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LUMPED PARAMETER MODELS FOR LOW-TEMPERATURE
GEOTHERMAL RESERVOIRS

SUMMARY

Lumped parameter modeling which is also known as zero-dimensional modeling, is
used most commonly at the beginning of the life of a field, when relatively little
information is available for the field. Generally, in all lumped parameter models, the
reservoir is described as a single homogeneous tank with average properties. The
pressure (and/or water level) changes in the reservoir are modeled by using mass and
energy balances and therefore, the potential of the field can be predicted under
various production/reinjection scenarios.

The main objective of this dissertation is to model pressure (or water level) behavior
of the low-temperature liquid dominated geothermal reservoirs. The tools with the
objectives are to be achieved by a simpler approach known as lumped parameter
models and analytical models are obtained by well known material balance
equations. Since no boiling takes place during the production of low temperature —
high pressure liquid dominated geothermal reservoirs, the actual path would be
essentially isothermal. Therefore, in our lumped models valid for low-temperature
liquid dominated geothermal reservoirs, only mass balance is applied and energy
balance is neglected.

In this study, reservoir and aquifer are represented by different tanks and the effect of
recharge on the performance is studied. The reservoir in which the
production/reinjection occurs represents the innermost part of the geothermal system.
The changes in pressure and/or water level are monitored and production/reinjection
rates are recorded. The aquifer in which neither production nor reinjection occurs,
recharges the reservoir. The production causes the pressure in the reservoir to
decline, which results in water influx from the aquifer to the reservoir. The recharge
source represents the outermost part of the geothermal system and recharges the
aquifer.

Tank systems used in modeling to represent the geothermal system can be classified
as; (a) 1 reservoir with recharge source (1-Tank Model), (b) 1 reservoir-1 aquifer
with/without recharge source (2-Tank Model), (¢) 1 reservoir-2 aquifers with/without
recharge source (3-Tank Model), (d) 1 shallow reservoir-1 deep reservoir with
recharge source (2 Reservoir Tanks Without Aquifer Model), (¢) 1 shallow reservoir-
1 deep reservoir-1 aquifer with recharge source (2 Reservoir Tanks With Aquifer
Model).

The outer aquifer boundary is investigated in 2- and 3-tank models. If the aquifer
tank is supported by a constant pressure recharge source the system is called as
“Open System” and if it has no flow boundary the system is called as “Closed
System”. The model equations are obtained for both open and closed systems.
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Moreover, unsteady-state flow behavior of recharge is modeled by using more than 1
aquifer tank (e.g. 2- and 3-tank models).

The advantage of the 2 reservoir tank models, in which the reservoir is represented
by 1 shallow and 1 deep reservoir tanks, over the 1-, 2- and 3-tank models, in which
the reservoir is represented by 1 reservoir tank, is that the shallow and deep parts of
the field can be treated separately. Therefore, several production and reinjection
scenarios such as 1) production and reinjection for both zones, 2) production from
the deeper one and reinjection into the shallow one, or vice versa, can be
investigated.

Natural recharge is taken into account by applying Schilthuis steady-state water
influx model between the tanks (aquifer-reservoir, recharge source-aquifer, and
recharge source-reservoir).

The early-time and the late-time reservoir pressure behavior can be easily handled by
asymptotic expressions of the analytical solutions, since the governing equations are
obtained as simple analytical expressions. During the early-time production period,
the reservoir pressure decreases linearly with the production time as a function of
production/reinjection rate and, reservoir storage capacity. The reservoir pressure
during the long-term production in closed systems continuous to decline as a
function of production/reinjection rate and, the system (aquifer + reservoir) storage
capacities. However, in open systems the reservoir pressure stabilizes at a constant
value as a function of production/reinjection rate, and aquifer and reservoir recharge
constants.

Model results for constant production/reinjection flow rates are given in the form of
analytical expressions and variable flow rate case is modeled by Duhamel’s
Principle.

The models are used to match the long-term measured water level or pressure
response to a given production/reinjection history. For history matching purposes,
Levenberg-Marquardt optimization algorithm is used to minimize an objective
function based on weighted least-squares for estimating relevant aquifer/reservoir
parameters. In addition, standard 95% confidence intervals are computed to assess
uncertainty in the estimated parameters. Moreover, the standard deviation of errors as
well as the root mean square errors (RMS) are also computed for each data set
matched to show the matching quality as quantitatively.

Four field examples (Laugarnes, Glerardalur and Svartsengi geothermal fields
located in Iceland and the Balcova-Narlidere geothermal field located in Turkey) are
studied to demonstrate the applicability and validity of the models and optimization
algorithm. The measured and simulated water level changes obtained from the
models are discussed. The modeling results for the field cases (especially Balcova-
Narlidere geothermal field case) show that the inaccuracy as well as the discontinuity
of the input data such as the production/reinjection flow rates and the water level
measurements greatly affect the confidence intervals and RMS values computed
from the matching analysis of the model. A longer and continuous history of
production/reinjection and water level data with accuracy definitely increases the
reliability of the matching procedure. Moreover, reliability of the selected model
increases by considering available geologic, geophysical, hydraulic data.
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DUSUK SICAKLIKLI JEOTERMAL REZERVUARLAR ICIN BOYUTSUZ
MODELLER

OZET

Yeni bulunan jeotermal sahalar i¢in elde yeterli miktarda veri bulunmamasi
nedeniyle sifir-boyutlu modelleme olarak da bilinen boyutsuz rezervuar modellemesi
sik¢a kullanilan bir yontemdir. Boyutsuz rezervuar modellerinde rezervuar ve akifer
homojen tanklar olarak tanimlanmakta ve bu tanklarda rezervuar ve akiferin ortalama
ozellikleri kullanilmaktadir. Rezervuarin basinci (veya su seviyesi) tanklarda kiitle ve
enerji dengesi kurularak modellenmektedir. Boylece gesitli iiretim/tekrar-basma
senaryolari i¢in sahanin potansiyeli tahmin edilebilmektedir.

Bu doktora c¢aligmasimin baglica amaci diisiik sicakliklt sivinin etken oldugu
jeotermal rezervuarlarin basing (veya su seviyesi) davramisim modellemektir. Bu
amagla boyutsuz rezervuar modelleri kullamlmakta ve bilinen kiitle denge
denklemleri kullamlarak analitik modeller gelistirilmektedir. Diisiik sicaklikli ve
yiiksek basingli sivinin etken oldugu jeotermal rezervuarlarda iiretim donemi
siresince rezervuar iki faza gegmedifi igin sistem iginde izotermal kosullar
gegerlidir. Bu nedenle bu ¢alismada sadece kiitle dengesi kullanilarak, enerji dengesi
ihmal edilmektedir.

Bu ¢alismada, jeotermal sistemi olusturan rezervuar ve akifer ayr1 ayr tanklar olarak
temsil edilmekte ve beslenme kaynagimin etkisi incelenmektedir. Rezervuar tiretim
ve tekrar-basmanin gergeklestigi jeotermal sistemin i¢ bolgesini temsil etmektedir.
Basing ve/veya su seviyesindeki degisiklikler gozlemlenerek, tiretim/tekrar-basma
debileri kay1t edilmektedir. Uretim ve tekrar-basma yapilmayan bslge olan akifer ise
rezervuan beslemektedir. Rezervuardan yapilan {iretim nedeniyle rezervuar basinci
dismekte ve akiferden rezervuara su girigi olmaktadir. Jeotermal sistemin dis
bolgesini temsil eden beslenme kaynagi ise akiferi beslemektedir.

Modellemede kullamlan tank sistemleri: (a) 1 rezervuar tanki ve beslenme kaynag:
(1-Tank Modeli), (b) 1 rezervuar, 1 akifer ve beslenme kaynagi (2-Tank Modeli), (c)
1 rezervuar, 2 akifer ve beslenme kaynagi (3-Tank Modeli), (d) 1 si§ rezervuar, 1
derin rezervuar ve beslenme kaynag1 (Akifersiz 2 Rezervuar Tanki Modeli), () 1 s1g
rezervuar, 1 derin rezervuar, 1 akifer ve beslenme kaynagi (Akiferli 2 Rezervuar
Tanki1 Modeli) seklinde siralanabilmektedir.

Yukaridaki modellerde akifer tankinin dig sinirindan sabit basingli bir beslenme
kaynagindan beslenmesi (Agik Sistem) ve dis sinirindan beslenme olmamasi (Kapali
Sistem) durumlar1 da g6z 6ntinde bulundurulmakta ve model ¢6ziimleri bu iki farkli
durum igin sunulmaktadir. Ayrica, birden fazla akifer tankinin kullanilmasi (2- ve 3-
tank modelleri) beslenmenin kararsiz akigim modellenmeye olanak saglamaktadir.

Rezervuarin 1 s1§ ve 1 derin rezervuar tanki olarak temsil edildigi 2 rezervuar tank:
modellerinin rezervuarin bir rezervuar tanki ile temsil edildigi 1-, 2- ve 3- tank
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modellerine gore en bilylik avantaji, sahadaki s1§ ve derin {iretim tabakalarinin ayn
ayr1 incelenmesine olanak saglamasidir. Béylece her iki tiretim tabakasindan (s1g ve
derin) liretim/tekrar-basma yapilmasi veya herhangi birinden iiretim ve digerinde
tekrar-basma yapilmasi durumunda sahanin davranigint modellemek olasidir.

Tanklar arasindaki (akifer-rezervuar, beslenme kaynagi-akifer ve beslenme kaynagi-
rezervuar) dogal beslenme igin Schilthuis kararli akig su girisi modeli
kullanilmaktadir.

Model denklemleri basit analitik ifadeler seklinde elde edildiginden modellerin erken
ve ge¢ zaman davramslari kolaylikla incelenebilmektedir. Zamanin erken
dénemlerinde rezervuar basinc tiretim/tekrar-basma debisi ve rezervuarin depolama
kapasitesinin bir fonksiyonu olarak zamanla dogrusal olarak azalmaktadir. Zamanin
gec donemlerinde ise kapal: sistemlerde rezervuar basinci iiretim/tekrar-basma debisi
ve sistemin (rezervuar + akifer) depolama kapasitesine bagli olarak azalmaya devam
etmekte ancak agik sistemlerde iiretim/tekrar-basma debisi ve akifer ve rezervuarin
beslenme katsayisinin bir fonkisyonu olarak sabit bir degerde sabitlenmektedir.

Model sonuglart sabit debide iiretim/tekrar-basma durumunda analitik ifadeler
seklinde verilmekte ve daha genel degisken debili iiretim/tekrar-basma durumlar
gelistirilen sabit debili analitik ¢oztimlere Duhamel ilkesinin uygulanmasiyla
modellenmektedir.

Gelistirilen modelerden elde edilen basing (veya su seviyesi) verileri uzun dénem
olciilmiis basing (veya su seviyesi) verileri ile g¢akigtirlmakta akifer/rezervuar
ozellikleri tahmin edilmektedir. Gegmis zamanlara ait verilere ¢akigtirma yapmak
amaciyla, optimizasyon yontemlerinden Levenberg-Marquardt yontemi kullanilarak
dogrusal olmayan agirlikli en kiigiik-kareler yontemi {izerine kurulu hedef
fonksiyonu minimize edilmektedir. Tahmin edilen parametrenin giivenilirligini
belirlemek amaciyla standart %95 giivenilirlik aralifi hesaplanmaktadir. Ayrica,
¢akismanin uyum derecesini niteliksel olarak olarak degerlendirmek icin gakismaya
ait RMS (sapmalarin karelerinin toplamimin ortalamasiun karakoékil) degeri
hesaplanmaktadir. RMS degeri kiigiildiikge, model sonuglar ile saha verilerinin
cakigmasi iyilesmekte ve parametreler igin elde edilen %95 giivenilirlik araliklari
kiigtildiikge parametreler daha giivenilir hesaplanmaktadir.

Izlanda’da bulunan Laugarnes, Glerardalur ve Svartsengi jeotermal sahalar1 ile
Tiirkiye’de bulunan Balgova-Narlidere jeotermal sahasina ait veriler kullamlarak bu
caliymada gelistirilen modellerin ve optimizasyon tekniginin uygulamas
yapilmaktadir. Modellerden elde edilen su seviyesi degisimlerinin 6lgiilen su seviyesi
degisimleri ile gosterdigi uyum tartigilmaktadir. Yapilan saha uygulamalar (6zellikle
Balgova-Narlidere uygulamas1) tiretim/tekrar-basma debileri ve su seviyesi
Slgtimlerinin stirekliliginin, %95 giivenilirlik araliklarini ve RMS degerlerini oldukga
fazla etkiledigini gostermektedir. Modellere giris verileri olan {iretim/tekrar-basma
debileri ve su seviyesi 6l¢timlerinin uzun dénemde ve siirekli yapilmis olmasi model
ile saha verileri arasindaki ¢akigmanin giivenilirligini kesinlikle arttirmaktadir.
Aynca, modelleme ¢aligmasindan bulunan sonuglarin eldeki diger veriler ve
bilgilerle (jeolojik, jeofizik, hidrolojik vb) desteklenmesi segilen modele olan
glivenilirligi arttiracaktr.
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1. INTRODUCTION

Geothermal energy has been known and used for centuries. Records show that the
Chinese, Romans, Turks, Japanese, Icelanders, Central Europeans and the Maori
people of New Zealand have used the geothermal resources for heating, bathing and
cooking. Commercial utilization of geothermal resources for energy production only
started in the early 1900’s. Electricity production was initiated in Larderello, Italy, in
1904 and operation of the largest geothermal district heating system in the world in

Reykjavik, Iceland, started in 1930.

Utilization of geothermal energy depending on their temperature has increased
steadily since the natural forms of energy are readily available at low development
cost. With respect to reservoir temperature at economic depths (1000 m), geothermal

reservoirs can be classified as (Axelsson and Gunnlaugsson, 2000; Satman, 2003);

e Low-temperature geothermal reservoirs; the reservoir temperature is below
150°C. They are used dominantly in direct utilization (district heating, etc.)

plants.

e High-temperature geothermal reservoirs; the reservoir temperature is above

200°C. They are commonly used to generate electricity.
It should be suitable to describe some definitions related with geothermal energy:

1) Geothermal Field usually indicates an area of geothermal activity at the earth’s
surface. In cases without surface activity this term may be used to indicate the area at

the surface corresponding to the geothermal reservoir below.

2) Geothermal System refers to all parts of the hydrological system involved,
including the recharge zone, all subsurface parts and the outflow of the system.
Figure 1.1 shows a schematic of a geothermal system. A geothermal reservoir is
usually surrounded by colder rocks that are hydraulically connected with the
reservoir. Hence, water may move from colder rocks outside (recharge) towards the

reservoir, where hot fluids move under the influence of buoyancy forces towards a



discharge area. The whole volume of rocks in which fluids move both inside and
outside the reservoir, together with the heat source and the natural discharge,
constitute a geothermal system. In some reservoirs, natural recharge may be induced
by exploitation; in others, recharge can be provided artificially by injection of cold

water.
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Figure 1.1 Schematic of a geothermal system.

3) Geothermal Reservoir describes a volume of rocks where geothermal fluids are
stored and produced. The main properties of a geothermal reservoir are porosity and
permeability. The porosity of a reservoir rock is used to assess the volume of fluids
stored in a reservoir and the permeability controls flow rate of the produced fluid. In
Turkey, most of the geothermal reservoirs consist of fractured and faulted zones,
which occur often as a result of recent tectonic activities. Deeply-penetrating
meteoric waters sweep some heat from the deeper part of the fractured and faulted
zone and then, due to its low gravity, the heated fluids ascend within a segment of

the fracture zone.

Geothermal reservoirs are more commonly classified depending on their physical

state as;

¢ Liquid-dominated geothermal reservoirs: Figure 1.2 shows a pressure-
temperature diagram for pure water, indicating critical point and boiling point

curve. The water temperature is at, or below, the boiling point curve at the



prevailing pressure and the water phase controls the pressure in the reservoir.
Some steam may be present, however. Pressure in the reservoir is close to

hydrostatic pressure.

e Two-phase geothermal reservoirs: The two phases co-exist and the temperature

and pressure follow boiling point curve.

¢ Vapor-dominated geothermal reservoirs: The water temperature is at, or above,
the boiling point curve at the prevailing pressure and the steam phase controls the
pressure in the reservoir. Some water may, however, be present. Pressure in the

reservoir is close to steam-static pressure.
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Figure 1.2 Pressure — temperature diagram for pure water.

4) Aquifer is an underground stratum that will yield water in sufficient quantity as a
source supply. Geothermal reservoirs are bounded by aquifers. In response to the
production, the reservoir pressure drops and the aquifer reacts to offset or retard
pressure decline by natural recharge. Natural recharge occurs by expansion of the
water and/or compressibility of the aquifer rock. How much, and how fast, the
natural recharge is determined by the rate of production, on one hand, and the size

and properties of the aquifer, on the other hand.

As a result of the growing need throughout the world for increasing utilization of
geothermal energy in many different sectors such as generating electricity, district

heating, etc., the reservoir management has become a significant step. Some



important questions of reservoir management, such as production capacity of the
geothermal field, the rate of the pressure decline, the effect of recharge and
reinjection on the field performance, are primary objectives of geothermal reservoir

modeling.

Typically, a reservoir model describes the change in reservoir pressure as a function
of time or cumulative fluid production. Mainly, three methods are currently available
in literature for modeling the behavior of geothermal reservoirs. They are decline

curve analysis, lumped parameter models, and numerical models.

Decline Curve Analysis is used to predict future well decline and cumulative
production by fitting algebraic equations to observed flow rate decline data from
wells. The predicted flow decline can then be used to estimate the number of makeup

(additional) wells that will be needed in the future.

Lumped Parameter Models generally use two blocks to represent the entire system.
One of the blocks represent the main reservoir and the other acts as a recharge block
or an aquifer. Average properties are assigned to reservoir and aquifer blocks, and
the changes of reservoir pressure, temperature, and production are monitored. The
material and/or heat entering and leaving are used in material and/or energy balance
equations. The governing equations under idealized conditions can sometimes be
reduced to ordinary differential equations that can be solved semi-analytically.
Lumped parameter models are generally calibrated against a pressure history. After a
history match is obtained, the model is used to predict future average reservoir
pressure. The main advantage of the lumped parameter models is their simplicity.
Some of the disadvantages are that (1) they do not consider fluid flow within the
reservoir and neglect spatial variations in thermodynamic conditions and reservoir
properties, (2) they cannot simulate fronts such as phase or thermal fronts because of
coarse space discretization, and (3) they cannot consider questions of well spacing or

injection well locations.

Numerical Models are very general models that can be used to simulate reservoirs
with few or many (>100 to 1000) gridblocks. They can be used to simulate entire
geothermal system, including reservoir, caprock, bedrock, shallow cold aquifers,
recharge zones, etc. They allow spatial variations in rock, fluid, and well properties
and thermodynamic conditions. The principal advantage of numerical models is that

they have all mathematics built into computer code and allow the user to decide how



detailed the simulation should be and what physical processes should be considered.

Disadvantage of the numerical models is the need for more input data.

Reservoir assessment is a continuous process from the time a geothermal field is
discovered to the time its development is completed. The various methods are most
applicable at different stages of the project. It is generally advisable to start with the
simplest method such as a lumped parameter model, since relatively little
information is known at the beginning of the life of a reservoir. On the other hand,
numerical models which require more information are appropriate at late stages,

since great amount and quality of field data are available.

1.1 Literature Review

This part reviews pertinent literature on the subject of water influx (or recharge)

models, geothermal reservoir modeling, and lumped parameter models.

1.1.1 Water influx models

Geothermal and petroleum reservoirs are in some respects similar. One of their
similarities is the recharge or water influx from the aquifers and the other one is
material balance. Methods developed for petroleum reservoirs involving water influx
and material balance can be adopted for geothermal reservoirs. In this part of the
literature survey, water influx and material balance methods in petroleum

engineering are investigated as a first step.

Schilthuis (1936) analyzed the reservoir pressure decline as related to production of
oil and gas production. He pointed out that the lowering pressure in the oil and gas
reservoirs which have a good connection with strata containing water, causes water
encroachment and that retards the decline in reservoir pressure. Schilthuis steady-
state water influx model states that the rate of water influx is proportional to the
pressure gradient that exists between the water-bearing strata and the oil and gas
reservoir. For practical purposes, the value of this gradient would be the difference

between the value of the original reservoir pressure and any subsequent value.

As different from Schilthuis steady-state model, van Everdingen and Hurst (1949)
studied unsteady-state water influx. They included a time-dependent term in the

calculations for water influx. The tables which present dimensionless pressure and



water influx as a function of dimensionless time, were constructed for two inner
boundary (constant terminal rate and constant terminal pressure) and two outer

boundary (finite and infinite reservoirs) conditions as a result of their work.

Chatas (1970) indicated a method for estimating aquifer parameters such as the size
of the aquifer, its mobility, and a characteristic constant, from an investigation of the
reservoir performance. To achieve this objective he analyzed the material balance
and diffusivity equations considering unsteady-state water influx. The least squares

method was applied to determine three aquifer parameters.

An approach that utilizes pseudosteady-state aquifer productivity index and an
aquifer material balance to simulate water influx was presented by Fetkovich (1971).
In his model, water influx problem was separated into a rate equation and a material
balance equation, therefore superposition was not required and this made the

concepts and calculations quite simple and easy to apply.

Fanchi (1985) developed some simple analytical expressions for the van Everdingen
and Hurst aquifer influx influence functions by using linear regression analysis.
Regression results were presented for a variety of aquifer radius/reservoir radius

ratios.

Allard and Chen (1988) suggested a new water influx model that differs from
traditional approaches in that it includes the effect of vertical flow at the
reservoir/aquifer interface. The results were introduced in the form of dimensionless

groups, which makes the model readily applicable to a wide range of systems.

Six sets of simple polynomials that provide a fast, simple method to determine van
Everdingen and Hurst dimensionless variables for finite or infinite radial aquifers,

were reported by Klins et al. (1988).

Brigham (1998) investigated two inner boundary conditions-constant pressure or
constant flow rate, and three outer boundary conditions-infinite, closed and constant
pressure, and three geometries - linear, radial and spherical as a point of view of
water influx. The solutions were presented in the form of infinite series, and as well

as in very simple closed form equations.

Permadi et al. (1998) have modeled multiphase flow of oil and water in reservoirs

with water influx by modifications of single-phase semi-analytical solutions. To



calculate water influx, they used the Fetkovich method instead of using an analytical

solution restricted by a specified condition at the outer reservoir boundary.

Nishikioriand Hayashida (1999) described the multi-disciplinary approach to
investigate and model complex water influx into water driven sandstone reservoir in
Khafji Oil Field in Arabian Gulf. They mentioned two kinds of water influx — one is
conventional edge water and another is supplemental water invasion from the aquifer
of the lower reservoir through conductive faults — depending on the geological
description of this field. The complex nature of water influx were accurately modeled
by use of precise classification of rock type and adoption of pseudo relative

permeability accounting for upward increasing or decreasing trend of permeability.

1.1.2 Numerical models

A number of different methods for modeling the behavior of geothermal reservoirs

have been reported in the reservoir engineering literature.

Horne and O’Sullivan (1977) considered the problem of a hypothetical geothermal
reservoir that depletes the fluid saturating its upper regions during production. The
objective of their study was to achieve a better understanding of the Wairakei
geothermal reservoir in New Zealand and of other similar type. They mentioned that
the depletion leads to the characteristic depressurization and drawdown of liquid
level observed at Wairakei. The model they described was the end result of a
sequence of numerical models, each building on the conclusions of the last, and was
a single-phase axisymmetric representation in which fluid was withdrawn through

bores grouped around the axis and replaced at the surface.

Zyvoloski and O’Sullivan (1980) described a model to simulate gas-dominated, two-
phase geothermal reservoirs. The basic equations governing the behavior of a two-
phase mixture of carbon dioxide and water were discussed. A Newton-Raphson
scheme, based on the alternating direction implicit method for multidimensional
problems, was used to solve the nonlinear finite difference approximation of the
governing nonlinear system of partial differential equations. As conclusion, sample
calculations showing the behavior of hypothetical reservoirs with varying carbon

dioxide contents were presented.

Goyal and Kassoy (1981) reported a two-dimensional vertical planar model of the
East Mesa system in the Imperial Valley of California. Their primary goal was to



show that the concept of fault zone controlled charging of a geothermal reservoir like
that hypothesized at East Mesa was plausible. They calculated the recharge rate to
the fault, vertical variations of horizontal velocities within the aquifer, temperature

fields in the aquifer and caprock, and surface heat flows.

One of the studies on fault-charged reservoirs was presented by Bodvarsson et al.
(1982). The model was fully transient and included conductive heat transfer to the
caprock and bedrock. Since vertical variations in temperature and velocity within the

aquifer were ignored, the model is most applicable to relatively thin aquifer systems.

Marcou and Gudmundsson (1986) used a geothermal development model to study
the effect of reservoir deliverability and different power plant schemes on the
economics of geothermal electric power. They pointed out that how the development
cost of geothermal electric power projects can be estimated. The deliverability of
liquid-dominated reservoirs were investigated in terms of reservoir performance,
inflow performance, and wellbore performance. The inflow performance was given
in terms of a linear productivity index for liquid-only flow, and a solution-gas drive
relationship for two-phase flow. The production histories of the liquid-dominated
Ahuachapan in El Salvador and Wairakei in New Zealand reservoirs were
successfully matched using the radial form of Hurst’s simplified water influx

method.

State-of-the-art reviews of geothermal modeling have been made by various authors
(Bodvarsson et al., 1986; Pruess, 1990; Sanyal et al., 2000). Bodrasson et al. (1986)
pointed out that no universal modeling strategy is applicable to all of the geothermal
systems since geothermal systems are very complex, exhibiting such features as
fracture-dominated flow, phase change, chemical reactions, and thermal effects. He
summarized the kinds of geothermal models and emphasized their applicabilities.
The various modeling tasks — including natural-state, exploitation, injection,
multicomponent, and subsidence modeling — were illustrated with geothermal field

examples.

Pruess (1990) concerned that how good the available simulation technology is , and
what we have learned from applications of simulators, both in terms of improved
understanding of geothermal reservoir dynamics, and in terms of improved

engineering of geothermal energy projects. He examined some applications of



numerical modeling to studies of reservoir dynamics, well test design and analysis,

and modeling of specific fields.

Bullivant et al. (1991) worked on speeding up the geothermal simulator MULKOM
by using fast conjugate solver. Also a graphics package for preparing data for, and

processing output from MULKOM was discussed.

Richards and Wallroth (1995), and Kohl and Hopkirk (1995) reviewed a number of

current hot dry rock modeling approaches.

1.1.3 Lumped parameter models

Several lumped parameter models have been reported in the literature. These models
allow to simulate reservoirs where there is little history of production and a minimum

knowledge of the reservoir parameters.

Sanyal et al. (1976) suggested a simplified analytical approach for fluid flow and
heat transfer in a geothermal reservoir with a circular array of production wells
surrounded by a circular array of injection wells. The model was assumed to be a
vertical stack of horizontal layers, permeable and impermeable layers alternating.
The heat transfer problem was handled by a modification of the solution to the
problem of heat extraction from fractured dry rocks proposed by Gringarten. The
pressure distribution in various layers were calculated by spatial superposition of the
continuous line source solution for the given geometry and assuming average fluid
properties within the system. As a result of this approach, the breakthrough time of
injected water in each layer, the pressure distribution in space and time, and the
temperature of the produced water over time were modeled by semi analytical

solutions.

Whiting and Ramey (1969), and Brigham and Ramey (1981) developed lumped
parameter models by using material and energy balances. Water influx models for
hemispherical, linear, and radial flow were used. In all three cases, flow was assumed
to be isothermal liquid water of constant viscosity, compressibility, and enthalpy.
Viscous flow, such that Darcy’s law applies, was also assumed. They pointed out
that the governing equations are useful for estimating the initial reservoir conditions
and for matching the past performance and predicting the future performance of

reservoirs.



Castanier et al. (1980), and Castanier and Brigham (1983) described an analytical
mode] for simulation of geothermal reservoirs. Their model can be applied to any
type of geothermal reservoirs such as all liquid, all steam or two phase. The model
assumes radial geometry with three distinct zones: (1) an innermost, circular
production zone, (2) an intermediate, concentric zone subjected to fluid flow, (3) an
outermost, radially infinite (finite) aquifer zone. The innermost zone was treated as a
homogeneous tank and lumped parameter model derived by Whiting and Ramey
(1969) was used to predict the production of mass and energy. The surrounding
intermediate zone was considered as a zone in which neither production nor injection
occurs. This zone was subjected to heat and mass transfer that occurs from periphery
toward the innermost zone. The water entering from the outer zone cools part of the
intermediate zone. To maintain a proper heat balance, the amount of heat received by
the innermost zone during a time step is computed using the differences seen in the
temperature profiles of the intermediate zone before and after each time. The
outermost zone was subjected to mass transfer only. During each depletion step, a
mass of fluid leaves the outermost zone to enter the intermediate zone. This is either
equal to the amount of fluid injected or it is the natural water influx calculated using

van Everdingen and Hurst method.

Olsen (1984), and Gudmundsson and Olsen (1987) derived and presented depletion
models for liquid-dominated geothermal reservoirs. The depletion models were
divided into two categories: confined and unconfined. For both cases depletion
models with recharge and no recharge were used to match field data from the
Svartsengi high temperature geothermal field in Iceland. The match to production
data from Svartsengi Field was improved when influx was included. The influx was
modeled by the steady-state Schilthuis, the finite aquifer method of Fetkovich, the
unsteady-state method of Hurst, and Hurst simplified method for infinite linear and
radial aquifer geometries. The best match was obtained using an infinite linear

aquifer model with Hurst simplified solution.

Axelsson (1989), Axelsson and Dong (1998), and Axelsson and Gunnlaugsson
(2000) described a method of Iumped parameter modeling to simulate data from
several low-temperature geothermal reservoirs in Iceland. This model is based on a

general capacitor/conductor network. In their formulation, the basic system of
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equations was derived in matrix form and, thus, the solution is presented in implicit

form.

Alkan and Satman (1990) developed a lumped parameter model for geothermal
reservoirs in the presence of carbon dioxide. The effects of carbon dioxide on
important thermodynamic variables were considered and mathematically formulated.
Application of the model to well-known geothermal fields such as Cerro Prieto Field
in Mexico, Ohaaki Field in New Zealand, Bagnore Field in Italy, and Kizildere Field

in Turkey were also discussed.

1.2 Statement of Problem

Fluid extraction from geothermal reservoir causes some decline in reservoir pressure
which is reflected in the lowering of the water level in boreholes. The only exception
is when production from a reservoir is less than its natural recharge. The recharge
water flows from aquifer to reservoir in response to the lowered pressure or water
level as a result of production. The pressure drop can be small or large, slow or fast,
all depending on the rate of production, the size and properties of the geothermal
system, and the recharge characteristics of the system. In many systems the pressure
continues to drop with time as geothermal fluid production continues. This is because

recharge to these system is limited.

The main objective of this dissertation is to model the pressure or water level
behavior of low-temperature liquid dominated geothermal reservoirs. For this
purpose, a simpler approach known as lumped parameter simulation is used in this
study. The lumped parameter models presented in this study are similar in concept to
Axelsson’s model (Axelsson, 1989; Axelsson and Dong, 1998; Axelsson and
Gunnlaugsson, 2000). As in Axelsson’s work, the solutions presented in our work are
valid for the low-temperature liquid dominated geothermal reservoirs only and
assume that variations in temperature within the system can be neglected. As
different from Axelsson’s study, model equations are in the term of the well-known
material balance equations, and the governing solutions are in the form of explicit
analytical expressions. Early-time and late-time reservoir pressure behavior can be

easily handled by asymptotic expressions of the analytical solutions.
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In this study, the analytical solutions are presented for different types of geothermal
systems such as 1 reservoir with recharge, 1 reservoir - 1 aquifer with/without
recharge, 1 reservoir - 2 aquifers with/without recharge, 1 shallow reservoir - 1 deep
reservoir with recharge, and 1 shallow reservoir - 1 deep reservoir - 1 aquifer with

recharge (Figure 1.3).
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Figure 1.3 Tank systems used in modeling.
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The reservoir simulates the innermost (production) part of the geothermal system,
and the aquifers simulate the outer parts of the system. The outer aquifer can either
be closed or can be connected to a recharge zone (constant pressure source). The rate
of water influx (or recharge) between the aquifer and reservoir or between the
aquifers is expressed by using Schilthuis’s steady-state equation with water influx
constant. Furthermore, Duhamel’s Principle is applied to handle variable mass flow
rate. For all types of geothermal systems, described above, the reservoir and aquifer
parameters are estimated by making history matching. For this purpose, the
Levenberg-Marquardt optimization method, based on weighted least-squares, is

performed.
This study has focused on the following objectives:

1. to develop analytical models of the pressure behavior of the low-temperature

geothermal reservoirs,

2. to examine the importance of various parameters on the behavior of the models

developed,
3. to relate these models to field data available to test their validity,
4. to investigate the problems involved in field applications,

5. to study the possibility of using new models to predict the production performance

of the field cases.

The thesis is organized as follows. In Chapter 2, the general aspects of lumped
parameter modeling, relevant water recharge models and flow characteristics are
discussed. Some of the lumped parameter models in the literature are presented. In
Chapter 3, new lumped parameter models developed for the low-temperature
geothermal systems are discussed in detail. Analytical solutions are presented in
Chapter 3 and the detailed formulations are given in Appendices A-J. The early time
and late time solutions obtained by the asymptotic approaches are given. The
optimization procedure used to estimate the model parameters by history matching
and the approach to handle the variable flow rate observed in field applications are
presented. In Chapter 4, four field applications (Laugarnes, Glerardalur, Svartsengi
and Balcova-Narlidere geothermal fields) are performed and the results are discussed

in detail. The major conclusions obtained are presented in Chapter 5.
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2. GENERAL ASPECTS OF LUMPED PARAMETER MODELING AND
WATER RECHARGE MODELS

In this section lumped parameter modeling and relevant water influx models will be

presented as a prior knowledge of the further study.

2.1 Lumped Parameter Modeling

Lumped parameter modeling which is known as zero-dimensional modeling, is used
most commonly at the beginning of the life of a field, when relatively information is
known. Generdlly, in all lumped parameter models, the reservoir is described as a
single homogeneous block with the production/injection rate and recharge flow
specified. The pressure (and/or water level) changes in the reservoir are modeled by
using mass and energy balances and therefore, the potential of the field can be

predicted under various production/injection scenarios.

In this study, the geothermal system is considered as consisting of mainly with three
parts. These are; (1) the reservoir, (2) the aquifer, and (3) the recharge source. First
two are treated as homogeneous tanks with the average properties. The recharge
source connected to the aquifer or directly to the reservoir is treated as a point source
supplying recharge into the system. These three parts could be considered from the
center to the periphery as Castanier et al. (1980) and Castanier and Brigham (1983)
described (Figure 2.1). It is also possible to consider these parts as series of

connected tanks (Figure 2.2).

The reservoir in which the production/injection occurs represents the innermost part
of the geothermal system. The changes in pressure and/or water level are monitored
and production/injection rates are recorded. These data are important for evaluation
of changes in the reservoir and are important for simulations. Information on the
nature, properties and size of a geothermal reservoir are obtained by careful

monitoring and modeling of its production and reservoir history.
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Figure 2.1 Parts of a geothermal system from the center to the periphery.
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Figure 2.2 Parts of a geothermal system considered as series connected.

The aquifer in which neither production nor injection occurs, recharges the reservoir.
The production causes the pressure in the reservoir to decline, which results in water

influx from the aquifer to the reservoir.

The recharge source represents the outermost part of the geothermal system. It

recharges the aquifer.

If the system is modeled by tanks, the water influx between the tanks (aquifer-
reservoir, recharge source-aquifer, and recharge source-reservoir) can be modeled by
various methods given in the literature (Schilthuis, 1936; van Everdingen and Hurst,
1949; Fetkovich, 1971).

One of the most important and basic approaches to petroleum reservoir engineering
is the mass balance. Since the non-isothermal effects can be much larger for water
than for hydrocarbon systems, in the case of geothermal reservoir engineering, it is

usually necessary to add an energy balance to the mass balance.
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The production of geothermal fluid may or may not be under isothermal conditions,
while production of petroleum reservoirs is normally considered to be isothermal.
Whiting and Ramey (1969) consider both isothermal and non-isothermal fluid flow
in the lumped parameter model. The following equation derived for non-isothermal

two-phase fluid flow by combining mass and energy balances.

Wp(hp - Ec)+WL(hL - Ec)+Q =

Wi{Ei - Ec + (%)[x Vgi + (1 - x)vwi]pt Ct(Ti - Tc)} + (he - Ec)We -

This equation states that for a given geothermal reservoir the total energy loss due to
production (the first term on the left hand side), fluid leakage (the second term on the
left hand side) and conductive heat transfer (the third term on the left hand side)
should be equal to the heat transferred from the rock and the enthalpy change due to
the change of fluid mass in the reservoir. The conductive heat loss term Q is
negligible, assuming that the heat transferred to the bottom of the reservoir is equal
to the loss from the top. The last term on the right-hand side of the equation includes
the energy change term due to water influx. It is assumed that enthalpy of the water

influx would remain constant.

If the reservoir contains only liquid water, the thermodynamic path is isothermal and
Equation 2.2 is obtained which is similar to that employed for petroleum production
above bubble point (Whiting and Ramey, 1969).

(Wp + WL)VW = Wi(vw - Vwi)'l~ Weve (2.2)

In our lumped models which are valid for low-temperature liquid dominated
geothermal reservoirs, only mass balance is applied and energy balance is neglected.
The reason for ignoring energy balance in the models could be explained by
pressure-temperature behavior of the geothermal reservoirs. Figure 2.3 is a pressure-
temperature diagram for the liquid-vapor region for pure water, showing critical
point and three other points representing possible initial conditions for a geothermal

reservoir.

First consider that a reservoir initially existed at state “A”, entirely within the vapor

region. The temperature is above the boiling point curve at the prevailing pressure
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and the steam phase controls the pressure in the reservoir. The production causes the
reservoir pressure to decline, and the pressure follows the dashed line 1. The actual
path for production of such a reservoir would not be truly isothermal, but
temperature decline should be so small to measure with normal field instruments.
The initial conditions corresponding to point “A” represent a vapor-dominated

geothermal reservoir in which no hot water is formed during the production.
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Figure 2.3 Pressure-temperature diagram for pure water.

Point “B” in Figure 2.3 lies on the boiling point curve and both hot water and steam
exist in the reservoir which is known as two phase geothermal reservoir. As
production proceeds, the temperature and pressure decline along the boiling point
curve. The produced steam-hot water ratio continues to increase until all water has
been boiled away. The temperature then departs from the boiling point curve and its

decline essentially stops (line 2).

Point “C” in Figure 2.3 corresponds to a low-temperature liquid-dominated
geothermal reservoir (Brigham and Ramey, 1981). The water temperature is below
the boiling point curve at the prevailing pressure and the water phase controls the
pressure in the reservoir. The pressure declines as production proceeds, and it moves
down along line 3. Although it is expected that line 3 intersects the boiling point

curve, in practice two-phase internal steam drive does not begin until the reservoir
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pressure has declined to a small fraction of its initial value. The actual path would be

essentially isothermal since no boiling takes place during the production.

Figure 2.4 presents the variations of the reservoir pressure with the percent of initial
fluid mass produced. A comparison of the Reservoirs “A”, “B”, and “C” shows the
effect of the total system compressibility on the fluid production. The total system

compressibility may be defined as:
¢t = € fluid T € formation (2.3)

and it is essentially the reciprocal of the slope of the curves on Figure 2.4. The
compressibility of the vapor phase (Creservoir 4) 1S greater than that of liquid phase
(CReservoir ) since the expansion of the steam is much greater than the liquid
expansion. On the other hand, the two-phase system has a compressibility (Creservoir B)

greater than that of single phase vapor system (Creservoir B > CReservoir 4 > CReservoir C)-
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Figure 2.4 Pressure vs. cumulative fluid production for Reservoirs A, B, and C.

In case of Reservoir “C” unless a strong water drive exists, the reservoir pressure
initially declines rapidly with production, since only liquid expansion and rock
compaction supply the driving force. If the reservoir has a water recharge, the
production of Reservoir “C” follows the dashed lines depending on the amount of the

water recharge.

Axelsson (Axelsson, 1989; Axelsson and Dong, 1998; Axelsson and Gunnlaugsson,
2000) described a method of lumped parameter modeling to simulate pressure

response data from low temperature geothermal reservoirs in Iceland. The energy
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balance is neglected in his model since the model simulates low temperature
geothermal reservoirs. A general lumped network of the sketched in Figure 2.5 is
considered and the network consists of a total of N capacitors and resistors. The
capacitors represent the reservoir and aquifer parts of the geothermal system. The
capacitors are pair wise connected by resistors which simulates the flow resistance.

Each capacitor has the mass, m, storage coefficient, « , and pressure, p =m/«. The

mass flow from the k’ th to the i’ th capacitor is given by Equation 2.4.
ik =S AP =y (P — Pi) (2.4)

Applying conservation of mass, the basic system equation is obtained in matrix form

below;
Kdp/dt+ Ap = f (2.5)

where the vectors and matrices are defined as follows.
K=[;8;], 4= (Zcij +Gi]6ik —ci | P=(pi) f=(f;) (2.6)
J

where f; represents an external source mass flow into the i’ th capacitor. The terms

in Equations 2.4 to 2.6 are defined in Axelsson’s (Axelsson, 1989; Axelsson and
Dong, 1998; Axelsson and Gunnlaugsson, 2000) work.

Consequently, his model is valid for low temperature liquid dominated reservoirs.
The system equation is derived in matrix form and thus, the solution is presented in
implicit form. An iterative non-linear least-squares technique is applied to fit model

results to the observed data and to estimate the model parameters.

Figure 2.5 General lumped capacitor/resistor network.
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2.2 Water Influx Models

The aquifer surrounding and recharging the reservoir is an important criterion to
determine the geothermal reservoir production performance. Generally in all
geothermal systems, the aquifer is so large compared to the reservoir and outcrops at

one or more places where it replenishes by surface waters.

In response to a pressure drop in the reservoir due to production, the aquifer reacts to
offset or retard pressure decline by providing a source of water influx. From an
analytical point of view, the amount of water that has influxed into the reservoir from
the aquifer should be calculated to determine the effects of the aquifer on the

pressure or water level behavior of the geothermal reservoir.

In petroleum engineering literature, several models (Schilthuis, 1936; van
Everdingen and Hurst, 1949; Fetkovich, 1971) are studied to calculate water influx.
These models can be generally categorized by a time dependence. In this chapter,
flow regimes such as steady-state, unsteady-state, and pseudosteady-state will be

discussed by their features.

The production causes the pressure decline in the reservoir and consequently the
pressure drops at the reservoir-aquifer boundary. At very late time, pressure response
is affected by the influence of aquifer boundary, but prior to those late times the
pressure response does not feel the effect of the aquifer boundary, and aquifer acts as

if it were infinite in extent. This response is known as “Unsteady-State Flow” period.

Eventually the effects of the aquifer boundary might be felt at the well. The time at
which the boundary effect is noticed is dependent on several factors, including the
distance to the boundary and the properties of the permeable formation and the fluid
that fills it. The two types of aquifer boundary that are most commonly considered

are (1) closed and (2) constant pressure.

A closed boundary (also known as a no flow boundary) occurs where the aquifer is
not connected to a recharge source. No flow boundary can also arise when the influx
from the recharge source is negligible as compared to the production. When a
reservoir-aquifer system has no flow boundary, the pressure transient is transmitted
outwards until it reaches the outer boundary, which the reservoir-aquifer depletion
enters a state known as “Pseudosteady-State”. In this stage, the pressure declines at

the same rate everywhere in the reservoir-aquifer region.
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When the reservoir-aquifer system is supported by a strong recharge source, then a
constant pressure boundary presents. The effect of constant pressure boundary causes
the pressure response to achieve “Steady-State™, at which the reservoir-aquifer

pressure remains constant for all production period.

The pressure behavior of these flow regimes is given by Figure 2.6. Hydraulic

analogs and mathematical expressions of the flow regimes are discussed in the

following sections.
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Figure 2.6 (a) Pressure difference, (b) pressure behavior of the flow regimes.

2.2.1 Steady-state flow

Water influx from the aquifer to the reservoir could be modeled as shown in Figure

2.7 by considering the aquifer and the reservoir by tanks. The aquifer and the
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reservoir tanks are connected to the each other through a sand-filled pipe. Initially
both tanks are filled to the same level and have the same pressure, p;,, When the fluid
production started from the reservoir, reservoir pressure drops from the value of p; to
the value of p. In that case, water influx occurs from the aquifer to the reservoir as
expected. The rate of water influx by Darcy’s Law is proportional to the permeability

of the sand in the pipe, the cross-sectional area of the pipe, and the pressure drop

(p; — p); and inversely proportional to the water viscosity and the length of the pipe.

Aquifer pressure remains constant where the water efflux from the aquifer is
replenished, or the aquifer tank is quite large compared with the reservoir tank. If the
rate of influx is equal to the reservoir voidage rate, the reservoir pressure stabilizes.
In other words, the amount of the water influx into the reservoir is equal to the
amount of the produced mass from the reservoir. Therefore, the reservoir pressure

does not decline with the production.

Production

Aquifer Reservoir

Figure 2.7 Hydraulic analog of steady-state flow (Craft and Hawkins, 1959).

In literature, steady-state flow is expressed analytically (Equation 2.7) by Schilthuis
(1936). Schilthuis model assumes that the pressure at the external boundary of the

aquifer is maintained at the initial value p;, and that flow to the reservoir is
proportional to the pressure differential (p, — p), assuming that water viscosity,

average permeability, and aquifer geometry remain constant.

t
W, =a[(p;— p)at
; > @.7)
aw,

7 20‘(191"17)
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where;

W, : water influx mass, kg
aw .
y ¢ :rate of water influx, kg/sec
t
o : recharge constant, kg/bar-sec

(pi - p) : boundary pressure drop, bar

Steady-state refers to a situation in which the pressure and the rate distribution in the
reservoir remain constant with time. Figure 2.8 represents the pressure distribution
and rate distribution during radial flow that exhibits the characteristics of steady-state
flow. Water influx rate at the outer boundary of the aquifer, r,, equals to the
production rate at the wellbore, r,, gives a pressure and rate history almost identical

to the one described in Figure 2.8.
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Figure 2.8 Pressure and rate distribution of steady-state flow in the reservoir-aquifer
system (Slider, 1983).

2.2.2 Unsteady-state flow

Hydraulic analog of an unsteady-state flow is shown in Figure 2.9 where the
reservoir tank is connected to a series of aquifer tanks as different from Figure 2.7.
The volumes of aquifer tanks are increasing as the distance increasing from the
reservoir tank. Aquifer tanks are connected to each other by sand-filled pipes of
constant diameter and sand permeability, but of decreasing length between larger

tanks.
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To understand the reason of using increasing aquifer tank volumes and decreasing
sand-filled pipe lengths, cylindrical elements such as shown in Figure 2.10 are
considered. As it is seen from Figure 2.10, the cylindrical element volumes are
increasing while the diameters are increasing. Therefore, the volumes of the tanks are
selected by increasing volumes. On the other hand, as the resistance to flow between
elements are decreasing because of the increasing cross-sectional areas, the lengths

of the sand-filled connecting pipes vary inversely with the radii of tanks.

Initially all tanks (Figure 2.9) are filled to a same level and have the same pressure
(p). As production proceeds, the reservoir pressure drops and water influx occurs
from aquifer tank 1 to the reservoir tank. This causes a pressure drop in aquifer tank
1 which induces flow from aquifer tank 2 to tank 1, and so on. It is evident that
pressure drop in the aquifer tanks are not uniform but varies with time and
production rate changes in a manner such as that shown in Figure 2.11 for a constant

reservoir production rate, and Figure 2.12 for constant well pressure.

Aquifer IV Aquifer IIl Aquifer II Aquifer I Reservoir

Figure 2.9 Hydraulic analog of unsteady-state flow (Craft and Hawkins, 1959).

Figure 2.10 Cylindrical elements in an aquifer surrounding a circular reservoir.
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(Slider, 1983). (Slider, 1983).

Until the pressure in the entire reservoir-aquifer system is affected by the outer
aquifer boundary, 7., the only energy causing the fluid flow is the expansion of the

fluids themselves.

In Figures 2.11 and 2.12, after some short period of production, a small portion of the
reservoir near the production well is affected and a considerable pressure drop
occurs. The pressure and rate distributions move on through these positions
immediately as the production continues to affect more and more of the reservoir-
aquifer region. That is subjected to flow, until the entire reservoir-aquifer region is

affected as shown by the pressure at .

Since the flow is taking place due to expansion of the fluid, the rate at 7, is zero and
it increases with a reduction in radius until the maximum rate in the reservoir is

obtained at 7,,.

In the literature, van Everdingen and Hurst (1949), Klins et al. (1988) and
Edwardson et al. (1962) give the mathematics of unsteady-state flow for constant
pressure and constant rate case as a function of time and the radius. Moreover, the
flow geometries are the parameters have to be considered. In the case of infinite
acting aquifers, water influx could be calculated for semi-spherical, radial and linear

flow (Whiting and Ramey, 1969).

2.2.3 Pseudosteady-state flow

Pseudosteady-state is a special case of unsteady-state flow. At time /=0 the pressure
throughout the reservoir is uniform at p;. After some short production time ¢#; at a

constant rate only a small portion of the reservoir is affected and the entire reservoir-
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aquifer system is experienced a significant pressure drop as production continues
(Figure 2.13). After the closed boundary effect is noticed (p at t,), the change of the
pressure with time at all radii in the reservoir-aquifer system becomes uniform. So
that the pressure distributions at subsequent times are parallel as illustrated by the
pressure distributions at times ¢3, and #,. This situation continues with constant
changes in pressure with time at all radii and with subsequent parallel pressure

distributions until the reservoir is no longer able to sustain a constant flow rate at the

wellbore.
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Figure 2.13 Pseudosteady-state flow (Slider, 1983).

In the literature, Fetkovich (1971) discusses pseudosteady-state flow independent of

flow geometries by using productivity index of aquifer and mass balance equation.
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3. LUMPED PARAMETER MODELS FOR LOW-TEMPERATURE
LIQUID DOMINATED GEOTHERMAL RESERVOIRS

The geothermal fluid production causes the pressure in a geothermal system to
decline, which is reflected in the lowering of the water level in boreholes. The rate of
pressure or water level decline is determined by the rate of production and/or
reinjection, the size and properties of the geothermal system, and the recharge

characteristics of the system.

For reservoirs with liquid only, the production path is for all practical purposes
isothermal. The energy balance thus can be omitted. During the drawdown history of
a geothermal reservoir, the recharge water invades the system in response to the
lowered pressure or water level, and it maintains the reservoir pressure by replacing
the produced liquids. A term of influx mass has to be added to the mass balance

equations and the mass balance becomes,

We=W; =W, +Wq+Wy; (3.1)

where the current mass, W, equals that initially in the reservoir, W;, minus what has

been produced, W, , plus any water influx, W, , and plus reinjected mass, W,-nj .

The initial fluid in place in a liquid-dominated reservoir may be compressed water.
In this case, when the reservoir is produced, the water expands because of its
compressibility. This is called a confined reservoir. For a reservoir of volume V,, the

liquid mass in place is given by
We=V,0,Py (3.2)

where ¢, is reservoir porosity, and p,, is liquid density. When this relationship and

Equation 3.1 are differentiated with respect to time and the definition of isothermal
compressibility is used, the following equation in terms of mass flow rates, w,

results,
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d
Wag = Wp T Wi = VidrPwet 712 (3.3)

where ¢, is the total (fluid+formation) compressibility (c, =cp+ c,) for the reservoir
system where ¢y = 1/p,,(dp,, /dp)T and ¢, =1/¢,(do, /dp)T. We assume c

and ¢, are constants so that slightly compressible fluid and rock assumptions are

valid. The production and reinjection terms could be defined as “Net Production

Term” as given in Equation 3.4.
Wpnet = Wp ~ Wipj (3.4)
Therefore Equation 3.3 becomes as follows.

dj
Wy = Wp net =VrdrPwCr ?l; (3.5)

The steady-state Schilthuis (1936) water-influx method is used to describe the
recharge rate from the recharge source to reservoir tank (or from the aquifer to the
reservoir, or from the recharge source to the aquifer). This method assumes that the
recharge is proportional to the pressure difference between the reservoir tank and the

recharge source, and it is given by
Wa = Oy (pi - pr) (3.6)

where a,is the reservoir recharge constant, p; is the pressure of the recharge source
and p, is the pressure of the reservoir.
The models are developed for constant pressure aquifer outer boundary (open

system) and for no flow aquifer boundary (closed system). In cases where a closed

system is modeled, w, =0 is set in Equation 3.5.

Although the equations and solutions given in this study are in the form of pressure,

they can be represented in terms of water level A(#) by using the relation

pr(f): Pw gh(f).
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Several variations of geothermal systems using the tank model approach are studied
and explicit analytical solutions are obtained to describe the reservoir pressure

behavior. The systems studied in detail are;
1. 1 reservoir with recharge source (1-Tank Model),

2. 1 reservoir - | aquifer with/without recharge source (2-Tank Open/Closed
Model),

3. 1 reservoir - 2 aquifers with/without recharge source (3-Tank Open/Closed
Model),

4. 1 shallow reservoir - 1 deep reservoir with recharge source (2 Reservoir Tanks

Without Aquifer Model),

5. 1 shallow reservoir - 1 deep reservoir - 1 aquifer with recharge source (2

Reservoir Tanks With Aquifer Model).

3.1 1 Reservoir With Recharge Source (1-Tank Model)

Consider a geothermal system sketched in Figure 3.1 consisting of a reservoir and a
recharge source. The system (reservoir and recharge source) is in equilibrium at

t =0. Reservoir is produced at a mass rate of w pner and the recharge source at a

constant pressure of p; supplies water.

Production

Wp,net

Recharge
Recharge

Source, p; W,
as

Figure 3.1 Schematic of a single tank model with recharge source.

Using Equations 3.6 in Equation 3.5 and rearranging the resulting equation gives

dj
Wp,net = %y (pi - pr)_ Ky 71[; (3.7

where, «, could be called as reservoir storage capacity and defined as,
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Kp =Vpb,P ey (3.8)

Because p; is constant, we can recast Equation 3.7 in terms of Ap, = p; — p, as

w
APy | %y p, - Moret (3.9)
d «, K,

Equation 3.9 is a first order ordinary differential equation and the solution can be

obtained by using an initial condition which can be written as;
p(t=0)=p; or Ap,(t=0)=0 (3.10)

and the solution of Equation 3.9 in terms of pressure difference is given by (Sarak et
al., 2003a)

Ap, (€)= —wf;'”e’ {1 —exp(— ‘i—’tﬂ (3.11)

r r

or in terms of reservoir pressure is

pr()=pi - w—‘;—’[l - exp(— “—’ﬂ (3.12)

r Ky

Equations 3.11 and 3.12 give the pressure behavior of a geothermal system as a
function of production time under the conditions of a constant production rate and a
constant recharge pressure. Equation 3.11 (or 3.12) is first presented by Grant et al.,
1982). Later Onur (2001) extended the solution for variable rate history. For the

completeness, the detailed solution is given in Appendix-A for the 1-tank model.

For early-time behavior, the exponential term in Equations 3.11 and 3.12 can be

approximated as,

exp(—oc,,t/K,)zl—a,t/Kr for r<<x,/a, (3.13)

For all practical purposes, Equation 3.13 becomes valid for < 0.1%r. Thus,
a}"

Equations 3.11 and 3.12 become, respectively,
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Apr(t):%rfit (3.14)

r

Wp,net

pr(t)=p; - t (3.15)

r

which clearly indicates that reservoir pressure will decline linearly with time, and
recharge to reservoir will be negligible over these early times. In other words,

reservoir pressure is dependent on reservoir storage capacity, «, , and independent of
reservoir recharge constant, o, . So, when Equations 3.14 and 3.15 apply, one can be

able to determine only x, . Notice that the early-time solution, Equations 3.14 or

3.15, corresponds to the pseudosteady-state behavior of the reservoir.

For late-time behavior, the exponential term in Equations 3.11 and 3.12 can be

approximated as,
exp(—a,t/x,)=0 fort>>x,/a, (3.16)
Equations 3.11 and 3.12 reduce to

w

P1E _ const. (3.17)

r

ADygs =

wp,net

Prss = Pi — = const. (3.18)

r

It is worth noting that for all practical purposes, Equation 3.16 becomes valid for
t25«,/a,. So Equations 3.17 and 3.18 indicate that for all ¢ such that

t>5x%, /o, , the reservoir pressure stabilizes at a value determined by a balance

with the recharge. The pressure decline becomes independent of reservoir storage

coefficient, x,, but dependent on the reservoir recharge constant, o,. So, when

Equations 3.17 and 3.18 apply, it is possible to determine a.,., but not «, .

For constant production rate, Figure 3.2 shows 1-tank modeling results obtained from
Equation 3.12 with «, =2x10" kg/bar, a, =50 keg/bar-s and w,, ., =100 keJs.

The slope of the reservoir pressure drop vs. ¢ plot, which is valid for
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t<0.1x, /o, =40000 s = 0.46 days, is calculated as 5x 107% bar/s = 0.43 bar/days
by using the early-time solution (Equation 3.14), and the reservoir pressure stabilizes
at Ap,s =2 bars for late times, 2 5«, /o, = 2x 108 s =23 days (Equation 3.17).

On the other hand, the slope is obtained from Figure 3.2 as 0.43 bar/days for
t <0.46days, and Ap,is obtained as 2 bars for 7r>23 days. The asymptotic

solutions given by Equations 3.14 and 3.17 are justified by the results of Figure 3.2.
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Figure 3.2 Ap vs ¢ graph for 1-tank modeling with x, =2 107 kg/bar,
o, =50 kg/bar-s and w, ,o; =100 kg/s

3.2 1 Reservoir — 1 Aquifer System (2-Tank Model)

The second lumped parameter model considered in this work consists of two tanks.
A schematic of the 2-tank lumped model is shown in Figure 3.3. The first tank
represents the reservoir, the inner or central part of the geothermal system, where the
production/reinjection occurs. The second tank, is connected to the first tank,
simulates the outer part of the system (aquifer) recharging the reservoir. The aquifer
may be treated as a closed one with a closed outer boundary or an open one with a

constant pressure source.

Hot water is pumped out of the first tank (reservoir), which causes the pressure and
water level to decline. This in turn causes the decline of pressure and water level in
the second tank (aquifer). Thus the total geothermal system is affected by the

production.
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Production

Wp,net

Reservoir

Recharge Recharge Aquifer

Source, p; w,, 0 Ky Pa

Recharge
Wr: ar

Figure 3.3 Schematic of a 2-tank model.

It should be noted that the pressure or water level decline in the system is influenced
from the recharge characteristics of the system, and initial pressures of the system

parts which will be discussed in the following sections.

3.2.1 1 reservoir — 1 aquifer with recharge source (2-tank open system)

If the second tank (aquifer tank) is connected to a constant pressure source (recharge
source in Figure 3.3), then the system is described as an open system, and the

recharge source supplies water with a rate of w, = a,,(p; — p,) to the geothermal

system.

The mass balances written for the 2-tank open system shown in Figure 3.3 yield the

following differential equations describing the flow:

For Aquifer:

dj dj
Wa ~Wr =Kgq Sta or o‘a(pi"pa)_o‘r(pa"pr):Ka% (3.19)

For Reservoir:

pr

d
dr or  a,(pg—p,)- Wp,net = Ky e (3.20)

Wy = Wp et = Ky dr

where x, =V,¢,p4¢; and k, =V,.0,p,c;
Initial Condition:

Ap,(t=0)=Ap,(t=0)=0 (3.21)
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According to this formulation (Equation 3.21), we assume that hydraulic equilibrium

exists between the tanks.

The solutions describing the aquifer and reservoir pressure behaviors can be obtained
from Equations 3.19 - 3.21 by the use of Laplace transformation (Sarak, 2003a).
Details of the solution procedure can be found in Appendix-B. Here, only the

solution describing the reservoir pressure behavior, Ap, (t)= p; — p,(t) is recorded,

R

—-d
1 exp(—w)*-m—exp(—uzf)] (3.22)
Ly i —pyp)

po(uy — o)

where d = %2 % ,and pq and p, are the roots of
Ka
52 +[M+&:'s+aaar :(s+u1)(s+u2):0 (3.23)
KCI Kr aKr
2
w+& + (aa"'ar)_,_fx_r _4%a%r
K, K, L K, KoKy
H = D)
. Y (3.24)
(0g+oy) o) [lag+o,) o[ o0,
Ky K, K, K, KoK,
Ko = 2

For sufficiently small production times, t, the exponential terms in Equation 3.22 can

be approximated as,

exp(~pt)~1-pit and exp(—pyt)~1—pyt for £ <0.1/p, (3.25)

Thus, Equation 3.22 reduces to,

Wp,net

Ap,(f)= t (3.26)

Ky

which is exactly the same with the early-time solution obtained for 1-tank model and

describes the pseudosteady-state behavior of the reservoir tank alone.

34



The analytical solution of the 2-tank problem, Equation 3.22, yields the magnitude of
the reservoir pressure decline and as well as the time at which the steady-state

pressure drop occurs. The steady-state pressure drop is given by

o, +o 1 1
Appgs = ( — }wp,net = (OL + Q_pr,net (3.27)
¥

Ag Ay a

Since l“ll > [p.2| , exp(—u,t) term approaches to zero before exp(—u,t)term does,
and the time at which the steady-state pressure drop occurs (denoted by ¢, , steady-

state or stabilization time) is found from ,t > 5 as follows,

10(x g%, )

[Kr (0t +op )+ x50, |- \/[Kr (g + o, )+ KaOLr]2 —40,0,K,K,

tss -

(3.28)

It is interesting to note from Equation 3.27 that the steady-state reservoir pressure

drop, Ap,,. is a function of the harmonic average of recharge constants of reservoir
and aquifer, and the net production rate (a,, 0z, W), 4o ), Whereas the stabilization

time, f , is dependent on aquifer and reservoir properties and independent of the net

production rate. These results are similar to the ones obtained from the 1 reservoir

tank with recharge source case.

3.2.2 1 reservoir — 1 aquifer without recharge source (2-tank closed system)

If no recharge is allowed then the system is called as a closed system. For this case,
we set w, =0 or equivalently o, =0 for the mass balance on aquifer tank

(Equation 3.19). Then we obtain

dp,
dt

—w, =X, (3.29)

then the resulting system of equations is solved for p, and p, by using Laplace

transformation (Appendix-C). The pressure change solution for the reservoir, i.e,

Ap,(¢), for the case of constant production rate (i.e., w net 18 constant) is given by
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2
w w
Ap,,(t)= prel ., —pret Xa l—exp| —a, K—aj—ﬁt (3.30)
(Ka + Kr) 292 Kg T K, Kg Ky

It can be shown that for sufficiently small values of time such that

Ko%K,

t<01]—————
O‘r(Ka +Kr)

(3.31)

the exponential term in Equation 3.30 is approximated as

K, +K

K, K,

Kg tKp

exp(_ o, (3.32)

’t}zl—ar
Kq Xy

Equation 3.30 reduces to

Ap, () = w—’;ﬂt (3.33)

r

which indicates that the pressure drop in the reservoir increases linearly with time

with a slope equals to w, ;. /%, .

Similarly for sufficiently large times such that

exp[— a, Ka ¥ Ky tj =0 for t>5—1——&KL (3.34)
Kq Ky oy Ky +%,
in Equation 3.30, then it can be shown that Equation 3.30 becomes
W p,net Wp,net K%;
Ap,(t)= t+ > (3.35)
(kg +%,) % (kg +%,)

which indicates that the pressure drop in the reservoir increases linearly with time

with a slope equals to W, ../ (k, +%,). Equation 3.35 corresponds to the

pseudosteady-state equation for the aquifer and reservoir system.

3.2.3 A comparison of behavior of the 2-tank open and closed systems

Figure 3.4 shows early-time and late-time reservoir pressure drawdown for the open

and closed 2-tank lumped models for the case of constant production rate. As long as
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the production rate is constant the early-time pressure response of a closed system is
the same as of an open system. The pressure drop increases linearly with the
production time and is given by Equations 3.26 and 3.33. This corresponds to

pseudo-steady state flow behavior of the reservoir itself.

After some transition time the pressure (or water level) continues to decline steadily
with time in the case of closed system. The pressure drop during this long-term
production is given by Equation 3.35, which corresponds to pseudo-steady state

behavior of the total system of reservoir and aquifer.

However, in the case of an open system, the late-time pressure stabilizes at a value
which is given by Equation 3.27. This pressure behavior corresponds to steady-state

flow behavior of the total system.

N E_ ................... 1:_‘.‘ ________________________________
et
! Sto et E Apg = 1-Tank
1 pe= i r
: S IV S U A
= —+—|W -T (0
Ap : E s @, o, p.net ank (Open)
! 1+ Constant Pressure Quter Boundary
i 1
Early . : w
Time 1 : lope =E% 2-Tank (Closed)
[Region E E Close(:i Ourter
] E oundary
————— Late Time Region
0 Time

Figure 3.4 A comparison of early time and late time reservoir pressure drawdown
in 2-tank open and closed lumped models for constant production rate.

As discussed earlier the pressure drop - time behavior of all models exhibit three
district regions. The first region, the early-time region, reflects the pseudosteady-

state behavior of the reservoir tank itself and yields a cartesian plot of Ap versus ¢
straight line with slope of w p,net / €. This early-time pseudosteady-state behavior
occurs for all models. The last region, the late-time region, reflects the pseudosteady-
state behavior of the total system (reservoir + aquifer) for the closed model, whereas
it exhibits the steady-state behavior of the total system for the open model. The
pseudosteady-state behavior of the closed model is characterized by a straight line on

a Ap versus 1 plot and the slope of the straight line is given by w, ,,.r / (k, +%,).
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The steady-state behavior of the open model is identified when Ap reaches a

constant value which is given by w, ,,¢; (1/a, +1/a,) for a 2-tank open model.

For both models, the duration of the transition region between the early-time region

and the late-time region is mainly dependent on «,,a,,%, and k, values. It lasts
longer if the ratio of k, /x, gets larger. Figure 3.5 gives the pressure drop versus

time graphs for the 2-tank open and closed models. The graphs show the pressure
behavior of models for different time scales. For open and closed models the values

of a,.,a4,%, and wy, ,,, were assumed to be the same. Only the value of ¥, is
changed.

As Figure 3.5-a indicates all models show the same behavior at early times up to 0.2
days. The early-time straight line has a slope of w), .., /. All cases reach to the
transition region after 0.2 days of production time. The open and closed models with
Kk, =2x107 kg/bar deviates from each other and the closed one enters into the late
time pseudosteady-state behavior (see Figure 3.5-b and c). However, the open and
closed models with x, =2 x 10% kg/bar exhibit the same Ap versus ¢ behavior until
20 days when open and closed models for this case deviate from each other (Figure
3.5-c and d.). Interestingly, a straight line relationship can develop for k, =2 x 108
kg/bar case between 6 and 20 days (Figure 3.5-c). Existence of such a straight line

relationship is also seen for =2x10° kg/bar case between 6 and 200 days

(Figure 3.5-c and d) and for %, =2x10'0 kg/bar case between 10 and 1000 days

(Figure 3.5-c, d, e, and f). The straight line relationship in the transition region is

given by

dAp _ wp,net
.  x,+x,

(3.36)

which is the pseudosteady-state relationship for the closed model. The k, values in

cases which exhibit such relationship are much larger than the k, values so that the

equation above reduces to
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d Ap - W p . net

3.37
dt X ( )

a

In conclusion; whenever x, >>x, holds, the open and close models show the
pseudosteady-state straight line relationship in the transition region. The duration of
this relationship gets longer when «x, is larger or o, is smaller. In other words,
before feeling the effects of the recharge source the open model exhibits the

pseudosteady-state behavior similar to the closed model as long as k, >> «,.

3.24 1 reservoir-1 aquifer with recharge source (without initial hydraulic

equilibrium)

In this case, the system is similar to the system considered in Chapter 3.2.1, the
constant pressure recharge source supplies the aquifer tank which recharges the
reservoir tank as production proceeds. However, it is assumed that the initial
pressures of the reservoir and the aquifer tanks are different from the recharge source
initial pressure, p;. Such an assumption is valid when the recharge source is not in
hydraulic equilibrium with the reservoir and aquifer system at ¢ = 0. Although the
mass balances on the aquifer and the reservoir tanks are the same (Equations 3.19

and 3.20), initial condition is expressed as below:
Initial Condition : palt=0)=p.(t=0)=p, = p; (3.38)

The resulting equation is expressed by adding a term including initial pressure
difference between the recharge source and the reservoir or aquifer tanks(p; — p, ) to
the solution (Equation 3.22) obtained in Chapter 3.2.1. The pressure change solution

for the reservoir, Ap, (t), for the case of constant production rate is given by

Equation 3.22

Apr(r)ﬂp’"“[ d_, _m-d) exp(-u1r>+Mexp(—uzr)J
K [ mio —wy) o (i —1p)

L (3.39)

Og O (»; _po)[(uz — )~ 1p exp(— ) + g exp(=ppt)]

+
Kg Ky M I-LZ(MI _HZ)
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The detailed solutions describing the aquifer and reservoir pressure behaviors are

given in Appendix-D.

By using the early- and the late-time approximations of the exponential terms in

Equation 3.39, the solution reduces to the equations given below, respectively.

8p, ) =2

7

For early-time (3.40)

For late-time (3.41)

1 1
Apgs = [_ + _‘_:|wp,net - (pi - po)
(04 (02

a r

As it can be seen from Equation 3.40, the early time solution, for this case, is exactly
the same with one obtained in Chapter 3.2.1 (Equation 3.26), the reservoir pressure

declines with production time as a function of production rate, w/, .. , and reservoir

storage capacity, x,. On the other hand, the late-time solution (Equation 3.41) is
obtained by subtracting a term of (p; — p,) from the solution obtained in Chapter
3.2.1 (Equation 3.27).

3.3 1 Reservoir — 2 Aquifers System (3-Tank Model)

Lumped parameter models containing more than two tanks have also been
considered. Figure 3.6 shows a system containing 1 reservoir and 2 aquifers. The
system is represented by three tanks. The main purpose to model such a system is to
model the unsteady-state behavior of flow from the aquifer tanks to the reservoir tank
(see the discussion related to Figures 2.7 and 2.8).

Recharge
Source, p.
» Pi Production
Recharge Wp, net
Woa Clog
Outer Aquifer] Inner Aquifer Ra§séfs§9ir' i

—

Koa, Poa

Kig, Pia

—

ot

Recharge Recharge
Wig, Gig Wy, O
Figure 3.6 Schematic of a 3-tank model.
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The pressures of the reservoir and the aquifer tanks are assumed to be the same
throughout the system when production initiated. Due to the fluid production from
the reservoir tank, the reservoir pressure drops hence fluid flows from the inner
aquifer tank to the reservoir tank to maintain the reservoir pressure. This flow causes
a pressure drop in the inner aquifer tank and a corresponding expansion of the
remaining fluid in the inner aquifer tank. When enough flow takes place from the
inner aquifer to cause a significant pressure drop in the inner aquifer, a pressure
difference exists between the outer aquifer tank and the inner aquifer tank. Flow
takes place from the outer aquifer to the inner aquifer tank. This flow tends to
maintain the inner aquifer pressure and eventually causes a pressure drop in the outer
aquifer tank. If the outer aquifer tank is connected to a recharge source, the fluid flow

initiates from the recharge source to the outer aquifer tank.

Two outer boundary conditions namely the constant pressure outer aquifer boundary

and no flow outer aquifer boundary, are considered similar to 2-tank modeling. If the
outer aquifer tank is connected to a recharge source at a constant pressure of p;, the

system is called 3-tank open system, whereas if the outer aquifer has no flow

boundary then the system is called as 3-tank closed system.

3.3.1 1 reservoir - 2 aquifers with recharge source (3-tank open system)

In this chapter, the analytical solution is obtained for the system shown in Figure 3.6
by using mass balance equations on the reservoir and the aquifer tanks which yields

the following differential equations below:

For Outer Aquifer:

d
YWoa = Wiag = Kog dr or Qgg (pi - poa)— Qg (poa - pia) =Koa Z,(;a (3.42)

For Inner Aquifer:
dp; dp;
Wia = Wr = Kig d;a or Qi (Poa - pia)— &y (pz‘a - pr) =Kiq Z;a (343)

dp
Wy =Wpnet =Kp—— or  a, (pia - pr)_ Wp.net = Ky 7;“ (3.44)
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where Ko, =Voa®oaPoaCt > Kia =Via9iaPiat: and x, =V,0,p,¢;

Initial Condition:

Apoa(r= O)‘_‘ Apia(t = 0)= Apr(t= O)=O

(3.45)

The solutions describing the outer and inner aquifers, and reservoir pressure

behaviors can be obtained from Equations 3.42 - 3.45 by the use of Laplace

transformation. Details of the solution procedure are given in Appendix-E. The

solution of the reservoir pressure behavior is as follows:

w
Ap, (6) ==L [+ Bexp(- 1)+ Cexpl-pyt) + D exp(- )]

r

where
2
f=_ R B=__ M+
BiHoH3 (o —np)(us — 1)
\
2 2
C=___ M=l +ay D=__ H3=dil3 +3dy
oy —pp) (s —py) u3(py —ps)(p2 —ps3) )

i1, Uo, and py are the roots of cubic equation given in Appendix-E,

u1=2\/§cos(g—j+a?3 , Mg =2 Qcos(ezzn)_Fﬂ

3
p3 = 2\/_ cos(e +34nj +a?3

where

2 3
az — 3614 R= 2a3 - 903614 + 2705 0 = are cos

R
9 54 \/E

Q:
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(3.47)

(3.48)

(3.49)



ay = Kia (aia + O‘oa)‘*' Koa (aia + O‘r)
KiaKoa
ay = WOl + 00, + 0jrlo,
KiaKoa
_ KogKr (aia + O‘r)”" KigKp (aia + O‘oa)"' KiaKogOr 3
a3 = 5 (3.50)
KiaKoaXr
ay = Kr(OLiao‘oa T %igOy + oLoao‘r)"' Kia (aiao‘r + O‘oao‘r)"' Koa(OLiao‘r)
KiaKoaKp

o;,0,,,
ag = ia%oar

KigKoaXr ]

For early and late production times, the reservoir pressure behavior (Equation 3.46)

can be simplified by using the polynomial approximation of exponential expression.

For early production times, ¢ <0.1/p;, the exponential terms in Equation 3.46 can

be approximated as,
exp(-pir)~1-pyt, exp(=por) = 1-pyt, and exp(—pst)~1-pst (3.51)
Thus, Equation 3.46 becomes,

W p,net

Ap, () = [4+ B~ 1)+ C( - ppt)+ DO - p3t)] (3.52)

r

Substituting the terms of 4, B, C, D, py, yy,and 3 (these constants are given in

Appendix E) in Equation 3.52 gives

w p,net

Ap,(£)= t (3.53)

r

Equation 3.53 is the same with the other early-time solutions of the models
investigated earlier and it indicates that reservoir pressure declines linearly with

production time.

The exponential terms in Equation 3.46 approximate to zero for late production times

and Equation 3.46 reduces to

Qig (O‘oa +a, ) + 0oty

_ Wp net [A]

APpgs = jl (3.54)

or Ap,= Wp,netI:
r AjgAoaly
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The reservoir pressure stabilizes at a value determined by Equation 3.54 and the
stabilization time, g, is determined from g,f>5( since ‘u1|>‘u3|>lu2[) as

follows,

5
9+27’t] as
+_
3

(3.55)

lyg =

20 cos(

3.3.2 1 reservoir — 2 aquifers without recharge source (3-tank closed system)

If the outer aquifer tank has no flow boundary (outer aquifer tank is not connected to

a constant pressure source), a,, =0 is set and mass balance on the outer aquifer

tank can be written as,

For Outer Aquifer:
dp d
~ Wiag = Koq d(;a or —O0Qjg (poa 3 pia) =Koq l;,(;a (3.56)

Thus, the reservoir pressure behavior in terms of pressure difference, Ap,(t), is

obtained as follows (Appendix-F):

Ap,,(t):wp’netaz{t L1 [exp(—ult)—l_exp(—pzt)—l}}

T e ui w3
y — e
\Vonet { 1 [1 exp(-pit) 1-exp( Hzf)} (3.57)
K Ho —Hy M H2

w 1
, { lexplc 1) - exp( g r)]}
Ky (M2 —H1

where
a; ++ja; —4a, a, —+ja: —4a,
= > s My = 5 (3.58)
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Koa (aia + OL,,)+ Kia®ig

Cll =
KiaKoa

;0.
a = ia“ i

K, K

ia™oa (3.59)
ay = KoaK, (aia + (xr)"" KigKrQjg +KijgKpa Oy
KiaKoa¥r

ay = (Kia T Koa t K;*)()‘izz()‘;’

KiaKoa¥r

By using the early- and late-time approximations of the exponential terms in

Equation 3.57, the solution reduces to the equations given below, respectively.

w
For early-time  : Ap,(t)= —pret (3.60)
Kr
2 2
: v/ Kig +Kog ) Qg +K5,0
For late-time :Ap,(t)= p.net £4W et (Kig +Koa) Fig + K24 '
(Kia *+Koq +Kr) oc,-a(x,,(lc,-a + K g +1<,,)

(3.61)

For early-time, the reservoir pressure declines with time and after some transition

time reservoir pressure reaches steady-state flow and it stabilizes with a constant

value. The stabilization time is obtained by w,¢ > 5, since !p.1| > ]pzl '

ty = 10K g% ogk (3.62)
Koa¥, ((xia +a, ) *+KigKoq (OL,, ) + KoK, ((xia) ~SORT
SQRT — \/[EOQKF (a'ia + OL,.) T XigKoa ((X,,. ) + KK, (aia )]2 (363)
— 4050, K 5K oK p (Kia +Kog + Kr)

3.4 1 Shallow Reservoir — 1 Deep Reservoir With Recharge Source
(2 Reservoir Tanks Without Aquifer Model)

It is assumed that the reservoir consists of two parts; 1 shallow (upper) reservoir and
1 deep (lower) reservoir. Both are interconnected and supplied by the same recharge

source. A schematic of the model discussed is presented in Figure 3.7.
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Recharge
Source, p;

Shallow Reservoir
Production

Wp, netl

Deep Reservoir
Production

Wp,net2

- Deep Reservoir
K2,Pr2

Figure 3.7 Schematic of a 2 reservoir tanks without aquifer model.
Depending on the production rates, W, je1, Wp ner2 » and the recharge rates of the

shallow and deep reservoirs, w,;,w,; , the fluid flow occurs between the reservoirs.

Two cases are considered: (1) There is hydraulic equilibrium initially between the
reservoir tanks, and (2) There is no hydraulic equilibrium initially between the

reservoir tanks.
34.1 2 reservoir tanks without aquifer model (with initial hydraulic
equilibrium)

It is considered that the shallow and deep reservoirs and the recharge source all are in
a hydraulic equilibrium. Mass balances on both reservoirs and the initial conditions

can be expressed as below:

For Shallow Reservoir :

dpp
Wpl TWr12 = Wp nerl = %yl (Pi — Prl )+ Op12 (pr2 —Drl )_ Wp.netl =Kpl d: (3.64)

For Deep Reservoir :

dp
Wr2 =Wr12 = Wp ner2 = 02 (pi = pr2)-a12(pr2 — Py1)- Wp,net2 =Kr2 di;z (3.65)

Initial Conditions : Ap,=Ap,y =0@ t=0 (3.66)
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The solutions describing the pressure behavior of the shallow and deep reservoirs can
be obtained from Equations 3.64 - 3.66 by using Laplace transformation. Details of
the solution procedure can be found in Appendix-G. The solutions for both reservoirs

in terms of pressure changes, Ap,;(t) and Ap,,(t), are given as follows:

Apyi (t) =

wp,neﬂ[ N BTEAN (- pyr)+ —E2 14 exp(-uzf)} (3.67)
Biko Krlul(ul—llz) Krluz(}ll—uz)

+ wp,netZ{ 2, exp(- ulf)——gz—exp(- sz)}
ity pilg —po) w2 (b —12)
Ap,r (t):
a ay ap
w + exp(—pt) - ——=——exp(—u,t (3.68)
pmﬂLluz (1 —n2) ) Ha (1 — 1) C )}
—K -K
R i i B S R )

where p; and p, are the roots of 52 + ays + as given in Appendix-G.

_% +w/a£—4a5 a4—1/a42;—4a5

ay = Gy + %12
LA L%
[04
ay = rl2
Kp1Kp2
O, +0O
a3 — rl l"12 " (3.70)
Kp1Kyp2
O, +0 o +a
a4 = rl r12 + r2 r12
LV K2
as = Op1QGyp + O‘r‘lZ(OLrl + O‘r2)
Kr1Kp2 J

Since there is a flow connection between the shallow and deep reservoirs, their
pressure behaviors are affected by the production rates of each other (Equations 3.67
and 3.68).
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Sufficiently early and late time approximations of Equations 3.67 and 3.68 are

obtained by using the exponential approximations.

For early-time : exp(—pt)~1—pyt and exp(—pot) ~1—pyt

w
o for shallow reservoir : Ap,q (t) = Zpnell (3.71)
Krl

. W, net2
e for deep reservoir : Ap,, (t) =41 3.72)
Ky2

Equations 3.71 and 3.72 show that pressures of both shallow and deep reservoirs

decline linearly with time as obtained for the models discussed before.

For late-time : exp(—pt)= 0 and exp(- Hzf) =0

. Wp,netl (02 + i)+ Wp,net2 (0r12)
o for shallow reservoir : Ap,j =
Op1Oyp + 012 (O‘rl + 0(,.2)

(3.73)

Wp,netl (ar12 ) T Wp net2 (O‘rl + o )
Qp1QOy2 + 0‘}*12(0‘;’1 + O‘}*2)

o for deep reservoir : Ap,q g = (3.74)

Both shallow and deep reservoir pressures reach steady-state flow and they stabilize
with a constant value function of production rates of both reservoirs. The

stabilization times of shallow and deep reservoirs are the same, ¢ , and it is obtained

by s,1 > 5, since |pq| > [1o].

lss = L0k, 1 (3.75)
Kp2 (O‘rl + O‘1*12) +K, (arZ + Q12 ) —SQORT
2
SORT = \/(Krzarl ~ K102 ) + (K201 +K,10,12) (3.76)
+ (KrZ —Kyp1 )(2Kr20‘r10‘r12 - 2Kr1 O57‘20";“12)

342 2 reservoir tanks without aquifer model (without initial hydraulic

equilibrium)

The case of the shallow and deep reservoirs and the recharge source without an

initial hydraulic equilibrium is investigated in this part. To obtain the analytical
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solution of this system, mass balances on both reservoirs (Equations 3.64 and 3.65)
given in Chapter 3.4.1 can be applied. However, the initial conditions are altered as

given below:
Initial Conditions : p, =p,; @t=0 , pp=p, @t=0 (3.77)

The solutions of system of Equations 3.64 and 3.65 with the initial condition of

Equation 3.77 are obtained as below (Appendix-H):

Aprl(’):wp’neﬂ{ PR o exp(—ult)JfM—exP(—uzt)}
Kp1 | M2 Hl(ul*uz) Mz(ul—uz)

+Wﬂ2{ Lo exp(—pt)- exP(*Mz’)}
K [ ikz b k) p2 (1 —ha) (3.78)
+ exp(—py?) {alopl _ 94910 +0509}_ exp(=pot) {amuz _ 94910 +asa9}
Ml(m—uz) Kl Kr Kr2 Hz(ul—uz) Krl K1 Kr2
1 {(1509 _ a4a10}
Hil2 | Kpp K
Wponetl | ag ag a
Ap,,(t) = llas { +F exp(—pyt)———C—exp(— t}
2 K LHM2 Hl(}ll—uz) 1) Hz(ul—uz) 4 Ha)
+ 2P ’”‘”2{ B _FL® op(- )+ 2B exp(—uzt)}
Ko Lbaby pileg—po) B (g —pp) (3.79)

+ exp(-wt) {_ a9k1 . 4399 _a6aloi|_ exp(=py?) {_ aghz | 4399 _06010}
mp )l x2 K2 ke pa(i—p2)l K2 K2 Ky

. {0309 aéalo]
BiM2 | Xp2 Ky

where 1 and p, are the roots of s2 + a7s + ag given in Appendix-H.

2 2
a, ++a; —4a a, —+a? -4a,

M= > s My = ) (3.80)
o, +0a o,y +0O a 0,1y |
a3 = rl r12 , ag = r2 712 , a5 = r12 , ag= rl2
Kp K2 Krl K2
o, + 0o o,y + O, 0,y + o l0, + o
ay = r1 r12 + r2 r12 , ag= r1%r2 r12( rl ;*2)> (3.81)
Krl K2 Kr1Kp2
ag =—0,n (Pi - pr2i)+ ®p12 (Przi - Pm)
ay = 0y (Pi - Prli)+ Ar12 (prZi - prli)
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The early-time pressure drops in the shallow and deep reservoirs are dependent on
the production rates, storage capacities, and the differences in initial pressure and are

given by

:Apn (1) = Wi’"]e” ¢ 2ri2 (Pr2i - Prlli):" oy (pi = prli)t
r r

e for shallow reservoir

(3.82)

(AP ()= w};njz ¢4 Sri2 (Prai = Pr1]i ); o (pi = Proi) p
4 r

e for deep reservoir

(3.83)

The late-time pressures in the shallow and deep reservoirs are given by Equations

3.84 and 3.85, respectively.

Wp,netl (O‘r2 + o‘r12)+ Wp,net2 (O‘r12) _ (,D
i

Apyigs = ~ Prii) (3.84)

Ap1Opp + Uy (arl + OL,.2) ™

Wp netl (%12) T Wp ner2 (“rl + 0‘r12)

Aprygs =L y —(pi - Pr2i) (3.85)

Qppp + 0LrlZ(Otrl + O‘r2)
The stabilization time is,

10k 1K,2
ty = r1%r (3.86)
Kr2 (arl + O‘r12)+ Kr1 (0‘1*2 + 0"r'12) - SQRT
2
SORT = \/(K}’Zarl - Krl(xVZ) + (Kr2(xr12 + Krlar12)2 (3.87)
+ (Kr2 - Krl)(zK;QO‘rlo‘rD - 2Krlar2arl2)

3.5 1 Shallow Reservoir — 1 Deep Reservoir — 1 Aquifer With Recharge
Source (2 Reservoir Tanks With Aquifer Model)

As different from the lumped model considered in Chapter 3.4, one aquifer is
included in the geothermal system which consists of 1 shallow (upper) reservoir and
1 deep (lower) reservoir. Both reservoirs are interconnected and supplied by the

aquifer which is connected to a constant pressure recharge source (Figure 3.8).
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Figure 3.8 Schematic of a 2 reservoir tanks with aquifer model.

In the following sections, the cases of the system with and without the initial
hydraulic equilibrium are investigated separately.

3.5.1 2 reservoir tanks with aquifer model (with initial hydraulic equilibrium)

Mass balances on both reservoirs and the initial conditions can be expressed as

below:

For Aquifer :

d]
Wg =Wyl —Wp2= O‘a(pi —pa)_ Ay (pa _prl)_o‘rZ(pa _pr2)= Ka cl;ta (3.88)

For Shallow Reservoir ;

dpr
Wel +We12 = Wp et = 0 (Pg = Pr1)+ @12 (P2 = p11) - Wp,netl = Kpl d; (3-89)

For Deep Reservoir :

dp
Wy2 =Wpl12 = Wp net2 = %2 (Pa - pr2)_ Ap12 (pr2 —Prl )_ Wp,net2 =Kr2 d};Z (3.90)

Initial Conditions : Ap, =Ap,1 =Ap,, =0 @ =0 (3.91)
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The solutions describing the pressure behavior of the shallow and deep reservoirs can

be obtained from Equations 3.88 - 3.91 by using Laplace transformation. Details of

the solution procedure can be found in Appendix-1. The solutions for the both

reservoirs in terms of pressure changes, Ap,(t) and Ap,,(t), are given as follows:

Wpretl | _ u3 — (ay +ag)py +ayag — aza;

a99 —azay M% - (al + a9)M1 +aja9 —azay
Hikok3 np (g — g s —ug)

exp(— s 1)

AP, (t) =

Kyl

n Wp,net2 l_= dglly + a1ag + azay

B2 (g — iz 13 —12)
_ 13 — (a1 + ag)uz + ayag — azay

K3 (Ml —H3 )(Hz - H3) exp(— " t)

(a1a6 +azay T agll] +a18¢ + aszay

exp\—py t
Hikops Hl(PZ—Hl)(PB“Ml) ( : )

n'g

exp(-pz 1)

Kp2

B Mz(ul —Mz)(}13 —Hz)
—dgl3z + 106 +azay

[ ps( —ps)po —p3)

exp(—ps3 1) |

'alas +dayay; —aglp + ajag +azay )
e exp(—p 1)

pimons By — g es — )

—aguo +ajag + aray

v

w 1
Ap (t) = _pret exp\—u, t
& K Mz(lll —Hz)(Hs —Mz) ( "2 )

rl

Wp.net2

2
J_H2— (al +as)yy + a1as — a0y

—dagl3 +a1a8 +a2a7
- exp\— U3 i
L w3 (uy —psXpg —p3) Cest)

(alaS — M4y bt —(ay + as)y +aras - 4294
IiHoH3 i — g )ps — )

5

exp(— 251 ’)

N

exp(—py 1)

Kr2

Bo (g —pa s —pa)

2
k3 - (a1 +as)us + ayas — axay exp(— i3 £)

sy —ms)pg —ps)

\

where Uy, Ly, and p3 are the roots of cubic equation given in Appendix-I.
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v
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B = 2\/6 cos(gj + ———(al * a35 t ag)
Hy =20 cos(e +32“] Lar "35 +ay) > (3.94)
O+4n (a1+a5 +a9)
=2 ’
M3 \/——LOS( 3 )'l‘ 3 J

where

0= (al +as + ag )2 - 3(615619 —agag +ajas + ajag — aray —a3a7)
9
2(a1 +as +ag )3
R =—|-9(ay +as +ag Nasag — agag + ajas + ajag — aray — aza;) (3.95)

54
+ 27(611615619 —daidegdg — 61204619 - a2a6a7 —dsdudg — a3a5a7)

0 = arccos

R
Jo®

ay = O, +0, +0,0 a = Oyl as = oo
Ka Kg Kqg
0 O, +0O (0.7
ay = rl . as = rl r12 , g = rl2 e (3.96)
Krl Krl Krl
a o O,y +0O
ay = 2 ag = rl2 do = r2 ri2
Ky2 Kr2 K2

At early-time : exp(—pt) ~1—uqt, exp(— Hot)m1—pot and exp(—pst)~1- ust

w
o for shallow reservoir : Ap,(f)=—2 netl (3.97)
Kyl
. Wp,net2
o for deep reservoir : Ap,,(t)= L2 (3.98)
K2

At late-time : exp(—p )= 0, exp(—p,t)=0, and exp(—pst)=0
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Wp netl (o2 + 12 Mg +py )+ ar2ar12]

g0y Qypn +aaar12(arl +0‘r2) (399)
+ wp,netZ [ar12 (aa +0, 0 )+ 0"rlo‘r2]
AfQyQpp + UGy (a'rl + o‘;*2)

Apy1ss =
e for shallow reservoir :

A _ Wp,netl [arl2 (aa T 0y 0G0 ) + O‘rlo‘rZ]
Prass OLg0y104 + 002 (0 +0y2)
+ Wp,net2 [(arl + o‘}'12)(0‘a + 0‘;’2)"’ ®p10p12

Ag0, 0y + oLao"r12(o‘r1 + 0‘r2)

o for deep reservoir : ] (3.100)

The stabilization time of shallow and deep reservoirs, #;, , is obtained by ,t>5,

since || > us| > [uo].

5
2\/5006'(9—*—2“)4- (al +ds +a9)

(3.101)

ISS

3 3

352 2 reservoir tanks with aquifer model (without initial hydraulic

equilibrium)

The analytical solution for the case of the shallow and deep reservoirs, aquifer and
recharge source not in hydraulic equilibrium initially is obtained by mass balances on
the both reservoirs and aquifer. In this case, Equations 3.88, 3.89 and 3.90 are

applied and only the initial conditions are altered as given below:

Pa=DPg @t=0
Initial Conditions : p,;=p,; @t=0 (3.102)

Dy2 = Pp2i @t =0

The pressure drop solutions of the shallow and deep reservoirs are given below and

the detailed formulations are described in Appendix-J.
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2
aja; —azag  pi —{ag +ay1)wy +aa; - azag

exp(—p 1)

HikoH3

wp,netl

(B2 —py s — )

2
B2 - (a1 +ay1)up +aay) —azag

exp(—p2 1)

Apy (t):

rl

oy —p2 Mus — o)

2
M3 —(01 + 011)H3 +a1a11 —azag

ayas +asas +

3y —p3)po —p3)

aziy —a1a7 —

exp(-p3 1)

%5 expl-py 1)

Hilous
ajllp — 4107 — azds
po (uy —p2 )3 —po)

Wp net2
" p.ne

K2 +

2
ag i —aj4 M t a3

M (142 —Hi )(H3 - Hl)

exp (—

a —aiay —aa
Mzt)Jr 713 197 395

exp(—pu3t)
(g —ms)po —p3) ;

2
agla —ayy g +ag3

Tep (_ a t)[_ Ly (uz - )(H3 —Hi )H ’ exp(— "2 t) B K2 (Ml —H2 )(H3 —H2 )}
A e e
(3.103)
R = el
oy e e R
e
[T ) T RN O
L i,;q:tz M- fl“zl(:laf ):22) (::1_6132—)02“5 exp(-p; 1)
e e U
retew)| -2 g ) - el
e s e

(3.104)

where [y, Ly, and pj are the roots of cubic equation given in Appendix-J.
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w =20 @ AL ALY
s :2\/§cos(e+32n)+(al ”’g“’“) » (3.105)
0+4r (a1+a6+a11)
=2 +
us3 Qcos( 3 ) 3 )

where

2
_ (a1 + ag +ay1)” —3lagar; —azaig + @106 + a1ay) —azas —azag)

¢ 9
3
2(611 +a6 +a11)
R= g — 9(611 +dg + ap 1)(6166111 —ajapg +a1qe +aia)) —axds — a3a9) (3.106)
+27(ayaga11 — mara10 — aras5a1| — ara7a9 — a3asayg — 36y )
R
0 = arccos >
VO
a = Qg+ 0y +0p ,ay = 74 = 02
Kg Kg Kg
ag = —0gAPge + AP + O ADo,
Kg
A o, +0o a
as = rl’a6= rl r12,a7: rl12
Krl Kr1 Kr
ag = =01 AP e — 124D , ag = Gp2 , ajp = Ar12
Krl K2 Ky2
ayy = Oy2 T %12 a :"arZAp}Qc + 01280y (3.107)
K2 K2

ay3 = a1agay] +ajayayy +a4asay) +a4a7a9 + a3asa); —dzagdg
a4 =agai +ajayg +ajag +asds

ais = ajdga) +a1agd)( + axagdg + asasayg +aadedg — adsayy
a16 = aga)2 +agajo +a1d12 +a4a9

The early- and the late-time solutions of both reservoirs contain the terms of initial
pressure differences as different from the solutions obtained in Chapter 3.5.1. The

solutions are given below.

For early-time :
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Wponetl | _ Gr12 (pr2i = Pr1i)+ %1 (Pai = Pr1i) p
Krl Krl

o for shallow reservoir : Ap,(t) =

(3.108)

Wp,net2

f+ ®y12 (pr2i = prli)~ &2 (pai — pr2i)t
K2 Ky2

e for deep reservoir : Ap,o (t) =

(3.109)

For late-time :

[OL,,2 (aa + O‘rl)"' 12 (O‘a TO 0,0 )]
0 (010 + 01012 + 020012

[O‘rlarZ T 02 (O‘a TO, T 0, )]

Qg (arl(er T 002 + O‘}*20‘;’12)

- (pi _prli)

Apyss = Wp,netl

o for shallow reservoir : +Wp ner2

(3.110)

[arlarZ + O‘rlZ(o‘a T O 0 )]

O"a(arlaﬂ T O 00 t 0!.,,20!,,.12)

[O‘rl (O‘a + O‘r2)+ 0‘}'12(0%1 T O, 0 )]
0('41(057‘10‘}’2 T 000 + 0"r20‘r12)

Apyoss = p,netl

o for deep reservoir : +Wp ner2

- (Pi r prZi)

(3.111)

5

D) Q COS(ezznj'l' (al +a35 +619)

Lo = (3.112)
3.6 Modeling Variable Mass Flow Rate

The Dubamel’s principle is applied to obtain the solutions for the variable mass flow
rate. From the Duhamel’s principle (Thompson and Reynolds, 1986; Kuchuk and

Ayestaran, 1985), the pressure drop in the reservoir is given by

t
Ap(t)= [Wp e (1), (¢ — D)okt (3.113)
0

or in terms of pressure,
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t
()= pi ~ [Wp et (DA, (1~ T)ekn (3.114)
0

where Ap,, is the pressure drop that would be obtained if the system were produced
with the unit constant mass rate of w, ,,, and Ap;, is the time rate of change (or

simply time derivative) of Ap, . For example, Equation 3.11 is the general solution

for 1-tank model for the constant mass withdrawal w, .., , then if w, ,,,, =1 kg/s is

set in Equation 3.11, then the unit-rate pressure change, Ap,(r), and its time

derivative, Ap,,(¢), could be obtained, respectively, as

Ap, (I) = &1—[1 — exp(— i—"t-ﬂ and Ap, (t) = ;1— exp(— i—rtj (3.115)

r r ¥ ¥

For the other lumped models discussed previously, one can similarly derive the unit-
rate pressure change and its time derivative and apply Equation 3.113 or 3.114 to
generate the pressure response for a given variable mass flow rate history. In cases
where mass flow rate history can be represented with step changes, a partition of the
time interval (0,7) is considered as O =1y <#) <ty <--- <1, <t,, | =t and Equation

3.113 can be written as

J+l

n t
Ap@)=p; = PO) =Y [Wp et (&)AP}(t — T)dx (3.116)
J=0¢,

Following Thompson and Reynolds (1986), and Kuchuk and Ayestaran (1985),

Equation 3.116 can be approximated as:

n
8p(0)= Y AW et 141) AP~ 1) (3.117)
j=0

where Awp’ne,(t j+1)=wp,ne,(t j+1)—wp,net(tj) represents mass flow rate steps.

Note that in deriving Equation 3.117, 15 =0, w, ¢ (0)=0, and Ap, (0)=0 are used.
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3.7 Optimization Procedure

After a geothermal reservoir is produced for a period of time, a lumped parameter
model can be matched to observed pressure (or water level) data with the available
production/reinjection rate history to obtain optimum parameters of a particular
lumped model. As more data become available, more information can be obtained
about the reservoir and the system. With time there are data available which may be
used to improve the understanding the behavior of the reservoir. Therefore, in
modeling, data must be collected as the reservoir is produced. The model is limited
to the data used, so all the pressure (or water level) responses must be included for
honoring all the data available. In matching observed production data, in general,
more and accurate production data are desired. This is quite important in reducing
the uncertainty in performance predictions as well as in further development of the

system under consideration.

Fitting model parameters to the observed data requires accurate and fast approaches.
The method of least squares fitting is a convenient one to apply. As is well known
(Bard, 1974), traditional (unweighted) least squares estimation is often unsatisfactory
when some observations are less reliable than others and/or various measurements
having disparate orders of magnitude are simultaneously used in estimation. In the
former case, we want to make sure that our parameter estimates will be more
influenced by the more reliable observations than by the less reliable ones. In the
latter case, we wish to make sure that any information contained in the data with
small magnitudes is not lost because of summing together squares of numbers of
such disparate orders of magnitude. Therefore, in this study, weighted least-squares
fitting is considered so that the above mentioned disadvantages associated with the

standard least squares fitting can be overcome.

The inverse problem of estimating unknown parameters from various lumped models
derived in Chapter 3 can be formulated as a nonlinear optimization problem. A
nonlinear parameter estimation is performed by minimizing a weighted least-squares
(LS) objective function (J) for which the weights (inverse of the variances of
measurement errors assumed to be normal and independent) are assumed to be
known. In general, a weighted least-squares objective function is minimized (Onur

and Kuchuk, 2000):
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M n 5
J@= w60 v,6)] (3.118)
j=li=1

where M represents the total number of model function f'and, (¢, y(#)), i=1,...,nis a
set of n observations of the model function f, j=1,....,M. ¥ is an I-dimensional

column vector whose elements are unknown parameters for a chosen lumped model.
In Equation 3.118, the positive weights w;; are the inverse of variance of
measurement errors corresponding to measured value y; at time #;. In our applications,
y; could represent pressure (or water level) data measured as a function of time from

wells in reservoirs or aquifers.

One can construct weighted LS objective functions based on Equation 3.118,
depending on the pressure (or water level) data available and the lumped model
chosen for regression, and consider matching of a single pressure data set (M=1 in
Equation 3.118, e.g. 1-, 2- and 3-tank models) as well as simultaneous matching of
different pressure data sets (M=2 in Equation 3.118, e.g. 2-reservoir tanks
with/without aquifer model) to optimize ». Suppose a 2-reservoir tanks without
aquifer model is considered, where the system is assumed to be consisted of one deep
reservoir and shallow reservoir and assume that we have a set of n measured pressure
data from a well in the deep reservoir and a set of » measured pressure data from a
well in the shallow reservoir. Then, M = 2 in Equation 3.118, and one can choose y;
and fi to represent the measured and model pressure data for the deep reservoir,
whereas y; and £ to represent measured and model pressure data for the shallow
reservoir, respectively. In this case, the positive weights w ;, i=1,...,», will represent
the inverse of variance of the measurement error for the ith measured pressure for the
deep reservoir, whereas, wy;, i=1,...,n, will represent the inverse of variance of the
measurement error for the ith measured pressure for the shallow reservoir. It means
that for this case, a weighted-LS objective function is constructed based on two

different sets of pressure data and simultaneously match both sets to optimize 7,

where, for this lumped model, in general, 7 can be represented as

= T
1= [KrHKrZraal,aaZ,ar] (3.119)

where T denotes the transpose.
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In our applications, we minimize the objective function given by Equation 3.118 by
using the Levenberg-Marquardt method with a restricted step procedure as described
by Fletcher (1987) and constrain the unknown parameters in nonlinear regression by
using the so-called imaging method of Carvalho et al. (1996). In addition, we
compute 95% confidence intervals and correlation coefficients by using the standard
definitions (Dogru et al., 1977). As is well known, computing and inspecting such
statistics in regression analysis is very useful for identifying which parameters can be
reliably determined from available data. Lower the confidence interval, higher the

certainty of the estimated model parameter.

As is well known, in nonlinear regression, parameter estimation from lumped models
starts with a set of initial guess for the parameters, and then the parameters are
updated by the method discussed above until a successful match of data with the
model response can be obtained. The standard terminating criteria given by Gill et al.
(1993) are used. At termination, for each data set matched, the standard deviation of
errors as well as the root mean square errors (RMS) are also computed. Here, we use

the standard definition of RMS given by

RMS =\/%§l[fj(fi,io)-yj(ti)]2 (3.120)

where 7, represents the optimized parameter vector. The value of RMS shows the

matching quality as quantitatively. Lower the RMS value, better the matching
between field and model data.

Before closing this chapter, we should note that choosing good initial guesses and
constraints for parameters plays an important role in nonlinear regression analysis
because nonlinear regression algorithms could often become trapped at unacceptable
local minima. Particularly, this would be valid in cases where the models with a large
number of unknown parameters are chosen for the data to be matched and/or the
observed data contain large measurement errors. The data obtained from such as
geological, hydrogeological and geophysical surveys can be useful to obtain a good
set of initial guesses for the parameters prior to performing nonlinear regression

analysis.
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4. FIELD APPLICATIONS

This chapter deals with the applications of the new lumped parameter models to field
cases. The models are used to match the long-term measured water level or pressure
response to a given production history. For history matching purposes, an
optimization algorithm described in Chapter 3, Section 3.7. In addition, the
parameters are constrained during nonlinear minimization process to keep them
physically meaningful and compute statistics (e.g., standard 95% confidence
intervals) to assess uncertainty in the estimated parameters. Moreover, the root mean
square errors (RMS) are calculated for each data set to show the matching quality as
quantitatively. Four field examples (three fields are located in Iceland and one in

Turkey) are studied to validate the use of the models and optimization algorithm.

For the field applications discussed below, all observed data were given in terms of
water levels. All the measured water level data first converted to pressure
equivalence by p, (t)= pgh(t) and then used in regression algorithm. Thus, all
parameter estimates are given in pressure units. However, all graphical results are

presented in terms of water levels to be consistent with the field data.

4.1 Laugarnes Field

The Laugarnes field in SW-Iceland is a considerably large field. The major feed
zones are between depths of 700 and 1300 m and the water temperature is between
115 and 135°C. A continuous water level record was available from one well. The
Laugarnes field is discussed in Axelsson and Gunnlaugsson (2000), and Axelsson
(1989). Axelsson (1989) used the water level data to simulate the pressure response

of the field and to estimate its production capacity.

Prior to exploitation the hydrostatic pressure at the surface in the geothermal field
was 6-7 bars corresponding to a free water level 60-70 m above the land surface.
Therefore, the initial water level is assumed to be 65 m and the water level data is

modified before performing nonlinear regression analysis. Exploitation caused
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pressure drop in the field and water level fell. Figure 4.1 shows the water level

changes and production history of the Laugarnes system.

Axelsson (1989) used a closed three capacitor lumped model (a 3-tank with closed
outer boundary model) for simulation. He treated the modeling as an inverse
problem. He obtained quite a satisfactory match between the measured and
calculated data (Figure 4.2). Results of our 3-tank closed model assuming the values

of parameters given by Axelsson are also plotted for comparison. Axelsson’s match

and our match look almost identical.

Next, nonlinear regression analysis based on our 1- , 2-, and 3-tank models are

performed to estimate the parameters. The best fit was obtained with the parameters
given in Table 4.1 (Sarak et al, 2003b).
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Figure 4.1 Water level changes and production history of Laugarnes field (Axelsson,
1989; Axelsson and Gunnlaugsson, 2000).
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Here and throughout, the numbers given in parentheses represent the 95% absolute
confidence interval for the relevant parameters. The Axelsson’s parameters are also
given for comparison purposes but Axelsson did not compute the confidence

intervals for the parameters.

The RMS value for 1-tank model is the highest one of RMS values of the models
tried. Higher RMS value is a result of larger deviation between the model and

measured water levels. Figure 4.3 presents the 1-tank model result.

The comparison of 2-tank open and closed models (Table 4.1 and Figure 4.4)
indicates that both models are almost identical. However since its RMS value is
lower, 2-tank open model seems to be more appropriate than 2-tank closed model to

simulate the Laugarnes field.

Although the RMS values of 3-tank open and closed models are same, the
confidence interval for the parameter a,, is quite high (+8.4), indicating that this
parameter is not well determined compared to the other parameters from the data.

Consequently, the 3-tank closed model looks more appropriate than 3-tank open
model. The results of 3-tank open and closed models are presented in Figure 4.5.

Table 4.1 Parameters of the best fitting lumped parameters (1-, 2-, and 3-tank
models) for Laugarnes field.

ot | 1Tanc | 2Tauk | 2Tank | 3-Tank | 3-Tank

Closed) Closed Open Closed Open
Qoo kg/bar-s - - - - - (0;;046)
o |~ | - | -
g‘;‘/tf;’;?) 61.8 - - (igigé) (:l:’{g:gO) (i7375..7788)
R T A A
o kgfbar-s | 36.8 (ig'.‘stg) (ig:gz;) (i(l)‘.gg) (1_3,:(8)27;) (13233;)
st | 7730 | LG | OO o | it | e
RMS, bar - 1140 | 0616 | 0.566 0.525 0.525
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Figure 4.3 Simulation results of 1-tank model.
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Figure 4.4 Simulation results of 2-tank open and closed models.
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Figure 4.5 Simulation results of 3-tank open and closed models.
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The 1-tank model does not give an acceptable match. Although the 3-tank models
gave good matches with lower RMS values, however, the 2-tank open model also
gave a reasonable match as well as it yields lower confidence intervals for the

parameters. Regarding to the 3-tank closed model, we note that the confidence

interval for the parameter x,, is determined as +2.8x10° which means the value of
K;, can be in between 0 and 5.4 10°. This emphasizes that «;, from this data can not

be determined well. When the confidence intervals for the parameters relating to 2-
tank open model and the RMS values are considered, it would be appropriate to state
that 2-tank open model is the best one representing the measured data.

Figure 4.6 shows the comparison of Axelsson’s result and our 3-tank closed model
results. Notice that, Figure 4.2 and 4.6 look almost identical. However they reflect
the modeling results based on different sets of data. Figure 4.2 gives the results of
our 3-tank closed model using Axelsson’s parameters whereas Figure 4.6 shows the
results of our 3-tank closed model using the parameters obtained from our regression
analysis (Table 4.1).
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Figure 4.6 Comparison of Axelsson’s match with 3-tank closed model.

4.2 Glerardalur Field

The water level and the production rate data in the Glerardalur low-temperature
geothermal field in N-Iceland are presented in Figure 4.7 (Axelsson, 1989). This
field has been utilized since 1982. The reservoir temperature at Glerardalur is about
61°C. The main feed zone is at 450 m depth. Most of the wells drilled are shallow
(100-300 m) exploration wells.
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Figure 4.7 Water level data and data on the production in Glerardalur field
(Axelsson, 1989).

One problem involved in simulating the Glerardalur field was the absence of the
initial reservoir pressure or the initial water level data. Lumped parameter modeling
requires the initial water level to be known a priori. Hence, the simulations were

carried out to determine the reservoir and aquifer parameters and as well as the initial

water level. Our optimization study of the field data yielded an initial water level of

-53.5 m (corresponding to a free water level 53.5 m above the land surface).

The measured water level behavior shown in Fig. 4.7 for the Glerardalur field
resembles the behavior of a system with constant pressure outer boundary. For a
constant production rate, the reservoir pressure of a constant pressure outer boundary
system declines sharply at early times and then reaches to a constant value at late
times. Equations 3.17, and 3.27 given in Chapter 3 describe the late time behaviors
of the 1- and 2-tank systems with constant pressure source. The late time steady-state
reservoir pressure drop is a function of the harmonic average of reservoir and aquifer

recharge constants, (&, =1/a, +1/ a,), and the net production rate. Figure 4.7

exhibits a relatively constant production rate and a stabilized steady-state pressure
drop. An equilibrium between production and recharge is eventually reached during
long-term production, causing the reservoir pressure (or water level) drawdown to
stabilize. Such a behavior is valid for systems with constant pressure outer boundary.
Therefore, 2-tank model with constant pressure outer boundary is considered besides
the 3-tank closed model as suggested by Axelsson (1989) for simulating the response
of the Glerardalur field. Performing graphical analysis on the data by using the
asymptotic equations given in Chapter 3, o, is estimated to be 1.13 kg/(bar-s) by
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using the net production rate, wp, ., =27.5 kg/s, and the stabilized steady-state

pressure drop, Ap, = 24 bar in Equation 3.27.

1-, 2- , and 3-tank simulation results of best fits yielded the parameters given in
Table 4.2 (Sarak et al., 2003b). 1-tank model has the highest RMS value which
means l-tank model does not fit well the measured data. This concept is also
supported by the plot of measured and simulated data obtained by 1-tank model

(Figure 4.8). Addition to this, the initial water level (or pressure) is not well

determined by 1-tank model (see the confidence intervals of p; in Table 4.2).

Table 4.2 Parameters of the best fitting lumped parameters (1-, 2-, and 3-tank
models) for Glerardalur field.

‘g‘,’;ﬁ’l‘(‘ tTapx | 2Tank | 2-Tank | 3-Tank | 3-Tank
Closed) Closed Open Closed Open
0.003
e kg/bar-s -- -- i - = (£7.23)
3 9.88x10° | 1.22x10°
Kow kg/bar | 6.08x10 - - - 6.8x10% | (£1.4¢10%
a‘

i 142 1.58 1.54
f{‘;‘-}ggz-n» 1.89 - - *0.077) | (20.156) | (+0.166)
Kig 8 7 7 7

) 5.55x10° | 8.75x107 | 7.05x107 | 7.32x10
ggzm, aLogll T | (154108 | (9.9x10%) | (£1.5x107) | (£1.6x107)
138 1.47 2.97 3.29 331
o kgbar-s 1337 1 4013) | @012) | 044) | 0608) | (£0.645)
6 | 5.48x107 | 2.99x10” | 8.15x10° | 7.41x10°® | 7.37x10°
% kglbar 1 SIXI0T ) 0 7010 | @7.2x109) | (1.8x10%) | (£2.0x10% | (22.0x10%)

o ~ 20.0058 | 342 5.15 53 5.14
pi @145) | (+188) | (+095) | (£0927) | (£0.930)
By m" - 0.006 -35.6 -53.5 .54.7 53,5
RMS, bar - 1.268 1.080 0.546 0.522 0.524

A comparison of 2-tank open and closed models indicates that the RMS value of 2-
tank closed model is higher and the confidence intervals of the model parameters are
slightly wider than the confidence intervals of the parameters for 2-tank open model
(Table 4.2).

* positive sign indicates the water level below the land surface and negative sign indicates the water
level above the land surface.

69



Therefore, it can be stated that 2-tank open model represents the data more
satisfactorily than the 2-tank closed model does (Figure 4.9).
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Figure 4.8 Simulation results of 1-tank model.
-100 © Measured 100
. 0 - 2-Tank (Open) Model | g, é
* 2-Tank (Closed) Model o
2 100 - . y L 60 %
! ) S ; - - 3
jg‘ 200 4 Production B A - 40 Fg
o
400 —— T 0
i o o < w) \O o~ o0
o0 [ o] o0 o0 [+ o0 o0 [~ <}
& & & & & & & 3
Year

Figure 4.9 Simulation Results of 2-tank open and closed models.

Regression results for the 3-tank open and closed models yielded the parameters
given in the sixth and the seventh columns of Table 4.2. A comparison of confidence
intervals for model parameters and RMS values indicates that 3-tank closed model
matches the field data better. The results of the simulations are presented in Figure

4.10.

As an overall result of the comparison of all models, due to its simplicity the 2-tank

open model seems to be a preferable model to represent the geothermal system in

Glerardalur field.

70



-100 ° TV 7e— 100
0 - 3-Tank (Open) Model | g4 é
g 3-Tank (Closed) Model o
é’ 100 W Water Level - 60 ~§
=
g 200 4 Production - 40 g
B =W
i K B
300 r——ll I‘\'—' 20 %
400 — — T ey 0
— o o <t Wy \O o~ o0
Q0 o0 o0 [} o0 o0 [+~ o0
& 2 2 g 2 @ 2 g
Year

Figure 4.10 Simulation Results of 3-tank open and closed models.

As a next step, Axelsson’s match is compared with our 3-tank closed model results
employing Axelsson’s parameters (Figure 4.11) and with our 3-tank closed model
regression results (Figure 4.12). Since the model parameters Axelsson used and the
parameters obtained by our regression analysis are almost identical, Figure 4.11 and
Figure 4.12 give the similar results.
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Figure 4.11 Comparison of measured and calculated water level changes.
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Figure 4.12 Comparison of Axelsson’s match with 3-tank closed model.
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4.3 Svartsengi Field

The Svartsengi field in Iceland is a liquid-dominated reservoir with fluids of nearly
constant temperature at 235°C. Olsen (1984) reports that although the reservoir
temperature is higher than the expected temperature of a low-temperature reservoir,
the reservoir shows a liquid dominated reservoir rather than a two-phase reservoir
behavior. Most of the wells are completed in the liquid zone and wells with varying
depths show a uniform temperature and pressures of the wells are higher than the
water saturation pressures at corresponding temperatures. Therefore, the reservoir is
assumed to be a liquid dominated reservoir and our models are utilized to describe its
behavior. The reservoir can be considered as a high temperature-high pressure

reservoir with a liquid dominated reservoir behavior.

Fluid production from the reservoir started in 1976. The composition of the fluids
produced is about two-thirds seawater and one-third rainwater. Fluid extraction and
reservoir drawdown in Svartsengi were monitored. The drawdown was measured as

water level in monitoring wells. The water level was measured in wells 4, 5 and 6.

The resistivity measurements indicated a reservoir surface area of 5 km?® at 200 m

depth, and 7 km? at 600 m below sea level.

Production response data of the Svartsengi geothermal reservoir consist of a seven-
year continuous record from nearby observation wells in the field. These data are

presented in Figure 4.13.
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Figure 4.13 Production response data of the Svartsengi geothermal reservoir
(Olsen, 1984).
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Olsen (1984), and Gudmundsson and Olsen (1987) studied the production data of the
Svartsengi field. Their objective was to study the use of water influx methods in
geothermal reservoir evaluation. They derived depletion models for liquid dominated
geothermal reservoirs and modeled water influx by using Schilthuis, Fetkovich and
Hurst methods. They found that the steady state Schilthuis method (Schilthuis, 1936)
gave a reasonable match and the Hurst simplified unsteady-state method (van
Everdingen and Hurst, 1949) assuming an infinite radial aquifer gave the best match
of the models they tried.

Figure 4.14 shows the Schilthuis steady-state match and the Hurst (simplified)
unsteady-state match obtained by Olsen (1984). Olsen applied mass balance on the

reservoir as in our 1-tank model. In Olsen’s approach the water influx (W) is

computed for each time step by wusing Schilthuis method according to

n
z (p,- -Dj )At ., and the mass balance is arranged as given in Equation 4.1. The plot
j=1

of x, vs y, gives a straight line. The model parameters, k¥, and @, , are estimated

from the slope and the intercept of the straight line, respectively.

WP” i Apn

= +a, or =—K,X,+a 4.1
Wa/ar ¥ Wa/ar ¥ In rXn ¥ 4.1)

where, Wp,, is the cumulative mass production, and ¥, is the water influx, Ap,, is

the pressure drop at n’th time step.
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Figure 4.14 Schilthuis steady-state and Hurst (simplified) unsteady-state matches
(Olsen, 1984).
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The Schilthuis match is better for the early part of the data than for.the later data.
Olsen obtained the following values from the Schilthuis match:

k, =6.68x10% kg/bar and @, =38.0 kg/bar-s.

A nonlinear regression of the Svartsengi production data are employed by using 1-,
2- and 3-tank models given in this study. Figure 4.15 shows the results of 1-tank

model.
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Figure 4.15 Comparison of observed and calculated water level changes.

The match obtained by Olsen using the Schilthuis steady-state model is also shown
in Figure 4.15 for comparison purposes. Notice that the match based on our 1-tank
model fits the measured water level data better than the Olsen’s match based on the

Schilthuis model.

Figures 4.16 and 4.17 present the results of 2- and 3-tank models, respectively. Table
4.3 summarizes the parameters of the best fitting lumped models.
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Figure 4.16 Simulation results of 2-tank models.
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Figure 4.17 Simulation results of 3-tank models.

Table 4.3  Parameters of the best fitting lumped parameters (1-, 2-, and 3-tank
models) for Svartsengi field.
Olsen 1-Tank 2-Tank 2-Tank 3-Tank 3-Tank
(Schilthuis) -han Closed Open Closed Open
856.47
Gokgfbars | - v 3 - - (@5.1x10%
« ) _ _ 1.84x10% | 3.06x10"
Ko Kgfbar < - 32101 | 2.4x10)
a.
ia 35.36 39.89 0.002
f{‘;ﬁ:ﬁ*ﬂ - - - (#9370) | (13.0) | (0.077)
a foro.T y d 1.28x10" | 8.59x10° | 7.65x10° | 1.25x10"
f(’;a/b‘; -, T | @8.8x10%) | @3.3x10%) | (£4.1x10%) | (£8.7x10%)
K 380 30.75 37.7 179.72 220.3 37.86
@, kg/bar-s : (£1.045) | (6.183) | (4256.99) | (+449.41) | (+£6.512)
g | 1.27x10° | 1.13x10° | 7.64x10° | 6.98x10° | 1.13x10°
% kefbar | 6.68x10° | (7 £107) | (13x10%) | (£4.8x10% | (£6.4x10%) | (21.6x10%
RMS, bar - 0.403 0.403 0.406 0.405 0.403

Although the matches obtained by 2- and 3-tank models are quite same, the
confidence intervals given in Table 4.3 computed for the parameters of the 2-tank

open, and 3-tank open and closed models are quite high, (particularly see confidence

intervals for a,,, a,and x,,). This indicates that the 3-tank open and closed, and

2-tank open models are inappropriate for the data. However, 1-tank and 2-tank

closed models appear to be appropriate for the data as the fits between the measured

and simulated data are quite satisfactory (see confidence intervals and RMS values in
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Table 4.3) for both models. The +8.8x10° confidence interval for «;, in the 2-tank

closed model shows that this parameter is not well determined compared to the other
parameters of the model from the data available. Because results of our 1-tank and 2-
tank closed model simulations did not exhibit any significant differences, further
information on geology and geophysics as well as detailed analysis are required to
identify the most appropriate model for the system. Due to its simplicity, however,
1-tank model could be chosen as an appropriate model to simulate Svartsengi field

production data.

4.4 Balcova-Narlidere Field

4.4.1 About the field

Balcova-Narlidere geothermal field, which is known as the oldest geothermal system
in Turkey, is situated 10 km away from the west of Izmir. The geothermal water with
the temperature ranging from 80 to 140°C is produced from the wells with the depths
ranging from 48.5 m to 1100 m. The first well was drilled by General Directorate of
Mineral Research and Exploration (MTA) in 1963. There are about 50 wells drilled
up to date and they are classified as gradient, shallow and deep wells. The field
started to feed a district heating system with a capacity of approximately 5000

residences in 1996.

A total of 21 wells (9 deep and 12 shallow wells) are operated since 1996. The
deepest well is BD-5 with a depth of 1100 m and the shallowest well is B-9 with a
depth of 48.5 m. Six deep wells, BD-2, BD-3, BD-4, BD-5, BD-6 and BD-7, and
four shallow wells, B-4, B-5, B-10 and B-11 are being continuously or periodically
used for production. The deep wells were produced in winter and the shallow wells
were produced in summer months in general. Until September 2002, three shallow
wells, B-2, B-9 and B-12 were used for reinjection. However in 2002 the reinjection
was switched to deep wells and a new well, BD-8, drilled in 2001 has been used for
reinjection since then. The depths and the temperatures of the shallow and deep wells

are presented in Table 4.4, and the locations of the wells are shown in Figure 4.18.
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Table 4.4 The depths and the temperatures of the wells in Balcova-Narlidere field.

Figure 4.18 Locations of the wells in Balcova-Narlidere field.

Well | Depth (m) |Temperature (°C)] Well | Depth (m) | Temperature (°C)
B-1 104 115 BD-1 564 140
B-2 150 113 BD-2 677 133
B-3 161 112 BD-3 750 140
B-4 125 112 BD-4 624 140
B-5 108.5 114 BD-5 1100 130
B-6 150 93 BD-6 605 140
B-7 120 115 BD-7 702 140
B-8 155 93 BD-8 625 133
B-9 48.5 122 BD-9 770 140
B-10 125 114
B-11 125 109
B-12 120 100
27° 01' 48" 27° 02' 06" 27° 02' 24" 27° 02" 42"
38° 23 42" §38° 28' 42"
Bb-5
458
o o o4 . BD-6 2 T "
38° 23' 24 o ?}4%1; @,B:D' 2 Bg-a BQ‘3‘ BD9 38° 23' 24
B10 BY %5-7
dots 851 ‘!
38°23' 06"t ) ‘ ‘ “ 138° 23' 06"
27° 01' 48" 27° 02' 06" 27° 02 24" 27° 02 42"

The geological data, well logs, temperature profiles, well tests and geochemistry of

the produced fluid are discussed in detail by Satman et al. (2002).

The production/reinjection and water level changes are measured in 8 shallow and 8
deep wells, some periodically and some intermittently. Figures 4.19, 4.20 and 4.21
show the net production (production-reinjection) data of shallow wells, deep wells
and whole field, respectively. The shallow wells were used for reinjection and the
deep wells for production until September 2002. However the reinjection into

shallow wells was terminated in September 2002 (Figure 4.19 and Table 4.5). BD-8

is being used for reinjection since September 2002 (Figure 4.20).
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Table 4.5 Summary of operations in the field.

Date Comments
02.10.2000 Water level measurements of BD-1 started
02.10.2000-09.08.2002 | Water level measurements of BD-5 are recorded
20.11.2002 BD-5 begun to produce
Reinjection into B-9 stopped,
24.09.2002 BD-8 begun to be used for reinjection
04.01.2003 Water level measurements of BD-6 started
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Figure 4.20 Net production history of deep wells.
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Figure 4.21 Net production history of the field.

78




79

The water level data of the deep wells (BD-1, BD-5 and BD-6), and the shallow
wells (B-9 and B-12) are presented in Figures 4.22, 4.23, 4.24, 425 and 4.26,

respectively. The data are taken from the top of the well.
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Figure 4.24 Water level data of BD-6.



BD-1 is a well with a moderate depth and is located near the center of the production
area (Table 4.4 and Figure 4.18). It has been used as an observation well. Satman et
al. (2002) states that the water level of BD-1 is strongly affected by the production
from and the reinjection into the shallow wells and also affected by the production

from the deep wells.

BD-5 is situated in northwestern of the field. The water level of BD-5 (see Figure
4.23) shows a similar behavior as BD-1 does. However, BD-5 exhibits greater water
level changes than BD-1 does. The reasons for such difference in behavior are
thought to be; (1) the direction of the natural recharge is from east to south-west in
the field thus the natural recharge support is felt weaker at BD-5, (2) BD-5 is further
away from the reinjection region so that the reinjection into the shallow wells causes

a stronger support to BD-1.
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Figure 4.25 Water level data of B-9.
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Figure 4.26 Water level data of B-12.



The third deep well, BD-6, used in modeling is also located near the center of the
production area. It was used as a production well until 18.11.2002. Later it was used

as an observation well and the water level measurements were recorded.

The deep well, BD-1 has the longest duration of water level recording whereas the
water level recordings of the other wells (BD-5, BD-6, B-9 and B-12) are either of
short duration or not recorded continuously (Figures 4.22, 4.23, 4.24, 4.25, and 4.26).

4.4.2 Applications of lumped models

The most important problem involved in modeling Balcova-Narlidere geothermal
field is the lack of continuous measurements of water level (Figures 4.22, 4.23, 4.24,

4.25 and 4.26) and the short duration of available water level data.

First, 1-tank model is applied by using the net production (production-reinjection)
data of the whole field (deep + shallow) and the measured water level values of the
three deep wells, BD-1, BD-5 and BD-6.

The modeling results for BD-1, BD-5 and BD-6 are given for various time periods in
Table 4.6 and Figures 4.27, 4.28, 4.29 and 4.30. BD-1 is modeled for the period of
02.10.00/30.10.03 (the first row of Table 4.6) which covers the whole production
period of the field with water level recordings and then for the period of
24.09.02/30.10.03 (the second row of Table 4.6) which is the period of BD-8 used
for reinjection purposes. The modeling studies are performed for BD-5 and BD-6 for

time periods in which their water level measurements are available.

Table 4.6 Parameters of the 1-tank model for Balcova-Narlidere Field.

Period Well [— kg::’rd:l Pamme}::‘:g/b - KM,

7
02.10.2000-30.10.2003 | BD-1 (:7;:;:?;]) (fffgjl%6) 0.226
24.09.2002-30.10.2003 | BD-1 (ﬁ:ﬁ) ( ig’;i%ﬁ) 0.307
02.10.2000-09.08.2002 | BD-5 (116??) ( ffg‘xll%:) 0.511
04.01.2003-15.12.2003 | BD-6 (ch:gf) ( ilff 231%87) 0.173
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Comparing the confidence intervals obtained from the modeling study (Table 4.6),
the model for the period of 24.09.02/30.10.03 gives more reliable results than other
periods. The early time water level data of BD-1 could not be matched properly. The
main reason for that could be the changing the production/reinjection schedule of the
field at 24.09.2002. The shallow wells, B-2, B-9 and B-12, were used for reinjection
until 24.09.02, and BD-8 was used after.
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Figure 4.27 Simulation result of BD-1 (All data were matched)
(@, =77.67 kg/bar-s, k,=8.25x10" kg/bar)
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Figure 4.28 Simulation result of BD-1 (Data after 24.09.02 were matched)
(a, =58.78 kg/bar-s, k,=5.0x10" kg/bar)
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Figure 4.29 Simulation result of BD-5 (@, =81.66 kg/bar-s, «, =2.96x10" kg/bar)
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Figure 4.30 Simulation result of BD-6 (@, =74.38 kg/bar-s, «, =1.29x10® kg/bar)

Since the confidence intervals of parameters obtained for BD-1 for a period of
24.09.02/30.10.03 are the lowest (see Table 4.6), @, =58.78 kg/bar-s and x,=5.0x10’
kg/bar could be chosen for 1-tank model parameters to model Balcova-Narlidere
geothermal field.

2-tank open model (with constant pressure outer boundary) is applied for the deep
wells and for the time intervals discussed above. The modeling results are presented
in Table 4.7. As seen from Table 4.7, the confidence intervals computed for the
reservoir and aquifer parameters are quite high indicating the inadequacy of the 2-
tank open model. Probably a longer period of measured data is required to increase

the reliability of the model.
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Table 4.7 Parameters of the 2-tank (open) model for Balcova-Narlidere Field.

. Model Parameters RMS,
Period Well Qs Kas Qs Krs bar
kg/bar-s kg/bar kg/bar-s kg/bar
02.10.2000- 707.27 3.58x10° 87.17 7.82x107
BD-1 0 . | 0.226
30.10.2003 (£12669) | (£1.0x10'%) | (£192.48) | (+4.1x107)
24.092002- | oo, 248.9 6.73x10’ 76.85 4.63x107 0.307
30.10.2003 (#3530.1) | (1.39x10%) | (£336.73) | (£3.3x107) |
02.10.2000- 999.93 1.91x10% 83.21 2.78x107
09.08.2002 | BP- (#6519.4) | (£1.5x10') | (£10.90) | (x1.2x10") 0.510
04.01.2003- BD-6 336.32 2.99x10° 93.47 1.14x10% 0.173
15.12.2003 (£328.08) | (£4.57x10%) | (£257.56) | =8.3x107)| =

2-tank (closed) and 3-tank (open/closed) models are also utilized for these three deep
wells, however similar to 2-tank (open) model results, the reservoir and aquifer
parameters can not be determined well as is clear from large confidence intervals for

some of the parameters. Therefore the modeling results are not discussed here.

Based on the observations on the production and reinjection behavior of the field
(Satman et al., 2002) among the models discussed in Chapter 3, the 2 reservoir tanks
with/without aquifer model could also be an appropriate model to represent the
production/reinjection-water level response behavior of the Balcova-Narlidere

geothermal field.

2 reservoir tanks with aquifer and without aquifer models are applied by using the
water level data of BD-1 and BD-6 representing the deep reservoir, and B-9 and
B-12 representing the shallow reservoir. In each modeling water level responses of 1
deep well and 1 shallow well were modeled. The simulation results of 2-reservoir

tanks without aquifer and with aquifer models are shown in Table 4.8 and Table 4.9,

respectively.

The recharge constant between the shallow and the deep reservoirs, a5, could not
be well determined by performing 2-reservoir tanks without aquifer model for BD-
6&B-9 and BD-6&B-12 (see confidence interval of @,;, in Table 4.8). The +1.82
confidence interval for @, (which means the value of «,;, can be in between 0.62

and 4.26) in the modeling of BD-1&B-9 indicates that this parameter is also not well

determined compared to the other parameters of the model from the data available.
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The modeling of BD-1&B-12 appears to be appropriate for the data with regard to

the confidence intervals and RMS values in Table 4.8.

Table 4.8 Simulation results of 2-reservoir tanks without aquifer model.

Wells BD-1&B-12 | BD-1&B-9 | BD-6&B-12 | BD-6&B-9
« 44.12 31.08 38.11 24.65
&1, kg/bar-s (22.78) (#2.25) (£3.14) (2.69)
@ ke/b 1.67x107 6.42x107 2.49x107 2.16x10°
%a: Kr1, Kg/bar (£4.7x10°%) (+1.2x10") (+4.1x10°%) (£2.4x107)
g 39.09 45.46 84.92 74.57
& | oz kefbars (£2.35) (+2.78) @&11.71) (48.39)
& K 3.48x10’ 3.37x107 3.11x10’ 3.11x10’
= | &2, keg/bar (%5.1x10% (£5.1x10°%) (+1.5x107) (+1.0x107)
I 14.94 2.44 4.36x10° 6.0x10°
ar12, kg/bar-s (£2.84) (1.82) (2.40) (20.75)
RM Snatiow,bar 0.190 0.208 0.289 0.239
RMSgeep, bar 0.224 0.264 0.206 0.154
Table 4.9 Simulation results of 2-reservoir tanks with aquifer model.
Wells BD-1&B-12 | BD-1&B-9 | BD-6&B-12 | BD-6&B-9
45.98 36.20 39.72 23.46
a1, kg/bar-s (3.22) (£7.56) (29.60) (*13.12)
1.57x107 1.97x10° 1.43x107 1.69x10°
%1, kg/bar @4.9:109 | (@29x107) | @33«10% | (@3.1x107)
» 39.95 48.16 175.62 75.93
§ a2, kg/bar-s (2.74) (£5.82) (£60.48) (£23.5)
g kg/b 3.51x107 3.62x107 2.79x10’ 2.38x10’
& | K gbar (+5.5x10%) (£5.7x10% (£3.4x107) (£9.9x10%
9
2 13.52 0.01 0.01 0.01
= | r12 kg/bar-s #2.97) (£4.96) (£7.99) (£10.8)
kg/b 999.98 39.83 32.66 17.61
Ca> ar-s (+4816.5) (£117.0) (+136.87) (£203.5)
kb 2.99x10" 1.78x10° 1.62x10° 1.01x10°
Kq, Kg/bAr (#2.2x10") | (*1.2x10%) (£4.9x10%) (#3.4x10%)
RM S haiiombar 0.199 0.244 0.285 0.268
RMScep, bar 0.216 0.207 0.269 0.156

Simulation results of BD-1&B-9, BD-1&B-12, BD-6&B-9 and BD-6&B-12 are
given in Figures 4.31, 4.32, 4.33 and 4.34, respectively.
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Although the confidence intervals for the model parameters given in Table 4.8 seem
acceptable, however, the matches in Figure 4.32 exhibits the discrepancy between
the measured data and model for shallow and deep reservoirs. This might be due to
following reasons: (1) 2-reservoir tank without aquifer model could not represent the
field data successfully, (2) the production and/or the water level data have some
errors, (3) the duration of the available data is not long enough to see unique feature

of the 2-reservoir models.

On the other hand, 2-reservoir tanks with aquifer model could not give the
satisfactory results (Table 4.9). The confidence intervals of the aquifer parameters

are computed to be quite high and so not reliable.
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Figure 4.31 Modeling results of BD-1&B-9.
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Figure 4.32 Modeling results of BD-1&B-12.
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Figure 4.34 Modeling results of BD-6&B-12.

4.4.3 Future performance predictions

The main objective of modeling a geothermal reservoir is to assess its future
production potential. How the lumped models are used to predict the water level
changes in the reservoir for different production/reinjection scenarios are studied

here.

4.4.3.1 Results based on 1-tank model

Future performance of Balcova-Narlidere geothermal field is predicted by 1-tank
model for the next ten years. Since the BD-1 water level changes are best modeled

with the lowest confidence intervals for the 1-tank model parameters of «,=58.78
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kg/bar-s and «, =5.0x107 kg/bar obtained for the period of 24.09.2002/30.10.2003,

these model parameters are used to forecast the future field performance.

The water level predictions are made for three different production/reinjection
scenarios: (I) the production/reinjection data valid for 15.12.2002/15.12.2003 period
is maintained for the next ten years, (II) the 15.12.2002/15.12.2003
production/reinjection values are increased by 20% in each year for the next ten
years, (III) the 15.12.2002/15.12.2003 production/reinjection values are increased by
100% and kept constant for the next five years and then increased again by another

100% and kept constant for the following five years.

The predictions for these three scenarios are presented in Figures 4.35, 4.36 and 4.37,

respectively.

For Scenario-1, the water level changes in BD-1 are expected to remain constant for
next ten years (Figure 4.35). The water level that occurs in winter is predicted to be
about 23 m and the water level that occurs in summer when the production is lowest

is predicted to be 5 m.

In the case of Scenario-II, the water level drops continuously for next ten years
(Figure 4.36). The water level decreases to 65 m in winter 2013 and reaches to 10 m
in summer 2013. Comparing with the existing water level changes in BD-1,
increasing the net production from the field by 20% in each year for the next ten
years or in other words increasing the net production by three times of the present
value causes nearly 42 m additional drop in water level in winter and about 5 m

additional drop in water level in summer.

In the case of Scenario-III (Figure 4.37), the water level changes between 45 m and 9
m in first five years (2003-2008) and between 65 m and 10 m in last five years
(2009-2013). As far as water levels obtained at the end of 10 years are concerned,

Scenarios II and III yield exactly the same results.
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Figure 4.35 Water level changes in BD-1 for scenario-I.
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Figure 4.36 Water level changes in BD-1 for scenario-II.
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Figure 4.37 Water level changes in BD-1 for scenario-III.
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4.4.3.2 Results based on 2-reservoir tanks without aquifer model

Future performances of the Balcova -Narlidere geothermal field modeled to be
consisted of the deep and the shallow reservoirs are predicted by using 2-reservoir

tanks without aquifer model again for the next ten years. Since the best fit is obtained
for BD-1&B-12 water level data, the model parameters of «,;=44.12 kg/bar-s,

«,1=1.67x107 kg/bar, a,,=39.09 kg/bar-s, x,, =3.48x107 kg/bar and a,(,=14.94
kg/bar-s, are used for prediction purposes.

Four different production/reinjection scenarios are generated to predict the future
performance. (I) the 15.12.2002/15.12.2003 production/reinjection data of deep and
shallow reservoirs are maintained for the next ten years, (II) the
15.12.2002/15.12.2003 production/reinjection values are increased by 20% each
years, only the deep reservoir is used for production/reinjection purposes and the
shallow reservoir is not utilized for production or reinjection at all, for the next ten
years, (III) the 15.12.2002/15.12.2003 production/reinjection values are increased by
20% each year, only the shallow reservoir is used for production/reinjection purposes
and the deep reservoir is not utilized for production or reinjection at all, for the next
ten years, (IV) the 15.12.2002/15.12.2003 production/reinjection values of the both

deep and shallow reservoirs are increased by 20% in each year for next ten years.

The water level predictions in wells BD-1 and B-12 for Scenarios I, II, Il and IV are
presented in Figures 4.38, 4.39, 4.40 and 4.41, respectively.
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Figure 4.38 Water level changes in B
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Figure 4.39 Water level changes in BD-1 and B-12 for scenario-II.
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Figure 4.40 Water level changes in BD-1 and B-12 for scenario-III.
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Figure 4.41 Water level changes in BD-1 and B-12 for scenario-IV.

For Scenario-I, water level changes in BD-1 and B-12 remain constant for next ten

years (Figure 4.38). The water level drops to 27 m in shallow reservoir in winter and
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levels at 9.5 m in summer. In deep reservoir the water level decreases to about 22 m

in winter and levels at 9 m in summer.

In the case which the deep reservoir is used for all production/reinjection operations
(Scenario-II), the water level of deep reservoir drops to 85 m in winter 2013 and
levels at 16 m in summer 2013 (Figure 4.39). Although the shallow reservoir is not
used for production/reinjection, the water level of shallow reservoir is affected from
the deep reservoir and it drops to 24 m in winter and levels at 11 m in summer at the
end of the next ten years. The hydraulic conductivity between the deep and the

shallow reservoirs is the reason of decreasing water level in shallow reservoir.

For Scenario-III in which the shallow reservoir is used for all production/reinjection
operations, the water level of shallow reservoir drops to 82 m in winter 2013 and
levels at 12.5 m in summer 2013 (Figure 4.40). Although the deep reservoir is not
used for production/reinjection, the water level of deep reservoir is affected from the
shallow reservoir and it drops to 25 m in winter and levels at 12 m in summer at the

end of the next ten years.

For Scenario-IV in which the production/reinjection values of both deep and shallow
reservoirs are increased by 20%, the water level of shallow reservoir drops to 63 m in
winter 2013 and levels at 12 m in summer 2013 (Figure 4.41). Moreover, the water
level of deep reservoir drops to 50 m in winter and levels at 9 m in summer at the end

of the next ten years.

All the production wells in Balcova-Narlidere field are operated by pumps set in the
wellbores. The pumps in deep wells are installed at an average depth of 150 m from
the surface whereas the pumps in shallow wells are installed at about 70 m. For safe
and efficient operation of the wellbore pumps to avoid the possible cavitation a
minimum liquid level above the pump must be maintained. This minimum liquid
level is recommended to be 30 m in deep wells and 15 m in shallow wells above the
pumps. Therefore, the water level is allowed to drop to 120 m in deep wells and 55 m
in shallow wells unless the installation depths of the pumps are changed. Thus the
pump depths are the limiting constraints in operation of the field. The water levels
should not drop below 120 m in deep wells and 55 m in shallow wells. Otherwise the

pumps at the present installation depths will be unoperational.
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In the case of Scenario III when the shallow wells are utilized for whole
production/reinjection operations, the water level of the shallow wells is predicted to
drop to 82 m in 2013. Since 82 m water level is below the safe liquid level of 55 m,
the pumps will not operate. In fact, the results indicate that the water level of 55 m in
shallow wells is reached just after 5 years of operation according to Scenario III
(Figure 4.40). Thus the pump depths in shallow wells become the limiting factor for
the production from the field.

A similar comment is also valid for Scenario IV in which the production/reinjection
values are increased by 20% in each of the next ten years. While the model results
indicate no problem for the deep wells, however, the water level in shallow wells is
expected to drop to 63 m at the end of 10 years of operation, which is lower than the

safe liquid level of 55 m for the shallow wells.

Particularly the results of Scenarios III and IV indicate the danger involved in
utilizing the shallow wells in production operations. Therefore the field management
is recommended to limit the production from the shallow wells. If the production
from the field is to be increased, a significant portion of the production should be

obtained through the deep wells.

4.4.3.3 Discussion of prediction results

It should be reminded that all the modeling results given and discussed above for the
Balcova-Narlidere geothermal field are based on limited production and water level
history. Therefore the results and discussions should be taken cautiously. They are
believed to be qualitatively correct however might be in error quantitatively. A
longer history of production and water level data is definitely required. Application

of our lumped models is recommended when more field data are available.

It should also be mentioned that the inaccuracy as well as the discontinuity of the
input data such as the production/reinjection flow rates and the water level
measurements greatly affects the confidence intervals and RMS values computed

from the match.

Short history, discontinuity and possible inaccuracies in the input data are probable
reasons why we obtain best matches with the simple models such as 1-tank model

and 2-reservoir tanks without aquifer model.
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4.4.4 About the fluid and heat recovery

As discussed in Chapter 2.1 (see Figures 2.3 and 2.4), the pressure-production
behavior of the low-temperature geothermal system follows an isothermal behavior.
Production from the reservoir causes decline in pressure without any change in

temperature. In this section, we want to demonstrate this fact by using our 1-tank

model. For simplicity, a constant net mass production rate, wp, .., = 75 kg/s, was
assumed and our 1-tank model with the model parameters obtained from the
regression analysis of the Balcova-Narlidere field, o,=58.78 kg/bar-s and
«,=5x10" kg/bar, were used. We also assumed that the reservoir temperature is

140°C, the porosity is 0.05, the diameter of the reservoir is 2 km, and the thickness is
300 m. We run our 1-tank model up to 1000 days of production time. The pressure
drop as a function of time is given in Figure 4.42. For comparison purposes, the

pressure behavior for various values of o, are also shown in the figure.

Notice that the case of a, = 0.0 in Figure 4.42 corresponds to a closed geothermal
reservoir with the pressure behavior given as Point C in Figure 2.3 and 1¢ behavior

in Figure 2.4. The path is essentially isothermal since no boiling takes place during

the production.
Cumulative Fluid Recovery, %
0 5 10 15
30 I 1 2 X I ] 2 " s P 1 : 2 2 I 25

20 &
%
—Cr 2
— 1000 i 8
—— 5878 - 15 §
— 200 s h-]
— 100 [ :‘a
— 50 - 10 @
— 20 -
=
— 10 =
] — s s §
71 Psaturation — 00 (&}

i Cumulative Heat Recovery, % [

0 ' —t 0
0 200 400 600 800 1000

Time, days

Figure 4.42 Cumulative fluid and heat recovery.
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The following definitions are required for our discussion:

OWIP=V, 4, p,, 4.2)

w t
Cumulative Water Production, % = 61)%;— x 100 4.3

where OWIP is the original water in place, and cumulative water production is the

amount of water produced at production time, ¢.

Total Heat Content =V, AT [p,,C,,8, + p,C,(1-8,)] (4.4)
w th
Cumulative Heat Recovery, % = prel x 100 (4.5)
Total Heat Content

where AT is the temperature difference above 0°C (140°C), C,, is the specific heat
capacity of water (~1 kcal/kg-°C), C, is the specific heat capacity of rock (~0.25
kcal/kg-°C), p,, is the water density at 140°C (~927 kg/m>), p » is the rock density

(2455 kg/m®) and h,, is the enthalpy of water at 140°C (140.6 kcal/kg).

If the numerical values of rock, fluid, and reservoir properties are substituted into
Equation 4.2 and 4.4, we found OWIP =4.36x10'° kg and total heat content =

8.306x 10" kcal, respectively.

In the case of a, =58.78 kg/bar-s, a pressure drop of 1.28 bar occurs at the end of
1000 days production period. Only 15% OWIP is produced as water and 1.097% of
total heat content is recovered as heat with water. Especially the very low cumulative
heat recovery resulted at the end of 1000 days of production supports the validity of
the isothermal production path for this type of low-temperature geothermal
reservoirs. The temperature change as a result of 1.097% cumulative heat recovery

can easily be ignored.

Moreover, this kind of a field is not generally produced continuously for 1000 days.
They are only produced during the cold winter season. The fluid recovery by
recharge and heat recovery from the surrounding formations during the hot season

when the field is produced at minimum level replenish the fluid and heat content of
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the reservoir and thus, even a lesser amount of heat effect than calculated is expected
to occur in the reservoir. This is probably the main explanation why the heat balance

can be neglected.

4.5 Hypothetical Application of 2-Reservoir Tanks With Aquifer Model

Since the validity and applicability of our 2-reservoir tanks with aquifer model could
not be tested for any actual field data, the applicability of the model is studied for a
hypothetical field case. For this purpose, the pressure drop (Ap) data are generated

for the deep and the shallow reservoirs for 10 years of production/reinjection. In
constructing the production/reinjection history, the flow rate history for Balcova-
Narlidere field for the period of 15.12.2002 and 15.12.2003 were taken for the first
year and the same data were assumed to be valid for next 9 years. Thus, it represents
the constant yearly production/reinjection case. However, a new set of model
parameters were assumed for this hypothetical case. The flow rate history and the
model parameters used to generate pressure drop data of the deep and the shallow
reservoirs are presented in Figure 4.43 and in forward run column in Table 4.10,
respectively. The pressure drop data generated by forward run are shown in Figure
4.44.
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Figure 4.43 Production-reinjection history of both deep and shallow reservoirs.
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Table 4.10 Model parameters of the 2-reservoir tanks with aquifer model.

g2
4 2 = S = -
EE | 5| 25| BE | 8% | &%
s | EE| 70 S & S S8
a = e
s 30.0 32.19 36.29
kg/bar-s 30.0 3.0 (£1.6x10®) (#4.91) (£4.85)
K1, 7 6 | 2.0x10 1.74x107 | 1.28x107
kg/bar 20107 | 2.0«10 (£0.014) (£4.0x10%) | (£3.1x10%
2y 50.0 52.21 59.21
kg/bar-s 50.0 70.0 (#3.3x10%) (£10.10) | (£10.20)
K2, 7 s | 4.0x10 3.23x107 | 2.39x10’
kg/bar 4.0x10" | 4.0:10 (£0.036) (£1.0x10") | (£8.3x10%)
G12s 5.0 2.54 0.037
kg/bar-s >-0 20.0 (£1.2x10®) (£3.60) (#3.42)
s 10.0 9.90 9.67
kg/bar-s _ 08 (£1.9x10%) (£0.62) (£0.57)
8 8 8
K, 8 7 2.0x10 2.09x10° | 2.15x10
kg/bar 20,10 | 2.010 (£0.046) (£1.4x107) | (1.3x10%)
EM St 2.91x10° 1.00 0.998
ar
RMSdeeps 3.38:10 0.99 0.988
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Figure 4.44 Forward run results.

As a next step, assuming that the true pressure drop data are data generated by
forward run, i.e., pressure data do not contain any errors, the regression is applied

(called regression-I) by the initial guesses given in Table 4.10. An excellent match
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was obtained. The model parameters from regression have low confidence intervals
and RMS values (the fourth column in Table 4.10). A comparison of forward run
(true pressure drop data) and regression-I results is shown in Figure 4.45.
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Figure 4.45 A Comparison of true pressure drop data and regression-I results.

To investigate the effects of data errors in regression, the true pressure drop data are
corrupted by adding randomly normal distributed errors with mean zero and standard
deviation of 1 bar. The pressure drop data with error and as well as the true pressure
drop data without any error added are plotted in Figure 4.46. Then the regression
(called regression-II) is performed on this pressure drop data by the same
production/reinjection history used in regression-I. The regression-II results are
presented in Table 4.10 and a comparison of pressure drop data with error and

regression-II results are shown in Figure 4.47.
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Figure 4.46 A Comparison of true pressure drop data and pressure drop data with
error.

98



5 30 Regression-1I (Shallow Res.) 35 5
=25 30 <
e 20 i~

3 25

>y

% 15 8
20

@ 10 {5 &

o 5 1f ———————— Regression-II (Deep Res.) - 15 4
< / O Pressure drop data with error (Deep Res.)

0 “ ¥ v 1 ¥ M ¥ T T M L ¥ T v 1 0
o v o w = ) o © =) o) 2
« B 2 F % S § 8 8
Time, days

Figure 4.47 A Comparison of pressure drop data with data and regression-II results.

Finally, both true pressure drop data and true production/reinjection data are
corrupted by adding randomly normal distributed errors with mean zero and standard
deviation of 1 bar and 1 kg/s, respectively. Then the regression (called regression-III)
is performed with these data sets. The regression-III results are presented in Table

4.10 and a comparison of pressure drop data with error and regression-III results are

shown in Figure 4.48.
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Figure 4.48 A Comparison of pressure drop data with error and regression-III results.
Results given in Table 4.10 indicate that the confidence intervals of the model
parameters are higher in the case of pressure drop data including error (regression-IT)
as compared to the case of pressure drop data with no errors (regression-I). Similar

comments are valid for regression-III case in which both the pressure drop and

production/reinjection data contain errors. Although, reasonable matches are
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obtained from regression-II and regression-III (Figures 4.47 and 4.48, respectively),

the parameters estimated from both regressions clearly deviate from the true values.

Extremely low confidence intervals and RMS values obtained from the regression-I
reflect the importance of accuracy of the field case pressure drop (or water level)

data and production/reinjection history on modeling.

4.6 About Identifying The Right Model

As a next step, we investigated whether the true data obtained from the hypothetical
2-reservoir tanks with aquifer model could be matched with the other models studied
in this thesis. The pressure drop data generated by forward run of 2-reservoir tanks
with aquifer model (model parameters given in the first column in Table 4.11) were
assumed to be the input data for regression analysis. Both shallow and deep reservoir
pressure drop data were utilized in matching with 2-reservoir tanks with/without
aquifer model whereas only the deep reservoir pressure drop data were assumed to
represent the whole reservoir and used in matching with 1-, 2-, and 3-tank models.
The production history of whole field (shallow-+deep) were used for 1-, 2-, and 3-
tank models. Then 1-tank, 2-tank (open/closed), 3-tank (open/closed), and 2-
reservoir tanks without aquifer models were all tried separately to match the input
data. Results of the model applications were evaluated and compared based on
confidence intervals and RMS values obtained for each model. Except the 2-tank
(closed) and 3-tank model (open/closed) models, others yielded matches with
acceptable confidence intervals and RMS values. The highest RMS value was
obtained for 2-tank (closed) model as shown in Table 4.11. The 3-tank (both open
and closed) models yielded relatively high confidence intervals and RMS values.
Hence we will not discuss them here any further. The regression results of the
matches obtained with other models are given in Table 4.11 and Figure 4.49 for

comparison purposes.

This part of study demonstrates one major problem in inverse modeling. No unique
solution can exist if the type of model is not known as a priori. Except the 2-tank
(closed) and 3-tank models, other models tried yielded almost excellent matches. For
example the match with the 1-tank model is shown in Figure 4.50. The excellent
match in Figure 4.50 and the results of regression in Table 4.11 indicate that the
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different models may exhibit a very similar reservoir pressure response. Therefore

one should be very careful in using the type of the models.

Table 4.11 Comparison of the 2-reservoir tanks with/without aquifer model and 1-
and 2-tank model results.

& 5 :;: 'E = 'E E . v

2% |E5| 5% | EZE| EE | E2 | B

S & =, | §%5 | 5825 HE | B2 E

L | BB | 25< | 42T < e D

= § = o~ Q] ﬁ

s 30.0 30.0 1.37 N B .
kg/bar-s : (=1.6x10%) | (£0.082)
K1, 2 0x107 2.0107 | 1.59«107 3 B _
kg/bar o (£0.014) | (£5.7x10%)
Gy 50.0 50.0 7.58 B § .
kg/bar-s ' (#3.3x10%) | (£0.109)
12,000 ) | 4 0107 4.0x107 2.1x10° | 6.45x107 | 6.72x10% | 2.02x10°
kg/bar L (#0.036) | (£1.4x10% | (£7.8x10% | (£1.6x10%) | (1.6x10°%)
%12 50 5.0 35.91 117.27 28.87 7.51
kg/bar-s : *1.2x10%) | (£0.514) | (£13.36) | (£6.28) | (20.031)
s 10.0 10.0 § 7.86 3 ~
kg/bar-s : (+1.9x10°) (0.068)
K, 5 0x108 | 2-0x10° _ 1.53x10° | 2.24x10° i
kg/bar X (£0.046) (£6.4x10%) | (£1.8x10%)
EMSsatons 29110° | 0.048 - = -
llfi‘fsmp’ 33810 | 0.192 | 0148 | 1474 | o0.191

Additional data obtained from other sources such as geological, geophysical and
hydrological studies should be coupled with the regression results for identifying the
right model for the geothermal system. The additional data could be such as the
reservoir area estimated from the geophysical resistivity measurements, the
volumetric extent of the reservoir estimated from the wells drilled in the geothermal
field, the directional movement of the recharge water obtained from the hydrological
studies, the limiting boundaries of the field determined from the well tests and
temperature surveys, the extension of the aquifer surrounding the reservoir
determined from the basin geological analysis (see Axelsson and Dong, 1998; Olsen,
1984).
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Figure 4.49 Regression results of the models.
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Figure 4.50 A Comparison of 2-reservoir tank with aquifer and 1-tank models.
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5. CONCLUSIONS

The study covered in this dissertation has two main parts:

1) The pressure (or water level) behavior of the low-temperature geothermal systems
has been investigated and analytical expressions for new lumped parameter
models have been developed. In modeling, the geothermal system is considered

with mainly three parts, reservoir, aquifer and recharge source.

2) The models have been used to match the measured pressure or water level
response of some field cases. The measured production/reinjection and water level
data of Laugarnes Field, Glerardalur Field, Svartsengi Field, and Balcova-
Narlidere Field have been investigated and modeled. For history matching
purposes, an optimization algorithm based on the Levenberg-Marquardt method
have been utilized to minimize an objective function based on weighted least-
squares for estimating relevant reservoir/aquifer parameters. 95% confidence
intervals are computed to assess uncertainty in the estimated parameters and RMS

values are computed to show the matching quality as quantitatively.

The following major conclusions from the study of the lumped parameter models

(Chapter 3) are drawn:

e The pressure drop — time behavior of all models for constant net production rate
exhibit three district regions, the early-time region, the transition region and the

late-time region.

e The first region, the early-time region, reflects the psecudosteady-state behavior of

the reservoir tank itself and yields a Ap versus ¢ straight line with a slope of

Wpnet/ Kp. In other words, the reservoir pressure declines linearly with
production time as a function of net production term, w,, ., , and reservoir storage
capacity, k, . This behavior occurs for all models.

o The last region, the late time-region, reflects the pseudosteady-state behavior of the

total system (reservoir + aquifer) for the closed model whereas it exhibits the
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steady-state behavior of the total system for the open model. The pseudosteady-
state behavior of the closed model is characterized by a straight line on a Ap
versus ¢ plot and the slope of the straight line is a function of the aquifer and the

reservoir storage capacities, K, k, , and net production term, W, . The steady-

state behavior of the open model is identified when Ap reaches a constant value
which is a function of the aquifer and the reservoir recharge constants, a,, o, ,

and net production term, w, ;e -

e The duration of the transition region between the early-time region and the late-
time region is mainly dependent on the aquifer and the reservoir recharge constants

and storage capacities, a,, o, , and k,, K, , respectively. Whenever k, >>k,

holds, the open and close models show the pseudosteady-state straight line
relationship in the transition region and the duration of this relationship gets longer

when «,, is larger. In other words, before feeling the effects of the recharge source

the open model exhibits the pseudosteady-state behavior similar to the closed

model as long as x, >> k,..

Based on the field applications of the new lumped parameter models, the following

conclusions summarize the second part (Chapter 4) of the study:

e The inaccuracy as well as the discontinuity of the input data such as the
production/reinjection flow rates and the water level (or pressure) measurements
greatly affect the confidence intervals and RMS values computed from the
matching analysis of the model. In the case of short period of measured data and
the large number of unknown model parameters are available, the model
parameters are estimated with larger confidence intervals and the matches are
obtained with higher RMS wvalues. Therefore, continuous water level,
production/reinjection data and as well as accurate measurements are definitely
required to increase the reliability of the model parameters and to obtain the better

matches.

e The modeling analysis on the field cases available in the literature (e.g. Axelsson’s
modeling study for Laugarnes and Glerardalur Fields and Olsen’s study for

Svartsengi Field) yields consistent results with the modeling approaches on those
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field cases which shows the applicability and reliability of our models. These three

field case study results support our models.

e All the modeling results discussed for the Balcova-Narlidere geothermal field are
based on limited production and water level history. Therefore the results and
discussions, particularly on the future predictions of the field pressure behavior,
should be taken cautiously. They are believed to be qualitatively correct however
might be in error quantitatively. A longer history of production/reinjection and
water level data is preferred in order to reflect the long-term behavior of the
geothermal system and the characteristics of the parts of the system. Application of

our lumped models when more field data are available is recommended.

e One should be very careful in using the type of the models. The type of the best
matching model obtained from the regression analysis should be supported and

confirmed by the additional geological, geophysical and hydrological data.
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APPENDIX-A

1 RESERVOIR WITH RECHARGE SOURCE (1-TANK MODEL)

The mass balance on the reservoir tank becomes,
Wc=VV}‘Wp+Wa+VI/inj (A-1)

where the current mass, ., equals that initially in the reservoir, #;, minus what has

been produced, W), plus any water influx, ¥, and plus reinjected mass, ;.

For a reservoir of volume 7}, the liquid mass in place is given by
We=V0.py (A-2)

where ¢, is reservoir porosity, and p,, liquid density. Substituting Equation A-2

into A-1 gives
Vidrpyw =W; - Wp +W,+ VVinj (A-3)

Differentiating Equation A-3 with respect to time gives the following equation in

terms of mass flow rates, w,

d
Wa =Wy + Wiy =V, (i;lf’—W—) (A-4)

The last term of Equation A-4 can be differentiated by using chain rule as follows:

d(0,py) _, dpy do,
= + A'S
dt or @ PY g (B>
Dividing by (9,p,,) gives
1 d,py) _ 1 dpy , 1 db, (A-6)

0Py dl pw dt ¢, dt
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Applying chain rule and rewriting Equation (A-6) gives

1 d(orpy) _ 1 dpy dpy | 1 d, dp,
Oppyy I Pw dpy dt ¢, dp, dt

(A-7)

Here __dpw is known as fluid compressibility, ¢ 1 and qu)’ as formation

Pw dpy ¢, dp,

compressibility, ¢, . Using the definition of fluid and formation compressibilities,

Equation A-7 reduces to

1 d((l)rpw),, @ -
T =(ep+e) o (A-8)

Applying the definition of total compressibility, ¢, = ¢ + ¢, in Equation A-8 gives

1 d(¢}’pw) =Ct dp}’ or d((l)rpw) = ¢rpwct dpr (A-9)
0,0, dt dt dt dt
Substituting Equation A-9 into Equation A-4
- .. 4] dpy
Wg = Wp + Wiy = 7O rPwCs at (A-10)

The production and injection terms could be defined as “Net Production Term” as

given in Equation A-10.
Wonet = Wp = Winj (A-11)

Therefore Equation A-10 becomes as follows.

dp dp
W, —Ww =V, c;—L=x,—~L A-12
a p.net =V Or Py s dt Tt ( )
where K, is the reservoir storage capacity and it can be defined as,
K, =V,0,p ¢ (A-13)

Water influx (or recharge) rate, w,, in Equation A-12 can be expressed by Schilthuis

steady-state model as follows;
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Wg = Uy [pi - pr(t)] (A-14)

Here, o, is the reservoir recharge constant and coressponds to o in Equation 2.7.

Using Equation A-14 in Equation A-12 and rearranging the resulting equation gives,

d
Wp net = & [pi — DPr (t)]_ Ky ?l; (A-15)

Because of the assumption of constant recharge pressure, Equation A-15 can be
recast in terms of Ap,(t)= p; - p, (t) as;
__ Wp,net

dAp, | Oy Ap, = (A-16)
da x, K,

Note that Equation A-16 is a first order ordinary differantial equation, and its

solution is given by (assuming «,.,o,., and wy, ,,.; are constant)

Wp, net

Ap,(t)=c exp(- (X,,.f/K,.)+ (A-17)

r

where ¢ is an arbitrary constant. To determine ¢, an initial conditon on Ap is needed.

Because at /=0, the system shown in Figure 3.1 is in hydraulic equilibrium, then

initial condition can be written as,

p(t=0)=p; or Ap,(r=0)=0 (A-18)

Using Equation A-18 in Equation A-17, ¢ is

Wp net

. (A-19)
O‘r
Subsitituting Equation A-19 into Equation A-17 gives,
8p, (1) = 227 1~ expl-, /)] (A-20)
(X'i"
or
w
pr6)=pi ~—L" [~ expl(- 0,1/, )] (A-21)

r
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APPENDIX-B

1 RESERVOIR -1 AQUIFER WITH RECHARGE SOURCE
(2-TANK OPEN SYSTEM)

Mass balances on the reservoir and the aquifer, recharge of the reservoir and the

aquifer, initial conditions are expressed as;

Mass Balance on the Aquifer :

d
W, ~ Wy =K, 5;1 (B-1)

Mass Balance on the Reservoir :

Wy =W = K LE (B-2)
Recharge of the Aquifer : wa =0 ,(p; — pg) (B-3)
Recharge of the Reservoir : w, =a,(p, - py) (B-4)
Initial Conditions : Pa=Pr=p; @t=0 | (B-5)

Substituting Equations B-3 and B-4 into Equations B-1 and B-2 gives

d
0"a(pi—pa)"ocr(pa_pr)::Kaj]d‘jl‘l (B-6)
d;
Gy (pa - pr)" Wp.net = Kp —gf‘ (B-7)

It is convenient to write Equations B-6 and B-7 in terms of the pressure changes. The

relevant pressure changes and their derivatives with respect to time are given by
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d dj
Apg =pi—Pg = Pa=Di~0pg = Mo __ P
dt dt (B-8)
dAp dp
Apr=pi=Pr = Pr=pi=Ap, = — ==t
and initial conditions become
Ap,(t=0)=p; = pa(t =0)= p; - p; =0 } (5-9)
Ap,(t=0)=p; = p,(t=0)=p;~p; =0
Using Equation B-8 in Equations B-6 and B-7 gives
d
a 8pa = (pi = Bpq = pi-+ Bpy) = kg L8 (B-10)
d A
Ay (Pi —Ap, —p; + Ap,)—- Wpnet = Ky dfr (B-11)
Equations B-10 and B-11 can be simplified and rearranged as follows:
dA
oy Ap, - OL,,(Apr - Apa) ="Kq _dil‘L (B-12)
d
0 (8P = 8pa) =W p et =, L2 (B-13)
or
d
Ka—;,Atgg_"'(o‘a: +0‘r)Apa —a, Ap, =0 (B-14)
dA
Kp —E& ~ Oy Apg + 0 ADy = W oy (B-15)

Applying Laplace transformation (Erdélyi, 1954) to Equations B-14 and B-15 and

using initial conditions (Equation B-9) gives

Kq $ Apa+(ag +0,) Apg— o, Ap, =0 (B-16)
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Wp, net

K, SAp,~ o, Apy+a, Ap, = (B-17)
S
where
L oC . [o o}
Apg = [e"Apgdv ,  Ap, = je*S’Ap, dr (B-18)
0 0

Note that Zp_a and E are Ap, and Ap, in Laplace space, and s is the Laplace

parameter. Rearranging Equations B-16 and B-17 gives

(Kas+aa +OL,,) A?a - &y A?r =0 (B-19)
— T Wp,net
—a, Ap, + (x, s+a,)Ap, = (B-20)
or
{H(%_”‘L)} Apy -2 Ap. =0 (B-21)
Ka Ka
o, — o |~ _ VYp,net
-—— Ap, +|s+—|Ap, = +—— (B-22)
K, K, Ky S

The solutions to two equations (Equations B-21 and B-22) with two unknowns

( A?a A—pr ) can be found by using Cramer’s rule (Kreyszig, 1999) as below:

— D, — D
Ap, =—2 , Ap, ==L B-23
Pa =~ APr = (B-23)
0 _%r
X o, Wpnet
R (529
p.ne S+—'L a¥%r
K, 8 K,
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D. = Kg _ Ypnet 5 (aa +ar)
g . Wp,net K, § Kg
K, K, S
(aa +0‘r) Gy
T Ky (a, +a,) o o?
D= a a p g T ) S r
_%r 5§+t Ka Ky KaKy
K, K,
o _Dg _ o, Ypne 1
e Tk, s :
a¥r g ara)|( o) o
Kg Ky KaKy
s (aa +a,)
— D, Wpnert Kq
Ap, =—==

D x5 s+(oca+oc,.) A o?
Ka Kr KaK"

Rearranging the denominator in Equations B-27 and B-28 gives

(o, +a,) o o2 2 |ag+0a, o o0
s+~ Lo lgy LT L=ty |2 T T gy ZAF
K, K, ) KoK, Ky K, K, K,

and the roots of Equation B-29 (p;,1, ) are found as follows;

2
gro) o |, [log+ar) a [, om0
K, K, Ky Ky KK,
hp =
2 >
2
(g +ar) o | og+a,) o ["_, g0,
K, K, Kg Ky KoKy
Mo = 2

and Equation B-29 can be written as
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57+ [M&} + 2L = sy )5 +1a) (B-31)
K

a™r

Using Equation B-31 in Equations B-27 and B-28, and rearranging give

1

— (04

Ap, =—L_ B-32
Ve = P ) v )G+ 1a) (8-32)
&p—r — wp,net (S+ d) and d = (O‘a + O‘r) (B-33)

€ (5+0)(s+p)(s+p2) Ka

In order to find the values of A_p:, and A—p; in real space, inverse Laplace

transforms of Equations B-32 and B-33 are obtained as follows:

_ Yyl 9 -1 1 _
R {Ap"} A o e o) o9

)= ”1{ 5”} el [ 339

1
(s+0)(s+p)(s+ps)

Inverse Laplace transforms of the terms of and

(s +d )
(s+0)(s+p1)(s +p2
formula (Equation B-36) given below (Erdélyi, 1954):

) in Equations B-34 and B-35 are obtained by using the

- x2s+ps+v —7“0‘2+u0t+vex »
L 1{(s+o¢)(s+ﬁ)(s+y)}—(Q_B)(a_y) P( l)

Ap? —pB+v
77— expl— B-36
-7 39

Ay —py+v
o oo o LA

Applying Equation B-36 in Equation B-34 gives
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) 1 I S S
Ll{(S+0)(s+u1)(S+uz)}_muz pp (g —p2) Pl-h)

+————exp(-py t)
Ho (}12 - ) 2

is obtained. Similarly, applying Equation B-36 in Equation B-35 gives

A=0 ,u=1, v=d
a=0, B=yp;, y=p
and
1 (s +d) }: d_, (m-d) .
{(S+0)(S+H1)(S+H2) M1 M2 M1(H2 —lll) ( l)
(up —d)
+——F—"—<expl—Uy
Hz(Hl—Hz) ( 2)

(B-37)

(B-38)

(B-39)

(B-40)

is obtained. By substituting Equation B-38 into Equation B-34, pressure changes in

the aquifer tank as a function of time is obtained as follows:

o 1 1 1
Ap, (t)=—"L—w { + exp(—py t)+ ——exp(- t}
)= e p (g —p2) Cu) Ha (b2 -1y ) Chz)

HiH2

a™r

or

Apa ()=~ ”ﬂrJ,nef[(M—M)Jrlu 2exp(-u1t)—ulexp(—uzt)}
HIMZ(HI“HZ)

ar

(B-41)

Similarly, by using Equation B-40 in Equation B-35, pressure changes in the

reservoir tank as a function of time is obtained as follows:

(w2 —d)

oy —pp)

Apr(t)=wp’n8t|: d_, _lu-d)

exp(— 1)+
K0 LBy pi(Ro —py) Cw
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The pressures of the reservoir and the aquifer tanks as a function of time are obtained

by using Equations B-41 and B-42 as below.

o wp’ne{(ul —pp)+ pp exp(= pt) — py exp(= uzf)] (B43)

pat)=Dp; -
a() : K UIPLZ(HI_HZ)

a™r

Wpnet | d (1 —d) (up —d)
p ()= p; - 2= [ + exp(— )+ —~—"< exp(~pyt
! l Ky [HiM2 Hl(HZ“Pl) : Hz(m —Mz) ( 2)

(B-44)
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APPENDIX-C

1 RESERVOIR - 1 AQUIFER WITHOUT RECHARGE SOURCE
(2-TANK CLOSED SYSTEM)

Mass balances on the reservoir and the aquifer, recharge of the reservoir, initial

conditions are expressed as;

Mass Balance on the Aquifer :

dp
Wy =g (C-1)
Mass Balance on the Reservoir :
dp,

w, —w =K, —— C-2

¥ p,nel " dt ( )
Recharge of the Reservoir : w, =o,(p, - p,) (C-3)
Initial Conditions : Pa=DPr=p;, @t=0 (C-4)
Substituting Equation C-3 into Equations C-1 and C-2 gives

dj
-, (P, —pr)zKa% (C-5)
1
dp

oy (pa - pr)— Wp,net = Ky _dTr (C-6)

Equations C-5 and C-6 can be expressed in terms of pressure changes. The pressure

changes and their derivatives with respect to time are given by
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dAp, —_ dpg
dt dt

Apa =pi—Pg = Pa=Pi— A, =

dA d (€D
\P 'Y
Apr=pi=Pr = Pr=pi=Ap, = —F=-""
and initial conditons in terms of pressure changes are written as below:
Ap(t =0)=p; = p,(t=0)=p; — p; =0 } C8)
Ap,(t=0)=p; - p,(t=0)=p; —p; =0
Substituting Equation C-7 into Equations C-5 and C-6 gives
d
_ar(pi —Ap, _pi'*'Apr):“Ka ‘Al,fa (C-9)
d
o, (pi -Ap, —p; + Apr)— Wp,net = Ky 31:’}' (C-10)
Equations C-9 and C-10 can be simplified and rearranged as follows:
dA
“O‘r(Apr_Apa)z_Ka_dI;—a (C-11)
dA
oy (Apr - Apa)_ Wp.net = ~Kr dfr (C-12)
or
d
X, 3117" +o, Ap, — 0, Ap, =0 (C-13)
dA
Ky —d% -, Ap, +a, Ap, = p,net (C-14)

Applying Laplace transformation (Erdélyi, 1954) to Equations C-13 and C-14 and

using initial conditions (Equation C-8) gives

Ky SApg+o, Apg—a, Ap, =0 (C-15)

121



- - N w
K, $Ap,— 0ty Apgt oty Apy ==L (C-16)

where
e o} o o0

Apa = [eApgdn ,  Ap, = [eAp, dr (C-17)
0 0

Rearranging Equations C-15 and C-16 gives

(kgs+a,)Ap, —a, Ap, =0 (C-18)
— —  Wp.net
~0y Apg + (kp s+ 0y )Ap, = —= (C-19)
or
{sﬂ’—} Apg — =T Bp, = (C-20)
K, K,
- S w
=2 Ap o+ [s+&}Apr = —pret (C-21)
K, K, K, 8

Equations C-20 and C-21 represent a system of two equations with two unknowns

(A_p;, A?, ) and can be solved using Cramer’s rule (Kreyszig, 1999) as below:

— D — D
Ap,=—2  Ap =—L C-22
Pa = APr =7 (C-22)
0 _%r
K o Wy net
Pl v 29
Y s +—r arr
K, § K,
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s+ —— 0 w
K net 04
Dr — a — p +__r_
o,  Wp,net K, § Ky
K, K, S
o o
§s+—L - 2 "
K K a o K,+k
D= a a =[s+—"—J[s+—”— L =g s+oc,,( e
% o O Ka Ky ] Kag¥p KaKy
K, K,
A? _Dg _ o Wpret 1
.= -
D «x,x, s Ky + %,
5| s+a,
KoKy
o
s+-—=L
— D, VYpne Kq
Ap, =——=
D K, s Kg T %,
5| s +a,
KoK,
Rearranging Equations C-26 and C-27 gives
— 1 o 1
— |4 r
Ap, = 1l Wp,net N Wp,net —5
a™r S2 s+ar Ka+Kr a™r N [S+C]
KaKr
- w 1 1
_ Y p,net o,
Ap, = + Wp,net
Ky K, K, KoKy 2 K, + XK,
s\ s +a, s“ls+a,
KX, KoK,
_ Wp,net 1 Y W p not
= pnet 57 4
K, sls+C] .k, s2[s+C]
where
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In order to find the values of @ and A—p; in real space, inverse Laplace

transforms of Equations C-28 and C-29 are obtained as follows:

1l — _ 1 o -1 1
Ap (t)=L ! Ap, =1L % =—7L W L'{—
() { a} KoK, ponet sz[s+C] KoK, p.net S2[S+C]

I 1lw 1 -1 @ 1
Ap, ()= Ap, L= 1 Zpnet L= A
v, (1) { pr} { x, sls+C] ’ KoK, W pnet s*[s +C]

(C-32)
Wp.net -1 1 o, -1 1
o s Aoa L P
Inverse Laplace transform of the term of 2—1—— in Equations C-31 and C-32 is
s%[s+C]
obtained by using the formula (Equation C-33) given below (Erdélyi, 1954):
t
I Hf(s)gls)= [FG)G( ) (C-33)
0
Applying Equation C-33 in Equations C-31 and C-32 gives
fls)=1/5%, gls)=1/(s+C) (C-34)
and
1) T _1)
F(t)=1L {;2—} =1, Gt—1)=L {ETE’} =exp[-C(t - 1)] (C-35)
1 1 y o1
L S————¢= |1t exp|-Clt—1)| dt =—+—=|exp(-Ct)-1 (C-36)
{sz[m} Je epk-Cl-0) e Lyt
is obtained.

Substituting Equation C-36 into Equation C-31 gives
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a -1 1 o t 1
Apg (t) = ;afr_ Wp, net L {Sz [s N C]} = Ka‘};r W p, net {E + CT [exp(— Ct) - 1]}

(C-37)
and using Equation C-30 in Equation C-37, the pressure change of the aquifer tank is

obtained as follows:

2
oy KaKy KgKy Gr\Ka T Xr) (Ka +xy)
—-_r_ - t|-1
Ap, (1) o Pt o T i a,lk, +x, “op KqgK
a’r r\*a r ri\ta ar

w
Ap,(t)= __pnet [Wp,net —&L){exp(— M‘(P_)t] - 1J (C-38)

(Ka +Kr) Otr(Ka +K,)2 KaKy

Inverse Laplace transform of the term of in Equation C-32 is obtained by

s[s & C]
using the formula (Equation C-39) given below (Erdélyi, 1954):

-1 1 1
L { Goa)oo b)} — lexp(at) - exp(bt)] (C-39)

Applying Equation C-39 in Equation C-32 gives

a=0, b=—C (C-40)
and

af 1] 1 . l-exp[-Ci]

L {S[S+C]}—O+C[exp(0t) exp( Ct)]—————c (C-41)

is obtained. Using Equations C-36 and C-41 in Equation C-32 gives the pressure

changes of the reservoir tank as a function of time as follows:

Wp,net -1 1 o, -1 1
=L LI
Ar (t) Kp {S[S + C]} ’ KoKy pmet {Sz [S + C]}

(C-42)

- wp,net [l—exp[—Ct]}_ (0 2%
K

t 1
K, C Wp,net[g'*‘g[eJCp(— Ct)— I]J

a™r
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and substituting Equation C-30 into Equation C-42 and rearranging gives

2
w w
Ap,(f) = L1y 221 Ka 1—exp| —a, Ra T ¥r, (C-43)
(Ka +Kr) Op \Kgt+K, Kg Ky

Thus, The pressures of the reservoir and the aquifer tanks as a function of time are

obtained by using Equations C-38 and C-43 as below.

Wp net

o Vpna L YLV D - CPE e P I
pa(t)—pl (Ka"'Kr)t (Wp,net (X,,(Ka+1<,,)2]|:exp( KaKy IJ 1] (49

I —
(Ka + Kr) Q. Kg Ky

2
w w
2,(0)=p; - p.net p,net [ Ky J l:l _ exp[— a, M’II (C-45)
,
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APPENDIX-D

1 RESERVOIR -1 AQUIFER WITH RECHARGE SOURCE
(WITHOUT INITIAL HYDRAULIC EQUILIBRIUM)

Mass balances on the reservoir and the aquifer, recharge of the reservoir and the

aquifer, initial condition are expressed as;

Mass Balance on the Aquifer :

dpg,
W, —W, =X D-1
a r a dt ( )
Mass Balance on the Reservoir :
d

Wy Wy et =y (D-2)

Recharge of the Aquifer : wy =g (p; — pa) (D-3)

Recharge of the Reservoir : w, =o,(p, - p,) (D-4)

Initial Conditions : Pa=DPr=p, @t=0 (D-5)
Substituting Equations D-3 and D-4 into Equations D-1 and D-2 gives

d
0‘a(pi "pa)""ar(pa —p,.)=Ka 5;1 (D-6)
d

Oy (pa - pr)" Wp,net = Kp Pr (D-7)

dt

The pressure changes and their derivatives with respect to time as given by
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dAp, __dp,

APy =Py —Pa = Pg=Do g =

\D ‘D
Ap, =po— Py = Pr=Do—Ap, = dtr:— dtr

Initial conditons are obtained by applying Equation D-8 in Equation D-5 as follows:

Apa(t=0)=py — palt=0)=p, —p, =0 } D.9)
Apr(t = O): Po "pr(t = 0)=p0 —Po=0
Using Equation D-8 in Equations D-6 and D-7 gives
d A
Qg (pi_po"'Apa)—ar(po_Apa_po""Apr):—Ka_de (D-10)
dA
Ay (po —Apy—po + Apr)_ Wp.net = —Kp Pr (D-11)

dt

Initial pressure difference between the recharge source and the reservoir or the

aquifer tank, p; — p, , can be defined as below.
Ap. = p; — p, = constant (D-12)

Substituting Equation D-12 into Equations D-10 and D-11 and rearranging gives

G (49, + 8p4)- 0, (80, — M) = o 2202 (D-13)
O ©-14
or

%0 2222 1 (0, + 0, ) Apy — 0ty Ap, = —0l4hp, (D-15)
6 L=ty At ty Ay = Wi e (D-16)
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Applying Laplace transformation (Erdélyi, 1954) to Equations D-15 and D-16 and

using initial conditions (Equation D-9) gives

- — — A
Kq S Apg+ (o + O‘r) Apy~a, Ap, =—a, Fe (D-17)
s
— — —  Wp net
Ky SAp,—a, Apg+ o, Ap, = p (D-18)
where
o o0 o o0
Ap, = fe“‘”Apa &t , Ap,= je_StAp,, dr (D-19)
0 0
Rearranging Equations D-17 and D-18 gives
(o540 +0y) Bpg = oty Bpy =01y L2 (D-20)
— —  Wp et
—a, Apg + (k, s+ 0, )Ap, = (D-21)
or
‘:S+(_(Xa_-*-__(i)i| Ap, - Gy Ap, ~_%a Ap. (D-22)
K, Ky Kg &
o, — O |~ _ Wp,net
~=L Ap, +|s+=L|Ap, = (D-23)
K, K, K, S

By using Cramer’s rule (Kreyszig, 1999), the solutions for two equations (Equations

D-22 and D-23) with two unknowns ( A?w A?,. ) can be found as below:

__ D
Apaz—l, Ap

D,
—r D-24
= - (D-24)

~
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D. = Kg Kg § Wp,net (Ota+0L,,) a0, Ap,
=
_Q, Wp,net Ky S Kg KoK, S
K, Ky S
(g +t,) Ay
(0g +0,) a o2
D= Ka a Logta )i o Oy r
_%r 54—t Kg Ky Ka¥y
K, ©,

b "O‘LlApc - | La%r AP =2 Wp,net
— D, Ky KoKy 8 KoK, s 7

Ap, =—==
2
D s+(aa+ar) e | e
Kq K, ) KgK,

Wp,net [s+ ((xa + ar):l _azo, Ap,

— K, S K K,K A
Ap, =%: r a a™r .
{{s-&- (aa 'er)jl(s_l_ &y ]_ oy }
Kg Ky, ) KgK,

Rearranging the denominator in Equations D-28 and D-29 gives

2
PO PR 79 ) (P N~ T KPP 2 22
K, K, ) KK, Ky K, K K,

and the roots of Equation D-30 (pq, 5 ) are found as follows;
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2
(g +0‘r)+& n (&g +0ﬁr)+9°L 4 %a%r
K, K, Ky K, KoK,
By = 5
. (D-31)
2
(&g+0‘r)+91 _ (Ota+OL,,)+_OL_,. _4O‘aar
Kg K, Ky K, KoK,
b2 =
2 )
and Equation D-30 can be rearranged as
24 {_‘*a ray +9—”}s b % (oY sepy) 0-32)
Ky K, K, K,

Using Equation D-32 in Equations D-28 and D-29, and rearranging give

Qg 00y Ape Ay
Ap. Wp, net
K, Ka¥r 5 ) \Kgkys

e )G m) Grm)ems) GG (033)
Ypnet (s+d) ®g% AP
= ) T ™ =) 39
o
[“—upc] ( Apc] ( 2 w]
Ay = - K, _ KaKy N KoKy (D-35)
(s+p)s+pa) (+0)s+p)s+nr) (+0)(s+p)s+pso)
Peret (s 1 a) %% Ap,
A i e o i ey -39
where d = Ggt &y

Ka

In order to find the values of Ap, and Ap, in real space, inverse Laplace

transforms of Equations D-35 and D-36 are obtained as follows:
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Ap, ()= ];{A?aj = _%"—Apc L_l{(s+u1)1(s+u2)}

_%al%r 5 L_l{ ! } D-37
war GG )G r ) (B39

+-2r ! 1
kg, T s+ 0) (s +p)ls +nz)

Ap,(t)=L {Apr} I”( et L"l{ (s+d) }

(s+0)(s +u1)(s +p2)

(D-38)
_og0 1

ey el {(S+0)(S+u1)(é‘+uz)}

1
(S+u1)(S+H2)

obtained by using the formula given in Equation C-39. Applying Equation C-39 in

Inverse Laplace transform of the term of

in Equation D-37 is

Equation D-37 gives

a=-py, b=-u (D-39)

and

L'l{ : }= L Jexp(- w1 1)- expl-p, )] (D-40)
(s+p)b+m2)] pa-m

is obtained.

Inverse Laplace transforms of the terms of 650 (s+1u1) Gy

) (s(i LT))(SWZ) in Equations D-37 and D-38 are obtained by using the

formula given in Equation B-36. Using Equation B-36 in Equations D-37 and D-38

gives

A=0 ,p=0, v=1 (D-41)
o O,B:MI} Y =H2

and
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B 1 I U S
g {(S+0)(S+M1)(S+H2)}—H1M2 (g o) Plu)

(D-42)
b exp(- i1y 1)
wy (o =1 )
is obtained. Using Equation B-36 in Equation D-38 gives
A=0 ,p=1, v=d (D-43)
a=0,B=p;, v=p
and
L—l{ (s+d) }: d_ . (u; —4d) exp(— 1)
(s+0)(s+pu)ls+u2)] pima  pilug—p) (D-44)
cW2md)
K2
M2 (p'l —H2 )

is obtained. Substituting Equations D-40 and D-42 into Equation D-37 gives the

pressure changes of the aquifer tank as below:

Apa(r)=-ﬁupc{

Ka Ha —H1

Ay 4y z)]}

o0, 1 1 1

- Ap { hi= exp(—puit) + exp(—n t‘}
KaXy ¢ HiH2 M1(H1—H2) ( 1 ) Hz(}lz—ul) ( ? )
o, 1

+— + exp(—py t) + exp(—pa
K, K, p’net{ul ny o owg (g —po) ) ba (2 —py ) Pl )}

or

Apa () =-22(p; —po){

Ky T lexp(-p1 ) - exp(-ps f)]}
%a%r (p, - po)H(Hl —pp)+ 1 exp(=py £)—py exp(-py t)}

oy
+ Woonet —
‘iKaKr P Ka¥y Uil (lJ'l —H2 )

(D-45)

Similarly, using Equations D-42 and D-44 in Equation D-38 gives the pressure

changes of reservoir as below:
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Apr(f)zwp’net{ Lyt exp(— l‘)+M)—exp(~u2’)}
Ky Y 2%) ul(uz—ul) Hz(}ll—llz)

_ rApc{ L, 1 exp(—w)+—1——exp(—u2r>}
KgKp HiHo Hl@ll —Hz) Hz(liz—ul)

or

Ap, ([):

Woper [ (A u=d) N (o-d)
K, {muz m(ulz—m) Plowi) uz(}i —py) 7l Hzt)}
{(Hz —p1) - B exp(—pg 1)+ py exp(-py f)}

23] Mz(ul —H2 )

o0

+ = (p; - o)
Ka Kl"

(D-46)

Thus, pressure behavior of the reservoir and the aquifer as a function of time is

obtained as follows.

sl )l )
_{ o Ly ( po)} {(ul —p2)+ o exp(=py 1) — iy exp(—py f)}

w -
p,net
Kok K12 M pa (i 12 )

Palt) = Pi + (:_a(Pi —Po){

H2 — K

(D-47)

(np—d)

exp(—py 1)+ mexp(— H2 f)}

pr(t): pi~—

Wp,net{ d__ (wy —d)

K (mipo i —py)

Gt (Y {(uz —p1) =g exp(=py 1)+ p exp(—p, f)}
K l ? 133 Mz(ul —Mz)

Kar

(D-48)
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APPENDIX-E

1 RESERVOIR -2 AQUIFERS WITH RECHARGE SOURCE
(3-TANK OPEN SYSTEM)

Mass balances on the reservoir and the aquifers, recharge of the reservoir and the

aquifers, initial conditions are expressed as;

Mass Balance on the Outer Aquifer :

dp,
Woa — Wia = Koqg d(;a (E-1)
Mass Balance on the Inner Aquifer :
dp;
Wig = Wp =Kjg d;a (E-2)
Mass Balance on the Reservoir ;
dj
Wr = Wpnet =¥y (E-3)
Recharge of the Outer Aquifer : Woa = %og (i = Pog) (E-4)
Recharge of the Inner Aquifer : Wig =0, (poa -~ p,-a) (E-5)
Recharge of the Reservoir : w, =0, (pig — Py) (E-6)
Initial Conditions : Pia=Poa=DPr=p;i @t=0 (E-7)

Substituting Equations E-4, E-5, and E-6 into Equations E-1, E-2, and E-3 gives

dj
Oog (pi - poa) — Qg (poa - pz‘a) =KXoa ];;a (E-8)
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dn;
G (poa - pia)_ o, (pia — Dy ) =Kijg Z;a (E-9)

d
@y (pia —Pr ) ~Wp,net =Ky 5; (E-10)

Equations E-8, E-9, and E-10 can be writen in terms of pressure changes. The

pressure changes and their derivatives with respect to time are given by

d Ap: dn,
Apig = Di = Pia = Pia = Di = ADjg1 = i,fm =- Z;a
d Ap dj
ADoy = Pi = Poq = Poa = Pi —DPoq = dtoa == l:;;a e (E-11)
dAp dp
Ap, =p; — = =p;:—Ap, = e
\D, = Pi — Py Py =D \Dy dr i

and initial conditions become

Ap;ia(t=0)=p; - pi(t=0)=p; - p; =0
ADou(t =0)= p; = poalt =0)= p; — p; =0 (E-12)
Ap,(t=0)=p;i = p,(t=0)=p; ~p; =0

Using Equation E-11 in Equations E-8, E-9, and E-10 gives

Coa(Pi = Pi + APog )~ %ig (Pi = APog — Pi + Apig) = —¥ o dAzoa (E-13)

ia(py = A0oa = P1 + A9ia) =0y (01 = Bpia — i + b ) = —xig T (B14)

o (i = Apig = Pi + AP )= Wp et =, di,‘?r (E-15)

Equations E-13, E-14, and E-15 can be simplified and rearranged as follows:

oa Moa ~ ia (8Dia — Mpoa) = K oq 228 ©16)
10 (8pia — W)~ oty (89, = Bpia) = 113 T2 E-17)
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dAp,

op (Ap,, - Apia)— Wp,net = "Kr dr (E-18)
or
dA
Koa %)i + (aoa + o‘ia)Apoa = QigApig =0 (E-19)
dAp;
Kia 'TPZ‘M” — g Apog + (O‘ia + o, )Apia -o,Ap, =0 (E-20)
dA
Ky dl;r - o, Apj, + o, Ap, = Wp,net (E-21)

Applying Laplace transformation (Erdélyi, 1954) to Equations E-19, E-20, and E-21

and using initial conditions (Equation E-12) gives

Kog § A;;a"' (aoa + O‘ia)Ap—oa— Ojg Ap—ia =0 (E-22)
Kig§ Ap—ia—O"ia A?o—a"'(u'ia +ar)A7ia—arA7r =0 (E-23)
— — —  Wponet
Ky SAp,— O Apjgt+ o, Ap, = (E-24)
where
- o o . o0 o [o o]
Apig = [ " Apigdt | Apog = [e ™ Apsudt , Ap, = [e™Ap, du (E-25)
0 0 0
Rearranging Equations E-22, E-23, and E-24 gives
(Koa S+ 0, t+ 0‘z’a)Ap_oa_' Qjg A;;z =0 (E-26)
— Qg Ap~oa"’(‘9’aS"'O‘ia +0‘r)A7ia"arA?r =0 (E-27)
— —  Wp net
=0, Apj,+ (Kr s+ 0‘i’)Apr = (E-28)
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or

s+ Foa T %ia | np  Fia ppo (E-29)
Koa oa

Ujg — Qj,+a, | — o, —

—'lAPoa'*" [S""m—tj Apia—"_rApr =0 (E-30)
Kia Kig Kiag

- - w

—ﬁApia+[s+9‘LJApr= pnet 1 (E-31)
K, K K,

The solutions to three equations (Equations E-29, E-30, and E-31) with three

unknowns (Ap—oa, AE,A?, ) can be obtained by using Cramer’s rule (Kreyszig,
1999) as follows:

. D, — D D
Ap;, = lz)a » Appg = l(;a , Ap, =_DL (E-32)
g Opg + Qg 0 0
Koa
Dy = Yia 0 Y% (E-33)
Kig Kig
0 Ypnet 1 s+ 2
K, S K,
0 _Yia 0
Koa
Dy, = 0 gp Qia T % Oy (E-34)
Kia Kia
Wp,net l —_ _%_ S+ hal &
K, § K, K,
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g+ Loa T %ia Qia 0
Koa Koa
D. = Qia s Qjg + Ay 0
r
Kiag Kia
0 _%r Yprnet 1
K, K, S
(E-35)
24 Kia (o‘ia + 0‘oa)"' Koa (aia + O‘r) s
_ Yp,net KiaKoa
KpS$ + QjgQy + U0, + 0oy
Kia¥oa
5§+ Qpg + Qg Qig 0
Koa Koa
D= _ Qg S+aia+0‘r _ %y
Kia Kia Kia
(04
0 -—r s+——L
K, Ky
K, K. \O;, +0,.)+K; K. .lo;, +0 +K;,K,,0
=s3+[ oa r( ia r) ia r( ia oa) ia¥oa r}SZ (E-36)
KiaKoaXr
4| Kr (aiaaoa T A0 + 0‘ocz‘)‘;')"' Kia (aiao‘r + 0‘oao‘r)'*' Koa (aiaar) s
KiaKoa®r
n X igCogCy
KiaKoaKy
Equations E-35 and E-36 can be rewritten as follows:
Wp,net
D, = 2" (s2 +ags+ az) (E-37)
K8
D= 3 2
=57 +a3s” +ays+as (E-38)

where

139



_ Kia (aia + o‘oa)"' Koa (O‘ia + O‘r)

a
Kia¥oa
a = Qg + QpgQly + QjgQog
KiaKoa
_ Xoa¥r (aia + OL,.)+ KigKr (O‘ia + oLoa)"’ KiaKog%r (E-39)
KigKoaKr
ay = K;’(Otl'ao‘oa T Rjgly + OLoaOLr)'*' Kia (O‘iaar + 0‘oamr)'*' Koa (aiaar)
KiaKoaKr

as = QLjgALog

KiaXoaKr

Substituting Equations E-37 and E-38 in Equation E-32 gives

2
— D, VYpne sT+aps+ap
Ap, =F-= I (E-40)
D KpS s° +a3s” +ays+ag

The roots of the (s> + a352 +ays + ag) are found as follows:

2 3
0= a_3_93ﬂ R= 2a;3 90224 +27a4 , B=arccos \/R_?’ (E-41)
Q
0 as
py = 2@ cos 3 + 3
0+2
wy =2J0 cos( +3 “) + "?3 (E-42)
p3 = 2@00{9 * 4nj a—;~
Using Equation E-42, the following expression can be written
53 +a352 +ayus +as =(s+u1)(s+u2)(s+u3) (E-43)
Substituting Equation E-43 into Equation E-40 gives
—  Wp.net S2 +aps+ap
Ap, =—= (E-44)

K;S (S + Hl)(s +M2)(S +H3)
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In order to find the value of A?, in real space, inverse Laplace transform of

Equation E-44 is obtained as follows:

2
A . A . Wp,net I 1 ST +a1s+ap E-45
prll) { 7 } < {(S+0)(S+u1)(S+uz)(S+u3) (E-45)

52 +a1s +a2
(s+0)(s +py )(s +po ) (s +p3)

45 is obtained by separation of the terms as follows:

Inverse Laplace transforms of the term in Equation E-

S2 +als+a2 A B + C + D (E—46)
(S+0)(s+m)(s+uz)(S+u3) (S+0) (s+p1) (s+pg) (s+ps)
A=lim,_, (s +0) s +ays+ay =22 (E-47)
y (s+0)(s+p)(s+po)(s+p3)  pipons
B =lim (s +uq) s +ays +ay B -ap+a
o (s+0)(s+p)(s+pa)ls+p3)  pilus —p1 )z — )
(E-48)

52 +a1s+a2 __ LL% —aiy +ap
) +pa)(s+u3)  po(u —po Nus —ps)

C= lims—)—uz (S + HZ) (S N 0)(s

(E-49)
2 2
D=lim,_,_, (s+n S_tais+ap N o B o )
s OB )6 i) e, oy )
(E-50)

52 +ais+ap
d {(s+0)(S+u1)(S+uz)(S+u3)}

_ 1) 4 N B . C . D _
-t {(S"'O) (s+p1) (s+p2) (s+u3)} (E-51)

Ak {(S+ )}+BL_ {(SJrlm)}JrCL—l{(S:Hz)}JrDL—I{(”IM)}
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(E-52)
- 1 -1 1
i = exp(— U t), L {—}:exp(—u t)
(ot P et
Using Equation E-52 in Equation E-51 gives
L_l ST traistap
(5 +0)(s +m1)ls +p2) (s +13) (E-53)
=A+B exp(— K t)+ Cexp(— uo t)+ D exp(— u3 t)
Substituting Equation E-53 into Equation E-45 gives
8p, (1) = Z2"2 [ 4+ Bexp(— g 1)+ C exp(-pig )+ Dexp(- i3 1) (E-54)

r

The reservoir pressure as a function of time is obtained by using Equation E-54 as

below.

Dporet [A+ Bexp(~p; £)+Cexp(- sy 1)+ Dexp(—ps 1] (E-55)

pr(t)= pi—

r
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APPENDIX-F

1 RESERVOIR -2 AQUIFERS WITHOUT RECHARGE SOURCE
(3-TANK CLOSED SYSTEM)

Mass Balances on the reservoir and the aquifers, recharge of the reservoir and the

aquifers, initial conditions are expressed as;

Mass Balance on the Outer Aquifer :

dj
~Wiqg =Kog % (F-1)

Mass Balance on the Inner Aquifer :

dp:
Wia =Wy = Kig A (F-2)

Mass Balance on the Reservoir :

dpy

W, —w =K, —— F-3

r p,het Is di ( )
Recharge of the Inner Aquifer : Wig = %ig(Dog = Pia) (F-4)
Recharge of the Reservoir : w, =, (pig — Pr) (F-5)
Initial Conditions : Dig =Poa =Pr=D; @ 1=0 (F-6)
Substituting Equations F-4 and F-5 into Equations F-1, F-2, and F-3 gives

dp
— Qg (Poa - pia) =Koa d(;a F-7)
dp;

O‘ia(poa - pia)_ oy (pia _pr)= Kig =2 (F-8)

dt
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dp,
dt

oy (Pia - pr)_ Wp,net = Ky (F-9)

Equations F-7, F-8, and F-9 can be written in terms of pressure changes. The

pressure changes and their derivatives with respect to time are given by

d Ap; dp;
Apig = P; ~ Pia = Pig = Pi —Aig = dtla =- d;a
d dj
APoa = Pi = Poa = Poa = Pi —APoa = oq = Poa (F-10)
dt dt
dAp dp
Apr=Pi=Pr = Pr=pPi=Ap, = ——F=—""

and initial conditions become

Apig(t=0)=p; - piat=0)=p; —p; =0
APoa(t=0)= p; = poglt =0)=p; = p; =0 (F-11)
Ap,(t=0)=p; - p,(t=0)=p; - p; =0

Using Equation F-10 in Equations F-7, F-8, and F-9 gives

~0ig(Pi = APoa = Di + APig) = ~K4q dA;;w (F-12)
i (Pi = APoa = Pi + Apia) — 0, (p; — Apiy — pi + AP, ) = —x;, dAdZ;ia (F-13)
0y (01 = Bpia = i+ B9, ) = W, g = 16, (F-14)
Equations F-12, F-13, and F-14 can be simplified and rearranged as follows:

~ia(APia ~ BPa) = Ky 028 F-15)
i (APia —~ APoa) = 0ty (D) — Apig) = ~¥ s di,‘;"“ (F-16)
0 (8P, — Ap1a) = Wp, e =, PLr F-17)

dt
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or

dA
Koa _5;% + Qg APpg — igApig =0 (F-18)
dAp;
Kia cf,;m = QigADyg + (aia + O‘r)Apia -o,Ap, =0 (F-19)
dA
Ky % —a,Apj, +a,Ap, = Wp,net (F-20)

Applying Laplace transformation (Erdélyi, 1954) to Equation F-18, F-19, and F-20

and using initial conditions (Equation F-11) gives

Koa SAp—oa+ Qg A;;a“ Qg A;;;z =0 (F-21)
Kig § Ap—ia_aia A}Za"'(aia +o‘r)&7;z_arA_p—r =0 (F-22)
e T N wp,net
Ky SAp,— . Apjg+ Q. Ap, = (F-23)
where
o [e 0} . e 0] o oo
Apig = [e " Apigdi  Apog = [e™Apyudi , Ap, = [e™Ap, v (F-24)
0 0 0
Rearranging Equations F-21, F-22, and F-23 gives
(Koa s+ aia)AEa_ Qjg A;;z =0 (F-25)
— Qg A‘];;a'*‘ (Kia S+, + 0Lr‘)Ap—ia'“ Ay A?r =0 (F-26)
- —  WYWponet
-, Apj,+ (Kr s+ (X,.)Ap,. = (F-27)
or
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(s + mj APoy— 218 Ay = (F-28)
K K

o, — Qjg +0, | — O, —
—iApoa"'(S"'L—rJ Apia'—_rApr = (F'29)
ia Kial Kia
_ — W
~&Ap,~a+ (s+&) Ap, = Ypnet 1 (F-30)
K, r K, §

The solutions to three equations (Equation F-28, F-29, and F-30) with three unknows

(ADig, AP,y Ap, ) can be obtained by using Cramer’s rule (Kreyszig, 1999) as

follows:
— D. _ — D
Apia = ll)a > Apoa = l;a s Apr :3"- (F-31)
5+ —1a 0 0
Koa
o; o
Dia =] — Ki 0 = Khr (F-32)
ia a
o el e
K, § K,
0 _Lia 0
Koa
D,, = 0 S+M _%r (F-33)
Kia Kia
—Wp’net l —_ ﬁ S+ &I’_
K, S K, K,
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o a;
§ 4 —la ia 0
Koa Koa
a o, +o
D, = ia ia r 0
Kia Kig
0 a, Wp,net 1
K, K, §

w s . , .
net Kog\ Oy, + 0. )+ K, O o0
p S2 { oa( ia r) ia%ia :| s ia%r

KiaKoa KiaKoa

(x .
g+ —1a ia 0
Koa Koa
D= Qg Qjg + 0, _ Oy
Kia Kia Kia
[0
0 -—= s+—L
Ky Ky

I l:KoaKr (aia + ar)"' KigKrQjg + KigKogy g2
KigKoa¥r

4 (Kia +Koq + Kr)o‘iao‘r
KiaXoaky

Equations F-34 and F-35 can be rewritten as follows:

Wp, net
Dr :_ﬂ(SZ +als+a2)
K,S

D=s +a3s2 +ays = s(s2 + a3s+a4)
where

_ Koa (O‘ia + ar) +KigQig

a
KiaKoa

;0
ay = ia%r

Kia¥oa
a3 = Koa¥r (aia + ar)"' KigKpQig + KigKogOy

KiaXoaKr

ay = (Kia + Koa + Kr)OLiao‘r

KiaKoa¥Xr
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Substituting Equations F-36 and F-37 into Equation F-31 gives

D,  Wp et 52 ta;s+ay

Ap, ==L = (F-39)
"D KpS§ s(s2 +ass+ a4)
or
— W 2
pnet S tas+ay
Ap, = 2 2
Kp 8 (s +ass +a4) (F-40)

_ Wp net 1 . a b a .
- K 2 2 2(.2
r ST taszs+ay SIs” +azs+ay STNST tazstay

In order to find the value of A_Fr in real space, inverse Laplace transform of

Equation F-40 is obtained as follows:

Apr(t)= L_l &p:, _ Wp,net L_l . 1 Ly Wp,net alL_l . 1 .
Ky (s +a3s+a4) Ky s(s +azs +a4)

Wpnet - 1
7 s (s +a3s+a4)

(F-41)
The roots of the (s2 +as3s + a4) are obtained as follows:
" az ++/ a32 — 4(14
l =
2
(F-42)
asz — A/ a% - 4(14
b2 =
2
Using Equation F-42, the following expression can be written
52 +as3s+ay =(s+u1)(s+u2) (F-43)

Substituting Equation F-43 into Equation F-41 gives
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Wponet .—1 1 Wp,net -1 |
= L L
4,0 Ky {(S+H1)(S+M2)}+ Ky “ {S(S+H1)(S+H2)}

= a, -1 1
o {sz(ﬁul)(ﬁm)}

(F-44)

1
(S+H1)(S+M2)

obtained by using the formula given in Equation C-39. Applying C-39 in Equation F-

Inverse Laplace transform of the term of in Equation F-44 is

44 gives

a=-yy, b=-uy (F-45)

and

L“{ 1 }= L fexp(-py 1) - exp(-pp )] (-46)
(S+H1)(S+u2) H2 =

1

Inverse Laplace transform of the term of in Equation F-44 is

s(s+n)(s +n2)
obtained by using the formula given in Equation C-33. Applying C-33 in Equation F-
44 gives
f6)=~, gls)=7—. (F-47)
s (s +pp)s+p2)
and
11
Flx)=rL —} =
s
- 1
G(t-1)=1L 1{ } F-48
) (S+H1)(S+l~l2) 49
1
- {exp[-p1 (—7)]- expl-ps (¢ -7)]}

U2 — U

Substituting Equation F-48 into Equation C-33 gives
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el [ S vk - e (-9l o

(F-49)

_ 1 {l—exp(—ulf)_1—exp(—uzt)}

M2 — 1 M1 2%)

Inverse Laplace transform of the term of 3 L
% (s +pp)(s +p2)

obtained by using the formula given in Equation C-33. Applying C-33 in Equation F-
44 gives

in Equation F-44 is

f(s)=si2, 56)= 1

ST+ 1) (720
and
F(r)= L {;12—} =1
_ 1
Ct-)=t {<s+m)(s+u2)} s

= el (-9l expl s (- )

Substituting Equation F-51 into Equation C-33 gives

B 1
: {sz (s+p)(s+ Hz)}
Ojr

otk (- eplops ()]} F-52)

_ b, 1 {exp(—ull‘)—l_exp(—uzt)—l}

il Mo —Hg uf u%

Substituting Equations F-46, F-49, and F-52 into Equation F-44 gives the reservoir

pressure change as a function of time as follows:
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)= "2 el -l )

K,
+ W p,net a { 1 {1 —exp(-pp 1) l-exp (~py 1)]} (F-53)
Kp M2 —Hg M1 K2
Wp,net t 1 exp(-pp1)-1 exp (—pyt)-1
+ as + 5 - >
Ky Rz H2 —Hq O8] e8]

or

+

(t): W p,net az{ t 1 l:exp (—},Ll t)—l _exp (- Wy t)_lj,}

K, Mo Mo —py u u3
w — —_ — —
L Wpnet al{ 1 [1 exp(-pi1) 1-exp(-py f)}} (F-54)
Ky Ko —Hq H1 H2

L et { ! lexp (- 1) - exp(-py 1 )]}

Ky Ho =i

The reservoir pressure as a function of time is obtained by using Equation F-54 as

below.
p(0)=p; 2y L exp(_zl £)-1 _exp(““zz 1)-1
Kr Hiz M2 —Hg us 12
Kr Ko —H1 M1 158

_ Zpnet { L el 1) - explpy f)]}
Ky M2 —H1

151



APPENDIX-G

2 RESERVOIR TANK MODEL WITHOUT AQUIFER
(WITH INITIAL HYDRAULIC EQUILIBRIUM)

Mass balances on the shallow and deep reservoirs, recharges of the reservoirs, initial

conditions are expresser as;

Mass Balance on the Shallow Reservoir :

Wy + Wpl2 = Wp pert = Kyl dZ;l (G-1)
Mass Balance on the Deep Reservoir :
W2 = W12 = Wp ner2 =Kp2 dl;;z (G-2)
Recharge of the Shallow Reservoir : w1 = (p; = pr1) (G-3)
Recharge of the Deep Reservoir  : Wy = (p; — pro) (G-4)
Recharge between the Shallow and Deep Reservoirs

W12 = 412(p2 ~ Pr1) (G-5)
Initial Conditions : Pa=P,=p @t=0 (G-6)
Substituting Equations G-3, G-4, and G-5 into Equations G-1 and G-2 gives
a,1(p; = Pr1)+ 012 (Pr2 — Pr1) - Wp netl = Kpl le (G-7)
a,2(pi = Pr2) = 0r12(Pr2 = Pr1) = Wp ez = %12 54_2;_2 (G-8)
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Equations G-7 and G-8 can be written in terms of pressure changes. The pressure

changes and their derivatives with respect to time are given by

d q,
Apy1 = pi — Pr1 = Pp1 = Pi —Apy; = ?;;rl = -l

dA dctz (G-9)
Ap,y =p;i = P2 = P2 =Pi —Appy = j;rZ =- ‘Z,;z
and initial conditions become
Apy(t=0)=p; - p(t=0)=p; - p; =0 } (G-10)
Apya(t=0)=p; = pra(t =0)=p; - p; =0

Using Equation G-9 in Equations G-7 and G-8 gives

d
®p (pi —piTt Aprl)+ 0‘7'12(pi —Ap,p —p; + Aprl)— Wp,netl = ~Kp1 ”’Ad%‘ (G-11)

d
®p2 (pi —pit AprZ)— Xp12 (pi ~Apyp —pi + Aprl)_ Wpnet2 = ~Kp2 [:I,;rz (G-12)

Equations G-11 and G-12 can be simplified and rearranged as follows:

dAprl

o, 1App + O‘1*12(Api’1 - Apr2)_ Wp,netl = ~Kp1 di (G-13)
d.
®p2APy — Ay (Aprl —Ap,y ) “Wp,net2 = ~Kp2 é;l;rZ (G-14)
or
dAp
Ky 2+ (@1 + 012 ) APy — 124D = Wp netl (G-15)
dAp
K2 dtrz — 0124P,1 + (X2 + 0012 JADYY = Wy e (G-16)

Applying Laplace transformation (Erdélyi, 1954) to Equations G-15 and G-16 and

using initial conditions (Equation G-10) gives
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wp,netl

€p1 8 App+ (0 +012) Apy—ty1p Apyg = (G-17)
— — —  Wpnet2
Kp2 8 AP = 0p1z Appi+(0yg +012) Ay = — (G-18)
where
L o0 o o
Appi= (e Apidi , App = [e ™ Appd (G-19)
0 0
Rearranging Equations G-17 and G-18 gives
o — Wp,netl
(y1 5+ 0Ly +0p12) APy = 0p12 Apyp = S (G-20)
— — Wp,netZ
— 12 AP+ (0 5+ g + 0p1p ) Apyy = 225 (G-21)
or
A T2 | i Qy1p o _ Wppner ]
S+————5 | Apy == Apyy =——— (G-22)
Ky Krl Kei 8
o . 0,9 +a — W 1
_%r12 AP,~1+(S+ r2 rlszprZ — p.ner2 1 (G-23)
K2 Kp2 Kp2 S

The solutions to two equations (Equations G-22 and G-23) with two unknowns

(Ap,1,Ap,, ) can be obtained by using Cramer’s rule (Kreyszig, 1999) as follows:

Apy) = 1331 » Appy = Dlgz (G-24)
Wp,netl 1 _Op12
D, = WK,,l s Kp] _ Vpnetl +|:Wp,netl (O‘r2 +0‘r12)+ Wp,net2%r12 }l
pret2 1 g4 2r2 012 Krl Kr1Kyp2 s
Ky S Kp2
(G-25)
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p+0p12 Wpnel |

S+
Do = Kpl K1 S| _ Wpnetr2 + YWp,net2 (O‘rl +ar12)+wp,net10‘r12 1
2 _ %12 Wp.net2 1 K72 Kp1Kp2 s
Kp2 Kp2 8
(G-26)
o Qrl %12 _%p12
D= Kyl Ky
+
_Op12 S+ Oy T2 (G-27)
K2 Ky2
= 2 +(O‘r1 +0,12 + Ay +0p12 J“H_ Op1 Oy +ar12(o‘rl +OL,,2)
Ky Kr2 Kr1Kp2
Equations G-25-, G-26, and G-27 can be written as follows:
q
w 1
_ Wp,nerl ]
D,y = + [Wp,netlal T Wp net292 |~ (G-28)
K}’l S
w 1
_ Wp,net2 [ ]
D,y = T Wp,net283 + Wp per1@2 |~ (G-29)
Krz A
D=5 +ays+as (G-30)
where
o + 0.4 o, +0O
ay = r2 rl2 , ay = ri2 . an = rl rl2
Kp1Kp2 Kp1Kp2 Kp1Kp2 (G—31)
ag = Q1 + 012 + Qpp +0py2 as = Qp1Qyn + O‘}'12(0‘r'l + OLr2)
Kyl Ky2 Kr1Kp2
Substituting Equations G-28, G-29, and G-30 into G-24 gives
w 1
p,nerl [ ]
D < T Wp,net121 + Wp ner2@2 5
Aprl 2t _ rl 5 (G-32)
D ST+ ays+as
w
p,net2 [ ]
D < T Wp,net293 + Wp net192 ;
Apyy =12 =12 > (G-33)
D §° +ays+as
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The roots of the (s2 + a45 + as) are found as follows:

_ % +w/a£ —4as

2

ag — \[aé% —405

2

K1
> (G-34)

Mo =

Using Equation G-34, the following expression can be written
52 +ays+as =(s+u1)(s+p,2) (G-35)

Substituing Equation G-35 into Equations G-32 and G-33 gives

Zpnet S+ Wp net191 + Wp net292
— K
A =Kl G-36
P )G a)G ) (639
p.nes2 S+ Wp net293 + Wp net1 @2
o K
Ap,, = —12 G-37
IR A, T | ATy (G379

In order to find the values of A?,.l and Ap_,z in real space, inverse Laplace

transform of Equations G-36 and G-37 are obtained as follows:

Wp netl
| — . —i—le—s + Wp,netlal + wp,netZaZ
App =L SAp, =L r (G-38)
’ g (s+0)(s+pp)(s +pz)
Wp, net2
N | %S T Wp net293 T Wp ner1 92
Aprp =L Appy b =115 (G-39)
’ § (s+0)(s+py)(s+uy)
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Wp,netl

S+ Wp net191 + Wp net202
Kyl

(s +0)(s +p)(s +p2)
Equation G-38 is obtained by using the formula given in Equation B-36. Applying B-

Inverse Laplace transform of the term of in

36 in Equation G-38 gives

A=0 , p= W p,netl /Xy, V= Wp,net19 + Wp ner242

(G-40)
(X,:O,B:H] s Y =Ha
and

Ppred gy w a
[ Y ponetl1 T p.net22 _ Ypnend1 + Wp,ner2d2

(s +0)(s+p)(s+py) 11
w /K -w ap—w a
_ ( p.netl 7 Rl )”1 pnetl®l p,net2=2 exp(— L t) (G-41)

B (g —p2)
(wp,netl /Kp1 02 = Wp net1@ = Wp ner2 @2
B2 (kg —py )

exp(—py 1)

Substituting Equation G-41 into Equation G-38 and rearranging gives

Aprl(t):wp,net1|: A4 _H-Ead exp(““lt)"' P2 —¥nd exp("HZt)}
Hikto Kr1M1(M1—Hz) Krluz(ul—uz)

a @ @
+w), tZ[ + exp(—pt) ~——2——~exp(- sz)}
PR g (i —p2) po (g —p2)
(G-42)
Similiarly, inverse Laplace transform of the term of
wp,netZ

S+ Wpnet293 T Wp net1 42

(s +0)(s +11)(s +p2)
formula given in Equation B-36. Applying B-36 in Equation G-39 gives

Kp2

in Equation G-39 is obtained by using the

7\o = 0 3 H = wp’netz /Krz ’ V= wp’net2a3 + wp,netlaz

(G-43)
a=0,P=g , Y=Hp

and
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w
p,net?
TSt Wp net293 t Wp per192

1% _ Yp.ner2d3 + Wp net192
(s +0)(s +py)(s +p2) )
3 <Wp,net2 /K2 )“1 ~ Wp,net293 ~ Wp net192 ex (_ t) (G-44)
3 (“'1 —H2 ) P
3 (Wp,net2 /Ky Juo = Wp,net243 — Wp net142 exp(— iy l‘)
Ha (o —py )

Substituting Equation G-44 into Equation G-39 and rearranging gives

a2 a2 a2
Ap f=w + exp\— uf AT S A= tj,
20) p’neﬂ[muz miler —n2) o) ka1 —i2) et
a3 “’1 —Kr2a3 HZ _K72a3
w . exp(—pt)+ “P-i t}
P,netZ[uluz Krzul(P-l —uz) Krzllz(l-"l —“2) ( ? )

(G-45)

The shallow and deep reservoirs pressures as a function of time are obtained by using

Equations G-42 and G-45 as below.

[ a N o .y 3 0 exp(—ult)\
w2 Kb (1 —B2)
p.net _
+K“ 2 (K”_al )exp(—uzt)
)= p; -1 - k2t T > (G-46)
D D ap(-pyt)
o mpy  py(pg—pg)
p,net2 ~ ar . (_ t)
—2__exp(—p,
| pa(ug —po)
2 (a2 )exp(—“lt)
W et Ko K] —H2
p.ne
S
Pra(t)=pi -1 Halt » (G47)
az U1 —Kppa3 exp(—ult)
w2 Kb (g — o)
p,net _
+ U —K,2043 exp(—uzt)
Kb (1 — o)
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APPENDIX-H

2 RESERVOIR TANK MODEL WITHOUT AQUIFER
(WITHOUT INITIAL HYDRAULIC EQUILIBRIUM)

Mass balances on the shallow and deep reservoirs, recharges of the reservoirs, initial

conditions are expressed as;

Mass Balance on the Shallow Reservoir :

d
Wl + Wp12 = Wp perl = Kyl ‘Z;l (H-1)
Mass Balance on the Deep Reservoir :
d
Wr2 = Wrl2 = Wp ner2 = Kr2 Z;Z (H-2)
Recharge of the Shallow Reservoir : W1 =0 (2 = 1) (H-3)
Recharge of the Deep Reservoir  : Wy = s (pi — pro) (H-4)
Recharge between the Shallow and Deep Reservoirs
w12 = 012(Pr2 — Pr1) (H-5)
= . t=0
Initial Conditions P =pri @ } (H-6)
Pr2=Pri@t=0
Substituting Equations H-3, H-4, and H-5 into Equations H-1 and H-2 gives
dp
Oyl (pi - prl)"' ®r12 (pr2 - prl)— Wp,netl = Kpl d;l (H-7)
dp
%) (pi —DPr2 ) — %12 (pr2 — Dr1 ) ~Wp,net2 = K2 d;Z (H-8)

159



Equations H-7 and H-8 can be written in terms of pressure changes. The pressure

changes and their derivatives with respect to time are given by

dAp dp
AP, = Pyii = Pri = Pyl = Prii — APy = dt” = d;‘
dA d (H-9)
\D p
APy2 = Prai — Pra = Pr2 =DPrai— APy = ﬁ”=- éz
and initial conditions
App(t=0)= pp; = Pri(t =0)= py1; = 1 =0 } (H-10)
Appo (t = 0) =DPr2i —Pr2 (t = 0) =Py2i— Pr2i =0

Using Equation H-9 in Equations H-7 and H-8 gives

dAp,
A1 (pi —Prii t Aprl)"’ Op12 (pr2i —Ap, — pri + Aprl)_ Wp,netl = ~Kypl dtr

(H-11)

dAp,»

dt
(H-12)

25%) (pi — P2t Apr2)" ®p12 (pr2i —Ap;y — P + Ay )_ Wy net2 = —Kp2

The following definitions can be made to simplify the equations.

Apy1; = pi — Prii

Apy2i = Pi = Proi (H-13)
Ap; = Py — Prii

Substituting Equation H-13 into Equations H-11 and H-12 gives

d.
Oyl (Aprli + Aprl)"’ oL}'IZ(Apz' +Ap,) - AprZ)"“ Wp,netl = ~Krl Adl;rl (H-14)
dA,
%) (AprZi + AprZ)— Qp12 (Api +Ap,) — Ay ) “Wponet2 = ~Kp2 5;2 (H-15)

Equations H-14 and H-15 can be simplified and rearranged as follows:

Kyl

dA
5” +(0tp1 + 12 ) AP, —0p12ADyy = Wponetl — QAP —Qp28p;  (H-16)
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dAp
Kp2 —dt"Z — (Xrleprl + ((X,.z + a’rlZ)Ap}’Z = wp,net2 - O‘rZAPrzi + a’rlZApi (H-17)

Applying Laplace transformation (Erdélyi, 1954) to Equations H-16 and H-17 and

using initial conditions (Equation H-10) gives

— — —  Wponetl — 01891 — 0 12AD;
K1 8 A1+ (01 + 0p12) Appi—ay1p Appy =27 . s” (H-18)

Wp.net2 ~ Q2P0 + 02 AD;

K2 S APy = 1n Apyy+ (0 +0t,12)Apyy = . (H-19)
where
. o o] o (e 0]
App = [ Apd ,  App=[eAp,dr (H-20)
0 0
Rearranging Equations H-18 and H-19 gives
— —  Wp netl ~ 01D — Q12 AD;
(Krl S+ t+ O‘rlZ) Aprl— Up12 Apr2 = L7 g < = 4 : (H—21)
— —  Wprner2 ~ AP + o Ap;
— a2 A+ (Kyn S+ 0pp + 0ypp ) Appy = —27 § . ;%))
or
o, +a — — W —aAp,.; — O ,
{S+ 71 ,.12] Aprr o,12 Apr2 _ p,netl r18Pr1i rlZApz l (H-23)
K K1 Kl S
— — W — 0, Apy; + O ;
Q) Ap+ ( . 0,9 + a"”]AprQ _ ¥pnet2 r28Pr2i r128p; l (H-24)
Kr2 Kr2 K2

The solutions to two equations (Equations H-23 and H-24) with two unknowns

(A?r—l, AE;Q ) can be obtained by using Cramer’s rule (Kreyszig, 1999) as follows:

Dr] . Dr2
D ’ Apr2 D

Ap,i = (H-25)
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Wp.netl = @r18Pr1; = 0r124p; 1 o1

D, = Krl 5 Krl
T w — APy + 0 AD;
p,net2 r28Pr2i r128P; 1 . Qo + 0,12

K2 § Kr2

_ Wp netl _arlAprli _arIZApi

(H-26)
Krl
+ (Wp,netl - o‘rlAprli - 0‘r12ApiXO"r2 + 0Lr’l2)l
Kp1Kp2 s
+ (Wp,netZ — AP, + 0Lr12Api)O‘r12 l
Kp1¥Kp2 s
+ %l + 02 Wp,netl ~ Or1APr1; — Op12AD; 1
D,y = Krl Krl s
012 Wp net2 — Op2APp2; + 0,124p; 1
Kr2 Kp2 s
_ Wpnet2 ~ A ADpo; + 012 AD; (H-27)
Kp2
+ (Wp,netZ — 0 Ap; + o‘rlZApixo"rl + ar12)l
Kr1¥Kp2 s
+ (wp,netl — 0 Apy; — O‘rlZApi)o‘ru 1
Kp1Kp2 s
4 %1 012 _ %12
D= Kyl K1
_ %12 o4 Q2 T 012
K2 K2 (H-28)
—¢2 [arl T 012 | %2+ Op1p j o4 Q1% F o12(0g +04)
Krl Kp2 Kr1Kp2
Equations H-26, H-27, and H-28 can be written as follows:
a1a drd
D, =a +154 4 2255 (H-29)
N S
drd ara
Dy = ap + 23 4 7156 (H-30)
A )
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D=s2+a7s+a3 (H-31)

where
u Wp,netl ~ 01Ap,1; — a2 AD; 4 Wp,net2 ~ QAP + 02 AD;
1= , U2 =
Kyl K2
.1+ o + o 04 (04
as = rl ri2 , ag = r2 rl2 , a5 = rl2 , ag = ri2 (H-32)
Ky K2 Kyl K2
_ Oy 012 | Opp 0G0 _ Oy 0y + O‘rlZ(o‘rl + O‘r2)
ay = + ,ag =
Kl K2 Kr1Kr2

Substituting Equations H-29, H-30 and H-31 into Equation H-25 gives

L Ma4 | aras
— Dy N7 s _ @S +a1a4 +axas
Aprl = = 2 = f 2 ) (H'33)
D §”+ags+ag S(S +a7s+a8)
51, PG
— DrZ G s + s ays +anaz +ajag
Appy =2 =— =22 \ (H-34)
D s° +ags+ag s(s +a7s+a8)
The roots of the (5% + ays + ag) are found as follows:
ag + 4 a% - 408
1=
2
> (H-35)
ag — \la% —4ag
Ho =
2

Using Equation H-35, the following expression can be written
52 +ags+ag =(s+p.1)(s+p2) (H-36)
Substituting Equation H-36 into Equations H-33 and H-34 gives
A?rl _ ais+a1a4 +azas (H-37)

(s+0)(s+py)(s +p2)
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asS+arasz +ajdg

Appy = (H-38)
s+ 0)(s+py s +ma)
In order to find the values of Ap,; and Ap,, in real space, inverse Laplace
transform of Equations H-37 and H-38 are obtained as follows:
1| — -1 1§ +aay +azas
Ap, =L {Ap, =L { } (H-39)
’ { ’ (s+0)(s +py)(s+p2)
1| — _ ass +dyas + ajag
Apyy =L M Ap, =L ‘{ } (H-40)
’ ’ (s +0)(s + 1) (s +12)

ays +ajag +azas

in Equation H-39 -
(s +0)(s+u1)(s + )

Inverse Laplace transform of the term of

S +araz + aag
(s +0)(s +py)(s +p2)
formula given in Equation B-36. Applying Equation B-36 in Equation H-39 gives

and the term of in Equation H-40 are obtained by using the

A=0 , p=a; , v=ayay +ayas

H-41
a=0,B=p , v=uy (H-41)
and
L_l{ ais +ajdy +ayas } _ ai1ay + aras
(s +0)(s+p1)(s +uz) e
_91 —aq194 —apas exp(—
P\ ¢ (H-42)
B (g 2 ) i)
_91k) —a1a4 —aras exp(-p1y 1)
H2 (Hz =H1 )

Substituting Equation H-42 into Equation H-39 gives
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Ap (1) = wpynetl[ ag  Wi—ay

exp(-pyt)+ 2= exp(- Hzf)}
K LBz Mp(g —po)

o (g — o)

4 Wp net2 |: as

B exp(- ) - ——>—exp(- Hzf)]
Ky2  [H1H2 Hl(}ll —uz) Hz(ul -Hz) (1-43)
4 exp(- 1) {aloul _%aq0 asa9}
ul(ul —Hz) Kpl Krl Kp2
__exp(=pot) {alouz _ 4910 6’5"9}r 1 [0509 _ 04010}
uz(m —Mz) Kl Kyl Kr2 HiM2 | Ky2 Kl
where

ag =~0,2(p; ~ Pr2i)+ 12 (Prai = Prii) (H-44)
aio = 1(p; = Pr1i)+ 412 (Pr2i = Prii)

Similarly, Applying Equation B-36 in Equation H-40 gives

A=0 , u=ay , v=aya3+aag (H-45)
a=90 , B:“l » Y=HU2

and

L—l{ ays +araz + ajag } _ a3+ ayag
(s +0)(s +py) (s +ps) B o
_ Gl —agas —aag
w1 (g —n2)
_ G lg —ards —a14q
B2 (2 —py )

exp(-py t) (H-46)

exp(-p 1)

Substituting Equation H-46 into Equation H-40 gives

w 1| a a a
Ap,, () = —22< [ 6 4+ & exp(- 1) - ———expl-p ’}
r2() 1 Lk R —po) ) ka1 —p2) )
+ wp’”etz[ % __P17% exp(—ulf)’fM—exp(—uzt)]
K0 [Bia pi(p-po) ) (H-47)
+ exp(- 1) {_ dolly , 4399 _06"10}
pl—p2)l %2 K2 Ky

_exp(-ppt) {_ aghy | 3399 _06010} L1 [0309 _06010}
Hz(m —Hz) K2 Kp2 Kpl Lo | K42 Kyl
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The shallow and deep reservoirs pressures as a function of time are obtained by using

Equations H-43 and H-47, respectively, as below.

pr(6)=pr; =4+

pr2(t) =Pr2i 3t

Wp.netl [ day Bi—ds Po —day }
- p(— )+ —A—2—<exp(-pyt
Kp1  [H1M2 Ml(}ll -Hz) : uz(ul —Mz) ( 2 )
wp,net2{ as as ds
+ + exp(—-ut)————exp—u t}
Ko LMy By —p2) (e —hp) =pa)
exp(-p1) |:alo}11 _%ad0 0509} >
M(H] —Mz) Kpl Kr1 Kp2
__exp(-p1) {alouz _%a%0 as%}
M2 (Hl - Hz) Kpl Kr1 Kp2
1 ':asag _ a46110:|
HiH2 | K2 Kr )
(H-48)
(Wp netl[ ag a ag
: + exp\—Uit)— ———exp\— ot
K1 LBy By —po) h) o (g — o) Cho )}
Wp,net2 { as Ky —a3 M2 —a3 }
+ = exp\— Uit )+ ———=expl— ot
K2 LH1l2 Hl(ul —Hz) ( : ) Mz(ul —Mz) p( H2 )
exp(= ) {_ doli , 9399 _ asalo} >
Ml(ul —uz) Kr2  Kp2 Kp1
r exp(= pot) {_ dolty . d3dg _ 06010}
uz(m —Mz) K2 Kp2 K1
Lt {a3a9 _ a6a10j|
B2 | K2 Kpl ]
(H-49)
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APPENDIX-I

2 RESERVOIR TANK MODEL WITH AQUIFER
(WITH INITIAL HYDRAULIC EQUILIBRIUM)

Mass balances on the shallow and deep reservoirs and the aquifer, recharges of the

reservoirs and the aquifer, initial conditions are expressed as;

Mass Balance on the Aquifer :

W =1 =~ wyp =g L (&)
Mass Balance on the Shallow Reservoir :
Wil + W12 = Wp nerl =Ky dl;:1 (1-2)
Mass Balance on the Deep Reservoir :
W2 = Wel2 ~ Wp perd =K,2 dZ;z (1-3)
Recharge of the Aquifer : W, =0, (p,- - Pa) (I-4)
Recharge of the Shallow Reservoir : Wi =Py - Pr1) (I-5)
Recharge of the Deep Reservoir  : Wy = (g — 112) 1-6)
Recharge between the Shallow and Deep Reservoirs

W12 = %12(Pr2 = Pr1) I-7)
Initial Conditions : P,=Pn=Pn,=p @t=0 (1-8)

Substituting Equations I-4, I-5, I-6, and I-7 into Equations I-1, I-2, and I-3 gives
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dp,

OLa(pi _pa)_arl(pa _prl)_arZ(pa "pr2)= Ka

dt
d
a1 (pg — Pr)+ a2lpr2 — pr1)- Wpnetl = Kri Z:l
dj
a2 (Pa = Pr2)— @2 (Pr2 = Pr1) = Wp per2 = K2 l;;z

1-9)

(1-10)

I-11)

Equations 1-9, I-10, and I-11 can be written in terms of pressure changes. The

pressure changes and their derivatives with respect to time are given by

dAp dp
APa=Pi~Pa = Pa=Pi=dpg = — =1
dAp dp
Apr =Ppi =P = P =pi=bpn = —Th=-"11
d d
Appy =pi—Pr2 = Pra=Di—Apyy = 2‘?’2 5 Z;z

and initial conditions become

Apy(1=0)=p; - p,(t=0)=p;—p; =0
Apy1(t=0)=p; = pn1(t=0)=p; — p; =0
Apyy(t=0)=p; — pya(t =0)=p; — p; =0

Using Equation I-12 in Equations I-9, I-10, and I-11 gives

O‘a(pi - Dj +Apa)_arl(pi -Ap, - p; +Apr1)

dAp,

_ar2(pi - Ap, - p; +Apr2)=—Ka d

d
Ap1 (pi —Apg, —p; + Aprl)"’ oLrl2(pi —Apyy —pi + Aprl)_ Wp,netl = ~Kpl Sid

129%) (pi —Apg—p;it+ AprZ)_ Gri2 (pi -Ap,y —p;i + Aprl)_ Wp.net2 = ~Ky2

, (1-12)

(I-13)

(1-14)

dt

Equations I-14, I-15, and 1-16 can be simplified and rearranged as follows:
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AP, — (Aprl '"Apa)_aﬂ(AprZ —Apa)= —Kg di (-17)
dA
a,1(8pr1 = Apa )+ 012 (AP = APs2 )= Wp mert = =K1 ;’1 (1-18)
dA

3%) (AprZ - Apa) — 0,12 (Aprl - Apr2 ) - wp,net2 ==K, 5;2 (1'19)

or
d

Ka 2 1 (s + 0yt + 0y AP ~ i AD — 2Py =0 (120)
dA

K] ;’1 — 18P + (01 + 0412 )APy = 012ADs2 = W) e (I-21)
dA

Kp2 5;2 — 08P, = aAp, + (00 + 012)APr2 = Wp,net2 (1-22)

Applying Laplace transformation (Erdélyi, 1954) to Equations I-20, I-21, and [-22

and using the initial conditions (Equation I-13) gives

Kgs A?a'*‘ (aa +a, + O‘rZ)A?:z— Oy Ap—rl_ 129%] Ap—rZ =0 (I-23)
— — — —  Wp nerl

K18 Ap,— o,y Ap,+ (arl + 0‘r'12)Apr1 — 02 Appy = e eia (I-24)
— o — T wp,net2

K28 ADy2 — ya ADg— 1 Appy+ (0,0 + 0p12 ) Apy = —L242 (I-25)

where

_ [e o] o o0 . o0

Apg = [e " Apgdi | Apy = [e ™ Ap,dt | Apyy = [e™Ap,, dn (1-26)

0 0 0
Rearranging Equations I-23, I-24, and 1-25 gives
(Kgs +0tg + 0y + 02 ) Apg— 1 Appi— 0,2 Apyy =0 (1-27)
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— — — Wy el
— 0ty Apg+ (K18 +0Lpp + 012 ) AP — 0 Appy = —E2 (I-28)
— — —  Wp.net2
— 0y Apy—0tp12 AP+ (K08 + 0y + 0412 ) ADyy = (1-29)
or
+ - —_— -—
Ka Kq Ky
_ O a2 | o O o Mpnent 1 (1-31)
K1 Kyl 4 Ky 2 Krp 8
- R — w
_ % Ap,— Or12 Api+ (S 4+ G2+ 02 JAprZ _ _ pnet? 1 (1-32)
Kp2 Kr2 Ky2 Kp2 &

The solutions to three equations (Equations I-30, I-31, and I-32) with three

unknowns (A_p—a,AB;,Ap—,Z ) can be obtained by using Cramer’s rule (Kreyszig,
1999) as follows:

— D — D — D
Apg==%, Ap,y ==L, Ap,, ==12 1-33
\Py D \Dy1 D \Dy2 D ( )
0 _%n _%r2
Ka Ka
Wpnetl 1 o, +a a
D, = pretl 1 (s 4 O rl2) _%12
Ky 8 Kyl Ky
Wpnet2 1 Q2 ( o o2t arlZ)
K s K X
r2 r2 r2 (1_34)
0 —a2 —a3
w 1
=|—pretl 1 (s+a5) —ag
Kr] S
Wo net2 1
_prets — —dg (S + ag)
K,,z S
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Kg L
D= (O] Wp,netl 1 012
1 —_— —_—— ————— e . — e
’ Kyl Kpl ) Kpl
) Wp,net2 l (S + a,» + (1,”2]
K2 Kp2 S K2
w 1
= —a, Zprenl
Kyl S
Wp.ner2 1
_ay ezl (oL 40)
Ky S
Wp,net! 1 Wy ner2 1
= - p.netl © s2 +(a1 +a9)s+a1a9 —dasay +ﬂ‘["6s+ala6 +a3a4]
Kpr S Kpp S
(I-35)
(S+0Ca+(xr1+0(,r2J Oy 0
Ka Ka
D,y = _ %1 sl Qpp +Qp12 Wp,nerl 1
r
Kyl Ky Kp S
_ _Y%r12 Vpnet2 1
Kr2 L9%) Ko S
(s+a1) -a 0
w 1
=| —ay (s+as) —pometl 2
Kyl §
w 1
—ay —ag p.net2 1
L% )
Wp,net! 1 Wy ner2 1
= - p__—[ass+ala8 +aza7]+ _p.nete 2 52 -+ (al + as)S‘l‘alaS —aza4]
Kp1 S K s
r2
(1-36)
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[s+0‘a+arl+ar2] _9n _ %2
Kg K, Ky
D= %y [S + ! +0‘r12] Y12
Kyl Kyl Krl
Oy %12 [s 4 Q2 * O‘rle
Kp2 Kp2 Kp2
(s+a) -—a —a;s
=| —a; (s+as) -—ag
—ay —dag (S +a9)

= S3 + (611 +as+ 619).5‘2 + (a5a9 —dgdg +ajas + ajag —dodyg — a3a7)s

+ ajdsdg —aydgdg —dyadydg — 02616(17 —dasauag — dsdsdqg

(I1-37)
where
ay = Og + &y +0p0 ay = Or1 a3 = )
Ky Kg Ky
o o, +0o o
a4 — 1‘1 , a5 — 7‘1 r12 , a6 i }"12 L (1-38)
Kyt Kr1 Kr1
g =22 o= %12 ag = O + %2
K2 K2 LS%) )

Substituting Equations I-35, 1-36 and I-37 into Equation I-33 gives

Wp netl 1 Wp,ner2 1

_pret 2 [s2 + (al +ag )s +ajag — a3a7]+ _pnets 2 [a6s +ajag + a3a4]
o Kpel S8 r2 3

sT + (a1 +as + dg )S + (a5a9 —dgag +ajas + aiag —agsdy —asay )S
+ a1a5a9 —a)dedg — a2a4a9 - a2a6a7 —dasapag — a3a5a7
(1-39)

Wp.netl 1 Wp.ner2 1

_pne 2 [ags +ayag + a2a7]+ _pnete S2 + (al + a5)s + aas —anay
O Kpep 8 K2 §
Apyy =

S3 + (a1 tads+ag )S2 + (a5a9 —agdg +a1d5 + a1ag —Aray — asag )S
+ ajasdg —aydgdg — draqadg — Ardgdy — Azd dg — azdsdy

(1-40)

The roots of the cubic equation in Equations I-39 and I-40 are found as follows:
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a)+as+ag -3 dsag — dgdg + a1ds +djdg —aydy —a3a7)
1

Q= 9
LJ2( i —ayay - asa;)
_ ay +as+ ag) - 9(611 +ds +ag )(05619 —dgdg + ajas + ajdg — aray — a3ady
54 + 27(611615619 —da)agdg —anadudg —drdgdy —adzadydg — a3a5a7)
0 =arccos

R
o*

(1-41)

= 2@“’5@ AL

y =20 cos( 0 ““32") ) “35 * 9 (1-42)
0+4n) a;+as+ag

p3 = 2\/_Q—cos 3 + 3

Using Equation 1-42, the following expression can be written

5% +(ay +as +ag)s® +

(asa9 —dgdg + ajds +ajag —aa, —azay )S + = (S + 1 )(S + Mz)(s + M3)
a1a5a9 —a)dgdg — a2a4a9 — 6120607 - a3a4a8 — a3a5a7

(1-43)

Substituting Equation I-43 into Equations 1-39 and I-40 gives

Hpnetl 2 [s2 +(ay + ag)s + aag — azar ]+ Pperz 1 lags + ajag +azay]
b =1 )
’ (s +m1 )5 +p2)(s +13)
(1-44)
W) netl l[ass-"alas +aza7]+_"’nﬂl[s2 +(ay +as)s + ajas —a2a4]
Ay = K, S K2 §
(s +p1)(s +p2) (s +p3)
(1-45)
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In order to find the values of A;;l and Ap_,z in real space, inverse Laplace

transform of Equations 1-44 and I-45 are obtained as follows:

1| — 1 .-1]S +(a1+a9)s+a1a9 —azag
Apyy = L Apy b= Zmetd
! { rl} Ky (s +0)(s + 11 )(s +12)(s +13) (146)
N Wp,net2 L_l{ ags +a1ag +aszay }
K2 (s +0)(s +p1) (s +12)(s +13)
Apn = [V Apy L Bpometl -1 ags +ayag + aay
i { pﬂ} < L6+0)(+r)+ i) rs)
(1-47)

Wp,net2 L_1 s +(a1+a5)s+a1a5 —anay
K2 5+ 0)(s +p1)(s + 1) (s +3)

S2 + (a1 +09)S +ajag9 —azay
(s+0)(s +p1)(s +12)(s +p3)

I-46 is obtained by separation of the terms as follows:

in Equation

Inverse Laplace transform of the term of

S + (a1 +dg )S +a1a9 —azay Al A2 A3 A4

= 1-48
0+ u)Grm)Gtms) G+0) Gap) Grm) Gam) O
Ay = lim . (S + 0) S2 + (al +a9)s +ajag —azay _ @199 —a3ay (1-49)
= (s+0)(s +pq)(s+p2)(s+p3) HiMops
A = lim (S + ) S2 + (a1 + a9)s + alag —0307
2T G O+ i) 6+ ) 50

- (al + a9)H1 +adid9 — azay
Ml(}lz —M1XH3 —Hl)

$2 + (al +ag )S T a1a9 —asay
(s +0)(s +p)(s +po)(s +n3) (-51)
w5 - (ay + a9 )up +ayag — asay

B2 (g —p s —12)

Ay =limg_, (S"'“Z)
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S2 + (al + ag)s+a1a9 —aszay
(s+0)(s +p1)s +p2)(s +p3)

Ay =limg_,_,, (S+P-3)

, (1-52)
__bh3-~ (a1 +ao)us +ajag —aza;
w3t 13 )z —p3)
L_l S2 + (al + ag)s +a1a9 —asay _ L_l{ Al + Az + A3 + A4 }
(s +0)(s +py)(s +12)(s +p3) (s+0) (s+uny) (s+p2) (s+n3)

=4 L {m} + 4, L {(s+u1)} + 43 L7 {@} + 4L {(7373)}

(1-53)
_ 1 -1 1
L 1{——} =1, L {——} =exp(-p; t)
0
6+0 Gom) o
- 1 -1 1
- = —Usrt), I s—t= —ps3t
] e £ =t
Using Equation I-54 in Equation I-53 gives
L_l S2 + ((11 +a9)s+a1a9 —azay & . . (_ i)
Gro)s+m)lrna)lsrms)] PN (1-55)
+ A3 exp(—py 1)+ Ay exp(— 3 1)
Inverse Laplace transform of the term of deS + d196 *+ A3y in Equation
(s +0)(s + 1) (s +pa (s +13)
1-46 is obtained by separation of the terms as follows:
ags +a1ag +aszay Bl BZ B3 B4
= + + + (I-56)
(s+0)(s+p)(s+ma)ls+p3) (s+0) (s+my) (s+nz) (s+ps3)
; agS + aydg + dzay ajde +azdy
By =lim s+0 = (1-57)
=m0 O ) )6 ) T s
. ags + ajag +asay
By =limg_y_, (s+u
2 = R ) ) ) s

= agl] +a1ag +azay
Hl(uz "Ml)(us ‘Hl)
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ags +a10g +azay

By =limg_,_,,. (S+HZ)(S+O

)(s+u1)(S+u2)(S+M3) (I-59)
_ _ —9sko ta1a6 +azay
po (g —p2 s —pa)
o ags + a1ag + azay
By =lims_, y (s +“3)(s+ 0)(s +pp)(s + 1) (s +13) (1-60)

_ _—GgH3 ta1a¢ +as3ay

sy —p3)pa —p3)

_ ags + ajag + aza _ 1) B +B +B +B
’*l{cs+o>(?+u13(f+u§)€l+u3)}‘L {(sio) G G <s+13)}

=B L {(s—i(ﬁ} +By ! {G:TI)} +B L {(s:—uz)} *Bat {(T:H_ﬂ}

(I-61)
Using Equation [-54 in Equation I-61 gives
-1 aeS + arag + aszay
=B+ By exp(— 1 t
{(HO)(S+u1)(S+uz)(S+u3)} 1+ By explp ) (I-62)

+ By exp(—py 1)+ By exp(-p3 1)

ags + ajag + aray
(s+0)(s +p1 (s +p2) (s +p3

I-47 is obtained by separation of the terms as follows:

Inverse Laplace transform of the term of

) in Equation

ags + ayag + arar _ Cl + C2 + C3 + C4 (1-63)
(+ 06 a6 )68 Ge0) ) o) Grm)
) ags +ayag +azay ajag +aray
o ) _ 1-64
| =limg_y (s + )(s+0)(S+u1)(S+H2)(S+“3) HiHoH3 e
‘ ags + ayag + aray
Cy=1I
2 =limg_,_y, (s+“1)(s+o)(s+m)(s+u2)(s+u3) (1-65)

—dagly +ajag +dzaq
w2 =1y Nus — 1)
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ags +apag +azay

Cs=limg_,_ (S+“2)(S+O

s +pp)(s +pg ) (s +p3) (I-66)
_ _—agly +ajag +axag
wo (g — 1 s —12)
. ags +ajag +asag
=]
Cy Mg_s s, (S+H3)(S+0)(s+ul)(s+u2)(s+u3) (1-67)

—agh3 +ajdg +adxay
B3 —ps Moo —p3)

_ ags + ajag + ara 1] C N C N C 4 C
L1{<s+o)(§+u$<f+u§)(7s+u3>} L {<s+1o) G Gema) (s+13>}

- gl o )

(I1-68)
Using Equation I-54 in Equation I-68 gives
L__l ags +ajag + aay }= Ci+C exp(—p ¢
{(S+0)(S+u1)(S+uz)(S+u3) L€ o) (1-69)
+C3 exp(=py 1)+ Cy exp(-p3 1)
S2 +(a +a5)s+a as —asa
Inverse Laplace transform of the term of 1 175 4 in Equation
(s +0)(s + g ) (s +p2)(s +p3)
I-47 is obtained by separation of the terms as follows:
S2 + (al + as)S +a1a5 —azay _ Dl + D2 + D3 + D4 (1_70)
(s+0)(s+m)ls+ma)ls+ps) (5+0) (s+py) (s+ua) (s+ps)
2
Dy = lim o4 0\ s+ (a1 + a5)s +a1a5 —azay _ a\as —dasay (1-71
=m0 O O O )6 )6 s) b )
2
: s+ (al + a5)s +aids ~aydy
Dy =limg_,_,, (s+p
e e ) e ey o

(a1 +as)w +aas —azay
i (2 =i s — 1)

il
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S2 + (al +615)S +ajas —azay
(s +0)(s +p1 s +12)(s +13)

Dy =limg_,_, (s+p2)

2 (I-73)
- (a1 +as)us +ayas —azay
ba (1 =12 i3 —12)
Dy =lim (S+H3) s> +(al +C15)S+a1a5 —asay
4 s>, (s +0)(s+pq ) (s +1s)(s +p3) 7

2
_ B3 - (01 + as)us Tayas —axay

- M3(}11 —H3)(H2 —H3)

_ Dy D, D3 Dy

) Lﬁl{(s+o)+ (S+1Lt1)+ (S+H2)+ (”“3)}
R R R

L—l{ 5% +(ay +as5)s +ayas — ayay }
(s +0)(s +pr)(s +p2)(s +p3)

(1-75)
Using Equation 1-54 in Equation I-75 gives
-1 S2 +(a1 +a5)s+a1a5 —ayay = D+ D» ex (_ l)
Gr0)(s+u)l+u)brus)] 2O (1-76)

+ D3 exp(~p 1)+ Dy exp(-p3 1)

Substituting Equations I-55 and I-62 into Equation I-46, and substituting Equations I-
69 and I-76 into Equation [-47 gives

w
Ap ()= i’nleﬂ {41+ 4y exp(—py 1)+ Ay exp(~ iy 1)+ 44 exp(—p3 1)}
14

1-77)
P12 (5 By expl-n )+ By explc g 1)+ By expl- s 1)
r2
892 ()= "222LC, + Cy expl- g )+ Cs expl- iy 1)+ Cy expl- i3 1)}
Krl (1-78)
s pner2 {D) + Dy exp(~py )+ Dy exp(—py £)+ Dy exp(—p3 1)}
K2

or
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2
(0109 —azdy U1 — (al + a9)l~l1 +ajag —azay

exp(-py 1)
Hikoh3 g — g s — ) 1
w 2 —(ay +ag)py +ajag — aza
A N p,netl <_H2 1 9 )W 149 347 exp(—p l) 9
2ni) Krl M (g — 1o Mz —pa) ez

2
u3 - (al + a9)M3 +a1a9 —azay ex
- p(-ps3t)
sy —ps)pp —ps3)
aydg -+ asay T~ agliy + a1dg + aszay
Hik2H3 M1 (Hz —Hi )(M3 - M)
W p,net2 —dgly +ajag + azay
; - exp(—py 1)
K2 2% (}11 —Mz)(w “Hz) g
_ T Agl3 +a10¢ +azay

exp(—pst
L paley —ps)dug —p3) )

r

exp(-py 1)

v

(1-79)

(alag tapa;  —ag +ajag +azay

HiHlaM3 H1 (Hz —H )(Hs —Hl)

Apra (t) _ Wp,netl J_—agho + ayag + azay exp(— . l‘)
ke | polig —po ) —po)

_ —agus +ajag +aay

L sl —ps)un —ps)

-

exp(—p 1)

g

exp(~p31)

ajds —axa4 _ uf — (a1 +as)uy +aas —azay
HiHoM3 (g — by Yotz — )

2
Wpnet2 | 13 —(ay +as)us +ajas — ayay |
+ <= exp(— npt
K2 wa (g = po Mz —p2) 2)

2
w3 — (g +as)us +ayas —apay ex
- p(-p37)
w3y ~ 3z —p3) ’

exp(—p 1)

\

(1-80)

The shallow and deep reservoirs pressures as a function of production time are

obtained by using Equations I-79 and I-80 as below.
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prl(t):pi 9

pr2(t)=pi 9

a199 —azag H% — (a1 +a9)u + aja9 — azay
BIRoHs3 (o —py Mz —p)

2

Wpretl | w5 —(ay +ag)uy +ajag —azay
- expl—y t
Kyl Hz(lll—uz)(w—uz) ( 2 )

u2— ay +ag Ju3 +ajag —aza
o Sy w10
—a1a6 +azay  —agly +a106 +a3ay
pitoks  pylao e s —p)

Wpner2 | —agly +ajag +asa
" K2 B Mz(lil “Hz)(us —324) exp(_ "2 t)
_ " Gek3 +aja¢ +azay
| sl —ps)po —ps)

expl(cr 1)

exp(-p3t)

( —alas + azaq _ —agl) + aag + araq
pikops (o —prNes —p)
wp,netl b agly +ajag + aray
L w2 (i —p2 )3 —p2)
_ agila + aag + azasy
| ps(g —p3)ug —ps)
Mas —aray4 uf —(ag +as)p +aas - axd4
MMk p1(a 1 )3 — )
Wpne2 | 13 —(a + as)ug +ayas —azay
+ - expl—ua t
K2 Mz(}Ll—Mz)(M—Mz) ( 2 )
_ uj - (a1 +as)us + ajas - azay
B3 (ur —ps)(p —us)

exp(—py 1)

exp(—py 1)

exp(-p3t)

exp(-p31)

180

exp(—p 1)

exp(o )
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APPENDIX-J

2 RESERVOIR TANK MODEL WITH AQUIFER
(WITHOUT INITIAL HYDRAULIC EQUILIBRIUM)

Mass balances on the shallow and deep reservoirs and the aquifer, recharges of the

reservoirs and the aquifer, initial conditions are expressed as;

Mass Balance on the Aquifer :

d
Wa =Wyl = Wp2 =Ka% J-1)

Mass Balance on the Shallow Reservoir :

Wyl + Wp12 = Wp perl = Kyl dz:l J-2)
Mass Balance on the Deep Reservoir :
W2 = Wil2 = Wp ner2 =Kp2 dl;;z (J-3)
Recharge of the Aquifer : we =0g(p; — pg) J-4)
Recharge of the Shallow Reservoir : wy1 =0y (Pg — Pr1) J-5)
Recharge of the Deep Reservoir  : Wrp = 2Py — Pra) J-6)
Recharge between the Shallow and Deep Reservoirs

w12 = 012(Pr2 — Pr1) d-7)

Pa=Pa @1=0
Initial Conditions : Pr=pPr; @t=0 (J-8)

Pr2=Dpi @1t=0
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Substituting Equations J-4, J-5, J-6, and J-7 into Equations J-1, J-2, and J-3 gives

d
O‘a(pi _pa)_o‘rl(pa "prl)—arZ(pa _prZ):Ka gta J-9
d;
0‘rl(pa = Pri )+ O"r12(pr2 —DPr1 )_ Wp,netl = Kyl Z;l (J-10)
d
a,2(Py = Pr2) = 12(pr2 — Pr1) - Wp net2 = Kp2 Pr2 (J-11)

dt

Equations J-9, J-10, and J-11 can be written in terms of pressure changes. The

pressure changes and their derivatives with respect to time are given by

dAp, dp )
Ap,=p,; — = =p . —Ap, = a_ _“a
\Pa = Pai — Pa Pa = Pgi —APqg r 7
d Ap dj
APyl = Pyij = Py = DPrl = Prii — APy = dt” =— Z:l , (J-12)
d Ap d
ADry = Pr2i = Pr2 = Pr2 =Pr2i ~Apr2 = dtrz r 1;;2

and initial conditions become

Apa(t = 0): Pgi —pa(t = 0)= Pai —Pai =0
Ap, (£ =0)= py1; ~ pr(t =0)= ppy; = pp1; =0 (J-13)
APy (t=0)= Py — prat=0)= pyo; — Pro; =0

Using Equation I-12 in Equations I-9, I-10, and I-11 gives
Ay (pi —Pai T Apa)_ Qp (pai —Ap, —ppi + Aprl)

dAp, (3-14)
dt

=00 (Pai = APy = Proi + Apy2) = —¥4

®p1 (paz’ —Apg — Pr1i + APp ) + 0,12 (pr2i —Apyy =y + Aprl)

dAp J-15)
~Wp,netl = ~Kyl dtrl
®p2 (pal’ —Apg — Py2i + AprZ)_ Gr12 (pr2i —Apyy — pp1i t+ Aprl)
dAp (J-16)
~Wpnet2 = Kp2 T}Q
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The following definitions can be made to simplify the equations.

Apge = Pi — Pai
App1c = Pai — Prii (4-17)
Apyoe = Pai — Pr2i
APy = Pr2i — Prli
Substituting Equation J-17 into Equations J-14, J-15, and J-16 gives
0‘a(Apac + Apa)" Oy (Aprlc —Ap, + Aprl)

dAp (J-18)

=0, (AprZC -Ap, + Apr2) =-Kq dta
dA,

Qyp (Aprlc -Ap, + Aprl)"’ ocrlZ(Aprc —Appp + Aprl)_ Wp,netl = ~Kpl ;;rl (J-19)

d.
®p2 (AprZC —Apg + Apr2) —Qp12 (Aprc —Apyy + Aprl)_ Wp,net2 = K2 A;Zrz (J-20)

Equations J-18, J-19, and J-20 can be simplified and rearranged as follows:

dAp
Ka =y (ot +0tpy + 00 )APG — 018D = 00 APy (-21)
= —0aApse + 0 AD, e + AP,
dAp
rl rl_ a,1Ap, + (arl + arlZ)Aprl ~ 0124952 (J-22)
= Wp.netl = 018D 1 — 0 12ADp
dAp
K2 2 — 28Dy — 012 Apy + (0(,2 + a"IZ)Ap"Z (J-23)

=Wp.net2 — 0p2AD e + 024D,

Applying Laplace transformation (Erdélyi, 1954) to Equations J-21, J-22, and J-23

and using the initial conditions (Equation J-13) gives

Kg$ A?a + (aa + 0y + arZ)A—];c—z_ 12951 A}Trl — 00 AE;Z (7-24)

1
= ; (_ AP + 0 AP + arZAprZC)
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K18 App1— 0y Apg+ (0pr +0pp2 ) AP, — 0tp12 APy

1
= P (wp,netl — APy — O‘rlZAprc)

K28 APyo — Oy Apy— 0ppg Appy+(0pn + 0412 ) ADya

1
= ;(Wp,netZ — QAP + 0‘rlZAprc)
where
—_— © - ®© o @«
Apg = [ 'Apadt | Apy= [e™Apadi . Apyp = [e " Ap,pdt
0 0 0

Rearranging J-24, J-25, and J-26 gives

(Kas T Oy + 0+ 0‘;'Z)Apa_ oyt App1— 0 Apyy

1
= ; (_ AuApge + 0 APy + O‘r'ZApch)

-, Ap,+ (Krls + o, + O‘rlZ)Aprl_ 0,12 Ao
1

— 0y Apy—ot,12 Appy + (KrZS Ty + arlZ)ApiQ
1

s

or

K K

Oy T+ +0py | Opl 7—— Oy —
[S"' 4 - r JApa_ B Apy——"=Apy)
a a

; (wp,netl — 01 ADp — 0('}*12Aprc)

(wp,netZ — 0 Apy. + o‘rlZAprc)

s Kq
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(J-25)

(J-26)

(J-27)

(J-28)

(J-29)

(J-30)

(J-31)



N + N J—
_ al"l Apa+ (S + arl arlZJAprl_ ar12 APrz

K K
rl rl rl (J-32)
_ 1 Ypnern — Ap1APr1c — Or128Prc
§ Kyl
o — — [04 +a —
_ r2 Apa— rl2 Aprl+(s+ r2 rlz]Ap}‘Z
K2 K2 K2 (J-33)
_ l Wp,net2 - oLrZAPrZC + o"r‘lZAprc
§ K2

By using the definitions (Equation J-34) given below, Equations J-31, J-32, and J-33

can be rewritten as below:

a, +d,. +0o o o
a) = a rl r2,a2= rl’a3: r2
Kg Kyg Ka
__ AgAPge + 01 APy  + 02 AP0
Kg
04 o, +0o 0.4
aS — rl , a6 — rl r12 , a7 A rl2 L (J-34)
Krl L Kr
o = — 01 AP — Op12AD), L)
8= LV e
Kyl K2
12 o, +0a —O0AD . + 10 AP
ajp =—HZ | ay| = r2 r12 , ajy = r224r2¢ r122%rc
Kr2 K2 K2
—  — 1
(s +a1)Apy—az Apy - a3 Ap,y = S (J-35)
o o T I(w netl
—as Apg+ (s +ag) Ap— a7 Apys = ;[i—ﬂls (3-36)
rl
ron o T 1 Wp,net2
—ag Apg— ayg Apyy+ (s + ay1)Apyy =;[—K +ap (J-37)
r2

The solutions to three equations (Equations J-35, J-36 and J-37) with three unknowns

(Ap,, Ap,1,Ap,; ) can be obtained by using Cramer’s rule (Kreyszig, 1999) as

follows:
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— D — Dy o Dyy
Apg==% . Apy ==Ll Ap, =" (1-38)
Pa =, Prl = 27
1
—ay —an —a3
s
1w 1
D, = _( p.net +as} (s+ag) —a (J-39)
ALY
1w
. Letz-{-alz —dajg (S+a11)
S Kp2
1
(s+a1) ;04 —as
1 Wp,nerl
S\ Kpl
1{ Wp,ner2
~dg _(—+a12 (s +ar1)
S L%
w f1 1 ] w 12 1
= P21 25?4 (ay +ayy)s + agay _a3a9_+ﬂ—[a7s+a1a7 +azas]
Kpl S Kp2

1
+ags+— (a1a8a1 1t aiaqra)p +dayasap + apaqag +aszasainy — a3a8a9) (J-40)
A

+agai| +agdp +ajag + aupds

1
(s+a;) -a —a4
s
1{ Wp,netl
Dp=| —as (s+ag) —(-——
rl
1{ Wp,ner2
—dg —a10 —(—”ralz
A Kp2
w 11 w 12 1
= DT —[alos + a0 +a2a9]+—&— S2 + (al + a6)s+ A1dg — axas
Kpp S Kr2

1
+dip S+ — (a1a6a12 +ajagag + anyagdg + auasdyg + d4dedy — azasalz)

S

+agdp +dgdig +a1ad1p + aydg

(J-41)
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(s+a)) —a —a;s
D=| —as (s+a6) —ay
— 49 —ayg  (s+ay

= s3 + (a1 +ag +a11)s2 + (a6a11 —anayg +a1a¢ +a1a11 —azds —613619).5‘

J-42)
+d1a6a1| —a1a7a1¢ —Axdsay] —aa709 —azdsa)g — Azdgdy

Substituting Equations J-40, J-41, and J-42 into Equation J-38 gives

Wp,netl 1
Pt *[SZ +(a1 +a11)s+a1a11 —a3a9]+
Kpp S Kr2

Wp,net2 1
—_— [(175’ +aa7 + 0305]
N

1
+ags+— (alasall +aia7a19 +asasa + asaqag + azasayn — 613618619)
S

+dgdy) +arayp +ajag +ayas

fpy =L i
pl"l 3 2
ST+ (a1 +ag +a11)s + (616011 —ayayg +a1a6 +a1aq —ajdas ——a3a9)s

+ 4106011 — a1a741¢ — Axa5011 — AA749 — A3dsa)y — A3d609

(J-43)

w p,netl net2 l [

1 w
— [alos +ajayg + a2a9]+ _p.hete s2 + (al + a6)s +ajag — a2a5]
Kri S Kpo S

1
+aip s+ — (a1a6a12 +ajagag + anagag + a4as5a)g + asaeg — a2a5a12)
N

+dgdyp +agag + aiayp +asa9

AprZ == 3 2 -
sT+ (a1 +ag + all)s + (a6a11 —aqag + a1a¢ + a1aq —dnds — a3y )S

+ a1a6a11 — a1a7a1 — Apdsa1] —Axa7dg —azasayy — azdedy

(J-44)

The roots of the cubic equation in Equation J-43 and J-44 are found as follows:
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2
(a1 +ug +ay1 ) —3lagar) —azaig + a1ag + a1a1; — ayas — azag)

©= 9
2 3
a] + dg + ay 1)
R=-—"—|- 9(611 + ag + a1 )(a6a11 —aydyg + aiag + aja) —asas — 613619) (J-45)
+27(aagar — ajarayg — apasay — ayazag — azasay — a3agag)
0 =arccos

R
o

ny =2 Qcos(%j+ (al T +a11)

3
Ly =240 Cos(9+327r)+ (4 +a§ +a1) (J-46)
W3 =2.0 Cos(6-|-34nJ+ (a1 +a?3 +a11)

Using Equation J-46, the following expression can be written

S3 + (al + dg +011)S2
+ (06011 —ayayg +a1ae + a1a —axas — a3a9)s

J-47)
+ajdgady) —a1aga)g — axas5ay] —axa709 — A3zasa)g — A3aedg

=(S+u1)(S+uz)(S+u3)

Substituting Equation J-47 into Equations J-43 and J-44 gives

Wp,net] s* + (a1 +ay)s+ayay ~azag  Wpren  ags+ a1a7 + azas

Kl S(S+M1)(S+H2)(S+H3) K2 S(S+H1)(S+H2)(S+H3)

S(s+p)ls+n2)(s+p3)
ayagd) | + a1aqa13 +asasdg +agaqag + azasdipy —azagag
+
S(Sﬂll)(s + Hz)(s +!~l3)
aga) + aran + apag + asas
(S +H1)(S +H2)(S + M3)

Apy1 =

+a

(J-48)
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Wpnetl — app8 +a1ay9 +azag Wp,net2 s2 + (al +ag )s + ajag — aras

P shrm) b)) ke sGrR)sro)(sFHa)
A
T G )G )6 )
4 J1961p T 19891 t Ap08d9 +d4a5d10 T A4d699 — A20541)
s(s+pp)(s+pz)(s +n3)
dgd|n + agdip +a1a12 + ajpdg
(S+u1)(S+H2)(S+M3)

(3-49)

In order to find the values of Ap,; and Ap,, in real space, inverse Laplace

transform of Equations J-48 and J-49 are obtained as follows:

_VYpnetl -1 52+ (a1 +ay1)s + a1a1; — azag

Ap, =L_1{A7’71}— X1 {(s+0)(s+u1)(s+}12)(s+“3)}

Wpnet2 -1 ags +ajay +aszas
K2 (s+0)(s+pp ) (s +pp)(s +p3)
+agL”! 4 } 3-50
8 {(sm)(“m)(sw (-39

+a13f1{(s+o)(s+u1)(ls+uz)(s+u3)}
+agy L {(s ) (s +1u2)(s + Ms)}

1| — Wp netl ,—1 aips +ajayg + asdag
Ap,y =LV Ap,ot=—L" T { }
2 { rz} K1 (s +0)(s +p1)(s +po )(s +p3)

N Wp,net2 _1{ 52 + (@) +ag)s + ajag — ayas }

K2 (5 +0)(s +p1) (s +po)(s +n3)

+a12L_1{(s+u1)(S +suz)(s+u3)} o
+ alsL—l{(s 10)(s+ M)(ls + 1y )(s +H3)} |
+ a6l {(S )G +1u2)(s + u3)}
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where

a3 = apagdy +ajazagp +agasay) +aqa7a9 + asasdip —asagdg
ajg = agdp| +aqagp +ajag +agds (J-52)
ay5 = a1aed)2 T ayagayg + axdgdg +a4asajg +asaedy — drasay)

a1 = ded12 T agajp T a1d1 +a4a9

s +(ay +ayp)s +ajay| - asa
Inverse Laplace transform of the term of ( 1 ”) 711 7379

in
(s +0)(s+p)(s +p2)(s +p3)
Equation J-50 is obtained by separation of the terms as follows:
S + (al +a I)S + ajay; —azdg Bl B2 B3 B4 (J-53)
(+0)(+m)G+)l+3) (5+0) (s+uy) (+p) (5+13)
2
B, =Iim (S+0 S+ (al +a11)s+a1a11 —das3dg  ajay] —dasdg (J-54)
: 50 ) (s+0)(s+m)(s+pa)(s+p3)  mipoms
B, = lim (S+},L )52+(a1+a11)s+a1a11—a3a9
2= B L 0) G )G+ ) e b) 055
- ~ (a1 +a11)uy +ayay; — azag
Hl(}J‘Z _”1)(}13 —“1)
B — lim B S+ )S +(a1+a11)s+a1a11—a3a9
= O o)) ) ) s
_ _u% ~ (a1 +a11)pp + @141 — a3a9
oy —po Mus —pa)
B, = lim (S+}J. )s2+(a1+a11)s+a1a11—a3a9
4 = -
oo O )G )6 e a) ) o

2
W3- (al +9 1)M3 +a1911 —a3dy

B3 (uy — 3 )us —n3)
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L_] S2 +(a1 +a11)s+a1a11 —dasdg =L_1{ B] Bz B3
(s+0)(s +p)(s +p2)(s +p3)

L_I{ﬁ} =exp(-pz 1), L_l{@}@} = exp(-p3 1)

Using Equation J-59 in Equation J-58 gives

2
L—l M) +(al+a11)s+a1a11_a3a9 _3 5 3 t
{(s+0)(5+}11)(s+u2)(s+p3) 1 + By exp(—py 1)

+ By exp(—py 1)+ By exp(-p3 1)

a7s +aja; +aza
Inverse Laplace transform of the term of i Ll =

(s+0)(s + g )(s +p2)(s +p3)

J-50 is obtained by separation of the terms as follows:

a7s + ajag + azas _ G . Cy A Cy h Cy
(s+0)(s+m)s+p)ls+ps) (540) (s+pi) (s+m2) (s+n3)

arzs + aar +azas _ aaqy +azas
(s+0)(s+up)(s+ua)(s+p3)  mmoms

Cl = Zims_>0 (S + 0)

arzs + ajay + azas
)(S + Ml)(s + Mz)(s +M3)

Cy =limg_,_, (s+u1)(s+0

_ T a7 +ajay +azas
pr (o =g s — )

azs +ayaq +azas

Cs3 =lims—>—uz (S+“2)(s+0)(s+u1)(S+H2)(s+”‘3)

- ajily +ayay + azas
uz(m —H2Xu3 —Mz)
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(s+0) (s+p1) (s+m) (s+ns)

S ) T e T (e R o)

(J-58)

(J-59)

(J-60)

in Equation

(J-61)

(J-62)

(3-63)

(J-64)



ars + a\aq +azas
)(S +M1)(S + Hz)(s +H3)

Cy= lims—)-p.3 (S + “3)(s +0

(J-65)
—a7l3 +ajay +azas

sy ~ns Yo —p3)

-1 azs +aja; +asa ) C N C N C N C
L {(s+o>(3+m§(3+u§)(5s+u3)}‘L {(sio) i) Grm) (s+13)}

(J-66)
Substituting Equation J-59 into Equation J-66 gives
-1 azs +ajay +aszds }
L =C1+Cy exp(-py 1)
{(S+0)(S+u1)(S+uz)(S+u3) (J-67)

+Cy expl(=py 1)+ Cy exp(~ps 1)

(s +u1)(s +p2)(s +u3)

and J-51 is obtained by separation of the terms as follows:

Inverse Laplace transform of the term of

in Equations J-50

R RS e o R ey iy g
S S ey e ey ey B
G S o e e ey vy B
Dy =iy, {5+ lLL3)(S +py)(s +Suz)(s ri3) (g —usp)?uz ~p3) 7D
L“l{(s ey ey o M)} ) ”l{(s ) G fi3)} o)

=D ! {m} +D, L {ﬁ} + D31 {(STlu:J}
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Substituting Equation J-59 into Equation J-72 gives

L_l{(s +H1)(S +s|.L2)(s +H3)} =D exp(— K t)"' D, exp(— K2 t)"' Dy exp(— K3 ’)

(J-73)

1
(s +0)(s+p1)(s +p2)(s +n3)

Equations J-50 and J-51 is obtained by separation of the terms as follows:

in

Inverse Laplace transform of the term of

1 __E Ey Es Eq 174
G+ +r)G )6 +hs) 6+0) Gom) Grmg) Grmg) O
E; =limg_,( (s +0) ! - (J-75)
: $20 (s+0)(s+pp)(s+pp)(s+03)  pypons
By = limy sy (s 1) ! .y 4
: (s+0)(s+p)(s+pp)ls+p3)  pyleo —py)ps — )
(J-76)
Ey=lims_,_, (s+u2) 1 = 1
’ (s+0)(s+p)ls+pa)ls+m3)  poly —po)us —po)
ad-77)
Ey =limg_, (s +ps3) ! =- L
’ (s+0)(s+py)(s+no)ls+p3)  palug —n3)us —ps3)
(3-78)

L_l{(u 0)(s +u1)(1s+u2)(s +u3)} ) L_l{(silo) e f2M1) G filz)+ (s fi”)}

=E L} {ﬁ} +Ey ! {(S%ﬁ)} +E3 L7 {@} + E4L_1{(_s:1@}

(J-79)

Substituting Equation J-59 into Equation J-79 gives

3 ! = E; + E5 exp(—
L1{(S+0)(S+u1)(S+uz)(s+u3)}_El Bz e ) 3-79)

+ Eg exp(~pp 1)+ Eg exp(-p3 1)
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1
(s+n1)(s+p2)(s +u3)

and J-51 is obtained by separation of the terms as follows:

in Equations J-50

Inverse Laplace transform of the term of

1 _ K 1) 2 1-80
Grm)Grm)rm) Grm) Gom) Grm) 080
By =limg_,_, (s+m) ! . 1 (1-81)

& (s+pp)(s+pa)ls+ps) (o —p Mg —ny)

By =lim_,_, (s+1) 1 . : (-82)
s (s+p)ls+pa)ls+ps) (g —polps —po)

Fy =limg_, y (s+p3) 1 . : (7-83)
: (S+H1)(S+M2)(S+H3) (Hl—u3)(uz—u3)
I 1 }zL—l{ B ) ! }

{(S+u1)(S+u2)(S+u3) (o) Grm) Gems) s

Substituting Equation J-59 into Equation J-84 gives

L_l{(s+u1)(s+lu2)(s+u3)}:Fl exp(—p 1)+ By exp(-p, 1)+ F3 exp(-ps31)

(J-85)
Inverse Laplace transform of the term of - 0‘)’1(21 1‘1’3‘(’;‘1 1‘3?; ™ in Equation
J-51 is obtained by separation of the terms as follows:
()] ey were e Rl ey M e M ety R e SRRECLD
Gy =lim, .o (s+0) - ayos +ajayg + ardag _ajayg + asag (-87)

0)(s+p)(s+pa)(s+n3)  mipaps
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a10s+a1a10 +a2a9

0)(s +u1) (s +p2)(s +u3)
__ ~aioly +a1a10 + a9

- Hl(uz —M1XH3 —Ml)

Gy =limg_, (s+ul)(s+
(J-88)

aips +ajagg +axag
0)(s + 1) (s +p2)(s +p3)
_ " aioH2 +a1a19 +azdg

w2 (e —pa s —12)

Gy =limg_,_, (S+H2)(s+
(J-89)

a10s+a1a10 +a2a9
0)(s +p1)(s +p2) (s +n3)
__ T a1ols3 +a1a19 +aza9

TEY(TORTEY (TPRTEY)

Gy =limg_, (S+“3)(s+
(J-90)

L_l{ aios + ajayg + Arag }=L_l{ Gl + GZ + G3 " G4 }
(s +0)(s +p1)(s+p2)(s +p3) (s+0) (s+m) (s+pz) (s+u3)

G, 1! {6%0)} G, L“{(s—:m} +G3 L_l{(s:—uz)} ’ G“L—l{(sfluﬂ}

J-91)
Substituting Equation J-59 into Equation J-91 gives
L_l ajps +ajayg + ardg }: Gy + G, exp gt
(e e e RERCE G0 @)
+Gs exp(~py 1)+ Gy exp(-ps3 1)
2
Inverse Laplace transform of the term of s+ (g + ag)s + 9% ~ 9295 14 Equation
(s +0)(s +p1)ls +12)(s +p3)
J-51 is obtained by separation of the terms as follows:
2
s +(a1+a6)s+a1a6—a2a5 _ Hl + H2 + H3 + H4 (J-93)
(s+0)(s+u)(s+pua)ls+p3) (s+0) (s+py) (s+p2) (s+p3)
2 — —-—
H1 _ lims_>0 (S + 0) ST+ (a1 +a6)s +a1ag —azas _ a|dg — anas (J-94)

(s+0)(s+p)(s+pa)(s+n3)  pypops
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S2 + (al +a6)s +a1ag — apas
(s +0)(s +py ) (s +p2) (s +13)

Hy =limg_,_y (s+m)

(J-95)
- ~ (a1 +ag)n +aya6 — aas
ppo —pg Mus —py)
2
. S +(al+a6)s+a1a6—a2a5
Hy=lim,_,_,, (s+Q
> =i, o) )6 12 )6 1) 556
_ U3 - (a) +ag)pp +aya — azas
B2 (1 — 12 Mz — o)
S2 +(a1 +a6)s+a1a6 —ajas
Hy=lim,_,_, (s+n
R C ey ey o
- 13 — (a1 +ag)us + @106 — aras
w3 —p3 Mg —ps3)
L_l s2+(a1+a6)s+a1a6—a2a5 =L_1{ H1 H2 H3 H4 }
(s +0)(s +p1)(s +p2)(s +n3) (S+0) (S+H1) (S+H2) (s +u3)

S ol A (e ST L (e

(J-98)
Substituting Equation J-59 into Equation J-98 gives
-1 S2 + (a1 +a6)s +ajdg — azas —H.+H QXP(—M f)
(s+0)s+r)ls+m)ls+pg)[ —1 2T (1-99)

+ H3 exp(—pp 1)+ Hy exp(~ps 1)

Substituting Equations J-60, J-67, J-73, J-79, and J-85 into Equation J-50, and
substituting Equations J-73, J-79, J-85, J-92, and J-99 into Equation J-51 gives
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rl

- w
Ap, ()= L {Aprl} = i’neﬂ [By + By exp(—py t)+ B exp(— py £)+ By exp(— 3 1))

w
+ =242y 4.y expl- 1)+ Ca expl—py 1)+ Cy expl(- 3 )]
r2

+ag[ Dy exp(=py 1)+ Dy exp(—py 1)+ D3 exp(—p3 1)]
+ag3[E + Ey exp(=py 1)+ E3 exp(-po )+ Ey exp(-p3 )]
+a[F exp(=py )+ Fy expl(=pa )+ Fs exp(-p 1)]

(J-100)

[ w
8020~ 17| -2 614Gy e 2 G e G i )

rl

w
+i—’nzet£[H1 + Hy exp(—py )+ Hs exp(— py £)+ Hy exp(—ps t)]
¥
+ayo[Dy exp(—py 1)+ Dy exp(—po 1)+ Dy exp(—p3 1))
+ay5[Ey + Ey exp(—py 1)+ E3 exp(— pp £)+ Eq exp(—p3 t))]
+aygFy exp(—py 1)+ Fy exp(=py t)+ F3 exp(— s )]
(J-101)

or

Wp,netl

Apy(t)= [By + By exp(~py t)+ By exp(—po 1)+ By exp(— 3 1)]

rl
+%2_[(71 +Cy exp(=py 1)+ C3 exp(= i 1)+ Cy exp(- 3 1)]
" (1-102)
+exp(—py £)|agDy + a3 Ey +ay4 i
+exp(—pp 1)lagDy + a3 E3 + a4 P,
+exp(— 3 1)[agD3 + a3 B4 + a14F3]
+ay3k

w , 1
Ap,, ()= inez [G) + Gy exp(=py 1)+ G3 exp(— iy )+ Gy exp(— 3 1)]

rl

N Wp,net2 [Hl + H2 exp(_ K f)+ H3 exp(— 1% t)+ H4 exp(— M3 t)]

Kp2
(J-103)
+exp(-py 1)|arDy +a1sE; +ai6F |

+exp(=py N)ara Dy +a1sE3 + a5 |
+exp(-p3 t)|arDs +ay5Ey + ay6F3]
+Cl]5E1

or
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W p,netl

) -
1011 —a3d9 U1 — (01 + all)ul +a1a11 —azag
HiH23 Hl(liz —m)(u:s —Hl)

2
_H2 - (al + all)uz +a1a11 —azdg

exp(—p 1)

Ap (1) = po (g — o Moz —pa)

2
b3 - (al + a11)u3 T a1911 —d349

rl

3 (us —p3 ez —n3)
a1a7 +adzads 4 Gt — 197 — a3ds
pikoky il — s -
4 2 — 4197 — a3ds
Bo g —po s —po)
4 G7l3 — a7 — asds
| sy —pap2 —n3)

e exp(-121)

K,2

exp(-p3 1)

ag Mlz — a4 By +ay3
pp (g — g s — )

+exp(—py t){—

2
ag U3 — a4 U3 + a3 + ais

IRANE )

Jetera) -

exp(—py 1)

exp(-p31)

2
ag Uy —ajg o +ag3

oy o s — o)

HiHop3

o) -

paly —ps Yo - H3)}

Appa )= "8

(J-104)

a1010 tdxa9 | ayg i1 —a1a19 —dadg
Hikoks M1 (Hz -Hl)(u3 —Hl)
aig K2 —a14919 —4a249

exp(-p 1)

exp(-n2 1)

rl

Wy net2
+—2

o — o) — o)

dio U3 —ajd10 — 929
B3 (g — s Mua —p3)

2
106 — a5 Uy — (o + as)ul T 3196 — az45

+ exp(-p31)

exp(—ypy 1)

HiHoH3 oo —po s —py)

2
K- (a + ag )y +ayg — axas

Kp2

+expl-p 1)

+exp(-ps

exp(-p 1)

IEY (TPRSTPY (TERITPY

_ 13 — (a1 +ag)us + ayag — ayas
w3 (us — B3 Muz —ns3)

}exp(-uz r){-

exp(—pst)

2
a;p U —a16 Mg +ags

a1 H% — a6 + a5
K2 (P-l —Hz)(u3 —Hz)

b s - )

ais
HikaoH3

_a12 H% —d16H3 T d15
| Ra (g~ s —p3)

el

t

(J-105)
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The shallow and deep reservoirs pressures as a function of production time are

obtained by using Equations J-104 and J-105 as below.

r -

a1 —a3dg ut — (@ + a1 )w +a@ary - aza exp(—py £)
T pp (o — oy Mg —ny)
Wponetl | b3 - (a1 +a11)ug +aay) —azag exp(—py 1)
Kl ma (i —pa Motz — )

2
M3 - (al +a11)u3 +a1a11 —a3q9

u:s(}ll —Ms)ﬂlz —H3)
ayay +asds Al —ajd7 —asds |
+ exp(—pg ¢
wipops  py(uo —py Mus — ) )
Wpnet2 | a7ly —a1a7 — asas
+ + exp(—u !
K2 Mz(}ll—uzx}w—uz) 2 )

pri(0)= Dy - Arlin — -

4 Gk3 —a1a7 — a3ds exp(—ps t
| pa(pg —psMeo —p3) Cus) |
ag le —a14 B + a3
wp(o —py Mps —pg)

exp(-p31)

+exp(-py f){—

i 2
agz — a4 lg +ay3
+exp—p, ) —
) uz(m—uz)(us-uz)}
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