, a predefined hill climbing
operator is applied to the solution after mutational heuristic.

5. The fitness value of the resultant solution is calculated.

6. The resultant solution replaces the current solution, if its fitness value is
better than the previous one.

In the second part of the experiments, the performance of the most efficient hyper-
heuristic algorithm is compared with the performance of a genetic algorithm, since
these two algorithms use the same genetic operators. Hyper-heuristic method
achieves better results than the genetic algorithm. Its superiority becomes more
obvious with increasing problem data size. Additionally, hyper-heuristic method
does not require system monitoring and parameter tuning during the search process.

xix

In the third part, a set of experiments are performed to compare the eficiency of the
hyper-heuristic method with previously published results. Experimental results show
that the hyper-heuristic method achieves either the best fitness value or the second
best fitness value in all test sets. Based on the results, it can be easily noticed that the
hyper-heuristic algorithm is a robust and effective optimization method for varying
data sizes.

Consequently, it is recommended that the hyper-heuristic approach can be enhanced
by incorporating more effective heuristics and hill climbers. The initial solution can
be also improved using the priority list method and advanced learning techniques can
be used for heuristic selection and move acceptance mechanisms.

xx

xxi

ÜNĐTE PROGRAMLAMA PROBLEM Đ ĐÇĐN ÜST SEZGĐSEL YÖNTEMLER

ÖZET

Elektrik enerjisine olan ihtiyaç günün farklı saatlerinde büyük değişim
gösterdiğinden, enerji üreten şirketlerin generatör çalışma sürelerini bu değişime
uygun olarak planlamaları gerekmektedir. Üretilen elektriğin önemli bir kısmı
fabrikalar tarafından tüketildiğinden enerji ihtiyacı gündüz saatlerinde daha fazla
olmaktadır. Fakat bu ihtiyaç hafta sonları ve insanların vakitlerini evlerinde
geçirdikleri gece geç saatlerde ve günün erken saatlerinde azalmaktadır. Enerji
ihtiyacında görülen bu periyodik dalgalanmalardan dolayı generatörlerin devreye
alınma ve devreden çıkarılma maliyetleri toplam enerji üretim maliyetleri içerisinde
önemli bir pay tutar. Generatörlere ait çalışma limitlerinin ihlali de ek bir bakım
maliyetini beraberinde getirmektedir.

Önceden belirlenmiş bir süreç içerisinde hangi generatörlerin devreye alınacağı ve ne
kadar süre çalışacaklarının belirlenmesi problemine ünite programlama problemi
denir. Çalışmakta olan üniteler, herbir saat için önceden belirlenmiş olan enerji talebi
ve rezerve ihtiyaçlarını, probleme ait hiçbir limit koşulu ihlal etmeden minimum
çalışma maliyeti ile sağlamalıdırlar.

Generatörlerin çalışma tarifesinde yapılacak bir iyileştirme elektrik üretim
maliyetlerinde ve enerji kullanımında önemli oranda bir tasarrufa neden olacaktır.
Bundan dolayı ünite programlama problemi ticari ve akademik yönden büyük ilgi
çekmiş ve birçok optimizasyon yöntemi bu probleme uygulanmıştır. Büyük ölçekli
enerji üretim sistemlerinde makul hesaplama sürelerinde verimli sonuçlar alabilmek
için yeni algoritmalar geliştirilmi ştir. Öncelik listesi metodu, dinamik programlama,
dallanma ve sınırlama, Bender ayrıştırma yöntemi, tabu araması, açgözlü arama
algoritması, Lagrange gevşetme yaklaşımı gibi sayısal optimizasyon teknikleri bu
amaçla kullanılmışlardır. Bu metodlardan başka, karınca kolonisi optimizasyonu,
parçacık sürü optimizasyonu, tavlama benzetimi, genetik algoritmalar, yapay sinir
ağları gibi doğa esinli hesaplama yöntemleri de ünite programlama problemine
uygulanmıştır. Probleme ait kısıt koşullar ikinci gruba ait yöntemlere daha iyi adapte
edilebildiğinden, elde edilen çözümün kalitesi de artmıştır.

Bu tez çalışması kapsamında ünite programlama probleminin çözülebilmesi için üst
sezgisel algoritmalar gerçeklenmiştir. Üst sezgiselleri sezgisel yöntemlerden ayıran
en önemli fark üzerlerinde çalıştıkları elemanlardır. Sezgiseller, çözüm adaylarına
doğrudan uygulanırlarken, üst sezgiseller arama sürecinin herbir yinelemesinde bir
sezgisel yöntem seçmek için kullanılırlar. Bu seçim rastgele yapılabileceği gibi,
sezgisellerle ilgili birtakım performans gösterge araçları kullanılarak da yapılabilir.
Üst sezgiseller probleme özgü herhangi bir veriye ihtiyaç duymadıklarından
optimizasyon problemlerinin önemli bir bölümüne başarıyla uygulanabilirler.

Üst sezgisel algoritmalar iki farklı mekanizmadan oluşurlar:

1. Sezgisel seçimi

xxii

2. Hareket kabulü

Sezgisel seçimi mekanizması için bu çalışmada altı farklı seçim stratejisi
kullanılmıştır:

1. Basit rastgele

2. Rastgele iniş

3. Rastgele permütasyon

4. Rastgele permütasyon iniş

5. Açgözlü yöntemi

6. Seçim fonksiyonu

Hareket kabulü aşamasında dört farklı strateji kullanılmıştır:

1. Sadece iyileştiren hareketler

2. Đyileştiren ve denk hareketler

3. Büyük sel

4. Bütün hareketler

Yukarıda belirtilen sezgisel seçimi ve hareket kabulü yöntemleri ile yirmi dört farklı
strateji kombinasyonu oluşturulmuştur. Bu kombinasyonların gösterdiği
performanslar ünite programlama problemine ait iki farklı veri örneği üzerinde
incelenmiştir.

Yapılan deneylerin ilk aşamasında, rastgele permütasyon iniş sezgisel seçim yöntemi
ve sadece iyileştiren hareketleri kabul etme strateji kombinasyonu, yirmi dört
kombinasyon arasında en iyi sonuçları elde etmiştir. Bundan dolayı, bu algoritmanın
performansı, literatürde geçen yedi problem örneği kullanılarak diğer optimizasyon
teknikleri ile karşılaştırılmıştır. Bu çalışmada önerilen üst sezgisel algoritmanın
aşamaları aşağıda belirtilmiştir:

1. Başlangıç çözümü rastgele bir biçimde yaratılarak, başarım değeri hesaplanır.

2. Mutasyonel sezgisellerin ve tepe tırmanma metodlarının çözüme uygulanma
sırasını içeren permütasyon dizisi rastgele olarak oluşturulur.

3. Permütasyon dizisindeki sıralama doğrultusunda bir sezgisel seçilerek
çözüme uygulanır.

4. Seçilen sezgisel, mutasyonel sezgisel bir yöntem ise önceden tanımlanan bir
tepe tırmanma algoritması, mutasyonel sezgiselin ardından çözüme uygulanır.

5. Elde edilen çözümün başarım değeri hesaplanır.

6. Elde edilen çözümün başarım değeri, önceki çözümün başarım değerinden
daha iyi ise, yeni çözüm önceki çözümün yerine geçer.

Deneylerin ikinci aşamasında en verimli üst sezgisel algoritmanın performansı aynı
genetik operatörleri kullanan bir genetik algoritmanın performansı ile
karşılaştırılmıştr. Üst sezgisel yöntem genetik algoritmadan daha iyi sonuçlar elde
ederken, genetik algoritmaya olan üstünlüğü büyük veri içeren problemlerde daha
belirgin hale gelmiştir. Bununla birlikte üst sezgisel yöntemler arama süreci
esnasında sistem izleme ve parametre ayarlarına ihtiyaç duymamaktadırlar.

xxiii

Üçüncü aşamada üst sezgisel metodun verimliliğini literatürde yayınlanmış
sonuçlarla karşılaştırmaya yönelik testler koşulmuştur. Test sonuçları üst sezgisel
metodun bütün test gruplarında en iyi birinci veya ikinci sonucu aldığını
göstermektedir. Bu sonuçlardan yola çıkarak, üst sezgisel algoritmanın farklı
büyüklükteki problemler için etkin bir optimizasyon yöntemi olduğu görülmektedir.

Sonuç olarak, üst sezgisel yaklaşımın daha etkin sezgiseller ve tepe tırmanma
yöntemleri kullanılarak geliştirilmesi önerilmektedir. Başlangıç çözümü, öncelik
listesi yöntemi kullanılarak iyileştirilebilir; sezgisel seçimi ve hareket kabulü
mekanizmalarında ileri öğrenme teknikleri kullanılarak bu yaklaşımın verimi
arttırılabilir.

xxiv

1

1. INTRODUCTION

This study puts forth a hyper-heuristic approach for solving the Unit Commitment

Problem (UCP). This approach combines heuristics with local search operators. The

UCP is a constrained optimization problem, and the aim of this problem is to

determine start-up and shut-down schedules for a predefined number of power

generators over a given time period with respect to several operational constraints

and hourly varying power demands. The objective is to minimize the power

generation costs, while providing the hourly forecasted amount of power and reserve

requirements [1].

In the first step of the optimization process, operating units are determined for each

time slot without violating any constraints. In the next step, the load demand is

assigned to online power units. The second part of the problem is called the

Economic Dispatch Problem and it is solved using the λ-iteration method [2].

Experimental results show that the hyper-heuristic approach can create cost effective

schedules.

In this study, hyper-heuristics are applied to the UCP, and a comprehensive analysis

of different hyper-heuristic techniques is performed. Tests are executed using

benchmark data taken from literature and real world data obtained from the Turkish

interconnected power network system. The results achieved by hyper-heuristics are

compared with the results from other optimization methods, which are applied

previously to the UCP, to determine which algorithms are suitable for this problem.

Reasons are investigated, why and how an algorithm achieves better results in this

problem, and the changes in the performances of different methods are analyzed with

respect to the increased problem data size.

An optimal scheduling of the generators decreases the power generation costs and

energy usage significantly. Therefore, the UCP has attracted great interest and many

approaches have been applied to solve the problem. Lagrangian relaxation [3],

priority lists [4], simulated annealing [5], dynamic programming [6], tabu search [7],

branch and bound [8], benders decomposition [9], greedy algorithms [10], particle

2

swarm optimization techniques [11], evolutionary algorithms [1,12,13,14,15,16], ant

colony optimization techniques [17] are among these approaches.

It is nearly impossible to create a heuristic which can be successful in solving a broad

range of optimization problems, since it requires problem specific information, test

effort and fine tuning of certain parameters during the search [18]. Hyper-heuristics

are proposed to overcome these limitations. Hyper-heuristics operate on a set of

heuristics rather than on solution candidates and they select a heuristic from this set

to apply to the individual with respect to certain criteria. Heuristic selection can be

made either according to a feedback from previous runs about the performance and

the elapsed time of each heuristic, according to a probability distribution or

randomly.

1.1 Contribution of the Thesis

The successful application of hyper-heuristic methods to scheduling and timetabling

problems, e.g. as in [19] has been a motivation for this study. In this study, hyper-

heuristic methods achieve good results in all test sets. Furthermore, it is also verified

that hyper-heuristics are robust methods for large-scale problems and they obtain

consistent results without the need of parameter tuning when compared with other

optimization techniques. Based on the promising results, research will continue for

further improvements.

1.2 Outline of the Thesis

The rest of the thesis is organized as follows. In the next section, the definition of the

UCP is given together with its mathematical formulations. Section 3 contains

information on the previous related work to solve the UCP. In section 4, the

evolution of the hyper-heuristic approach is mentioned and the details of various

hyper-heuristic methods and strategies are given. In section 5, implemented hyper-

heuristic methods and genetic operators, which are incorporated into these methods,

are explained. Section 5 also contains the experimental results and the

comprehensive analysis of these results. Finally, in section 6, conclusion and future

work are stated.

3

2. THE UNIT COMMITMENT PROBLEM

The demand for electricity varies in different time periods of a day. During daytime,

this demand increases; whereas, during the late evening and early morning it

decreases. Therefore, power generation companies should plan the generation of

power on an hourly basis. In the first step, a decision needs to be made as to which of

the available units to turn on; and in the second step, an economical dispatch

schedule of the units should be determined.

The objective of the UCP is to minimize the power generation costs over a given

time period, while providing the hourly forecasted power demand [1]. Operational

constraints should be also considered when creating the online/offline schedule of

each generator. A solution to the UCP contains binary decision variables

representing the online/offline status of the generators for each time slot.

Two main factors are forming the power generation costs, namely fuel costs and

start-up costs [1]. Penalty factors are related to the quality of a solution. One of these

penalty factors is defined as the demand penalty, which is taken into account, when a

predefined hourly demand is not fulfilled by a candidate solution. The other penalty

factor is the up/down penalty, which has a negative effect on the fitness value, when

the up/down constraint is violated for at least one generator. The following

parameters are used to formulate the UCP:

• Pi(t) is the generated power by unit i at time t,

• Fi(p) is the cost of producing p MW power by unit i,

• PD(t) is the power demand at time t,

• PR(t) is the power reserve at time t,

• CSi(t) is the start-up cost of unit i at time t,

• xi(t) is the duration for which unit i has stayed online/offline since hour t,

• vi(t) is the status of unit i at time t (on-off),

4

• Pi
max is the maximum power which can be generated by unit i,

• Pi
min is the minimum power which can be generated by unit i.

The first cost factor is the fuel cost which depends on the power generated by each

online unit for a given hour. While solving the UCP, not only the hourly forecasted

power demand should be fulfilled, but the power produced by each unit needs to be

kept within its minimum and maximum values. Following objective function and

operational constraints are taken into consideration to solve the UCP. For N power

units at time t, the objective function is defined as given in Eq. (2.1).

∑
=

=
N

i
tPiF it

total
F

1
))(()(min (2.1)

subject to following constraints shown in Eq. (2.2) and Eq. (2.3):

∑
=

=
N

i
tPDtPi

1
)()((2.2)

maxmin)(iii PtPP ≤≤ (2.3)

According to the second formula, the total power must be equal to the demand, and

the third formula shows that the produced power by each online unit must be within

its maximum and minimum capacities.

When a generator changes its status from offline to online, this brings an additional

cost, which is called the start-up cost. The effect of the start-up cost on the fitness

value depends on both the generator type and the amount of time a generator has

stayed offline. This cost is calculated using the Eq. (2.4).



 ≤

=
otherwise

cold
CS

coldstart
tt

i
xif

hot
CS

t
i

CS
)(

)((2.4)

where tcoldstart is the number of hours that it takes for the generator to cool down and

defines the threshold for a cold or a hot start-up depending on the generator type.

CScold is the cost of a cold start-up and this value is used, if the thermal unit has been

off for a number of hours, which is larger than tcoldstart; otherwise, CShot is applied as

the cost of a hot start-up.

5

The penalty value of the up/down constraint, formulated in Eq. (2.5), is determined

by using the minimum up/down values of each generator. The minimum up-time tup

value defines the number of hours a generator has to stay online after it is turned-on,

and the minimum down-time tdown defines the number of hours a generator has to

stay offline after it is turned-off. Additional penalty cost is added to the power

generation costs with respect to the number of up/down constraint violations. This

constraint is based on both physical and economic considerations to prevent

equipment fatigue and excessive maintenance costs due to frequent unit cycling.

up
tt

i
xelse

down
tt

i
xt

i
vif

≥−

≥−=

)1(

)1(1)(
 (2.5)

According to the fuel and start-up costs, demand and up/down penalty values, the

objective function of the UCP for N units and T hours can be formulated as given in

Eq. (2.6).

[]∑ ∑
= =

+=
T

t

N

i

t
i

CSt
i

vtP ii
F

total
F

1 1

)()()).((min (2.6)

subject to constraints:

∑
=

=
N

i
tPDtivtPi

1
)()().((2.7)

maxmin)()().(iiiii PtvtPPtv ≤≤ (2.8)

)(
1

)()().(max tPR
N

i
tPDt

i
vt

i
P +

=
≥∑ (2.9)

up
tt

i
xelse

down
tt

i
xt

i
vif

≥−

≥−=

)1(

)1(1)(
 (2.10)

The fuel cost of generating p MW power for the i-th generator is calculated using Eq.

(2.11). Fuel cost for the generator i depends on three parameters, a0i, a1i and a2i,

which are predefined for each generator type.

6

2
210 ..)(papaapF iiii ++= (2.11)

This part of the UCP is called the Economic Dispatch Problem (EDP), which is

solved by lambda iteration, whose aim is to allocate the required load demand

between the available generators while minimizing the total power generation costs

[2]. With the lambda iteration technique an optimal lambda value is searched for.

Algorithm 1 Lambda Iteration
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:

select initial λ and µ;
repeat
 calculate Pi for each generator using dFi / dPi = λ;
 calculate Ptotal ;
 diff = PD - Ptotal;
 if (diff < 0) then
 λ = λ – µ;
 else
 λ = λ + µ;
 endif;
 µ = µ / 2;
until (diff< ε)

The initial values of λ and µ are determined as given in Eq. (2.12) and in Eq. (2.13),

where λmax and λmin are calculated by inserting Pmax and Pmin as the values of P

respectively, after taking the derivative of Fi (p) with respect to p.

λ = (λmax + λmin) / 2

 (2.12)

µ = (λmax - λmin) / 2 (2.13)

7

3. RELATED WORK ON THE UCP

The most widely used optimization techniques for the UCP are mentioned in this

section. These techniques are dynamic programming, priority list, particle swarm

optimization, ant colony optimization, branch and bound, benders decomposition and

evolutionary algorithms. Evolutionary algorithms are also divided into four groups

with respect to the solution representation and genetic operators. Each of these four

groups is explained in detail.

The dynamic programming (DP) technique decomposes a multivariable decision

problem as a sequence of single variable decision problems [6]. Therefore, an n

variable problem is represented as a sequence of n single variable problems and each

of them is solved respectively. DP separates the UCP into time slots, so that online

units are determined one hour at a time. At the end of the time schedule, all hour-

state pairs are stored for further calculations and an array is obtained that keeps the

continuous online and offline periods of all units to prevent the up/down constraint

violation.

In the first step of the DP algorithm, the minimum total production cost to reach the

current state from the first hour of the schedule is calculated. Secondly, the state of

the previous hour that minimizes the cost of the transition to the current state is

determined. After collecting this information, a cost effective schedule is created by

moving from the state with the least total cost at the final hour to the state of the

initial hour using the optimum transition at each step [6].

The most difficult part of applying DP methods to the UCP is storing all possible

state combinations for each hour. Therefore, heuristics are used to limit the number

of combinations, but they produce suboptimal solutions and decrease the

effectiveness of the DP. In certain problem instances, some of the problem

constraints are replaced with penalty coeffiecients to obtain a feasible solution.

8

Priority list (PL) is a fast and simple optimization technique, but it provides

suboptimal solutions. In this method, power generators are ranked in ascending order

with respect to the average full load cost, so that cost effective units are put in service

first to fulfill the power demand of each time slot without violating any operational

constraints [4]. However, resultant schedules have high power generation costs.

Average full load cost is calculated with Eq. (3.1).

(3.1)

The particle swarm optimization (PSO) algorithm is a population based search

algorithm, as described in Algorithm 2, which makes use of a group of particles

corresponding to the individuals of a genetic algorithm. The initial population is

generated randomly. Candidate solutions are represented with particles containing a

position vector and a velocity vector [11]. After each time step, the fitness value of

each particle is calculated. Each particle keeps its own best position with the best

fitness value it has achieved so far. Additionally, the best fitness value of the whole

population obtained so far is also recorded. Using the individual best position and the

global best position, the velocity vector and the position vector of the corresponding

particle are updated as given in Eq. (3.2) and Eq. (3.3) respectively.

(3.2)

(3.3)

with j=1,2,…,n and g=1,2,…,m where n is the number of particles in a group and m

is the number of members in a particle.

vj,g
(t) is the velocity of particle j at iteration t, xj,g

(t) is the position of particle j at

iteration t, w is the inertia weight factor, c1 and c2 are cognitive and social

acceleration factors, r1 and r2 are random numbers uniformly distributed in the range

(0,1), pbestj,g is the best fitness value of particle j at iteration g and gbestg is the best

fitness value of the group at iteration g.

9

Algorithm 2 Particle Swarm Optimization Algorithm
1:
2:
3:
4:
5:
6:

randomly create initial population;
repeat
 calculate the fitness value of each particle;
 determine the particle with the best fitness value of the generation;
 update the position and the velocity vectors of each particle;
until stopping criterion is met

Ant colony optimization (ACO) algorithm is created using the behavior of real ant

colonies. Therefore, it is a population based search algorithm containing a learning

mechanism. The real ants lay down a substance, called a pheromone, on the way to

food [17]. The quantity of pheromone depends both on the length of the path and the

quality of the food source, since the intensity of pheromone increases, when more

ants choose the same way to reach the source [17].

In the first step of the ACO algorithm, the ACO parameters need to be determined.

After initialization of these parameters, an iterative solution construction process

starts with an empty partial solution s
p . At each construction step, a solution

component is added to the partial solution without violating any of the problem

specific constraints. A solution component is selected probabilistically as given in

Eq. (3.4).

(3.4)

where τij is the pheromone value for component qij, n(.) is a function which assigns a

heuristic value to the feasible solution at each iteration, α and β take positive values,

which determine the relation between the pheromone value and the heuristic value

[17].

At the end of the construction process, the fitness value of the complete solution is

calculated. The pheromone values of the solution components included in a good

solution are increased, and the pheromone values of the remaining solution

components are decreased with respect to Eq. (3.5) to increment the possibility of

selecting a suitable solution component at the next iteration. To prevent rapid

convergence of the ACO algorithm, the concept of pheromone evaporation is

applied, where all pheromone values are decreased using a predefined evaporation

rate between 0 and 1 [17].

10

(3.5)

An effective branching method is proposed in [8] which makes use of a simple

bounding rule. In the branch-and-bound algorithm, the online/offline schedule of the

generators is represented with the commitment matrix. Each row of the matrix shows

the schedule of a single generator and each column represents the status of each

generator for the corresponding time slot. This algorithm also involves the economic

dispatch problem as a subproblem. After determining the online generators, λ

iteration method is used to compute the dispatch cost.

In the initial step of the branch-and-bound algorithm, the search space contains all

feasible solutions. This space is repeatedly partitioned into smaller subsets and the

lower bound of the cost value is calculated for each subset by ignoring the lower

power generation limit constraint and the start-up cost [8]. After each partitioning,

subsets with a lower bound which is higher than a known feasible solution are

discarded. The remaining subsets are partitioned again until a feasible solution is

found whose fitness value is smaller than the lower bound of any subset with at least

two solutions. In other words, the lower bound belongs only to a single solution at

the end, since it is the optimum solution of this problem.

Benders decomposition technique is applied to the UCP in [9]. This algorithm

consists of two levels. These levels are called as master and slave. The master level

deals with the unit commitment of the generators to fulfill the forecasted power

demand and the second level deals with the operational constraints, such as generator

limits, minimum up and down time of each unit [9].

This decomposition method uses an iterative search process between these two

levels. The resultant schedule of the master problem is conveyed to the slave

problem. The slave problem is divided into 24 subproblems and these subproblems

are solved sequentially. The slave subproblem calculates the power generation cost

with respect to the operational constraints. The result of the subproblem is used by

the master problem through the Benders cut to improve the current solution. This

iterative search process stops when the fitness values achieved in the master and

slave levels become nearly the same except for a small predefined tolerance value.

11

In literature, there are many successful evolutionary techniques to solve the UCP.

They can be divided into four main groups with respect to the solution representation

and genetic operators, which are applied to candidate solutions.

In the first group, a binary chromosome is used as the candidate solution which

represents the on/off schedule of the generators. Genetic operators are applied to

these chromosomes. To solve the EDP in the second step of the problem, an iterative

technique, such as lambda iteration [2], is used. Genetic algorithms [1,12], binary

differential evolution algorithms [16] and memetic algorithms [14] are examples for

the first group.

Since genetic algorithms (GA), developed by Holland in 1975 [21], are commonly

working on binary solution representation, various GAs are applied to solve the

UDP. GA techniques have common steps. First step is the initialization, where

individuals are created randomly with binary digits. In the second step, individuals,

which will undergo reproduction, are selected and genetic operators are applied. In

the last step, population replacement is performed. A basic genetic algorithm is given

in Algorithm 3.

There are two most commonly used population replacement methods. Either the

whole population is replaced, or only one individual is generated and replaced with

another individual of the population in each iteration [1]. This loop continues until

the stopping criterion is met. This stopping criterion can be defined either as the

number of iterations, which determines how many times selection, reproduction and

population replacement operations take place, or as the predefined fitness value

range.

Algorithm 3 Basic Genetic Algorithm
1:
2:
3:
4:
5:
6:
7:
8:
9:

randomly create initial population;
repeat
 select one mating pair;
 generate one offspring through reproduction;
 evaluate offspring;
 if offspring better than current worst individual
 offspring replaces the worst individual;
 endif;
until stopping criterion is met

12

Memetic algorithms (MAs) are defined as hybrid algorithms that combine genetic

algorithms and local search operators [14]. A meme is defined as a contagious piece

of information [22]. The memetic approach provides the evolution of information

and the unit of a solution is referred to as a meme rather than a gene, since genes can

not be changed with the experience of an individual [14].

In this algorithm, a randomly generated population of individuals evolves towards an

optimal solution by undergoing a set of genetic operators, namely crossover,

mutation and selection. Memetic algorithms incorporate the concept of memes by

allowing individuals to change before the next population is produced. Therefore, a

hill climbing operator is applied after the mutation to improve the fitness value of the

resulting individual.

In a generic MA, each candidate solution consists of a binary bit string. In the first

step, mates are selected to reproduce new candidate solutions. After applying

crossover and mutation operators, hill climbing operator is applied to the new

candidate solution, which is also called as offspring. This iterative process continues

until the stopping criterion is met as shown in Algorithm 4.

Algorithm 4 Basic Memetic Algorithm
1:
2:
3:
4:
5:
6:
7:
8:
9:

randomly generate initial population;
calculate fitness of each individual;
repeat
 select mates;
 apply crossover & mutation;
 apply hill climbing;
 calculate fitness;
until termination condition is met
return the best solution;

In the second approach, the chromosome consists of integers or floating points.

These genes represent the on/off cycles of the units. The integer value can be either

positive or negative, which corresponds to the duration of the on or off status of each

generator. The minimum up and down constraints are preserved by using specialized

genetic operators. The EDP also occurs in this approach, and it is commonly solved

through lambda-iteration. Differential evolution and evolutionary strategies

algorithms are examples for this approach.

13

Differential evolution (DE) algorithm was introduced by Storn and Price in 1996

[23]. This algorithm is used in continuous search spaces and contains four main

operations as given in Algorithm 5: Initialization, mutation, recombination and

selection. These operators are applied to all individuals. In DE, each individual in the

population, called the target vector, consists of real valued genes, Xj,i,g, where j is the

gene location on the chromosome, i is the index of the individual and g represents the

generation number [1,16].

Algorithm 5 Basic Differential Evolution Algorithm
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:

randomly generate initial population;
evaluate population;
repeat
 for population size times do
 select next target vector;
 randomly choose base vector;
 donor vector = mutate (base vector);
 trial vector = crossover (target vector, donor vector);
 if trial vector better than target vector
 select trial vector;
 else
 select target vector;
 endif;
 endfor;
until stopping criterion is met

In the mutation step, a donor vector is created using a mutation factor and different

target vectors which are selected randomly from the population [1,16]. An example

is given in Eq. (3.6).

 (3.6)

where Vi,g is the donor vector and Xj,i,g is the randomly chosen target vector.

In the recombination step, which is also known as crossover, a new vector is created

using both the donor and the target vectors. This new vector is called the trial vector

[1,16]. A Cr parameter is used to determine the length of the segment taken from the

target vector. This parameter takes on values in the range [0,1]. If the uniformly

distributed random number is less than Cr, the corresponding parameter of the trial

vector is taken from the donor vector; otherwise, it is taken from the target vector as

shown in Eq. (3.7).

14





 =≤

=
otherwise

gij
X

rand
jjorCr

j
randif

gij
V

gij
U

,,

))1,0((
,,

,,
 (3.7)

In the selection step, either the target vector or the trial vector is chosen with respect

to their fitness values as in Eq. (3.8). These steps continue until a predefined number

of iterations have been run or until a solution in a predefined range has been

achieved.





 ≤

=
+ otherwise

gi
X

gi
Xfitness

gi
Vfitnessif

gi
U

gi
X

,

))
,

()
,

((
,

1,
 (3.8)

Evolutionary strategies (ES) was introduced by Rechenberg in 1973 [24]. In the

problem representation, three different parts constitute the individuals chromosome.

First part of the chromosome is encoded as a vector of real numbers, the second part

contains mutation step size parameters which are associated with each gene. The

third part represents the rotation angles of each gene. A sample chromosome in ES

looks like the following:

< p1 p2 …. pn , σ1 σ2 …. σn , α1 α2 …. αn >

The aim of the ES algorithm is to optimize an objective function with respect to a set

of control parameters. These strategy parameters are used to control statistical

properties of the genetic operators. Since these parameters are also adapted during

the evolution process, the genetic operators in ES are called as self-adaptive

operators [1,25].

In ES, all individuals have equal probability of being selected as parents. These

parents first go through crossover and then they go through mutation. During the

crossover operation, each object variable of the offspring is selected usually among

one of the two parental values for the corresponding gene location. For strategy

parameters, the arithmetic average value of these parameters is taken. During the

mutation operation, mutation step sizes are mutated first, then each resulting

mutation step size is used to mutate the corresponding object variable of the

chromosome. Algorithm 6 shows the algorithmic flow of a basic ES method.

15

Algorithm 6 Basic Evolutionary Strategies Algorithm
1:
2:
3:
4:
5:
6:
7:
8:
9:

randomly generate initial population;
calculate fitness of each individual;
repeat
 for population size times do
 randomly select one mating pair;
 generate one offspring through reproduction;
 endfor;
 select individuals with respect to the population size;
until stopping criterion is met

After applying crossover and mutation, λ children are created from µ parents. In the

last step of ES, one of the two different methods is used to determine the individuals

for the next generation. In the plus strategy, the best λ individuals are selected from

both parents and children. In the comma strategy, individuals are selected only from

children [25]. This loop continues until a predefined number of iterations have been

executed.

The third approach uses the Lagrangian relaxation (LR) technique along with a

genetic algorithm to update the Lagrangian multipliers [3]. The LR method solves

the UCP as if operational constraints do not exist. Therefore, the LR decomposition

procedure creates a separate problem by embedding some constraints into the

objective function through penalty coefficients. These penalty coefficients are called

Lagrangian multipliers and they are determined iteratively. However, the dual

problem has a lower dimension than the original problem. The difference between

the original and the dual problems is defined as the duality gap, which measures the

suboptimality of the solution [3].

Many studies have spent some effort to update the Lagrangian multipliers in an

appropriate way to minimize the duality gap. Therefore, different genetic algorithms

are integrated into the LR method to update the Lagrangian multipliers and to

increase the efficiency of the LR method.

The dual problem is solved in two steps. In the first step, the Lagrangian function is

minimized under constant Lagrangian multipliers by using a two-state dynamic

programming technique. In the second step, the Lagrangian function is maximized

using Lagrangian multipliers, which are updated by genetic algorithms. This process,

described in Algorithm 7, continues until the duality gap reaches a predefined value

or until a predefined number of iterations have been run.

16

Algorithm 7 Lagrangian Relaxation Method with GA
1:
2:

3:

4:

repeat
 minimize the LR function by using two-state dynamic programming
with constant Lagrangian multipliers;
 maximize the LR function by using updated Lagrangian multipliers with
a genetic algorithm;
until stopping criterion is met

In the last approach, each candidate solution is represented with a floating point

chromosome. Each gene shows the load for the corresponding generator. The initial

population is created using Lagrangian relaxation. Evolutionary programming

method is used only for online generators, which are not working at their maximum

load capacities. Therefore, the aim of this approach is to improve the already

dispatched power and to minimize the penalty values which are added to the

computations due to the operational constraints.

17

4. HYPER-HEURISTICS

Heuristic methods are very successful in solving complex optimization problems.

However, heuristics require problem domain knowledge and parameter tuning during

the search, so that it is very difficult to apply a heuristic to a new problem, or even to

a new instance of a previously solved problem [18, 26]. To overcome this difficulty,

hyper-heuristic methods are introduced. Hyper-heuristics do not need any problem

specific information, since they are not directly applied to the problem; instead they

operate on a set of heuristics to find the most suitable heuristic, or the sequence of

heuristics during the optimization process [18, 26]. Therefore, they are using some

performance indicators to decide which heuristic to call at each iteration.

4.1 Background

Two fundamental ideas about the concept of hyper-heuristics are expressed in [26].

According to the first fundamental idea, selecting a heuristic or creating a sequence

of heuristics is also a search problem [26]. Due to this, the second fundamental idea

proposes the usage of a learning mechanism to improve the search process on the set

of heuristics [26]. Different types of hyper-heuristics are implemented based on these

two fundamentals.

The ideas constructing the hyper-heuristic approach are firstly used in production

scheduling problem in 1961 by Fisher and Thompson. They proposed to combine

different scheduling rules in a probabilistic learning method. Their study concluded

that a random combination of scheduling rules result in better solutions than any of

them applied separately to the problem instance [26].

In 1992, Storer firstly mentioned the importance of creating a sequence of heuristics

for an efficient search algorithm [26]. He also defined the concept of neighborhoods

within the search space, which constructs the basis of local search. In 1993, Feng

applied a genetic algorithm, which aims at searching the space of sequences of

heuristic selections to solve the open-shop scheduling problem [26]. Each heuristic

selection is represented with a pair (j, h), where j is an uncompleted job and h is a

18

heuristic, which is used to select a task from the job j and to insert it into the

schedule. The sequence of pairs provides a complete schedule. This method obtained

very good results on different benchmark problems. In 1997, Norankov and

Goodman made use of evolutionary algorithms to search the space of heuristic

sequences [26]. This method is applied to the multistage flow-shop scheduling

problem. In the first step, job orderings are determined; and in the second step, jobs

are assigned to the machines. Experimental results showed that there was a strong

dependency between the solution quality and the heuristic sequence applied to the

solution.

The term hyper-heuristic is firstly used in 2000 by Cowling, and he described the

concept of “heuristics to choose heuristics” to solve optimization problems [27]. In

following years, new techniques are proposed to improve hyper-heuristics. In 2002,

the incorporation of the choice function into hyper-heuristics are investigated by

Kendall, Cowling and Soubeiga [28]. Better results are achieved when compared

with the results obtained by random hyper-heuristics. In 2003, tabu search is

employed by Burke, Kendall and Soubeiga as the heuristic selection strategy [29].

Good results are achieved on the university course timetabling problem. In 2004,

Kendall and Mohamad incorporated the Great Deluge algorithm as a move

acceptance method and obtained very good results in examination timetabling [30].

Hyper-heuristic techniques are applied to optimization problems in two different

ways. In the first approach, hyper-heuristics are used to select the most suitable

heuristic from a set of heuristics for the corresponding problem state. In the second

approach, hyper-heuristics are used to create heuristics for the purpose of obtaining

more efficient results by specializing heuristics to the problem instance. This chapter

includes a detailed description of these two hyper-heuristic approaches.

4.2 Heuristics to Choose Heuristics

When the term hyper-heuristics was first introduced in the early 2000s, this approach

was applied to optimization problems by selecting the most suitable heuristic from a

set of heuristics to increase the efficiency of the search algorithm. This type of hyper-

heuristics are divided into two groups as constructive and perturbative hyper-

heuristics according to the structure of the initial candidate solution [26].

19

Constructive hyper-heuristics start with an empty solution; whereas, perturbative

hyper-heuristics begin to work on a complete initial solution. These complete initial

solutions are created either randomly or by satisfying some of the problem specific

constraints to obtain better results.

4.2.1 Constructive Hyper-heuristics

Constructive hyper-heuristic methods start with an empty solution. At each iteration,

a constructive heuristic is selected to build a part of the solution. This process

continues until a complete solution is achieved. Several methods with constructive

heuristics have been applied to timetabling, scheduling, constraint satisfaction,

cutting and packing problems.

Evolutionary algorithms were firstly employed in examination timetabling problems

in 1999 by Terashina-Marin [26]. In this approach, a chromosome representation was

used and this approach aimed at evolving the configuration of constraint satisfaction

methods. In 2003, Ahmadi applied a variable neighborhood search algorithm to

examination timetabling, where he combined different low-level heuristics during

exam, period and room selections [26].

Graph-coloring heuristics are also used in timetabling problems, where nodes

represent events and edges represent conflicts between events. In examination or

course timetabling problems, two events have a conflict, if they contain the same

student. The difficulty of an event is proportional to the number of conflicts, the

event has with others. The most conflicting events are scheduled first into

appropriate time slots when constructing a timetable.

A constructive hyper-heuristic framework was implemented by Burke in 2007, which

included the following graph coloring heuristics: Largest Saturation Degree, Largest

Color Degree, Largest Degree, Largest Enrollment, Largest Weighted Degree [26].

Tabu search was used as heuristic selection strategy to create efficient sequences of

low-level heuristics. This approach achieved promising results in course and

examination timetabling problems.

In 2008, Qu and Burke compared the performances of the new implemented heuristic

selection strategies with the previously applied tabu search method [26]. These

strategies are steepest descent method, iterated local search method and variable

20

neighborhood search. Results showed that iterated local search and variable

neighborhood search methods were more effective than steepest descent and tabu

search methods. The authors also investigated the effects of sequences of heuristics

on the solution quality, and they stated that early heuristic choices in a heuristic

sequence have a higher impact on the quality of the solution than the late heuristic

selections. In a further study, the combinations of graph coloring heuristics in

examination timetabling were investigated by Pillay in 2008, where each individual

consists of a variable length string with characters representing one of the five low-

level graph coloring heuristics. This study also showed that this method was able to

create feasible exam schedules.

Constructive hyper-heuristics were also used in production scheduling to determine

which dispatching rule to call at each iteration [26]. In this problem, when a machine

completes its task, a dispatching rule calculates the priorities of each waiting job and

assigns the job with the highest priority to this machine. Each dispatching rule has a

different priority calculation method. Minimum release time, shortest processing

time, longest processing time, earliest due date, latest due date, less work remaining,

more work remaining are among these rules. Many studies showed that methods

combining several rules or heuristics were more efficient than other methods using a

single rule or a single heuristic. This statement was experimentally verified in

different problem domains.

4.2.2 Perturbative Hyper-heuristics

Perturbative hyper-heuristics operate on a set of perturbative low-level heuristics. In

a constructive hyper-heuristic approach, the process continues until a complete

solution is obtained. However, perturbative hyper-heuristics operate on a complete

solution and this process continues until the predefined stopping criterion is met.

Perturbative approach has been successfully applied to channel assignment,

personnel scheduling, timetabling and vehicle routing problems. In this approach,

heuristics are mostly applied to a single candidate solution at each iteration;

therefore, they are called as single point search based hyper-heuristics. Population

based perturbative hyper-heuristics are also employed in optimization problems,

especially in scheduling and timetabling problems, where each individual contains a

sequence of heuristic selections.

21

Learning mechanism plays an important role to increase the efficiency of the

decision making process. To incorporate the learning mechanism into the hyper-

heuristic approach, scores are assigned to each heuristic with respect to their

performances on the quality of the solution, when they are applied to the candidate

solution.

4.2.2.1 Single Point Search Based Hyper-heuristics

Single point search based hyper-heuristics consist of two mechanisms: Heuristic

selection and move acceptance.

For the heuristic selection process, different strategies are proposed. Simple random

heuristic selection strategy chooses a low-level heuristic randomly at each iteration.

Random descent has a similar usage, except that the selected heuristic is applied to

the solution repeatedly, until no improvement is achieved. In random permutation

strategy, a random permutation of low-level heuristics is created and each one of the

heuristics is applied to the solution in the provided order. Random permutation

descent also uses the randomly generated permutation, but heuristics are applied

repeatedly, until they do not improve the solution. Greedy methods apply all low-

level heuristics to the candidate solution at each iteration and select the heuristic that

creates the best solution.

In the choice function heuristic selection method, each low-level heuristic is given a

score. This score is determined using the following three performance criteria [28].

First criterion is the individual performance of a heuristic. Second criterion is the

performance of a heuristic when combined with other heuristics. The last criterion is

the elapsed time since the last heuristic has been called. At each iteration, scores are

computed for each low-level heuristic. The formulations of the performance

computation are given in Eqs. (4.1-4.4).

(4.1)

(4.2)

(4.3)

22

(4.4)

where In(hi) and Tn(hi), In(hi,hk) and Tn(hi,hk) are the change in the fitness function

and the amount of time taken, respectively, when the nth last time the heuristic hk

was applied either alone or after the heuristic hi. In Eq. (4.4), α, β and δ are the

relative weight factors of each function which are used to compute the overall scores

for each heuristic.

In the tabu search method proposed by Burke in 2003 [29], low-level heuristics are

ranked with respect to their scores. Additionally, this method includes a tabu list,

which is used to exclude some of the low-level heuristics temporarily, since they did

not improve the candidate solution in their last application. If a heuristic improves

the solution, its score is increased; otherwise, its score is decreased. The heuristic

with the highest score, which is not in the tabu list, is applied to the solution at each

iteration.

Nareyek (2003) used reinforcement learning as a heuristic selection strategy. In this

learning process, each heuristic starts with the same initial score. The scores of the

heuristics are changed with respect to the quality of the resulting solution when they

are applied to the individual. During heuristic selection, either the heuristic with the

highest score is selected or the scores are converted into probabilities and a heuristic

is selected using the roulette wheel strategy.

The second mechanism of single point search based hyper-heuristics is the move

acceptance method. For the move acceptance phase, two main strategies are used.

These are deterministic and non-deterministic strategies. In the deterministic

strategy, the same move acceptance decision is given for the same candidate solution

regardless of the current point in the search process. However, in the non-

deterministic strategy, different move acceptance decisions can be given for the same

candidate solution with respect to the decision point. Therefore, time or iteration

number is important for the decision making process.

Three deterministic approaches are used commonly: All Moves, Only Improving

Moves, Improving and Equal Moves. In all moves strategy, all improving and non-

improving moves are accepted; whereas, in the other two approaches either only

improving moves or improving and equal moves are accepted.

23

One of the non-deterministic move acceptance strategies is the Monte Carlo method,

which was proposed in 2003 by Ayob and Kendall [32]. This method accepts all

improving moves. However, non-improving moves are accepted with respect to a

probability function. An exponential probability function is used in this strategy as

given in Eq. (4.5), where δ is the change in quality, t is time in minutes and Q is the

number of successive non-improving moves.

(4.5)

In 2004, the Great Deluge move acceptance algorithm was experimented in a hyper-

heuristic approach by Kendall and Mohamad [30]. In this method, the fitness of the

initial solution is calculated and this value is set as the initial level value. Then, the

down rate value is determined using the Eq. (4.6).

(4.6)

where BestResult is the best result found in literature for this problem and f(s0) is the

fitness value of the initial solution.

After applying one of the low-level heuristics to the candidate solution, if the fitness

value of the resultant solution is better than the level value, the level is decremented

by the DownRate value and the resultant solution is replaced with the current

solution; otherwise, the current solution is kept and the algorithm continues to run by

applying another heuristic to this solution as shown in Algorithm 7.

Algorithm 8 Great Deluge Method
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:

create randomly an initial candidate solution s0;
calculate the fitness value of the initial solution f(s0);
set the initial level to f(s0);
set the DownRate value;
repeat
 select & apply a heuristic to the candidate solution;
 calculate the fitness of the resultant candidate solution f(sn);
 if (f(sn) < Level)
 Level = Level – DownRate;
 s0 = sn ;
 endif;
until stopping criterion is met

Simulated annealing is another method used as a non-deterministic move acceptance

strategy. This method was proposed by Bai and Kendall in 2005 [26]. In this method,

24

all improving moves are accepted, but non-improving moves are accepted according

to the Metropolis criterion e
–δ / t , where δ is the change in quality and t is the

temperature. The temperature is decreased at each iteration using a cooling schedule.

This criterion shows that a probabilistic decision is made to accept even a worsening

solution. This probability does not only depend on how much worse the resultant

solution is but also on how long the search process has been continuing.

Late acceptance strategy was incorporated by Burke and Nykov into the hyper-

heuristic approach in 2008 [26]. This method contains a memory to keep fitness

values of previous candidate solutions in a list of size L. At each iteration, the

resulting candidate solution is compared with the last element of the list. If the fitness

value of the new solution is equal to or better than the fitness value of the last

element of the list, the new solution is added to the list as the first element and the

last element is removed from the list. This method does not have a high

computational expense when compared with simulated annealing and great deluge

methods. Additionally, it also accepts worsening moves to prevent getting stuck at

local minima.

Another study field in a hyper-heuristic approach is how heuristic selection and

move acceptance strategies are combined and in which order mutational heuristics

and hill climbers are executed in a hyper-heuristic method, since they have different

impacts on the search process. To increase the solution quality, different regions of

the search space need to be explored and the highest points of these areas should be

reached. This is possible, if a mutational heuristic and a hill climber operator are

employed sequentially. Four different frameworks are defined for that purpose and

their performances are compared in [18]. These frameworks are called as FA, FB , FC

and FD.

In FA and FB , a heuristic is selected from a set of mutational heuristics and hill

climbers. However, the FB framework extends FA by employing a predefined hill

climbing operator, if the selected low-level heuristic is a mutational heuristic;

otherwise, only the selected low-level hill climbing operator is applied to the

candidate solution before the move acceptance step. In the FC framework, a

mutational heuristic is selected at the first step, since the heuristic set only contains

mutational heuristics. After that, a predefined hill climbing operator is applied to the

candidate solution. In the FD framework, firstly a mutational heuristic is selected and

25

applied to the solution. If the resultant solution is accepted, a hill climber will be

selected and applied to this new candidate solution; otherwise, the selected hill

climber will be applied to the previous solution. All these four frameworks are

depicted in Figures 4.1-4.4.

 FA

Figure 4.1 : Hyper-heuristic framework FA

 FB

 No Yes No

 Yes

Figure 4.2 : Hyper-heuristic framework FB

Select & Apply

Accept / Reject

Mutational
Heuristics &
Hill Climbers

Select & Apply

Apply Hill Climbing

Mutational
Heuristics &
Hill Climbers

Accept / Reject

Mutational
Heuristic
Applied ?

26

 FC

Figure 4.3 : Hyper-heuristic framework FC

 FD

Figure 4.4 : Hyper-heuristic framework FD

Experimental results showed that the usage of hill climbers has a positive impact on

the quality of the solution, and it was also observed that applying a single efficient

hill climber produces better results than using a set of hill climbers with a selection

strategy. In this study, the FC framework achieved the best results among these four

hyper-heuristic frameworks [18].

4.2.2.2 Population Based Hyper-heuristics

Population based perturbative hyper-heuristics differ from single point search based

hyper-heuristics, in which each individual in the population consists of a sequence of

Select & Apply

Apply Hill Climbing

Mutational
Heuristics

Accept / Reject

Select & Apply

Accept / Reject

Mutational
Heuristics

Select & Apply

Accept / Reject

Hill Climbers

27

integers, where each integer represents a single low-level heuristic to indicate in

which order the heuristics are called. In 2003, Cowling applied this approach to a

personnel scheduling problem, and he used a genetic algorithm as the heuristic

selection mechanism [26]. This method achieved better results when compared to a

genetic algorithm and a memetic algorithm in trainer scheduling problem.

In 2005, Burke employed the ant colony algorithm as a hyper-heuristic to solve the

personnel scheduling problem [26]. Each vertex represents a heuristic, and a number

of ants are distributed among the vertices to carry candidate solutions. In this

method, each ant applies a low-level heuristic at each encountered node to its

solution. Burke achieved good results with this method for previously studied

problem instances.

4.3 Heuristics to Generate Heuristics

Hyper-heuristics are not only used to select heuristics, but they are also used to

generate heuristics. In this approach, hyper-heuristics operate on a set of components

to construct heuristics instead of searching the set of complete heuristics. Therefore,

at each iteration a new heuristic is created and a solution is obtained using this

heuristic. This approach is applied to the following problem domains: Production

Scheduling, Traveling Salesman Problem, Cutting and Packing, Function

Optimization, Satisfiability, Constraint Satisfaction [26].

Although heuristics created by humans are designed to be effective on a set of

problem instances, a heuristic needs to be specialized to achieve the best result for

each problem instance respectively. Therefore, the most important advantage of the

automated heuristic generation approach is that the heuristic implementation process

is able to specialize a heuristic for each instance in a cost effective way. These

instance specific adjusted heuristics would produce better results when compared

with human created heuristics. Experimental results also verify this approach.

In 2005, Ho and Tay applied a genetic programming algorithm to the job shop

scheduling problem. This algorithm acts as a hyper-heuristic and evolves composite

dispatching rules [26]. In 2007, Jakobovic used the same approach in the parallel

machine scheduling problem. These dispatching rules are functions, which are

responsible for assigning scores to the jobs with respect to the problem state. When a

28

machine completes its job, an evolved dispatching rule works for each job in the

machines queue separately, so that each job obtains a result as its score. The job with

the highest score in the queue is assigned to the machine [26].

In 2005, Koza and Poli concluded with their experiments, that the best evolved

dispatching rule achieves better results on over 85% of all the problem instances

[26]. These experimental results also verified that genetic programming is able to

create composite heuristics containing multiple heuristic components, which are

more efficient than human created heuristics and reusable on different problem

instances.

In 2005, Oltean employed a genetic programming hyper-heuristic to generate

evolutionary algorithms [26]. This method was successfully applied to the traveling

salesman problem and to function optimization. In this method, each individual

consists of a series of instructions which calculate values in a memory array with

multiple registers. This array represents an evolutionary algorithm population where

each register corresponds to a member of the population. Genetic operators are used

as the instructions and they are performing their tasks on the memory array. An

example for an instruction is given in Eq. (4.7), where the crossover operator is

applied to two members from the memory array. This algorithm also achieved

successful results when compared with the human made heuristics.

(4.7)

(4.8)

In 2007, Burke applied genetic programming as a hyper-heuristic for one

dimensional bin packing problem [26]. This hyper-heuristic method produces

heuristics containing arithmetic operators and properties of the pieces and bins. At

each iteration, a piece is placed into a bin. For each piece, created heuristics are

applied to the bins and the bin with the highest score is selected to pack the piece in.

Poli et al (2007) also made use of genetic programming in one dimensional bin

packing [26]. However, this study was based on the remaining space size of each bin,

when placing pieces into these bins. According to this approach, when a piece is

29

placed into a selected bin, the remaining space should not be smaller than the size of

the smallest piece, which is not packed yet.

30

31

5. EXPERIMENTAL STUDY

In this study, hyper-heuristic methods with various heuristic selection and move

acceptance strategies are applied to the UCP. In the heuristic selection phase, six

different strategies are applied. These are:

• Simple Random (SR),

• Random Descent (RD),

• Random Permutation (RP),

• Random Permutation Descent (RPD),

• Choice Function (CF) ,

• Greedy (GR).

As move acceptance criterion, four different strategies are used:

• All Moves (AM),

• Only Improving (OI),

• Improving and Equal (IE),

• Great Deluge (GD).

Totally 24 combinations of the above listed heuristic selection and move acceptance

mechanisms are applied to two instances of the UCP, and results obtained by these

combinations are analyzed to determine the most efficient strategy combination for

this problem.

In the second part of the experiments, the performance of the most efficient hyper-

heuristic method is compared with the performance of a genetic algorithm [12] on

different data sets, because these two methods use the same genetic operators. In the

third part, reported results of six benchmark problem instances are given. An analysis

is made to find out how the problem size affects the performance of each

optimization method. In the last part, real world data is used to verify that the

32

proposed hyper-heuristic algorithm can be successfully applied to real world

problems.

The proposed algorithms are coded in the C language. For all of our experiments, we

used a single PC (2.13 GHz quad core processor with 2GBytes of main memory).

5.1 Proposed Approach

In the proposed approach, each candidate solution consists of binary digits with a

length of T*N, where N is equal to the number of units and T is equal to the number

of time slots. Figure 5.1 illustrates an example of encoding a candidate solution.

Each hour contains N binary digits. The values 0 and 1 indicate that the generator is

off or on for the corresponding time slot.

Figure 5.1 : The binary representation of a candidate solution

Seven heuristics are used during this iterative search process. The first two heuristics

are classic mutation operators with a probability of 1/L and 2/L, where L is the

solution length.

Figure 5.2 : Mutation operator

The third heuristic is the swap-window operator [12]. This operator selects two

power units, a time window of width w hours and a window position between 1 and

(H-w) randomly. Then, the digits of these two units in this time window are

exchanged as shown in Figure 5.3.

0 1 1 0 0 …….... 0 …………

Hour 1 Hour 2 Hour 24

1 0 1 0 1 …….... 0 1 0 1 0 0 …….... 1

1

1

 1 2 3 L-2 L

0 1 1 0 0

1 0 0 0 1

 1 2 3 L-2 L

33

Figure 5.3 : Swap-window operator

Fourth heuristic is the window-mutation operator. This operator selects one unit, a

time window of width w and a window position between 1 and (H-w). All 0s in this

time window are turned to 1s, and all 1s are turned to 0s [12]. The solutions before

mutation and after mutation are depicted in Figure 5.4.

 Solution before Mutation

 Solution after Mutation

Figure 5.4 : Window-mutation operator

1 2 3 4 5 6 7 8 9 H

1

2

3

4

N

window

1

2

N

 1 0 1

window

 1 2 3 4 5 6 7 8 H

1

2

N

 0 1 0

window

34

Swap-mutation heuristic is a hill climbing operator. For each time slot of the

scheduling period, one of the two operations is performed on the candidate solution

with equal probability [12].

• Two units are selected randomly, and the digits for the corresponding
hour are exchanged.

• A unit is selected randomly and the corresponding digit for the given hour
is turned from 0 to 1 or from 1 to 0.

If the operation results in a better solution, the new solution is replaced with the old

one; otherwise, the next operation is performed on the old solution. The behavior of

this heuristic is shown in Figure 5.5.

Figure 5.5 : Swap-mutation operator

Swap-window hill-climb heuristic is another hill climbing operator. Two units and a

time window of width w hours is selected between 1 and H. The starting point of the

time window is the first hour of the schedule. The digits of the two units in the time

window are exchanged. If the fitness value of the resultant candidate solution is

better, then the solution is kept; otherwise, previous solution is used in the next

iteration. For the next iteration, the window is shifted one hour up, and the digit

replacement procedure continues until the window reaches the last hour of the

schedule [12]. Figure 5.6 shows an example of this heuristic.

1

2

3

4

N

0

1

1 2 3 4 5 6 7 8 9 H

1 0

35

Figure 5.6 : Swap-window hill-climb operator

The last heuristic is the Davis Bit hill climbing operator. A permutation array is

created randomly. A power generation unit and a time slot are selected according to

this permutation array. Then, the corresponding digit is changed from 0 to 1 or from

1 to 0 [18].

As hyper-heuristic framework, the FB framework is used [18] as explained in section

4. In this framework, a heuristic is selected from a set of mutational heuristics and

hill climbers. If the selected heuristic is a mutational heuristic, then a hill climber is

applied to the solution; otherwise, only a hill climber is applied and the fitness value

of the resultant solution is calculated. This solution is either accepted or rejected with

respect to its fitness value and the selected move acceptance strategy.

In Algorithm 8, RPD heuristic selection strategy is used along with the OI move

acceptance criterion. In the first step of this algorithm, an initial solution is created

randomly and its fitness value is calculated. After that, the iterative search process

starts by applying the first heuristic according to a predefined permutation of seven

heuristics. If the heuristic does not have the hill climbing capability, Davis Bit hill

climbing operator is applied to the candidate solution. The fitness value of the

resulting solution is calculated. This new solution is replaced with the old one and

the same heuristic is applied to the solution again, if the fitness value is better;

otherwise, the old candidate solution is kept and the next heuristic in the permutation

array is applied to the old solution. This process continues until the stopping criterion

is met.

1

2

3

4

N

window

1 2 3 4 5 6 7 8 9 H

36

Algorithm 9 Proposed Hyper-heuristic Algorithm
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

randomly create an initial solution;
evaluate the initial solution;
create a random permutation of all seven heuristics;
repeat
 select the first heuristic in the permutation;
 repeat
 repeat
 apply the selected heuristic to the solution;
 if heuristic does not contain hill climbing
 apply Davis Bit hill climbing;
 endif;
 calculate the fitness value;
 if the fitness value is better
 accept the new solution;
 endif;
 until the fitness value is no more improved
 select the next heuristic;
 until the last heuristic in the permutation is applied
until stopping criterion is met

5.2 Experimental Setup

Proposed hyper-heuristic algorithm is tested with six benchmark problems taken

from literature and with real world data obtained from the Turkish interconnected

power system. Additionally, the performance of the hyper-heuristic algorithm is

compared with the performance of a genetic algorithm [12] in several problem

instances.

In the first step of the genetic algorithm, the initial population consisting of M

individuals is generated randomly and the fitness value of each individual is

calculated. After two individuals are selected according to the roulette wheel parent

selection algorithm, crossover and mutation operators are applied with certain

probabilities [12]. This procedure is repeated until M new individuals are created.

These new individuals replace the parents except that the best individual of the

previous generation is also carried to the next generation [12].

In the genetic algorithm, selection and crossover operators result in population

convergence; whereas, mutation is used to maintain diversity. To increase the

effectiveness of the search, premature convergence and excessive diversity should be

prevented. Therefore, search process is monitored by collecting statistical

information from the individuals. The crossover probability is kept between 0.4 and

37

0.9 and the mutation probability is kept between 0.004 and 0.024 [12]. When

premature convergence occurs, the crossover probability is decreased by 0.1 and the

mutation probability is increased by 0.004 [12]. To prevent the excessive diversity,

the crossover probability is increased by 0.1 and the mutation probability is

decreased by 0.004 [12]. Swap-window and window-mutation operators are applied

to all the population members with a probability of 0.3. Swap-mutation and swap-

window hill-climb operators are also using the same probability rate except that they

are only applied to the best individual of every generation [12].

Great Deluge move acceptance strategy is one of the four strategies, which is used in

this proposed approach. When applying this strategy to the hyper-heuristic method,

fitness value of the initial solution needs to be calculated to determine the down rate

[30]. Initial solution is created using the Priority List method [12], which is explained

in section 3. The power generation units are ranked in ascending order of the average

full load cost, so that cost effective units are committed first, and other units are set

to online status according to this order until the load demand is met for each time slot

respectively. Operational constraints are satisfied with this method, but resulting

schedules contain high power production costs.

In System 1 and the Turkish interconnected power system, as used in [1,14], and in

System 2, System 3, System 4 and System 5, as used in [1, 3, 4, 12, 14], the best, the

average and the worst case values are reported over 20 runs of the program. For

System 6 [3, 12, 14], these values are determined over 10 runs of the program due to

time constraints.

System 1 consists of 10 units and 24 hours. Detailed data set of System 1 is given in

Appendix A.1. The data for the other problem instances are obtained by repeating the

number of power generation units two, four, six, eight and ten times respectively, as

also done in [1, 3, 4, 12, 14]. Therefore, System 2 contains 20 units and 24 hours,

System 3 contains 40 units and 24 hours, System 4 contains 60 units and 24 hours,

System 5 contains 80 units and 24 hours and System 6 contains 100 units and 24

hours.

To increase the efficiency of the hyper-heuristic approach, demand and up/down

penalty coefficients are set to 100000 to prevent infeasible candidate solutions. The

determination of these values relies on the investigation of the previously obtained

experimental results.

38

Number of iterations per run is set as 1000, 5000, 10000, 15000, 20000, 25000 for

System 1, System 2, System 3, System 4, System 5, System 6, respectively. These

numbers are determined empirically.

5.3 Experimental Results

In the first part of this section, System 2 and System 3 data sets are used to determine

the most efficient strategy pair for heuristic selection and move acceptance phases.

Statistical tests are applied to resultant solutions to compare the performance of each

combination. These tests are performed at a confidence level of 0,95. The second and

the third parts contain performance comparison test results of a hyper-heuristic

algorithm with other optimization techniques using seven different problem

instances.

5.3.1 Performance Comparison of Different Hyper-heuristic Combinations

Table 5.1 and 5.2 contain experimental results, which are obtained, when the OI

move acceptance scheme is applied with 6 different heuristic selection strategies. In

these two data sets, RPD heuristic selection strategy achieves the overall best results.

RP method obtains the same result for System 2, but it obtains the second best result

for System 3. The difference percentage between RP and RPD is only 0,036 %. SR

and RD follow these methods and GR obtains the poorest results in these two data

sets.

Table 5.1: Cost results for System 2 with the OI move acceptance criterion

No Method Best Result Worst Result Average Result
1 RPD 1125997 1128831 1127474
2 RP 1126231 1128931 1127689
3 SR 1127253 1129911 1128435
4 RD 1127253 1129563 1128572
5 CF 1127683 1148563 1133976
6 GR 1129038 1138217 1132815

Figure 5.7 shows the box-whisker plot of the results for System 2 with the OI move

acceptance strategy. The one-way analysis of variance (ANOVA) test is used to

determine whether the fitness values are the same across different heuristic selection

methods. The p-value for this experiment is zero to four decimal places. This value

indicates that the fitness values vary from one heuristic selection method to another.

39

Figure 5.8 shows the multiple comparison results for System 2 with the OI move

acceptance strategy. According to the results of this test, the mean values of GR and

CF are significantly different from RP, RPD, SR and RD.

Figure 5.7 : Box-whisker plot for System 2 with OI

Figure 5.8 : Multiple comparison results for System 2 with OI

40

Table 5.2: Cost results for System 3 with the OI move acceptance criterion

No Method Best Result Worst Result Average Result
1 RPD 2248284 2253971 2250434
2 RP 2249099 2253057 2250835
3 SR 2250116 2255899 2253378
4 RD 2250875 2253851 2252456
5 CF 2253743 2279271 2264473
6 GR 2255837 2267460 2258998

Figures 5.9 and 5.10 show the box-whisker plot and the multiple comparison test

results for System 3, when the OI move acceptance strategy is applied. ANOVA

function returns 0 as the p-value. From these results, it can be observed that the

fitness values from different heuristic selection methods are not the same. The

interval between the lowest and the highest fitness values of the CF method is very

long, when compared with other methods. According to the multiple comparison test

results, CF and GR methods have significantly different mean values from RPD.

However, there is no statistically significant difference in terms of the mean values

obtained by RP, RPD, SR, RD heuristic selection methods in System 2 and System 3,

when either OI or IE is used as the move acceptance criterion.

Figure 5.9 : Box-whisker plot for System 3 with OI

41

Figure 5.10 : Multiple comparison results for System 3 with OI

The results in the Tables 5.3 and 5.4 are obtained using the IE move acceptance

criterion. RPD and SR achieve the best result for System 2, but when the data size of

the problem increases, the performance of SR is decreased accordingly. However,

RPD proves its consistency by obtaining the best result in System 3 as well. RD

achieves the second best result and GR again achieves the poorest results among

these six heuristic selection methods. Arithmetic average of the fitness values

obtained by the RPD method is better than the average results of other methods in

these two data sets.

Table 5.3: Cost results for System 2 with the IE move acceptance criterion

No Method Best Result Worst Result Average Result
1 RPD 1126231 1129039 1127381
2 SR 1126231 1129317 1128190
3 RD 1127065 1130338 1128500
4 RP 1127253 1129837 1128510
5 CF 1128041 1147346 1135070
6 GR 1130520 1136545 1133359

42

Table 5.4: Cost results for System 3 with the IE move acceptance criterion

No Method Best Result Worst Result Average Result
1 RPD 2250070 2252741 2251331
2 RD 2250090 2254164 2252311
3 RP 2250837 2253019 2251510
4 SR 2250875 2253881 2251794
5 CF 2252492 2284777 2263464
6 GR 2255599 2263901 2260230

Looking at the results in Figures 5.11 to 5.14, we can see that the fitness values

obtained with the IE move acceptance criterion for System 2 and System 3 vary from

one heuristic selection method to another. The p-value returned by ANOVA is zero

for both of the systems. Multiple comparison test results show, that CF and GR have

significantly different mean values from the rest of the methods. Box-whisker plots

also show that these two methods have longer intervals between their best and worst

results.

Figure 5.11 : Box-whisker plot for System 2 with IE

43

Figure 5.12 : Multiple comparison results for System 2 with IE

Figure 5.13 : Box-whisker plot for System 3 with IE

44

Figure 5.14 : Multiple comparison results for System 3 with IE

When the GD move acceptance strategy is applied, the RPD method obtains the best

result in System 2. CF achieves the second best result, but its average result is the

poorest one. In System 3, RPD, SR and RD methods achieve the same result;

however, CF achieves the poorest best and average results in the increased data set.

The difference percentage between RPD and CF is 0,0108% for System 2 and

0,0931% for System 3.

Table 5.5: Cost results for System 2 with the GD move acceptance criterion

No Method Best Result Worst Result Average Result
1 RPD 1125997 1129390 1127673
2 CF 1126119 1134568 1128820
3 RP 1126231 1129404 1127944
4 SR 1126231 1129837 1128267
5 RD 1127055 1129837 1128343
6 GR 1127252 1129135 1128345

Figure 5.15 shows the box-whisker plot for System 2, when the GD move acceptance

strategy is used. ANOVA function returns 0.0309 as the p-value. This indicates that

one heuristic selection method outperforms the other in the fitness values of the

solutions it produces.

45

Figure 5.15 : Box-whisker plot for System 2 with GD

Figure 5.16 : Multiple comparison results for System 2 with GD

46

Figure 5.16 shows the multiple comparison results. According to these results, RPD

and CF have significantly different mean values.

Table 5.6: Cost results for System 3 with the GD move acceptance criterion

No Method Best Result Worst Result Average Result
1 RPD 2249099 2252103 2251066
2 RD 2249099 2253712 2251471
3 SR 2249099 2254148 2251906
4 RP 2249576 2253223 2251336
5 GR 2250904 2259784 2254414
6 CF 2251195 2272279 2259073

Figure 5.17 illustrates the box-whisker plot of System 3. In System 3, the p-value

returned by ANOVA is 1.1102 e
–15. Since it is a very small value, it shows that there

is a statistical difference between the fitness values of the experimented methods.

According to the multiple comparison test results, RPD and CF have significantly

different mean values as shown in Figure 5.18.

Figure 5.17 : Box-whisker plot for System 3 with GD

47

Figure 5.18 : Multiple comparison results for System 3 with GD

GR method produces poor results with the first three move acceptance criteria, since

it always selects the most efficient heuristic at each iteration. Heuristics with hill

climbing capability are able to obtain better results than other heuristics; therefore,

GR method mostly selects hill climbers among seven heuristics at each run of the

experiment. Diversity can not be provided effectively with this method and this

results in getting stuck at a local optimum.

AM is not an efficient move acceptance strategy, since it accepts all non-improving

moves without any limitation. GR achieves the best results with AM in these two

data sets, because in GR all heuristics are applied to the solution and the heuristic

obtaining the best fitness value is selected. At each iteration hill climbers are applied

to the solution. Since hill climbers do not accept a worsening move, AM selects a

candidate solution either with a better fitness value or at least with the same fitness

value as the previous one.

According to the results in Table 5.7, CF achieves the second best result in System 2.

CF method selects a heuristic with respect to the score of each heuristic from

previous runs based on the quality of the solution, so that it applies the most efficient

48

heuristic at each iteration during the search. RPD obtains better results than RP and

RD obtains better results than SR, since they apply a heuristic to the solution again, if

the heuristic causes an improvement in the fitness value of the solution.

Table 5.7: Cost results for System 2 with the AM move acceptance criterion

No Method Best Result Worst Result Average Result
1 GR 1135972 1182232 1157148
2 CF 1137093 1180722 1158591
3 RPD 1140067 1180180 1160381
4 RP 1141958 1180711 1161860
5 RD 1142190 1184874 1163611
6 SR 1152371 1183624 1165224

Box-whisker plot of System 2, obtained using the AM move acceptance strategy, is

shown in Figure 5.19. The p-value, 0.3145, does not indicate statistically significant

differences between the fitness values of different heuristic selection methods. In

Figure 5.20, it can be easily observed that the mean values of CF, RPD, RP, RD and

SR are not significantly different from GR.

Figure 5.19 : Box-whisker plot for System 2 with AM

49

Figure 5.20 : Multiple comparison results for System 2 with AM

Table 5.8 shows the experimental results for System 3, when AM is used as the move

acceptance criterion. GR again achieves the best result in this data set in front of the

CF method.

Table 5.8: Cost results for System 3 with the AM move acceptance criterion

No Method Best Result Worst Result Average Result
1 GR 2339024 2478087 2402021
2 CF 2341696 2482374 2404243
3 RPD 2348286 2477003 2406051
4 RD 2354096 2481037 2419543
5 RP 2356811 2483620 2418755
6 SR 2383415 2482194 2427434

Figure 5.21 depicts the box-whisker plot for System 3. The p-value, 0. 1793, also

verifies that there is no statistically significant difference between the fitness values

obtained by different heuristic selection methods. In the multiple comparison test

results, as shown in Figure 5.22, the mean value of GR is not significantly different

from other methods.

50

Figure 5.21 : Box-whisker plot for System 3 with AM

Figure 5.22 : Multiple comparison results for System 3 with AM

51

In the first part of the experiments, the best result for System 2 is 1125997. This

result is obtained with two different heuristic selection and move acceptance strategy

pairs. These are RPD-OI and RPD-GD combinations. The best result for System 3 is

2248284, and this result is obtained using RPD-OI strategy pair. Since the data set is

increased in System 3, the efficiency of RPD-OI becomes more obvious among all

24 strategy combinations. Four different combinations follow RPD-OI and they

produce the same solution with the fitness value of 2249099.

In further parts of this section, this combination is used to compare the performance

of the hyper-heuristic (HH) approach with other optimization techniques. Table 5.9

shows the best heuristic selection method and move acceptance criterion

combinations for System 2 and System 3.

Table 5.9: The best ten heuristic selection method and move acceptance criterion

 combinations

System 2 System 3
Rank

Combination Fitness
Rank

Combination Fitness

1 RPD - OI 1125997 1 RPD - OI 2248284

2 RPD - GD 1125997 2 RP - OI 2249099

3 RPD - OI 1126059 3 RPD - GD 2249099

4 CF - GD 1126119 4 RD - GD 2249099

5 RPD - OI 1126137 5 SR - GD 2249099

6 RP - OI 1126231 6 RPD - GD 2249114

7 RPD - IE 1126231 7 RP - OI 2249118

8 SR - IE 1126231 8 RPD - OI 2249144

9 SR - GD 1126231 9 RD - GD 2249149

10 RP - GD 1126231 10 RPD - OI 2249287

Figure 5.23 shows the distribution of the best fifty solutions of System 2 among

several heuristic selection method and move acceptance criterion combinations.

Seven of these fifty solutions are produced by RPD-OI pair. RPD-IE, RP-OI, RPD-

GD follow this combination with six solutions. Fourteen different combinations

obtaining at least one solution are listed in this figure.

Figure 5.24 shows the distribution of the best fifty solutions for System 3. RPD-OI is

in the first place with fourteen solutions. RP-OI is the second most effective

combination with nine solutions. This figure also verifies that the effectiveness of

52

RPD-OI becomes more significant with the increased data set. Four of the five

combinations listed in Figure 5.23 with at most two solutions are not able to produce

a solution which can join the top fifty list of System 3.

Figure 5.23 : Distribution of the best fifty solutions for System 2

Figure 5.24 : Distribution of the best fifty solutions for System 3

53

Figure 5.25 shows the iteration number versus the fitness value curves for six

different combinations with respect to their best cost results obtained in System 3.

CF-IE and GR-IE find the optimum fitness values earlier than other combinations,

but they are getting stuck at local optima, since the diversity can not be provided

with performance based heuristic selection methods in further parts of the search

process. SR-GD, RD-GD and RP-OI achieve the second best result in System 3 and

they obtain this solution approximately between the iteration numbers of 3000 and

3600. RPD-OI produces the best solution in System 3 during the 8300th iteration.

Figure 5.25 : Iteration Number versus Fitness Value curves

Figures 5.26 and 5.27 show multiple comparison test results for System 2 and

System 3. These test results are obtained using the cost values produced by six

heuristic selection methods along with OI, IE and GD move acceptance schemes. It

can be easily observed that CF and GR have significantly different mean values for

OI and IE move acceptance schemes in both of the test instances. However, this

difference is decreased when these two heuristic selection methods are used along

with GD.

54

Figure 5.26 : Multiple comparison results for System 2

Figure 5.27 : Multiple comparison results for System 3

55

5.3.2 Performance Comparison of the HH with a Genetic Algorithm

In the second part, the performance of the HH method is compared with the

performance of a genetic algorithm (GA2). When applying GA2 to the UCP,

premature convergence should be prevented to make the search more efficient.

Therefore, the iterative search process needs to be monitored; additionally, mutation

and crossover probability rates should be adjusted to prevent the convergence.

Although HH method uses the same genetic operators, fine tuning of certain genetic

operator probability rates, adaptation and system monitoring are not necessary. This

technique creates new candidate solutions with respect to the applied heuristic

selection and move acceptance methods.

For System 1, GA2 achieves a better result than HH, but these results are very

similar. In the other data sets, HH obtains better results than GA2. When the size of

the data set increases, the difference between the fitness values of GA2 and HH

becomes more significant. The difference percentage between GA2 and HH is

0,022% for System 2. For System 3, System 4, System 5 and System 6, these values

are 0,16%, 0,13%, 0,22% and 0,23% respectively. For larger problems, the

solutions using HH are better even in the worst runs than the results obtained by

GA2.

Table 5.10: Comparison of the cost results of GA2 and HH methods

GA2 HH
Units

best worst best worst

10 565825 570032 565827 567028

20 1126243 1132059 1125997 1128831

40 2251911 2259706 2248284 2253971

60 3376625 3384252 3372040 3376043

80 4504933 4510129 4494452 4499067

100 5627437 5637914 5614360 5620496

5.3.3 Performance Comparison of the HH with other Optimization Techniques

In the third part, the performance of the HH is compared with other optimization

algorithms using six benchmark data sets. In literature, only the best, average and

worst fitness values are reported for the listed techniques and they are taken from the

56

papers without any modification. The algorithms in the following tables are ranked in

decreasing order of their best fitnes values and they are abbreviated as follows:

• LR1 is a Lagrangian Relaxation method as used in [12],

• LR2 is a Lagrangian Relaxation method as used in [14],

• GA1 is a standard genetic algorithm as used in [14],

• GA2 is a genetic algorithm with special operators as used in [12],

• GRA1 and GRA2 are the greedy randomized search methods as used in [10],

• MA and SMA are memetic algorithms as used in [14],

• BDE1 is a binary differential evolution methods as used in [1],

• BDE2 is a binary differential evolution method as used in [16],

• ES is an evolutionary strategies algorithm as used in [1],

• SSGA is steady state genetic algorithm as used in [1],

• ICGA is an integer coded genetic algorithm as used in [20],

• HH is a hyper-heuristic algorithm proposed in this study.

Table 5.11: Cost results for System 1

Algorithm Best Result Worst Result Average Result
LR1 565825 n/a n/a
GRA1 565825 - -
GA2 565825 570032 -
BDE2 565827 566650 565965
HH 565827 567028 566243
MA 565827 566861 566453
ES 565827 571312 569199
GA1 565866 571366 567329
BDE1 566166 - -
ICGA 566404 - -
SMA 566686 567822 566787
LR2 567663 n/a n/a

In System 1, LR1, GRA1 and GA2 obtain the best result with 565825. HH achieves

the second best result. However, the difference percentage between these results is

only 0.0003%. In a small data set, different algorithms obtain very similar results.

The difference between the best and the worst value of each algorithm is also low.

57

In System 2, HH produces the overal best result. GA2 and GRA2 follow the HH

method. The difference percentage between the cost values of HH and GA2 is

0.022%. In System 3, HH again finds the best result in front of the SMA method.

The difference percentage increases to 0.058% in a larger test instance.

Table 5.12: Cost results for System 2

Algorithm Best Result Worst Result Average Result
HH 1125997 1128587 1127563
GA2 1126243 1132059 -
GRA2 1126805 - -
ICGA 1127244 - -
MA 1127254 1130916 1128824
GRA1 1128160 - -
SMA 1128192 1128403 1128213
GA1 1128876 1131565 1130160
LR2 1129633 n/a n/a
LR1 1130660 n/a n/a

Table 5.13: Cost results for System 3

Algorithm Best Result Worst Result Average Result
HH 2248284 2253971 2250534
SMA 2249589 2249589 2249589
LR2 2250223 n/a n/a
GA2 2251911 2259706 -
GA1 2252909 2269282 2262585
MA 2252937 2270361 2262477
ICGA 2254123 - -
GRA2 2255416 - -
LR1 2258503 n/a n/a
GRA1 2259340 - -

Although LR1 and GRA1 obtain the best result in System 1, they do not perform

well in larger data sets. On the other hand, methods with hybridization techniques,

such as repair operators, hill climbers, specialized operators used for reproduction or

for initial population generation, produce especially better results with increased

problem instances. HH, SMA, LR2 are examples for these methods. In System 3,

System 4, System 5 and System 6, HH, SMA and LR2 algorithms take the first three

places. At each iteration, HH makes use of a hill-climbing operator; therefore, HH is

a robust method for different problem instances with varying data sizes.

Additionally, HH also applies mutational heuristics to maintain diversity during the

search.

58

In System 5, SMA finds the best result in front of HH. However, HH finds the best

result in System 4 and System 6 and SMA obtains the second best result. In all test

sytems, the difference percentage between the best and the worst results of SMA is

lower than the difference percentage of the best and the worst values obtained by

HH.

Table 5.14: Cost results for System 4

Algorithm Best Result Worst Result Average Result
HH 3369907 3376508 3373251
SMA 3370595 3371272 3370820
LR2 3374994 3374994 3374994
GA2 3376625 3384252 -
GA1 3377393 3401847 3394044
ICGA 3378108 - -
GRA1 3383290 - -
MA 3388676 3408275 3394830
LR1 3394066 n/a n/a

Table 5.15: Cost results for System 5

Algorithm Best Result Worst Result Average Result
SMA 4494214 4494439 4494378
HH 4494452 4499067 4496639
LR2 4496729 4496729 4496729
ICGA 4498943 - -
MA 4501449 4545305 4527779
GA2 4504933 4510129 -
GA1 4507692 4552982 4525204
LR1 4526022 n/a n/a

Table 5.16: Cost results for System 6

Algorithm Best Result Worst Result Average Result
HH 5614360 5620496 5618418
SMA 5616314 5616900 5616699
LR2 5620305 5620305 5620305
GA1 5626362 5690086 5669362
GA2 5627437 5637914 -
ICGA 5630838 - -
MA 5640543 5698039 5665803
GRA1 5669945 - -
LR1 5657277 n/a n/a

In the last experiment, real world data from the Turkish Interconnected Power

System is used for the performance comparison. This data set only contains eight

units and eight hours. According to the experimental results, both HH and BDE2

produce the best result. ES and SSGA obtain the second best result. This experiment

59

also verifies, that the HH is able to find the optimum solution using real world data

as well.

Table 5.17: Cost results for Turkish Interconnected Power System

Algorithm Best Result Worst Result Average Result
HH 530346 530346 530346
BDE2 530346 530346 530346
ES 530392 530392 530392
SSGA 530392 530392 530392
BDE1 532142 - -

Table 5.18 shows the 95% confidence intervals of the fitness values obtained by the

HH for each test instance. First column gives the means and the second column gives

the 95% confidence intervals of the means.

Table 5.18: Mean and the 95% confidence interval for the fitness values obtained by
the HH

 Mean Confidence interval
System 1 566243 [565819.8 , 566666.2]
System 2 1127563 [1127142.96 , 1127983.04]
System 3 2250534 [2249835.94 , 2251232.06]
System 4 3373251 [3372450.57 , 3374051.43]
System 5 4496639 [4495956.81 , 4497321.19]
System 6 5618418 [5616976.15 , 5619859.85]
System TR 530346 [530346 , 530346]

In System 1, nine different algorithms obtain better results than the upper bound of

the confidence interval. In System 2, only four algorithms are able to produce a

better result than the upper bound. In System 3 and System 5, SMA and LR2 achieve

results within the 0.95 confidence interval. In System 4 and System 6, only SMA is

able to find solutions, whose fitness values lie between the upper and the lower

bounds of the interval.

60

61

6. CONCLUSION

In this study, hyper-heuristic algorithms with different heuristic selection and move

acceptance strategy combinations are implemented to solve the UCP. To determine

the most effective hyper-heuristic combination for the UCP, experiments are

performed using two problem instances. RPD-OI heuristic selection and move

acceptance combination achieves the best results in these two test sets. With the

increased data size of the problem instance, its effectiveness becomes more

significant. Consequently, in the second and third parts of the experiments the

performance of this combination is compared with other optimization techniques,

which are previously applied to the UCP.

In the first part of the experiments it is also observed, that CF and GR methods

obtain good results in short time periods. However, the best and the average results

produced by these two methods are not better than the results of RP, RPD, SR and

RD. They select a heuristic according to the performance of each heuristic, but some

heuristics can outperform the others; therefore, mutational heuristics especially have

a small chance of being selected in further parts of the search process. Diversity can

not be provided efficiently, and this results in getting stuck at local optima. On the

other hand, in the RPD heuristic selection strategy even the mutational heuristics are

applied to the solution at later stages of the search with respect to the order of the

heuristics in the predefined permutation array, so that different regions of the search

space are investigated to find a better solution than the globally best solution which

is found so far.

Statistical test results show significant statistical differences between the fitness

values produced by different heuristic selection methods for the same move

acceptance criterion except AM. This also verifies that one method obtains much

better results than at least one of the remaining methods.

After determining the most efficient strategy combination for the hyper-heuristic

approach, the proposed hyper-heuristic algorithm is compared with a genetic

algorithm explained in [12]. Although these two algorithms contain the same genetic

62

operators, the hyper-heuristic algorithm produces better results than the genetic

algorithm. The difference percentage between the results obtained by these two

methods increases with the growing data size. When the data size increases, the

solutions achieved using the HH approach are better even in the worst runs than the

results obtained by GA2. Additionally, the hyper-heuristic method does not require

system monitoring and fine tuning of the genetic operator probability rates to prevent

the convergence.

Secondly, optimization techniques are ranked in decreasing order of their best fitness

values using six benchmark data sets and one real world data set. The HH method

finds consistent results in all test sets due to the incorporation of the hill-climbing

operators. SMA and LR2 are the other two effective algorithms for the UCP. SMA

uses specialized reproduction operators and hill climbers. It also makes use of the

LR2 algorithm to create the initial population. HH randomly creates the initial

population unlike in SMA, but it combines the usage of mutational heuristics with

hill-climbing operators to search different regions of the solution space and to reach

the highest point of the selected region.

HH obtains impressive results in all test sets when compared with other optimization

algorithms. The performance of this algorithm can be further enhanced by applying

more sophisticated heuristics and hill-climbing operators. Additionally, the initial

solution can be created using the priority list method to increase the efficiency of this

algorithm. Effective techniques including advanced learning mechanisms can be

used for heuristic selection and move acceptance parts as well.

63

REFERENCES

[1] Uyar, Ş.A., Türkay, B., 2008. Evolutionary Algorithms for the Unit
Commitment Problem, Turkish Journal of Electrical Engineering,
16-3, 239-255.

[2] Saramourtsis, J., Damousis, A., Bakirtzis, A.G., Dokopoulos, P., 1996.
Genetic Algorithm Solution to the Economic Dispatch Problem. IEE
Proceedings-C, 141-4, 377-382.

[3] Cheng, C., Liu, C.W., Liu, C.C., 2000. Unit Commitment by Lagrangian
Relaxation and Genetic Algorithms, IEEE Transactions on Power
Systems, 15-2, 707-714.

[4] Burns, R.M., Gibson, C.A., 1975. Optimization of Priority Lists for a Unit
Commitment Program, In Proceedings of IEEE/PES Summer
Meeting, pp. 1873-1879.

[5] Zhuang, F., Galiana, F.D., 1990. Unit Commitment by Simulated
Annealing, IEEE Transactions on Power Systems, 5-1, 311-318.

[6] Lowery, P.G., 1996. Generating Unit Commitment by Dynamic
Programming, IEEE Tranasactions on Power Apparatus and Systems,
vol. PAS-85, no. 5, pp. 422-426.

[7] Mantawy, A.H., Abdel-Magid, Y.L., Selim, S.Z., 1998. Unit Commitment
by Tabu Search, IEEE Proceedings - Generation, Transmission and
Distribution, 145-1, 56-64.

[8] Chen, C.L., Wang, S.C., 1993. Branch-and-Bound Scheduling for Thermal
Generating Units, IEEE Transactions on Energy Conversion, 8-2,
184-189.

[9] Cote, G., Laughton, M.A., 1979. Decomposition Techniques in Power
System Planning: the Benders Partitioning Method, Electrical Power
and Energy Systems, 1-1, 57-64.

[10] Viana, A., de Sousa, J.P., Matos, M., 2003. Using Grasp to Solve the Unit
Commitment Problem, Annals of Operations Research, vol. 120, pp.
117-132.

[11] Chen, Y.M., Wang, W.S., 2007. Fast Solution Technique for Unit
Commitment by Particle Swarm Optimisation and Genetic Algorithm,
International Journal of Energy Technology and Policy, vol. 5, no. 4,
pp. 117-132.

[12] Kazarlis, S.A., Bakirtzis, A.G., Petridis, V., 1996. A Genetic Algorithm
Solution to the Unit Commitment Problem, IEEE Transactions on
Power Systems, 11-1, 83-92.

64

[13] Rudolf, A., Bayrleithner, R., 1999. A Genetic Algorithm for Solving the
Unit Commitment Problem of a Hydro-Thermal Power System, IEEE
Transactions on Power Systems, 14-4, 1460-1468.

[14] Valenzula, J., Smith, A.E., 2002. A Seeded Memetic Algorithm for Large
Unit Commitment Problems, Journal of Heuristics, vol. 8, pp. 173-
195.

[15] Dudek, G., 2004. Unit Commitment by Genetic Algorithm with Specialized
Search Operators, Electric Power Systems Research, 72-3, 299-308.

[16] Keles, A., Etaner-Uyar, A.S., Turkay, B., 2007. A Differential Evolution
Approach for the Unit Commitment Problem, In Proceedings of
ELECO 2007: 5th International Conference on Electrical and
Electronics Engineering, pp. 132-136.

[17] Simon, S.P., Padhy, N.P., Anand, R.S., 2006. An Ant Colony System
Approach for Unit Commitment Problem, Electrical Power and
Energy Systems, vol. 28, pp. 315-323.

[18] Ozcan, E., Bilgin, B., Korkmaz, E.E., 2008. A Comprehensive Analysis of
Hyper-heuristics, Intelligent Data Analysis, 12-1, 3-23.

[19] Ozcan, E., Bilgin, B., Korkmaz, E.E., 2006. An Experimental Study on
Hyper-Heuristics and Final Exam Scheduling, Proceedings of the
International Conference on the Practice and Theory of Automated
Timetabling, pp. 123-140.

[20] Damousis, I.G., Bakirtzis, A.G., Dokopoulos, P.S., 2004. A Solution for
Unit Commitment Problem Using Integer-Coded Genetic Algorithm,
IEEE Transactions on Power Systems, 19-2, 1165-1172.

[21] Holland, J.H., 1975. Adaptation in Natural and Artificial Systems,
University of Michigan Press.

[22] Dawkins, R., 1976. The Selfish Genes, Oxford University Press.

[23] Price, K.V., Storn, R.M., Lampinen, J.A., 2005. Differential Evolution: A
Practical Approach to Global Optimization, Springer.

[24] Rechenberg, I., 1973. Evolutionstrategie: Optimierung Technischer Systeme
nach Prinzipien der Biologischen Evolution, Fomman Holzboog
Verlag.

[25] Beyer, H.G., Schwefel, H.P., 2002. Evolution Strategies, A Comprehensive
Introduction, Natural Computing, vol. 1, pp. 3-52.

[26] Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R.,2009. A
Survey of Hyper-heuristics. Computer Science Technical Report,
NOTTCS-TR-SUB-0906241418-2747, University of Nottingham.

[27] Cowling P., Kendall, G., Soubeiga, E., 2000. A Hyper-heuristic Approach
to Scheduling a Sales Summit, LNCS 2079 PATAT 2000, 176-190.

[28] Kendall, G., Cowling P., Soubeiga, E., 2002. Choice Function and Random
HyperHeuristics, Proceedings of the 4th Asia-Pacific Conference on
Simulated Evolution and Learning, pp. 667-671.

65

[29] Burke E.K., Kendall, G., Soubeiga, E., 2003. A Tabu Search Hyper-
heuristic for Timetabling and Rostering, Journal of Heuristics, 9-6,
451-470.

[30] Kendall, G., Mohamad, M., 2004. Channel Assignment in Cellular
Communication Using a Great Deluge Hyper-heuristic, In
Proceedings of the IEEE International Conference on Network, 769-
773.

[31] Nareyek, A., 2003. Choosing search Heuristics by non-stationary
reinforcement learning, In: Resende MGC, de Sousa JP (eds)
Metaheuristics: Computer Decision-Making, chap. 9, 523-544.

[32] Ayob, M., Kendall, G., 2003. A Monte Carlo Hyper-Heuristic to Optimise
Component Placement Sequencing for Multi Head Placement
Machine, In Proceedings of the Int. Conf. On Intelligent
Technologies, 132-141.

66

67

APPENDICES

 APPENDIX A.1 : System Data for System 1 and Turkish Interconnected
 Power System
 APPENDIX A.2 : Best Solutions for System 2 and System 3

68

APPENDIX A.1

Table A.1 : Data set for System 1

 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10
Pmax (MW) 80 85 55 55 55
Pmin (MW) 20 25 10 10 10

a0 370 480 660 665 670
a1 22.26 27.74 25.92 27.27 27.79
a2 0.00712 0.00079 0.00413 0.00222 0.00173

tup (h) 3 3 1 1 1
tdown (h) 3 3 1 1 1
Shot ($) 170 260 30 30 30
Scold ($) 340 520 60 60 60

tcoldstart (h) 2 2 0 0 0
Initial state (h) -3 -3 -1 -1 -1

Hour Demand
(MW)

Reserve
(MW)

Hour Demand
(MW)

Reserve
(MW)

1 700 75 13 1400 140
2 750 75 14 1300 130
3 850 85 15 1200 120
4 950 95 16 1050 105
5 1000 100 17 1000 100
6 1100 110 18 1100 110
7 1150 115 19 1200 120
8 1200 120 20 1400 140
9 1300 130 21 1300 130
10 1400 140 22 1100 110
11 1450 145 23 900 90
12 1500 150 24 800 80

 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5
Pmax (MW) 455 455 130 130 162
Pmin (MW) 150 150 20 20 25

a0 1000 970 700 680 450
a1 16.19 17.26 16.60 16.50 19.70
a2 0.00048 0.00031 0.00200 0.00211 0.00398

tup (h) 8 8 5 5 6
tdown (h) 8 8 5 5 6
Shot ($) 4500 5000 550 560 900
Scold ($) 9000 10000 1100 1120 1800

tcoldstart (h) 5 5 4 4 4
Initial state (h) 8 8 -5 -5 -6

69

Table A.2 : Data set for Turkish Interconnected Power System

 Unit 1 Unit 2 Unit 3 Unit 4
Pmax (MW) 1120 1350 1432 600
Pmin (MW) 190 245 318 150

a0 6995.5 7290.6 6780.5 1564.4
a1 7.0063 7.2592 5.682 3.1288
a2 0.0168 0.0127 0.0106 0.0139

tup (h) 8 1 1 10
tdown (h) 2 0.5 0.5 3
Shot ($) 800 800 600 400
Scold ($) 1600 1600 1200 800

tcoldstart (h) 8 1 1 10
Initial state (h) -4 -4 -4 -4

 Unit 5 Unit 6 Unit 7 Unit 8
Pmax (MW) 990 420 630 630
Pmin (MW) 210 110 140 140

a0 5134.1 1159.5 1697 1822.8
a1 6.232 3.3128 3.2324 3.472
a2 0.0168 0.021 0.013 0.0147

tup (h) 10 10 10 10
tdown (h) 3 3 3 3
Shot ($) 500 400 400 400
Scold ($) 1000 800 800 800

tcoldstart (h) 10 10 10 10
Initial state (h) -4 -4 -4 -4

Hour Demand
(MW)

Reserve
(MW)

1 2000 200
2 3000 300
3 6500 650
4 1500 150
5 4200 420
6 5100 510
7 2700 270
8 1750 175

70

APPENDIX A.2

Table A.3 : Best solution for System 2 between Hour 1 and Hour 6

Table A.4 : Best solution for System 2 between Hour 7 and Hour 12

Unit Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6
1 455.00 455.00 455.00 455.00 455.00 455.00
2 245.00 295.00 382.50 455.00 455.00 425.00
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 130.00
5 0.00 0.00 25.00 40.00 25.00 25.00
6 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00
11 455.00 455.00 455.00 455.00 455.00 455.00
12 245.00 295.00 382.50 455.00 455.00 425.00
13 0.00 0.00 0.00 0.00 0.00 130.00
14 0.00 0.00 0.00 0.00 130.00 130.00
15 0.00 0.00 0.00 40.00 25.00 25.00
16 0.00 0.00 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00

Unit Hour 7 Hour 8 Hour 9 Hour 10 Hour 11 Hour 12
1 455.00 455.00 455.00 455.00 455.00 455.00
2 455.00 455.00 455.00 455.00 455.00 455.00
3 0.00 130.00 130.00 130.00 130.00 130.00
4 130.00 130.00 130.00 130.00 130.00 130.00
5 45.00 30.00 97.50 162.00 162.00 162.00
6 0.00 0.00 20.00 33.00 73.00 80.00
7 0.00 0.00 25.00 25.00 25.00 25.00
8 0.00 0.00 0.00 10.00 10.00 43.00
9 0.00 0.00 0.00 0.00 10.00 10.00
10 0.00 0.00 0.00 0.00 0.00 10.00
11 455.00 455.00 455.00 455.00 455.00 455.00
12 455.00 455.00 455.00 455.00 455.00 455.00
13 130.00 130.00 130.00 130.00 130.00 130.00
14 130.00 130.00 130.00 130.00 130.00 130.00
15 45.00 30.00 97.50 162.00 162.00 162.00
16 0.00 0.00 20.00 33.00 73.00 80.00
17 0.00 0.00 0.00 25.00 25.00 25.00
18 0.00 0.00 0.00 10.00 10.00 43.00
19 0.00 0.00 0.00 0.00 10.00 10.00
20 0.00 0.00 0.00 0.00 0.00 10.00

71

Table A.5 : Best solution for System 2 between Hour 13 and Hour 18

Table A.6 : Best solution for System 2 between Hour 19 and Hour 24

Unit Hour 13 Hour 14 Hour 15 Hour 16 Hour 17 Hour 18
1 455.00 455.00 455.00 455.00 455.00 455.00
2 455.00 455.00 455.00 310.00 260.00 360.00
3 130.00 130.00 130.00 130.00 130.00 130.00
4 130.00 130.00 130.00 130.00 130.00 130.00
5 162.00 97.50 30.00 25.00 25.00 25.00
6 33.00 20.00 0.00 0.00 0.00 0.00
7 25.00 0.00 0.00 0.00 0.00 0.00
8 10.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00
11 455.00 455.00 455.00 455.00 455.00 455.00
12 455.00 455.00 455.00 310.00 260.00 360.00
13 130.00 130.00 130.00 130.00 130.00 130.00
14 130.00 130.00 130.00 130.00 130.00 130.00
15 162.00 97.50 30.00 25.00 25.00 25.00
16 33.00 20.00 0.00 0.00 0.00 0.00
17 25.00 25.00 0.00 0.00 0.00 0.00
18 10.00 0.00 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00

Unit Hour 19 Hour 20 Hour 21 Hour 22 Hour 23 Hour 24
1 455.00 455.00 455.00 455.00 455.00 455.00
2 455.00 455.00 455.00 455.00 432.50 345.00
3 130.00 130.00 130.00 0.00 0.00 0.00
4 130.00 130.00 130.00 130.00 0.00 0.00
5 30.00 162.00 105.00 105.00 25.00 0.00
6 0.00 43.00 20.00 20.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 10.00 10.00 0.00 0.00 0.00
9 0.00 10.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00
11 455.00 455.00 455.00 455.00 455.00 455.00
12 455.00 455.00 455.00 455.00 432.50 345.00
13 130.00 130.00 130.00 0.00 0.00 0.00
14 130.00 130.00 130.00 0.00 0.00 0.00
15 30.00 162.00 105.00 105.00 0.00 0.00
16 0.00 43.00 20.00 20.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.00 0.00
18 0.00 10.00 0.00 0.00 0.00 0.00
19 0.00 10.00 0.00 0.00 0.00 0.00
20 0.00 10.00 0.00 0.00 0.00 0.00

72

Table A.7 : Best solution for System 3 between Hour 1 and Hour 6

Unit Hour 1 Hour 2 Hour 3 Hour 4 Hour 5 Hour 6
1 455.00 455.00 455.00 455.00 455.00 455.00
2 245.00 295.00 388.75 443.75 455.00 455.00
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 130.00
5 0.00 0.00 0.00 25.00 57.50 27.50
6 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00
11 455.00 455.00 455.00 455.00 455.00 455.00
12 245.00 295.00 388.75 443.75 455.00 455.00
13 0.00 0.00 0.00 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.00 130.00
15 0.00 0.00 0.00 25.00 57.50 27.50
16 0.00 0.00 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00
21 455.00 455.00 455.00 455.00 455.00 455.00
22 245.00 295.00 388.75 443.75 455.00 455.00
23 0.00 0.00 0.00 0.00 0.00 0.00
24 0.00 0.00 0.00 0.00 0.00 130.00
25 0.00 0.00 25.00 25.00 57.50 27.50
26 0.00 0.00 0.00 0.00 0.00 0.00
27 0.00 0.00 0.00 0.00 0.00 0.00
28 0.00 0.00 0.00 0.00 0.00 0.00
29 0.00 0.00 0.00 0.00 0.00 0.00
30 0.00 0.00 0.00 0.00 0.00 0.00
31 455.00 455.00 455.00 455.00 455.00 455.00
32 245.00 295.00 388.75 443.75 455.00 455.00
33 0.00 0.00 0.00 0.00 0.00 130.00
34 0.00 0.00 0.00 130.00 130.00 130.00
35 0.00 0.00 0.00 0.00 57.50 27.50
36 0.00 0.00 0.00 0.00 0.00 0.00
37 0.00 0.00 0.00 0.00 0.00 0.00
38 0.00 0.00 0.00 0.00 0.00 0.00
39 0.00 0.00 0.00 0.00 0.00 0.00
40 0.00 0.00 0.00 0.00 0.00 0.00

73

Table A.8 : Best solution for System 3 between Hour 7 and Hour 12

Unit Hour 7 Hour 8 Hour 9 Hour 10 Hour 11 Hour 12
1 455.00 455.00 455.00 455.00 455.00 455.00
2 455.00 455.00 455.00 455.00 455.00 455.00
3 0.00 130.00 130.00 130.00 130.00 130.00
4 130.00 130.00 130.00 130.00 130.00 130.00
5 45.00 30.00 103.75 162.00 162.00 162.00
6 0.00 0.00 20.00 33.00 73.00 80.00
7 0.00 0.00 0.00 25.00 25.00 25.00
8 0.00 0.00 0.00 10.00 10.00 43.00
9 0.00 0.00 0.00 0.00 10.00 10.00
10 0.00 0.00 0.00 0.00 0.00 10.00
11 455.00 455.00 455.00 455.00 455.00 455.00
12 455.00 455.00 455.00 455.00 455.00 455.00
13 0.00 130.00 130.00 130.00 130.00 130.00
14 130.00 130.00 130.00 130.00 130.00 130.00
15 45.00 30.00 103.75 162.00 162.00 162.00
16 0.00 0.00 20.00 33.00 73.00 80.00
17 0.00 0.00 25.00 25.00 25.00 25.00
18 0.00 0.00 0.00 10.00 10.00 43.00
19 0.00 0.00 0.00 0.00 10.00 10.00
20 0.00 0.00 0.00 0.00 0.00 10.00
21 455.00 455.00 455.00 455.00 455.00 455.00
22 455.00 455.00 455.00 455.00 455.00 455.00
23 130.00 130.00 130.00 130.00 130.00 130.00
24 130.00 130.00 130.00 130.00 130.00 130.00
25 45.00 30.00 103.75 162.00 162.00 162.00
26 0.00 0.00 20.00 33.00 73.00 80.00
27 0.00 0.00 0.00 25.00 25.00 25.00
28 0.00 0.00 0.00 10.00 10.00 43.00
29 0.00 0.00 0.00 0.00 10.00 10.00
30 0.00 0.00 0.00 0.00 0.00 10.00
31 455.00 455.00 455.00 455.00 455.00 455.00
32 455.00 455.00 455.00 455.00 455.00 455.00
33 130.00 130.00 130.00 130.00 130.00 130.00
34 130.00 130.00 130.00 130.00 130.00 130.00
35 45.00 30.00 103.75 162.00 162.00 162.00
36 0.00 0.00 20.00 33.00 73.00 80.00
37 0.00 0.00 0.00 25.00 25.00 25.00
38 0.00 0.00 0.00 10.00 10.00 43.00
39 0.00 0.00 0.00 0.00 10.00 10.00
40 0.00 0.00 0.00 0.00 0.00 10.00

74

Table A.9 : Best solution for System 3 between Hour 13 and Hour 18

Unit Hour 13 Hour 14 Hour 15 Hour 16 Hour 16 Hour 18
1 455.00 455.00 455.00 455.00 455.00 455.00
2 455.00 455.00 455.00 310.00 260.00 360.00
3 130.00 130.00 130.00 130.00 130.00 130.00
4 130.00 130.00 130.00 130.00 130.00 130.00
5 162.00 103.75 30.00 25.00 25.00 25.00
6 33.00 20.00 0.00 0.00 0.00 0.00
7 25.00 0.00 0.00 0.00 0.00 0.00
8 10.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00
11 455.00 455.00 455.00 455.00 455.00 455.00
12 455.00 455.00 455.00 310.00 260.00 360.00
13 130.00 130.00 130.00 130.00 130.00 130.00
14 130.00 130.00 130.00 130.00 130.00 130.00
15 162.00 103.75 30.00 25.00 25.00 25.00
16 33.00 20.00 0.00 0.00 0.00 0.00
17 25.00 0.00 0.00 0.00 0.00 0.00
18 10.00 0.00 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00
21 455.00 455.00 455.00 455.00 455.00 455.00
22 455.00 455.00 455.00 310.00 260.00 360.00
23 130.00 130.00 130.00 130.00 130.00 130.00
24 130.00 130.00 130.00 130.00 130.00 130.00
25 162.00 103.75 30.00 25.00 25.00 25.00
26 33.00 20.00 0.00 0.00 0.00 0.00
27 25.00 0.00 0.00 0.00 0.00 0.00
28 10.00 0.00 0.00 0.00 0.00 0.00
29 0.00 0.00 0.00 0.00 0.00 0.00
30 0.00 0.00 0.00 0.00 0.00 0.00
31 455.00 455.00 455.00 455.00 455.00 455.00
32 455.00 455.00 455.00 310.00 260.00 360.00
33 130.00 130.00 130.00 130.00 130.00 130.00
34 130.00 130.00 130.00 130.00 130.00 130.00
35 162.00 103.75 30.00 25.00 25.00 25.00
36 33.00 20.00 0.00 0.00 0.00 0.00
37 25.00 25.00 0.00 0.00 0.00 0.00
38 10.00 0.00 0.00 0.00 0.00 0.00
39 0.00 0.00 0.00 0.00 0.00 0.00
40 0.00 0.00 0.00 0.00 0.00 0.00

75

Table A.10 : Best solution for System 3 between Hour 19 and Hour 24

Unit Hour 19 Hour 20 Hour 21 Hour 22 Hour 23 Hour 24
1 455.00 455.00 455.00 455.00 455.00 455.00
2 455.00 455.00 455.00 455.00 432.50 345.00
3 130.00 130.00 130.00 0.00 0.00 0.00
4 130.00 130.00 130.00 130.00 0.00 0.00
5 30.00 162.00 103.75 0.00 0.00 0.00
6 0.00 41.75 20.00 20.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 10.00 0.00 0.00 0.00 0.00
9 0.00 10.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00
11 455.00 455.00 455.00 455.00 455.00 455.00
12 455.00 455.00 455.00 455.00 432.50 345.00
13 130.00 130.00 130.00 0.00 0.00 0.00
14 130.00 130.00 130.00 130.00 0.00 0.00
15 30.00 162.00 103.75 67.50 25.00 0.00
16 0.00 41.75 20.00 20.00 0.00 0.00
17 0.00 25.00 25.00 25.00 0.00 0.00
18 0.00 10.00 0.00 0.00 0.00 0.00
19 0.00 10.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00
21 455.00 455.00 455.00 455.00 455.00 455.00
22 455.00 455.00 455.00 455.00 432.50 345.00
23 130.00 130.00 130.00 0.00 0.00 0.00
24 130.00 130.00 130.00 130.00 0.00 0.00
25 30.00 162.00 103.75 0.00 0.00 0.00
26 0.00 41.75 20.00 20.00 0.00 0.00
27 0.00 0.00 0.00 0.00 0.00 0.00
28 0.00 10.00 0.00 0.00 0.00 0.00
29 0.00 10.00 0.00 0.00 0.00 0.00
30 0.00 0.00 0.00 0.00 0.00 0.00
31 455.00 455.00 455.00 455.00 455.00 455.00
32 455.00 455.00 455.00 455.00 432.50 345.00
33 130.00 130.00 130.00 0.00 0.00 0.00
34 130.00 130.00 130.00 130.00 0.00 0.00
35 30.00 162.00 103.75 67.50 25.00 0.00
36 0.00 41.75 20.00 20.00 0.00 0.00
37 0.00 0.00 0.00 0.00 0.00 0.00
38 0.00 10.00 0.00 0.00 0.00 0.00
39 0.00 10.00 0.00 0.00 0.00 0.00
40 0.00 0.00 0.00 0.00 0.00 0.00

77

CURRICULUM VITAE

Candidate’s full name: Ali Argun BERBEROĞLU

Place and date of birth: Sakarya / Turkey 01/07/1981

Permanent Address: Kireçburnu Mahallesi Kireçliçeşme Sokak No:14
Daire:3 Sarıyer Istanbul/Turkey

Universities and
Colleges attended: Electrical Engineering, Istanbul Technical University
 2000-2004

 Istanbul German High School
 1992-2000

Publications:

� Berberoğlu, A., Uyar, A. Ş., “A Hyper-Heuristic Approach for the Unit
Commitment Problem”, EvoApplications 2010, Part II, LNCS 6025, pp. 121-130,
Istanbul, Turkey, 2010.

� Berberoğlu, A., Uyar, A. Ş., “Experimental Comparison of Selection Hyper-
Heuristics for the Short-Term Electrical Power Generation Scheduling Problem”,
EvoApplications 2011.

