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QUANTUM MECHANICAL SYSTEMS WITH NONCOMMUTATIVE PHASE
SPACE VARIABLES

SUMMARY

The generalization of quantum mechanics involving noncommutative space-time
is originally introduced by Snyder. A few decades later Connes studied Yang Mills
theories in noncommutative space. Applications of noncommutative theories
can be found in condensed matter physics, for instance quantum Hall e�ect or
Landau problem. It was found that a noncommutative geometry lies under the
semiclassical dynamics of electrons in semiconductors. Moreover noncommutative
geometry can be seen in the physics of spinning particles. Foldy-Wouthuysen
transformation of the Dirac equation changes the position operator, adding a
spin-orbit contribution which turns out to be a Berry gauge potential, making
the coordinates noncommuting. In classical physics the dynamics of particles are
studied with the help of Poisson brackets and the passage to analogue quantum
mechanical system is a well known procedure called canonical quantization.
All dynamical variables of the system turns to be quantum operators and
Poisson brackets to quantum commutators. In his work Wigner studied quantum
mechanics as a statistical theory and used classical functions those are derived
from quantum mechanical analogues. Weyl, Moyal, Groenewold also studied
in this area. WWGM introduces an alternative approach to study quantum
mechanical systems. In this type of quantization one uses the symbols of operators
which are classical functions and change the ordinary product with star product.
The way back to quantum phase space can be taken with associative operator
ordering. In this work, with the help of the �rst order lagrangian and the gauge
�elds we studied on quantum mechanical systems with the symbols of operators
and star product. De�nition of canonical momenta leads to some constraints so
we deal with a constrained hamiltonian system. We study spin dynamics, our
observables turn to be matrices whose elements are classical functions. In order
to explain spin dynamics Day� expand the Moyal bracket up to h̄ order. It is this
semiclassical approach and the existence of second class constraints those lead us
to use semiclassical Dirac brackets in order to explain the dynamics of observables.
In this approach the coordinates become noncommuting. We deformed the space
with the parameter θ and in this deformed space we studied Hall e�ect. Then
we studied spin Hall e�ect with two di�erent type of formulations.

vi



UYUŞUMLU OLMAYAN FAZ UZAYI DEĞİŞKENLERİ İLE KUANTUM
MEKANİKSEL SİSTEMLER

ÖZET

�çerisinde uyu³umlu olmayan uzay-zaman koordinatlar�n� bar�nd�rarak kuantum
mekani§inin geni³letilmesi ilk olarak Snyder taraf�ndan gerçekle³tirilmi³tir. Y�llar
sonra Connes Yang-Mills teorilerini uyu³umlu olmayan uzayda incelemi³tir.
Uyu³umsuz teorilerin uygulamalar� yo§un madde �zi§inde örne§in kuantum
Hall etkisinde veya Landau probleminde görülebilir. Yar�iletkenlerde de
elektronlar�n yar�klasik dinami§inin alt�nda yatan uyu³umlu olmayan bir geometri
bulunmu³tur. Dahas� uyu³umsuz bir geometri parçac�klar�n spinleri göz
önüne al�nd�§�nda da ortaya ç�kmaktad�r. Dirac denklemine Foldy-Wouthuysen
dönü³ümü yap�ld�§�nda konum operatörüne asl�nda Berry ayar potansiyeli olan
bir spin-yörünge etkile³im terimi gelmekte ve bu terim koordinatlar� uyu³umsuz
hale çevirmektedir. Klasik �zikte parçac�klar�n dinami§i Poisson parantezleri
yard�m� ile ifade edilebilmekte ve benzeri kuantum mekaniksel sisteme geçi³
yapmak amac� ile kanonik kuantizasyon yöntemi uygulanmaktad�r. Bu yöntemle
sistemin tüm dinamik de§i³kenleri kuantum i³lemcilerine ve Poisson parantezleri
de kuantum komütatörlerine dönü³mektedir. Wigner çal�³mas�nda kuantum
mekani§ini istatistiksel bir kuram olarak ele alm�³ ve kuantum i³lemcilerden
benzeri klasik fonksiyonlar türetmi³tir. Weyl, Moyal, Groenewold de bu alanda
çal�³malar yapm�³lard�r. WWGM kuantum mekaniksel sistemleri incelemek için
farkl� bir yol önermi³lerdir. Bu tip kuantizasyonda herbiri klasik birer fonksiyon
olan i³lemci sembolleri kullan�lmakta ve bu sembollerin çarp�mlar� y�ld�z çarp�m�
ile tan�mlanmaktad�r. Kuantum mekniksel faz uzay�na dönü³ ise asosiyatif
i³lemci s�ralamas� ile mümkündür. Bu çal�³mada, birinci mertebe lagrange
fonksiyoneli ve içerisinde ayar alanlar� kullan�larak kuantum mekaniksel sistemler
üzerine çal�³�lm�³ ve cebir i³lemci sembolleri ve y�ld�z çarp�m� ile verilmi³tir.
Kanonik momentumun tan�m� sistemin ba§lar�na i³aret etmi³ ve esas�nda ba§l�
bir Hamilton sistemi ile u§ra³�ld�§� anla³�lm�³t�r. Sistemin spin dinami§i
incelendi§inden gözlemlenebilirlerin her biri elemanlar� klasik fonksiyonlar olan
matrisler haline gelmi³lerdir. Spin dinami§ini ele alabilmek için Day� Moyal
parantezlerini h̄ mertebesine kadar açm�³t�. Bu yar�klasik yakla³�kl�k ve sistemin
sahip oldu§u ikincil ba§lar sebebi ile spin dinami§ini aç�klayabilmek ad�na
yar�klasik Dirac parantezleri tan�mlanm�³t�r. Böylelikle koordinatlar uyu³umsuz
hale gelmi³lerdir. θ paratmetresi ile uzay deforme edilerek Hall etkisi ve iki farkl�
formülasyonu ile spin Hall etkisi tart�³�lm�³t�r.

vii



1. INTRODUCTION

The idea that the space-time coordinates may not be commuting was originally
introduced by Snyder [1]. Later, this idea becomes popular when Connes
[2] analyzed Yang-Mills theories on noncommutative space. Applications of
noncommutative theories can be found in condensed matter physics, for instance
in quantum Hall e�ect and the Landau problem. Also, a noncommutative
geometry underlies the algebraic structure of all known spinning particles. Berard
and Mohrbach [3] showed that in the Foldy Wouthuysen representation of the
Dirac equation, the position operator acquires a spin-orbit contribution which
turns out to be a gauge potential (Berry connection), making the algebra
noncommutative.
Usual probabilistic interpretation of quantum mechanics contrasts with the
deterministic structure of classical mechanics. However, there are attempts
to interpret quantum mechanics as a statistical theory on the classical phase
space. Wigner [4] studied on the quantum corrections to the statistical physics.
The expectation values of classical observables can be found via classical-like
phase space distribution functions. A well known fact is it is not possible
to know the position and the momentum of a quantum mechanical particle
simultaneously. Unlike classical case, there is no such a simple distribution
function in quantum mechanics. Wigner o�ered a quasiprobability distribution
function called Wigner function which can be used to calculate the averages of
quantum mechanical observables in a way very similar to classical mechanics.
Together with the Weyl correspondence rule and the Moyal bracket the dynamics
of quantum mechanics can be given in terms of classical functions. Moyal bracket
corresponds to the quantum commutator of quantum mechanics. Essential
aspects of quantum mechanics can be given in a classical formulation using the
Moyal brackets. This process is called as WWGM method of quantization, makes
it probable to calculate quantum mechanical relations with c-number functions

1



and distributions on classical phase space with deformed products and space.
WWGM quantization (deformation quantization) corresponds to the canonical
quantization with symbol maps and star product. Operators are mapped by
symbol maps into c-number functions however their composition is given by star
product which is noncommutative but associative.
WWGM method works well for observables possessing a classical limit. However,
it is not clear how to deal with spin degrees of freedom. In order to embrace spin,
Day� [5] make a semiclassical expansion of Moyal bracket up to h̄ and observables
turn into matrices whose elements are c-number functions. Time evolution
of matrix valued observables are then described in terms of this semiclassical
bracket. We began with a semiclassical hamiltonian system that has second class
constraints. We used semiclassical Dirac brackets in order to describe our system
completely. We studied Hall e�ect and Spin Hall e�ect with both the deformation
of Drude type formulation [6] and deformation of extension of Hall e�ect that was
introduced by Dayi [5]
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2. WWGM METHOD OF QUANTIZATION

2.1 Hamilton’s Formalism and Canonical Quantization

Equations of motion for a physical system can be obtained with the lagrangian
of that system. Lagrangian is de�ned in terms of generalized coordinates and
generalized velocities.

L = L(q, q̇) (2.1)

The mathematical passage from one set of independent variables to another is
called Legendre's transformation. The total di�erential of the lagrangian is,

dL = ∑
i

∂L
∂qi

dqi +∑
i

∂L
∂ q̇i

dq̇i (2.2)

by de�nition ∂L/∂ q̇i is generalized momentum pi and ∂L/∂qi is ṗi. So equation
(2.2) can be written as,

dL = ∑
i

ṗidqi +∑
i

pidq̇i (2.3)

one can easily obtain from the above equation:

d(∑
i

piq̇i−L) = ∑
i

q̇id pi−∑
i

ṗidqi (2.4)

The term ∑i piq̇i − L is called the Hamilton's function or hamiltonian of the
system. So the total di�erential of the Hamilton's function can be written as:

dH = ∑
i

q̇id pi−∑
i

ṗidqi (2.5)

Here the independent variables are coordinates and momenta those having
equations of motion as,

q̇i =
∂H
∂ pi

, ṗi =−∂H
∂qi

(2.6)

The equations (2.6) are called Hamilton's equations.
Let an arbitrary function f = f (q, p, t), the total time derivative of this function
is;

d f
dt

=
∂ f
∂ t

+∑
i

(
∂ f
∂qi

q̇i +
∂ f
∂ pi

ṗi

)
(2.7)
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Using (2.6) we can simplify the above expression;

d f
dt

=
∂ f
∂ t

+{ f ,H} (2.8)

{,} is called the Poisson bracket and de�ned as

{ f ,g}= ∑
i

(
∂ f
∂qi

∂g
∂ pi

− ∂ f
∂ pi

∂g
∂qi

)
(2.9)

If arbitrary function f is not depend explicitly on time, the total derivative �nally
turns to be;

d f
dt

= { f ,H} (2.10)

so the time derivatives of canonical variables are de�ned as follows:

ṗi = {pi,H}=−∂H
∂qi

, q̇i = {qi,H}=
∂H
∂ pi

(2.11)

and the Poisson algebra is the Poisson brackets of coordinates and momenta:

{qi,q j}= 0 (2.12)

{qi, p j}= δi j (2.13)

{pi, p j}= 0 (2.14)

Various quantum mechanical relations can be obtained from the corresponding
classical ones just by replacing Poisson brackets by commutators and classical
canonical variables by quantum operators. So in the case of classical functions
f (q, p) and g(q, p) one can quantize the system de�ning analogue quantum
operators f̂ (q̂, p̂) and ĝ(q̂, p̂) and following the rule,

{ f (q, p),g(q, p)}→ −i
h̄

[ f̂ (q̂, p̂), ĝ(q̂, p̂)] (2.15)

[, ] is quantum commutator. The process described in (2.15) is called as canonical
quantization. Poisson algebra de�ned in (2.12), (2.13) and (2.14) turns to be
Heisenberg algebra which is expressed in terms of quantum mechanical operators:

[q̂i, q̂ j] = 0 (2.16)

[q̂i, p̂ j] = ihδi j (2.17)

[p̂i, p̂ j] = 0 (2.18)
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2.2 Quantum Mechanics in Terms of Classical Phase Space Elements

Heisenberg's uncertainty principle lies in the heart of quantum mechanics. A
quantum mechanical particle does not have a well de�ned position q and
momentum p; that makes the phase space of quantum mechanics problematic.
One can not de�ne a true phase space distribution function for a quantum
mechanical particle. However, there are quasiprobability distribution functions
and with the help of these distribution functions quantum mechanical averages
can be expressed in a similar way of classical averages.
Consider the average of an arbitrary observable A(q, p) of a classical particle in
one dimension which has q and p as its coordinate and conjugate momentum
respectively, in its phase space.

〈A(q, p)〉cl =
∫ +∞

−∞
dq

∫ +∞

−∞
d pA(q, p)Pcl(q, p) (2.19)

In equation (2.19) Pcl is the distribution function of our classical particle over the
classical phase space. On the other hand, the expectation value of an arbitrary
observable of a quantum mechanical particle can be written in terms of its density
matrix ρ̂ ,

〈Â(q̂, p̂)〉qm = Tr(Âρ̂) (2.20)

here Tr is the trace operator.
The use of the quasiprobability distribution function PQ gives rise to the
expression of the quantum mechanical averages in terms of classical functions:

〈Â(q̂, p̂)〉qm =
∫ +∞

−∞
dq

∫ +∞

−∞
d pA(q, p)PQ(q, p) (2.21)

In (2.21) classical function A(q, p) can be derived from the operator Â(q̂, p̂) by a
well de�ned correspondence rule. With the quasiprobability distribution PQ and
this correspondence rule one can get the quantum mechanical results in a form
which resemble classical ones.
First of these quasiprobability functions is introduced by Wigner [4] in order to
study quantum mechanical corrections to classical statistical mechanics and it is
known as Wigner distribution. In this case quasiprobability distribution function
PQ turns into Pw and then the correspondence rule between the function A(q, p)

and the operator Â(q̂, p̂) is proposed by Weyl [7]. Wigner's distribution function
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gives the same expectation value for every function of coordinates q and momenta
p or the expectation value of their products as does the corresponding operators
those proposed by Weyl.

2.2.1 Wigner Distribution

In 1932 Wigner proposed the distribution function,

Pw(q, p) =
1

π h̄

∫ +∞

−∞
dy〈q− y|ρ̂ |q+ y〉e 2ipy

h̄ (2.22)

for a quantum mechanical system which is in mixed state and represented by
a density matrix ρ̂ . Here, we must mention that this expression is constructed
over two dimensional phase space that has independent variables as q and p.
Extension to n- dimensional case can be done via considering the scalar product
of ~y and ~p and calculating the integral with respect to d~y and replacing π h̄ with
(π h̄)n. It must be mentioned that this particular choice of distribution function
is not unique.
Consider two quasiprobability distributions Pψ and Pφ corresponding to the states
ψ(q) and φ(q) respectively. These distributions have the property below:

2π h̄
∫

dq
∫

d pPψ(q, p)Pφ (q, p) =
∣∣∣∣
∫

dqψ∗(q)φ(q)
∣∣∣∣
2

(2.23)

If ψ(q) and φ(q) are equal then,
∫

dq
∫

d p[Pψ(q, p)]2 =
1

2π h̄
(2.24)

if one chooses states ψ(q) and φ(q) such that they are orthogonal, he or she
comes to a solution, ∫

dq
∫

d pPψ(q, p)Pφ (q, p) = 0 (2.25)

that means (2.22) is not a true probability distribution function as it can not be
positive everywhere. Such a distribution also satis�es the properties:

∫
d pP(q, p) = |ψ(q)|2 = 〈q|ρ̂ |q〉 (2.26)

∫
dqP(q, p) = |ψ(p)|2 = 〈p|ρ̂|p〉 (2.27)

∫
d p

∫
dqP(q, p) = Tr(ρ̂) = 1 (2.28)
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The classical function A(q, p) corresponding to the quantum mechanical operator
Â(q̂, p̂) is de�ned as,

A(q, p) =
∫ +∞

−∞
dze

ipz
h̄ 〈q− 1

2
z|Â|q+

1
2

z〉 (2.29)

so that, ∫ +∞

−∞
dq

∫ +∞

−∞
d pA(q, p) = 2π h̄Tr(Â) (2.30)

The trace operation of the product of two operators namely Â(q̂, p̂) and B̂(q̂, p̂)

is, ∫ +∞

−∞
dq

∫ +∞

−∞
d pA(q, p)B(q, p) = 2π h̄Tr(ÂB̂) (2.31)

and using the above equation one can choose B̂ = ρ̂ and reaches the expectation
value of a quantum mechanical observable in terms of its function correspondence:

∫ +∞

−∞
dq

∫ +∞

−∞
d pA(q, p)Pw(q, p) = Tr(ρ̂Â) = 〈Â〉qm (2.32)

2.2.2 Operator Ordering

Equation (2.29) says beginning with a quantum mechanical operator how one can
obtain a classical correspondence of that operator. If one has a classical function
of q and p, he or she can obtain the quantum mechanical operator via associated
operator ordering.
Consider a quantum mechanical operator Â(q̂, p̂) and related classical function
A(q, p) and the state ket of the system |ψ〉; then,

〈ψ|Â|ψ〉=
∫ +∞

−∞
dq

∫ +∞

−∞
d pPw(q, p)A(q, p) (2.33)

In order to prove (2.33) one needs to have the Fourier expansion of the classical
function A(q, p) and quantum mechanical operator Â(q̂, p̂);

A(q, p) =
∫ +∞

−∞
dσ

∫ +∞

−∞
dτα(σ ,τ)ei(σq+τ p) (2.34)

Â(q̂, p̂) =
∫ +∞

−∞
dσ

∫ +∞

−∞
dτα(σ ,τ)ei(σ̂q+τ̂ p) (2.35)

by replacing (2.34) and (2.35) into (2.33), the validity of (2.33) can be seen as
follows:

〈ψ |exp{i(σ q̂+ τ p̂)}|ψ〉=
∫

dq
∫

d pPw(q, p)exp{i(σq+ τ p)} (2.36)
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After the integration over p, right hand side becomes,
∫

dqψ∗(q− 1
2

τ)ψ(q+
1
2

τ)eiσq (2.37)

in order to evaluate the left hand side Baker-Hausdor� formula is used,

eÂ+B̂ = eÂ + eB̂ + e−[Â,B̂]/2 (2.38)

and that leads to,
ei(σ q̂+τ p̂) = eiσ q̂eiτ p̂eiστ/2 (2.39)

then using the fact,
eiτ p̂|ψ(x)〉= |ψ(x+ τ)〉 (2.40)

one can obtain the relation;

eiστ/2〈e−iσxψ(x)|ψ(x+ τ)〉=
∫

dxei(σx+στ/2)ψ∗(x)ψ(x+ τ) (2.41)

and with a change of variable x = q−1/2τ the proof of (2.33) is complete.
In summary a classical function

A(q, p) =
∫ +∞

−∞
dσ

∫ +∞

−∞
dτα(σ ,τ)ei(σq+τ p) (2.42)

corresponds to a quantum mechanical operator

Â(q̂, p̂) =
∫ +∞

−∞
dσ

∫ +∞

−∞
dτα(σ ,τ)ei(σ̂q+τ̂ p) (2.43)

and the relation between them is given by (2.29).
Passage from classical phase space to quantum mechanics requires Weyl
correspondence. According to Bayen and Flato [8] this type of passage is a
deformation of classical Poisson manifold and there is only one formal function of
the Poisson bracket ( up to a constant factor and a linear change of variable ) that
generates a formal deformation of the associative algebra by the usual product:
it is the exponential function. Let A and B are classical functions that are derived
from the operators Â and B̂ respectively. The algebra of the deformed manifold
is de�ned in terms of star product (?) and Moyal bracket,

[A,B]? = Ae(ih̄/2)∆B (2.44)

where h̄ is the deformation parameter.
According to [9], the expression of the Weyl correspondence of the operator F̂ =

8



ÂB̂ in terms of Weyl correspondences of Â and B̂ those are A and B respectively,
is;

ÂB̂ = F̂ → F(q, p) = A(q, p)e(h̄λ/2i)B(q, p) (2.45)

where
λ =

−→
∂

∂ p

←−
∂

∂q
−
−→
∂
∂q

←−
∂

∂q
(2.46)

So let the classical functions to be q and p and the quantum operators correspond
to them q̂ and p̂ respectively. Taking the arbitrary powers of these classical
functions operator ordering W maps them to the following quantum mechanical
operators:

qm pn →W (qm pn) =
1
2n

n

∑
k=0

(
n
k

)
p̂n−kq̂m p̂k (2.47)

By following this rule one sums over all the permutations of q and p having an
hermitean operator. Above rule can be restated as,

W (qm pn) =
[

exp
[
−1

2
ih̄(

∂ 2

∂ p∂q
)
]

qm pn
]

q→q̂,p→ p̂
(2.48)

Taking care of all permutations of canonical variables this way is also called as
symmetric ordering.

2.3 WWGM Method of Quantization and Star Product

Dynamics of classical observables is described in terms of classical phase space
elements and with the help of Poisson brackets (2.9). When one wants to
observe the quantum mechanical analogue of the system, he or she may recall
the canonical quantization method (2.15) and uses quantum operators and
commutators. However there is an alternative way to study the quantum
dynamics of the system without using the quantum mechanical phase space.
WWGM proposes us to use the symbols of operators those are the classical
correspondences proposed by Weyl instead of themselves. Product between the
symbols of operators is called the star product. For a quantum mechanical
operator f̂ (x̂, p̂) symbol map e�ects and carries this operator to the set of
c-number functions as follows:

S( f̂ (x̂, p̂)) = f (x, p) (2.49)
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Here f (x, p) is the classical correspondence of the operator f̂ (x̂, p̂). The quantum
mechanical product of observables f̂ and ĝ is,

f̂ (x̂, p̂)ĝ(x̂, p̂) = ĥ(x̂, p̂) (2.50)

With the usage of symbol map the operator product is de�ned in terms of classical
phase space elements and star product. Star product satis�es the below property.

S
(

f̂ (x̂, p̂)ĝ(x̂, p̂)
)

= S
(
ĥ(x̂, p̂)

)
= S

(
f̂ (x̂, p̂)

)
?S (ĝ(x̂, p̂)) (2.51)

Star product is associative and de�ned in terms of coordinates xµ and momenta
pµ as

? = exp

[
ih̄
2

( ←−
∂

∂xµ

−→
∂

∂ pµ
−
←−
∂

∂ pµ

−→
∂

∂xµ

)]
(2.52)

Above equation is Einstein's convention adopted and this convention will be used
in the remaining.
In WWGM formalism Moyal bracket corresponds to the quantum commutator:

[ f (x, p),g(x, p)]? = f (x, p)?g(x, p)−g(x, p)? f (x, p) (2.53)

The Moyal bracket of coordinates and momenta is as follows:

[xµ , pν ]? = ih̄δ µ
ν (2.54)

Classical limit of the Moyal bracket is the Poisson bracket:

lim
h̄→0

−i
h̄

[ f (x, p),g(x, p)]? = { f (x, p),g(x, p)} ≡ ∂ f
∂xµ

∂g
∂ pµ

− ∂ f
∂ pµ

∂g
∂xµ (2.55)
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3. CONSTRAINED HAMILTONIAN SYSTEMS

Constrained hamiltonian systems are studied explicitly in [10]. Considered
lagrangian functional may be singular that means there is no unique solution
for the velocities in terms of canonical coordinates and momenta such that
q̇i = q̇i(q, p). Necessary and su�cient condition of an arbitrary lagrangian to
be singular is;

det
(

∂ 2L
∂ q̇i∂ q̇ j

)
= 0 (3.1)

In a singular lagrangian system there exist primary constraints satisfying the
condition,

ϕm(q, p)≈ 0 , m = 1, ...M (3.2)

The symbol �≈ 0� is called �weakly zero� and means primary constraints ϕm(q, p)

may have nonvanishing canonical Poisson brackets with some canonical variables.
In order to obtain the most general equations of motion one must replace the
canonical Hamiltonian by the e�ective one,

H̃ = He = Hc +umϕm ≈ Hc (3.3)

being um = um(q, p). New equations of motion are generated and they describe
the system truly:

q̇i = {qi, H̃} ≈ ∂Hc

∂ pi +um
∂ϕm

∂ pi (3.4)

ṗi = {pi, H̃} ≈ −∂Hc

∂qi
−um

∂ϕm

∂qi
(3.5)

In order to have consistent systems it is required that the time derivatives of the
primary constraints or linear combinations of them to be zero.

ϕ̇n = {ϕn, H̃} ≈ {ϕn,Hc}+um{ϕn,ϕm} ≈ 0 (3.6)

If (3.6) is not true two possibilities occur. First one, equation has no new
information but imposes conditions on the form of um(q, p). Secondly, it may
give a new relation between q's and p's, independent of um(q, p). These are
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so-called secondary constraints. Together with the M primary constraints, these
K constraints form an complete set of T constraints.

ϕa(q, p)≈ 0 , a = 1, ...,K +M = T (3.7)

So, e�ective Hamiltonian H̃ is a function of q's and p's with all um(q, p)s:

H̃ = H̃(q, p) (3.8)

A de�ned function R(q, p) is a �rst class quantity if it validates the below equation,

{R,ϕa} ≈ 0 , a = 1, ....,T (3.9)

otherwise it is second class;
{R,ϕa} 6≈ 0 (3.10)

for at least one ϕa.
All constraints can now be separated as �rst or second class. The set of �rst class
constraints is,

ψi(q, p)≈ 0 , i = 1, ...I (3.11)

and remaining T − I = N constraints form a set:

ϕα(q, p)≈ 0 , α = 1, ...N (3.12)

Dirac has shown that second class constraints form an N × N nonsingular,
antisymmetric matrix de�ned via Poisson brackets:

Cαβ = {ϕα ,ϕβ} (3.13)

The determinant of an odd dimensional antisymmetric matrix vanishes, so the
number of second class constraints must be even. One can rede�ne an arbitrary
dynamical observable A as A′ which has vanishing Poisson brackets with all second
class constraints,

A′ = A−{A,ϕα}C−1
αβ ϕβ (3.14)

and observe;

{A′,ϕγ} ≈ {A,ϕγ}−{A,ϕα}C−1
αβCβγ (3.15)

= {A,ϕγ}−{A,ϕγ}= 0 (3.16)
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So, the Poisson brackets of two dynamical variables A, B must be replaced by
their primed values A′ and B′:

{A,B}→ {A′,B′} (3.17)

Although A′ ≈ A, B′ ≈ B, their Poisson brackets {A′,B′} is not weakly equal to
{A,B}.
One can de�ne Dirac bracket as:

{A,B}∗ = {A,B}−{A,ϕα}C−1
αβ{ϕβ ,B} (3.18)

It can be seen that,

{A,B}∗ ≈ {A′,B′} ≈ {A′,B} ≈ {A,B′} (3.19)

Dirac brackets are used instead of Poisson brackets in order to set all the second
class constraints strongly to the zero because Dirac bracket of any dynamical
observable with a second class object vanishes:

{A,ϕγ}∗ ≈ {A,ϕγ}−{A,ϕα}C−1
αβCβγ = 0 (3.20)

Jacobi identity is,

{A,{B,C}∗}∗+{B,{C,A}∗}∗+{C,{A,B}∗}∗ ≈ 0 (3.21)

weakly satis�ed by the Dirac bracket.
E�ective Hamiltonian (3.3) can be rewritten as a �rst class one,

H̃ = H ′ = Hc−{Hc,ϕα}C−1
αβ ϕβ (3.22)

rede�ning uβ 's as:
uβ (q, p) =−{Hc,ϕα}C−1

αβ (3.23)

H̃ is the physical �rst class replacement for the canonical hamiltonian Hc, which
could have been second class. One can extract all the second class constraints
from the physical system with using Dirac brackets instead of Poisson brackets.
After the extraction of all kinds of constraints the quantization procedure can be
succeeded.
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4. A SEMICLASSICAL APPROACH

4.1 Semiclassical Brackets

We will brie�y mention the semiclassical approach that was originally introduced
in [5]. WWGM method works well for observables possessing a classical limit.
It is known that spin is an intrinsic quantum mechanical quantity and has no
classical counterpart.
Electron which is interacting with the electromagnetic �eld is described by the
Dirac hamiltonian,

α.(p− eA)+βm+ eφ (4.1)

where A and φ are called as vector potential and scalar potential respectively.
Nonrelativistic limit of Dirac hamiltonian can be obtained via Foldy-Wouthuysen
transformation of that hamiltonian as,

H = β
(

m+
(p− eA)2

2m
− p4

8m3

)
+ eφ − e

2m
βσ .p (4.2)

− ie
8m2 σ .(E)− e

4m2 σ .(E×p)− e
8m2 ∇ ·E

acquiring a new position operator naturally,

r = i∂p +
p∧σ

2Ep(Ep +m)
(4.3)

with Ep = (p2 + m2)1/2 which is noncommutative. The term e
4m2 σ .(E×p) turns

out to be spin orbit interaction term that is,

HSL =
e

4m2
1
r

∂V
∂ r

σ .L (4.4)

σ is Pauli spin matrix.
When non-relativistic limit of Dirac hamiltonian or higher spin formalisms are
considered still a symbol map can be de�ned similarly but the observables are
no more classical functions; yet they are de�ned as matrices whose elements are
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classical functions of coordinates and momenta.
Moyal bracket of two such matrices, namely Mab(x, p) and Nab(x, p), is de�ned as:

([M(x, p),N(x, p)]?)ab = Mac(x, p)?Ncb(x, p)−Nac(x, p)?Mcb(x, p) (4.5)

In order to incorporate spin degrees of freedom into classical mechanics Day�
extend the Moyal bracket semiclassically up to the two lowest order of h̄ in [5].
So although we deal with the classical phase space elements, we get terms those
depend on h̄.
The semiclassical expansion of the Moyal bracket is as follows:

{M(x, p),N(x, p)}C ≡ −i
h̄

[M,N]+
1
2
{M(x, p),N(x, p)}− 1

2
{N(x, p),M(x, p)} (4.6)

In (4.6) the �rst term is the commutator of matrices and it is not singular in the
limit h̄ → 0 because observables M(x, p), N(x, p) may depend on h̄; second and
third ones are the Poisson brackets of matrices:

{M(x, p),N(x, p)} ≡ ∂M
∂xµ

∂N
∂ pµ

− ∂ M
∂ pµ

∂N
∂xµ (4.7)

Analogue to the classical case with Poisson brackets, in this semiclassical
expansion in order to have the dynamical equations of motion one can use the
semiclassical bracket (4.6). Letting the symbol of Hamiltonian is H(x, p), time
derivative of the matrix valued semiclassical observable M(x, p) is de�ned as,

Ṁ(x, p) = {M(x, p),H(x, p)}C (4.8)
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4.2 First Order Lagrangian

Semiclassical hamiltonian dynamics are given by the usual hamiltonian methods
but replacing Poisson brackets with the semiclassical brackets (4.6).
Consider the �rst order N×N matrix lagrangian:

L = ṙα
(

1
2

I pα +ρAα(r, p)
)
− ṗα

(
1
2

Irα −ξBα(r, p)
)
−H0(r, p) (4.9)

α = 1,2, ...,n and ρ , ξ are coupling constants and they are attached to the N×N

gauge �elds A , B respectively. I is the unit matrix. Canonical momenta is
de�ned as;

Πα
r =

∂L
∂ ṙα

, Πα
p =

∂L
∂ ṗα

(4.10)

So all the variables in our system are identi�ed as canonical coordinates rα , pα

and canonical momenta Πα
r , Πα

p . However, this relations lead to two primary
constraints:

ψ1α ≡ (Πα
r −

1
2

pα)I−ρA α , (4.11)

ψ2α ≡ (Πα
p +

1
2

rα)I−ξBα (4.12)

These are the primary constraints those are to be seen in the extended
hamiltonian:

He = H0 +λ α
z ψz

α (4.13)

Here z = 1,2 and λ s are called as Lagrange multipliers. Semiclassical brackets
between the constraints are as follows:

{ψ1
α ,ψ1

β}C = ρFαβ (4.14)

{ψ1
α ,ψ2

β}C =−gαβ +Mαβ (4.15)

{ψ2
α ,ψ2

β}C = ξGαβ (4.16)

Expressions (4.14), (4.15) and (4.16) are not completely determined unless the
�elds strengths are de�ned:

Fαβ =
∂Aβ

∂ rα − ∂Aα

∂ rβ − iρ
h̄

[Aα ,Aβ ], (4.17)

Mαβ = ξ
∂Bβ

∂ rα −ρ
∂Aα

∂ pβ −
iξ ρ

h̄
[Aα ,Bβ ] (4.18)
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Gαβ =
∂Bβ

∂ pα − ∂Bα

∂ pβ − iξ
h̄

[Bα ,Bβ ], (4.19)

Since the semiclassical brackets of the constraints do not vanish, they are
all so-called second class constraints. These constraints form the matrix Cαβ

mentioned in (3.13).
Czz′

αβ = {ψz
α ,ψz′

β }C (4.20)

N×N matrix Cαβ and its inverse satis�es the equation:

Czz′′
αγ C−1γβ

z′z′′ = δ β
α δ z

z′ (4.21)

Preserving second class constraints in time,

{ψz
α ,He}C ≈ 0 (4.22)

leads us to solve the λ s as follows:

λ α
z =−{ψz′

β ,H0}CC−1αβ
zz′ (4.23)

In order to set all the second class constraints (4.11) and (4.12) e�ectively equal
to zero a semiclassical Dirac bracket is introduced:

{M,N}CD ≡ {M,N}C−{M,ψz}CC−1
zz′ {ψz′,N}C (4.24)

Coordinates (rα , pα) satisfy the semiclassical Dirac brackets;

{rα ,rβ}CD = C−1αβ
11 , (4.25)

{rα , pβ}CD = C−1αβ
12 , (4.26)

{pα , pβ}CD = C−1αβ
22 , (4.27)

thus once after de�ning the semiclassical Dirac brackets (4.25), (4.26) and (4.27)
and e�ectively eliminating the constraints (4.11) and (4.12), rα and pα should be
considered as coordinates and the corresponding momenta, respectively.
Equation of motion for a given observable O(r, p) is de�ned with the extended
hamiltonian He:

Ȯ(r, p) = {O(r, p),He}C (4.28)

17



4.3 Equations of Motion

The semiclassical dynamics of spinning particles those are de�ned with the �rst
order lagrangian (4.9) in terms of gauge �elds Aα , Bα are to be considered.
Using (4.28) and (4.23) the time derivatives of rα and pα is stated as:

ṙα =
(

∂H0

∂ rβ −
iρ
h̄

[Aβ ,H0]
)

C−1αβ
11 +

(
∂H0

∂ pβ −
iξ
h̄

[Bβ ,H0]
)

C−1αβ
12 (4.29)

ṗα =
(

∂H0

∂ rβ −
iρ
h̄

[Aβ ,H0]
)

C−1αβ
21 +

(
∂H0

∂ pβ −
iξ
h̄

[Bβ ,H0]
)

C−1αβ
22 (4.30)

The matrix Czz′
αβ is de�ned as,

Czz′
αβ =

(
ρFαβ −gαβ +Mαβ

gαβ −Mβα ξGαβ

)
(4.31)

Inverse of (4.31) can be calculated up to the �rst order in h̄:

C−1
11αβ = ξGαβ −ξ (MG )αβ +ξ (MG )βα −ρξ 2(G FG )αβ + ... (4.32)

C−1
12αβ = gαβ +Mβα −ρξ (G F )αβ − (MM )αβ + ... (4.33)

C−1
21αβ =−gαβ −Mαβ +ρξ (FG )αβ +(MM )αβ + ... (4.34)

C−1
22αβ = ρFαβ −ρ(MF )αβ +ρ(MF )βα −ρ2ξ (FG F )αβ + ... (4.35)
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5. QUANTUM MECHANICS IN NONCOMMUTATIVE COORDINATES

Deformation quantization, known as Weyl-Wigner-Groenewold-Moyal method of
quantization is although developed as an alternative to the operator quantization
became one of the main approaches of incorporating noncommutative coordinates
into quantum mechanics. Having established a star product of coordinates in
terms of deformation parameter θ ,

?≡ exp
iθ
2

(
←−
∂
∂x

−→
∂
∂y
−
←−
∂
∂y

−→
∂
∂x

) (5.1)

in a two dimensional xy plane one can employ the deformed hamiltonian in
order to de�ne the energy eigenvalue problem. The commutation relation of
the coordinates via this star product is de�ned as,

[x,y]? = x? y− y? x = iθ (5.2)

which implies a Heisenberg relation

∆x.∆y∼ θ (5.3)

that is completely consistent with the standard rules of quantum mechanics. In
quantum phase space given by (x̂µ , p̂µ) this procedure is equivalent to shift the
coordinates in the related hamiltonian as,

x̂µ → x̂µ − 1
2h̄

θεµν p̂ν = x̂′ (5.4)

New shifted coordinates satisfy the relation (5.2):

[x̂′, ŷ′] = iθ (5.5)

Noncommutativity parameter θ and the noncommutative algebra de�ned in (5.2)
arises in the theory as a postulate. However when gauge �elds are present in the
theory this procedure depends explicitly on the chosen gauge. Moreover, it is
not suitable to envisage Dirac particles in noncommutative coordinates. Hence,
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it is desirable to establish a systematic method of introducing noncommutative
coordinates which does not depend on a particular gauge as well as embraces spin
dependent systems. Day� [5] presented a general formulation of spin dependent
dynamics as a semiclassical hamiltonian system.
We will study Hall e�ect in noncommutative coordinates using the recipe that
has mentioned in chapter four. Then, we will consider two simple models of spin
Hall e�ect. First one is the extension of Drude model and the second one is the
generalization of Hall e�ect.
We must mention that in the following sections we will study in �at Euclidean
space so metric tensor gαβ turns into Kronecker delta δi j being i, j=1,2,3.

5.1 Hall Effect in Noncommutative Coordinates and θ Deformation

Electrons moving in a thin slab in the presence of an external magnetic �eld that
is perpendicular to the plane will experience Lorentz force. Hence they will be
pushed on a side of the slab producing a potential di�erence between the two
sides. This is known the Hall e�ect. If one applies electric �eld that will balance
the potential di�erence, electrons move without de�ection. This approach gives
a simple derivation of Hall conductivity [5].
We would derive Hall conductivity in noncommuting coordinates. To do this let
us take the H0 as ,

H0 =
p2

1 + p2
2

2m
+V (r) (5.6)

with m is the electron mass and e is the charge of electron.
Scalar potential V (r) in the hamiltonian is given in terms of electric �eld
components Ei with i is 1,2 as:

V (r) =−e.E · r (5.7)

Consider the coupling constant ξ is equal to θ and the gauge �eld Bi is linear in
pi such that it forms the curvature εi j which is antisymmetric in two dimensions.

Gi j = εi j (5.8)

In order to have such a curvature, one can have the gauge �eld B as;

B = (−p2,0,0) (5.9)
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or;
Bi =−εi j

p j

2
(5.10)

although its speci�c form is not needed. Considering an electron that is moving
on r1r2 plane, we let the uniform magnetic �eld B is in the r3 direction. We choose
the gauge �eld Ai such that its �eld strength Fi j takes the form:

Fi j = Bεi j (5.11)

The coupling constant ρ = e/c in the �rst order lagrangian (4.9). Keeping the
terms �rst order in θ and eB/c equations (4.25), (4.26) and (4.27) are rewritten
as

{ri,r j}CD = θεi j, (5.12)

{ri, p j}CD = (1+
e
c

θB)δi j, (5.13)

{pi, p j}CD =
eB
c

εi j (5.14)

Wee see that the existence of the curvature Gi j together with the
noncommutativity parameter θ causes the semiclassical Dirac brackets of
coordinates (5.12) not to be vanished.
Also, it can be seen from (5.14) that in this formalism pi acts as kinematic
momenta. Although we have not deformed momentum space, (5.13) has a θ

dependent term because pi is kinematic momentum and have a r dependent part.
Equations of motion from (4.29) and (4.30) with keeping only the �rst order terms
of θ and eB/c takes the form:

ṙi =−eθεi jE j +
(

1+
e
c

θB
) pi

m
(5.15)

ṗi = eEi

(
1+

e
c

θB
)

+
eB
mc

εi j p j (5.16)

With the use of equations (5.15), and (5.16) one can get the force as,

Fi = mr̈i =
(

1+2
e
c

θB
)

eEi +
eB
mc

εi j(v j + eθε jkEk) (5.17)

and in order to obtain the motion without de�ection we solve the equation,

Fi = 0 (5.18)

we get vi = ṙi,
vi =

c
B

(
1+

eBθ
c

)
εi jE j (5.19)
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the velocity of an electron. In order to express the system of electrons we use the
electric current density j:

j = eκv (5.20)

Here, κ is the density of electrons. The relation between the current density and
the Hall conductivity is,

ji =−σH(θ)εi jE j (5.21)

which gives us the deformed Hall conductivity as:

σH(θ) =−cκe
B

(
1+

e
c

θB
)

(5.22)

Since the result found in (5.22) depends only on the �eld strength (5.11), it does
not depend on the explicit choice of the gauge �eld Ai.
On the other hand, within the semiclassical approach, one can deal with the
hamiltonian,

H0 =
1

2m
(pi− (e/c)Ai)

2 +V (r) (5.23)

where the scalar potential is given by (5.7) and the noncommutativity of
coordinates is still coming from the �eld strength Gi j = εi j and the related coupling
constant θ . But this time we have no such a gauge �eld Ai. In that way, pi

behaves as canonical momenta and the deformed brackets have the form,

{ri,r j}CD = θεi j (5.24)

{ri, p j}CD = δi j (5.25)

{pi, p j}CD = 0 (5.26)

unlike (5.14), pi in (5.26) acts as canonical momentum and that is the reason why
we can not see any θ dependence in (5.25). If one chooses the symmetric gauge,

Ai =−B
2

εi jr j (5.27)

he/she reaches the equations of motion,

ṙi =−eθεi jE j +
(

1+
eBθ
2c

)( pi

m
− e

mc
Ai

)
(5.28)

ṗi = eEi +
eB
2c

εi j

( p j

m
− e

mc
A j

)
(5.29)
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Following the same procedure described before, deformed Hall conductivity can
be found as,

σH(θ) =−
(

1− eBθ
4c

)
ecκ
B

(5.30)

which is the result that was found in [11] up to a scaling factor h̄. But this result
is gauge dependent. Indeed, if one chooses the gauge,

Ai = (−Br2,0) (5.31)

or,
Ai = (0,Br1) (5.32)

and follows the same procedure; although the coordinates are still non-commuting
Hall conductivity appears as θ independent:

σH(θ) =−ecκ
B

(5.33)

Fractional quantum Hall e�ect is an electron-electron interacting system and it
can be obtained within our noninteracting, non-commuting theory.

σF
H = ν

e2

h̄
(5.34)

can be obtained as putting
θF =− ν

κh
− c

eB
(5.35)

in (5.22) where ν = 1/3,2/3,1/5, ....
Being an interacting and complicated theory fractional quantum Hall e�ect can
be obtained from noninteracting Hall e�ect in noncommutative space which is a
simpler e�ective theory just by tuning the parameter θ .

5.2 Spin Hall Effect in Noncommutative Space

Spin Hall e�ect basically occurs due to the spin currents those are produced by
spin orbit coupling terms in the presence of electric �eld. In this work we deal
with two semiclassical models which are suitable to investigate spin Hall e�ect in
noncommuting coordinates.
We will deal with non-abelian gauge �eld Ai whose explicit form depends on the
formalism that will be considered. We will set the curvature Gi j = εi j and the
related coupling constant ξ = θ .
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5.2.1 Deformation of the Drude Type Formulation

This part is the semiclassical extension of the Drude model of spin Hall e�ect
which is discussed by Chudnovsky [6]. Let ρ =−h̄ and the gauge �eld A as,

Ai =
εi jkσ j

4mc2
∂V
∂ rk

(5.36)

where i = 1,2,3 and σi are the Pauli spin matrices. Gauge �eld A yields the �eld
strength;

Fi j =
ε jmnσm

4mc2
∂ 2V

∂ ri∂ rn
− εimnσm

4mc2
∂ 2V

∂ r j∂ rn
− εi jm

8m2c4 σ ·∇V
∂V
∂ rm

(5.37)

We deal with the external potential being V (r) =−eE ·r and the noncommutative
r1r2 plane. We set ξ = θ and Gi j = εi j. Ignoring the h̄2 order terms classical
variables satisfy,

{ri,r j}CD = θεi j (5.38)

{ri, p j}CD = δi j + h̄θεikFk j (5.39)

{pi, p j}CD =−h̄Fi j (5.40)

As before pi is the kinematic momenta and this is the reason that why deformation
parameter θ appears in (5.39).
Equations of motion have the form:

ṙi =
pi

m
+

h̄θ
m

εi jF jk pk +θεi j
∂V
∂ r j

(5.41)

ṗi =−∂V
∂ ri

− h̄θFi jε jk
∂V
∂ rk

− h̄
m

Fi j p j (5.42)

We add the term −pi/τ drag force in order to be consistent with Drude model
where τ is the relaxation time. Retaining the terms linear in the velocity vi force
becomes,

Fi = mr̈i− pi

τ
=−∂V

∂ ri
− h̄θFi jε jk

∂V
∂ rk

− h̄Fi jv j

+θεi jvk
∂ 2V

∂ r j∂ rk
− m

τ
vi +

mh̄θ
τ

εi jF jkvk +
mθ
τ

εi j
∂V
∂ r j

(5.43)

where we extract momenta from equation (5.41) as,

pi

m
= vi−θεi j

∂V
∂ r j

− h̄θεi jF jkvk (5.44)
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For θ = 0 the force (5.43) contracted to the force in [12] and also in [5].

V = Vc +Ve (5.45)

in terms of the crystal potential Vc and the external potential Ve which is in
harmony with [6].
We replace the terms in the (5.43) with their volume averages. Like Chudnovsky,
we consider the cubic lattice in which the average of the second derivative of the
potential is given in the terms of the lattice constant A,

〈 ∂ 2V
∂ ri∂ r j

〉=−eAδi j (5.46)

Because of the external �eld E,

〈∂V
∂ ri
〉=−eEi (5.47)

The average value of the �eld strength Fi j is,

〈Fi j〉=−
(

eA
2mc2 σ3 +

e2

8m2c4 σ ·EE3

)
εi j (5.48)

In order to have the constant velocity the total force acting on an electron should
vanish,

Fi = 0 (5.49)

Using averages and putting them with in (5.43) we get,

eEi− mvi

τ
+ eθεi j

(
Av j− mE j

τ

)

+
(

eh̄A
2mc2 σ3 +

e2h̄
8m2c4 σ ·EE3

)(
eθEi + εi jv j +

mθvi

τ

)
= 0 (5.50)

solving velocities perturbatively,

vi = v0
i + vI

i (5.51)

where
v0

i =
τe
m

Ei (5.52)

and;

vI
i =

2eτθ
m

(
eh̄A

2mc2 σ3 +
e2h̄

8m2c4 σ ·EE3

)
Ei

−
[

eθ
(

1+
τ2eA

m

)
− τ2e

m

(
eh̄A

2mc2 σ3 +
e2h̄

8m2c4 σ ·EE3

)]
εi jE j (5.53)
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Introducing the density matrix as,

N =
1
2

n(1+~ξ .~σ) (5.54)

n = n↑+n↓ is the total concentration of spins and ~ξ is the spin polarization vector
with the norm,

ξ =
n↑−n↓

n↑+n↓
(5.55)

where n↑ and n↓ are the concentrations of spins along the ξ̂ and −ξ̂ . We choose
the spin polarization to point in the third direction:

ξ = ξ r̂3 (5.56)

De�ning the spin current as

jξ̂
i = eTr(Nvi) = σC(θ)Ei−σD

SH(θ)ξ εi jE j (5.57)

where n = n↑+n↓ and using the velocities we solve θ deformed Hall conductivity
as:

σC(θ) =
(

1+
eh̄Aθ
mc2 +

e2h̄θE2
3

4m2c4

)
ne2τ

m
(5.58)

and θ deformed spin hall conductivity is

σD
SH(θ) =−nh̄τ2e3A

2m3c2 − nh̄τ2e4E2
3

8m4c4 +
ne2θ

ξ

(
1+

eτ2A
m

)
(5.59)

When θ = 0 and 1/c4 terms are ignored the conductivities are the same as [6].

5.2.2 Deformation of the Hall Effect Type Formulation

Another model for deriving spin Hall conductivity was developed in [5]. In this
approach, consider the gauge �eld,

Ai = εi jσ j (5.60)

consistent with Rashba spin-orbit coupling term. Related �eld strength Fi j is
estimated as:

Fi j =
2ρ
h̄

σ3εi j (5.61)

We deal with the r1r2 plane with the noncommutativity parameter ξ = θ and

Gi j = εi j (5.62)
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Hamiltonian of the system is the same with (5.6). Keeping only the �rst order
terms in θ and ρ2, variables satisfy;

{ri,r j}CD = θεi j (5.63)

{ri, p j}CD =
(

1+
2ρ2θ

h̄
σ3

)
δi j (5.64)

{pi, p j}CD =
2ρ2

h̄
σ3εi j (5.65)

once more pi is kinematic momenta. Equations of motion are,

ṙi =
(

1+
2ρ2θ

h̄
σ3

)
pi

m
− eθεi jE j (5.66)

ṗi =
(

1+
2ρ2θ

h̄
σ3

)
eEi +

2ρ2

h̄m
σ3εi j p j (5.67)

In the �rst order in θ with vi = ṙi, momentum of the particle can be extracted
from (5.66) is:

pi

m
=

(
1− 2ρ2θ

h̄
σ3

)
vi + eθεi jE j (5.68)

The force acting on the particle up to the order θ and ρ2 is,

Fi = mr̈i = eEi +
2ρ2

h̄
σ3εi jv j +

2ρ2eθ
h̄

σ3Ei (5.69)

In order to study the motion without de�ection we set Fi = 0 and solve the
velocities as:

v↑i =
(

eh̄
2ρ2 + eθ

)
εi jE j (5.70)

v↓i =−
(

eh̄
2ρ2 − eθ

)
εi jE j (5.71)

Arrows ↑ and ↓ corresponds to the positive and negative eigenvalues of σ3. Spin
current is de�ned as,

jz
i =

h̄
2
(n↑v↑i −n↓v↓i ) (5.72)

where n↑ and n↓ are the concentrations of spins along the ẑ and −ẑ, respectively.
Employing (5.70) and (5.71) into (5.72) provides us to write spin current as,

jz
i =−σSH(θ)ẑ×E (5.73)

where θ deformed spin Hall conductivity de�ned as,

σSH(θ) =
−eh̄2n

4ρ2 − 1
2

eh̄nξ θ (5.74)
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with n = n↑+ n↓ is the concentration of states occupying the lower energy state
of the Rashba hamiltonian times a constant l,

n =
ρ2l
π h̄2 (5.75)

and coupling constant ρ and Rashba spin orbit coupling constant α is related to
each other as ρ = −αm

h̄ .
θ deformed spin Hall conductivity is obtained as:

σSH(θ) =− el
4π
− eh̄θ̃

2
(5.76)

where θ̃ ≡ (n↑−n↓)θ .
In the limit θ = 0 (5.76) agrees with [13] for the value of l = 1/2.
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6. RESULTS AND DISCUSSION

The di�erence in the ξ dependence in the two formalisms is due to the fact that
in the former we use the density matrix to de�ne the spin current but in the
latter we avoided it. Both of the formalisms lead to a deformed Hall conductivity
which can be stated as,

σSH(θ) = Σ0 +θΣ1. (6.1)

which yield spin Hall conductivity when the noncommutativity is switched o�
θ = 0. We will focus on the spin Hall conductivity of the latter one (5.76). In
the sprit of interpreting the noncommutativity as a link between similar physical
phenomena θ can be �xed to obtain other formulations of spin Hall e�ect. We
will illustrate this point of view considering spin Hall conductivities obtained by
inclusion of impurities, the Rashba type spin orbit couplings with higher order
momenta and the quantum spin Hall e�ect.
When impurity e�ects included into the Rashba hamiltonian which is linear in
momenta, the universal behavior of spin Hall conductivity [13] is swept out [14],
[15], [16]. This case is given with �xing the value of the deformation parameter
as

θ̃0 =− l
2π h̄

. (6.2)

However, dealing with Rashba type hamiltonian with higher order momenta

H = εk− 1
2

bi(k)σi +V (r) (6.3)

one �nds a non-vanishing spin Hall conductivity [17] where k is the kinematic
momentum, εk is the energy dispersion in the absence of spin-orbit coupling and
v is the velocity, b1 + ib2 ≡ b0(k)exp(iNθ) and

Ñ =
d ln |b0|

d lnk
, 1+ζ =

d lnv
d lnk

. (6.4)

Spin Hall conductivity results:

σHR
SH =−eN

4π

(
N2−1
N2 +1

)
(Ñ−ζ −2). (6.5)
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This can be achieved from (5.76) by setting l = N and �xing the deformation
parameter as

θ̃HR =
N

2π h̄

[
−1+

(
N2−1
N2 +1

)
(Ñ−ζ −2)

]
(6.6)

Quantization of spin Hall conductance in units of e
2π was predicted by [18]. Hence,

the quantized spin Hall conductivity can be written as

σQ
SH =− e

2π
µ (6.7)

where µ is a number depending on the physical system considered. This can be
obtained from (5.76) by �xing the deformation parameter as:

θ̃Q =
1

2π h̄
(−l +2µ). (6.8)

Hence the spin Hall e�ect in noncommutative coordinates can be considered as
the master formulation such that �xing the noncommutativity parameter θ yields
di�erent manifestations of the same physical phenomenon.
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