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HIGH PERFORMANCE TUNABLE ACTIVE INDUCTORS FOR 

MICROWAVE CIRCUITS 

SUMMARY 

There is critical need for inductive characteristics in RF applications, especially in 

filters, LNA, VCO, bandwidth-enhancement in many kinds of amplifiers, phase 

shifters, power divider and matching networks.  The drawbacks of using passive and 

spiral inductors in CMOS process are discussed in the literature. It is shown that these 

kind of inductors suffer from a low quality factor, a low self-resonant frequency, a low 

and fixed inductance value and the need for a large silicon area.  

Furthermore, it is shown in the literature that CMOS Active Inductors (AIs), which are 

synthesized using MOS transistors, offer a number of attractive characteristics as 

compared with their spiral counterparts. These characteristics include a low silicon 

consumption, a large and tunable self-resonant frequency, a large and tunable 

inductance, a large and tunable quality factor, and fully realizable in digital CMOS 

technologies. 

Then principles, topologies, characterizations and implementation of the Gyrator-C 

(GC) network is discussed in-depth. The GC networks, which are implemented by 

operational transconductance amplifier, are suitable for RF application. This property 

arises from their minimum usage of active elements. It is shown that both grounded 

and floating active inductors can be implemented by GC networks. To provide a 

quantitative measure of the performance of AIs, a number of figure-of-merits have 

been introduced in the thesis. These figure-of-merits include frequency range, 

inductance tunability, quality factor, noise and power consumption. Due to parasitic 

components of CMOS transistors, designed AIs have inductive behavior in a specified 

frequency range. The low frequency bound is set by the frequency of the zero of the 

gyrator-C networks while the upper frequency bound is set by Self-Resonance 

Frequency (SRF). One of the key advantages of active inductors over their spiral 

counterparts is the large tunability of their inductance. The inductance of GC AIs can 

be tuned by varying either the transconductances of the transconductors or the load 

capacitance, which is implemented by MOS varactor.  

Based on GC topology, there are many reported CMOS AI circuits in literature. All of 

them have tried to invent high performance AI by using different techniques. Some of 

recent proposed Grounded AI (GAI) and Floating AI (FAI) circuits are reviewed in 

the thesis. Some of them use negative resistor to compensate the loss of AI for QF 

enhancement. Some others try to use minimum number of transistors in order to 

increase the self-resonance frequency of AI for RF applications. In some applications, 

AIs are used in LNA circuits for gain boosting purpose. In that applications, designers 

have tried to cancel the noise of AI by using a feedback stage with a degeneration 

resistor to reduce the noise contribution to the input. The main aim of all the techniques 

is to cancel or reduce the effects of  parasitic components. 
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In the thesis, four new grounded and floating AIs are designed by using advanced 

circuit techniques. The first one, Multi Regulated Cascode (MRC) stages are employed 

for lowering conductance in input and output nodes of AI. Thus, Q performance is 

improved. Since these stages are used only for increasing impedance of input/output 

nodes, they are made up of PMOS transistors in order to:  

 minimize the input transistor as small as possible in order to adjust second stage 

biasing,  

 decrease the number of transistors in main path of AC signal 

Theoretical analysis and post-layout simulation results shows the effectiveness of 

using MRC stages usage in properties of AI. High Q symmetric floating version of low 

loss inductor is also designed by utilizing MRC stages.  

Designers do their best to improve SRF and QF, two main characteristics in term of 

AI performance. An AI with ability to adjust its SRF and QF without affecting each 

other is designed and simulated as a third. The cascoding and RC feedback structures 

are used in the new design of AI. As it discussed before, input transistor is very 

important regarding to AI characterizations. Cascoding input transistor gives the 

ability to adjust the first gyrator’s transconductance and input parasitic capacitance 

independently which it results in adjusting the self-resonance frequency and quality 

factor separately. Due to our best knowledge from literature reviewing, it is first time 

that the properties of an inductor can be adjusted independently. Furthermore, the 

inductance value can be adjusted by other transistor’s transconductances. Also, the RC 

feedback is utilized to cancel the parasitic series-resistance of AI which results in QF 

enhancement. Since, bias condition of cascoding transistors is provided by a diode-

connected transistor, the proposed structure is robust in terms of performance over 

variation in process, voltage and temperature. 

The Noise of designed AIs has limited the use of them in RF applications such as 

LNAs. The main noise source of an AI is its input transistor. In order to have low noise 

AI, the input transistor should be designed large enough. But it leads to low SRF which 

limited the inductive frequency band. As a fourth active inductor design, a low-noise 

and low-loss AI is presented suitable for RF low noise applications. Utilizing all 

transistors in Common Sourse (CS) configuration on the AI circuit leads to low 

conductance nodes which causes the AI to have high Q. P-type MOS transistors and 

Feed-Forward Path (FFP) are employed to decrease noise of the AI, respectively. 

The GC topologies can convert a low capacitance variation to high impedance 

changing which makes it a good choice for capacitive sensors. The capacitive based 

micro sensors convert mechanical signals to small capacitance variation. The 

capacitance variation in micro sensor is in the range of femto-Farads which makes it 

difficult to sense. Thus, the GC topologies can be used in capacitive sensors in order 

to sense small capacitive variations.  In the thesis, this technique is used in a new 

accelerometer sensor. It is first time that a gyrator-C network is employed as an 

interface circuit for capacitive change detection in micro sensors. The new 

accelerometer structure is designed by using with ability to cancel cross section 

sensitivity. The sensor’s electrodes are located in such a way that enables the structure 

to detect acceleration in 3-axis independently. Embedding all 3-axis detecting 

electrodes in a single proof mass and ability to detect acceleration orientation are 

salient features of the proposed sensor. Consequently, a new GC configuration for 

sensing very small capacitance changes in a capacitive sensor is presented in the thesis. 

In the proposed configuration, the operating frequency range and scaling factor can be 
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adjusted without affecting each other by tuning the bias currents of utilized gyrators. 

In addition, the proposed configuration employs RC feedback together with the 

cascoding technique to cancel the effect of the parasitic components in order to get 

accurate scaling from gyrator-C network. 

Finally, in order to show versatility of designed AIs, they are used in designed third 

and sixth order broadband microwave filters. The first one is a third order Chebyshev 

low pass filter. The second one, which is designed by using simplified real frequency 

technique is a sixth order Chebyshev band pass filter. The simulated frequency 

response of filters prove the workability of the designed AIs. 
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MİKRODALGA DEVRELERİ İÇİN YÜKSEK BAŞARIMLI 

AYARLANABİLİR AKTİF ENDÜKTÖRLER 

ÖZET 

RF uygulamalarında enduktif karakteristiğe önemli ölçüde ihtiyaç duyulmaktadır; 

bunlar, özellikle filtreler, düşük gürültülü yükselteçler (LNA, low noise amplifiers), 

gerilim kontrollü osilatörler (VCO, voltage controlled oscillators), pek çok farklı türde 

yükselteç için band genişliği iyileştirilmesi, faz kaydırıcılar, güç bölücüler ve 

eşleştirme (matching) devreleri vb. uygulamalardır. Pasif sarmal çip-içi CMOS 

endüktansların eksik yönleri ayrıntılı olarak literatürde tartışılmıştır. Bu tür 

endüktanslar düşük değer katsayısı (quality factor), düşük öz-rezonans frekansı (SRF, 

self-resonance frequency), sabit ve düşük değerli endüktans ve geniş bir silikon 

(silicon) alanı gerektirmeleri gibi istenmeyen özelliklere sahiptirler. 

Diğer yandan, MOS transistorlar kullanılarak sentezlenen CMOS aktif endüktansların, 

pasif sarmal eşdeğer yapıları ile karşılaştırıldığında pek çok çekici karakteristik özellik 

sunabildikleri gösterilmiştir. Bunlar; geniş bir bölgede ayarlanabilir öz-rezonans 

frekansı başarımı, geniş bir bölgede ayarlanabilir endüktans başarımı, geniş bir 

bölgede ayarlanabilir değer katsayısı başarımı, CMOS teknolojileri ile tümüyle 

gerçeklenebilme ve az alan kaplama gibi karakteristik özellikleri olarak ortaya 

konulmaktadır. 

Literatürde jiratör-C (GC) prensibi, topolojisi, karakterizasyonu ve uygulamaları 

ayrıntılı olarak ele alınmaktadır. İşlemsel geçiş-iletkenliği kuvvetlendiricisi (OTA, 

operational transconductance amplifier) ile gerçeklenen GC devreleri, RF 

uygulamaları için oldukça uygundur. Bu özellik, GC yapılarının söz konusu yapı 

kullanılarak en az sayıda aktif eleman ile gerçeklenebilmesinden kaynaklanmaktadır. 

Gerek topraklı (grounded) gerekse yüzen (floating) aktif endüktansların GC devreleri 

ile gerçeklenebildiği gösterilmiştir. Aktif endüktansların başarımlarının nicel olarak 

ölçülmesi amacıyla, çok sayıda ölçüt ortaya konulmuştur. Bu ölçütler frekans çalışma 

aralığı, endüktans ayarlanabilirliği, değer katsayısı, gürültü ve güç tüketimi gibi temel 

özellikleri içerirler. CMOS transistorların parazitik bileşenlerinden dolayı tasarlanan 
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aktif endüktanslar belirli bir frekans bölgesinde endüktif davranış gösterirler. Alt 

frekans sınırı, GC devrelerinin sıfır frekansı ile belirlenirken; üst frekans sınırı ise öz-

rezonans frekansı ile belirlenir. Aktif endüktansların pasif sarmal eşdeğer yapılarına 

göre en önemli üstünlüklerinden biri de; endüktanslarının geniş bir değer aralığıunda 

ayarlanabilir olmasıdır. GC aktif endüktansların endüktans değeri, transistorların 

geçiş-iletkenliklerinin ya da MOS varaktörlerle gerçeklenen yük kapasitanslarının 

değiştirilmesi ile ayarlanabilir.  

Literatürde, GC topolojisine dayalı pek çok CMOS AI (active inductor) devresi 

bildirilmiştir. Bunların tümü, farklı teknikler kullanılarak yüksek başarımlı AI yapıları 

oluşturmayı amaçlamışlardır. Bu tezde, bunlardan güncel olan bazı GAI (grounded AI) 

ve FAI (floating AI) yapıları gözden geçirilmiştir. Bunlardan bazıları, değer 

katsayısını (QF) iyileştirmek amacıyla, AI kaybını telafi etmek için negatif direnç 

kullanmışlardır. GC yapıları RF uygulamaları için tasarlandıklarında en az sayıda 

transistor kullanımı çok kritiktir. Çünkü bu durum AI öz-rezonans frekansının 

artmasına yardımcı olur. AI’ler, kazanç artırma amacıyla LNA’lerde geniş kullanım 

alanı bulabilmektedirler. Diğer taraftan, AI yapılarının en önemli dezvantajlarından 

biri gürültü başarımının pasif endüktanslara nispeten yüksek olmasıdır. Literatürde bu 

dezavantajı gidermek amacıyla teklif edilen yaklaşımlardan biri dejenerasyon 

direncinin bulunduğu bir geribesleme katı kullanılarak girişe gelen gürültü katkısını 

azaltmayı amaçlamıştır. Literatürde teklif edilen tekniklerin amacı, parazitik 

bileşenlerin etkisini azaltmak ya da tümüyle ortadan kaldırmaktır.  

Bu tezde, ileri devre teknikleri kullanılarak, yeni topraklı (grounded) ve yüzen (floting) 

AI yapıları tasarlanmıştır. AI giriş ve çıkış düğümlerine ait iletkenlikleri azaltmak için 

çoklu-düzenlenmiş kaskod (multi-regulated cascode, MRC) katları QF değerini 

iyileştirme amacıyla kullanılmaktadır. MRC katı PMOS transistorlarıyla 

oluşturulmuştur. PMOS transistor kullanımı, 

• ikinci kat kutuplamasını ayarlayabilmek amacıyla, giriş transistor boyutunun 

mümkün olduğunca azaltılmasını, 

• ana AC işaret yolundaki transistor sayısının azaltılmasını, 

sağlamaktadır.  

Tezde sunulan teorik analiz ve serim sonrası benzetim sonuçları, MRC katı 

kullanımının AI özelliklerine yaptığı etkiyi göstermektedir. Elde edilen sonuçlar bu 
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katların AI tasarımında yüksek QF elde edilmesini imkan tanıdığını  ortaya 

koynaktadır. 

Literatürde, iki ana AI başarım karakteristiği olan SRF ve QF başarımlarının 

iyileştirmesi için çok sayıda çalışma bulunmaktadır. Bu tezde, birbirlerini 

etkilemeksizin SRF ve QF başarımlarının ayarlanabilmesi özelliğine sahip bir AI’ın 

tasarımı ve benzetgimi yapılmıştır. Kaskod ve RC geribesleme yapıları yeni AI 

tasarımında kullanılmıştır. Daha önce de tartışıldığı üzere, AI karakterizasyonu 

açısından giriş transistoru çok önemlidir. Girişi transistorunun kaskodlanması, ilk 

jiratörün geçiş-iletkenliğinin ve giriş parazitik kapasitansının birbirinden bağımsız 

olarak ayarlanması gibi önemli ve kullanışlı bir özelliği beraberinde getirir. Bunun 

yanısıra, endüktansın değeri diğer transistorun iletkenliği ile ayarlanabilir. AI parazitik 

seri-rezistansını yok etmek amacıyla kullanılan RC geribeslemesi, QF iyileştirmesini 

sağlayabilmektedir. Kaskod transistorların kutuplama koşulu bir diyot-bağlı transistor 

ile sağlandığından; önerilen yapı proses, gerilim ve sıcaklık değişimleri açısından 

kararlı ve yüksek başarımlıdır.  

AI yapılarında karşılaşılan düşük gürültü başarımı, AI’ların LNA gibi RF 

uygulamalarda kullanımını sınırlamaktadır. Bir AI’ın ana gürültü kaynağı giriş 

transistorudur. Düşük gürültülü AI elde etmek için, giriş transistoru yeterince büyük 

boyutlu olarak tasarlanmalıdır. Ne var ki, büyük boyutlu böyle bir transistor, düşük bir 

SRF ve dolayısıyla sınırlı bir endüktif bandı beraberinde getirir. Bu tezde, düşük 

gürültülü ve az kayıplı uygun bir AI, düşük gürültü gerektiren RF uygulamaları için 

sunulmuştur. Teklif edilen AI devresindeki tüm transistorların ortak-kaynak 

(common-source, CS) yapısında kullanılması, düşük iletkenliğe sahip düğümlerin 

dolayısıyla yüksek QF değerine sahip bir AI’ın elde edilmesine olanak sağlamaktadır. 

AI gürültüsünü azaltmak için, sırasıyla P-tipi MOS transistorlar ve ileri-besleme yolu 

yapısı (feed-forward path, FFP) kullanılmaktadır.  

Bilindiği gibi, sensörler çok çeşitli fiziksel büyüklüklerin eletrik mühendisiliği alanına 

taşınmasını sağlamaktadır. Çok geniş kullanım alanı bulan sensör tiplerinden biri 

kapasitif mikro algılıyıcılardır. Kapasitif mikro algılayıcılar mekanik hareketleri 

küçük kapasitans değişimlerine çevirirler. Micro algılayıcıdaki kapasitans değişimi 

femto-Farad mertebesinde olup algılamayı zorlaştırmaktadır. Diğer yandan, küçük bir 

kapasitans değişimini yüksek bir empedans değişimine çevirebilmeleri dolayısıyla, 

GC topolojilerinin kapasitif algılayıcılarda kullanılabileceğini söylemek mümkündür. 
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Bu tezde, bu düşünceden yola çıkılarak, kesit duyarlılığını yok etme yeteneğine sahip 

yeni bir 3-eksen ivme-ölçer tasarlanmıştır. Yapının, her eksendeki ivmeyi bağımsız 

olarak algılayabilmesi için, algılayıcı elektrodları uygun olarak yerleştirilmiştir. Daha 

sonra, bir kapasitif algılayıcıdaki çok küçük kapasitans değişimlerini algılayabilmek 

için yeni bir GC yapısı teklif edilmiştir. Önerilen yapıda, çalışma frekansı aralığı ve 

ölçekleme çarpanı, kutuplama akımlarının ayarlanması suretiyle birbirini 

etkilemeksizin ayarlanabilmektedir. Ayrıca, önerilen yapıda, parazitik bileşenlerin 

etkisini yok etmek için RC geribesleme ve kaskod yapılar kullanılmaktadır.  

Son olarak, bu tezde sunulan AI’ların çok amaçlı özellikte olduğunu göstermek 

amacıyla, 3 ve 6. dereceden geniş bantlı mikrodalga filtrelerde kullanılmaları ele 

alınmıştır. İlki 3. dereceden bir Chebyshev alçak geçiren filtredir. Basitleştirilmiş 

gerçel frekans tekniği (SRFT, simplified real frequency technique) ile tasarlanan 

ikincisi ise, 6. dereceden bir Chebyshev band geçiren filtredir. Filtrelerin benzetimle 

elde edilmiş frekans yanıtları, bu tezde sunulan AI’ların literatürdeki yapılara güçlü 

birer alternatif olduklarını ortaya koymaktadır. 
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 INTRODUCTION 

Most of nowadays high-volume customer applications requires the accessibility of low 

power, low cost and remote microsystems. According to these necessities, CMOS 

technology has turn into one of the most important alternatives for wireless 

communication systems. However, CMOS Spiral Inductors have found a broad range 

of applications in high-speed analog signal processing including impedance matching 

[1] and gain-boosting in wireless transceivers [2], bandwidth improvement in 

broadband data communications over wire and optical channels [3], oscillators and 

modulators [4, 5], RF bandpass filters [6], RF phase shifters [7], RF power dividers 

[8], and coupling of high-frequency signals [9], to name a few. Traditionally, passive 

inductors and transformers are off-chip discrete components. The need for off-chip 

communications with these passive components severely limits the bandwidth, 

reduces the reliability, and increases the cost of systems [10, 11]. Since early 1990s, a 

significant effort has been made to fabricate inductors and transformers on a silicon 

substrate such that an entire wireless transceiver can be integrated on a single substrate 

monolithically [12, 13]. In the mean time, the need for a large silicon area to fabricate 

spiral inductors and transformers has also sparked a great interest in and an intensive 

research on the synthesis of inductors and transformers using active devices, aiming at 

minimizing the silicon consumption subsequently the fabrication cost and improving 

the performance [14, 15]. 

In this chapter, the properties of spiral and active inductors, their advantages and 

limitations and the impact of them on the application of these devices are looked. 

Section 1.1 demonstrates the critical need for an inductive characteristic in high-speed 

applications. Then section 1.2 dicuses about spiral inductors. In section 1.3, the pros 

and cons of Active Inductors (AIs) are investigated. The chapter is concluded in 

section 1.4. 
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1.1 Inductive Properties in High-Speed Applications 

In order to improve performance of the high-speed systems, such as improving 

bandwith, boosting gain , selecting frequency and matching networks, inductive 

charactristics are critically needed. These applications include LC tank oscillators, 

bandwidth enhancement in broadband communications, impedance matching in 

narrowband communications, phase shifting for RF antennas and radars, RF power 

dividers, frequency selection, in particular, RF bandpass filters, RF power amplifiers, 

and gain boosting of RF low-noise amplifiers. Some of the aforementioned 

applications are discussed briefly in upcoming subsections. 

1.1.1 Bandwidth Improvement 

Bandwith is a ciritical in Designing broadband circuits, such as amplifiers, matching 

networks and etc. The bandwidth of a circuit is set by the time constant of the critical 

node, i.e. the node that has the largest time constant, of the circuit. Three approaches, 

namely inductive peaking, current-mode signaling, and distributed amplification, are 

widely used to improve the bandwidth of circuits. The inductive peaking approach is 

discussed in next paragaragh and extra information about other approaches are fined 

at [16]. 

 Inductive peaking: The idea is to place an inductor at the node where a large nodal 

capacitance exists such that the first-order RC network associated with the node is 

replaced with a second-order RLC network. Because a RLC network has three 

different modes of operation, namely over damped, critically damped, and under 

damped. The bandwidth in these three cases differs with under-damped RLC 

systems exhibit the largest bandwidth. Both shunt peaking [16, 17] and series 

peaking [18], have been used, as shown in Figure 1.1. It was demonstrated in [16, 

17] that inductive shunt peaking can improve the bandwidth of a common-source 

amplifier by as much as 70%. As shown in Figure 1.1(a&b), in the shunt peaking 

the peaking inductor L is in parallel with the dominant capacitor C and in series 

peaking type it is in series with the dominant C. 
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Figure 1.1 : Inductive peaking, (a) Shunt peaking, (b) Series peaking. 

1.1.2 Impedance Matching 

For decreasing signal reflection at interface of channels and high-speed circuits, 

impedance matching is required. Resistors are usually used to provide a matching 

impedance in broadband communication systems as impedance matching is required 

over a broad frequency spectrum. Frequency-dependent elements, such as capacitors 

and inductors, can not be used for impedance matching in broadband communication 

systems simply due to their frequency-dependent characteristics. But most of the 

communication circuits operate in a narrow-band mode. Although resistors can be used 

for these applications, the high level of the thermal noise of resistors limited their usage 

in wireless communications where there is a stringent constraint on the noise 

performance of these systems. Instead, noiseless and lossless elements such as 

capacitors and inductors are widely used in narrow-band impedance matching because 

these frequency-dependent noiseless elements can provide the desired impedance in a 

narrow frequency band and at the same time keep the noise at required level [19]. 

Figure 1.2 shows widely used termination scheme for narrowband Low-Noise 

Amplifiers (LNAs). Neglecting 𝐶𝑔𝑑 and other parasitic capacitances, the input 

impedance of the LNA can be written as: 

1 1

1 2
1 2

1
( ) m

in

gs gs

g L
Z j L L

j C C




 
    
  

                           (1.1) 

Where 𝐶𝑔𝑠1 and 𝑔𝑚1 are the gate source capacitance and transconductance of 𝑀1, 

respectively. It is seen from (1.1) that reactive part of input impedance (first term) can 

be made zero by imposing: 
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Figure 1.2 : Impedance matching in narrow-band low-noise amplifiers. 

1

1 2

1
( ) 0

gs

j L L
j C




                                            (1.2) 

The input impedance of the LNA in this case becomes purely resistive and is given by: 

1

1 2m
in

gs

g L
Z

C
                                                    (1.3) 

The reason of using two inductors in gate and source of 𝑀1 is as following: Once the 

dimension of 𝑀1 is chosen, 𝑔𝑚1 and 𝐶𝑔𝑠1 are determined. The desired input impedance 

of the LNA in this case can be obtained by adjusting 𝐿2. Once 𝐿2 is chosen, the value 

of 𝐿1 can be tuned to ensure the total cancellation of the reactive part of the input 

impedance. 

1.1.3 Phase Shifting 

A well-designed phase shifter should possess the characteristics of a low insertion loss, 

a high return loss, and a large phase shift range. The common configuration of RF 

phase shifters is shown in Figure1.3. The tuning of the amount of the phase shift is 

carried out by varying the capacitance of the shunt varactors. 

 

Figure 1.3 : RF phase shifters with floating inductors and shunt varactors. 



5 

1.1.4 Frequency Selection 

Frequency selection systems are implemented by lumped elements. For instance, 

Bandpass Filters (BPFs) with a high passband center frequency are used extensively 

in narrow-band wireless communications for RF band selection. Implementing 

inductors with antiont approaches are not compatible with CMOS technologies, which 

are domimnant in Radio Frequency Integrated Circuit (RFIC) designing. The recent 

effort on integrating RF BPFs on a silicon substrate is accelerated with the emergence 

of CMOS passive and active inductors. A single-chip realization of RF transceivers 

with on-chip RF BPFs offers a number of critical advantages including a reduced 

assembly cost, increased system reliability, and improved performance. Table 1.1 

tabulates some recently reported RF bandpass filters with CMOS spiral and active 

inductors. 

Table 1.1 : BPF with CMOS spiral and active inductors. 

Ref. Year Tech. (µm) 𝑓0 (GHz) Filter order Inductor type 

[6] 2002 0.18 1.75 3 spiral 

[20] 2002 0.25 2.14 3 spiral 

[21] 2010 0.09 3.46 2 active 

[22]  2012 0.18 0.6 3 active 

[23]  2011 0.13 0.6 1 active 

1.1.5 Gain Boosting 

Traditional gain-boosting techniques such as cascodes and regulated cascodes lose 

their potency at high frequencies due to the increased gate-source and gate-drain 

couplings via the gate-source and gate-drain capacitors of MOSFETs. A technique that 

is widely used in boosting the voltage gain of narrowband low-noise amplifiers (LNAs) 

is to use a LC tank as the load of the LNAs [24, 25], utilizing the infinite impedance 

of ideal LC tanks at their self-resonant frequency. When a LC tank is used as the load 

of a common-source amplifier whose voltage gain is approximated by 𝐴𝑣 ≈ −𝑔𝑚𝑍𝐿, 

where 𝑔𝑚 is the transconductance of the MOSFET and 𝑍𝐿 is the load impedance, as 
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shown in Figure1.4, the large impedance of the LC tank at its self-resonant frequency 

𝜔0 =
1

√𝐿𝑝𝐶
 will significantly boost the gain of the amplifier at 𝜔0. The resonant 

frequency of the tank is set to be the same as the frequency of the input of the LNA. 

Note that voltage gain of the amplifier at frequencies other than 𝜔0 is low. 

 

Figure 1.4 : Gain boosting of low noise amplifiers using LC tank load. 

1.1.6 Power Divider 

Usaully, transmission lines are employed to implement power dividers. But in order to 

reduce the size of the structure, lumped elements is used to construct power dividers 

at the cost of a high insertion loss and a limited bandwidth. Equivalent circuit of the 

lumped Wilkinson power divider is depicted in Figure 1.5. Replacing passive spiral 

inductors with CMOS AIs brings the advantages of the high quality factor, low silicon 

consumption, and high self-resonant frequency [26, 27]. 

 

Figure 1.5 : Equivalent circuit of lumped Wilkinson power divider. 
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1.2 Spiral Inductors 

Monolithic on-chip inductors are also known as spiral inductors due to the way in 

which these inductors are laid out. Both planar and stacked spiral inductors have been 

illustraded in Figure 1.6(a&b). Modern Computer Aided Design (CAD) tools for 

Integrated Circuit (IC) design are equipped with spiral inductors as standard elements 

in their component libraries. 

 

(a) 

 

(b) 

Figure 1.6 : Spiral Inductors (a) planar (b) stacked. 

Spiral inductors offer the key advantages of superior linearity and a low level of noise. 

The performance and applications of spiral inductors are affected by a number of 

drawbacks that are intrinsic to the physical geometry of these passive devices and 

CMOS technologies in which spiral inductors are implemented. These drawbacks 

include: 

 Low quality factor - The Quality Factor (QF) of spiral inductors and transformers 

is limited by the ohmic loss of the spiral at high frequencies. Two sources that 

contribute to the ohmic loss of the spiral inductors and transformers exist: the 

skin-effect induced resistance of the spiral and the resistance induced by the eddy 

currents in the substrate. 

 Low self-resonant frequency - The self-resonance of a spiral inductor is the 

resonance of the LC tank formed by the series inductance of the spiral inductor 

and the shunt capacitance between the spiral of the inductor and the substrate, as 

well as its underpass capacitance. The low Self-Resonant Frequency (SRF) of 

spiral inductors is mainly due to the large spiral-substrate capacitance, arising 

from the large metal area occupied by the spiral. 

 Large silicon area - Due to the low inductance of spiral inductors, especially 

planar spiral inductors, and the fact that the inductance of these inductors is 
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directly proportional to the number of the turns of the spiral of the inductors, the 

silicon area required for routing the spiral of the inductors is large. 

1.3 Active Inductors  

AIs are mainly implemented by CMOS transistors which are main elements of 

electronic systems in recent years. Many architecture are used to improve the 

performance of AIs such as feedback, cascode stage and Feed Forward Path (FFP). 

Under certain DC biasing conditions and signal-swing constraints, these networks 

exhibit an inductive characteristic in a specific frequency range. The main advantages 

of AIs which push the designer to use them instead of their spiral counterparts, are as 

follow: 

 Low silicon consumption - Because only MOS transistors are usually required 

in the realization of CMOS AIs and the inductance of these active inductors is 

inversely proportional to the transconductances of the transistors, the silicon 

consumption of CMOS active inductors is negligible as compared with that of 

their spiral counterparts. 

 Large and tunable SRF - CMOS AIs have high SRF. For example, the passband 

center frequency of an active inductor RF bandpass filter is typically set to the 

SRF of the active inductor of the filter. The larger the SRF of the active inductor, 

the higher the passband center frequency of the filter. A large SRF of AIs ensures 

that the active inductors will have an inductive behavior over a large frequency 

range. 

 Large and tunable inductance - As to be seen in Chapter 2, the inductance of 

CMOS AIs is inversely proportional to the transconductances of the transistors 

synthesizing the inductors. The smaller the width of the transistors, the larger the 

inductance. Also the inductance can be tuned conveniently by varying the DC 

biasing condition of the transistors synthesizing the inductor with a large 

inductance tuning range. Additionaly, fine tuning of the inductance can be 

achived by varying the load capacitance of the transconductors. 

  Large and tunable QF - The QF of CMOS AIs is set by the ohmic loss of the 

inductors, arising mainly from series resistance of AI. This resistance comes 

from the finite output resistance of the transconductors of the inductors. Thus QF 
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can be increased by increasing output resistance of the transcoductors. A number 

of methods are available to boost the output resistance, such as cascodes, 

regulated cascodes, and negative resistor compensation. 

 Highly compatibility with CMOS technology – Spiral inductors are existing in 

mixed mode technology. However, AIs are compatible with all CMOS process. 

These kinds of inductors have found many applications such as oscillators, RF filters, 

RF phase shifters, LNAs, RF power dividers, communication systems and matching 

networks. Table 1.2 declares some recently published applications which were 

employed CMOS AIs. 

Table 1.2 : Recent publish applications of CMOS AIs. 

Ref. Year Tech. application Remark 

[28] 2012 0.09 µm LC VCO 13 GHz 

[29] 2015 0.18 µm TAI VCO 0.6-7.2 GHz 

[30] 2011 0.13 µm VCO 0.833-3.72 GHz 

[32] 2015 0.18 µm Matching network 0-6.9 GHz 

[31] 2009 0.18 µm LNA 0.375-2.18 GHz 

[34] 2013 0.18 µm LNA 0.8-2.5 GHz 

[33] 2015 0.18 µm LNA 3.1-10.6 GHz 

[35] 2013 0.09 µm Bandpass Filter 0.8-6 GHz 

[36] 2011 0.18 µm Power divider 5.8-10.4 GHz 

 

These AIs in mentioned applications are influenced by some difficulties such as: 

limited dynamic range, high level of noise, high sensitive to process variations and 

supply sources fluctuation. These difficulties arise from the intrinsic characteristics of 

CMOS devices. Fortunately, the effect of many of these difficulties can be reduced 

through innovative designs and proper circuit configurations. For example, the limited 
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dynamic range of active inductors can be expanded using class AB configurations [36]. 

The process variation can be compensated by tuning the inductance and QF [38] and 

the effect of noise can be decreased by noise cancellation configuration [37]. The 

developing utilizations of CMOS AIs keep on improving alongside the origin of new 

design strategies and circuit topologies. 

1.4 Conclusion  

Due to explanations, it is obvios that inductive charactristics are very crutial in many 

applications especially in RF. It is shown that integrated spiral inductors suffer from a 

low quality factor, a low SRF, a low and fixed inductance, and the need for a large 

silicon area. Meanwhile, CMOS AIs offer a number of attractive characteristics as 

compared with their spiral counterparts. These characteristics include a low silicon 

consumption, a large and tunable SRF, a large and tunable inductance, a large and 

tunable QF and etc. Also, AIs are employed to implement many electronic circuits’ 

blocks such as LNAs, Power Amplifiers (PAs), filters, power dividers, Voltage 

Control Oscillators (VCOs) and matching networks. 

The utilizations of AIs are influenced by a few difficulties emerging from the intrinsic 

properties of CMOS devices including limited dynamic range, high level of noise, high 

sensitivity to process variations and supply voltage fluctuations. By using some 

advanced circuit design techniques and developing the process technology, many of 

these difficulties can be overcome. 

1.5 Dissertation Organization 

In chapter 2, the principles, topologies, characterizations and implementation of the 

gyrator-C is discussed in-depth. The GC networks which are implemented by 

Operational transconductance amplifier are suitable for RF application. This property 

arises from their minimum usage of active elements. It is shown that both grounded 

and floating active inductor can be implemented by gyrator-C networks. To provide a 

quantitative measure of the performance of active inductors, a number of figure-of-

merits have been introduced. These figure-of-merits include frequency range, 

inductance tunability, quality factor, noise and power consumption. One of the key 

advantages of active inductors over their spiral counterparts is the large tunability of 
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their inductance. The inductance of gyrator-C active inductors can be tuned by varying 

either the transconductances of the transconductors or the load capacitance which is 

implemented by MOS varactor 

In chapter 3, new grounded and floating AIs are designed by using advanced circuit 

techniques. For lowering conductance in input and output nodes of AI, Multi-

Regulated Cascode (MRC) stages are employed to Q enhancement purpose. 

Theoretical analysis and post-layout simulation results shows the effectiveness of 

using MRC stages usage in properties of AI. Also, these stages are utilized to design 

high Q floating AI. 

Designers do their best to improve SRF and QF, two main characteristics in term of 

AI performance. An AI with ability to adjust its SRF and QF without affecting each 

other is designed and simulated. The cascoding and RC feedback structures are used 

in the new design of AI. As it discussed before, input transistor is very important 

regarding to AI characterizations. Cascoding input transistor gives the ability to adjust 

the first gyrator’s transconductance and input parasitic capacitance independently. 

Furthermore, the inductance value can be adjusted by other transistor’s 

transconductance. The RC feedback is utilized to cancel the parasitic series-resistance 

of AI which results in QF enhancement. Since, bias condition of cascoding transistors 

is provided by a diode-connected transistor, the proposed structure is robust in terms 

of performance over variation in process, voltage and temperature. 

The Noise of designed AIs has limited the use of them in RF applications such as 

LNAs. The main noise source of an AI is its input transistor. In order to have low noise 

AI, the input transistor should be designed large enough. But it leads to low SRF which 

limited the inductive frequency band. A low-noise and low-loss AI is presented 

suitable for RF low noise applications. Utilizing all transistors in CS configuration on 

the AI circuit leads to low conductance nodes which it causes to high Q AI. P-type 

MOS transistors and Feed-Forward Path (FFP) are employed to decrease noise of the 

AI, respectively. 

In chapter 4, GC network in 3 applications are presented. The capacitive based micro 

sensors convert mechanical signals to small capacitance variation. The capacitance 

variation in micro sensor is in the range of femto-Farads which makes it difficult to 

sense. On the other hand, the Gyrator-C topologies can convert a low capacitance 
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variation to high impedance change which makes it a good choice for being interface 

circuits for capacitive sensors. Then a new 3-axis accelerometer with ability to cancel 

cross section sensitivity is designed. The sensor’s electrodes are located in such a way 

that enables the structure to detect acceleration in all axis independently. 

Consequently, a new GC configuration for sensing very small capacitance changes in 

a capacitive sensor is presented. In the proposed configuration, the operating frequency 

range and Scaling Factor can be adjusted without affecting each other by tuning the 

bias currents. In addition, the proposed configuration employs RC feedback and 

cascoding techniques to cancel the effect of the parasitic components. 

Finally, in order to show versatility of designed AIs, they are used in designed third 

and sixth order broadband microwave filters. The first one  is a third order Chebyshev 

low pass filter. The second one which is designed by using simplified real frequency 

technique  is a sixth order Chebyshev band pass filter. The simulated frequency 

response of filters prove the workability of the designed AIs. 

Finally, dissertation is concluded in chapter 5 and some scopes for future works are 

given. 
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 CMOS ACTIVE INDUCTORES 

This chapter provides a background overview of the principles, topologies, 

characteristics, and implementation of CMOS active inductors. First, the principles of 

gyrator-C based synthesis of inductors are explained. Both grounded and floating 

configuration of Gyrator-C (GC) AIs are investigated. Section 2.2 diclares salient 

features of AI such as frequency range, inductance tunability, Quality Factor (QF), 

noise, stability and etc, which quantify the performance. Sections 2.3 and 2.4 detail 

the CMOS implementation of grounded and floating AIs, respectively. The chapter is 

summarized in Section 2.5.   

2.1 Principles of Gyrator-C Active Inductors 

2.1.1 Ideal (lossless) Grounded Gyrator-C Active Inductors 

A gyrator consists of two back-to-back connected transconductors. When one port of 

the gyrator is connected to a capacitor, as shown in Figure 2.1, the network is called 

the GC network.  
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+
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Figure 2.1: Ideal grounded GC AI. 

According to the ideal GC network shown in Figure 2.1, the input admittance is 

calculated as: 
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 Equation (2.1) indicates that port 2 of the GC network behaves as a grounded ideal 

inductor, which its inductance value is given by: 

1 2m m

C
L

G G
                                              (2.2) 

Thus, GC can be used to synthesize inductors. The inductance of GC AI is directly 

proportional to the load capacitance C and inversely proportional to the product of the 

transconductances of the transconductors of the gyrator. 

Although the transconductors of GC networks can be configured in various ways, the 

constraint that the synthesized inductors should have a large frequency range, a low 

level of power consumption, and a small silicon area requires that these 

transconductors be configured as simple as possible. Figure 2.2 shows the simplified 

schematics of the basic transconductors that are widely used in the configuration of 

GC AIs. Common-Gate (CG), Common-Drain (CD), and differential-pair 

transconductors all have a positive transconductance while the Common-Source (CS) 

transconductor has a negative transconductance [89]. 

 

Figure 2.2: Simplified schematic of basic transconductors. (a) CS (𝒊𝒐 = −𝒈𝒎𝒗𝒐), 

(b) CG (𝒊𝒐 = 𝒈𝒎𝒗𝒐), (c) CD (𝒊𝒐 = 𝒈𝒎𝒗𝒐), (d, e) differential-pair (𝒊𝒐 = 𝒈𝒎𝒗𝒐). 
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2.1.2 Ideal Floating Gyrator-C Active Inductors 

A Floating Active Inductor (FAI) has floating terminals, which are not connected to 

ground. Floating GC AIs can be designed by replacing single-ended transconductors 

with differentially-configured transconductors, as depicted in Figure 2.3 [89]. Because 

1 1
1 2 2 1 2 2( ),  ( )m m

in in in in in in

g g
V V V V V V

sC sC

                                    (2.3) 
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                              (2.4) 

Thus, the input admittance is given by 
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Equation (2.5) reveals that the GC network in Figure 2.3 behave as a floating inductor 

with the value of: 
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Figure 2.3: Ideal (lossless) Floating GC AI. 

The Floating Active Inductors (FAIs) have some attractive advantages in constract 

with their Grounded Active Inductors (GAIs) counterparts like: 

 Their diffirentional configuration leads to reject of common-mode 

disturbances of AI which make is suitable for mixed signal applications. 

 The voltage swing of FAIs is twice than their GAIs counterpart. 
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2.1.3 Lossy Grounded Gyrator-C Active Inductors 

In practical, the AIs do not have inductive behavior in all frequency spectrum due to 

their parasitic components in input/output nodes. Consider the lossy GC GAI shown 

in Figure 2.4, where 𝐺𝑜𝑖 and 𝐶𝑖 are parasitic conductance and capacitance in ith node, 

respectively.  
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Figure 2.4: Block diagram of GAI realization and its equivalent passive model. 

The transconductances of transconductors are assumed constatnt to have simplify 

analysis. The admittance looking into port 2 of GC topology is calculated as: 
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Equation (2.7) indicates that the GAI can be modeled by a RLC network (Figure 2.4) 

which its elements value are obtained as: 
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As it can be seen from the equivalent model values, in order to have low ohmic loss 

𝑅𝑝 should be maximized and 𝑅𝑠 should be minimized. The finite input and output 

impedances of the transconductors of the GC network, however, have no effect on the 

inductance of the AI. The finite input and output impedances of the transconductors 

constituting active inductors result in a finite quality factor. For applications such as 

band-pass filters, active inductors with a large quality factor are mandatory. In these 

cases, Q-enhancement techniques that can offset the detrimental effect of 𝑅𝑝 and 𝑅𝑠 
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should be used to boost the QF. The resonance frequency of the RLC network of the 

AI is given by: 

1 2
0

2 1

1 m m

p eq

G G

C L C C
                                         (2.9) 

𝜔0 is the Self-Resonance Frequency (SRF) of the AI. The SRF defines the upper limit 

of the frequency band range, which AI operates. In other words, the SRF of an AI is 

set by cut-off frequency of the transconductances which constructing it.  

2.1.4 Lossy Floating Gyrator-C Active Inductors 

Floting type of GC AI can be analyzed in similer way of GAIs in 2.1.3 section. Figure 

2.5 depicts the lossy floating GC network and its passive equivalent model. Calculating 

the input admittance in port 2 gives: 
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Investigation of equation (2.10) shows that it equivalent with RLC network which its 

parameters given by: 
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Figure 2.5: Block diagram of FAI realization and its equivalent passive model. 
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The constant in (2.11) is due to the floating configuration of the AI. 

2.2 Active Inductor Properties 

The most important properties of AIs which quantify its performance is discussed in 

this section. They are such as frequency range, inductive tunability, QF, noise, stability 

and etc. 

2.2.1 Frequency Range 

It was shown in the preceding section that a lossy GC AI only exhibits an inductive 

characteristic over a specific frequency range. This frequency range can be obtained 

by examining the impedance of the RLC equivalent circuit of the lossy active inductor 

which its input impedance can be calculated as: 
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                           (2.12) 

 

When complex conjugate poles are encountered, the pole resonant frequency of 𝑍𝑖𝑛 is 

given by: 
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Because 𝑅𝑝 ≫ 𝑅𝑠, Eq. (2.13) is simplified to: 
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where, 𝜔0 is the self-resonant frequency of the active inductor. Also observe that 𝑍𝑖𝑛 

has a zero at the frequency 
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The Bode plots of 𝑍𝑖𝑛 are sketched in Figure 2.6. It is evident that the gyrator-C 

network is resistive, when 𝜔 ≤ 𝜔𝑧, inductive when 𝜔𝑧 ≤ 𝜔 ≤ 𝜔0, and capacitive 

when 𝑤 ≥ 𝑤0. The frequency range in which the GC network is inductive is lower-

bounded by 𝜔𝑧 and upper-bounded by 𝜔0. Also it is observed that 𝑅𝑝 has no effect on 

the frequency range of the active inductor. 𝑅𝑠, however, affects the lower bound of the 

frequency range over which the GC network is inductive. The upper bound of the 

frequency range is set by the SRF of the AI, which is set by the cut-off frequency of 

the transconductors constituting the active inductor. For a given inductance 𝐿𝑒𝑞, in 

order to maximize the frequency range, both 𝑅𝑠 and 𝐶𝑝 should be minimized. 

p s
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R R

R R
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Resistive Inductive Capacitive

 
Figure 2.6: Bode plots of the impedance of lossy Gyrator-C AI. 

2.2.2 Inductance Tunability 

Inductance tunability is required in many applications such as phase-locked loops, 

Voltage Controlled Oscillators (VCOs) and filters. The salient feature of GC AIs is 

that their inductance value can be tuned not only by changing the load capacitance but 

also by varying the transconductances of the transcondutors.  

Varactors are employed as tunable capacitors in CMOS technology. Two types of 

varactors exists, namely pn-junction varactors and MOS varactors. The MOS type is 

usually used in circuits which are implemented by transistors. Figure 2.7 exhibits the 

sideview of accumulation-mode MOS varactors. A key advantage of accumulation-

mode MOS varactors is the large voltage swing across the terminals of the varactors. 
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They are the most widely used varactors in voltage/current-controlled oscillators. 

Figure 2.8 shows the capacitance variation in MOS varactors [89]. 

 

Figure 2.7: Sideview of MOS varactors. 

 

Figure 2.8: Capacitance variation in MOS varactors. 

Bias variation is used to transcoductance tuning of transconductores in GC topology 

of AIs. This approach offers a large conductance tuning range, subsequently a large 

inductance tuning range. The conductance tuning range is set by the constraint that the 

transconducting transistors of the transconductors must remain in the saturation. 

Consequently, conductance varying is used for large inductance variation while load 

capacitance changing is used for small inductance variation (Figure 2.9). The 

conductance tuning range is set by the pinch-off condition while the capacitance tuning 

range is set by the range of the control voltage of the varactors. 
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Figure 2.9: Inductance tuning via transconductances or load capacitance variation. 

It is obvious that the transconductance variation will affect the parasitic series 

resistance of AI. This is echoed with a change in the quality factor of the active 

inductors. The variation of the quality factor due to the tuning of L must therefore be 

compensated for such that L and Q are tuned independently. The load capacitance 

changing does not affect the QF of AI. 

2.2.3 Quality Factor 

High QF is the most salient feature of AIs in contrast with their Passive Spiral 

Inductors (PSIs). It is independent from voltage/current of PSIs but it is not valid for 

AIs. The QF of an inductor quantifies the ratio of the net magnetic energy stored in the 

inductor to its ohmic loss in one oscillation cycle. Equation (2.16) convenient way to 

quantify the Q of linear inductors including AIs. 
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Z
                                              (2.16)   

Active inductors are linear when the swing of the voltages/currents of the inductors 

are small and all transistors of the active inductors are properly biased. The quality 

factor of a lossy gyrator-C active inductor can be derived directly from (2.12) and 

(2.16). 
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              (2.17) 

It is clear from (2.17) QF is mostly dependent on 𝑅𝑠 and 𝑅𝑝. Furthermore, it is seen 

that the first term of (2.17) (
𝜔𝐿𝑒𝑞

𝑅𝑠
) is dominant part of QF in AI. So, it is used to quantify 
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the QF of AIs. Thus 𝑅𝑠 must be taken to account in boosting the QF. There are many 

many approaches to reduce series resistance of AIs such as: 

 Reducing the conductance of node (1) in Figures 2.4 and 2.5 by using advace 

circuit techniques such as cacoding  

 Increasing the transconductances of transconductors 

 Using negative resistance circuit 

2.2.4 Noise 

The most important drawback of AIs in comparison with the SPIs are their high level 

of noise. In order to investigate the noise of GC based AI, the input-referred noise 

voltage or current should be carried out. In order to show how the input referred noise 

power, common-gate, basic building blocks of transconductor which is used to 

construct GC AIs, is depicted in Figure 2.10. The power of the input-referred noise-

voltage generator, denoted by 𝑣𝑛
2̅̅ ̅, and that of the input-referred noise-current 

generator, denoted by 𝑖𝑛
2̅ , of these transconductors can be derived using conventional 

noise analysis approaches for 2-port networks [39].  

To extract 𝑣𝑛
2̅̅ ̅ of the transconductor, we first short-circuit the input of the 

transconductor, as shown in Figure 2.10. 

 

Figure 2.10: deriving the input-referred noise voltage of CG transconductor. 

The output noise power of the transconductor due to 𝑖𝑛𝐷 is obtained as: 

2 2 2

no o nDv r i                                               (2.18) 
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where 𝑟𝑜 is the output resistance of the transistor. Then, 𝑖𝑛𝐷
2̅̅̅ ̅ is removed and 𝑣𝑛 is 

applied at the input of the transconductor, as shown in Figure 2.10. The output noise 

power of the transconductor is obtained as: 

2 2 2(1 )no m o nv g r v                                         (2.19) 

Equating (2.18) and (2.19) yields: 
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                              (2.20) 

Once 𝑣𝑛
2̅̅ ̅ and 𝑖𝑛

2̅  of the transconductors are available, the power of the input referred 

noise-voltage and noise-current generators of active inductors can be derived. 

2.2.5 Stability 

GC base active inductors are negative feedback systems. The stability of active 

inductors is critical to the overall stability of systems employing active inductors. In 

this section, we investigate the stability of gyrator-C active inductors. 

The impedance looking into port 2 of the gyrator-C active inductor shown in Figure 

2.4 is given by:  
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where we have utilized 𝐺𝑚 ≫ 𝐺𝑜 to simply the results. The poles of the system are 

given by: 
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The poles of the gyrator-C active inductor are located in the left half of the s-plane and 

the gyrator-C active inductor is a stable system. 

The degree of stability can be assessed by evaluating its damping factor, which is 

obtained by comparing the denominator of (2.2) with the standard form of the 

characteristic equation of second-order systems: 

2 2

0 02 0s s                                           (2.23) 
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whrer 𝜀 denotes the damping factor and 𝜔0 is the pole resonant frequency. The result 

is given by: 

2 1

1 21 2

1
( )

2 m m

C C

C CG G
                                 (2.24) 

Eq.(2.24) reveals that an increase in 𝐺𝑚1 and 𝐺𝑚2 will lead to a decrease in 𝜀. This is 

echoed with an increase in the level of oscillation in the response of the active inductor. 

Also observed from (2.24) is that the ratios 
𝐶1

𝐶2
 and 

𝐶2

𝐶1
  have a marginal impact on the 

damping factor simply because these two quantities vary in the opposite directions 

when 𝐶1 and 𝐶2 change, and the values of 𝐶1 and 𝐶2 are often close. 

If 𝐶1 = 𝐶2 = 𝐶 and 𝐺𝑚1 = 𝐺𝑚2 = 𝐺𝑚 we have: 
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1 1
( 1 1 ),     m

m

p G
C G

                              (2.25) 

An increase of 𝐺𝑚 will lead to a decrease of 𝜀. This is echoed with a reduced level of 

damping. Because [𝑝1,2] = −
1

𝐶
 , the absolute stability margin is set by the capacitance 

𝐶 and is independent of 𝐺𝑚. It should be noted that the preceding analysis is based on 

the assumption that active inductors are 2nd-order systems. When the parasitics of 

MOSFETs are accounted for, active inductors are no longer 2nd-order systems and 

their stability will deteriorate. 

2.2.6 Power Consumption 

CMOS AIs consume dc power, mainly due to their dc biasing currents. The power 

consumption of gyrator-C active inductors themselves is usually not of a critical 

concern because the inductance of these inductors is inversely proportional to the 

transconductances of the transcenductors constituting the inductors. To have a large 

inductance, 𝐺𝑚1 and 𝐺𝑚2 are made small. This is typically achieved by lowering the 

dc biasing currents of the transconductors. But for boosting the QF, an extra part such 

as negative resistor is added to AI circuit. This cause power consumption increasing. 

Furthermore, replica biasing is needed for high performance AI which it causes power 

consumption increasing too. Often the power consumption of an active inductor is set 

by that of its replica-biasing and negative resistor networks. 
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2.3 CMOS Grounded AI Impelementation Base on Gyrator-C Topology 

For RF applications high SRF inductors are required thus usually GC topology is 

selected for implementation CMOS circuit of AIs. Consequently, the configuration of 

transcoductors which construct the AI, should be as simple as possible. This also 

lowers their level of power consumption and reduces the silicon area required to 

fabricate the inductors. Most reported GC AIs employ a common-source configuration 

as negative transconductors, common-gate, source follower, and differential pair 

configurations as positive transconductors. These basic transconductors have the 

simplest configurations subsequently the highest cutoff frequencies and the lowest 

silicon consumption.  

Base on GC topology, there are many reported CMOS AI circuits in literature. All of 

them have tried to invent high performance AI by using different techniques. In this 

section, some of them are reviewed.   

2.3.1 Active Inductors Proposed by Yodprasit-Ngarmnil  

As discussed before to obtain high Q AI, the effect of series and parallel parasitic 

resistors must be compensated for. The 𝐿 − 𝑅𝑠 branch in RLC model of AI can be 

replaced by 𝐿̂ − 𝑅𝑝̂ parallel branch as shown in Figure 2.11 [40]. 

 

Figure 2.11: Yodprasit-Ngarmnil’s AI and its passive model [40]. 

The value of modified elements value are calculated as: 
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The total modified parallel resistor value will become:  
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,
ˆ ˆ

p total p pR R R                                      (2.27) 

If a negative resistor is added in parallel with the value of −𝑅𝑝,𝑡𝑜𝑡𝑎𝑙, the resistive loss 

of the AI vanishes completely. Negative resistor is realized by using positive feedback. 

In Figure 2.11(a), the added electrical connection between the input terminal of the 

active inductor and the drain of 𝑀2 forms the needed positive feedback. The 

impedance looking into the gate of 𝑀1 at low frequencies is given by: 
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                                      (2.28) 

The preceding analysis reveals that the differential pair offers two distinct functions 

simultaneously. First, it behaves as a transconductor with a negative transconductance 

to construct the gyrator-C active inductor. Second, it provides the needed negative 

resistance between the input terminal and the ground to cancel out the parasitic 

resistances of the active inductor. It was shown in [40] that the quality factor of 

Yodprasit-Ngarmnil active inductor is given by: 
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                                  (2.29) 

It can be seen from (2.29) that the channel length modulation effect models the 

resistive loss of the inductor and hence a limitation on Q-factor enhancement. 

Nevertheless, the negative resistance can be deliberately tuned to overcome the need 

for very high drain-source resistance in Q-enhancing scheme. In order to facilitate the 

Q tuning, 𝑀2 and 𝑀3 are cascaded (as shown in Figure 2.12) for adjusting output 

resistor of transistors.  
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Figure 2.12 : Cascode double-feedback active inductor [40]. 

In that way the conductance in nodes 2 and 3 are lowered and Q enhancement is 

obtained.  

2.3.2 Active Inductor Proposed by Uyanik-Tarim  

AI proposed in [41], is suitable for low voltage RF applications. The negative 

transconductance is realized by 𝑀1 in CS configuration, whereas 𝑀2 − 𝑀4 form the 

positive transconductance where the simple current mirror comprised of 𝑀3 − 𝑀4 is 

used to invert the negative transconductance of 𝑀2, also configured in CS connection. 

𝑀5 − 𝑀6 are used for biasing purposes. Since the sole contribution practically comes 

from a minimum number of MOS transistor drain terminal(s), this configuration allows 

low equivalent conductances especially at node 2 which results in improved 

performance.  

 

Figure 2.13: Simplified schematic of Uyanik-Tarim active inductor [41]. 
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Figure 2.14: Frequency response of the active inductor [41]. 

Implemented in UMC-0.13μm 1.2V CMOS technology, the simulation result in Figure 

2.14 shows that the active inductor had a wide frequency range from 0.3 GHz to its 

self-resonant frequency of approximately 7.32 GHz. The quality factor of the active 

inductor exceeded 100 in the frequency range 4.8-6.4 GHz with its phase error less 

than 1 degree. The maximum quality factor was 3900, occurring at 5.75 GHz. The 

minimum number of transistors stacked between the power and ground rails also 

enabled the active inductor to have a large input signal swing of 18 mV. The 

inductance was from 38 nH to 144 nH. 

2.3.3 Noise-Cancelling of A CMOS Active Inductor 

A CMOS active inductor with thermal noise cancelling is proposed in [42]. The noise 

of the transistor in the feed-forward stage of the proposed architecture is cancelled by 

using a feedback stage with a degeneration resistor to reduce the noise contribution to 

the input. Simulation results using 90 nm CMOS process show that noise reduction by 

80% has been achieved. The maximum resonant frequency and the quality factor 

obtained are 3.8 GHz and 405, respectively. 

 

Figure 2.15: Low Noise AI [42]. 
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Figure 2.16: Simulated input referred noise with and without NC [42]. 

The simulated total input referred noise current when 𝑀4 is turned ON/OFF is shown 

in Figure 2.16. It should be noticed from this graph that the noise has been reduced by 

80% when 𝑀4 is ON (with NC). 

The equivalent 𝑍𝑖𝑛 can be obtained from the small signal analysis circuit in Figure 

2.17. For better intuition, a few parasitic parameters have been ignored. The 

approximate  expression for 𝑍𝑖𝑛 is as follows:  
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Figure 2.17: Small signal model of the simplified active inductor in Figure 2.15 [42]. 



30 

 

Figure 2.18: Simulated frequency response [42]. 

The simulated frequency response of the active inductor is shown in Figure 2.18. The 

simulations are carried out in 90 nm STM CMOS process. The active inductor 

resonates at centre frequency of 𝑓0 = 3.8 𝐺𝐻𝑧 with a quality factor of 405. 

2.3.4 Loss Regulated Active Inductor Proposed by Nair  

The AI structure utilized in [43] is shown in Figure 2.19; it has a GC based grounded 

cascode topology and incorporates a modified feedback loss-regulation R-C network 

at the gate of transistor M3. First-order small-signal analysis yields an equivalent 

model for the AI with parameters: 
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Figure 2.19: Active inductor (a) schematic and equivalent small-signal model, (b) 

typical AI performance at UWB frequencies [43]. 

where 𝑆(𝜔) is the combined admittance of 𝑐𝑔𝑠3 and the loss compensation R-C 

network. From (2.32) we see that a frequency-dependent series negative resistance is 

created by transistor 𝑀3 which compensates for the resistive losses of the other active 

components in the AI. By tuning the R-C network, we can alter 𝑆(𝜔) to shape the total 

resistive loss in the AI and consequently control the value and peaking frequency of 

the QF independently of the 𝜔0 and 𝐿𝑒𝑞 over the desired frequency range, as shown in 

Figure 2.19. The 𝜔0 and 𝐿𝑒𝑞 and QF of the AI can be tuned independently for any 𝐼2 

value. 

2.3.5 Cascoded Flipped Active Inductor Proposed by Saberkari  

Usually, simple structures are preferred for RF circuits. The configuration of basic 

flipped-active inductor (FAI), shown in Figure 2.20 (a), is very simple and consists of 

only two transistors. As shown in Figure 2.20 (a), transistor 𝑀2 located in the forward 

path has a positive transconductance (𝑔𝑚2) while transistor 𝑀1 in the feedback path 

provides a negative transconductance (𝑔𝑚1). However, it suffers from low input 
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voltage swing limited to the nMOS threshold voltage minus the overdrive voltage of 

transistor 𝑀2, which is not sufficient in most applications and increases nonlinearity. 

Furthermore, this design requires more power consumption to achieve adequate 

inductance value and high quality factor. In order to overcome these problems, a 

cascoded flipped-active inductor (CASFAI) presented in [44], as shown in Figure 2.20, 

a CG p-MOS transistor 𝑀3, added in the feedback path, increases the feedback gain 

and decreases the equivalent series resistance (𝑅𝑠) of the inductor by a factor of 

𝑔𝑚3𝑟𝑜3. This leads to an increase in the quality factor of CASFAI in comparison to the 

conventional FAI. Additionally, the input voltage swing of this architecture can be 

increased with respect to the conventional FAI, as the drain voltage of 𝑀2 has a value 

of 𝑉𝐷2 = 𝑉𝑆𝐺3+𝑉𝐺3, which is close to 𝑉𝑑𝑑. Moreover, due to the additional loop gain 

provided by the transistor 𝑀3, the drain voltage of transistor 𝑀2 has a small variation, 

leading to a decrease in the effect of the channel length modulation, which in turn 

improves the linearity performance. 

From Figure 2.20 (c), the equivalent RLC model parameters of the CASFAI are as 

follows: 

                         (2.35) 

An interesting point is that the transistor 𝑀1 does not affect the inductance value of the 

CASFAI, leading to more degrees of freedom in the design procedure. Hence, 

increasing the dimensions of 𝑀1 further reduces the series resistance and, opposite to 

the FAI structure, it helps to achieve a higher quality factor without degrading the 

inductance value. Additionally, the inductance value can be increased by reducing the 

transconductance of 𝑀2 enhancing the parallel resistance and the quality factor. In this 

case, the reduction effect of 𝑔𝑚2 on the series resistance can be compensated by 

increasing 𝑔𝑚1.  

A brief performance characteristic of the proposed CASFAI structure in a 0.18 µm 

CMOS process and 1.5 V supply voltage is shown in Figure 2.21. As it is obvious, the 

proposed structure shows inductance behavior in the frequency range between 0–6.9 

GHz and has reached to a high quality factor of 4406 and inductance value of 7.56 nH, 

while consumes only 2 mW power. 
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Figure 2.20: (a) Basic flipped-active inductor, (b) cascoded flipped-active inductor, 

and (c) small signal equivalent circuit [44]. 

 

Figure 2.21: Characterizations of the CASFAI: (a) Inductance value, (b) quality 

factor [44]. 
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2.3.6 Low Noise and Low Loss Active Inductor Proposed by Manjula  

The proposed active inductor circuit in [45] uses PMOS cascode structure as negative 

transconductor of a gyrator to reduce the noise voltage. Also, this structure provides 

possible negative resistance to reduce the inductor loss with wide inductive bandwidth 

and high resonance frequency. To improve the quality factor, a MOS transistor is used 

as a feedback resistor between the positive transconductor and the negative 

transconductor. The tuning of quality factor and center frequency for multiband 

operation is achieved through the controllable current sources. The tunable range of 

the active inductors varies from 3.9 GHz to 12.3 GHz (without feedback transistor) 

with the power consumption of 0.6mW and 3.9GHz to 16GHz (with feedback 

transistor)with the power consumption of 0.65mW. The noise voltage varies from 

21nV/√Hz to 7nV/√Hz for the active inductor without feedback transistor and from 

12nV/√Hz to 5.612nV/√Hz for the active inductor with feedback transistor.  The 

designed active inductors are simulated in 180 nm CMOS process using Synopsys 

HSPICE tool. 

The proposed single ended AI in [45] is shown in Figure 2.22 (a). It consists of 

differential pair 𝑀1 and 𝑀2 which represents the positive transconductor 𝐺𝑚1 between 

the input (node 1) and the output (node 3). The cascode pair 𝑀3 and 𝑀4 represents the 

negative transconductor –𝐺𝑚2 between the input (node 3) and the output (node 1). 

Thus the 𝐺𝑚1 and –𝐺𝑚2 forms the gyrator which converts the parasitic capacitance 𝐶3 

at node 3 to an equivalent inductance 𝐿𝑒𝑞  = 𝐶3/𝐺𝑚1𝐺𝑚2. Also, the cascode structure 

provides frequency range expansion by lowering the lower bound of the frequency 

range, thus increases the inductive bandwidth. The p-channel transistors are preferred 

for cascode structure as they have low noise and they can be placed in separate n-wells, 

thus eliminating the non- linear body effect. Thus, the combination of the differential 

configuration of 𝐺𝑚1 and cascode configuration of -𝐺𝑚2 offers high inductive 

bandwidth, high resonance frequency and less noise. 

To further improve the quality factor, series resistance 𝑅𝑠 has to be reduced. This can 

be done by adding the transistor 𝑀5 between the positive transconductor and the 

negative transconductor of the active inductor as shown in Figure 2.22 (b). The 

transistor 𝑀5  act as feedback resistor enhances the loop gain and increases the quality 

factor of the AI. The current sources are realized using single MOS transistor current 

sources to make the active inductor compact and to operate at low voltage. 
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(a) AI without feedback transistor 

 

(c) Small signal equivalent circuit of 

the AI without feedback transistor 

 

(b) AI with feedback transistor 

 

(d) Small signal equivalent circuit of 

the AI without feedback transistor 

Figure 2.22: Proposed Low Noise and Low Loss AIs and their Small Signal Models 

[45]. 

The equivalent input impedance 𝑍𝑖𝑛, is obtained from the small signal analysis circuit 

shown in Figure 2.22 (d). The equivalent input impedance 𝑍𝑖𝑛, of Active inductor  with 

feedback transistor (Figure 2,22 (b)) by using equivalent circuit of Figure 2.22 (d) is 

given as: 

             (2.36) 

The format of 𝑍𝑖𝑛 shows that it is equivalent to a parallel RLC network. From Equation 

(2.36) 𝐿𝑒𝑞 and 𝑅𝑠 are given as: 

                          (2.37) 
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The parallel capacitance 𝐶𝑝 = 𝐶1 and resistance 𝑅𝑝 = 1/𝑔𝑔2. The resonance 

frequency 𝜔0 and the QF are given as: 

                           (2.38) 

The simulated frequency response of 𝑍𝑖𝑛 of  the circuit of Figure 2.22 (a&b)  is shown 

in Figure 2.23. Figure 2.24 shows the variation for different values of controllable 

current source 𝐼2 for QF tuning. 

 

Figure 2.23: Simulated Frequency Response of Input Impedance [45]. 

  

Figure 2.24: QF Tuning of Modified AI [45]. 
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Figure 2.25: Noise Voltage of the Modified AI [45]. 

Figure 2.25 shows the simulated noise voltage of the active inductors. The noise 

voltage varies from 21nV/√Hz 7nV/√Hz for the tuning range 3.9GHz to 12.3GHz for 

AI without feedback transistor 𝑀5.  For the AI with feedback transistor with 𝑀5, the 

noise output voltage varies from 12nV/√Hz to 5.612nV/√Hz for the tuning range 3.99 

GHz to 16 GHz. The simulation results shows that both the AIs have less noise voltage 

make it suitable for designing low noise RF systems. 

2.4 CMOS Floating Active Inductors Impelementation Base on GC Topology 

2.4.1 Floating Active Inductor Proposed by Mahmoudi  

The floating active inductor proposed by Mahmoudi and Salama was used in the design 

of quadrature down converter for wireless applications [46]. The schematic of 

Mahmoudi-Salama floating active inductor is shown in Figure 2.26. 

It consists of a pair of differential transconductors and a pair of negative resistors at 

the output of the transconductors. 𝑀8,16 are biased in the triode and behave as voltage-

controlled resistors. They are added to the conventional cross-coupled configuration 

of negative resistors to provide the tunability of the resistance of the negative resistors 

without using a tail current source. 

The small-signal equivalent circuit of the tunable negative resistor is shown in Figure 

2.27 where a test voltage source 𝑉𝑥 is added for the derivation of the equivalent 

resistance of the negative resistor. 𝑅 represents the resistance of 𝑀8. The resistance of 

the negative resistors at low frequencies is obtained as: 
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                                     (2.39) 

 

Figure 2.26: Floating AI implementation based on GC architecture [46]. 

 

Figure 2.27: Small-signal equivalent circuit of FAI [46]. 

The inductance of the active inductor is given by 𝐿 =
𝐶

𝐺𝑚1𝐺𝑚2
, where 𝐺𝑚1 and 𝐺𝑚2 are 

the transconductances of the differential transconductors 1 and 2, respectively. By 

assuming that nodes A and B are the virtual ground, we have 𝐶 ≈
𝐶𝑔𝑠2,3,10,11

2
 and 𝐺𝑚 =

𝑔2,3,10,11.  
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2.4.2 Floating Active Inductor Proposed by Cetinkaya  

The Designed FAIs in [47] are designed based on GAI which is illustrated in section 

2.3.2. Apparently, the circuit has been replicated and re-designed so that the positive 

and negative transconductance stages provide the symmetry shown in Figure 2.28. 

 

Figure 2.28: The gyrator-C equivalent of the floating active inductor [47]. 

A passive filter has no biasing problem, however the active implementation of an 

inductor requires biasing of the active components, the MOS transistors in this case. 

Also, the effect of the source and load resistances should be considered and the 

necessary isolation be provided. Therefore, additional circuitry for biasing and 

isolation has been included. As a result, slightly different floating inductance circuits 

have been used for inductors 𝐿1 and 𝐿2  in Low-Pass Filter (LPF) (Figure 2.29) apart 

from the fact that the core part was re-designed so that two different inductance values 

were realized. 

 

Figure 2.29: 3rd-order LPF [47]. 

The floating active inductor circuits used to replace 𝐿1 and 𝐿2 are given in Figures 2.30 

(a&b), respectively. 
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(a) L1 

 

(b) L2 

Figure 2.30: FAIs circuits used in the filter   a) L1, b) L2 [47]. 

 

Figure 2.31: Frequency response of FAIs [47]. 

The simulated frequency response of the input impedance for both inductors shown in 

Figure 2.31. Both FAI’s circuits have similar properties. The FAIs have wide operating 

bandwidth where the inductive characteristic extends from 100 MHz up to the SRF at 

5.72 GHz with a nominal inductance value in nH range. Transient simulations show 

that there is no danger of instability for the FAI circuits. Both circuits have a spurious-

free dynamic range of approximately 30 dB where the total noise voltage was 

integrated over a 500-MHz  bandwidth. Simulations show that the noise performance 

of the circuit is also low as expected.  
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2.4.3 Feedback Resistance Floating Active Inductor Proposed by Akbari  

The feedback resistance technique was also employed in the design of FAIs by Akbari-

Dilmaghani et al. in [48] to improve the performance of these inductors. A similar 

approach was used by Abdalla et al. in design of high-frequency phase shifters [49]. 

The schematic of the feedback resistance FAI is shown in Figure 2.32. It consists of 

two basic differential-pair transconductors and two feedback resistors. 

 

Figure 2.32: Simplified schematic of feedback resistance FAI [49]. 

𝑀11,12 are biased in the triode and behave as voltage-controlled resistors. The 

inductance and the parasitic series resistance of the floating active inductor are given 

by: 

                                  (2.40) 
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                    (2.41) 

It is evident from (2.40) that 𝑅𝑓 boosts 𝐿 and lowers 𝑅𝑠 simultaneously. Both improve 

the performance of the FAI. Also seen from (2.40) and (2.41) that 𝑀11,12 control the 

series resistance 𝑅𝑠 of the active inductor. By adjusting 𝑉𝑏1, 𝑅𝑠 can be minimized. 

2.5 Chapter Summery 

An in-depth examination of the principles, topologies, characteristics, and 

implementation of gyrator-C active inductors in CMOS technologies has been 

presented. It was shown that both grounded and floating (differential) active inductors 

can be synthesized using gyrator-C networks. To provide a quantitative measure of the 

performance of active inductors, a number of figure-of-merits have been introduced. 

These figure-of-merits include frequency range, inductance tunability, quality factor, 

noise and power consumption. The second part of the chapter has focused upon the 

CMOS implementation of gyrator-C active inductors. The schematics and 

characteristics of grounded and floating active inductors have been investigated in 

detail. 
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 DESIGN OF NEW CMOS GROUNDED AND FLOATING ACTIVE 

INDUCTOR CIRCUITS BASED ON GYRATOR-C ARCHITECTURE 

The expanding prevalence and development of wireless communications has 

inevitably boosted research in the field of Radio-Frequency Integrated Circuit (RFIC) 

design, especially in CMOS technology due to the shrinking of sizes and low cost 

availability of the process. Passive inductors are off-chip discrete parts and this 

seriously confines the bandwidth, diminish dependability, and expand the expense of 

framework.  

The unavailability of inductors characterized by high quality factors, or high “Q,” is a 

shortcoming of monolithic fabrication processes. This shortfall is limiting when circuit 

design objectives entail the realization of narrowband radio frequency (RF) amplifiers, 

high selectivity bandpass and notch filters, and other circuits for a variety of 

communication and information processing applications. Planar spirals of metalization 

are used commonly, of course, to synthesize on chip inductors with inductance values 

in the few tens of nanohenries. These structures, which consume large surface areas, 

are difficult to parameterize reliably because their inductance and quality factor values 

are mathematically intricate functions of geometry and the electrical dynamics of 

distributed parasitic energy storage elements implicit to their underlying bulk silicon. 

Moreover, they rarely produce inductors having quality factors larger than four to 

seven at signal frequencies of at least the high hundreds of megahertz. To be sure, 

anemic inductive Q can be offset by incorporating Q-enhancing negative resistance 

compensating circuitry. Unfortunately, such compensation increases power 

dissipation, degrades circuit noise figure, and limits dynamic range. 

Moreover, the sensitivity of Q-enhancing subcircuits to parasitic energy storage 

elements, as well as their outright potential instability, mandates the incorporation of 

automatic on chip tuning schemes. In addition to requiring further increases in standby 

power, these tuning subcircuits almost unavoidably degrade circuit frequency 

response. 
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An alternative to the passive on chip inductor—with or without Q-enhancing 

compensation—is the active inductor. Although plagued by higher noise and higher 

power consumption than are counterpart uncompensated passive realizations, active 

inductors are theoretically capable of producing relatively high quality factors.  

3.1 Introduction 

Many AI implementations can be found in literature [50-52]. However, each one of 

them offers only one or a few of the desirable specifications such as compactness, low 

voltage operation, wide inductance band, high quality factor, low power consumption, 

high dynamic range, low noise and tunability. 

The gyrator approach to active inductance synthesis is the most popular of available 

techniques. This popularity derives from the fact that gyrators can be configured 

straightforwardly with operational transconductors, whose attainable broadband 

input/output transfer characteristics have improved in direct proportion to the rapid 

maturation of deep submicron CMOS device technology. Moreover, gyrators realized 

with operational transconductors feature transconductances than can be adjusted with 

applied bias, thereby allowing for inductors whose values can be adjusted, or “tuned,” 

electronically. 

The gyrator approach to inductance emulation, like other active synthesis methods, 

suffers from potentially serious noise, power dissipation, and dynamic range problems. 

In this chapter, we try to work on charactrsics and performance of our designed AIs. 

The noise, resistive-loss, input-capacitance and QF are main our concerns in designing 

desired active block. 

The chapter is organized in 5 sections: The low loss GAI is presented in section 3.2. 

Then, a high performance GAI with ability to adjust its properties is designed and 

analyzed in section 3.3. Section 3.4 describes a low noise GAI and section 3.5 

peresents floating type of low loss AI. Finally, chapter is summarized in section 3.6. 

3.2 A New Low loss CMOS Active Inductor Circuit 

As previously stated, due to drawbacks of in-chip SI, AIs pulled in consideration of 

CMOS integrated circuit designers. AIs are able to supplement the passive inclusions 

to mitigate and overcome loss and bandwidth limitations. Consequently, they are an 
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attractive alternative to their on-chip passive counterparts. Although they are plagued 

by higher noise and higher power consumption, AIs are theoretically capable of 

producing relatively high quality factors [53]. 

There are many efforts to optimize the inductive characterization of AI [54-57]. 

Among AI designing topologies, GC is popular especially for RF applications. That is 

because of their transconductance adjustability by their bias current changing which 

gives tunable capability to structure [56-57]. 

Some reported AIs benefit from cross-coupled structure. Due to the negative 

equivalent resistance at the output of this structure, equivalent series-loss resistance at 

the input node of such AIs decreases [54, 55]. Some others utilize resistive feedback 

to increase inductance of the AI [55, 56]. However, these structures do not give a high 

quality factor since the addition of the feedback resistance does not result in a low 

series-loss resistance. Furthermore, these technics do not lead to high SRF range. 

In this section, Multi-Regulated Cascode (MRC) stages are used to decrease 

conductance in crucial nodes of the AI. However, one of them is located in the circuit 

such that, input transistor should be designed smaller in order to provide second 

gyrators bias condition. In addition all transistors of the MRC stages are made up of 

PMOS transistors. Also employing another MRC stage in the input node makes the 

parallel conductance very low. 

3.2.1 Circuit Level Description 

The well-known GC topology is used for designing the proposed GAI. The equivalent 

inductance in mentioned topology is obtained as: 

1 2( )eq m mL C G G                                             (2.1) 

where Gmi is the ith gyrator’s transconductance. 

In order to have low-loss AI, all important nodes must have low conductance. The 

basic schematic of GC AI is depicted in Figure 3.1(a). In order to have high impedance 

nodes, the modified version of basic configuration is depicted in Figure 3.1(b). Here, 

all transistor are connected in CS configuration which results high impedance nodes. 

In order to have low-loss active inductor, the impedance in input (1) and output (2) 

nodes should be as high as possible. In designing analog amplifiers a regulated cascode 
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stage is used to increasing the output impedance for gain boosting [39]. Therefore, to 

increase the impedance in input and output nodes of AI, the MRC stage is employed. 

Ibias1

VDD

Ibias2

M1

M2

(1)

(2)

 
(a)  

(1)

(2)
2M

3M
1M 4M

biasI

DDV

 
(b)  

Figure 3.1 : Schematic of gyrator-C active inductors a) Basic b) Modified. 

In the proposed GAI circuit circuit (Figure 3.2) 𝑀𝑖 , 𝑀𝑐−𝑖  and 𝑀𝑏−𝑖   transistors are 

used for main elements of Gyrator-C, MRC stage and biasing, respectively. The salient 

feature of the design is that all transistors in main path are utilized in common-source 

configuration which results in performance improvement and all of them are free from 

body effect. The negative transconductance is realized by 𝑀1, whereas 𝑀2, 𝑀3 and  𝑀4 

forms the positive transconductance.  

The sensitivity of the quality factor of the active inductor is merely depends on series-

resistive loss in high frequencies. Hence, in order to boost the quality factor of active 

inductors, it must be decreased.   Reducing resistive-loss is done by using advanced 

circuit techniques, such as MRC stage. Also, the MRC stage is effective in lowering 

the input conductance, as shown in Figure 3.2.   

MRC stage is made up of PMOS transistors in order to:  

 minimize the input transistor (𝑀1) as small as possible in order to adjust second 

stage biasing,  

 decrease the number of transistors in main path of ac signal 

Table 1 compares the resistances in nodes (1) and (2), with and without MRC stage. 
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Figure 3.2 : Proposed GAI. 
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Figure 3.3 : Small-signal equivalent model of proposed GAI. 

Table 3.1 : Resistance comparison with-without MRC stage.  

node 
Resistance 

without-MRC with- MRC 

(1) ,4 , 4/ /o o br r   ,1 , 2 , 1 , 1 , 2 , 2 , 3 , 3 ,1/ /( )o o b o c m c o c m c o c m c or r r g r g r g r         

(2) ,1 , 2/ /o o br r   
,1 , 2 , 11 , 11 , 13 , 13 , 12 , 12 ,1/ /( )o o b o c m c o c m c o c m c or r r g r g r g r         

Figure 3.3 demonstrates the small-signal model of proposed circuit (Figure 3.2) in 

order to verify the input impedance characterization. The input admittance of the 

circuit of Figure 3.3 is calculated as follows: 

1
3 2 34

1 2 4 1 1 2 4

1 1 1
in gs

m gs min o

m m m o m m m

Y sc
g sc gZ r

g g g r g g g

   



              (3.2) 
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By analyzing (3.2), it can be seen that proposed circuit consists of four components: 

an inductor (𝐿𝑒𝑞) and its series-resistance (𝑅𝑠) and parallel capacitance and resistance 

(𝐶𝑝 and 𝑅𝑝) where their value are obtained as: 

3 23
04 1

1 2 4 1 1 2 4

, , , 
m gsm

p s p gs eq

m m m o m m m

g cg
R r R C c L

g g g r g g g
                (3.3) 

The RLC network’s SRF which determines the circuit inductive behavior upper limit 

in frequency band and QF of AI are calculated as: 

1 2 4

3 2 1

1 m m m

p eq m gs gs

g g g
SRF

C L g c c
                                    (3.4) 

 
 

Im

Re

in

in

Z
Q

Z
                                                   (3.5) 

As discussed, bias current variation or adding extra capacitance on the gate of second 

transistor gives tunable capability for the GAI. 

3.2.2 Simulation Results 

To verify the performance of the proposed GAI as shown in Figure 3.2, the GAI was 

implemented by using 0.18 µm RF MOS transistors in an AMS CMOS process in 

Cadence. Figure 3.4(a) depicts the layout, which is drawn by utilizing a poly and metal 

(M1) with the total area of 13.9×38.5 µm2. The magnitude and phase of the GAI is 

depicted in Figure 3.4(b). The QF simulation is shown in Figure 3.4(c). The post-

layout simulations in Figure 3.4(b&c) are carried out from extracted file, which 

contains parasitic elements. 

The Monte Carlo analysis with 100 iterations is performed for inductance value 

probing by applying ±5 % Gaussian distribution at ±3s level in the variation of 

transistors aspect ratio and threshold voltage. Figure 3.4(d) proves that 74% of the total 

samples occurred with the relative error of less than ±1.5 %, while in the worst case 

18% of samples lead to the error of more than ±2. Table 3.2 summarizes some 

important properties of the designed GAI. 
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(a) Layout 

 
(b)  Magnitude and Phase 

 
(c) Quality factor 

 
(d) Monte Carlo simulation 

Figure 3.4 : The GAI simulation results. 

Table 3.2 : Proposed GAI Characteristics. 

CMOS Tech. Supply 

voltage 

Inductor 

value 

Inductive 

frequency band 

0.18 µm (AMS) 1.8 v 13 nH 0.3-11.2 GHz 

Max. QF DC power Area Transistor model 

1000@6.7GHz 1 mW 534.6 µm2 RF MOS  

A low-loss GAI circuit was proposed in this section. The proposed AI was designed 

on GC topology and used a few number of transistors in the main path of signal which 

made it suitable for RF applications. The MRC stages were employed to enhance high 

performance AI. The used MRG stage in output node (2) is configured in such way 

that it resulted in smaller input transistor (𝑀1). Thus the SRF enhancement was 

obtained. The DC power consumption of the proposed AI was 1 mW for 1.8 V dc 

power supply. Simulation results were provided for a 0.18 um CMOS-AMS process. 

The results show that the circuit can be used in RF applications for frequency band 

ranging in the 300 MHz~11.2 GHz. Total area consumption of the structure is 534.6 

µm2. 
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3.3  A new low-loss active inductor with independently adjustable self-resonance 

frequency and quality factor parameters 

Designers do their best to improve SRF and QF, two main characteristics in term of 

AI performance [58]. In GC topologies, the input transistors play critical role in active 

inductor characterization. By selecting the input transistor’s gate-source parasitic 

capacitance sufficiently small, then the SRF Range (SRFR) of AI improves but its QF 

and stability degrade. On the other hand, large input transistor guarantees the stability 

of AI and improves the inductance value and QF but decreases the SRFR [59]. Thus, 

there is a trade-off between SRF and QF. 

Another main challenge for AIs designers is their ohmic loss which affect the QF. For 

decreasing this parasitic components many tricks are used such as Multi-Regulated 

Cascade stages [53, 60] or cross-coupled structures i.e. Negative Resistance (NR) [61-

64]. But these methods are limited input swing and increased input referred noise. Also 

they need biasing transistors which makes the device larger. 

The salient feature of this work is adjusting SRFR and QF of an AI without affecting 

each other. The cascoding and RC feedback structures are used in the new design of 

AI. As it discussed before, input transistor is very important regarding to AI 

characterizations. Cascoding input transistor gives the ability to adjust the first 

gyrator’s transconductance and input parasitic capacitance independently. 

Furthermore, the inductance value can be adjusted by other transistor’s 

transconductance. The RC feedback is utilized to cancel the parasitic series-resistance 

of AI which results in QF enhancement. Since, bias condition of cascoding transistors 

is provided by a diode-connected transistor, the proposed structure is robust in terms 

of performance over variation in process, voltage and temperature (PVT). 

3.3.1 Theoretical and Implementation Description 

Signal Follow Graph (SFG) of the well-known GC topology of AIs is depicted in 

Figure 3.5. In Figure 3.5, VCCS denotes voltage controled current source. The MOS 

transistors are VCCS devices. If the ideal operational transconductane amplifiers are 

supposed then the input resistance can be written as: 

1 2

Leq

in eq

Leq m m

V sC
Z L

I G G
                                          (3.6) 
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Figure 3.5 : SFG of GC topology. 

Due to parasitic components which arise from intrinsic characteristics of MOS 

transistors, the input impedance is not purely inductive in all frequency range. 

Regarding to SFG of GC topology (Figure 3.5), Figure 3.6 (a, b) shows the basic [65] 

and modified circuit level implementation of AI. In basic circuit the 𝑀3 𝑎𝑛𝑑 𝑀5 and 

also in modified circuit of the proposed AI the 𝑀1, 𝑀2, 𝑀3 𝑎𝑛𝑑 𝑀5 transistors are 

creating 𝐺𝑚1 𝑎𝑛𝑑 𝐺𝑚2 of GC structure, respectively.  

The RC feedback (𝐶𝑓 and 𝑅𝑓 in Figure 3.6 (b)) is used to eliminate parasitic series-

resistance which degrades QF of the AI. Also, the bias voltage (𝑉𝑏𝑖𝑎𝑠) of cascode 

transistor (𝑀4) is employed to improve QF. Furthermore, by adding a diode-connected 

transistor (𝑀2), bias condition of input cascoding transistors (𝑀1,  𝑀3) will be fixed in 

a given input, regarding to PVT variation. Thus, this topology results a robust structure 

[66].  

The designed AI’s SRF is mainly determined by input parasitic capacitance (~𝐶𝑔𝑠1) 

and transconductances of 𝑀1 𝑎𝑛𝑑  𝑀2. On the other hand, QF and inductance value 

are specified by 𝑀3 𝑎𝑛𝑑  𝑀4. In other words, use of cascaded input transistors leads to 

separate affective transistors on SRF and QF of the proposed AI. Therefore, SRF and 

QF of the proposed AI can be adjusted as desired without affecting each other. 
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a) Basic b) Modified 

Figure 3.6 : Active inductor implementation, a) Basic, b) Modified. 
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To verify the input impedance of proposed circuits (Figures 3.6 (a, b)), Figures 3.7 (a, 

b) show simplified small-signal model. Where, 𝑐𝑔𝑠𝑖 𝑎𝑛𝑑 𝑔𝑚𝑖 are gate-source 

capacitance and transconductance of the ith transistor, respectively. As the 𝑐𝑔𝑠𝑖 is in the 

range of femto-Farads and the 𝑔𝑚𝑖 is in 𝑚℧ range, then the term 𝑐𝑔𝑠 𝑤 is very smaller 

than 𝑔𝑚 in GHz range of frequency. As a result, in the extraction of any relation from 

the proposed circuit, the terms consisting of 𝑐𝑔𝑠𝑤 can be ignored in contrast to those 

consisting of 𝑔𝑚. By considering this note, input admittance of the circuit of Figure 2 

is obtained as follows:  

3 5
, 3 5

, 5

1
( )m m

in B gs m

in B gs

g g
Y c s g

Z c s
                                        (3.7) 
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where subscripts “B” and “M” denote the basic and modified circuits, respectively. 
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Figure 3.7 : Small-signal model, a) Basic, b) Modified. 

The extracted equation (3.7) and (3.8) from small-signal model shows that the 

equivalent circuit of Figures 3.7 (a, b) are a parallel RLC network. The expressions of 

these elements can be derived as: 
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By employing feedback in proposed AI, a negative term is added to the resistance in 

RLC equivalent model of the suggested AI (as seen in (3b)). By selecting proper value 

of 𝐶𝑓 , QF can be high enough. For the parallel RLC combination, if the condition 

𝐿𝐶𝑤2 < 1 is met, then it behaves like an inductor. Therefore, aforementioned relations 

determine the upper limit of inductive frequency range which is defined as SRF. The 

SRF, the frequency in which imaginary part of the input impedance or admittance 

becomes zero, in basic and modified AI circuits can be calculated as: 

3 5 3 5

3 5 3 5

1 1
=m m m m

B

B B gs gs gs gs

g g g g
SRF

C L c c c c
                                   (3.11) 
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
                  (3.12) 

As it can be seen from (3.11) and (3.12), the value of inductance, input parasitic 

capacitance and SRF are determined by adjusting 𝑔𝑚1 𝑎𝑛𝑑 𝑔𝑚2 while maintaining 

stability, i.e. 𝑔𝑚3 > 𝑔𝑚5 [67].  By cascoding input transistors (𝑀1, 𝑀3), we separate 

the transistors which impress on SRF, QF and stability. Table 3.3 shows influence of 

𝑀1 𝑎𝑛𝑑 𝑀2 transconductance variations on properties of the AI. 

According to Table 3.3, 𝑔𝑚1 𝑎𝑛𝑑 𝑔𝑚2 can be adjusted for obtaining desired 

specifications from the circuit. By considering identical transistors (𝑀1 = 𝑀2 →

𝑔𝑚1 = 𝑔𝑚2), the equations for 𝐿, 𝐶 𝑎𝑛𝑑 𝑆𝑅𝐹 in modified case can be written as: 

3 5
5 1

3 5 1 5

2 1
,  ,  

2

m m
gs gs

m m gs gs

g g
L c C c SRF

g g c c
                         (3.13) 

 

Table 3.3 : Influence of cascoding transistors transconductances variation on the 

proposed AI properties. 

𝒈𝒎𝟏

= 𝒌𝒈𝒎𝟐 

𝒌 < 𝟏 𝒌 = 𝟏 𝒌 > 𝟏 

L 
𝐿𝑀 = (

𝑘 + 1

𝑘
) 𝐿𝐵 ≫ 𝐿𝐵 

𝐿𝑀 = 2 𝐿𝐵 
𝐿𝑀 = (

𝑘 + 1

𝑘
) 𝐿𝐵 > 𝐿𝐵 

C 𝐶𝑀 =
1

𝑘 + 1
𝐶𝑔𝑠𝑖 < 𝐶𝑔𝑠𝑖 = 𝐶𝐵 𝐶𝑀 =

1

2
𝐶𝑔𝑠𝑖 =

1

2
𝐶𝐵 𝐶𝑀 =

1

𝑘 + 1
𝐶𝑔𝑠𝑖 ≪ 𝐶𝑔𝑠𝑖 = 𝐶𝐵 

SRF 𝑆𝑅𝐹𝑀 = √𝑘 𝑆𝑅𝐹𝐵 < 𝑆𝑅𝐹𝐵 𝑆𝑅𝐹𝑀 = 𝑆𝑅𝐹𝐵 𝑆𝑅𝐹𝑀 = √𝑘 𝑆𝑅𝐹𝐵 > 𝑆𝑅𝐹𝐵 

QF High High High 

The subscripts B and M denote basic and modified, respectively 



54 

Equation (3.13) shows that for almost same SRF, two times larger inductor can be 

obtained from the proposed circuit. In identical transistors circumstances, QF in 

frequencies lower than SRF for the RLC parallel network equivalent model of AI can 

be formulated as: 

5

3 5 5
Par

Par
5

3 5

1

2
2

gs

m gs m f
allel

allel
gs

m m

c

g c g c
R

Q
L

c
g g



                                         (3.14) 

Regarding to (3.14), by choosing 𝑐𝑓 close to 
𝑔𝑚3

2𝑔𝑚5
𝑐𝑔𝑠5, 𝑅𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 becomes ∞ and the 

QF in frequencies lower than SRF can be large enough. It can be seen from (3.12) and 

(3.14) that the properties of proposed AI can be determined almost without affecting 

each other. Bias currents variation, which cause to transconductances altering and also 

adding extra capacitance to node (2) give tuning possibility to the proposed AI. 

3.3.2 Simulation results and performance analysis 

In order to evaluate the performance of the proposed AI as depicted in Figure 3.6(b), 

the AI was implemented utilizing RF transistors in 0.18 µm CMOS process. The post-

layout simulation results as well as performance analysis are presented using HSPICE 

with TSMC level 49 (BSIM3v3) parameters. Figure 3.8 shows layout of the proposed 

design which is drawn by Cadence software using single poly and one metal (M1) with 

the total area of 7.2×39.8 µm2. 

 

 

Figure 3.8 : Layout of the proposed circuit. 

Figures 3.9 through 3.10 illustrate frequency response of the AI. With respect to Figure 

3.9, inductive frequency range of the proposed AI is between 0.3-11.3 GHz, thus it is 

suitable for RF applications. The real and imaginary parts and QF post-layout 

simulations results are illustrated in Figure 3.10. According to Figure 3.10, maximum 

QF is 2.1k which occurs at 5.9 GHz 
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Figure 3.9 : Frequency response of the proposed AI. 

 

Figure 3.10 : Real part, imaginary part and QF of the of the input impedance Zin. 

In order to investigate the robustness of the circuit against the process and threshold 

voltage variation, the Monte Carlo analysis with 200 iterations is performed by 

applying ±5 % Gaussian distribution at ±3𝜎 level in the variation of transistors aspect 

ratio and threshold voltage.According to Figure 3.11, 72 %of the total samples 

occurred with the relative error of less than ±1.5 %, while in the worst case 20% of 

samples lead to the error of more than ±2 %.  
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Figure 3.11 : The result of Monte Carlo analysis of GC circuit for ±5 % mismatch in 

transistors aspect ratio and threshold voltage (No. of iterations = 200). 

The threshold voltage is the most important parameter in the analysis of temperature 

dependence of CMOS circuits, owing to the fact that current–voltage characteristic of 

MOS transistor is proportional to the square of the difference of gate-source and 

threshold voltages. Thus, a small variation in threshold voltage causes a large change 

in the output current. Therefore, transistors current variation affect their 

transconductance value. According to (3.13), transconductances variation leads to the 

AI’s properties changing. Table 3.4 shows inductance and SRF values changing in 

different temperatures. This table indicates that the AI is almost stable between -5~55 

℃. 

Table 3.4 : charactrization of the proposed AI in different temperature. 

T(℃) -45 -25 -15 -5 5 15 25 35 45 55 65 

L(nH) 223 223 221 220 218 217 21

6 

215 213 211 208 

∆L(%) 3.24 3.24 2.31 1.85 0.92 0.46 0 0.46 1.38 1.85 3.7 

SRF(G

Hz) 

10.9

4 

10.9

4 

11.0

2 

11.0

9 

11.1

6 

11.2

5 

11.

3 

11.3

4 

11.4

6 

11.5

3 

11.6

7 

∆SRF% 3.19 3.19 2.48 1.86 1.23 0.44 0 0.35 1.41 2.03 3.27 

Regarding to Figure 7 and Table 2, the proposed AI is robust against PVT variation. 

The relative changing in inductance and SRF value are less than 2% in 73% of samples 

between -5~45 ℃. 

Table 3.5 is provided for the comparison of the proposed AI characteristics with the 

other reports. 
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Table 3.5 : Performance comparison of the proposed AI with reported AIs. 

Ref. Tech. 

(µm/V) 

IBW 

(GHz) 

L 

(nH) 

Qmax@ 

F(GHz) 

Pdiss 

(mW) 

[64]M 0.18/1.8 n.a. 33 33@4 3.6 

[68]M 0.13/1.6 0.5-10.2 14.5 3k@3.7 13.6 

[41]SS 0.13/1.2 0.3-7.32 144 3.9k@5.75 1 

TWPS 0.18/1.8 0.3-11.3 216 2.1k@5.9 1 
IBW: Inductive Bandwidth    n.a.: not assigned    TW:This Work 

Subscribes M, SS and PS denote measurement, schematic simulation  and post-layout simulation, respectively. 

A new high Q, grounding active inductor was designed in this section. The proposed 

AI was designed on Gyrator-C topology and used a few number of transistors in the 

main path of signal which made it suitable for RF applications. Canceling parasitic 

components and determining the properties of the AI are salient feature of the design. 

Simulation results were provided for a 0.18 µm CMOS process. Monte Carlo 

simulation and temperature analysis results show the structure’s stability over PVT 

variation. QF enhancement was obtained by canceling resistive loss whose maximum 

value was 2.1k in 5.9 GHz. The results show that the circuit can be used as an inductor 

for frequency band 0.3-11.4 GHz. The DC power consumption of the proposed AI was 

1 mW from 1.8 V DC power supply. Comparison shows that our circuit is superior in 

terms of IBW, inductance value, QF and power dissipation. 

3.4 Low-Noise CMOS Active Inductor Circuit 

The CMOS process has turned to dominant technology in implementation of electronic 

circuits in recent years. As a result, Active Inductors (AIs) which are designed with 

CMOS technology, play a vital role in the design of low power, highly integrated RF 

front end communication circuits like Low Noise Amplifiers (LNAs) [43, 50, 69], 

Band Pass Filters (BPFs) [70,71] and Voltage Control Oscillators (VCOs) [30, 72].  

AIs can potentially alleviate many difficulties of analog circuits in contrast with 

circuits that are designed with their passive counterparts. The inductance value of the 

AIs can be easily changed either in a continuous manner or in discrete steps; this 

provides flexibility in the tuning of matching circuits [60, 73]. Higher accuracy, easier 

layout floor-planning, small area and absence of magnetic coupling are other 

advantages of AIs compared to their passive counterparts. 

The two transistor GAIs are realized using CS and CD stages or CS and CG stages 

[15]. The circuits which are implemented by CD stage, cannot achieve high Q 

structures but they have wide inductive bandwidth. For proper biasing they have 
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limitations on their voltage levels which leads to negative effect on inductance tuning 

range [65, 74]. On the other hand structures consist of CG are suitable for low voltage 

and low power applications but they needs cross couple structures such as negative 

resistance to improve their Q factor [75]. Additionally, AIs can be designed by 

utilizing three or more transistors where Q factor enhancement is obtained by boosting 

the gain by advance circuit techniques such as regulated stages [76, 77]. 

The Noise of designed AIs has limited the use of them in RF applications such as 

LNAs [33, 34]. The main noise source of an AI is its input transistor. In order to have 

low noise AI, the input transistor should be designed large enough. But it leads to low 

Self-Resonance Frequency (SRF) which limited the inductive frequency band [78]. 

In this section, a low-noise and low-loss AI is presented suitable for RF low noise 

applications. Utilizing all transistors in CS configuration on the AI circuit leads to low 

conductance nodes which it causes to high Q AI. P-type MOS transistors and Feed-

Forward Path (FFP) are employed to decrease noise of the AI, respectively. Circuit 

level implementation and performance analysis is discussed in detail in upcoming 

sections. 

3.4.1 Circuit and Performance Description 

The proposed high-Q and low-noise AI’s circuit is depicted in Figure 3.12, for which 

the input impedance is inductive with potentially high QF and high SRF. The parasitic 

capacitances and the input/output resistances of the transconductance amplifiers 

degrade the QF and reduce the SRF of the AI. Utilizing all the transistors in CS 

configuration (Figure 3.12) is a useful design figure of merit for allowing comparably 

low conductance at critical nodes (1 and 2), hence improved performance. The 

𝑀1−1, 𝑀1−2 𝑎𝑛𝑑 𝑀2 transistors are creating 𝐺1 𝑎𝑛𝑑 𝐺2 of GC structure, respectively. 

The 𝑀1−1 𝑎𝑛𝑑 𝑀1−2 are assumed to be identical. The next section describes the noise 

improvement of AI. 
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Figure 3.12 : Proposed low-noise and low-loss AI. 

3.4.2 Noise improvement of Active Inductor 

The flicker noise is neglected at high frequencies and the channel thermal noise is 

assumed to be 𝑖𝑑
2̅ = 4𝑘𝑇𝛾𝑔𝑚𝑖 where 𝛾 is the channel excess noise factor. The input 

referred noise current of the circuit shown in Figure 3.12 can be written as: 

2

,(1) 22

1 1

2
4 ( )n m

m in

i kT g
g Z




                                      (3.15) 

It can be seen from (3.15) that minimizing 𝑔𝑚2 and increasing 𝑔𝑚1−1 improve the 

noise performance of AI. The transconductance 𝑔𝑚1−1 can be increased by increasing 

either the channel with or the bias current of the differential pair 𝑀1−1 and 𝑀1−2. Wider 

transistors lower the SRF due to larger parasitic capacitances. The bias current is also 

limited by the power consumption and the velocity saturation that limits 𝑔𝑚1−1 at 

higher currents. Consequently, power and operating frequency will set an upper limit 

for reducing the noise due to the differential stage. 

A FFP is used to improve noise performance of differential pair consisting of  𝑀1−1 

and 𝑀1−2, as shown in Figure 3.12. The modified differential pair includes the basic 

differential pair (𝑀1−1 and 𝑀1−2) and the FFP comprising the common source 

transistor (𝑀𝐹𝐹𝑃) and its resistive load (𝑅𝐹𝐹𝑃).  

In order to compare the noise performance of the designed circuit without and with 

FFP, circuits in Figure 3.13 are used. As the effect of 𝑀2 is same in both cases, it is 

neglected in noise probing. The equivalent transconductance (𝐺𝑚,𝑤𝑜)  and the output 
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noise current (node (2)) generated by the basic differential pair can be written as (𝑤𝑜 

and 𝑤 suffixes denote without and with FFP) 

(2) , 1

,

(1) 2

m wo

m wo

i g
G

v


                                           (3.16(a)) 

, 12

, 4 ( )
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g
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                                        (3.16(b)) 

While these values for the differential pair with FFP can be calculated as: 
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where 𝑎𝐹𝐹𝑃 = 𝑔𝐹𝐹𝑃 × 𝑅𝐹𝐹𝑃 is the gain of FFP. 
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Figure 3.13 : Noise current comparison in differential pair with-without FFP. 

To justice comparison, 𝐺𝑚,𝑤𝑜 and 𝐺𝑚,𝑤 must be equal. From (3.16(a)) and (3.17(a)), 

the ratio of 𝑔𝑚,𝑤−1 to 𝑔𝑚,𝑤𝑜−1 can be obtained as: 
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As a result, for same overdrive voltage, the aspect ratio (
𝑤

𝑙
) of the transistors and the 

bias current (𝐼𝑏𝑖𝑎𝑠) in the circuit with the FFP can be reduced by (1 + 𝑎𝐹𝐹𝑃), i.e., 

1

bias wo
bias w
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                                        (3.19(a)) 
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                                        (3.19(b)) 

If PR is taken as the ratio of total power consumption in the differential pair with FFP 

to the power consumed in differential pair itself, them the PR can be calculated as: 
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where 𝐼𝐹𝐹𝑃 is DC current of FFP. 

From (3.16, 17 and 20) the ratio of the noise current generated by a differential pair 

with FFP to that generated by a differential pair without FFP (NR) can be derived as: 
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                      (3.21) 

where  𝑘 =
(𝑤

𝑙⁄ )𝐹𝐹𝑃

(𝑤
𝑙⁄ )𝑤−1

 , 

Due to (3.21), increasing k results in lower NR. But larger FFP degrades SRF of the 

AI owing to larger parasitic capacitance in node (1). Thus, there is trade of between 

SRF and NR. In Figure 3.14, the NR is plotted as a function of FFP gain (𝑎𝐹𝐹𝑃) for 

k=1, 2 and 4.  

As it can be seen in Figure 3.14, the power consumption and the noise current of the 

differential pair can be both reduced by the use of the FFP. It is also clear that 

increasing 𝑎𝐹𝐹𝑃 does not always result in noise reduction. This is because, for a given 

PR and k, the noise of the FFP is proportional to 𝑎𝐹𝐹𝑃 and when the total noise is 

dominated by the FFP, increasing 𝑎𝐹𝐹𝑃 degrades the overall noise performance. 

Nevertheless, 𝑎𝐹𝐹𝑃 cannot be increased arbitrarily because as the amplitude of the 
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signals seen at the input of the differential pair increases with 𝑎𝐹𝐹𝑃, the circuit becomes 

more nonlinear. 

 

Figure 3.14 : Noise current ratio of proposed AI with FFP. 

3.4.3 Proposed Active Inductor Characterization 

To verify the input impedance of proposed circuit (Figure 3.12), Figure 3.15 has 

delineated simplified small-signal model. Where, 𝑐𝑔𝑠𝑖 𝑎𝑛𝑑 𝑔𝑚𝑖 are gate-source 

capacitance and transconductance of the i-th transistor, respectively. As the 𝑐𝑔𝑠𝑖 is in 

the range of femto-Farads and the 𝑔𝑚𝑖 is in 𝑚℧ range, then the term 𝑐𝑔𝑠 𝑤 is very 

smaller than 𝑔𝑚 in the ≤GHz range of frequency. As a result, in the extraction of any 

relation from the proposed circuit, the terms consist of 𝑐𝑔𝑠 𝑤 can be ignored in contrast 

to those consist of 𝑔𝑚. By considering this note, input admittance of the circuit of 

Figure 3.15 is obtained as follow: 
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           (3.22) 

The extracted (3.22) from small-signal model shows that the equivalent circuit of 

Figure 3.12 is a parallel RLC network which is depicted in Figure 3.16. The 

expressions of these elements can be derived as: 
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Figure 3.15 : Small-signal model of proposed AI (Figure 3.12). 
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Figure 3.16 : Equivalent RLC model. 

For the parallel RLC combination, if the condition 𝐿𝐶𝑤2 < 1 is met, then it behaves 

like an inductor. Therefore, following relation guarantees the inductance behavior at 

the input node. Furthermore, the upper limit of inductive frequency range can be 

calculated as: 
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For the RLC parallel network equivalent model of AI, the QF in frequencies lower 

than SRF can be calculated as: 
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3.4.4 Simulation Results 

To verify the performance of the proposed AI circuit, simulation results are presented 

using HSPICE with TSMC level 49 (BSIM3v3) parameters for 180 nm CMOS 

technology. Figure 3.17 depicts the simulation results of the proposed AI. The SRF of 

the structure is 9.2 GHz and maximum Q@ 5.1 GHZ is 1.25 k. The average input 

referred noise current and power dissipation are less than 15 pA/√Hz and 1.3 mW, 

respectively. Table 3.6 summarizes some important properties of the designed AI. 

Figure 3.18 shows layout of proposed AI which is drown by using a poly and Metal 1 

with total area of 13.13×36.21 µm2. 

 
(a) Real and Imaginary part of Zin  

 
(b) Magnitude and Phase of Zin 

 
(c) Quality factor of designed AI 

 
(d) Noise performance of proposed AI 

 

Figure 3.17 : Proposed AI simulation results. 

Table 3.6 : Proposed AI Characteristics. 

CMOS Tech. Inductor 

value 

Inductive 

frequency band 

Layout area  

µm2  

0.18 µm 35 nH 0.6-9.2 GHz 475.44 

Max. QF DC power noise current  

1.25 k @ 5.1 GHz 1.3 mW 15 pA/√Hz  
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Figure 3.18 : Layout of proposed AI. 

A high-Q and low-noise AI was designed based on GC topology in this section. In the 

proposed AI a few number of transistors was used in the main path of signal which 

made it suitable for RF applications. All transistors in the structure are free from body 

effect. The P-type differential pair input transistors and the FFP are employed to 

improve noise performance of AI. As characterization of AI is highly dependent on 

transistors’ transcoductance, so changing the bias currents gives the design tunable 

capability. The inductance value of the design was 35 nH. Maximum Q factor was 

obtained 1.25k at 5.1 GHz. The DC power consumption of the proposed AI was 1.3 

mW from 1.8 V dc power supply. Simulation results were provided for a 0.18 µm 

CMOS process. The proposed AI’s layout was drawn by a poly and Metal 1(M1) with 

total area of 475.44 µm2. The results show that the circuit can be used in RF 

applications. Table 3.7 compares the proposed AI with other reported works. 

Table 3.7 : Comparison with Other AIs. 

 [42] [45] [141] This work 

technology 90 nm/1.2 

V 

180 nm/1.8 V 90 nm/1 

V 

180 nm/1.8 V 

Inductive BW (GHz) 0.6-3.8 0.645-6.3 1.7-5.5 0.6-9.2 

L(nH) 165 43 26 35 

QLmax 120@3 

GHz 

1067@6.3 

GHz 

895 1.25k@5.1 

GHz 

Pdis (mW) 1.2 0.65 0.515 1.3 

Noise 𝒑𝑨/√𝑯𝒛 12 54 76 15 

3.5 A New Low Loss Fully CMOS Tunable Floating Active Inductor 

The well-known CMOS active inductors, based on gyrator-C networks, have been 

designed for applications in high-speed analog signal processing and data 

communication where chip area is critical and a large and tunable inductance is 

essential [71]. Many Tunable Grounded Active Inductors (TGAIs) and Tunable 
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Floating Active Inductors (TFAIs) are designed and suggested for different 

applications [79-82]. However, a large portion of the currently proposed AIs are 

initially grounded 1-port block. When 2-port floating characteristics are needed, the 

grounded node is made floating by using extra current sources and bypass capacitors. 

These FAIs do not have symmetric structure, and demonstrate different characteristics 

from each port, which deviates from the behavior of an ideal inductor [80, 81]. 

Some reported Grounded Active Inductors (GAIs) benefit from cross-coupled 

structure to decrease loss. Due to the negative equivalent resistance at the output of 

this structure, equivalent series-loss resistance at the input node of such AIs decreases 

[83, 84]. Some others utilize resistive feedback to increase the inductance of the AI 

[85, 86]. However, these structures do not give a high quality factor since the addition 

of the feedback resistance does not result in a low series resistance. Furthermore, these 

techniques do not lead to high SRFR because of adding parasitic capacitance at the 

input node. Moreover, these components are located in the main path of the signal 

which is not desired in RF applications [87]. On the other hand, some structures use 

positive feedback to decrease the series-resistance of AI which cause stability 

problems in circuit [88]. 

In this section, a new TFAI is designed based on modified TGAI. In the new TFAI, 

the MRC stages are employed to reduce the conductance at input and output nodes to 

enhance the Q of AI. In AIs, the SRFR of the AI is mainly determined by the gate-

source parasitic capacitance of input transistor. Thus, the input transistor should be 

designed as small as possible in order to have high inductive frequency range. In the 

proposed TFAI, the SRF is improved due to the utilized MRC stages topology. Thus, 

the TFAI can provide higher frequency band performances. Furthermore, all 

transistors in the proposed circuit are n-type transistors which is desired for RF 

applications. 

3.5.1 System Level Description 

An ideal inductor can be presented in admittance form by Signal Flow Graph (SFG) 

with a weighted arrow (1/sL), as illustrated in Figure 3.19, where s is the complex 

frequency and L is the inductance of the inductor. 

Current flowing through the inductor is described by the following equation: 
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(1 )L LI sL V                                           (3.26) 

VL

IL

L

VL

IL

1/sL

 

Figure 3.19 : An ideal inductor and SFG representation. 

The same transfer function can be obtained by constructing a graph with one capacitor 

and two VCCS as shown in Figure 3.20. 

In order to have high impedance in both input and output nodes, SFG of GAI is 

modified according to Figure 3.21(a). Figure 3.21(b) depicts floating counterpart of 

GAI. 

VLeq VVCCS1

IVCCS1 IC

VC VVCCS2

IVCCS2ILeq

1 1

1

1

gm gm

1/sC

 

Figure 3.20 : General SFG for AI’s circuit generation with VCCS. 



68 

VLeq VVCCS1
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1 1

1
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VLeq VVCCS1-1
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(a)

(b)

2

1

 

Figure 3.21 : Modified SFG (a) GAI, (b) FAI. 

Thus, the SFG of Figure 3.21 is described by equation (3.27) for both grounded and 

floating AI: 

1 2 4 3(1/ ) ( )Leq eq Leq m m m m LeqI SL V g g g g sC V                (3.27) 

where 

3

1 2 4

m
Leq

m m m

g C
L

g g g
                                       (3.28) 

Accordingly, inductors can be synthesized by Gyrator-C (GC) blocks as illustrated in 

Figure 3.22. These types are named as GC active inductors. The inductance of gyrator-

C active inductor is directly proportional to the load capacitance C and inversely 

proportional to the product of trans-conductors of the gyrator [89].  

The SFGs presented in Figures 3.20 and 3.21 can be designed using two classical 

Operational Transconductance Amplifiers (OTAs). Figures 3.22 (a, b) presents a lossy 

grounded and floating inductors, respectively. In Figure 3.22. C1, C2, Go1 and Go2 

represent the total capacitances and conductances at nodes 1 and 2, respectively. 
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(a) GAI

(b) FAI  

Figure 3.22 : Block diagram of AI realization by OTA and  equivalent passive 

model (a) Grounded (b) Floating. 

In comparison of Figures 3.21 and 3.22, the transconductance of the OTAs can be 

written as: 

2 4
1 1 2

3

 , m m
m m m

m

g g
G g G

g
                  (3.29) 

Floating GC AIs have some benefits in contrast with their GAI counterparts [89]: 

I. There are appropriate for circuits in which digital and analog parts are 

manufactured in the same substrate because of their differential configuration. 

The differential transconductors effectively reject the common-mode 

disturbances of the network.  

II. Input voltage swing of FAIs is twice larger than their GAIs counterparts. 

The parasitic components of AI (Figure 3.22) limit the inductive behavior frequency 

range. This frequency range can be obtained by examining the impedance of the RLC 

equivalent circuit of the lossy active inductor (Figures 3.22(a and b)). 

2

1

( )
1

( )

eq

s s
in

p ssp eq

p p eq p p eq

L
s

R R
Z

R RRC L
s s

R C L R C L






  

                     (3.30) 
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When complex conjugate poles are encountered, the pole resonant frequency of 𝑍𝑖𝑛 is 

given by: 

p s

p

p p eq

R R

R C L



                                         (3.31) 

Because 𝑅𝑝 ≫ 𝑅𝑠, Eq. (6) is simplified to: 

0

1
p

p eq

SRF
C L

                                 (3.32) 

where, 𝜔0 is the self-resonant frequency of the active inductor. Also observe that 𝑍𝑖𝑛 

has a zero at the frequency. 

1

1

s o
z

eq

R G

L C
                                      (3.33) 

It is evident that the gyrator-C network is resistive, when𝜔 ≤ 𝜔𝑧, inductive when 𝜔𝑧 ≤

𝜔 ≤ 𝜔0, and capacitive when 𝑤 ≥ 𝑤0. The frequency range in which the gyrator-C 

network is inductive is lower-bounded by 𝜔𝑧 and upper-bounded by 𝜔0. Also it is 

observed that 𝑅𝑝 has no effect on the frequency range of the active inductor. 𝑅𝑠, 

however, affects the lower bound of the frequency range over which the gyrator-C 

network is inductive. The upper bound of the frequency range is set by the self-

resonant frequency of the active inductor, which is set by the cut-off frequency of the 

transconductors constituting the active inductor. For a given inductance 𝐿𝑒𝑞, in order 

to maximize the frequency range, both 𝑅𝑠 and 𝐶𝑝 should be minimized. 

3.5.2 Circuit Level Design 

The basic CMOS implementation of SFG which presented in Figure 3.20, is depicted 

in Figure 3.23(a). According to SFG in Figure 3.21(a), the circuit implementation of 

GAI can be modified as Figure 3.23(b). All transistores are n-type except M2, which 

is desired in RF applications. 
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Ibias1

Vdd

Ibias2
 

 

(a) 

(1)

(2)

 
(b) 

Figure 3.23 : Simplified CMOS-based GAI (a) basic, (b) modified. 

In modified GAI, the negative transconductance is realized by 𝑀1 in common-source 

configuration, whereas 𝑀2, 𝑀3 𝑎𝑛𝑑 𝑀4 form the positive transconductance where the 

simple current mirror comprised of 𝑀3 𝑎𝑛𝑑 𝑀4 is used to invert the negative 

transconductance of 𝑀2, also configured in CS connection. Since the sole contribution 

practically comes from a minimum number of MOS transistors drain terminals, this 

configuration allows low equivalent conductances especially at node (1) which results 

in enhancement of QF by decreasing series resistance of equivalent inductance. 

Furthermore it results bigger inductance value. The QF can be obtained as [60, 89]: 

 
 

I M Z
Q

RE Z
                                         (3.34) 

The quality factor of a lossy gyrator-C active inductor can be derived directly from 

(3.30) and (3.34) as: 

2

2

2

( ) 1

1 ( )

eq p s p

eq p
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Q L C

LR L
R R
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




 
    

      
 

               (3.35) 

The sensitivity of the quality factor of the active inductor is merely depends on 𝑅𝑠 in 

high frequencies. In order to boost the quality factor of active inductors, 𝑅𝑠 must be 

decreased.   Reducing 𝑅𝑠 is done by using advanced circuit techniques, such as MRC 

stage. The MRC stage is effective in lowering the output conductance and can be used 

here to reduce 𝑅𝑠, as shown in Figure 8 [15]. In the proposed circuit 𝑀𝑛, 𝑀𝑐−𝑛 and 

𝑀𝑏−𝑛 transistors are used for main elements of Gyrator-C, MRC stage and biasing, 

respectively. 

MRC stage is made up of PMOS transistors in order to: 
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 Minimize the input transistor as small as possible in order to control second 

stage biasing, 

 Decrease the number of  transistors in main path of AC signal.  

Table 3.8 shows equivalent resistance at node (1), with and without MRG stage in 

modified GAI (Figure 3.25). 

Table 3.8 : Equivalent resistance with-without MRC stage. 

Node (1)  

(Figure 3.25) 

resistance 

Without MRC 
,1 , 2/ /o o br r   

With MRC 
,1 , 2 , 1 , 1 , 2 , 2 , 3 , 3 ,1/ /( )o o b o c m c o c m c o c m c or r r g r g r g r         

 

It can be seen from Table 3.8, by adding MRC stage, the resistance enhancement is 

achieved. This stage can be employed at the input-output (1&2) nodes in order to 

decrease the conductance which affects the performance of the AI. 

The tunability of the AI is enhanced by variation of bias current (Ibias) and varactor 

capacitance value (Cvaractor). Varactor in CMOS technology is implemented by diode 

and MOS transistors. PMOS is usually employed to implement varactor. Working with 

a p-MOS transistor structure, the bulk is connected to the highest voltage of the circuit 

(Vdd) and the capacitor is formed between the gate and the drain and source. As the n-

well connection of the device is always connected to the highest possible voltage, the 

gate voltage shall be equal or lower to the bulk voltage and the transistor is working 

always in the inversion zone (I-MOS) (Figure 3.24(a)). The characteristic of this 

device is monotonic and non-linear, and the transition between the minimum possible 

capacitance (Cmin) to the maximum one (Cmax) is very sharp. It is clearly visible the 

sharp slope of the curve, which means that with a small variation of the bias voltage 

the capacitance changes considerably. Here the transition from Cmin and Cmax happens 

in 595 mV bias voltage variation [90, 91]. 
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(a) Physical structure 

 
(b) Capacitance variation versus Vsg 

Figure 3.24 : I-MOS varactor. 

Figure 3.26 demonstrates small-signal model of the proposed structure (Figure 3.25) 

in order to verify the input impedance characterization. In this figure, 𝑐𝑔𝑠𝑖  and 𝑔𝑚𝑖  

are gate-source capacitance and transconductance of the ith transistor, respectively. 

The input admittance of the circuit of Figure 3.26 is calculated as follows: 

1
3 2 34

1 2 4 1 1 2 4

1 1 1
in gs

m gs min o

m m m o m m m

Y sc
g sc gZ r

g g g r g g g

   




             (3.36) 
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Figure 3.25 : Modified GAI. 
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Figure 3.26 : Small-signal equivalent of proposed GAI. 

By considering the SFG (Figure 3.21(b)) and block diagram (Figure 3.22(b)) of FAI, 

the floating counterpart of proposed GAI is designed in Figure 3.25. Standard circuit 

analysis techniques yield the important parameters of the grounded and floating AI as 

follows: 
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           (3.37) 

The aspect ratio of transistors in proposed FAI circuit is given in Table 3.9. 
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Figure 3.27 : Circuit implementation of the proposed FAI. 

It can be seen from Figure 3.27 and Table 3.9 that the designed FAI is completely 

symmetrical from both ports, which it results in the same properties from both sides. 

The MRC stage not only used in input node but also used in output node, which leads 

to performance enhancement. 
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Table 3.9 : Transistors aspect ratio of proposed circuit. 

Transistor name W/L (µm/ µm) 

M1-1 , M2-1 4.8/0.18 

M1-2 , M2-2 16.5/0.18 

M1-3 , M2-3 5/0.18 

M1-4 , M2-4 6.1/0.18 

Mc-11 , Mc-21 10.9/0.18 

Mc-12 , Mc-22 , Mc-13 , Mc-23 5.2/0.18 

Mc-14 , Mc-24 11.3/0.18 

Mc-15 , Mc-25 , Mc-16 , Mc-26 5.9/0.18 

Mb-n  n=1,2,3,6,7 10/0.2 

Mb-n  n=4,5 3.7/0.18 

Mb-n  n=8,9 3.9/0.18 

3.5.3 Simulation Results 

The proposed GTAI and FTAI are designed and simulated using the AMS 0.18um 

CMOS process in Cadence. The width of the transistors, the values of 𝐼𝑏𝑖𝑎𝑠 and 

𝐶𝑣𝑎𝑟𝑎𝑐𝑡𝑜𝑟 are chosen to optimize the quality factor and inductance value of the AI.  

The simulated frequency response of the GAI is given in Figure 3.28. The proposed 

circuit has a very high operating bandwidth where the inductive characteristic extends 

from 100 MHz up to the self-resonance frequency at 6.2 GHz which makes it suitable 

for RF applications. Also, Figure 3.28 compares GAI with and without MRC stage. 

 

Figure 3.28 : Comparison AI circuits with and without  MRC stage (magnitude and 

phase). 

For investigating the FAI performance, Figure 3.29 configuration is used for 

simulation of ideal and CMOS FAI. The simulation result is shown in Figure 3.30. 
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Quality factor is tuned through the controllable bias current source (Ibias) of Figures 

3.25 and 3.27. Figure 3.31 shows the variation of inductance for different values of 

controllable bias current source and varactor capacitance. As seen from this figure, the 

inductance increase is controlled via bias current by the same load capacitance. On the 

other hand, for constant bias current the effective inductance can be tuned by changing 

the varactor capacitance value. 

Inductor

501acV v
ac

in

ac

V
Z

I


acI

 

Figure 3.29 : Circuit for FAI simulation. 

 

(a) 

 

(b) 

Figure 3.30 : Performance of proposed AI, (a) real and imaginary parts and QF, (b) 

magnitude and phase. 
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Figure 3.31 : Tunability of AI by changing bias current and varactor capacitance. 

By adjusting the bias current and varactor capacitance, the QF and SRF can be 

optimized for each inductance value. Table 3.10 shows optimized QF and SRF for 

some inductance values. 

Table 3.10 : Optimized Q and SRF value for different inductance values. 

L 

(nH) 

Q SRF (GHz) 

calculation simulation calculation simulation 

6 1000 567@3.7GHz 10.4 6.2 

50 700 456@3.5GHz 7.1 4.6 

100 800 534@2.6GHz 6 3.3 

200 900 498@1.9GHz 4.2 2.3 

286 650 397@1.4GHz 2.4 1.6 

In order to check the robustness of the proposed FAI circuit versus process variation, 

the Monte Carlo simulation with 200 iterations is done for specified inductance value 

by applying ±5 % Gaussian distribution at ±3σ level in the variation of transistors 

aspect ratio and threshold voltage. Regarding to Figure 3.32, 69% of the total samples 

occurred with the relative error of less than ±1.5 %, while in the worst case 21% of 

samples lead to the error of more than ±2 %. Figure 3.33 shows layout of the proposed 

FAI, which is drawn by Cadence software using single poly and metal (M1) with the 

total area of 26.1×35.8 µm2. As seen from layout configuration, the FLA is completely 

symetric, which results the same characterization from both ports of AI. Figure 3.34 

depicts the schematic and post-layout simulation results. Table 3.11 compares the 

performance of the proposed FAI with the previous ones.   
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Figure 3.32 : The result of Monte Carlo analysis of GC circuit for ±5 % mismatch in 

transistors aspect ratio and threshold voltage (No. of iterations = 200). 

 

Figure 3.33 : Layout of the proposed FAI. 

 

Figure 3.34 : Maginitude and Phase of AI (schematic and post-layout simulation). 
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Table 3.11 : Comparison with other FAIs. 

Ref CMOS 

process 

Vdd  

(V) 

L  

(nH) 

Q Inductive 

Frequency  

Range (GHz) 

Area  

(µm2) 

DC Power  

Consumpti

on (mW) 

[71] TSMC-

0.18 um 

1.8 - 40–

200 

0.375 – 2  - 3  

[142] AMS-

0.8um 

3 294-

394 

- 1  - 8.6 

[79] 0.35 um 3.3 685u

H-

12.4m

H 

- 0.25-0.75 170×
103 

2  

[55] TSMC-

0.18 um 

1.8 33 68 4 810 3.6 

[57] TSMC-

0.13 um 

1.2 1.9 38.8 3.5 2600 6.4 

This 

work 

AMS-0.18 

um 

1.8 6-284 10-

567 

0.1-6.2  934.4 2 

A new high Q, tunable floating active inductor was designed based on modified TGAI 

in this section. The proposed AI was designed on Gyrator-C topology and used a few 

number of transistors in the main path of signal, which made it suitable for RF 

applications. A CMOS varactor in the AI circuit was used to adjust the inductance 

value from few nH to 284 nH in the specific frequency range. Q factor can be tuned 

by changing bias current from 10 to 567. The DC power consumption of the proposed 

AI was 2 mW from 1.8 V dc power supply. Simulation results were provided for a 

0.18 um CMOS-AMS process. The results show that the circuit can be used in RF 

applications for frequency band 0.1-6.2 ranging in the 100 MHz~6.2 GHz frequency 

band. Total area consumption of the structure is 934.4 µm2. Comparison shows that 

our circuit has minimum power consumption, maximum BW and QF. 

3.6 Chapter Summery  

An examination of the principles, topology, characterization and implementation of 

GC AIs in CMOS technology has been presented. It is shown that both grounded and 

floating AIs can be synthesized and implemented by using GC networks. To provide 

a quantitative measure of the performance of active inductors, a number of figure-of-

merits have been introduced. In a low loss GAI, MRG stages are employed to lower 

conductance of input and output nodes. The RC feedback and cascoding techniques 

are used to design a high performance AI with ability to adjust its SRF, QF and 
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inductance value independently. FFP and p-type differential input transistors are 

utilized to design low noise AI and based on low loss GAI, a FAI is designed.   
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 CMOS GYRATOR-C ARCHITECTURES APPLICATIONS 

In order to show workability of the designed circuits based on in previous chapter, they 

are used in three applications. All designed AIs are based on GC architecture which it 

converts a capacitance to large impedance. On the other hand, micro sensors convert 

mechanical signal to capacitance variation in fF range.  

4.1 A 3-Axis Accelerometer With an Accurate CMOS GC Based Interface 

Circuit 

The capacitive based micro sensors convert mechanical signals to small capacitance 

variation. The capacitance variation in micro sensor is in the range of femto-Farads 

which makes it difficult to sense. On the other hand, the Gyrator-C topologies can 

convert a low capacitance variation to high impedance changing which makes it a good 

choice for being interface circuits for capacitive sensors. Then a new 3-axis 

accelerometer with ability to cancel cross section sensitivity is designed. The sensor’s 

electrodes are located in such a way that enables the structure to detect acceleration in 

all axis independently. Consequently, a new GC configuration for sensing very small 

capacitance changes in a capacitive sensor is presented. In the proposed configuration, 

the operating frequency range and Scaling Factor can be adjusted without affecting 

each other by tuning the bias currents. In addition, the proposed configuration employs 

RC feedback and cascading techniques to cancel the effect of the parasitic components. 

4.1.1 A 3-Axis MEMS Capacitive Accelerometer Free of Cross Axis Sensitivity   

An accelerometer is a sensor that measures the physical acceleration experienced by 

an object due to inertial forces or due to mechanical excitation. Designing sensors with 

MEMS technology have advantages of miniaturization, low cost, low power and good 

dynamic characteristics. Accelerometers as a major member of MEMS sensors, have 

been broadly used in different applications such as: vibration checking systems, 

inertial guidance, mobile devices, biomedical and automotive applications [92-100]. 
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The accelerometers are classified due to their sensing method for example: tunneling, 

piezoelectric, pizoresistive and capacitive [92, 93, 98]. The capacitive sensors are 

preferred in microelectronics because of their compatibility to CMOS technology, less 

thermal sensitivity, high accuracy, low power consumption and low noise [93, 94, 99, 

100]. 

Capacitive position sensing is done by interdigitated comb electrodes. They have 

become an integral part of many MEMS devices such as pressure sensors, gyroscopes 

and accelerometers. However, lateral accelerometers have been developed using comb 

electrodes and differentially detecting parallel electrodes to obtain linear output. The 

use of vertical capacitance change between comb fingers is limited by parasitic 

capacitance among fixed and movable electrodes and electrical isolation difficulties. 

There are many reported accelerometers in literature but most of them are one or two 

axis sensors [3, 5] and usually they suffered from cross axis sensitivity which decrease 

device performance.  For detecting acceleration in more than one direction, generally 

designers use more than one proof mass i.e. for each direction a proof mass is 

embedded [95, 97]. 

In this work to measure acceleration on 3-axis, it is proposed a unique configuration 

of electrodes which enables the sensor to measure acceleration in multi axis by one 

proof mass. The presented structure eliminates cross axis sensitivity in all directions 

of capacitive micro-machined accelerometer. Upcoming section describes the device 

operational principles and structural design. Next, simulation results are exhibited and 

then suggested fabrication process is explained. 

4.1.1.1 Operation Principles and Structural Design  

According to [92] rectangular shape is good choice due to its moderate displacement 

and capacitance variation compared to others. Consequently, it is choosen for 

designing proposed sensor. The whole suggested design is shown in Figure 4.1(a). The 

vertical and horizontal comb electrodes are designed to sense acceleration in X and Y 

axis, respectively. However, the central Square shape electrode is embedded to detect 

acceleration in Z axis direction. Capacitance variation in X and Y directions is due to 

area changing between fixed and movable electrodes but in Z axis is due to distance 

changing between them. This structure is free of cross axis sensitivity in all directions. 

The movable electrode fingers are smaller than their fixed counterparts which enable 
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the device to detect 3-axis accelerations without any interface on each other. To the 

best of authors’ knowledge, this is first time a 3-axis accelerometer is designed free of 

cross axis sensitivity. 

To show eliminating cross axis sensitivity by new configuration, the simple 

capacitance relation (C=kA/D), is used. As the structure measures acceleration in 3-

axis, so the investigation should be done for all directions separately. Calculations for 

applied acceleration in X and Y axis electrodes due to similarity is the same, thus 

calculation is done for X axis. The capacitance variation is calculated in four 

conditions: 

 1. Applied acceleration is in plane (X or Y),  

2. Applied acceleration is in out plane (Z),  

3. Applied acceleration is in both out & in plane (Z&X or Z&Y),  

4. Applied acceleration is in three directions(X&Y&Z) 

 
(a) 
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(b) 

Figure 4.1 : Proposed Structure, (a) 3D view, (b) Electrodes Arrangement (2D, top 

view). 

Since for each of mentioned states the capacitive changing is detected by separated 

electrodes, then the electronic circuit can easily detects acceleration orientation. 

4.1.1.2 Applied Acceleration Is In One Direction 

Figure 4.1(b) shows sample of electrodes embedded for acceleration detecting on 3-

axis. Since movable electrodes are smaller than their fixed counterparts, then Y and Z 

electrodes do not sense applied acceleration in X axis. This results in eliminating cross 

axis sensitivity completely. If it is considered that the acceleration applied just in X 
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axis in positive direction, then total capacitance changing after acceleration applying 

can be calculated as: 

2, 1,

2
( )x x x x

A a A a a
c c c k k

D D D

  
                                    (4.1) 

Where in (CΔ⌂,□), Δ defines the axis which capacitance is belong to, ⌂ shows number 

of capacitance and □ denotes the axis which acceleration is applied in. Since CX2,X is 

increased and CX1,X  is decreased, the analyzing part can easily detect the acceleration 

orientation. For Y axis, it is like as X case. If the acceleration is applied in positive Z 

direction, then the governing equations for the capacitance variation will be: 
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4.1.1.3 Applied Acceleration Is In Two Directions 

If the acceleration is exerted to two-axis (out & in plane), two circumstances occur, 

XZ and YZ. For XZ case, capacitance calculations are as: 
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In Y direction electrodes, there is not capacitance changing. The YZ case is same as 

XZ. 

4.1.1.4 Applied Acceleration Is In Three Directions   

If acceleration is applied in 3-axis i.e. XYZ, capacitance variation calculation in all 

orientations are as: 
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By comparing all states, it can be seen that capacitance variation for all of them in each 

axis is same. In other words the sensor is capable to eliminate cross axis sensitivity in 

all directions. 

4.1.1.5 Fabrication Process  

As suggested structure is design by the aim of automotive application, the dimensions 

should be accurate. Consequently surface micromachining is selected to fabrication 

process. Surface micromachining fabrication process for suggested device can be 

written as: 

1. Thermal wet oxidation (200nm),  

2. Al evaporation for bottom electrode (0.5um),  

3. Al pattern (forming bottom electrodes),  

4. Spin photoresist for air gap and lithography (2um),  

5. Polysilicon deposition by LPCVD (proof mass, 5um),  

6. Sio2 deposition by LPCVD (to form dielectric of proof mass),  

7. Sio2 and polysilicon pattern (forming proof mass),  

8. Al evaporation for top electrode (0.5um),  

9. Al pattern (forming top electrode),  

10. Releasing the structure (plasma ashing) 

The final 2D structure is depicted in Figure 4.2. The Y orientation electrodes cannot 

be seen in cross section view. 

Si2Sio

Al

Al

Polysilicon
2Sio

 

Figure 4.2 : Cross section view of final structure. 
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4.1.1.6 Simulation Results 

The simulation of the designed accelerometer is done by a MEMS-specific CAD tool 

named IntelliSuite. Figures 4.3(a and b) depict displacement and capacitance variation 

versus applied acceleration for 3-axis, respectively. The crucial characteristics of the 

accelerometer are given in Table 4.1. 

  

Figure 4.3 :  (a)Displacement versus applied acceleration in 3-Axis, (b)Capacitance 

variation versus applied acceleration in 3-Axis 

Table 4.1 : Accelerometer Characteristics 

Acceleration measuring axis X, Y and Z 

Mass 22.81 µgram 

Range of measurable 

acceleration 

X and Y ±67 g 

Z ±18 g 

Spring constant in  X and Y 633.52 

Z 239.27 

Sensitivity in X and Y 12 fF/g 

Total size 1.85 mm2 

A new 3-axis acceleration’s structure, fabrication process and simulation results are 

explained. The figure of merit of design was its entirely eliminating cross axis 

sensitivity. Furthermore, it could be measured acceleration in 3-axis with only one 

proof mass. On the other hand, in 3-axis, the applied acceleration has a linear 

relationship with the result of part II which is easily calculated by processing electronic 

circuits. The designed sensor is suitable for automotive application, therefore surface 

micromachining is chosen for fabrication process. 
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4.1.2 An Accurate CMOS Interface Capacitance Variation Sensing Circuit  

The capacitive sensing method is a popular method compare to other sensing methods 

in the sensors. Its popularity comes from low thermal sensitivity, high accuracy, low 

power dissipation and it can be integrated with CMOS process for electronic sensing 

part [101, 102]. CMOS has been the dominant Integrated Circuit (IC) design 

technology for more than two decades, which offers great advantages including low 

power consumption, ability to make analog and digital circuits on the same chip and 

easy of technology scaling. The integration of sensing and analysing parts results in a 

high accurate and more reliable device. 

The capacitance variation in micro sensor is in the range of femto-Farads (fF) which 

makes it difficult to sense [102, 103]. There are many reported works in order to design 

interface circuits for capacitive sensors [104-107]. Most of them have used front-end 

switched capacitor charge amplifier in the entrance gate of the interface circuit [104]. 

This method needs to add clocking part for analysing which makes the system more 

complex. On the other hand adding extra components such as sampling capacitors, 

active rectifiers and filters to the design, increases the parasitic components which in 

turn degrade performance of the sensing circuit [105, 106]. Some interface capacitance 

readout circuits need to employ floating variable capacitance which is not practical in 

some applications such as sensor because of serious problem in implementation phase 

[104, 105].  

Gyrator-C (GC) topologies can convert a low capacitance variation to high impedance 

changing. Inevitable parts of these topologies are their parasitic components. There are 

different modified version of GC topologies in the literature for minimizing the 

parasitic effects [108, 109]. These methods have some disadvantages such as their need 

to extra biasing parts which causes extra power consumption and more noise, and their 

limitation of the input signal swing. 

This section presents a new GC configuration for sensing very small capacitance 

changes in a capacitive sensor. In the proposed configuration, the operating frequency 

range and Scaling Factor (SF) can be adjusted without affecting each other by tuning 

the bias currents. In addition, the proposed configuration employs RC feedback and 

cascading techniques to cancel the effect of the parasitic components. 
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4.1.2.1 Circuit Description 

Figure 4.4 shows GC topology which is implemented by ideal operational 

transconductance amplifier as a basic block. The input impedance of the circuit can be 

written as: 

inZ

(1) (2)

1mG

2mG

:  capacitance 

         variation in 

         MEMS sensor

C

 

Figure 4.4 : Gyrator-C topology. 
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According to (4.5), SF is 𝟏/𝑮𝒎𝟏𝑮𝒎𝟐. If we suppose 𝑮𝒎𝟏 = 𝑮𝒎𝟐 = 𝟏 𝒎℧ then the SF 

will be 𝟏𝟎𝟔. In other word, 1 fF capacitance variation is as a 1 nH changing in input 

impedance. In Figure 4.4, nodes (1) and (2) are critical in term of determining circuit 

performance. The RC feedback and cascading techniques are employed for parasitic 

resistance cancellation in node (2) and parasitic capacitance controlling in node (1), 

respectively. 

4.1.2.2 Proposed Circuit 

Figure 4.5 shows the proposed capacitance scaling structure. The Gm1 in Figure 4.4 is 

mainly determined by transistors M2 and Gm2 is created with M4. In order to guarantee 

the stability and adjust operating frequency range of the GC structure, cascade input 

transistors (M1 and M2) are employed.  

In MOS transistors, gate-source capacitance and transconductance are directly 

proportional to size of the transistor. Input gate-source capacitance component (𝑐𝑔𝑠1) 

restricts operating frequency range of the equivalent input impedance of the proposed 

circuit. On the other hand, transconductance values determine SF. For decreasing input 

parasitic capacitance a small transistor is needed but for high transconductance a large 

transistor is used. While the input parasitic capacitance is decreased, the 

transconductance (𝐺𝑚1) can be increased by cascading input transistors (M1, M2 and 
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M5) to satisfy the stability condition of the structure [110, 111]. In this structure, 𝐺𝑚1 

and parasitic input capacitance can be controlled as desired without effecting each 

other. On the other hand, the 𝐺𝑚2 is determined by 𝑀4 (𝐺𝑚2 = 𝑔𝑚4) and since the 

proposed circuit scales the total capacitance in the gate of 𝑀4 (≈ ∆𝑐 + 𝑐𝑔𝑠4) then its 

gate-source capacitance determines the minimum capacitance which can be detected 

with the structure. However, the size of 𝑀4 has to be selected in such a way that it 

guarantees the stability of the design (𝐺𝑚1 > 𝐺𝑚2) [110, 112]. The stability of the 

circuit is insured by adjusting the size of 𝑀4. 
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Figure 4.5 : Schematic of the proposed circuit. 

Figure 4.6 demonstrates small-signal model of the proposed structure (Figure 4.5) in 

order to verify the input impedance characterization. In this figure, 𝑐𝑔𝑠𝑖   and 𝑔𝑚𝑖  are 

gate-source capacitance and transconductance of the 𝑖 − 𝑡ℎ transistor, respectively. 𝑐𝑔𝑠 

and 𝑔𝑚 are in the order of some tens of 𝑓𝐹 and 𝑚℧, correspondingly. Consequently, 

the term 𝑐𝑔𝑠𝜔 is very smaller than 𝑔𝑚 in the ≤G-Hz range of frequency. As a result, in 

the extraction of any relation from the proposed circuit, the terms consist of 𝑐𝑔𝑠𝜔 can 

be ignored beside to those consist of 𝑔𝑚. In this way, input admittance of the circuit 

of Figure 4.6 is obtained as follow: 
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Figure 4.6 : Small-signal equivalent of proposed circuit. 

The input admittance has other terms but they are very small in comparison with 

written terms in (4.6), thus they can be neglected. As seen from equation (4.6), by 

adding RC feedback, a negative term is appeared in the parasitic components (parallel 

resistance and capacitance). If this term is selected properly, it can cancel or decrease 

parasitic effects in the input impedance. Equation (4.6) shows that equivalent circuit 

of Figure 4.5 is a parallel RLC network and the expressions of these elements can be 

derived as: 
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If the M1 and M5 are supposed identical (⇒  𝑔𝑚1 = 𝑔𝑚5) and 𝑐𝑓 is selected close to 

(
𝑔𝑚2𝑐𝑔𝑠4

2𝑔𝑚4 
) + ∆𝑐, then the 𝑅 is cancelled (𝑅 = 0) and the C is decreased to some extent. 

As a result, the input admittance expression can be written as: 
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As it can be seen from (4.8 & 4.9) the input impedance is inductive in low frequency 

but it is capacitive in high frequency range (≥5 GHz). Equation (4.9) consists of two 

terms: the first term provides the capacitance scaling while the second term can be 

cancelled by a calibration step. According to equation (4.9), SF can be derived as:  
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The upper limit working of the proposed structure is determined by SRF because it 

increases (behaves inductively) up to SRF which can be calculated as: 
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The extracted equation of proposed structure proves that the scaling factor is 

determined by transconductances of M2 and M4. After obtaining the desired SF, the 

SRF range can be adjusted by 𝑐𝑔𝑠1. In this way, the circuit properties can be determined 

as desired separately. 

4.1.2.3 Simulation results 

To verify the performance of the proposed structure in capacitance scaling for micro 

sensors application, simulation results are carried out by HSPICE (TSMC level 49) in 

180 nm CMOS technology. In the simulation, the range of ΔC variation is between 

0 𝑎𝑛𝑑 200 𝑓𝐹. The magnitude changing of Zin versus frequency with respect to ΔC 

variation is depicted in Figure 4.7. It is seen from the figure that the SRF range of the 

circuit becomes lower when the value of ΔC increases. Thus, a smaller value of ΔC 

gives a higher frequency limit for linear scaling performance. As shown in Figure 4.8, 

for ΔC of 200fF, the magnitude changing of Zin is purely affected by the imaginary 

part up to 1.4GHz. Changing of Zin at 0.25, 0.5, 0.75 and 1 GHz is depicted in Figure 

4.9 (schematic and post-layout simulations), which shows almost linear behaviour 

versus ΔC variation. It is seen from Figure 4.7, 4.8, 4.9 and Table 4.2, up to ~0.7 GHz, 

highly linear scaling performance (linearity≥90%) is obtained from the proposed 

circuit. Table 4.2 declares linearity for proposed circuit in different frequencies which 
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is obtained based on Figure 4.9. Regarding Figure 4.9 and Table 4.2 there is trade-off 

between frequency and linearity. In other words, although the input-impedance 

magnitude is larger in high frequency but linearity is low. So according to the 

application proper frequency value should be determined. 

 

Figure 4.7 : Zin Mag. versus frequency in different capacitance variation. 

 

Figure 4.8 : Mag., real and Imaginary Parts of Zin when ΔC=200fF. 
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Figure 4.9 : Zin Magnitude versus capacitance changing in f=0.25, 0.5, 0.75 and 1 

(GHz). 

Table 4.2 : Linearity in different frequencies. 

 Frequency (GHz) 

0.25 0.5 0.75 1 

Linearity (%) 97 95 86 67 

To ensure the robustness of the circuit against the process variation, the Monte Carlo 

analysis with 100 iterations is performed by applying ±5 % Gaussian distribution at 

±3𝜎 level in the variation of transistors aspect ratio and threshold voltage. According 

to Figure 4.10, 75 %of the total samples occurred with the relative error of less than 

±1.5 %, while in the worst case 7% of samples lead to the error of more than ±2.5 %. 

Figure 4.11 shows layout of the proposed design which is drown by Cadence software 

using single poly and one metal (M1) with the total area of 7.2×39.8 µm2. 
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Figure 4.10 : The result of Monte Carlo analysis of GC circuit for ±5 % mismatch in 

transistors aspect ratio and threshold voltage when ΔC=100 fF and f=0.5 GHZ (No. of 

iterations = 100). 

 

Figure 4.11 : Layout of proposed circuit. 

An accurate front-end interface CMOS circuit is suggested for capacitive micro sensor 

applications. The proposed circuit converts small capacitance changing in sensor to 

sensible high magnitude impedance. In order to obtain high-performance from 

proposed circuit, the RC feedback and cascading structures are employed to diminish 

parasitic components effects. In the configuration of the circuit, SF and SRF values 

can be tuned separately. In order to simulate the circuit, HSPICE simulator was utilized 

to verify the validity of the theoretical formulations. The simulated characteristics have 

proved the efficiency of the circuit regarding linear scaling and tunability. 

Furthermore, Monte Carlo analysis of the circuit has showed robustness of the circuit 

performance against the process variation. 

4.2 Filter Designing By Using Designed Active Inductors 

Filters are widely used in analog signal processing [113, 114] to select the particular 

frequency. Voltage-mode and current-mode circuits such as current conveyors [115] 

and current feed back operational amplifiers [116] are getting much attention as 
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compared to other active elements due to wider bandwidth, simple circuitry, low power 

consumptions and dynamic ranges.  

In the last decade, a huge number of active building blocks were introduced for 

analogue signal processing. However, there is still the need to develop new active 

elements that offer new and better advantages. This section, focused on designing of 

other novel Analog Building Blocks (ABBs) such as Low-Pass Filters (LPFs) and 

Band-Pass Filters (BPFs) structure designs. 

In RF transceivers, filters are inevitable circuit blocks. Cost and power considerations 

drive the field for highly integrable systems forcing filters to be implemented with 

minimum number of passive elements where specifically inductors cause significant 

problems. Typical RF filters either use off-chip passive elements or their on-chip 

counterparts where the inductor presents major disadvantages such as large silicon 

area, limited inductance value and quality factor. In most cases, the inductor is a key 

factor in determining the total chip area where higher inductance values imply larger 

area consumption. An alternative way of addressing this problem has been designing 

active implementations of the inductor which offer much less area consumption 

independent of the desired inductance value, high quality factors and tunability [117-

121]. Obviously, the noise performance and dynamic range will be degraded, however 

they can be maintained at reasonably low levels for many applications.  

Due to disadvantages of conventional inductors, active element-based inductor design 

is very desirable to designers today. During the last few decades, various floating 

inductors have been created using different high-performance active building blocks. 

That is why replacement of conventional inductors by synthetic ones in passive LC 

ladder filters belongs to well-known methods of high-order low-sensitivity filter 

design. 

This section presents RF active filters based on designed AIs in previous chapters. The 

employed AIs are compact and have wide inductance band, high quality factor, low 

power consumption, low noise, and provide tunability. Based on these inductors, for 

demonstration purposes, third and six order Chebyshev filters with AMS 0.18 µm 

CMOS process are choosed. 
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4.2.1 Low-Pass Filter 

AIs are used widely for designing active filters. To show versatility of using AIs in 

filter applications, a third order Chebyshev LPF is selected. Topology of the selected 

filter is illustrated in Figure 4.12. Its cutoff frequency and ripple factor are 900MHz 

and 0.4 dB, repectively. The normalized transfer function of the proposed filter is as: 
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T s

s s s
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                             (4.12) 

The application of impedance scaling and frequency transformation rules for 50 Ω 

source resistance, 250 Ω load resistance, and 900 MHz cutoff frequency, yields the 

filter component values as L1=60.2 nH, L2=37 nH, C=925 fF. Figure 19 compares the 

magnitude and phase responses of proposed filter when the pasiive inductores and their 

active counterparts are employed. 
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Figure 4.12 : Lowpass filter topology. 

The GAI topology which is used as the core of the FAIs, is dipicted in Figure 4.13. 

The GAI topology is based on GC approach. The circuits analysis techniques yeild the 

important parameters of the GAI as follows: 
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𝜔z and 𝜔p are zero frequency and SRF of the proposed GAI in Figure 4.13 and QL the 

inductor QF, L the inductance value, Rs the parasitic series resistance of the inductor, 

G1, G2, C1 and C2 are the respective equivalent conductance and capacitances at nodes 

1 and 2. 
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Figure 4.13 :  Core GAI of FAI. 

Since the RF filter shown in Figure 4.12 requires floating inductors, it remains a task 

to design an active circuit which would replace these components. One approach to 

solve this problem is to extend the GC configuration used in the previous chapters so 

that the circuit behaves like a floating inductor as shown in Figure 4.14. It can easily 

be shown that (4.13) and (4.14) maintain valid for this circuit also. 
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Figure 4.14 :  The GC equivalent of the FAI. 

The floating inductors used in the RF filter have been designed based on the active 

inductor circuit given in Figure 4.13. Apparently, the circuit has been replicated and 

re-designed so that the positive and negative transconductance stages provide the 

symmetry shown in Figure 4.14. Obviously, a passive filter has no biasing problem, 

however the active implementation of an inductor requires biasing of the active 
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components, the MOS transistors in this case. The FAI circuit used to replace L1 and 

L2 is given in Figure 4.15. 
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Figure 4.15 : FAI circuit used in filter designing. 

Using the active inductor circuits mentioned above, the third-order Chebyshev lowpass 

filter shown in Figure 4.12 with  900 MHz cutoff frequency and 0.4 dB ripple has been 

simulated. Figure 4.16 compares the magnitude and phase responses of the filter where 

on-chip passive inductors (red-solid) and their active counterparts (green-dashed) have 

been used. The cutoff frequency of the active filter has been found almost 900 MHz, 

whereas the amount of ripple is 0.39 dB. 

 

Figure 4.16 : Frequency response of LPF with passive (red-solid) and active (green-

dashed) inductors. 
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4.2.2 Band-Pass Filter 

In RF transceivers, frequency detection networks or filters are inevitable circuit blocks. 

Cost and power considerations drive the field for highly integrable systems forcing 

filters to be implemented with minimum number of passive elements where 

specifically inductors cause significant problems. Typical RF filters either use off-chip 

passive elements or their on-chip counterparts where the inductor presents major 

disadvantages such as large silicon area, limited inductance value and quality factor. 

It is very easy to create an impedance match using passive elements which consist of 

lumped and distributed [122-124]. On the other hand, in many applications, there is a 

demand to construct lossless two-ports for various kinds of problems such as filters, 

power transfer networks or equalizers. But passive elements, especially inductors, 

have large resistive loss which degrade there quality factor which can be decreased by 

replacing them with active counterparts [125]. 

The analytic theory for RF application is used for simple problems [126-128], but it is 

not accessible for practical ones. Therefor it is essential to use Computer Aided Design 

(CAD) approach to design immittance equalizers with lumped, distributed or mixed 

elements [123]. Commercial CAD tools are used for optimization of frequency 

detection network performance, then characteristic impedance of  the lumped elements 

are calculated according to process parameters and specifications. Unfortunately, 

performance optimization is highly nonlinear with respect to characteristic impedances 

and needs proper initial values [129]. On the other hand selection of initial values is 

very important in order to have convergence optimization. 

The Simplified Real Frequency Technique (SRFT) is used to design filter. In [130], a 

similar technique called Modeling-based Real Frequency Technique (M-RFT) was 

proposed, while in this technique, circuit model of the load should be formed from the 

given numerical load data. But in SRFT, it is not necessary to obtain the model of the 

load. So the proposed method is simpler than M-RFT and gives the same performance 

as well. 

4.2.2.1 Mathematical Framework 

Filter designing can be considered as lossless two port block between a generator and 

complex load. It is expected that the block transfers maximum power from the source 

to the load over operation frequency band. The power transfer capability of the lossless 
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equalizer is precisely measured by means of the Transducer Power Gain (TPG) which 

can be defined as the ratio of power transferred to the load to the available power which 

is generated by source. By considering two port network in Figure 4.17, TPG can be 

calculated in terms of the normalized real and imaginary parts of load impedance 

(ZL=RL+jXL) and the back end impedance (Z2=R2+jX2) or generator impedance (ZG= 

RG+jXG) and the front end impedance (Z1=R1+jX1) as follow: 

 
       

12

2 2 2 2

2 2 1 1

44 GL L

A L L G G

R RP R R
TPG

P R R X X R R X X
   

     
        (4.15) 

where PL and PA are power delivered to the load and available power from the 

generator, respectively.  

Two-Port Lossless  Network

ZL

ZG

E

S2 , Z2S1 , Z1

 

Figure 4.17 : Two port network. 

To design lossless two port network, the TPG should be maximized inside desired 

frequency band with. Thus, the Z1 and Z2 (Figure 4.17) must be determined very 

carefully. When they are determined properly, the network can be easily synthesized. 

There are many approaches to modeling the aforementioned networks. Carlin used 

Real Frequency Line segment Technique (RF-LST) to realize Z2 [131, 132]. In this 

approach, Z2 is realized as a minimum reactance function and its real part 𝑅2(𝜔) is 

represented by line segments in such a way that 𝑅2(𝜔) = ∑ 𝑎𝑘(𝜔)𝑅𝑘
𝑚
𝑘=1 , passing 

through m selected pairs designated by {𝑅𝑘, 𝜔𝑘; 𝑘 = 1, … , 𝑚}. In this formalism, the 

break points (or break resistances) 𝑅𝑘 are considered to be the unknowns of the 

network problem. Then, these points are calculated via the nonlinear optimization of 

TPG. The Imaginary part 𝑋2(𝜔) = ∑ 𝑏𝑘(𝜔)𝑅𝑘
𝑚
𝑘=1  of Z2 is also written by means of 

the same break points 𝑅𝑘. It must be noted that coefficients 𝑎𝑘(𝜔) are known quantities 

and calculated in terms of the preselected break frequencies 𝜔𝑘. The coefficients 

𝑏𝑘(𝜔) are generated by means of the Hilbert transformation relation given for 
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minimum reactance functions. Let 𝐻{0} represent the Hilbert transformation operator. 

Then, 𝑏𝑘(𝜔) = 𝐻{𝑎𝑘(𝜔)}. The disadvantages of RF-LST are the two independent 

approximation steps. Although this approach guarantees the realization of impedance 

but increases complexity of computational steps and nonlinearity of the TPG with 

respect to the optimization parameters. 

Another approach is Direct Computational technique (DCT) which is similar to RF-

LST [133]. Here, the real part of the unknown matching network impedance 𝑅2 is 

expressed as a real even rational function. Then, the unknown coefficients of this 

function are chosen to optimize the gain performance. 

In another method proposed by Fettweis, the parametric representation of the positive 

real back-end driving point impedance Z2 is utilized [134]. More specifically, the 

positive real impedance Z2 is written in a partial fraction expansion, and then, the poles 

of Z2 are determined by optimizing the gain performance of the system in the interested 

frequency band. The parametric approach can be used for solving single matching 

problems. The difficulty is to initialize the locations of the poles, which are critical. 

In aforementioned methods, the lossless network is designed in terms of free 

parameters by means of driving point impedance Z2. In the real frequency scattering 

approach, which is referred to as the SRFT, the canonic polynomial representation of 

the scattering matrix is used to describe the lossless network [135-140]. 

In all discussed approaches the aim is to express Z2 of the network and then 

synthesizing it to extract network’s elements values. After, the TPG is optimized by 

(1). Also the front-end and back-end impedances (Z1 and Z2) can be determined by 

using three parameters; the scattering parameters of the network, source reflection 

coefficient and load reflection coefficient. In the next section, the canonic polynomial 

representation of the scattering parameters is calculated. 

4.2.2.2 Extracting the characterization of two port network 

According to Figure 4.17, scattering parameters of passive two-port network can be 

figured out from energy point of view as: 
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Where 𝑝 = 𝜎 + 𝑗𝜔 is the classical complex frequency variable, 𝑔 is a strictly Hurwitz 

polynomial, 𝑓 is a real monic polynomial, and 𝜇 is a unimodular constant (𝜇 = ±1). 

If the two-port network is reciprocal, then the polynomial f is either even or odd and 

𝜇 = 𝑓(−𝑝)/𝑓(𝑝). The polynomials {𝑓, 𝑔, ℎ} are related by the Feldtkeller equation 

[135]. 

( ) ( ) ( ) ( ) ( ) ( )g p g p h p h p f p f p                           (4.17) 

Therefore, if the 𝑓(𝑝) and ℎ(𝑝) are specified by designer, then the whole scattering 

parameters and the network itself can be defined completely. In all applications, 

designers have an idea about the zero locations of their network. Hence, the 𝑓(𝑝) 

which is constructed on the transmission zeroes is defined by the designers. So, the 

following form can be used for 𝑓(𝑝): 

2

1 2 2

0

( ) ( )
m

m

i

i

f p p p a


                                   (4.18) 

Where 𝑚1 and 𝑚2 are nonnegative integers and 𝑎𝑖’s are arbitrary real coefficients. 

This form corresponds to ladder-type minimum phase structures, whose transmission 

zeroes are on the imaginary axis of the complex 𝑝-plane. 

The input reflection coefficient (S1) of the network when its output port is terminated 

in 𝑍𝐿 can be written in terms of the scattering parameters of the matching network as: 

12 21
1 11

221
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L
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
                                   (4.19) 

where 𝑆𝐿 is the load reflection coefficient expressed as: 

1

1

L
L

L

Z
S

Z





                                       (4.20) 

Consequently, the output reflection coefficient (S2) of the network when its input port 

is terminated in 𝑍𝐺  can be written in terms of the scattering parameters of the network 

as: 

12 21
2 22

111
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S S S
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S S
 


                                 (4.21) 

Where 𝑆𝐺 is the source reflection coefficient and expressed as: 
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Then the front-end and back-end driving point impedances of the network can be 

calculated by the following equations, respectively: 

1
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Finally, obtained Z1 or Z2 function is synthesized by Darlington theory and yields the 

desired equalizer topology with initial element values. Eventually, performance of the 

matched system is optimized using the CAD tools. If an equation is written for the load 

impedance in terms of the network parameters (impedance or admittance) and the input 

impedance of the network, then this equation can be used in the process design. It can 

be seen that the proposed method is very simple, and there is no need to obtain a proper 

model of the given load data. By using the proposed technique, networks with lumped 

elements can be designed. 

4.2.2.3 Computational Steps 

Firstly, the inputs and outputs of algorithm should be defined. 

Inputs: 

 𝑍𝐿 and 𝑍𝐺: Load and source impedances 

 𝑤𝑖:sampling frequencies, 𝑤𝑖 = 2𝜋𝑓, and operation frequencies 

 𝑅𝑛, 𝑓𝑛: normalization factors 

 𝑛: number of UEs in equalizer 

 ℎ0, ℎ1, … , ℎ𝑛: Initial real coefficients of ℎ(p) polynomial. (n is the degree of 

the polynomial which is equal to the number of lumped elements in power 

transfer network) 

 𝑓(p): A polynomial structured on transmission zeros of frequency detection 

network (its practical form is in (4.18)) 

 𝛿𝑐: the stopping criteria of the sum of the square errors 
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Outputs: 

 Analytic form of the input reflection coefficient of the lossless frequency 

detection network, 𝑆11(𝑝) =
ℎ(p)

𝑔(p)
. It is noted that this algorithm determines the 

coefficients of the polynomials ℎ(p) and 𝑔(p), which in turn optimizes the gain 

performance of the system. 

 TPG of network: |𝑆21|2 (forward reflection coefficient) denotes the transducer 

power gain of the network.  

 Lumped elements values and topology of network: This step is resulted from 

𝑆11 synthesis. 

In order to construct the gain function of Chebyshev type the algorithm steps can be 

expressed as follows: 

 Step 1: Normalization of frequencies and impedances with respect to  𝑓𝑛, 𝑅𝑛 

 Step 2: Generation of the strictly Hurwitz polynomial 𝑔(p) (from (4.17)) and 

scattering parameters (from (4.16)). 

 Step 3: calculation of the source and load reflection coefficients SG and SL 

(from (4.22 and 4.20)) 

 Step 4: calculation of the Z1 and Z2 (from (4.23 and 4.24)) 

 Step 5: obtaining TPG (from (4.15)) 

 Step 6: calculation of error via 𝜖(𝜔) = 1 − 𝑇𝑃𝐺(𝜔); then 𝛿 = ∑|𝜖(𝜔)|2 

 Step 7: if 𝛿 is acceptable (𝛿 ≤ 𝛿𝑐), then synthesize 𝑆11(𝑝). Otherwise, change 

the initialized coefficients of the polynomial h(p) and starting from step 2. 

4.2.2.4 Designing 6-order BPF 

In this section, explained algorithm is employed for designing of a 6-order filter. The 

pass band of the BPF is 1 GHz between 1.5-2.5 GHz and its ripple factor is 0.6. The 

ZL and ZG are 50Ω. The structural scattering parameters structural polynomials are as: 

6 5 4 3 2

3

6 5 4 3 2

( ) 4.36 0.00534 13.94 0.000734 13.94 0.007 4.36

( )

( ) 4.36 4.4 16.16 9.8 16.16 4.4 4.36

h p p p p p p p

f p p

g p p p p p p p

      



      

   (4.25) 
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After synthesizing the obtained scattering parameter or the corresponding impedance 

function, the BPF seen in Figure 4.18 is obtained.  Figures 4.19 and 4.20 show the 

TPG performance of the designed BPF, which are simulated by MATLAB and 

Cadence respectively. In Figure 4.20, passive inductors are replaced with their active 

counterparts and the result is looked almost similar. 

 

Figure 4.18 : Designed lumped element BPF. 

 

Figure 4.19 : TPG performance of designed BPF. 
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Figure 4.20 : AC response proposed BPF with passive (red-solid) and active (blue-

dashed)  inductors - Magnitude and Phase. 

The grounded and floating active inductors, which are replaced with their passive 

counterparts in BPF are shown in Figure 4.21. Detailed explanation of the employed 

AI was in previous section. 
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(a) Grounded (b) Floating 

Figure 4.21 : Utilized grounded and floating AIs in 6-order BPF, a) Grounded, b) 

Floating. 

4.3  Chapter Summery 

This chapter focused on GC network applications. Firstly, it is used as an accurate 

interface circuit for detecting capacitance variation in MEMS sensor. Then, in order to 

show workability of designed GC based AIs in Chapter 3, they are employed in LPF 

and BPF circuits. The simulation results prove their performance in filter 

implementation.
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 CONCLUSION 

5.1 Summary of the Work 

CMOS technology has turned to dominant technology for implementing electronic 

circuits, nowadays. The structures which are designed with CMOS technology are very 

compact and low cost and low power. On the other hand, spiral CMOS inductors, 

which are the major components of RFICs, cannot provide high and tunable 

inductance, high QF and occupy large silicone area. Therefore, AIs have become a 

good alternative for them. They are used widely in many applications such as LNAs, 

power-dividers, phase-shifters and matching networks.  

There are many approaches in implementation of AIs in CMOS technology. Among 

them current conveyers and GC networks are very popular for designing AIs in low 

and high frequency applications, respectively. The popularity of GC approach arises 

from its ability to adjust gyrator’s transconductance and load capacitance easily by 

bias currents and MOS varactors. So, this approach is used in this thesis to implement 

new and high performance AI circuits. 

The main concerns about AIs are their loss and noise. At the our first AI circuits, the 

MRC stages were used to reduce the loss of the proposed circuit. As a result QF of the 

designed AI was maximized. Constructing the MRC stages with PMOS transistors 

made the input transistor as small as possible. Consequently, the SRF of the structure 

was increased due to reduced input parasitic capacitance. Furthermore, the number of 

active elements were reduced in main path of the ac signal, which makes the circuit 

suitable for RF applications. However, these stages did not cause to noise performance 

degrading.  

There is a tradeoff between the QF and SRF of the AIs. A large input transistor is 

needed for high-Q and high inductance value AI but a small input transistor is required 

for high SRF AI. This idea became the main motivation to design the second AI with 

ability to adjust its characterization independently. As it discussed before, input 

transistor is very important regarding to AI characterizations. Cascoding input 
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transistor gives the ability to adjust the first gyrator’s transconductance and input 

parasitic capacitance independently. Furthermore, the inductance value can be 

adjusted by other transistor’s transconductance. The RC feedback is utilized to cancel 

the parasitic series-resistance of AI, which results in QF enhancement. Since, bias 

condition of cascoding transistors is provided by a diode-connected transistor, the 

proposed structure is robust in terms of performance over variation in process, voltage 

and temperature. Reviewing the literatures proves that it is first time the properties of 

AI can be independently adjusted without affecting each other.  

The Noise of designed AIs has limited the use of them in RF applications such as 

LNAs. The main noise source of an AI is its input transistor. In order to have low noise 

AI, the input transistor should be designed large enough. But it leads to low SRF which 

limits the inductive frequency band. A new low-noise and low-loss AI was presented 

as third AI circuit, which is suitable for RF low noise applications. Utilizing all 

transistors in CS configuration on the AI circuit leads to low conductance nodes which 

causes to high-Q AI. P-type MOS transistors and Feed-Forward Path (FFP) are 

employed to decrease noise of the AI, respectively.  

As a fourth AI circuit, floating version of low-loss GAI was designed in symmetric 

configuration. Similar to the grounded type its properties can be tuned very easily by 

changing its gyrators’ transconductance and load capacitance value. Four MRC stages 

were employed to reduce its input/output nodes conductance. Table 5.1 compares pros 

and cons of all designed AIs in this thesis. Table 5.2 compares the designed AI circuits 

with reported ones in the literature. 
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Table 5.1 : Comparison pros and cons of designed AIs. 
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Based on Table 5.1, for each application a suitable designed AI can be selected. For 

instance for LNA, low noise one is appropriate than the others. Among all newly 

designed GAI, the adjustable properties are the best in term of AI characterization. 

Because its parasitic components are diminished as much as possible and its properties 

can be adjusted separately from each other regarding employed techniques. 
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Table 5.2 : Comparison of designed AIs with reported AIs. 
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3.2 0.18/1.8 13 0.3-11.2 11.2 1k  1 534.6  74  n.a. 

3.3  0.18/1.8 216  0.3-11.3 11.3 2.1k  1 286.56  72  n.a. 

[64] 0.18/1.8 33 n.a.  33 3.6 n.a. n.a. n.a. 

[68] 0.13/1.6 14.5 0.5-10.2 10.2 3k 13.6 3750 n.a. n.a. 

[41] 0.13/1.2 144 0.3-7.32 7.32 3.9k 1 n.a. n.a. 35 

Low-Noise AIs 

3.4 0.18/1.8 35  0.6-9.2 9.2 1.25k 1.3 475.44 68 15 

[42] 0.09/1.2 165 0.6-3.8 3.8 120  1.2 n.a. n.a. 12 

[45] 0.18/1.8 43 0.645-6.3 6.3 1k  0.65 n.a. n.a. 54 

[141] 0.09/1 26 1.7-5.5 5.5 895 0.515 605 n.a. 36 

Floating AIs 

3.5 0.18/1.8 284  0.1-6.2 6.2 567 2 934.4 69 n.a. 

[57] 0.13/1.2 1.9 3.5 3.5 38.8 6.4 2600 n.a. n.a. 

[55] 0.18/1.8 33 4 4 68 3.6 810 n.a. n.a. 

[79] 0.35/3.3 12400  0.25-0.75 0.75 n.a. 2 170×103 n.a. n.a. 

 

Table 5.2 can be devided to three groups as: 1) GAIs (white), 2) low-noise GAI (gray), 

3) Floating AI (darker gray). Among all presented GAIs in Table 5.2, our designed AI 

which is described in detail in section 3.3, has high performance in term of AI 

charactrization. Futhermore, its properties such as SRF, QF and inductance value can 

be adjusted independently. It has largest SRF and lowest area consumption.  

Among second group’s GAIs, which are suitable for low noise application, our 

designed has best SRFand QF and its noise performance is the best among the circuits 

which use 0.18 µm technology. In other words, it can utilized in wider frequency 

bandwidth applications. Above mentioned advantages are also valid for our designed 

FAI according to the third group of FAIs in Table 5.2. Although the number of 

transistores are increased, its power consumption is the one of the lowest. Its simmetric 

configuration leads to low area consumtion compared to the other FAIs. 
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Two applications are presented in the thesis to show the usability of our new AIs. One 

of them is the capacitive micro sensors which convert mechanical signals to small 

capacitance variation. The capacitance variation in micro sensor is in the range of 

femto-Farads which makes it difficult to sense. On the other hand, the Gyrator-C 

topologies can convert a low capacitance variation to high impedance change which 

makes it a good choice as interface circuits for capacitive sensors. In this thesis, a new 

3-axis accelerometer with ability to cancel cross section sensitivity was designed. It is 

first time in the litrerature that an accelerometer can measure all axis accelerations by 

using one proof mass.  The sensor’s electrodes were located in such a way that enables 

the structure to detect acceleration in all axis independently. This is another new 

contribution in designing sensors. Consequently, a new and accurate GC configuration 

for sensing very small capacitance  changes in a capacitive sensor was presented. In 

the proposed configuration, the operating frequency range and SF can be adjusted 

without affecting each other by tuning the bias currents. In addition, the proposed 

configuration employs RC feedback and cascoding techniques to cancel the effect of 

the parasitic components. 

Finally, in order to show versatility of designed AIs, they are used in designed third 

and sixth order broadband microwave filters. The first one is a third order Chebyshev 

low pass filter. The second one, which is designed by using simplified real frequency 

technique is a sixth order Chebyshev band pass filter. The simulated frequency 

response of filters prove the workability of the designed AIs. 

5.2 Scope of Future Works 

Some points are suggested as future works, which can be probably improve the 

performance of the designed circuits implementation and applications of AIs.  

 Design AI with high linearity 

 Design AI with high dynamic range 

 Other topologies to design AI suitable for RF applications 

 GC network as a frequency dependent negative impedance 
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 Design of floating version of designed GAIs 

 Design AI with mutual inductance characterization 

 Using designed AIs in implementation of: 

o transformers 

o LNAs 

o All kinds of filters 

o Power dividers 

o Matching networks 

o Phase shifters 

o VCOs 

o Trans-impedance amplifiers 

…..  
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