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QUANTUM MECHANICAL SYSTEMS WITH NONCOMMUTATIVE PHASE
SPACE VARIABLES

SUMMARY

The generalization of quantum mechanics involving noncommutative space-time
is originally introduced by Snyder. A few decades later Connes studied Yang Mills
theories in noncommutative space. Applications of noncommutative theories
can be found in condensed matter physics, for instance quantum Hall effect or
Landau problem. It was found that a noncommutative geometry lies under the
semiclassical dynamics of electrons in semiconductors. Moreover noncommutative
geometry can be seen in the physics of spinning particles. Foldy-Wouthuysen
transformation of the Dirac equation changes the position operator, adding a
spin-orbit contribution which turns out to be a Berry gauge potential, making
the coordinates noncommuting. In classical physics the dynamics of particles are
studied with the help of Poisson brackets and the passage to analogue quantum
mechanical system is a well known procedure called canonical quantization.
All dynamical variables of the system turns to be quantum operators and
Poisson brackets to quantum commutators. In his work Wigner studied quantum
mechanics as a statistical theory and used classical functions those are derived
from quantum mechanical analogues. Weyl, Moyal, Groenewold also studied
in this area. WWGM introduces an alternative approach to study quantum
mechanical systems. In this type of quantization one uses the symbols of operators
which are classical functions and change the ordinary product with star product.
The way back to quantum phase space can be taken with associative operator
ordering. In this work, with the help of the first order lagrangian and the gauge
fields we studied on quantum mechanical systems with the symbols of operators
and star product. Definition of canonical momenta leads to some constraints so
we deal with a constrained hamiltonian system. We study spin dynamics, our
observables turn to be matrices whose elements are classical functions. In order
to explain spin dynamics Day1 expand the Moyal bracket up to % order. It is this
semiclassical approach and the existence of second class constraints those lead us
to use semiclassical Dirac brackets in order to explain the dynamics of observables.
In this approach the coordinates become noncommuting. We deformed the space
with the parameter 8 and in this deformed space we studied Hall effect. Then
we studied spin Hall effect with two different type of formulations.
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UYUSUMLU OLMAYAN FAZ UZAYI DEGISKENLERI iILE KUANTUM
MEKANIKSEL SISTEMLER

OZET

Icerisinde uyusumlu olmayan uzay-zaman koordinatlarmi barindirarak kuantum
mekaniginin genigletilmesi ilk olarak Snyder tarafindan gerceklegtirilmigtir. Yillar
sonra Connes Yang-Mills teorilerini uyusumlu olmayan uzayda incelemigtir.
Uyusumsuz teorilerin uygulamalari yogun madde fiziginde 6rnegin kuantum
Hall etkisinde veya Landau probleminde goriilebilir.  Yariiletkenlerde de
elektronlarin yariklasik dinamiginin altinda yatan uyusumlu olmayan bir geometri
bulunmustur.  Dahast uyusumsuz bir geometri parcaciklarin spinleri goz
oniine alindiginda da ortaya ¢ikmaktadir. Dirac denklemine Foldy-Wouthuysen
doniisiimii yapildiginda konum operatériine aslinda Berry ayar potansiyeli olan
bir spin-yoriinge etkilesim terimi gelmekte ve bu terim koordinatlari uyusumsuz
hale cevirmektedir. Klasik fizikte parcaciklarin dinamigi Poisson parantezleri
yardimi ile ifade edilebilmekte ve benzeri kuantum mekaniksel sisteme gecis
yapmak amaci ile kanonik kuantizasyon yéntemi uygulanmaktadir. Bu yontemle
sistemin tiim dinamik degiskenleri kuantum islemcilerine ve Poisson parantezleri
de kuantum komiitatorlerine doniigmektedir. Wigner caligmasinda kuantum
mekanigini istatistiksel bir kuram olarak ele almig ve kuantum iglemcilerden
benzeri klasik fonksiyonlar tiiretmistir. Weyl, Moyal, Groenewold de bu alanda
caligmalar yapmiglardir. WWGM kuantum mekaniksel sistemleri incelemek icin
farkli bir yol 6nermisglerdir. Bu tip kuantizasyonda herbiri klasik birer fonksiyon
olan iglemci sembolleri kullanilmakta ve bu sembollerin ¢arpimlar: yildiz ¢carpimi
ile tanimlanmaktadir. Kuantum mekniksel faz uzayina doniis ise asosiyatif
islemci siralamasi ile miimkiindiir. Bu calismada, birinci mertebe lagrange
fonksiyoneli ve igerisinde ayar alanlar1 kullamilarak kuantum mekaniksel sistemler
iizerine c¢aligilmig ve cebir iglemci sembolleri ve yildiz carpimi ile verilmistir.
Kanonik momentumun tanimi sistemin baglarina igsaret etmis ve esasinda bagh
bir Hamilton sistemi ile ugrasildigi anlagilmigtir.  Sistemin spin dinamigi
incelendiginden gozlemlenebilirlerin her biri elemanlar1 klasik fonksiyonlar olan
matrisler haline gelmiglerdir. Spin dinamigini ele alabilmek i¢in Day1 Moyal
parantezlerini  mertebesine kadar acmigti. Bu yariklasik yaklagiklik ve sistemin
sahip oldugu ikincil baglar sebebi ile spin dinamigini acgiklayabilmek adina
yariklasik Dirac parantezleri tanimlanmigtir. Bdoylelikle koordinatlar uyusumsuz
hale gelmiglerdir. 0 paratmetresi ile uzay deforme edilerek Hall etkisi ve iki farklh
formiilasyonu ile spin Hall etkisi tartigilmigtir.
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1. INTRODUCTION

The idea that the space-time coordinates may not be commuting was originally
introduced by Snyder [1]. Later, this idea becomes popular when Connes
[2] analyzed Yang-Mills theories on noncommutative space. Applications of
noncommutative theories can be found in condensed matter physics, for instance
in quantum Hall effect and the Landau problem. Also, a noncommutative
geometry underlies the algebraic structure of all known spinning particles. Berard
and Mohrbach [3] showed that in the Foldy Wouthuysen representation of the
Dirac equation, the position operator acquires a spin-orbit contribution which
turns out to be a gauge potential (Berry connection), making the algebra
noncommutative.

Usual probabilistic interpretation of quantum mechanics contrasts with the
deterministic structure of classical mechanics. However, there are attempts
to interpret quantum mechanics as a statistical theory on the classical phase
space. Wigner [4] studied on the quantum corrections to the statistical physics.
The expectation values of classical observables can be found via classical-like
phase space distribution functions. A well known fact is it is not possible
to know the position and the momentum of a quantum mechanical particle
simultaneously. Unlike classical case, there is no such a simple distribution
function in quantum mechanics. Wigner offered a quasiprobability distribution
function called Wigner function which can be used to calculate the averages of
quantum mechanical observables in a way very similar to classical mechanics.
Together with the Weyl correspondence rule and the Moyal bracket the dynamics
of quantum mechanics can be given in terms of classical functions. Moyal bracket
corresponds to the quantum commutator of quantum mechanics. Essential
aspects of quantum mechanics can be given in a classical formulation using the
Moyal brackets. This process is called as WWGM method of quantization, makes

it probable to calculate quantum mechanical relations with c-number functions



and distributions on classical phase space with deformed products and space.
WWGM quantization (deformation quantization) corresponds to the canonical
quantization with symbol maps and star product. Operators are mapped by
symbol maps into c-number functions however their composition is given by star
product which is noncommutative but associative.

WWGM method works well for observables possessing a classical limit. However,
it is not clear how to deal with spin degrees of freedom. In order to embrace spin,
Day1 [5] make a semiclassical expansion of Moyal bracket up to  and observables
turn into matrices whose elements are c-number functions. Time evolution
of matrix valued observables are then described in terms of this semiclassical
bracket. We began with a semiclassical hamiltonian system that has second class
constraints. We used semiclassical Dirac brackets in order to describe our system
completely. We studied Hall effect and Spin Hall effect with both the deformation
of Drude type formulation [6] and deformation of extension of Hall effect that was

introduced by Dayi [5]



2. WWGM METHOD OF QUANTIZATION

2.1 Hamilton’s Formalism and Canonical Quantization

Equations of motion for a physical system can be obtained with the lagrangian
of that system. Lagrangian is defined in terms of generalized coordinates and
generalized velocities.

L=L(q,9) 2.1
The mathematical passage from one set of independent variables to another is

called Legendre’s transformation. The total differential of the lagrangian is,
aL aL
dL=Y) ——dg; —dg; 2.2
;&Qi ql+2i:aQi qi (2.2)
by definition dL/d¢; is generalized momentum p; and dL/dq; is p;. So equation
(2.2) can be written as,
dL =Y pidgi+ Y pidgi (2.3)
i i

one can easily obtain from the above equation:
d(Y pigi—L) =Y qidpi— Y pidg; (2.4)
i i i

The term Y;pigi — L is called the Hamilton’s function or hamiltonian of the

system. So the total differential of the Hamilton’s function can be written as:
dH =Y Gidpi— Y pidg; (2.5)
i i

Here the independent variables are coordinates and momenta those having

equations of motion as,
oH JH

Qi:a—mypi:—aqi

The equations (2.6) are called Hamilton’s equations.

(2.6)
Let an arbitrary function f = f(q,p,t), the total time derivative of this function

df _of of ., of .
E - E ‘f‘; (a_qi% + a_pipl) (27)

is;

3



Using (2.6) we can simplify the above expression;

af _ af

g or {r,H} (2.8)

{,} is called the Poisson bracket and defined as

0= (5t~ amo) e
If arbitrary function f is not depend explicitly on time, the total derivative finally
turns to be;
d—{z{f,H} (2.10)
so the time derivatives of canonical variables are defined as follows:
R @)

and the Poisson algebra is the Poisson brackets of coordinates and momenta:

{4i,q;} =0 (2.12)
{9i,p;} = &) (2.13)
{pi,pj} =0 (2.14)

Various quantum mechanical relations can be obtained from the corresponding
classical ones just by replacing Poisson brackets by commutators and classical
canonical variables by quantum operators. So in the case of classical functions
f(g,p) and g(gq,p) one can quantize the system defining analogue quantum
operators f(§,p) and g(4,p) and following the rule,

{£(a,p).8(a,p)} — —If(4.5).8(4.P)] (2.15)

[,] is quantum commutator. The process described in (2.15) is called as canonical
quantization. Poisson algebra defined in (2.12), (2.13) and (2.14) turns to be

Heisenberg algebra which is expressed in terms of quantum mechanical operators:

[9i,4j] =0 (2.16)
9i, pj] = ih;; 2.17)
[pi,Pj] =0 (2.18)



2.2 Quantum Mechanics in Terms of Classical Phase Space Elements

Heisenberg’s uncertainty principle lies in the heart of quantum mechanics. A
quantum mechanical particle does not have a well defined position g and
momentum p; that makes the phase space of quantum mechanics problematic.
One can not define a true phase space distribution function for a quantum
mechanical particle. However, there are quasiprobability distribution functions
and with the help of these distribution functions quantum mechanical averages
can be expressed in a similar way of classical averages.

Consider the average of an arbitrary observable A(g, p) of a classical particle in
one dimension which has ¢ and p as its coordinate and conjugate momentum

respectively, in its phase space.

+oo +oo
(A(q,p))cr = /_ _ dq - dpA(q,p)P.(q,p) (2.19)

In equation (2.19) P is the distribution function of our classical particle over the
classical phase space. On the other hand, the expectation value of an arbitrary
observable of a quantum mechanical particle can be written in terms of its density
matrix p,

(A(§,P))qm = Tr(Ap) (2.20)

here Tr is the trace operator.
The use of the quasiprobability distribution function Pp gives rise to the
expression of the quantum mechanical averages in terms of classical functions:

+o0 +o0
dq | dpA(q:p)Po(q:p) (2.21)

A = [

In (2.21) classical function A(q,p) can be derived from the operator A(g, p) by a
well defined correspondence rule. With the quasiprobability distribution Py and
this correspondence rule one can get the quantum mechanical results in a form
which resemble classical ones.

First of these quasiprobability functions is introduced by Wigner [4] in order to
study quantum mechanical corrections to classical statistical mechanics and it is
known as Wigner distribution. In this case quasiprobability distribution function
Pp turns into P, and then the correspondence rule between the function A(g, p)

and the operator A(c}, p) is proposed by Weyl [7]. Wigner’s distribution function



gives the same expectation value for every function of coordinates ¢ and momenta
p or the expectation value of their products as does the corresponding operators

those proposed by Weyl.

2.2.1 Wigner Distribution

In 1932 Wigner proposed the distribution function,

Feo 2!py

Pi(q,p) = = dy(q—y|plg+y)e (2.22)

Tth )

for a quantum mechanical system which is in mixed state and represented by
a density matrix p. Here, we must mention that this expression is constructed
over two dimensional phase space that has independent variables as g and p.
Extension to n- dimensional case can be done via considering the scalar product
of y and p and calculating the integral with respect to dy and replacing A with
(mh)". Tt must be mentioned that this particular choice of distribution function
is not unique.

Consider two quasiprobability distributions Py and Py corresponding to the states

y(q) and ¢(g) respectively. These distributions have the property below:

27rh/dq/dpr q,p)Py(q,p) ‘/dql;/ (2.23)
If y(g) and ¢(g) are equal then,
1
/dq/dp[Pw q,p)] =55 (2.24)

if one chooses states Y(q) and ¢(g) such that they are orthogonal, he or she

comes to a solution,
/M/@%@ﬁ%%@zo (2.25)

that means (2.22) is not a true probability distribution function as it can not be

positive everywhere. Such a distribution also satisfies the properties:

[ drPia.p) = (@)l = (glpla) 226)
[ daPla.p) = w(p) = (pl3lp) @.27)
[ dr [dapia.p) =Tr(p) =1 (2.28)



The classical function A(g, p) corresponding to the quantum mechanical operator

A(§,p) is defined as,

oo ip 1 1
A(q,p) = dze (q—57|Alg+ 57) (2.29)
so that,
~+oo ~+oo R
/ dq dpA(q,p) =2mhTr(A) (2.30)

The trace operation of the product of two operators namely A(g, p) and B(g, p)
is,

~+oo o0 o
/ dq |  dpA(q,p)B(q,p) =2nhTr(AB) (2.31)

and using the above equation one can choose B = p and reaches the expectation

value of a quantum mechanical observable in terms of its function correspondence:
oo ~+o0 A R
/_ dq /_ dpA(q,p)Pu(q,p) = Tr(pA) = (A)gm (2.32)

2.2.2 Operator Ordering

Equation (2.29) says beginning with a quantum mechanical operator how one can
obtain a classical correspondence of that operator. If one has a classical function
of g and p, he or she can obtain the quantum mechanical operator via associated
operator ordering.

Consider a quantum mechanical operator A(C}, p) and related classical function
A(g,p) and the state ket of the system |y); then,

—+oo —+oo

(wlA|y) = / _dq | dpP,(q,p)A(q,p) (2.33)

In order to prove (2.33) one needs to have the Fourier expansion of the classical

function A(g, p) and quantum mechanical operator A(g, p);

Alg,p) = / do | dta(c,t)eo0P) (2.34)
o too teo A
A(q,p) = / do [ dra(c,7)e/ 01 (2.35)
by replacing (2.34) and (2.35) into (2.33), the validity of (2.33) can be seen as
follows:
(ylexp{i(cg+1p)}y) = / dq / dpP.(q,p)expli(og+tp)} (2.36)

7



After the integration over p, right hand side becomes,

* 1 1 i
[dav'a=50wlg+ 57 (2.37)

in order to evaluate the left hand side Baker-Hausdorff formula is used,

AB _ AL By o lAB2 (2.38)
and that leads to,
(OGP _ i0q ,iTh ,ioT/2 (2.39)
then using the fact,
¢y (x) = [y(x+1)) (2.40)
one can obtain the relation;
TPyt 1)) = [ de T (k) @41

and with a change of variable x =g —1/27 the proof of (2.33) is complete.

In summary a classical function

oo oo _
do dro(c,1)e!o1P) (2.42)

—o0

A(g,p) =/

corresponds to a quantum mechanical operator

A too too A
A(q,p) = / do [ dta(c,7)e 01 (2.43)

and the relation between them is given by (2.29).

Passage from classical phase space to quantum mechanics requires Weyl
correspondence. According to Bayen and Flato [8] this type of passage is a
deformation of classical Poisson manifold and there is only one formal function of
the Poisson bracket (up to a constant factor and a linear change of variable ) that
generates a formal deformation of the associative algebra by the usual product:
it is the exponential function. Let A and B are classical functions that are derived
from the operators A and B respectively. The algebra of the deformed manifold

is defined in terms of star product (x) and Moyal bracket,
[A,B], = Ae"/2)Ap (2.44)

where 7 is the deformation parameter.

According to [9], the expression of the Weyl correspondence of the operator F=

8



AB in terms of Weyl correspondences of A and B those are A and B respectively,
is;

AB=F — F(q,p) =A(q,p)e"™/*)B(q,p) (2.45)

where oy

1 - d d Jd o

- dpdq dqdq

So let the classical functions to be g and p and the quantum operators correspond

(2.46)

to them ¢ and p respectively. Taking the arbitrary powers of these classical
functions operator ordering W maps them to the following quantum mechanical
operators:
m. n m.n 1 ¢ n An—k am ~k
"= W(qg"p") =Y PG p (2.47)
2" k=0 k
By following this rule one sums over all the permutations of ¢ and p having an

hermitean operator. Above rule can be restated as,
W) = [exp [~ 2in(s2 )] gy (2.48)
2" dpdq q9—4,p—p .

Taking care of all permutations of canonical variables this way is also called as

symmetric ordering.

2.3 WWGM Method of Quantization and Star Product

Dynamics of classical observables is described in terms of classical phase space
elements and with the help of Poisson brackets (2.9). When one wants to
observe the quantum mechanical analogue of the system, he or she may recall
the canonical quantization method (2.15) and uses quantum operators and
commutators. However there is an alternative way to study the quantum
dynamics of the system without using the quantum mechanical phase space.
WWGM proposes us to use the symbols of operators those are the classical
correspondences proposed by Weyl instead of themselves. Product between the
symbols of operators is called the star product. For a quantum mechanical
operator f()?,ﬁ) symbol map effects and carries this operator to the set of

c-number functions as follows:

S(f(%,9)) = f(x,p) (2.49)



Here f(x,p) is the classical correspondence of the operator f(%, ). The quantum

mechanical product of observables f and g is,
F(&p)8(%, p) = h(2,p) (2.50)

With the usage of symbol map the operator product is defined in terms of classical

phase space elements and star product. Star product satisfies the below property.
S (f(%.0)8(%,p)) = S (h(%,)) = S (f(2,9)) xS (§(%,p)) 2.51)
Star product is associative and defined in terms of coordinates x; and momenta

n(a a9 9 3
*=exp [3 <8x“ Ipu ~ oph 9xu>] 2.52)

Above equation is Einstein’s convention adopted and this convention will be used

Pu as

in the remaining.

In WWGM formalism Moyal bracket corresponds to the quantum commutator:

[f(x,p),8(x,p)], = f(x,p) *g(x,p) — g(x, p) * f(x,p) (2.53)

The Moyal bracket of coordinates and momenta is as follows:
[, py], = ind) (2.54)

Classical limit of the Moyal bracket is the Poisson bracket:

L _df dg  If g
fim U/ (p) gep)). = ((op) gleph = S 2 b 20 T8

(2.55)

10



3. CONSTRAINED HAMILTONIAN SYSTEMS

Constrained hamiltonian systems are studied explicitly in [10]. Considered
lagrangian functional may be singular that means there is no unique solution
for the velocities in terms of canonical coordinates and momenta such that

Gi = q4i(q,p). Necessary and sufficient condition of an arbitrary lagrangian to

d°L
det( ——— ) =0 3.1
(8@-8@-) G-

In a singular lagrangian system there exist primary constraints satisfying the

be singular is;

condition,

The symbol "2 07 is called "weakly zero” and means primary constraints ¢,(q, p)
may have nonvanishing canonical Poisson brackets with some canonical variables.
In order to obtain the most general equations of motion one must replace the

canonical Hamiltonian by the effective one,
H=H,=H.+u,Q, ~ H, (3.3)

being u,;, = u;y(q,p). New equations of motion are generated and they describe

the system truly:

A J0H, Aoy,

gi={qi,H} = a_ﬁ”ma_pi (3.4)
.7 o i 13 ~ ch a(Pm
p={p H}~— 90 — Uy 24 (3.5)

In order to have consistent systems it is required that the time derivatives of the

primary constraints or linear combinations of them to be zero.

On = {q)mﬁ}%{q)nch}*'”m{q)naq)m}%O (3.6)

If (3.6) is not true two possibilities occur. First one, equation has no new
information but imposes conditions on the form of u,(g,p). Secondly, it may

give a new relation between ¢’s and p’s, independent of wu,(gq,p). These are

11



so-called secondary constraints. Together with the M primary constraints, these

K constraints form an complete set of T constraints.
0.(q,p)~0,a=1,..K+M=T (3.7

So, effective Hamiltonian H is a function of ¢’s and p’s with all u,(q, p)s:

H=H(q,p) (3.8)
A defined function R(g, p) is a first class quantity if it validates the below equation,

{Ry@o,} =0, a=1,...,T (3.9)
otherwise it is second class;

{R, 0.} %0 (3.10)

for at least one @,.
All constraints can now be separated as first or second class. The set of first class

constraints is,
vi(g,p) =0 ,i=1,..1 (3.11)

and remaining 7 — I = N constraints form a set:
¢a(q,p) =0, a=1,..N (3.12)

Dirac has shown that second class constraints form an N X N nonsingular,

antisymmetric matrix defined via Poisson brackets:

Cop = {Pa> Pp} (3.13)

The determinant of an odd dimensional antisymmetric matrix vanishes, so the
number of second class constraints must be even. One can redefine an arbitrary
dynamical observable A as A’ which has vanishing Poisson brackets with all second

class constraints,

A" =A—{A, 9a}Cpy g (3.14)

and observe;
{4 0y} ~ {A, 0y} — {A, 0a}C 5 Cpy (3.15)
={A,0y} —{A,0,} =0 (3.16)

12



So, the Poisson brackets of two dynamical variables A, B must be replaced by

their primed values A’ and B':
(A,B} — {A',B} (3.17)

Although A’ ~ A, B’ ~ B, their Poisson brackets {A’,B’} is not weakly equal to
{A,B}.

One can define Dirac bracket as:

{A,B}Y" = {A,B} —{A, 0 }C 5 {95, B} (3.18)
It can be seen that,

{A,B}Y =~ {A" B’} ~ {A",B} =~ {A,B'} (3.19)

Dirac brackets are used instead of Poisson brackets in order to set all the second
class constraints strongly to the zero because Dirac bracket of any dynamical

observable with a second class object vanishes:
{40} = {A, 0y} —{A, 90} CpCpy = 0 (3.20)
Jacobi identity is,
{A{B,C} " +{B{C,A}"} +{C,{A,B}'}" = 0 (3.21)

weakly satisfied by the Dirac bracket.

Effective Hamiltonian (3.3) can be rewritten as a first class one,

H=H'=H.~{He,0a}Cop9p (3.22)

redefining ug’s as:
ug(q,p) = —{He, 9a}Cpp (3.23)

H is the physical first class replacement for the canonical hamiltonian H,, which
could have been second class. One can extract all the second class constraints
from the physical system with using Dirac brackets instead of Poisson brackets.
After the extraction of all kinds of constraints the quantization procedure can be

succeeded.
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4. A SEMICLASSICAL APPROACH

4.1 Semiclassical Brackets

We will briefly mention the semiclassical approach that was originally introduced
in [5]. WWGM method works well for observables possessing a classical limit.
It is known that spin is an intrinsic quantum mechanical quantity and has no
classical counterpart.

Electron which is interacting with the electromagnetic field is described by the
Dirac hamiltonian,

o.(p—eA)+Pm+ed 4.1)

where A and ¢ are called as vector potential and scalar potential respectively.
Nonrelativistic limit of Dirac hamiltonian can be obtained via Foldy-Wouthuysen

transformation of that hamiltonian as,

_ (p—eA) p* e
H=p (m+ T 8m3) +ep — %BGP 4.2)

ie e e

acquiring a new position operator naturally,

PAOC

— o PNO
' lp+2Ep(Ep+m)

4.3)

with E, = (p> +m?)'/? which is noncommutative. The term 130.(E xp) turns
out to be spin orbit interaction term that is,

e 19V

Hy=-2-%6.
SL™ 4mZr or

L (4.4)

o is Pauli spin matrix.
When non-relativistic limit of Dirac hamiltonian or higher spin formalisms are
considered still a symbol map can be defined similarly but the observables are

no more classical functions; yet they are defined as matrices whose elements are
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classical functions of coordinates and momenta.

Moyal bracket of two such matrices, namely M, (x, p) and N (x, p), is defined as:

([M(x, ), N(x, P)1x) ap = Mac (%, ) % Nep (%, p) = Nae (%, p) x Mep (%, p) (4.5)

In order to incorporate spin degrees of freedom into classical mechanics Day1
extend the Moyal bracket semiclassically up to the two lowest order of # in [5].
So although we deal with the classical phase space elements, we get terms those
depend on A.

The semiclassical expansion of the Moyal bracket is as follows:

{M(5 )N p))e =~ IMN]+ 5 (M (s p). NG p)} = 5 NG p), M5 p)} (46)

In (4.6) the first term is the commutator of matrices and it is not singular in the
limit # — O because observables M(x,p), N(x,p) may depend on #; second and

third ones are the Poisson brackets of matrices:

- dM ON  dM ON
- dxHdpy  dpy dxH

{M(x,p),N(x,p) (4.7)

Analogue to the classical case with Poisson brackets, in this semiclassical
expansion in order to have the dynamical equations of motion one can use the
semiclassical bracket (4.6). Letting the symbol of Hamiltonian is H(x,p), time

derivative of the matrix valued semiclassical observable M(x, p) is defined as,

M(x,p) = {M(x,p),H(x,p)}c (4.8)
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4.2 First Order Lagrangian

Semiclassical hamiltonian dynamics are given by the usual hamiltonian methods
but replacing Poisson brackets with the semiclassical brackets (4.6).

Consider the first order N x N matrix lagrangian:

1 1
L=i“ (Elpa‘FPJZfa(i’,p)) —p“ (Elra_&@a(r’p)> — Hy(r,p) (4.9)

o=1,2,....,nand p, & are coupling constants and they are attached to the N x N

gauge fields &7, Z respectively. [ is the unit matrix. Canonical momenta is

defined as;
o OL o OL
T 0iq P dpg

So all the variables in our system are identified as canonical coordinates r%, p

(4.10)
a
and canonical momenta IT%, Hg‘. However, this relations lead to two primary
constraints:
ylo= (Hf‘—%p“)l—p%"‘, (4.11)
Yo = (Hl‘;‘+%r“)1—5<@°‘ (4.12)

These are the primary constraints those are to be seen in the extended

hamiltonian:

H, = Hy+ A%y, (4.13)

Here z=1,2 and As are called as Lagrange multipliers. Semiclassical brackets

between the constraints are as follows:

{wa W3 }c=pFup (4.14)
{Wa \W3tc=—8ap +Mqp (4.15)
{Wa \Wite=E%0p (4.16)

Expressions (4.14), (4.15) and (4.16) are not completely determined unless the
fields strengths are defined:

ooy ddly ip
Fap = = _875‘_%[%,%], (4.17)
oA oty ik
B p
Map =850 —Po 5~ (¥ Pp (4.18)



8%’[3 0%By ik
Ipe —W—g[%’a,%’ﬁ], (4.19)

Since the semiclassical brackets of the constraints do not vanish, they are

Gup =

all so-called second class constraints. These constraints form the matrix Cgp

mentioned in (3.13).
Cop = {Vi Wi e (4.20)

N X N matrix Cqg and its inverse satisfies the equation:
czc. P =588; (4.21)

a’y Z/Z//

Preserving second class constraints in time,

{we,Hec =0 (4.22)

leads us to solve the As as follows:

A% = —{v§, Ho}cC'*P (4.23)

In order to set all the second class constraints (4.11) and (4.12) effectively equal

to zero a semiclassical Dirac bracket is introduced:
{M.N}ep = {M,N}c — {M,y*}cCH{w¥ ,N}c (4.24)

Coordinates (rq, po) satisfy the semiclassical Dirac brackets;

{r* Byep = ;1P (4.25)
{r pPYep = ' P, (4.26)
{p*, pPrep =P, (4.27)

thus once after defining the semiclassical Dirac brackets (4.25), (4.26) and (4.27)
and effectively eliminating the constraints (4.11) and (4.12), rq and pq should be
considered as coordinates and the corresponding momenta, respectively.

Equation of motion for a given observable O(r,p) is defined with the extended

hamiltonian H,:

O(r,p) ={O(r,p),He}c (4.28)

17



4.3 Equations of Motion

The semiclassical dynamics of spinning particles those are defined with the first
order lagrangian (4.9) in terms of gauge fields o7y, %Bq are to be considered.
Using (4.28) and (4.23) the time derivatives of r* and p% is stated as:

OHy i - dHy i -
% = (W[? - %L@fﬁ,Ho]) tef (ﬁ - %[f%’ﬁaHo]) Clzlaﬁ (4.29)

8H oHy i

The matrix Cfle; is defined as,

r pﬁaﬁ —8ap —f—%aﬁ >
c= 4.31
op ( 8ap _%ﬁa 5%5[3 ( )

Inverse of (4.31) can be calculated up to the first order in #:

Chiop = %ap —E(MG) ap +E(MD) g0~ PEHITY ) op + - (4.32)
Croop = 8ap T Mpoa—PEGF)ap — (MM ) o+ .. (4.33)

Cz—faﬁ = —gop— Map +PE(F D) qp+ (MM )ep+ ... (4.34)
Corap = PFap —P(MF)qp+p(MF)go—p°E(FGF)P + . (4.35)
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5. QUANTUM MECHANICS IN NONCOMMUTATIVE COORDINATES

Deformation quantization, known as Weyl-Wigner-Groenewold-Moyal method of
quantization is although developed as an alternative to the operator quantization
became one of the main approaches of incorporating noncommutative coordinates
into quantum mechanics. Having established a star product of coordinates in

terms of deformation parameter 6,

*Eexp‘—( ————— ) 5.1

in a two dimensional xy plane one can employ the deformed hamiltonian in
order to define the energy eigenvalue problem. The commutation relation of

the coordinates via this star product is defined as,
X,y =xxy—yxx=1i0 (5.2)
which implies a Heisenberg relation
Ax.Ay ~ 0 (5.3)

that is completely consistent with the standard rules of quantum mechanics. In
quantum phase space given by (£,py) this procedure is equivalent to shift the

coordinates in the related hamiltonian as,

. L] A
Xy — Xy — ﬁeswpv =% 5.4)

New shifted coordinates satisfy the relation (5.2):
&, ] = i0 (5.5)

Noncommutativity parameter 6 and the noncommutative algebra defined in (5.2)
arises in the theory as a postulate. However when gauge fields are present in the
theory this procedure depends explicitly on the chosen gauge. Moreover, it is

not suitable to envisage Dirac particles in noncommutative coordinates. Hence,
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it is desirable to establish a systematic method of introducing noncommutative
coordinates which does not depend on a particular gauge as well as embraces spin
dependent systems. Day1 [5] presented a general formulation of spin dependent
dynamics as a semiclassical hamiltonian system.

We will study Hall effect in noncommutative coordinates using the recipe that
has mentioned in chapter four. Then, we will consider two simple models of spin
Hall effect. First one is the extension of Drude model and the second one is the
generalization of Hall effect.

We must mention that in the following sections we will study in flat Euclidean

space so metric tensor gog turns into Kronecker delta 0;j being i, j=1,2,3.

5.1 Hall Effect in Noncommutative Coordinates and 6 Deformation

Electrons moving in a thin slab in the presence of an external magnetic field that
is perpendicular to the plane will experience Lorentz force. Hence they will be
pushed on a side of the slab producing a potential difference between the two
sides. This is known the Hall effect. If one applies electric field that will balance
the potential difference, electrons move without deflection. This approach gives
a simple derivation of Hall conductivity [5].

We would derive Hall conductivity in noncommuting coordinates. To do this let

us take the Hy as ,
_pitp

H
0 2m

+V(r) (5.6)

with m is the electron mass and e is the charge of electron.
Scalar potential V(r) in the hamiltonian is given in terms of electric field

components E; with 7 is 1,2 as:
V(r)=—eE-r (5.7)

Consider the coupling constant & is equal to 6 and the gauge field %; is linear in

pi such that it forms the curvature g; which is antisymmetric in two dimensions.
“ij = ¢€;j (5.8)

In order to have such a curvature, one can have the gauge field £ as;
% = (~p2,0,0) (5.9)
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or;

B = —e,,-% (5.10)

although its specific form is not needed. Considering an electron that is moving
on r1ry plane, we let the uniform magnetic field B is in the r3 direction. We choose

the gauge field o7 such that its field strength .%;; takes the form:
Zij = Bg;; (5.11)

The coupling constant p = e/c in the first order lagrangian (4.9). Keeping the
terms first order in 6 and eB/c equations (4.25), (4.26) and (4.27) are rewritten

as
{ri,rj}cp = 0&;j, (5.12)
e
{ri,pj}cp = (1+EGB)6ija (5.13)
eB
{ri,pjtcp = 781'1' (5.14)

Wee see that the existence of the curvature ¢%; together with the
noncommutativity parameter 6 causes the semiclassical Dirac brackets of
coordinates (5.12) not to be vanished.

Also, it can be seen from (5.14) that in this formalism p; acts as kinematic
momenta. Although we have not deformed momentum space, (5.13) has a 6
dependent term because p; is kinematic momentum and have a r dependent part.
Equations of motion from (4.29) and (4.30) with keeping only the first order terms
of 8 and eB/c takes the form:

. e pi

ji = —ebiE;+ (1+ 593) 2 (5.15)

. e eB

pi=eE; (1+50B) +e;p; (5.16)
C mc

With the use of equations (5.15), and (5.16) one can get the force as,
. e eB
F,=mi; = (1+2—QB> eEi—l——Sij(vj—}—eGSjkEk) (5.17)
c mc
and in order to obtain the motion without deflection we solve the equation,
F,=0 (5.18)

we get v; =7,

Vi =

BO
(1 +eT) &£ (5.19)
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the velocity of an electron. In order to express the system of electrons we use the

electric current density j:

j=exv (5.20)

Here, K is the density of electrons. The relation between the current density and
the Hall conductivity is,
ji = —GH(G)S,'J'E]' (521)

which gives us the deformed Hall conductivity as:

G1(6) :—clgﬁ (1+§93) (5.22)

Since the result found in (5.22) depends only on the field strength (5.11), it does
not depend on the explicit choice of the gauge field .o7.

On the other hand, within the semiclassical approach, one can deal with the
hamiltonian,

Hy=— (pi—(e/c)A)* +V(r) (5.23)

1
2m
where the scalar potential is given by (5.7) and the noncommutativity of
coordinates is still coming from the field strength %;; = &;; and the related coupling

constant 6. But this time we have no such a gauge field <. In that way, p;

behaves as canonical momenta and the deformed brackets have the form,

{ri,rj}CD = 98,']‘ (5.24)
{rispjtep = 6ij (5.25)
{pi,pj}cp =0 (5.26)

unlike (5.14), p; in (5.26) acts as canonical momentum and that is the reason why

we can not see any 6 dependence in (5.25). If one chooses the symmetric gauge,

B
Al' = —§8ijrj (527)

he/she reaches the equations of motion,

BO j
i = —eOg;Ej+ (1 + e—) (Z-Za) (5.28)
2c m mc
eB i e
pi=eEi+ —¢&; (ﬂ - —Aj> (5.29)
2¢ m mc
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Following the same procedure described before, deformed Hall conductivity can

be found as,

o1 (6) = — (1 - %) ? (5.30)

which is the result that was found in [11] up to a scaling factor 4. But this result

is gauge dependent. Indeed, if one chooses the gauge,
A; = (—Bnr,0) (5.31)

or,

A; = (0,Br) (5.32)

and follows the same procedure; although the coordinates are still non-commuting
Hall conductivity appears as 6 independent:

0 (6) =~ (5.33)

Fractional quantum Hall effect is an electron-electron interacting system and it

can be obtained within our noninteracting, non-commuting theory.

o2
oh =v— (5.34)
h
can be obtained as putting
1% c
Or = —n 2B (5.35)

in (5.22) where v=1/3,2/3,1/5,....
Being an interacting and complicated theory fractional quantum Hall effect can
be obtained from noninteracting Hall effect in noncommutative space which is a

simpler effective theory just by tuning the parameter 6.

5.2 Spin Hall Effect in Noncommutative Space

Spin Hall effect basically occurs due to the spin currents those are produced by
spin orbit coupling terms in the presence of electric field. In this work we deal
with two semiclassical models which are suitable to investigate spin Hall effect in
noncommuting coordinates.

We will deal with non-abelian gauge field 27 whose explicit form depends on the
formalism that will be considered. We will set the curvature ¥;; = €;; and the

related coupling constant & = 0.
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5.2.1 Deformation of the Drude Type Formulation

This part is the semiclassical extension of the Drude model of spin Hall effect
which is discussed by Chudnovsky [6]. Let p = —h and the gauge field o7 as,

_ &0 IV

= 5.36
" 4mc? dry (5.36)

where i = 1,2,3 and o; are the Pauli spin matrices. Gauge field <7 yields the field

strength;
EimnOm 02V EynOm 0V Eij A%
O-\ij _ Sjmn 2m __ Simn 2m . 1]2m46 vy 2 (537)
4mc? dridr,  4mc* drjdr, 8m*c ory,
We deal with the external potential being V(r) = —eE-r and the noncommutative

riry plane. We set & = 6 and G;j = €. Ignoring the h? order terms classical

variables satisfy,

{ri,rj}cp = 0¢€;; (5.38)
{ri,pj}cp = &ij +hO&yFy; (5.39)
{pi,pj}cp = —nFij (5.40)

As before p; is the kinematic momenta and this is the reason that why deformation
parameter 0 appears in (5.39).

Equations of motion have the form:

;  ho Vv
Fi = &‘F—Eijgjkpk"‘egij_ (541
m m arj
. oV adV h
pDi= “on hegijejka_rk - %4%1'17,' (5.42)

We add the term —p;/7 drag force in order to be consistent with Drude model
where 7 is the relaxation time. Retaining the terms linear in the velocity v; force

becomes,

aVv

E—ml"l :—a—rl—heﬁjgjkark hfljvj

0%V  m mho mO JV
0gjvi=—"———Vvi+—&;F; — & 5.43
+ zjvkarjark TV1+ P jkVk + T l]arj ( )

where we extract momenta from equation (5.41) as,
Pi 8V

E :v,-—Gs,-ja—rj—hesijﬁjkvk (544)
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For 6 =0 the force (5.43) contracted to the force in [12] and also in [5].
V=V.+V, (5.45)

in terms of the crystal potential V. and the external potential V, which is in
harmony with [6].

We replace the terms in the (5.43) with their volume averages. Like Chudnovsky,
we consider the cubic lattice in which the average of the second derivative of the

potential is given in the terms of the lattice constant A,

%V
Grar,) = A% 549
Because of the external field E,
A%

The average value of the field strength .%;; is,

eA L &2
03
8m?2ct

<t%]> = — ( G'EE3> &;j (548)

2mc?

In order to have the constant velocity the total force acting on an electron should

vanish,

F,=0 (5.49)

Using averages and putting them with in (5.43) we get,

. E.
eEi—%+608ij (AVj——m ])

T
ehA e*h mov;
<2m02 03+ 8m2C4G . EE3) (eGE,- +E&jvi+ . ) =0 (5.50)
solving velocities perturbatively,
vi:v?+v{ (5.51)
where
W="¢g, (5.52)
m
and;
2et0 [ ehA e’h
I
= -EE3 | E;
K m (2mc2 Bt g2 ® 3) l
2 2 2
T eA T°e [ ehA e“h
o) (s ey s
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Introducing the density matrix as,
1 -
N = En(l +&.0) (5.54)

n=n'+n! is the total concentration of spins and E is the spin polarization vector

with the norm,
Al —nl

= (5.55)

where n' and n! are the concentrations of spins along the é and —é. We choose

the spin polarization to point in the third direction:
§=6Mh (5.56)
Defining the spin current as
J* = eTrH(Nvi) = 6c(0)Ei — 65,(6)E e E; (5.57)

where n =n! +n' and using the velocities we solve 8 deformed Hall conductivity

as:
ehAB  e*hOEZ\ ne’t

0)=1 3 5.58
oc(6) ( * mc? 4mzc4) m (5-58)

and 6 deformed spin hall conductivity is

2,3 2,412 2 2
D nht-e’A nht“e"E5 ne 0 et A

0)=— — 1 5.59
st (6) 2m3c? 8m*ct + é + (5-59)

When 6 =0 and 1/c* terms are ignored the conductivities are the same as [6].

5.2.2 Deformation of the Hall Effect Type Formulation

Another model for deriving spin Hall conductivity was developed in [5]. In this

approach, consider the gauge field,
5271'281']'61' (5.60)

consistent with Rashba spin-orbit coupling term. Related field strength .%;; is
estimated as:
2p

351']' = 7038,'1' (5.61)

We deal with the rir, plane with the noncommutativity parameter £ = 6 and

G = & (5.62)
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Hamiltonian of the system is the same with (5.6). Keeping only the first order

terms in 6 and p?, variables satisfy;

{ri,rj}CD = 98,']' (5.63)
2p20
{ri,pj}ep = (1+ ph 63> 0;j (5.64)
2 2
{Piapj}CD = %03817 (5.65)

once more p; is kinematic momenta. Equations of motion are,

2
( P0 ﬁ_eeg,, (5.66)
2p26 2p?
pi= <1+ ph 03) eEi—F%G:;Eijpj (5.67)

In the first order in 6 with v; = 7;, momentum of the particle can be extracted

from (5.66) is

2p%0
Pi_ (1 _P 03) vi+ €08 E; (5.68)
m h

The force acting on the particle up to the order 6 and p?

2p? 2p2e6
F,=mi; =eE; + %638”\/]' + pTeG3El' (5.69)

In order to study the motion without deflection we set F; = 0 and solve the

velocities as:

1 (en
eh
vh=— (Zp ee) &/E; (5.71)

Arrows T and | corresponds to the positive and negative eigenvalues of 03. Spin

current is defined as,

h
E(nTvlT —nhvh) (5.72)

where n! and n! are the concentrations of spins along the 2 and —2, respectively.

ji =

Employing (5.70) and (5.71) into (5.72) provides us to write spin current as,
ji=—0osu(0)ZxE (5.73)
where 0 deformed spin Hall conductivity defined as,

—ei*n 1
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with n=n'4n' is the concentration of states occupying the lower energy state

of the Rashba hamiltonian times a constant [,

2
p-l
n=-— 5.75
e, (3.75)
and coupling constant p and Rashba spin orbit coupling constant o is related to
—am

each other as p = —=.

0 deformed spin Hall conductivity is obtained as:

el eh0
osu(0) = a2 2 (5.76)

where 8 = (n! —nl)6.
In the limit 6 =0 (5.76) agrees with [13] for the value of [ =1/2.
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6. RESULTS AND DISCUSSION

The difference in the & dependence in the two formalisms is due to the fact that
in the former we use the density matrix to define the spin current but in the
latter we avoided it. Both of the formalisms lead to a deformed Hall conductivity
which can be stated as,

osy(0) =Xp+ 0% (6.1)

which yield spin Hall conductivity when the noncommutativity is switched off
0 = 0. We will focus on the spin Hall conductivity of the latter one (5.76). In
the sprit of interpreting the noncommutativity as a link between similar physical
phenomena 0 can be fixed to obtain other formulations of spin Hall effect. We
will illustrate this point of view considering spin Hall conductivities obtained by
inclusion of impurities, the Rashba type spin orbit couplings with higher order
momenta and the quantum spin Hall effect.

When impurity effects included into the Rashba hamiltonian which is linear in
momenta, the universal behavior of spin Hall conductivity [13| is swept out [14],
[15], [16]. This case is given with fixing the value of the deformation parameter

as
. /
G = ———.
0= T onn

However, dealing with Rashba type hamiltonian with higher order momenta

(6.2)

H=g - %bi(k)oi V() 6.3)

one finds a non-vanishing spin Hall conductivity [17] where k is the kinematic
momentum, & is the energy dispersion in the absence of spin-orbit coupling and
v is the velocity, by +iby = bo(k)exp(iNO) and

dIn |by| _dlnv

N= =—. 6.4
dlnk ’ +¢ dInk ©4)
Spin Hall conductivity results:
g eN (N*>—1\ _
=—— | —— | (N-C—-2). 6.5
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This can be achieved from (5.76) by setting [ = N and fixing the deformation

~ N NZ—1\ .
eHR:% [—1+ (N2+1) (N—C—Z)} (6.6)

Quantization of spin Hall conductance in units of 5 was predicted by [18]. Hence,

parameter as

the quantized spin Hall conductivity can be written as

e
Ogy = —ﬂu (6.7)

where U is a number depending on the physical system considered. This can be

obtained from (5.76) by fixing the deformation parameter as:
b= — (—1+2u) (6.8)
°= 2mh H- :

Hence the spin Hall effect in noncommutative coordinates can be considered as
the master formulation such that fixing the noncommutativity parameter 0 yields

different manifestations of the same physical phenomenon.
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