JSTANBUL TECHNICAL UNIVERSITY * INSTITUTE OF SCIENCE AND TECHNOLOGY

123 3

COMPUTER AIDED FAIRING OF SHIP HULL FORMS

“OASVINVIENOQ

U0 Wy Lng

PhD Thesis by
Ebru NARLI, Msc.

(508950001012) A
40030

Date of submission : 31 May 1999
Date of defence examination: 29 November 1999
Supervisor (Chairman): Assoc. Prof. Dr. Kadir SARIOZ (s 12.19327 K il
Members of the Examining Committee Prof. Dr. Resat BAYKAL (L.T.U.) 1312.4933 1. .‘L.

Prof. Dr. Esref ADALI (IL.T.U.) %.12, ‘99 Q. weew,

Prof.Dr. Nihat TEKIN (Y.T.U) 24\ .\A,Q\Af&

Prof.Dr. Abdiilkerim KAR (M.U.) 22,12 |58 Jﬁg}_ﬂ_j_ﬁl

NOVEMBER 1999



ISTANBUL TEKNIK UNIiVERSITESI * FEN BILIMLERI ENSTITUSU

TEKNE FORM YUZEYLERININ BILGISAYAR
DESTEKLI DUZGUNLESTIRILMES]

DOKTORA TEZi
Y. Miih. Ebru NARLI
(508950001012)

Tezin Enstitiiye Verildigi Tarih : 31 Mayis 1999
Tezin Savunuldugu Tarih : 29 Kasim 1999

Tez Daniymanai : Dog. Dr. Kadir SARIOZ
Diger Jiiri Uyeleri  Prof. Dr. Resat BAYKAL (i.T.U.)

Prof. Dr. Esref ADALI (i.T.U.)
Prof. Dr. Nihat TEKIN (Y.T.U.)

Prof. Dr. Abdiilkerim KAR (M.U.)

KASIM 1999



PREFACE

I would like to express my sincere gratitude to my thesis supervisor, Dr. Kadir
SARIOZ for his guidance and encouragement. I am grateful for the valuable advise,
critical appraisal, and many suggestions given by the members of the Faculty of
Naval Architecture and Ocean Engineering. I would also like to thank to my
qualification jury, particularly Prof. Dr. Resat BAYKAL, Prof. Dr. Nihat TEKIN,
Prof. Dr. Esref ADALI, and Assoc. Prof. Dr. Ahmet ALKAN for their suggestions
and critics.

The author is deeply indebted to her parents for their support, patience and
understanding.

May, 1999 Ebru NARLI

ii



TABLE OF CONTENTS

PREFACE

TABLE OF CONTENTS
ABBREVIATION

LIST OF TABLES

LIST OF FIGURES
NOMENCLATURE
SUMMARY

OZET

1. INTRODUCTION

2. A REVIEW OF SHIP HULL FORM DESIGN PROCESS
2.1. Standard Series Approach
2.2. Form Parameter Approach
2.3. Distortion of a Parent Hull
2.3.1. Linear Distortion Techniques
2.3.1.1. Swinging the Sectional Area Curve
2.3.1.2. One-Minus Prismatic Method
2.3.1.3. Modified One-Minus Prismatic Method
2.3.1.4. Moor's Method
2.3.2. Non-Linear Distortion Techniques
2.3.3. Shape Averaging Method

3. MATHEMATICAL REPRESENTATION OF SHIP LINES
SURFACES

3.1. Polynomial Representation of Ship Lines
3.1.1. Interpolating Polynomials
3.1.1.1. Interpolation of Curves Using Monomials
3.1.1.2. Lagrange Interpolation Polynomials
3.1.1.3. Newton Interpolation Polynomials
3.1.1.4. Hermite Interpolation Polynomials
3.1.2. Approximating Polynomials
3.1.2.1. Least Squares Polynomials
3.2. Spline Techniques in Hull Form Design
3.2.1. Cubic Splines
3.2.2. Bezier Curves

iii

11
14
15
15
18
22
23
26
28

AND
31

42
44
44
45
47
48
50
50
53
54
64



3.2.3. B-Spline Techniques
3.2.3.1. B-Spline Curves
3.2.3.2. B-Spline Surfaces
3.2.4. Comparison of Spline Techniques

4. GEOMETRIC PROPERTIES OF SHIP HULL FORMS
4.1. Parametric Curve Representation
4.2. Geometric Characterisation of Curves
4.2.1. Curvature
4.2.2. Torsion
4.3. Geometric Characterisation of Surfaces
4.4. The Concept of Fairness
4.5. Smoothing Process

5. FORWARD FAIRING OF SHIP HULL FORMS
5.1. Fairness and Closeness Metrics
5.2. Fairing of Hull Forms by Iterative B-Spline Approximation
5.3. Fairing of Hull Forms by Iterative B-Spline Fitting

6. INVERSE FAIRING OF SHIP HULL FORMS
6.1. Two-Dimensional Problem - Inverse Fairing of Ship Curves
6.2. Three-Dimensional Problem - Inverse Fairing of Ship Surfaces

7. AN OPTIMISATION APPROACH FOR FAIRING OF HULL FORMS
7.1. Formulation of the Optimisation Problem
7.1.1. Objective Function
7.1.2. Constraints
7.2. Method of Solution
7.2.1. Direct Search Method of Hooke and Jeeves
7.3. Two-Dimensional Optimisation; Curves
7.4. Hull Form Optimisation

71
71
84
89

90
90
91
93
95
96
103
106

109
111
113
125

130
131
134

140
140
142
144
145
146
148
152

8. APPLICATION AND COMPARISON OF DEVELOPED FAIRING

PROCEDURES
8.1. Application of Forward Fairing Procedure for the Test Case
8.2. Application of Inverse Fairing Procedure for the Test Case
8.3. Application of the Optimisation Approach for the Test Case

8.4. Comparative Assessment of Alternative Methodologies
9. CONCLUSIONS

REFERENCES

iv

157
157
158
161
166

168

171



APPENDIX A- TEST CURVE DEFINITIONS 178
APPENDIX B- TEST HULL SURFACE DEFINITIONS AND RESULTS 186

RESUME 217



ABBREVIATION

Cn
CAD
CAGD
CASD
CN
DWL
FP

FN

Gn
NPL
NURBS
SAC
US

2D

3D

: Aft Perpendicular

: nth degree parametric continuity

: Computer Aided Design

: Computer Aided Geometric Design
: Computer Aided Ship Design

: Closeness Number

: Design Waterline

: Fore Perpendicular

: Fairness Number

: nth degree geometric continuity

: National Physical Laboratory

: Non-Uniform Rational B-Splines
: Sectional Area Curve

: United States

: Two-Dimensional

: Three-Dimensional

vi



LIST OF TABLES

Table 2.1.

Table 2.2.

Table 2.3.

Table 2.4.

Table 2.5.

Table 2.6.

Table 3.1.
Table 3.2.
Table 3.3.
Table 4.1.
Table 4.2.
Table 5.1.
Table 5.2.
Table 5.3.
Table 5.4.

Table 5.5.
Table 7.1.

Table 8.1.

Table 8.2.

Table A.1.
Table A.2.

Table A.3.

Table A.4.

Table A.5.

Table A.6.

Table A.7.

Table A.8.

Page No
Typical standard SEries..........couvviiireniieiirriiieeie e, 10
Main particulars of the parent and variant form obtained by
swinging the sectional area curve................cooiviiiiinnennnn. 16
Main particulars of the parent and variant form derived by 1-C,
MEthOd. . ocie e 20
Main particulars of the parent and variant form obtained by
Lackenby’s method...........cccveiviiiiiiiiiiiiiieeae, 23
Main particulars of the parent and variant form derived by
Moor’s method........coovuiiiiiiiiii e 23
Main particulars of the parent and variant form derived by non-
linear diStortion. .. ....oveiueieinere i 28
Some classes of functions.........covvvvveeiiiiininiiieinennns. 42
Boundary terms of spline segments..............c.ccceceeiiinennn.n. 56
General characteristics of spline curves..............ccceeeevuenn.n. 89
The relationship of curve features with curvature................. 94
SUfACE tYPES. .. tueininiiiiii i 97
B-spline approximation of Wigley form.....................c.ooiiie 118
B-spline approximation of NPL parent hull......................... 121
B-spline approximation of corvette form............................. 123
B-spline fitting of Wigley form.................ccooiiiiiiiiiii, 129
B-spline fitting of NPL parent hull........c....cooviiiiiiiiiin. 129
Variation of fairness and closeness functions for a distorted
QUAAIALIC CUIVE. .. eueunitiieeee ettt eneenen 149
Forward fairing of the high-speed hull form using B-spline
APPTOXIMALION. . evuensetitet et etteeit ettt eeereaneteeananns 158
Comparison of the developed fairing methodologies............... 167
Offsets, first and second derivative values of hard-chine section 178
Offsets, first and second derivative values of Tanker Section-
N0 L3 e 179
Offsets, first and second derivative values of LPD 17 Section-
6 02 P 180
Offsets, first and second derivative values of LPD 17 Section-
NOL 38 et e 181
Offsets, first and second derivative values of LPD 17 Section-
NOAA. .o e 182
Offsets, first and second derivative values of NPL Section-
NO T e 183
Offsets, first and second derivative values of NPL Waterline-
N L e 184
Offsets, first and second derivative values of quadratic curve.... 185

vii



Table B.1.
Table B.2.

Table B.3.

Table B.4.

Table B.5.

Table B.6.

Control net points of test surface illustrated in Figure 3.10........
Wigley hull form offsets obtained from three different fairing
procedures (Forward, inverse and optimisation)....................
NPL hull form offsets obtained from two alternative forward
fairing procedures .........ooevviiiiiiii i
Trawler form offsets obtained from different distortion
tECHNIQUES. .. eeenee e
Offset tables of parent, variant and final trawler form obtained
from shape averaging method................c..coooi
Parent and final form offsets with computed first and second
derIVAtIVES. . te ittt e e

viii



LIST OF FIGURES

Figure 2.1
Figure 2.2

Figure 2.3
Figure 2.4
Figure 2.5

Figure 2.6
Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11
Figure 3.1

Figure 3.2.a
Figure 3.2.b
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14

Figure 3.15

Page No
: General structure of a hull form design methodology.................. 8
: Sectional Area Curve (SAC) and Design Waterline (DWL)
curves for a typical hull form.......cccocvvevveevircieneseneciinrieirrceeenne, 12
: Form parameter approach..........cccccevvverivenerniecniniccnenscneeneennen. 13
: Swinging the sectional area curve to change LCB position......... 15

: Body plan, sectional area and loaded waterline curves for the

parent and variant form derived by swinging the sectional area
curve.. e rereerieeenieennaenenes 17

: Geometncal denvatron of sh1ft1ng functlon ............................... 18
: Body plan, sectional area and loaded waterline curves for the

parent and variant form derived by using the one minus
prismatic method................... ... 21

: Body plan, sectlonal area and loaded waterhne curves for the

parent and variant form derived by using the Lackenby s
method.. e 24

: Body plan sectlonal area and loaded waterhne curves for the

parent and variant form derived by using the Moor’s method..... 25

: Body plan, sectional area and loaded waterline curves for the

parent and variant form derived by using a non-linear distortion

method... eeeens ... ceennn 27
: Body plan for the parent, 1ntermed1ate and ﬁnal variant forms

derived by using the shape averaging method........................ 30
: The sequence of development of mathematical curve and

surface description methods.............oooiiiii 41
: An interpolating polynomial............c.oooiiiiiiiii 44
: An approximating polynormal 44
: Lagrange polynomials.... TR PRSPPI
: Newton polynomials................ . 47
: Application of least squares polynormal to a hard ch1ne sectlon 52
: Physical spline and weights.............ooooiiiiiiiini 56
: Two adjacent SE@MENtS......c.vuvuiniuiririeiieieicneieniiaans 57
: Illustration of n piecewise cubic segments............c..coeviinnn 59
: Cubic spline blending functions... .- ereeeen. 60
: Typical ship sections with first and second denvatlves ............. 62
: Cubic spline representation of typical ship sections.................! 63
: The de Casteljau algorlthm ceeeees .. 64

: The relation among varying degrees of Bernstem polynomrals . 66
: Bernstein blending functions (a) quadratic case (n=2), three

polygon points (b) cubic case (n=3), four polygon points.......... 67

: An example of a fifth degree Bezier curve and its defining

X



Figure 3.16
Figure 3.17
Figure 3.18

Figure 3.19
Figure 3.20
Figure 3.21
Figure 3.22

Figure 3.23

Figure 3.24
Figure 3.25

Figure 3.26
Figure 3.27
Figure 3.28
Figure 3.29

Figure 3.30.a
Figure 3.30.b
Figure 3.31.a :
Figure 3.31.b :
Figure 3.32.a
Figure 3.32.b

Figure 4.1.

Figure 4.2
Figure 4.3

Figure 4.4
Figure 4.5

Figure 4.6
Figure 4.7

Figure 4.8.
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4.a
Figure 5.4.b
Figure 5.5.a
Figure 5.5.b
Figure 5.6.a
Figure 5.6.b
Figure 5.7.a
Figure 5.7.b
Figure 5.8

Figure 5.9.a.

POLYBOML. cotitiiitii ittt et e e e e 67

: Bezier approximation for typical ship sections........................ 70
: Dependence of B-spline basis functions... ceeeenn 12
: Open (non-periodic) uniform B-spline ba51s functlons k*3

o 74
: Open non-uniform B-spline basis functions, k=3, n+1=5.......... 75
: Periodic (closed) uniform B-spline basis functions, k=4,n+1=4...76
: The de Boor algorithm for the k=4 case...................oeeiniii. 77
: An open uniform B-spline curve of order k=4, and its defining

POLYZOM. .. e 78
: Comparison of quadratic open uniform and non-uniform

B-SPline CUIVES. ...ttt i e 79
: Effect of varying order on a B-spline curve............cccooeveeii. 79
: Effect of multiple vertices at B, on a B-spline curve of order

four, k=4.. evereenene.. 80
: Effect of vertex modlﬁcatlons over a B spllne CUIVE....ccennnnnn. 81
: Convex hulls of B-spline segments of various orders .............. 82
: Effect of collinear control points over a B-spline curve............ 82
: Cubic uniform B-spline representation of typical ship sections... 83
: Bi-cubic B-spline surface.............ccocevceevveeiieiiiiiieniienann.... 85
sItscontrol net.......ooveii i 85

Bi-cubic B-spline surface wireframe model of Wigley hull form 87
Bi-cubic B-spline surface representation of Wigley hull form.... 87

: Bi-cubic B-spline surface wireframe model of NPL hull form.... 88
: Bi-cubic B-spline surface representation of NPL hull form........ 88
: Mapping from t parameter space into 533 space for a spatial

CUIVE . .t e ttteneet et tee e et ean e aetaeeneeeeaansneeansaseeasessrianannsensns 91

The Frenet Frame............oooiiiiiiiiiiiiieee e 93
: Colour encoded contour lines (y=const.) for the surface of

Figure 3.30....cciiiriiii e, 98
: Colour encoded contour lines (y=const.) for Wigley form ........ 99

: Colour encoded Gaussian curvature image of Wigley form

: Colour encoded mean curvature image of Wigley form surface.. 101
: Colour encoded sum of squared principal curvatures of Wigley

form surface.......ooovvveiiiii i 102
: Smoothing process applied to a section line.......................... 108
: Effect of order in B-spline approximation of a waterline......... 114
: Hull form fairing process.........coooevivieiiiniiiiiniiiieiinne 116
: B-spline approximation of Wigley form.............................. 117
: Initial NPL form........coooiiiiiiii v 119
: B-spline approximation of NPL form.....................cooeeeiene. 119
: NPL initial hull form...............oooooiii 120
:NPL final hull form...........cooiiiiiiiii e 120

NPL initial hull form..............cooi 120
¢ NPL final hull form.........cccoooiiiii 120
: Original corvette (Parent form).............coooovviiiiiiininnn. 122
: B-spline approximation of corvette (Final form).................... 122
: Final and distorted hulls of the corvette....................c......... 124
1 Original COrVEHE. . .coevuniiiiiie e 124



Figure 5.9.b
Figure 5.10

Figure 6.1

Figure 6.2
Figure 6.3.a2
Figure 6.3.b
Figure 6.4

Figure 6.5.a. :

Figure 6.5.b
Figure 7.1
Figure 7.2
Figure 7.3.a
Figure 7.3.b

Figure 7.4.a

Figure 7.4.b

Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4

Figure 8.5.a
Figure 8.5.b
Figure 8.6.a
Figure 8.6.b
Figure A.1
Figure A.2
Figure A.3
Figure A4
Figure A5
Figure A.6
Figure A.7
Figure A.8
Figure B.1
Figure B.2
Figure B.3
Figure B.4
Figure B.5
Figure B.6
Figure B.7
Figure B.8
Figure B.9
Figure B.10

tFinal form........coooiiiiii 124
: B-spline fitting of Wigley form ...............coooviiiiiinil. 127
Figure 5.11.a :
Figure 5.11.b :

Initial NPL form.......ccvoiiiiiiiiiiiiici e, 128
B-spline fitting of NPL form ..........cocoooviiiiiiiiiiinns 128

: B-spline approximation of curvature for a typical tanker section

for varying degrees.....o.vuiiiieiiiiiiiie e 133
: Distorted Wigley hull form and parametric second derivatives... 135
: Gaussian curvature map of distorted Wigley hull form............. 136
: Mean curvature map of distorted Wigley hull form................. 136

: Distorted Wigley form after fairing and parametric second

IS A 110 - TR 138

: Mean curvature map of distorted Wigley form after inverse

F£271 31100 P 139

: Structure of the optimisation based hull form fairing procedure.. 142
: Hooke and Jeeves direct search algorithm........................... 147
: Effect of fairness and closeness objectives on the fairing of a

distorted quadratic CUIVe..........oviieriiiiiiiiiiiiiireeeeene, 150
: Effect of fairness and closeness objectives on the fairing of a
distorted quadratic Curve...........ooeveviiiiiiiieiiiinniiaieeeeaen, 151
: Original distorted Wigley form ..............c..cooiiiiiiin... 154
: Optimised distorted Wigley form ................cooiiiiinn.l. 153
: Parent high-speed hull form ................cooooiiiiii 159
: Final high-speed hull form ..o, 160
: High-speed hull form and parametric second derivatives.......... 162
: High-speed hull form and parametric second derivatives after
INVErse fairing.......ooovveiitiii i e 163
: 3D mesh view of initial high-speed hull form ...................... 164
: Shaded view of initial high-speed hull form ......................... 164
: 3D mesh view of optimised high-speed hull form .................. 165
: Shaded view of optimised high-speed hull form .................... 165
: Hard-chine section in Figure 3.5..........cocvi veiiiiiiiinniinn.. 178
: Tanker section NO. 13, e, 179
LPD 17-Section NO.27. .. eiueiiiiiieieiietiieiees i, 180
LPD 17-Section NO.38....oviiiiiiiiieiiiiiiieiit e, 181
LPD 17-Section No.44.....ooviiiiiiiiiiiiiiiiiiiit e, 182
:NPL -Section No.11. ..o e 183
: NPL -Waterline No.11....cooiiiiiiiiiiiiiiiiiee e, 184
: Deliberately distorted quadratic curve...... ............ccevevenen... 185
: Defining control net in Figure 3.10.............c.oc oiiiinines. 186
: Mathematical Wigley hull form body plan......... .................. 187
: NPL hull form body plan............ccooiiiiiniiiiin ceiiiinieenns 194
: Parent trawler form.........coooooiiiiiiiiiiii 202
: Parent trawler form ..o 206
: Trawler form (SWINE)......cooiriiiiiiiiiiiiiiis s 206
: Trawler form (1-Cp)..oeuvvinnriinni 206
: Trawler form (Lackenby).........coooviiiiiiiiiiii v, 206
: Trawler form (MoOOT).......ocociiiiiiiiiiiiiie e, 206
: Trawler form (Non-linear).........c..covviiieiiviiiiiiins coiineennnn 206

xi



Figure B.11

: Typical high-speed craft used in applications in Chapter 8

xii

........



NOMENCLATURE

a(x)
A
A(x)

~wzw q-

~
»

NONNNNEFEW
5]

o o
a0 Og¢
3 7S

o7}
-
=

: Longitudinal distribution of the immersed sectional area
: Total area under the SAC indicating fullness

: Distribution of sectional areas below the design waterline along the
length of the ship

: Design waterplane area

: Curve’s binormal vector

: Longitudinal distribution of design waterline breadth

: Beam

: Coordinates of the defining polygon vertices, de Boor points
: Beam to draught ratio

: Block coefficient

: Midship area coefficient

: Prismatic coefficient

: Afterbody prismatic coefficient

: Forebody prismatic coefficient

: Waterplane area coefficient

:Added slice area representing the required change in prismatic
coefficient

: Change in afterbody prismatic coefficient

: Change in forebody prismatic coefficient

: Longitudinal transfer of moment of the strip

: Differential area

: Infinitesimal length

: Differential area

: Depth

: Directions of principal curvatures

:Young’s modulus of elasticity determined by the material properties
of the beam

: Error of approximation for least squares method

: Elastic bending energy

: Dependent variable corresponding to offset values

: Three-dimensional vector functions

: Cubic spline blending functions

: Objective function

: Analytic function, approximating polynomial

: Constraint functions

: Three-dimensional vector functions

: Centroid of the added area in the afterbody

: Centroid of the added area in the forebody

: Weights associated with defining polygon vertices

: Mean curvature

: Hermite polynomials

Xiii



I : Moment of inertia determined by the cross sectional shape of the
beam

| | : Parameter interval

: Bezier or Bernstein basis functions

: Gaussian curvature

L : Ship length

L/B : Length to beam ratio

LCB : Longitudinal centre of buoyancy

LCF : Longitudinal centre of flotation

L.(t) : Lagrange polynomial basis functions

5]!.4CB : Required shift of LCB

M(x) : Bending moment along the length of the beam

Mj,l : Normalised B-spline basis functions of degree 1-1

n : Unit surface normal

nj(t) : Newton polynomials

n,m : Number of points

n(u) : Curve’s normal vector

N, : Normalised B-spline basis functions of degree k-1

p : Parallel middie body length

Sp : Required change in parallel middle body length

P. : Given interpolation/approximation points

P(t) : Position vector of any point on the curve

Q(u,v) : Surface definition

Q,Q,,Q,, :Parametric partial derivatives of a surface

r : Multiplicity of parameter value t

R, : Radius of curvature of any curved line

R(x) : Radius of curvature of the beam

S : Sum of squared principal curvatures

t : Arbitrary curve parameter

t o : Minimum parameter value

t : Maximum parameter value

t(u) : Curve’s tangent vector

T : Draught

X : Independent variable corresponding to sectional positions

X, : Afterbody centroid of the original sectional area curve

. : Longitudinal centre of buoyancy

X, : Forebody centroid of the original sectional area curve

X, : Longitudinal centre of flotation

X; : Elements of knot vector

X oY oZ, : Longitudinal, horizontal, vertical co-ordinates for the variant form
geometry

X,¥,Z : Longitudinal, horizontal, vertical co-ordinates of the parent form
geometry

X pXp..0sX ¢ Design variables

x(t),y(t),z(t) : Real-valued functions of parameter t

X : A vertical strip length

S5X : Linear shift of dimensionless sectional area ordinates

1X] : Knot vector denoting parameterisation of the B-spline curves

X(s) : Arc length parameterisation of the curve

Xr(t) : First derivative

Xiv



Xo(t)
X(t),X(u)

W,
i

y
y(x)
y' (%)
y”(X)
y
u,v,w

: Second derivative

: Regular parameterisation of the curve, vector-valued function
: Weights factors

: Offset values

: Mathematical spline curve

: First derivative of the mathematical spline curve

: Second derivative of the mathematical spline curve

: Vertical centre of buoyancy

: Parametric directions

: Displacement

: Displaced volume

: Required angle of shift for adjusting the LCB position
: Euclidean space

: Coefficients of monomials

: Kronecker delta

: Deviation at the ith offset

: Basis functions for least squares method

: Curvature of a curve

: Torsion of a curve

: Principal normal curvatures

XV



COMPUTER AIDED FAIRING OF SHIP HULL FORMS
SUMMARY

This thesis describes the problem of fairing of ship hull forms and introduces novel
procedures which can be used in the early stages of the design process to produce fair
hull forms. These procedures range from B-spline fitting of two-dimensional ship
lines to complex optimisation formulations where the designer may specify various
objective functions and geometric constraints to obtain a three-dimensional fair hull
form.

Development of a three-dimensional fair hull form is one of the main design
requirements of the ship design process. This form must satisfy the design objectives
and constraints of the problem in terms of performance, arrangement, safety, cost etc.
The fairness of the hull form will be required to improve hydrodynamic performance,
producibility characteristics and aesthetic properties.

The traditional solution of the fairing problem is the use of physical splines and
weights which was introduced in the 18th century and has been successfully used for
many ship types. This method is based on the successive fairing of ship lines on three
different planes in an iterative manner. Provided that the designer has sufficient
experience and time, the resultant form should have three-dimensional fairing
characteristics. The process has no objective measures and the fairing characteristics
of the resultant form greatly depends on the designer’s experience and ability.
Moreover, excessive time and experienced personnel will be required.

However, in the preliminary design stage there may be several alternatives to be
investigated for further elaboration in a very limited time schedule. Furthermore,
modern performance analysis procedures require more accurate hull form definitions.

This problem, i.e., the development of several accurately defined fair hull forms in
the preliminary design stage necessitates the use of computer aided design
methodologies.

Fairing is a part of most ship design packages commercially available today. In many
cases the fairing procedures are based on interactive routines where the designer
visually observes the form and interactively modifies it until satisfacatory fairness is
achieved. Alternatively the designer is presented with curvature plots which will help
him identify the regions of unfairness. These procedures can be seen as the
computerised version of the manual fairing method and hence suffer the same
drawbacks, i.e., the need for excessive time and experienced personnel.

The designer clearly needs automated procedures in which the fairness is defined in
an objective manner and achieved within the boundaries of the design problem.
Hence, this thesis attempts to develop automated fairing procedures to be used in the
preliminary design stage. Three novel computational fairing procedures are
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developed in the context of this thesis. The efficiency and the applicability of these
novel procedures are shown in realistic ship hull form fairing problems. The basic
principles and limitations of these methods are briefly described in the following
paragraphs.

The first proposed approach is based on B-spline approximating (or fitting) of ship
lines and hull surfaces, and referred to as forward fairing of ship hull forms. This
process is carried out in an iterative manner until satisfactory fairness is achieved.
This approach closely represents the manual fairing procedure in which the designer
deals with each design curve separately and the global fairness is assumed to be
achieved when all the curves on three different planes are maintained. The difference
stems from the fact that the sum of the squares of curvature calculated at offset points
are introduced as an indicator of fairness, and hence hull forms can be evaluated in
terms of a numerical criterion. The main problem of this computational fairing
approach is due to the deviation of offset points in each iteration. In many cases
many iteration are needed and cumulative deviations may result in final forms too
different from the original form to be acceptable. However, this problem may be
avoided by using an alternative approach of B-spline fitting or by using affine
transformation to the final form.

The second alternative fairing procedure is based on modification of curvature curves
and surfaces, and named as inverse fairing of ship hull forms. Since the fairness is
closely related to curvature, fair ship lines and hull surfaces can be obtained by
modifying the curvature. Several techniques may be used to represent the curvature
curves or surfaces. These techniques range from simple interpolating polynomials to
complex NURBS surfaces. Applications indicate that representation of curvature
curves or surfaces by mathematical spline curves or surfaces can be used to improve
the fairness of ship hull forms with acceptable penalty in closeness to the original
form.

Ultimately, the fairing of ship hull forms is formulated as an optimisation problem as
the main goal of an automated fairing procedure is to hide all of the numerical details
of the fairing process from the designer. This optimisation approach for fairing of
ship hull forms is based on a non-linear direct search method in which the fairness of
the hull surface is the objective function to be optimised subject to geometric
constraints such as position and normals. One of the main concerns of the designer in
a fairing problem is not to deviate too much from the original form in order not to
degrade performance characteristics already obtained. Therefore, a closeness
constraint may be used to ensure that the deviations between the parent and variant
designs are not excessive. Additional constraints such as surface area or hull volume
can also be defined. The results of the optimisation process indicate that provided
that the designer can specify his objectives and constraints clearly, the procedure will
generate fair hull forms which satisfies the constraints of the design problem.

The developed procedures have been applied to actual ship lines and hull forms to
prove the capability and flexibility of the methodologies in practical problems.

Xxvii



TEKNE FORM  YUZEYLERININ  BILGISAYAR  DESTEKLI
DUZGUNLESTIRILMESI

OZET

Bu tezde gemi tekne formlarmin diizglinlestirilmesi problemi tanitilmakta ve 6n
dizayn asamasinda tekne formlarinin diizgiinlestirilmesi igin kullanilabilecek yeni
yontemler sunulmaktadir. Bu yontemler karmagiklik agisindan biiyiikk farkliliklar
gosterebilmektedir. Ornegin, problem basit olarak tekne formlarii uygun dereceden
bir B-spline yiizeyi ile temsil etmek seklinde tamimlanabilecegi gibi ¢ok daha
karmagik olarak bir nonlineer optimizasyon problemi olarak da tanimlanabilir.

Tekne formlarimin li¢ boyutlu diizglinliigii hidrodinamik performans ve iiretim
kolaylig1 agisindan mutlaka saglanmasi gereken bir 6zelliktir. Bu amagla kullanilan
konvansiyonel yontem olan fiziksel tirizler ve agirliklar 18. ytizyildan beri basar: ile
uygulanmaktadir. Bu yontemde {i¢ boyutlu tekne formu ti¢ ayr1 diizlemde iki boyutlu
dizayn egrileri ile temsil edilir ve iteratif bir tarzda uygulanan diizgiinlestirme islemi
sonunda ti¢ boyutlu diizgiin bir form elde edilebilir. Yeterli zaman ve deneyimli
uzman bulunmasi durumunda bu y6ntem olduk¢a bagarilidir. Yontemin temel
dezavantajlarindan biri diizgiinliik kriterinin uzmana bagli olarak degismesi ve ayni
probleme ¢ok farkli ¢oziimler tiretilebilecegi gercegidir.

Guiniimiizde yaygin rekabetin hiikiim siirdiigii bir ortamda gemi 6n dizaym g¢ok
sayida alternatifin kisa zaman dilimleri i¢inde gelistirilmesini ve giivenilir gelismis
performans analiz yontemleri kullanarak incelenmesini zorunlu kilmaktadir. Bu tiir
performans analiz yontemleri hassas ve detayll tanumlanmis tekne formlarn
gerektirmektedir. Bu durumda dizayner ©n dizayn asamasinda kisa zaman
dilimlerinde hassas ve detayli olarak tanimlanmis diizgiin alternatif tekne formlar1
gelistirmek durumundadir.

Tekne formu diizglinlestirme prosediirii halen ¢esitli bilgisayar destekli gemi dizayn
paket programlarinda yaygin olarak kullanilmaktadir. Genel uygulamalar interaktif
olarak gerceklesmekte ve dizaynerin dizayn form egrilerini interaktif olarak
diizgiinlestirmesi gerekmektedir. Genellikle, egrilik egrisi veya yiizeyi kullanilarak
formun ne derece diizgiin oldugu dizaynere sunulmaktadir. Bu yo6ntemler
konvansiyonel yéntemin sahip oldugu tim dezavantajlara sahiptir. Yani, objektif bir
kriter yoktur, deneyimli personel gereklidir ve islem zaman alicidir.

On dizayn asamasinda ¢ok sayida hassas ve detayh tanimlanmus diizgiin tekne
formlarn gelistirmek durumunda olan dizayner otomatik olarak diizgtinlestirme islemi
yapacak prosediirlere gereksinim duyacaktir. Bu tezde bu amaca yonelik olarak ¢n
dizayn asamasinda kullamlabilecek ii¢ yeni tekne form diizglinlestirme yontemi
gelistirilmigtir. Geligtirilen tiim yOntemlerin bagsarist ve uygulanabilirlifi gergek
tekne form ve egrilerinin  diizglinlestirme  problemlerine  uygulanarak
gosterilmektedir.
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Gelistirilen ilk yontem tekne form egri ve yiizeylerinin dogrudan diizgiinlestirilmesi
olarak adlandinimakta ve y6ntemin esasi, konvansiyonel tiriz ve agirlik metodundan
esinlenerek diizglinlestirmenin insan miidahelesi olmadan bilgisayar ortaminda
gerceklenmesine dayanmaktadir. Tekne formlarinin ii¢ boyutlu dizgiinlestirme
problemi iki boyuta indirgenmekte ve tekne form dizayn egrileri uygun dereceden B-
spline egrileri ile temsil edilmekte ve yeterli diizgiinlik saglanana kadar bu islem
iteratif olarak farkli diizlemlerde devam etmektedir. Iterasyonlar sonucu her iig
diizlemde yeterli yaklagiklik elde edildiginde {i¢ boyutlu diizgiin bir form elde etmek
miimkiin olabilmektedir. Bu yontemle {iretilen formlarin diizgiinliigii ntimerik bir
deger olan diizgiinliik sayisinin degeri ile degerlendirilmektedir. Diizglinliik sayisinin
tarifi diizgilinliigiin saptanmasinda en giivenli kriter olan egrilik egrisi yardimiyla,
egrilik egrisini iyi bir yaklagimla temsil ettigi varsayilan ikinci tiirev degerlerinin
karelerinin toplami olarak yapilmaktadir. Sonugta elde edilen form, iterasyon
sayisina bagli olarak orijinal formdan farkli olabilmektedir. Bu tiir durumlarda
uygulanacak bir afin dontigiim ile orijinal formun sahip oldugu form ve performans
karakteristiklerini korumak miimkiin olabilecektir.

Gelistirilen ikinci yontem tekne formlarimin geriye domiik diizgiinlestirilmesi olarak
adlandiriimaktadir. Tekne formlarimi diizgiinlestirmek tizere egrilik yiizeyleri uygun
matematiksel yiizeyler ile temsil edilmekte ve geri doniisiim ile tekne formu elde
edilmektedir. Tekne formlarimin diizgiinliiglinii en iyi temsil eden kriterler egrilik
yiizeyine dayandigi igin bu yliizeylerin diizgiinlestirilmesi ile elde edilen yeni
yiizeyler de orijinal yiizeye gére gok daha diizgiin olmaktadir. Egrilik yiizeylerini
temsil etmek iizere ¢ok farkli matematiksel ifadeler kullanilabilmektedir. Egrilik
yiizeylerini temsil etmek lizere avantajlar1 ve bagaris1 kanitlanmig B-spline teknikleri
se¢ilmigtir. Kullamlan matematiksel ifadelerin egrilik yiizeyini yakin temsili
saglanarak diizgiinlestirilmis ylizeyin orijinal ylizeye yakinlig1 saglanabilmektedir.

Gelistirilen son yontem fekne formlarimin diizgiinlestirilmesi igin optimizasyon
yaklagimi olarak adlandirilmigtir. Tekne formlarmin diizgiinlestirilmesine yonelik
¢aligmalarda temel amag tiim ara iglemlerin dizaynerden gizlenmesi oldugundan bu
amaca yo6nelik olarak tekne form egrilerinin diizgiinlestirilmesi iglemi bir non-lineer
optimizasyon problemi olarak formiile edilmektedir. Bu formiilasyonda dizayn
degiskenleri olarak tekne formunu olugturan ofset noktalari, amag¢ fonksiyonu olarak
ise tekne ylizeyinin diizgiinliigiinii belirleyen egrilik ylizeyine bagli fonksiyonlar
kullanilmaktadir. Degisik geometrik veya performansa bagli kisitlar kullamlarak
problemin ¢6ziim alami sinirlanabilmektedir. Bu formiilasyon ile gerceklestirilen
calismalar ama¢ fonksiyonunun ve kisitlarin dogru seg¢ilmesi durumunda diizgiin
tekne formlarinin kolay ve hizli bir sekilde elde edilecegini gostermektedir.

Gelistirilen yontemler ger¢ek tckne form egri ve yiizeylerine uygulanarak pratik
problemlerdeki uygulanabilirlikleri kanitlanmaktadir.
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1. INTRODUCTION

The first level of the ship design process is to determine the main dimensions and
produce a fair hull form with the desired form characteristics. Hence, fairing of ship
hull forms is one of the main tasks in a ship design process. Since the great majority
of hull forms are free form-empirical shapes rather than mathematical forms, a
fairing process is generally required in all stages of hull form design. The fairing
problem may have different characteristics depending on the design stage and the
fairness of a hull form should be improved as the design is developed.

During the early stages of the design process there is little data available to produce a
fair hull form and the designer often initiates the process with a rough sketch, a
successful previous design, or few form parameters. Prediction of performance
characteristics of ships has tended in the past to be based on simplified analytic
approximations to the hull form and hence three-dimensional fairness, accurate
enough to carry out basic hydrostatic and hydrodynamic calculations was sufficient
in the preliminary design stage. This was necessary in order to reduce the complexity
of the analysis to a practicable computational level. However, today ship designers
require more accurate predictions on the performance characteristics of their designs
and modern computer processing power now available enables more extensive
analyses to be carried out. Therefore, the designer needs to have a precisely defined
fair hull surface even in the first stages of ship design process.

Today most modern shipyards use improved production technology based on pre-
fabricated sections and blocks, which require high degree of accuracy. Rectification
of errors at the production stage will be costly and may well build residual stresses
into the hull. Hence it is of vital importance to have an accurately defined three-

dimensional fair hull surface before the construction stage is reached.

Fairing of ship hull forms is, traditionally, achieved by battens and weights in which
excessive time and experienced personnel are required. This process is based on the
assumption that a three dimensional hull form can be represented by three two-
dimensional orthogonal planes representing section lines, waterlines and buttock
lines. Therefore, the complex problem of three-dimensional fairness is reduced to
three sets of two-dimensional fairing problems. Each ship line on three planes can be

faired independently, however in order to achieve three-dimensional fairness these



curves must be compatible, i.e., an iterative process, which would require time, and
experience is required. Obviously, the manual graphical fairing method employs no
objective criteria and uses a visual judgement that incorporates the experience of the
person who is performing the fairing. Indeed, it is quite common for two-experienced
loftsmen, starting with the same initial data to produce two different sets of
subjectively fair hull forms.

The advent of computer in the shipbuilding, since the early fifties, changed the
scope, style, and methodology of mathematical ship hull form definition in a
dramatic way. Today modern shipbuilding around the world can no longer be
imagined without intensive use of computers and computational methods of ship
geometry definition. The production of ship parts is performed by numerically
controlled machine tools, which require accurate computer based ship geometry
information as input.

Today, modern computing technology has provided numerous software systems to
develop ship geometry design and production information which are now a common
feature in many shipyards and design offices. This technology is particularly useful
in the preliminary design stage of ships where a large number of alternatives need to
be developed and analysed. These software systems generally employ two distinct
approaches, i.e., form creating and form fairing.

The form creating approach requires the designer to plot a defining polygon (or
control net) which roughly approximates the desired curve (or surface). A B-spline
curve (or surface) of suitable order is automatically plotted on screen and the
designer can judge whether he is satisfied with the curve. It is not clear what type of
measures will be used to judge the form apart from the designer’s eyes. Obviously,
there are many objectives and constraints to be satisfied in a hull form design
process, hence it is doubtful that the designer can control all these aspects in an

interactive process.

The form fairing applications, on the other hand, are based on interactive
modification of design curves with the aid of curvature plots. The coupled sign
variations on the curvature curve are indicators of the erroneous points on the
original curve. The designer eliminates the undesirable features of the curve and
relocates these points and checks the new corresponding curvature plot. This process
is repeated until a curve of acceptable fairness is achieved. The process is based on
visual observations and the effectiveness of the process depends mainly on the skills
of the person controlling the process. This approach gives to designer complete



control of the process, however, it is also doubtful in many cases that all erroneous
points can be identified visually.

Interactive techniques based on form creating or form fairing are often praised as the
optimal tool to create ship hull forms. Yet this interactive control has several
drawbacks, some of which are listed below:

e The procedure makes extensive use of human resources, which tend to be more
and more expensive and minimal use of computer, which gets cheaper.

o It is assumed that the user can identify the data points to be modified as well as
the amount of correction to be made where may be doubtful in many cases.

o Fairness is a global feature of the curve, whereas interactive changes are local.
The sequence of local modifications may not always lead to a fair curve, which is
not much deviated from the original curve.

e This approach may be viewed as the computerised version of conventional
manual fairing method and hence experienced personnel and excessive time
would be required.

e This approach is not compatible with an automated hull form design process
because of its interactive nature.

Ideal solution of the problem of fairing of hull forms can be achieved by using
computers extensively with no human interaction, which is clearly desirable in
CASD environment in order to increase the automation in the design process.
Although many researchers have studied on this subject the optimum solution of the
surface-fairing problem can not be considered as solved yet. Various algorithms are
proposed such as local fairing by knot removal, local and global fairing based on

energy minimisation etc., but all requiring human interruption.

Three novel methods, for fairing ship hull forms in an automated manner, are
developed and presented in this thesis. It is presumed that an initial hull form which
satisfies the objectives and constraints of the design problem in terms of
arrangement, space, powering, stability, seakeeping etc. is available and the designer
needs to modify this form in order to improve fairness characteristics for detailed
calculations or production purposes. The details of the developed procedures are
given in Chapters 5, 6 and 7.



First, Chapter 2 presents a brief review of hull form design procedure in the
preliminary design stage. It is shown that the safest method to generate a fair hull
form, which satisfies the design requirements, is to distort a parent hull with
satisfactory performance characteristics. The details of various linear and non-linear
variation methods are described and the advantages and drawbacks are discussed in
this chapter. All techniques are applied to a typical fishing vessel form based on
well-known BSRA trawler series (Pattullo and Thomson (1965)). The variation or
distortion of a parent hull will inevitably require a fairing process even if the parent
hull has satisfactory fairing characteristics. (Narh et al, 1999)

Chapter 3 briefly describes the mathematical models used in representing ship hull
forms. It is shown that a wide range of mathematical models from simple
polynomials to complex non-uniform rational B-splines is available. All these
models are shown to have drawbacks, which limit their application in practical hull
form representation problems. Typical applications are also presented.

Since the fairness of a curve or surface is related to its geometric characteristics the
basic geometrical properties of curves and surfaces are discussed in Chapter 4. It is
shown that the curvature of a curve or surface is the most important geometric
parameter in a fairing problem. Several fairing measures based on mean or Gaussian
curvature are described and applied to typical ship lines.

Two forward fairing procedures are introduced in Chapter 5. These procedures are
based on the approximation of a given form plan by mathematical functions such as
polynomials, cubic splines, Bézier curves and B-splines. The experience has shown
that B-spline curves provide the best alternative for approximating ship lines. As the
order of the B-spline curves is increased smoother curves can be obtained but the
deviation from the original data points will increase. This feature of B-spline curves
has led to the development of practical forward fairing procedures, which are
described in detail in this chapter.

The first forward fairing procedure is based on successive application of B-spline
curves for ship waterlines and section lines in an iterative manner until a satisfactory
degree of fairness is achieved. The offset points of each waterline in the lines plan is
assumed to be the polygon vertices for the B-spline representation and the modified
offsets are then obtained from the B-spline curve. These offsets then become the
polygon vertices for the corresponding section lines. The process is successively
applied until satisfactory levels of fairness and deviation from original offsets are
obtained. This algorithm is applied for fairing the lines of a distorted mathematical



hull form and the parent hull of a well-known high-speed displacement hull form
series, and a naval corvette form. (Narl, 1997)

The second forward fairing procedure adopted in this study is similar in its iterative
manner with the first approach. Here, the successive application of B-spline curves
starts with section lines and continues with B-spline curve fit for waterlines. The B-
spline curve fit process provides the polygon vertices, which yield a B-spline curve
representation of the original offset points. By selecting suitable number of polygon
vertices one can increase the degree of fairness with increasing penalty on closeness
to original points. If the number of polygon vertices is the same as the offset points,
the generated B-spline curve from this polygon fits through all offset points. This
feature of B-spline curve fit satisfies the closeness requirement, as there is no
deviation from original points. However, the fitted curve may develop unwanted
oscillations. Therefore, a compromise between the degree of fairness and closeness
should be sought by changing the number of polygon vertices. This process is also
applied for fairing the lines of a distorted mathematical hull form and the parent hull
of a well-known high-speed displacement hull form series. (Narl and Sar16z, 1998)

It is a well-known fact that the best indicator of fairness of a curve or surface is its
corresponding curvature plot, and they provide a powerful means for curve and
surface interrogation. Thus, by improving the curvature plot of a curve or surface it is
possible to increase fairness characteristics. An inverse fairing approach based on
this fact is presented in Chapter 6. Several mathematical techniques are used to
represent curvature plots and the original offsets are obtained by double integration.
The details of this inverse fairing procedure is presented and applied for fairing the
lines of a distorted mathematical hull form.

In Chapter 7, the fairing problem is defined as an optimisation procedure in which
the objective function is a fairness measure to be optimised subject to constraints
related to geometric or performance characteristics of the hull form. It is shown that
the problem is highly non-linear and a non-linear optimisation technique based on
Hooke and Jeeves algorithm is used. Although excess computational work is
required, the optimisation techniques are shown to be practical with the availability
of fast computers and produces high quality surfaces of hull forms. The details and
the efficiency of this algorithm is presented by applying for fairing the lines of a
distorted mathematical hull form.

While the objective is to obtain three-dimensional fairness it is reasonable to assume
that designer should preserve the hull form characteristics which may be selected for
the best hydrodynamic performance. Therefore, there should be certain limits on



variation from the original lines plan. These limits are expressed in terms of
conventional naval architectural parameters, i.e., the block coefficient, longitudinal

centre of buoyancy etc.

In order to assess the efficiency and flexibility of the developed procedures, a test
case is provided in Chapter 8. The selected form is based on a high-speed semi-
displacement vessel. This form is the result of a preliminary design study and hence
does not possess the necessary fairing qualities for further design calculations and
production purposes. The aim of this chapter is to improve the fairing properties by
using three novel procedures within the geometric limits of practical design and to

show the relative merits of these fairing procedures.
Finally, Chapter 9 presents the principal conclusions and recommendations.

All test curve and surface definitions used in the applications and numerical results

are presented in Appendices.



2. A REVIEW OF SHIP HULL FORM DESIGN PROCESS

One of the fundamental tasks in the hull form design process is development of a
three-dimensional hull form which satisfies the specified design requirements. Since
the hull form has drastic implications on most of the techno-economic performance
characteristics, it should be specified clearly in the early stages of ship design.

Hull form design stage has the primary objective of meeting the desired overall shape
characteristics, often expressed in terms of numerical form parameters, related to the
principal curves defining the hull form. The complete set of hull lines, i.e., body
plan, waterlines etc., defining the form should be generated with sufficient accuracy
for subsequent design calculations. The resulting lines plan should meet all explicit
form specifications and should not violate any of the implicit, intuitive roles of hull
form design with respect to fairness.

A rational ship hull form design methodology, as shown in Figure 2.1, will require
the establishment of design objectives, development of feasible alternatives, and
evaluation of each alternative against the objectives in order to choose the best
alternative as the final design. The design objectives may include; minimum
powering requirements, maximum internal volume, maximum stability, and
maximum producibility which may have to be satisfied simultaneously in many
cases. The second stage is the development of alternative designs which can
potentially meet the design objectives. A large number of these evaluations are
required, so the capability to automatically evaluate the performance of a candidate
hull design without human intervention is crucial for the success of the design
process. This process must be carried out in a systematic manner by using naval
architecture form parameters which are varied with other parameters being constant.

The designer, in general, has three different choices to create a three dimensional hull
form which satisfies the objectives and constraints of the design problem:;

e Interpolation from series of parent designs (standard series approach)
e Lines creation from geometric hull form parameters (form parameter approach)

e Lines creation by distortion of a parent hull (variation and distortion of an
existing design)



These techniques are briefly described in the following sections. (Nowacki et al,
1995)

MISSION REQUIREMENTS

DESIGN OBJECTIVES

1l

DISTORTION
PARAMETER OF A SERIES
APPROACH PARENT APPROACH
FORM

EVALUATION/
OPTIMISATION

Figure 2.1. General structure of a hull form design methodology.




2.1. Standard Series Approach

The basic idea of the standard series approach is simply to interpolate a desired new
hull form within the variety of designs available of systematic hull form series. Since
most systematic series are developed for resistance and/or propulsion model tests,
this may offer the advantage of predicting powering performance directly from the
test results.

The standard series method is attractive due to its simplicity. Obviously, if one starts
from one of the successful variants of the standard series, the outcome of the process
is the development of a new design with favourable hydrodynamic characteristics.
However, standard series are based on specific parent forms optimised for a specific
mission. Therefore, it is rarely possible to apply a standard series based form directly

for a new design.

Standard series are generally generated from a parent design or series of parent
designs. In most series, variation and distortion techniques are applied to parent
forms in order to produce series of hull forms. It is obvious that only some simple
variations in hull form with respect to the proportions of the main dimensions, block
coefficient, and in some cases, the centre of buoyancy are included in the standard
series. The range of variation in the series is limited to interpolation, therefore,
extrapolation should be avoided.

One of the drawbacks of this method is that, few form parameters can be varied
independently. The designer has to accept the outcome for the associated dependent
variables. Further, the parent forms can not be always sufficiently similar or the
variations may not be closely spaced to rely on the fairness of the interpolated lines.

Development of standard series is expensive and time consuming. Therefore, it is not
possible to generate standard series for the new ship types as they emerge and the

standard series quickly become outdated.

Some of the well-known series are given in Table 2.1.
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2.2. Form Parameter Approach

In this approach, hull form lines are generated from basic hull form parameters,
hence the process does not require a basis design. These form parameters are
normally related to the offsets at specific stations, slopes and curvatures at the ends
of the curve, and integral properties like sectional area and the longitudinal centre of
buoyancy. The basic ship curves are generated mathematically satisfying the
specified values of these form parameters. Thus, the problem is basically a curve

design problem.

The crucial first step of form parameter approach is the determination of initial set of
form parameters for the principal curves of the hull form. By using the set of initial
design requirements the designer will be required to specify the following hull form

design curves

e Sectional area curve, (SAC)
e Design waterline, (DWL)

e Stem, stern and keel profile,
e Deck line

The starting point for the above design curves may be a rough manual sketch, an

accurate lines plan of comparable parent design, or empirical guidelines.

Each basic design curve (SAC, DWL, ...) is designed from its own parameter inputs.
These curves are assumed to be sufficient to develop the complete lines plan. In
general, the design of a hull form starts with the layout of a sectional area curve
which represents the distribution of sectional area A(x) below the design waterline
for given ship dimensions. The area below this curve corresponds to the
displacement of the underwater body. Distribution of the displacement and location
of the centre of buoyancy are characteristic features of the design and influence
decisively the hydrodynamic properties of the hull form. Therefore, in the design of
sectional area curve, satisfying the desired curve form parameters is of maximum
importance. Subsequently, from the sectional area curve, the underwater section
areas A(x) at the stations are determined. The sections are laid out and waterlines
and buttocks are examined to comply with section lines. The modifications should be
achieved if necessary to obtain the best possible ship lines.

11



In Figure 2.2 schematic curves of longitudinal distributions of the immersed
sectional area, a(x), and design waterline, b(x), of a typical ship hull form are shown.
This figure contains useful information concerning characteristics of the underwater
hull geometry. The area under sectional area curve provides the displaced volume
and its longitudinal centre, X}, depicts the centre of buoyancy.
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Figure 2.2. Sectional Area (SAC) and Design Waterline (DWL) curves for a typical
ship hull form.

Similarly the area under the beam distribution provides the design waterplane area,
Awp, and its longitudinal centre, Xy, is the centre of flotation.
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The procedure of hull form design using form parameter approach is described in
Figure 2.3. This procedure suggests that an early hull form may be defined by using
a set of design curves such as the sectional area curve, design waterline, keel contour,
deck outline and sheer. However, an initial design based merely on a few basic
curves will rarely meet the designer’s full intention right away and to examine other
aspects of the form the designer must look at other views and sections just as in
manual design. (Nowacki et al, 1995)

INITIAL HULL FORM
PARAMETERS

L/B,B/T,Cg, G, LCB, ....

~ MODIFY
< PARAMETERS
DEVELOPMENT OF
BASIC SHIP CURVES
(SAC, DWL)
no
ACCEPTABLE?

yes

REGENERATION OF
CONTROL CURVES

ACCEPTABLE?

yes

BODY PLAN
WATERLINES
BUTTOCKS

DEVELOPMENT
OF LINES PLAN

Figure 2.3. Form parameter approach.
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2.3. Distortion of a Parent Hull

Because of the risk involved with starting the hull form design process from scratch,
the designer most frequently initiates the design process with a parent form which
has satisfactory performance characteristics. However, this parent form may not be
suited completely to new design requirements and certain variation may be needed.
With the aid of suitable mathematical operations, a slight modification of parent
design produces the new hull form. The pursued goal of these procedures is basically
to change any desired hull form parameters while keeping others constant. However,
in practice, due to the complex interdependencies among the hull form parameters,
the outcome of the process is the limitation of varying few parameters while keeping
the others fixed or accepting the resulting changes without the possibility of

intervention.

These changes usually achieved by distortion transformations, which can either be
linear or non-linear. Some cases that require variations from the parent hull are

o Increased capacity of the new design may require in the size of the vessel,
e Main dimensions may need to be increased e.g., to improve stability,

e Fullness of the design may need to be changed,

¢ Longitudinal distribution of buoyancy may be altered.

The changes in main dimensions can be simply achieved by multiplying the offset
values by corresponding constant expansion or contraction factors. This does not
affect the hull form characteristics. Several techniques have been developed to
modify the hull form characteristics of a given parent form. The earlier applications
are based on the linear distortion of the sectional area curve in order to change the
position of LCB or fullness. The modified form is obtained by shifting the ordinates
of the parent form along the ship length. More recent methods such as the shape
averaging method use three-dimensional hull forms instead of two-dimensional
design curves.

The application of distortion techniques is limited by the type and geometric
characteristics of parent hull form. For example, a hull with a bulbous bow cannot be
produced from a non-bulbous form. Similarly, it would not be feasible to change the
fullness of a bulk carrier form more than few percent. For many ship types the upper
limit of variation of block coefficient is about 10%, however for full forms this may
be reduced to only 2-3 %. The longitudinal centres of buoyancy and flotation may be

14



changed by 12 %. Best results will naturally be obtained if the new form differs
slightly from the parent design.

All linear and non-linear techniques are briefly described Narh et al (1999) and the
applicability and efficiency of the methods are presented with applications to a
typical fishing vessel form based on well-known BSRA trawler series. (Pattullo and
Thomson, 1965).

2.3.1. Linear Distortion Techniques

2.3.1.1. Swinging the Sectional Area Curve

This method enables to change LCB position by keeping the fullness constant. The
sectional area curve of the parent ship represented by solid line ABC and the derived
curve represented by the dotted line are illustrated in Figure 2.4.

B
e
! =
| ¥
........ | LCB dLCB :
1 N
............ 7 E
A i 4 |
® .

Figure 2.4. Swinging the sectional area curve to change LCB position.

Let us consider a thin vertical strip of dx. The area of the element is Jxy.
Longitudinal transfer of moment of the strip due to swinging is

dM = &x yldx= lyztane dx
2 2
1
M=tan6§2(y28x)

Vertical Moment : —;— (Y 8x) =AY

Longitudinal Moment :Aytan0 = A dLCB
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tanf =———
y
where
0 : required angle of shift for adjusting the LCB position
A : total area under the sectional area curve ABC, indicating fullness
y : the vertical centre of buoyancy

dLCB : required change in LCB position

Once the new positions of transverse sections are determined the modified offsets
can be obtained directly from the waterlines plan of the parent form. An example of
this variation can be seen in Figure 2.5, where the longitudinal position of the centre
of buoyancy is shifted aft by 2%. The thin and thick lines correspond to the parent
and variant forms, respectively. The results presented in Table 2.2 indicate that the
method enables the designer to change the longitudinal position of the centre of
buoyancy while the fullness is kept constant. However, it should be noted that the
propetties of the waterplane area (Cwp and LCF) will also change in an uncontrolled
manner. Furthermore, there is no control over the parallel middle body (or maximum
section) in the derived form as can be seen in Figure 2.5. The definitions of the
parent and variant hull forms obtained by swinging the sectional area curve can be

found in Appendix B.

Table 2.2. Main particulars of the parent and variant form obtained by swinging the
sectional area curve.

. . ' | ParentForm | Variant Form
Length between perpendiculars (Lpp) 30.480 m 30.480 m
Beam (B) 6.100 m 6.100 m
Draught (T) 12515m 2515m
Displacement (A) 244 m’ 244 m’°
Block coefficient (Cg) 0.522 0.522
Midship area coefficient (Cy) 0.887 0.887
Prismatic coefficient (Cp) 0.588 0.588
Waterplane area coefficient (Cwp) 0.753 0.744
Longitudinal centre of buoyancy (LCB) | % 1.34 L (aft) % 3.35 L (aft)
Longitudinal centre of flotation (L.CF) % 4.06 L (aft) % 5.22 L (aft)
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Figure 2.5. Body plan, sectional area and loaded waterline curves for the parent and
variant form derived by swinging the sectional area curve.
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2.3.1.2. One-Minus Prismatic Method

The basis of this method is to adjust the sectional area curve of the basic ship form
by contracting or expanding the entrance and run and reducing or increasing the
parallel middle body length as necessary. New offsets can be obtained directly from
the parent design (see Lackenby (1950)). The new form is subjected either to
expansion or contraction depending on the desired form characteristics. These
adjustments are likely to influence some of the geometric particulars like LCB
(longitudinal centre of buoyancy) position, Cp (prismatic coefficient) and the extent
of the parallel middle body in both the fore and after bodies.

The curve in Figure 2.6 represents the sectional area curve of the parent ship for one
half of the body. For convenience, the terms given in this study are not separated for
entrance and run, and valid for both halves of the ship. It is necessary to consider this
half body and maximum sectional area ordinate as equal to unity. Therefore, the area
under the curve becomes numerically equal to the prismatic coefficient of the half
body and the added slice represents the change in Cp, indicated by 8Cp.

o A

- !
'R B—<

D

X ox

Figure 2.6. Geometrical derivation of shifting function.

According to Figure 2.6 the linear shift of dimensionless sectional area ordinates
(8x) is obtained by using the proportionality of the areas before and after the

distortion procedure. Hence, 8x is derived as follows:

BB'D _ 8x - sx = OCr 1-x)
BCD 1-x 1-C,
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It can clearly be seen from Figure 2.6 that the variation of Cp produces inevitable
changes in the parallel middle body length (p), according to the modifications of the
entrance and run, e.g., at x =p

5C,

op =
P=17c,

(a-p)

In order to change the total prismatic coefficient (Cp) and/or the longitudinal centre
of buoyancy (LCB), the required changes in fore and afterbodies must be
determined. This can be achieved by taking moments as follows

_ 2[5C, (h, +LCB)+8LCB(C, +5C,)]

8C,. =
i (hf + ha)
5C. = 2[5C, (h, —LCB) —8LCB(C, +8C,)]
A (hf + ha )
where
Cp : prismatic coefficient of the parent form

8Cp  :the required change in prismatic coefficient

LCB : the distance of the LCB in the parent form (positive forward)
3LCB : the required shift of the LCB

8Cpr : the change in forebody prismatic coefficient

3Cpa : the change in afterbody prismatic coefficient

hy : centroid of the added area in the forebody

h, : centroid of the added area in the afterbody

The exact values of levers hr and h, can be calculated by the following relations

— CPF(1_2if) + SCPF
1_CPF 2(1_CPF)

b _C(-2%,)  _ 8Cy,
) 1"CPA 2(1—CPA)

hf 2 [1_2CPF(l_if)]

2 [1 _2CPA (1_ia)]
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where Cpr and Cp, are the prismatic coefficients for fore and afterbodies, and X; and
X, are the centroids of the original fore and afterbodies. However, since 8Cpr and

8Cpa are not known hrand h, cannot be determined exactly and the second term may

be ignored, i.e.,

h _ G (1-2%,)
f 1-Cpp

h _Cp(-2%,)
2 1-C,p,

This technique of form distortion is useful and relatively simple to apply but there
are some restrictions, which are:

o The parallel middle body length and the prismatic coefficient cannot be varied
independently,

e The prismatic coefficient of the fore and aft halves can not be adjusted,

e The process cannot be applied to some types of forms, e.g., ships which has no
parallel middle body,

e There is limitations in the range of longitudinal shift of sections,

e The maximum longitudinal shift of sections is restricted to the ends.

An application of this variation procedure is shown in Figure 2.7 where the block
coefficient is increased by 5% and the position of the centre of buoyancy is shifted
aftwards by 2%. As indicated in Table 2.3, the increase in Cp was achieved exactly,
however the actual difference in LCB is slightly different which is considered to be
due to the approximation of levers h, and hy. The detailed definition of the variant
hull form obtained by 1-Cp method is presented in Appendix B.

Table 2.3. Main particulars of parent and variant form derived by 1-Cp method.

e ‘ Parent Form | Variant Form
30480m | 30480m

Beam (B) . 6.100 m 6.100 m
Draught (T) 2.515m 2.515m
Displacement (A) - 244 m° 256.5 m’
Block coefficient (Cp) / 0.522 0.548
Midship area coefficient (Cy) 0.887 0.887
Prismatic coefficient (Cp) 0.588 0.618
Waterplane area coefficient (Cwp) 0.753 0.760
Longitudinal centre of buoyancy (LCB) | % 1.34 L (aft) % 3.44 L (aft)
Longitudinal centre of flotation (LCF) | %4.06L (aft) | % 5.07 L (aft)
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Figure 2.7. Body plan, sectional area and loaded waterline curves for the parent and
variant forms derived by using the one-minus prismatic method.
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2.3.1.3. Modified One-Minus Prismatic Method

This method, also known as the Lackenby’s method was developed as a quadratic
version of the one-minus prismatic method whereby the lengths of the parallel
middle body can be controlled independently of LCB and the prismatic coefficient.
This generalised method includes almost all of the cases related to any extent of
parallel middle body. (Lackenby, 1950)

Lackenby assumes that &x is proportional to x(1-x) which is a maximum when x=1/2
therefore the added (or removed) area is concentrated in the centre. The required
shifts of ordinates for forebody and afterbody is obtained by the following general
formula

6x=(1—x){ % . b 4 [SCP—Spl—CP]}
I-p Cp(1-2X)-p(1-C,;) l-p

where p is the parallel middle body and &p is the required change in parallel middle
body. The first approximation to the lever h for each part of the sectional area is
given by

heC 2% - 3k? - p(1 - 2%) ,_8p 1-Cp| & 1-2%
"lCp1-2%)-p(1-C,)| 8C, 1-p | 3C, 1-p

The Lackenby’s method was applied to the parent form to increase the block
coefficient by 5% and to shift the position of the centre of buoyancy forward by 2%.
The results are shown in Figure 2.8 and Table 2.4. The offsets of the variant hull
form derived by Lackenby’s method are given in Appendix B.

The main difference between the one minus prismatic and the Lackenby’s method
can be seen in the sectional area curve comparisons, i.€., the midship section is same
for the parent and variant forms because there was no parallel middle body change

requirement.

Therefore, by using this technique the parallel middle body length and the prismatic
coefficient can be varied independently however, the main restriction of the method
is the dependent variation of the characteristics of the sectional area and the design
waterline curves.
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Table 2.4. Main particulars of parent and variant forms obtained by Lackenby’s
method.

' Parent Form Variant Form
Length between perpendlculars (L}gp) 30.480 m 30.480 m
: 6.100 m 6.100 m
2515m 2.515m
244 m’ 256.5 m’
0.522 0.548
0.887 0.887
Pﬁsmat:lc coefficient (Gp) 0.588 0.618
- Waterplane area coefficient (pr) 0.753 0.782
 Longitudinal centre of buoyancy (LCB) | % 1.34 L (aft) % 0.88 L (aft)
Longitudinal centre of flotation (LCF) | % 4.06 L (aft) % 2.28 L (aft)

2.3.1.4. Moor’s Method

The linear distortion methods described in the above sections, do not allow
independent variation of the characteristics of the sectional area and the design
waterline curves, i.e., Cp, LCB and Cyp, LCF. To remedy this, within the framework
of linear distortion approach, Moor (1970) defined a section shape factor as (section
area curve ordinate)/(waterline curve ordinate) using sectional area curve and
waterline curve ordinates for each section and for the parent and variant hulls.
Therefore, each section for a new form corresponding to the section shape factor
curve can be derived from the parent by selecting the parent section with the required
ordinate in the section shape factor curve and multiplying its transverse offsets by the
ratio of the ordinate of the required waterline curve at the required section to the
ordinate of the parent waterline curve at the parent section. The Moor’s method is
applied to the parent form in order to change Cg by 5%, Cwp by 5% and shift LCB
and LCF forward by 1%. As can be seen in Figure 2.9 and Table 2.5 the method can
handle all these variations independently. The offsets of the variant hull form derived
by Moor’s method are given in Appendix B.

Table 2.5. Main particulars of parent and variant forms derived by Moor’s method.

Parent Form Variant Form
Length between perpendiculars (Lpp) 30.480 m 30.480 m

6.100 m 6.100 m

2515m 2.515m
stpiacement (A) v | 244 m’ 256.4 m’
Block coefficient (Cp) 0.522 0.548

“Midship area coefficient (Cy) 0.887 0.887

Prismatic coefficient (Cp) 5 0.588 0.618
Waterplane area coefficient (Cyp) 0.753 0.790
Longitudinal centre of buoyancy (LCB) % 1.34 L (aft) % 0.18 L (aft)
Longitudinal centre of flotation (LCF) % 4.06 L (aft) % 2.86 L (aft)
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Figure 2.8. Body plan, sectional area and loaded waterline curves for the parent and
variant forms derived by using the Lackenby’s method.
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Figure 2.9. Body plan, sectional area and loaded waterline curves for the parent and
variant forms derived by using the Moor’s method.
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2.3.2. Non-Linear Distortion Techniques

Séding (1967) proposed a method of distorting the surface of an existing hull by
using simple standard functions in the following general form:

xn =x+F (x)-F(y) F(2) - GE).F, (v).E(2)
yn =y +F,(x)-F5 () Fs(2)- G(F, (%), F;(¥), F (2))
zn =z+F, (x) Fy(y) - F;(2) - G(F, (x), F; (%), F (2))

where x,y,z represent the parent form geometry and xn,yn,zn are the corresponding
points on the surface of the variant form. F are three dimensional vector functions
and G functions are introduced to prevent gross distortions at curve endings, but not
generally affecting the overall transformation.

The selection F functions are arbitrary and they are normally in the form of
polynomials. These include, in addition to scale and area curve transformations,
standard functions to change the bilge radius, rise of floor, U- or V-ness of sections,
stem and stern profiles, flare or tumblehome and local waterline, section or buttock
shapes.

Affine distortions of a parent hull (modification of main dimensions by simple ratio)
are simply accomplished within the generalised method. For instance, to increase or
decrease the length, Fi(x) is set equal to the ratio of new to parent length minus 1,
Fa(y) and F3(z) set equal to 1, and F4(x) through Fo(z) may be ignored since y and z
coordinates are not altered. To modify the beam, F4(x) and Fg(z) are set to 1, and
Fs(y) is set equal to the ratio of new to parent beam minus 1.

Modification of sectional area curve only requires distortions on the x axis, so only
function Fi(x) needs to be addressed. Specific functions may be derived to achieve a
number of distortions including to change bilge of radius, length of parallel middle
body, rise of floor, U- or V-ness of sections etc. Details of this functions are given by
Rabien (1996). A simple application of the method is presented in Figure 2.10 and
Table 2.6. The offsets of the variant trawler form obtained by using this non-linear
method can be found in Appendix B. In this simple case all F functions were kept
unit with the exception of fo(z) which was selected as a linear polynomial.

The method is versatile and, in theory, any kind of variation is possible by selecting
appropriate functional. However, in most cases it is not possible to establish a direct

connection between the F functions and the characteristics of the resulting variant
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form. This may be a great disadvantage in the systematically development of a large
number of alternatives.

et VARIANT
PARENT

Figure 2.10. Body plan, sectional area and loaded waterline curves for the parent
and variant forms derived by using a non-linear distortion method.
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Table 2.6. Main particulars of parent and variant form derived by non-linear

distortion.

' . ; Parent Form | Variant Form
Length between perpendiculars (Lps) | | 30.480 m 30480 m
Beam (B) 6.100 m 6.100 m
Draught (T) 3515m 2515 m
Displacement (A) 244w’ 266.1 m°
Block coefficient (Cp) 0.522 0.569
W&shigaré&coéf‘ﬁciéﬁ% (Cwm) 10.887 0.932
Prismatic coefficient (Cp) 0.588 0.610
Waterplane area coefficient (Cwp) 0.753 0.753
Longitudinal centre of buoyancy (LCB)‘ % 1.34 L (aft) % 1.61 L (aft)

Tongitudinal centre of flotation (LCF) | % 4.06 L (aft) | % 4.06 L (af)

2.3.3. Shape Averaging Method

This method is relatively new compared to the previously mentioned methods, and it
may find potential applications varying widely from simple designs to complicated
industrial products. (i.e., car, ship, etc.) A typical application of the method is
presented by Chen and Parent (1989). Shape averaging is the process of extracting
a typical representation from the designer’s input shapes. This technique can be used
to create new forms by blending global features of related or unrelated shapes, thus
stimulating the generation of new ideas as well as creating the average product. The
method would allow a designer to combine primitive shapes to gradually to generate
more complicated objects (e.g., a teardrop and a car shape can be averaged to explore
the aerodynamic aspects of car body styling). Hence, this approach provides the

designer a useful means to study, create and evaluate forms quantitatively.

The promising averaging process, which may be used as a variation tool in
preliminary ship design, is syntactic averaging. The shapes are treated as geometric
entities and the averaging is concerned only with geometric properties of elements
such as size and distance. In general, the method consists of two parts: The
correspondence determination, which is a pre-processing step for averaging, and
averaging according to these correspondences. In the correspondence process, a base
hull form that has the greatest number of vertices is chosen to be paired with another
hull form. The vertices are matched on the basis of having the minimum distance
between them and to have a unique match, therefore both hulls will contain the same
number of vertices. After this process, the hulls will be ready for averaging.
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Averaging involves processing each set of correspondences at one time and
extracting the average point from that set under various weights. Each shape can be
assigned a various weight. Depending on the weights assigned, a series of results that
either interpolate or extrapolate the input shapes can be generated. The results of
interpolation indicate a smooth transformation from one shape to another depending
on the weights assigned, whereas the extrapolation scheme indicates the trendy

shapes.

Shape averaging, as a form generation tool can be used for the creation of original
design concepts as well as generation of conventional medium shapes. Herein, this
shape averaging process is applied to a well-known BSRA trawler series, in order to
obtain a variant form with 20% larger block coefficient referred to as final form. The
parent form, intermediate solutions labelled as variant forms and the final form are
shown in Figure 2.11. The variant forms are obtained by using linearly varying
weight functions. These weight functions are chosen as to obtain forms of fullness
varying between 0% to 20%. The offset tables of parent, variant and final forms can
be found in Appendix B. Applications indicate that the method proves to be a
successful form variation tool and may find wide application areas. However, as
shown in the results, many other form parameters are also changed. This may not be

acceptable in some studies where form parameters are systematically changed.

Ultimately, the use of linear and non-linear distortion techniques enables the ship
hull form designer to generate feasible hull form alternatives by using a parent hull
form with satisfactory hydrodynamic performance properties. In this chapter,
alternative hull form distortion techniques have been described and advantages and
drawbacks are presented. It has been observed that the selection of the variation tool
should be based on the design objective which could be as simple as to change the
block coefficient by x% or as complex as to modify the hull form to provide better
streamlines for a bilge keel. It is worth noting that Moor’s method emerges as the
most powerful linear distortion technique as it can handle independent variations of
hull form characteristics. However, there may be cases where non-linear techniques
are clearly desirable and hence should be applied. (Nark et al, 1999)
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3. MATHEMATICAL REPRESENTATION OF SHIP LINES AND SURFACES

The design and representation of ship hull forms by means of mathematical methods
has a long tradition. Simple geometric shapes such as circles, ellipses etc. have
received considerable attention and can be found in ancient ships due their relatively
easy production capabilities. However, practical applications have not been possible
until modern numerical techniques and powerful digital computers became available.

The benefits of representing the hull form by a precise mathematical description are:

e The need for full scale lofting procedure is eliminated since accuracy could be
obtained initially to whatever degree desired.

e The mathematical representation can be powerful as well as useful when coupled
with high-level computer graphics environment.

The Swedish researcher Chapman (1760) first initiated the research in the field of
mathematical techniques for ship curves. He had mentioned the use of family of
parabolas for waterlines and other ship curves on the hull surface. Nystrom (1863)
expanded Chapman’s work by using parabolas of varied order with fractional as well

as integral components, to make up both waterlines and sections.

A pioneering work on mathematical ship lines was achieved by D.W. Taylor (1915)
who represented his parent ship by mathematical expressions and then derived a
series of ship forms by systematic variation of geometric form parameters. His
objective was to produce a series of lines whose shapes were similar and whose form
parameters varied systematically. Taylor published the concept of generating the
sectional area curve, waterlines and transverse sections from form parameters. He
approximated the sectional area curve, and the waterlines of the ship by fifth-order

and fourth-order explicit polynomials, respectively, in the following general form.

Y=Y ax
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Using this approach Taylor developed the parent hull shapes investigated in his
classical systematic hull form series known as Taylor series. He was the first naval
architect to use mathematical representation for the systematically variation of hull
shape by a family of form parameters. A number of US warships were delineated
according to Taylor’s method.

Although the use of ordinary polynomials is a simple and attractive approach to
represent ship hull lines, a flat bottom based on a constant rise of floor cannot be
reproduced, nor can a fixed bilge radius or flat side of large extent. It may therefore be
presumed that these simple polynomials cannot be used for all ship types.

Research efforts on ship resistance, propulsion etc., have produced major contributions
to the art of mathematical representation of ship lines. Weinblum (1934)’s
contributions in these developments has had the most crucial effect. He has the
objective of developing hull forms with desired physical properties. In his work the
principles of parametric lines creation were further extended in connection with the

systematic variation and hydrodynamic optimisation of hull forms.

Benson (1940) used fifth degree polynomials to represent waterlines. The coefficients
of these polynomials are determined on basis of given form parameters. Benson
developed a fairing process in vertical direction which involves an expression of the

form parameters as a function of the vertical co-ordinate.

Watanabe (1946) used waterline polynomials of the same type as Benson (1940) but
with terms only even orders up to the 10™. The coefficients of the polynomials are
determined on the basis of form parameters such as area, statical moment, and angles
of entrance and run. The vertical fairing is performed by expressing each waterline

parameter as a function of the vertical variable.

Theilheimer (1957) used cubic spline curves to represent ship lines. The waterlines
are expressed as polynomials which must pass through the given half breadths. The
fairness of the waterlines are tested by studying the second differences and corrected
in an iterative manner. The continuity in vertical direction is achieved by expressing
the polynomial coefficients as functions of vertical distance.

Résingh and Berghaus (1959) use ordinary polynomials to represent ship hull
surface. The smoothing of the lines is achieved by double integration of the second
derivatives. Thus, from the coordinates of the original waterlines a generating function
is obtained after double differentiation. The generating functions are represented by
polynomials with two coefficients, which are determined by the least squares method.
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The smoothing in vertical direction is achieved by expressing polynomial coefficients
as functions of vertical distance.

In order to reduce the degree of ordinary polynomials Pien (1960) modifies the hull
surface before the application of polynomials. Bow and stern stations are assumed to
be the vertical boundary lines of the hull surface and the modified hull surface is
represented by a relatively low degree polynomial expression. Hence, the surface is
determined as a polynomial,

Zaijxizj
=1

Mz

M
y(x,2)=3, .

i=1

1l

—

which is solved by the least squares method for the unknown a;; coefficients.

Kerwin (1960), in order to represent ship lines mathematically, used an approximation
function of the form

M

N
g(x,2) =2 YamVmby

n=1 m=1
where Y and ¢, are m™ and n® polynomials representing waterlines and sections,
respectively. The coefficients ay, are determined from the condition that g(x,z,) is to

approximate the given offsets f'j; in the sense of least square. Therefore,

I N M 2
E=Z Z{fl_]z Zamn\vmj(l)ni}

j=1 i=l n=1 m=1

should be minimised. I and J are the number of sections and waterlines, respectively.

Taylor (1963) used least squares method and Chebyshev polynomials to represent
sectional area curve and other design curves. It is shown that Chebyshev polynomials
approximate a given function so that the maximum deviation is less than compared to

any other polynomial of the same degree.

In determination of the coefficients of these high-order polynomials, increase in

degree led to numerical trouble due to ill-conditioned systems of equations.
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The representation of ship form or of its elements in terms of a set of shape parameters
has first been undertaken with the aim of systematic variation and description of hull
form families, e.g., D.W. Taylor (1915). Later the purpose has been extended into the
design of new ship forms from given set of parameters. Williams (1964) has described
a design procedure based on this technique. The waterline parameters are read off or
computed from the drawing and then represented by polynomials which are cross
faired in the draught direction. Thus, similar sets of parameters are used for all
waterlines.

Miller and Kuo (1963) developed a fairing procedure in which the ship is subdivided
into several regions such as the ends, parallel middle body, chine, bottom and bilge are
treated separately. In the main parts of fore and after-body, the waterlines are
approximated by polynomials complying with some six to ten integral and differential
parameters. The coefficients of the polynomials are obtained and faired vertically in

the sense of least squares.

Von Kerczek and Tuck (1969) have introduced conformal mapping functions for
representing the underwater sections of the hull. They demonstrated the feasibility of
representing the underwater sections of practical hull forms by Theodorsen conformal
mapping functions. They had obtained rather exact close fits for Series 60 hull forms
defined by a given set of offset points

The advantages of explicit polynomials for lines creation and mathematical
representation led these researchers to develop fairing procedures mainly based on
explicit polynomial representations. Also, polynomials were the only class of
functions that can be used for representation of ship lines at that time. However,
besides their simplicity, flexibility, and practical computational advantages they have
certain limitations. The difficulties arise specifically because of their oscillating nature
with increasing degrees. Moreover, it is difficult to represent shapes with vertical
tangents. Hence, these drawbacks have led the researchers to develop better alternative

mathematical techniques.

In the early fifties, the availability of computers in shipbuilding changed the scope,
and methodology of mathematical ship form definition in a dramatic way. The
production of ship parts is performed by numerically controlled machine tools, which
require accurate, and computer based ship geometry information as input. Hence,
intensive use of computers and computational methods for ship hull form definition is
required, and novel mathematical techniques for curve and surface representation were
introduced. These methods were generally based on parametric as opposed to the
earlier explicit, y = f(x) or implicit F(x,y) = 0 representations. Hence, the problems,
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such as infinite tangency, multi-varied curves associated with the explicit
representation are overcome. The major breakthrough in Computer Aided Geometric
Design (CAGD) field was the development of the theory of spline curves and surfaces.
(i.e., Bezier curves, and their generalisation to B-spline curves) They have been used
effectively in the field of hull form design. The obvious advantages of physical splines
have led the researcher’s to simulate it mathematically. A great deal of work has been
devoted to the mathematical modelling of the draftman’s spline. The earliest work
related to physical splines dates to the 18" century, to a study of elastica by James and
Daniel Bernoulli, and Leonhard Euler. Elastica is idealised thin beams. The Bernoulli
brothers postulated that the work required to bend a thin beam was proportional to the
square of the curvature, and Euler has derived the differential equation of the curve
and classified its forms. However, the notion of the mathematical spline was first
introduced by Schoenberg (1946), a piecewise polynomial function of degree n whose
segments meet with C™ continuity.

The spline curves in general have solved the problems of connection (continuity)
encountered in the previous methods and obtained in two ways; as a curve that
interpolates through given data points (curve interpolating techniques) or as the result
of interactive manipulation of the defining control polygon (curve approximating
techniques).

One of these interpolatory approaches is the most popular cubic splines which are in
general piecewise analog of the physical elastic spline that has long been used in
shipbuilding industry to produce fair ship curves. Holladay (1957) introduced the
cubic spline for function interpolation and integration. The curve he developed
minimised the squared curvature of the curve. He also noted that for curves with
modest slopes, f(x)<<1 the cubic spline has provided a good approximation to the

bending of a thin rod.

A curve produced by a spline is described by cubic polynomials between adjacent
weights and the curve is continuous up to the curvature. The mathematical spline basis
was derived from its physical counterpart; (the elastic spline made of wood, plastic or
steel) by observing that, for small deflections, the shape assumed by the physical
spline was a piecewise cubic polynomial and thus referred to as cubic spline function.
The mathematical equivalent is modelled by using cubic polynomials over each span
of the curve. Therefore, the equation for a single parametric cubic spline segment can
be given by
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4
P(t) =Y Bt t <t<t,

i=1

where t; and t, are the parameter values at the beginning and end of the curve segment.
P(t) is the position vector of any point on the cubic spline segment. The superiority of
the interpolating cubic spline representation stems from the fact that, among all
interpolating function methods, it has the minimum value for the integral of the square
of the curvature. Thus, the total bending energy stored in the spline is minimum.
However, this interpolating curve fitting technique results in a subjectively “fair”
curve as it is constrained to pass through all specified points. They lack some of the
desirable properties possessed by most approximation techniques. Therefore, one may
usefully sacrifice this interpolating behaviour in favour of higher degree of
smoothness by adopting an approximating function built up as a linear combination of
basis B-spline function over each span of the curve.

The work following Holladay’s introduction of cubic splines concerned methods for
achieving an improved approximation to the minimum energy curves and eliminating
the unwanted wiggles or oscillations sometimes observed in cubic splines. First Asker
(1962) introduced several approaches. He introduced a method allowing the stiffness
of the spline to be varied along its length. He presented two versions of variable
stiffness, eliminating the problem of extraneous wiggles. In the first scheme stiffness
varies in a piecewise constant fashion resulting in a C! cubic spline, and in the second
stiffness varies in a piecewise linear fashion resulting in a C? quartic spline. He
applied this interpolating spline function in the numerical design of ship lines.

Ferguson (1964) introduced the parametric cubic spline curve by applying cubic
spline function interpolation to vector-valued data. He described curve segments as
vectors, using parameters. Hence, a Ferguson curve segment is a cubic vector function
with respect to a parameter obtained by specifying the position and tangent vectors of

the end points, and can be written in terms of its end points and end tangents as

p(t) = P0)(1-3t” +2t7) + P()(3t> —26*) + P'(0)(t — 2t + t*) + P'(I)(-t* +t*)
0<t<l1

Another attempt to reduce the occurrence of oscillations yield a mathematical analog
to the physical phenomenon of adding tension along the direction of the spline curve.
The earliest attempts by Schweikert (1966) resulted in exponentially based
alternatives to the natural spline. Thus, he proposed the use of splines under tension.

This was an attempt to improve the controllability of the spline. By suitably adjusting
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the tension parameter, the production of loops in the spline can be prevented. Thus,
tension parameter can be used as a smoothing parameter to dampen the undesired
oscillations. However, these exponential splines were expensive to calculate. The
basics of the theory of the splines under tension are similar to that of energy
minimising splines, namely cubic splines. It is known that cubic spline function
minimises the bending energy proportional to the integral of the square of its
curvature. For the case of splines in tension one more integral term is included into
this minimisation problem. That is the arc length of the spline where the tension is
obtained by pulling on the ends of the spline. Thus, this leads to decreasing the arc
length. The solution curve is obtained by minimising the following expression:

[x"ofdt+p? X0

0

where the first term represents the curvature, and second arc length. The free

parameter p > 0 denotes global tension parameter.

Another attempt to solve most of the problems encountered in cubic spline
representations is the introduction of parabolically blended curves by Overhauser
(1968), however at the expense of being only C! continuous. (i.e., only first derivative
continuity is maintained at the internal joints) Although, a parabolically blended curve
is computationally inexpensive and easy to implement, due to its lack of higher-order

continuity, it has found limited application areas.

Cline (1974), and Pilcher (1974) further developed splines under tension.
Alternatively, due to the expense of computing these exponential curves, Nielson
(1974) introduced the v-spline as a C! piecewise cubic polynomial. v-splines extend
splines in tension by allowing tension to vary along the curve providing greater control

over the curve shape.

Hagen (1985) introduced the t-spline as a generalisation of the v-spline. t-splines are
piecewise quintics exhibiting G? continuity. The developments continued with Foley
(1987). He introduced the cubic weighted v-spline, a generalisation of C? cubic
splines, weighted splines, and v-splines. Meier and Nowacki (1987) described a new
type of splines that minimises a fairness functional resulting in a higher degree
interpolant. Similarly, Pottmann (1990) extends t-splines defining a new
minimisation functional. Hence, Pottmann’s spline results in a G® continuous
interpolant.
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Previously discussed interpolating spline techniques are characterised by the fact that
the derived mathematical curve passes through each and every point. However, this
interpolating feature cannot be accepted as a general requirement in many
applications, especially in hull form design. Due to various reasons (e.g., misreading,
transcribing, etc.), the data points may possess unintentional erroneous points, and
some modifications should be necessary. Specifically, these have led the researchers to
develop novel approximation techniques mainly based on control polygon techniques
where the shape of the curve approximates the control polygon. De Casteljau (1959)
at Citroen and Bezier (1966) at Renault have initiated the research in this area. They
have independently developed Bezier curves and surfaces. They have recombined the
terms of the Ferguson cubic segment in a way that makes the physical meaning of the
vector coefficients more apparent. De Casteljau’s development, slightly earlier than
Bezier’s was never published, so the whole theory of polynomial curves and surfaces
in Bernstein form now bears the Bezier’s name. Their techniques had the important
property, missing in any interpolation method of guaranteeing that smooth shapes
would be generated from smooth data. The variation diminishing property is crucial to

the approximation and design of shapes.

Bezier curves are defined by vertices which form an open polygon. The resulting
curve is tangent to the first and last span of the polygon and passes through the first
and last vertex where the order of the curve is strictly related to the number of the
polygon vertices. The curve does not pass through the interior vertices but has the

characteristic form defined by the polygon. A parametric Bezier curve is defined by
n n . .
P(t)=> BJ, (1), 0<t<1; Jni(t):(_jt'(l—t)“"
i=0 | | 1

where B; represents the coordinates of the defining polygon vertices and J,; the
Bezier or Bernstein basis function.

From Bezier curves to B-splines was a natural progression. Bezier curves are used to
derive the theory of rational and non-rational B-spline curves. In Schoenberg’s
original work, the B-spline basis had been cast in terms of truncated power series,
which was convenient for analysis but at the same time numerically troublesome. The
simultaneous appearance, of papers by de Boor (1972), Cox (1972) and Riesenfeld
(1973), Gordon and Riesenfeld (1974)’s research giving a numerically stable method

for computation.
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B-splines are the piecewise counterpart of the Bernstein polynomials. Depending on
the basis function selected, two different types of representation can be obtained;
Bezier or B-spline curves. They have found wide applications in hull form design. B-
spline curves are piecewise polynomials, which are broken into segments each being
defined by a polynomial. The B-spline curve can be defined as

n+l

P(t) =Y BN, (1) tninSt <tmax . 2<k<ntl
i=1

1 if x, <t<x,,
Nil(t): .
’ 0 otherwise
N, (1) = (t = x)N; o (1) N (i = NG (D
| Xisk-1 ~ X Xisk ~ Xjs1
x, =0 I1<i<k
x, =1-k k+1<i<n+1
X, =n—-k+2 n+2<i<n+k+1

where k is the order of the curve, n+1 the number of defining polygon vertices (B;),
Ni«(t) the basis functions associated to each vertex of the defining polygon, t the curve
parameter varying from tmin t0 tmax(nt2-k) and x; the elements of a knot vector. The
shape of the curve is controlled by the vertices of the polygon like in Bezier
representation but the basic advantage of B-splines is the added flexibility gained by
the introduction of knot vectors, and specification of the degree of B-spline curves
independent of the number of the defining polygon vertices. There are also various
control handles in B-spline curves which makes it a useful tool for representation and
fairing of ship curves. Control can be performed by changing the order of the curves,
repeating the control vertices or by changing the number and position of the vertices.

Versprille (1975) introduced the non-uniform rational B-splines (NURBS) to
computer aided geometric design applications. The main advantage of the rational
form over the integral form of the B-spline is the ability to represent conic curves
exactly. The rational form of the B-spline is described using the control points of the
integral B-spline (B;), augmented with weights at each control point. The weight acts
as a shape control handle, thus increasing the curve’s degree of freedom. Increasing

the value of the weight associated with a control polygon vertex draws the curve closer
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to the associated vertex. Rational B-spline curves are generalisation of non-rational B-
spline curves, and can be expressed in the form

n+l n+l hiNi (t)
P(t) =) BR, ()= >'B, —l—k—
= = h N, (1)

where, hi’s represent weights associated with the defining polygon vertices. It is
obvious that when all h;= 1, the rational form reduces to non-rational integral B-spline
curves. Rational B-splines provide a single precise mathematical form capable of
representing the common analytical shapes. (e.g., lines, circles, all types of sculptured
surfaces) used in computer graphics and computer aided design environment.
Therefore, have found wide application areas more recently in hull form design.

The natural extension of curves are surfaces, and the major breakthrough in the field of
mathematical surface description methods is the introduction of Coons (1964)’s
surfaces, a generalised form of Ferguson surfaces. The method uses normalised cubic
splines for all four boundary curves. Cubic blending functions are used to define the
interior of the patch. A bi-cubic surface patch is defined by the four position vectors at
the corners, eight tangent vectors, two at each corner, the four twist vectors at the
corners, and the four cubic blending functions. The Coons surfaces provide a flexible
and powerful surface design tool, however possess a number of problems mainly,
connection, and control problems. Details of Coons surfaces can be found in Coons
(1974). Most of these problems are overcome by the extension of Bezier curves to

surfaces. A cartesian or tensor product Bezier surface is defined by

Quw)=3YB, 1, @K, (W)

i=0 j=0

where B represents the control net vertices, and J,;, Knj are the Bezier or Bernstein
basis functions in the u and w parametric directions. Most of the problems (higher
degree due to high number of vertices, lack of local control etc.) encountered in
Bezier surfaces are overcome B-spline surfaces. B-spline surfaces are the natural

extension of the Bezier surfaces, and can be given in the form

n+l m+1
Qu,w)=>>"B, N, , WM, (W) u,, <u<u,, 2<k<n+l,

i=1 j=1

w_. <w<w 2</4<m+1

min
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where N;(u) and M; (w) are the B-spline basis functions of degree k-1, and £-1 in the
bi-parametric u and w directions, respectively.

Most of the curve and surface representation methods discussed in the foregoing have
been used for ship hull lines definition and surface design. (e.g., cubic splines and
splines in tension are used in the U.S. Navy CASDOS System, and Bezier curves are
used in the Unisurf system for hull form design) However, compared with other
mathematical tools, the integral/rational B-splines can be seen as the most powerful
and flexible technique for developing efficient fairing procedures, and widely used in
CASD (Computer Aided Ship Design) applications.

Research and development of more than three decades in the area of CAGD has
produced numerous methods for constructing curves and surfaces. The sequence of
development of mathematical curve and surface description methods summarised in
the foregoing is illustrated in Figure 3.1.

Ferguson Curves and Surfaces/
Hermite Interpolation Curves
( local control and continuity problems)

,

Coons Surfaces
( local control and continuity problems)

Bezier Curves and Surfaces Interpolation Spline Curves and
(Improved control and flexibility) Surfaces
(Improved control and flexibility)

Splines under Tension
(Improved control)

(Superior control and greater
flexibility)

Figure 3.1. The sequence of development of mathematical curve and surface
description methods. (Yamaguchi , 1988)
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3.1. Polynomial Representation of Ship Lines

In general, free form ship curves, i.e., frame, waterline, buttock lines, are given in
tabular forms as follows:

Xo X1 X2 Xn

Yo Y1 y2 .. ¥Yn

Mathematical representation of ship lines will require to generate an approximating
function that will allow an estimation of the offset value y forx # x;,i=1,2, ... , n.
It may be assumed that these offset points are defined by a non-analytic function
y = f(x). We wish to approximate f(x) by a suitable analytic function g(x) which has
the general characteristic shape.

The best form of an analytical function g(x) which will represent the unknown
original function represented by discrete offset points depends on many factors, such
as the characteristic form of f(x), the source and accuracy of offset points, and
accuracy requirements for the approximation. Hence, it is obvious that the more we
know about the function f(x), the greater is the likelihood of finding the best
approximating function. For instance, if the offset points suggests that f(x) should be
in linear form in x, then we would probably begin by attempting to fit the offset
points with a line.

The most common, and possibly the simplest method of representing a set of points
by mathematical functions g(x) are those involving linear combinations of simple
functions drawn from a class of functions [g;(x)] of the form:

g(X) = aogo(X) + a1g1(X) + ... + angn(x)

The classes of functions frequently encountered can be found in Table 3.1.

Table 3.1. Some classes of functions.

i

Monomials (Taylor Series) X ; 1=0,1,...,n
Trigonometric func. (Fourier Series) | sinkx,coskx ; k=0,1,...,n
Exponentials ebix ; 1=0,1,...,n
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Linear combination of monomials leads to polynomial of degree n

n
f(x)~gx)=a, taxx+ ax> +... +apx" = Zaix'
i=0

Linear combination of the Fourier functions leads to
f(x) ~ g(x) =a,+ ajcosx + aycos2x +... + ascosnx + bysinx + bysin2x +...+ bypsinnx

n n
=a,+ Zak coskx +Zbk sinkx
k=1 k=1

Linear combination of exponentials leads to

n
bix

f(x) ~ g(x) = a,e™* +a,e™ +..+a e :Za.e :

i
i=0

where f(x) is a dependent variable corresponding to e.g., offsets and x is an

independent variable corresponding to e.g., sectional positions.

The algebraic polynomials are the most important and popular approximating
functions. Polynomials are easy to evaluate and their sums, products and differences
are also polynomials. Polynomials can be differentiated and integrated easily,

yielding other polynomials in both cases.

All these advantages of the polynomials would be of little value if there were no
analytical justification for believing that polynomials can yield good approximations
for a given function f(x). It is implied by good approximation that the discrepancy
between an approximating polynomial g(x) and f(x), ie., the error in the
approximation, can be made arbitrarily small. This theoretical justification exists in

the form of Weierstrass approximation theorem which states that

If f(x) is continuous in the closed interval [a,b], (that is a < x < b) then, given any € >

0, there is some polynomial gn(x) of degree n, such that

lf(x)—gn(x)|<8 a<x<b

The polynomials can be simply divided into two categories; interpolating and
approximating polynomials. Examples of interpolating and approximating
polynomials are illustrated in Figures 3.2.a and 3.2.b, respectively.
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Figure 3.2.a. An interpolating polynomial.
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Figure 3.2.b. An approximating polynomial.

3.1.1. Interpolating Polynomials

Polynomial interpolation is the most fundamental of all interpolation concepts,
however, today, interpolation polynomials are mostly of theoretical value rather than
practical (i.e., the construction of elementary concepts of mathematical
representation). Faster and more accurate methods based on polynomial methods
have been developed, (e.g., piecewise polynomials or splines) and are widely used in

hull form representation and fairing studies.

3.1.1.1. Interpolation of Curves Using Monomials

We wish to evaluate the interpolating function for n+1 distinct points P; associated
with appropriately selected parameter values t;.

p, () =zn:Ajtj Aje®’ telab]

i=0

The most obvious criterion for determining the A; coefficients of py(t) is to require
that

P=p,(t)=2 A,t;)" i=01..n
=0
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We refer to the points P; as interpolation points, and t as parameter values. The pairs
(t;, P;) describes the nodes of the interpolation problem. The nth degree polynomial
py(t) must reproduce P; exactly for the n+1 arguments x = x(t;) but in no way

guarantees accurate approximation of P; fort=t;.

The formulation of the problem is in vector-valued form. Thus, the interpolation of
functions in 9% corresponds to choosing the interpolation points f(x;), and the

associated parameter values to be the x- coordinates x;.

The solution of simultaneous n+1 equations produces the coefficients A; of the
approximating function. The n+1 equations can be given in matrix form as:

1t t"| A, ] [P,
1ot t"| A, | |P,

There is a unique solution for the A; and hence there is only one polynomial p,(t)

which exactly produces P; values.

This type of polynomial may be ideal for the cases where fairing process is not
necessary, assuming that the given offset points do not possess erroneous points.
However, in a fairing problem, the offset points need some corrections, and this
technique can not be accepted as suitable at all. Moreover, for high values of n
(degree of the polynomial) the linear system of equations can produce ill-
conditioning. Also, it is computationally expensive to change one of the knots, since

the entire system has to be resolved.

3.1.1.2. Lagrange Interpolation Polynomials

We can eliminate some of the drawbacks of using monomials as basis functions by
replacing with Lagrange polynomials. The general form of Lagrange interpolating
polynomial is given by the following equation:

pu(0)= Y Ly(0)P,

where P; is the given interpolation points and L; is the Lagrange polynomial basis
functions. L; is defined by the property that

45



1 fori=j
0 for i#]

Li(tj) =8ij ={

where §;; is the Kronecker delta. In explicit form L; of nth degree is given as

(t= )= t)(t =t )=ty )t =) pr (E-1)
(t =t ) =)t =) — 1)t — t,) =0 (t; _tj)

J#l

Li(t) =

Figure 3.3 shows Lagrange polynomials defined by the above formulation.

Figure 3.3. Lagrange polynomials.

For clarity, a second-degree Lagrange polynomial can be derived using the above
formula:

(t_tl)(t—t2) P + (t“to)(t‘tz) P + (t_to)(t_tl) P
(to—t])(to_tz) ° (tl_to)(tl“tz) l (t2_to)(t2—tl) ?

pz(t) = ZLj(t)Pj =

The basic advantage of Lagrange interpolation technique is the computational
simplicity though computational work increases with additional knots. All basis
functions have to be recomputed. This disadvantage can be prevented using Newton

basis functions described in the following section.

Another serious problem arises with increasing number of points (n = 5). The
interpolating Lagrange polynomial shows oscillations around the defining points. For
quite reasonable data points and parameter values, the polynomial interpolant
exhibits wild wiggles that are not inherent in the data. Consequently, this method of
interpolation is not shape preserving and can not be regarded as suitable to
implement in a fairing procedure.
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3.1.1.3. Newton Interpolation Polynomials

The general form of Newton interpolating polynomial is defined by :

P.(0)=Y 0,04,

The Newton polynomials are denoted by n; and defined by the following expression:
n; =(t—t ) (t—t)..(t—t,), n,(t)=1

The Newton polynomials are illustrated in Figure 3.4.

n3(t)

-
-

n;(t)

Klz(t)
1 ny(t)

Figure 3.4. Newton polynomials.

where A are the coefficients for the interpolation problem and can be found directly
using the following system of equations.

pn(to) :Po:Ao
pn(t]) =PI=A0 +Al(tl _to)
p,(t,)=P,=A +A(t, -t )+A,(t, -t ), —t)

P (L) =P = A, + A (L, 1)+ Ay (L, —t)(t, —t) +e -+ AL (L, — 1) (t, — 1)
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The coefficients are obtained as:

Ao =Po
A, — Pl _Po
t, —t,
A, = B =PI ~t) =B =Rt -t,)

1:2 _to

etc.

To make systematic calculations, the idea of divided differences is introduced:

t —t,

[ti tk]=

Then the coefficients of the Newton polynomial can be written as:

A0=P0
P -P
A =[tt,]= t:—t:
A, =]ttt =L‘M
2 24 L, t, ot
A, :[tz Lt ]=[t3t2tl]_[t2 t &,

t, —t,

A, =[tn t et t ]= [tn"'tl]_[tn-l"'to]

The Newton polynomials are easy to implement in computational fairing procedures.
However, when modification of the initial offset points is necessary, the method can

not be considered as suitable because of its interpolating nature.

3.1.1.4. Hermite Interpolation Polynomials

Hermite interpolation is a generalised form of Lagrange interpolation. Moreover,
higher-order derivatives are included to the interpolation problem. We have n+1
parameter values corresponding to offset points and higher-order derivatives,

P.,P,,---,P, ™ respectively.
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The Hermite interpolation curve should therefore satisfy,

H(tk) = Pk
H’(tk) = Pl:

H™ (t, ) =P™

The solution of this interpolation problem should satisfy the above conditions with
lowest possible degree polynomial. The degree of the curve should be at most:

N=Y(m, +1)-1
k=0

For simplicity, the maximum order derivative can be takenas my=m; = ... =m, = 1
and the degree of polynomial becomes N = 2n+l. Thus, we can write the

interpolation polynomial as:

H(t) = Y PE, (1) +3 Ple,s (1)

=0 j=0
where f;(t) and gy;(t) are polynomials of degree 2n+1. Then with mi=1 we need

fnj (tk) = 8jk gnj (tk) =0
f;(t,)=0 g,(t)=38;, jk=0l..n

Polynomials satisfying the above conditions can be constructed in terms of the
Lagrange polynomials

no(t-t)
L,(t)= . j=01,..,n
‘ g(tk_tj)

j=k
Thus, the polynomials f;;(t) and gq(t) are defined as:

fnk H= [1 - 2L:1k (tk Nt— ty )]LGk Q)]
gnk (t) = (t - tk )LGk (t) k = 0,1,...,11

An advantage of this interpolation technique is that not only position vectors but also
tangent vectors are under control. With a good choice of derivatives at the boundary
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points, the Hermite interpolation curve can produce satisfactory results. However, the
main disadvantages are; for n+1 position vectors it has the degree N=2n+1 (much
higher than Lagrange’s), thus it tends to oscillate around the defining interpolatory
points Pg. Also, the position vectors for the curve or surface measured from a model
or drawing are relatively more reliable than tangent vectors. Consequently, poor
representations can likely to be obtained since the derivative values have great
influence on the shape of the curve. To avoid these drawbacks, the idea had arisen to
abandon the infinite differentiability property (a feature of ordinary polynomials) and
to replace full Hermite polynomial by piecewise Hermite polynomials, which is
known as Ferguson interpolation. It can give first-derivative continuity without
severe oscillation problems.

3.1.2. Approximating Polynomials

In a fairing problem, where some of the offset points need to be altered to improve
fairness characteristics, the interpolating polynomials would not be useful as they
pass through the offset points. Moreover, defining offset points for sections or
waterlines are usually large and it may be impossible to find an interpolating
polynomial of suitable order. Even if such a polynomial exists it may have a
tendency to oscillate. Therefore, alternative techniques are clearly needed to
represent ship lines, which may approximate the curve rather than interpolating. One
such approach, known as the least squares method, is based on the minimising the
square of the differences between the polynomial and the offset points. The details of
this approach are given in the following section.

3.2.2.1. Least Squares Polynomial

The most popular of the approximating functions is the least squares method. The
aim is the minimise the sum of the squares of the discrepancies between the
unknown function defined by n+1 points P; and the approximating function. If the
deviation §; at the ith offset P; from the approximating function X(t;) is given by

0= X(ti) -P;

Then, the least squares criterion is to minimise the overall error of approximation

E=Y |8 = (x@)-P)?
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It may be desirable to introduce weights w; so that different weight factors can be
assigned for each initial offset point.

E=) w,(X(t,)-P)’
i=0
We can introduce X(t;) may have the form

X(t,) = iqu)(t) m<n

=0

where A;j are the coefficients and ¢(t) are basis functions. If m is selected to be equal
to n, the error E is exactly zero and the least squares polynomial is identical with
interpolating polynomial. So m should be less than n.

We try to determine the coefficients of the approximating polynomial so that error E
is minimised. The necessary condition for the overall error to be minimised:

aX(t ) _ Z

o8 =—2i (P~ X(t)——= Wi (P = X(1))9, (1) =0
k i=0

Substituting the expression of X(t;) in this equation leads to the system of linear
equations:

iw P.o, (t;) = ZA Zw¢(t)¢k(t) k=0,1,..,m
(P [ 03]

Then, this system of linear equations can be written in matrix form:

[00:0.] = [00:0a]][A0] [[P:0.]
[¢1,¢] [¢.,¢ Hia || Pe]

ool ool La, [P.6.]

This system of linear equations does determine the A; uniquely, and the solution
coefficients do actually produce the minimum possible value of E. However,
standard methods for solving linear systems may either produce no solution at all, or
magnify data errors due to ill conditioning for large number of offsets.
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Low degree polynomials both reduce the computational requirements and also
reduce numerical instabilities that arise with higher degree curves. Clearly, these
instabilities cause undesirable oscillations. Though low degree polynomials seem
advantageous under these circumstances, reasonable representations can not be
achieved due to large deviations from the original points. Increasing the degree of the
polynomial to obtain a better fit would be likely to lead to oscillatory problems.

An example is given in Figure 3.5, where least squares polynomial is applied to a
hard chine section for varying degrees. The drawbacks of this method such as
oscillatory nature with increasing degree, and inability to represent knuckles etc. can
clearly be seen from the figure.

We can conclude that polynomials both interpolating and approximating are
unsuitable to implement in a representation or fairing procedure. It is possible to
generate a curve of degree n-1 provided that the offset points of n is given. However,
the solution curve may have a tendency to oscillate due to ill conditioning. Also,
another serious problem arises when a ship line with straight parts is considered.
Polynomials can not contain straight parts unless the entire curve is straight. In this
case, the curve can be subdivided to overcome this problem, with the expense of
more computational effort.

Further descriptions of polynomials and applications to typical ship sections and
waterlines, e.g., bulbous, chine, etc. can be found in Nark (1995).

DEGREE :7 DEGREE :8 DEGREE :9 DEGREE :10

4 8 OFFSET POINTS
. LEAST-SQARES FIT

Figure 3.5. Application of least squares polynomial to a hard chine section.
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3.2. Spline Techniques in Hull Form Design

There is a substantial class of curves and surfaces based either on the interpolation or
on the approximation of points that are supplied by the user. However, the
interpolation and approximation methods discussed in previous chapters are not
adequate for the representation of ship lines. It is a general requirement that the
curvature of the curves and surfaces should not vary too much, i.e., it should appear
to be smooth. Clearly, most of the classical interpolating functions, e.g., polynomials
have a tendency to oscillate illustrating large deviations from the desired curve, thus
it may not be a good idea to use polynomials to fit free form ship curves. An entire
curve is not easily defined by a single analytic function. One way to improve this
situation is to divide the given interval into smaller sub-intervals, and to construct an
approximating curve consisting of pieces of curves. Each interval is described by a
separate analytic function to form a piecewise representation. Implementation of this
approach produces smoother curves where the curvature of the curve shows variation
diminishing property. This piecewise approach is employed in spline curves and
surfaces in general for reasons of flexibility. Hence, parametric spline curves and
parametric tensor product surfaces have become standard tools in CAGD due to their
distinguished properties. Different processes for defining splines have been
developed. All spline functions can be expressed by a linear combination of basis
functions. These basis or blending functions differ from simple cubic splines to
Bernstein and Basis spline functions, each having its own advantages as well as
limitations.

The spline curves may be characterised especially in two categories: curve fitting and
curve approximating (or fairing) techniques. The former is characterised by the fact
that the derived mathematical curve passes through each and every data point. A
mathematical curve is generally obtained from given or digitised points. (cubic
splines, parabolically blended curves etc.) Alternatively, for the latter, the basics of
the approach stems from the fact that the mathematical description of a space curve
is generated “ab initio”, i.e., without any prior knowledge of the curve shape or form.
Bezier curves and their powerful generalisation to B-spline curves are the
distinguished specimens of this category. These two techniques are characterised by
the fact that few if any points on the curve pass through the control points used to
define the curve. These methods are frequently referred to as curve fairing or control
polygon techniques and have become standard tools in geometric modelling of free
form curves and surfaces.
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3.2.1. Cubic Splines

The word spline, an East Anglican dialect word as stated in Bartels et al (1987) is
derived from the name of a tool used by loftsman in ship design offices for ship
lofting process. Hence, the spline function is the mathematical model of this drafting
tool. The physical spline is a thin elastic beam, usually made of wood, metal or
plastic and used to draw smooth curves through given points. The material spline is
held fixed in certain places by heavy weights called ducks, which constrain the curve
to pass through these points. The type of support may be regarded as hinged, thus the
system of spline and ducks may be accepted as a simply supported, thin, continuous
elastic beam. Assuming small deflections and using linearised beam theory one can

show:
e The deflection in each span can be represented by a cubic polynomial.

e The bending moments, which are proportional to the second derivatives of the
deflection are continuous through the entire length of the spline, that is, the curve

is C? continuous.

e The third derivatives are discontinuous at the supports unless the supporting force
happens to be zero.

Furthermore, it will be useful to note that this property of cubic splines is referred to

as minimal curvature property and, among all interpolating curves y(x), the cubic
¢

spline is the curve which minimises I(y”)z dx.
0

A physical spline can be considered as a thin elastic beam, therefore it follows the
Euler’s equation and the bending moment along the length of the beam is obtained as
follows;

EI

M(x) = R0

where
M(x) :bending moment along the length of the beam

E : Young’s modulus of elasticity determined by the material properties of the
beam
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I : moment of inertia determined by the cross sectional shape of the beam
R(x) : radius of curvature of the beam

Radius of curvature for the beam is expressed as

1 _ yn
R(x) (+(y))*"

The deformations of the spline is assumed to be sufficiently small; (y' <<1 ), hence

R(x) simply reduces to

1
y'(X)

R(x) =
Where y” is the second derivative of the mathematical spline curve y(x) with respect

to x. Therefore,

M(x)
ElI

y'(x) =

If the weights are assumed to be simple supports then the variation of the bending
moment M(x) between the weights becomes a linear function with A and B the
constants as follows:

M(x) = Ax+B
Substituting this into the above equation yields

_Ax+B
EI

y'(x)

Integrating this twice shows the physical spline to be cubic polynomial functions
between each pair of adjacent supports as follows:

y(x) = Ax’ + Bx* +Cx+D
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Thus, mathematical counterpart of physical spline can be modelled by using cubic
polynomials between weights. In Figure 3.6 the elastic spline and ducks are
illustrated.

Figure 3.6. Physical spline and weights.

It is shown above that the equation for a single parametric cubic spline segment is

given by

4 .
P(t)=) B;t™ =B, +B,t+B;t’ +B,t’ t,<t<t,

i=1

where t; and t, are parameter values at the boundaries of the segment. P(t) is the
position vector of any point on the cubic spline segment. Thus, P(t) is a vector-
valued function having the components [x(t), y(t), z(t)]. The coefficients B; of the
spline segment is derived by specifying four boundary conditions.

The terms defined at the boundaries of the each spline segments are denoted by the
following notations given in Table 3.2.

Table 3.2. The boundary terms of spline segments.

Eositfi‘(m%Vecths » Tén_gcnt Vectors | Curvature Vectors

Py, Pa..., Py P.P,,..P P!, P!,..,P"

where n is the number of points. Differentiating the spline segment equation yields:

4
P'(t) =Y B,(i-1t%? =B, +2B;t +3B,t’ t, <t<t,

i=1
If we assume t; = 0, the four boundary conditions for the segment will become

PO0)=P, P(t,)=P, P(O0)=P  P/t,)=P
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Solving for unknown B; yields

P(0)=P, =B,
P'(0)=P, =B,

P(t,)=P, =B, +B,t, +B,t] +B,t;
P'(t,) =P, =B, +2B,t, +3B,t2

B; and B4 are obtained using the above equations,

_ 3P, -B) 2P/ +P B _2(P1—P2)+PI’+P2'
= 4= 2

2 3
1:2 tZ t2 t2

B,

Thus, we can obtain the equation for a single cubic spline segment in terms of
position and tangent vectors as follows:

_ r ! _ 14 PI
SN LI A RN ELE W 21

t; t, t t2

Since this equation defined for only one segment, in order to obtain the overall curve
equation, these adjacent piecewise segments should be combined. Two adjacent
segments can be seen in Figure 3.7.

P1/ P3/

PZ P3

4

P,
P,

Figure 3.7. Two adjacent segments.

The same equation holds for both segments, provided that the position vectors Py, P,,
P, the tangent vectors P/,P,,P; and the parameter values t,, t3 are known. However,

it is unlikely that the tangent vector P, at the intermediate point is known, but it can

be determined by imposing the second order continuity condition for the cubic spline
curves. Thus, differentiating the spline segment equation yields

4
P'(t)=> B,(i-D{-2)t"> =2B, +6B,t t <t<t,
i=1
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The parameter range of the first spline segment Py(t) is t; = 0 <t < t, and the
curvature at the end of the first segment is:

P/(t,) =2B, +6B,t,

The parameter range of the second spline segment Py(t) is t; = 0 <t < t3 and the
curvature at the beginning of the second segment is:

Pé' (0)=2B,

For any two adjacent spline segments, equating the second derivatives at the
common internal joint (end of the first segment and beginning of the second
segment):

P/(t,)=P;(0) = [2B,;+6B,t,] =[2B,],

2[3(P2 -P) 2P/+P; }L%[z(n -P) K+P; ] _ 2[3(P3 -P,) 2P, +P3’}

t; t, t t; t3 ts
By collecting tangent terms at one side, the unknown tangent vectors can easily be
obtained:

3

1P+ 2(t; + ;)P +1,P) = - 2@, -p,) + 2P, - P))]

2t3

For simplification, the above equation can be written in matrix formulation and the
unknown tangent vector P, can easily be computed.

P!
! 3

[t, 2¢t,+t) t,]|P =[H [ti(P3—P2)+t§(P2—P1)]]
P; 2%3

These results can be generalised for n data points to give n-1 piecewise cubic spline
segments. Figure 3.8 illustrates n piecewise cubic segments.
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P, Pl', Pl”
(t)

P,, Pz' Py
(t)

Py, Py, Py 5 ()

Figure 3.8. Illustration of n piecewise cubic segments.

Similarly, the linear system of equations can be constructed for n-1 piecewise cubic

segments. Although the problem is indeterminate, with the assumption that end
tangent vectors P|,P]are known, the problem becomes determinate and can be

written in matrix notation as:

- _ P’
1 0 0 0[P ; 1
2 2
ty 2ty +t3) t, 0 0 ||P, - t2(Py ~Py) +t3(P —Pl)]
23

0 t, Aty +1;) ty 0 || P;

3 2
) : g Aty +thy) by ’ [tn~1(Pn —Ppp)+ trzl(Pn—l - n—2)]
0 0 0 1 P tn-1tn

- JL7n | Prl1

Once the tangent vectors are P, are computed, the B; coefficients for each spline can

be determined as follows:

By =P,
By = Pli s
B. = 3(Pk+] - Pk) _ 2Pl: + Pl:+1
3k T 2 >
tk+1 1:k+l
2, -P.,) P +P,
B, =—k _ ket) | Tk i k+l
tk+1 tk+1

So the piecewise cubic spline equation can be written for each spline segment in
matrix form as:
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B1k

4 , B
Pk(t)=ZBikt“‘=[1 t t t3] B2k 0<t<t,,, 1<k<n-1
i=l 3k

B4k

To simplify the calculations, the coefficients By can be substituted in the above
equation and rearranged to give the overall cubic spline equation as follows:

P
Pk+1
P
P !

k+1

P(w=[EW F@) E@ Fw]

where Fix(u) are called blending functions, and can be written as:

F, (u)=2u’ -3u’ +1
F,, (u) =-2u’ +3u’
Fy (u) =u(u-— 1)? ten

F4k (u) = u(u2 - u)tk+1

Figure 3.9 shows the blending functions for tx; = 1.

F] Fz

F3

Fa

Figure 3.9. Cubic spline blending functions.
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Consequently, it has been shown that a piecewise cubic spline curve is determined by
the position vectors, tangent vectors, and the parameter values.

The parametric piecewise cubic spline curve is advantageous since it is the lowest
degree curve which allows a point of inflection and which has the ability to twist
through space. Although the use of cubic spline has proven useful in shipbuilding
industry, a number of disadvantages still exist. Specifically, parametric cubics never
reduce exactly to a conic section, they poorly approximate asymptotic curves, and
they can exhibit oscillations. (e.g., the continuation of a straight line by a circular
arc) The reason of the oscillations is due to its global nature. The cubic spline is
influenced by all defining data points, a change in any one segment affects all
segments, hence a local modification involves the recomputation of the entire spline.
Consequently, there is lack of local control over the curve shape. Moreover, the third
derivative is piecewise continuous. Discontinuities in third derivative can thus induce
unwanted inflection points at certain locations along the curve. Although such an
oscillating curve is C? continuous, it is unacceptable.

Four typical ship sections are chosen for the application of cubic spline. These
sections and their first and second derivatives are shown in Figure 3.10. Cubic spline
representation of these sections are shown in Figure 3.11 with their corresponding
derivatives. The drawbacks of cubic spline fitting at corners and flat parts are clearly
visible.
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3.2.2. Bezier Curves

Bezier curves and surfaces, originally developed by Bezier (1966), constitute one of
the earliest attempts to develop a flexible and intuitive interface for computer aided
design. Bezier curves and surfaces have been used for many years by Renault for
designing outer panels of automobiles. Also, this powerful control polygon technique
has found wide applications in shipbuilding industry for defining ship curves and
surfaces. The difference in this technique from aforementioned curve fitting
techniques is that the curve is obtained from its defining polygon and not constrained
to pass through given data points. Thus, the limitations of the interpolating methods
can be overcome by using Bezier curves. The shape and the order of the curve is
controlled by the use of easily controlled input parameters. A Bezier curve is
associated with the vertices of a control polygon namely, the Bezier polygon which
uniquely defines the shape of the curve. The curve shape tends to follow the shape of
the polygon.

Bezier curves are defined by a recursive algorithm, known as de Casteljau algorithm.
This algorithm is probably the most fundamental one in the field of curve and surface
design, although it is surprisingly simple. The essence of the algorithm is repeated
linear interpolation. This simple and very intuitive geometric construction leads to a
powerful theory.

De Casteljagu Algorithm

The de Casteljau algorithm can be derived geometrically. Lets consider three control
polygon points; B,, B, B, and obtain the quadratic expression illustrated in Figure
3.12.

Figure 3.12. The de Casteljau algorithm.
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We can construct the polynomial equations Pi(t) using these polygon vertices B; by
linear interpolation as follows:

Pl,o ®)=01-1)B, +tB,
PL1 t)=(1-1t)B, +1B,
Pz,o (t) = (1 - t)Pl,O (t) + tPl,l (t)

Substituting the first two equations into the third yields the quadratic equation of the
curve formed by three defining polygon vertices, B,, B, B2

P, ,(t) = (1-1)*B, +2t(1-1)B, +’B,

where the first subscripts denote the degree of the curves. It can clearly be seen from
Figure 3.12 that P, ,(t) lies within the convex hull of the defining polygon and the

polygon formed by By, B;, B; is called the Bezier or control polygon of the Bezier
curve P, (1).

A sequence of linear interpolation yields a polynomial curve of arbitrary degree n:

P (t)=(1-t)P_,(®)+tP_ .. () r=L2..n i=0,1..,n—r

However, to facilitate further developments, it is generally required to have an
explicit representation of Bezier curves. So, this recursive algorithm should be
extended to yield mathematical basis of Bezier curves defined by non-recursive

formula of Bernstein polynomials.

Thus, Bezier curves are expressed in terms of Bernstein polynomials, J,i(t) defined
explicitly by,

nj . .
1) = (i]t'(l—t)""

where the binomial coefficients are given by

n) n
i) ilm-i)!
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Jni(t) is the i n™ order Bernstein basis function. They are constructed to yield the
following recursion of de Casteljau algorithm:

Jn,i (t) = (1 - t) Jn—l,i (t) + tJn—l,i—l (t)

A property of Bernstein polynomials is that for any given value of the parameter t,

the summation of the basis function is precisely one.

i=0

n
i=0

30,.0 =Z(ri’]tf A-9™ =[t+1-9] =1

The relation among Bernstein polynomials is illustrated in Figure 3.13.

J 0.0
d
Lt f = linear
Jio T
N
2
(1-1) 2(1-t)t ¢ = quadratic
J 2.0 J 2.1 J 22
¥ N N Y
-ty 3(1-t) 33102 t .
S0 B B L, | Tcubic
N N Y N AR
(1-t)* 4(1-t)’t 416 4(1-t)t th
Jao Ja Jas Jas Jaa

Figure 3.13. The relation among varying degrees of Bernstein polynomials.

Bernstein polynomials for quadratic and cubic cases can be seen in Figure 3.14.

A parametric Bezier curve is defined by

P(t)=) BJ,;(t) 0<t<l
i=0

= quartic

where B; represent the position vectors of the n+1 vertices of the characteristic

polygon of the Bezier curve and J,i(t) Bernstein basis functions. This curve passes

only through first and last points of the defining polygon; By and By, and the tangents

are in the direction of the vectors B¢B; and B,.;By, as shown in Figure 3.15.
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J J
J 2,0 J 22 3,0 33

Ja,1
J31 I3

0 ®) e 10 ®) e

Figure 3.14. Bernstein blending functions. (a) quadratic case (n=2), three polygon
points, (b) cubic case (n=3), four polygon points.

B B
ea2 4 B,
Bo (3]
Bs;

Figure 3.15. An example of a fifth degree Bezier curve and its defining polygon.

The equation of the Bezier curve can also be expressed in a matrix form as follows:
Pt =[1][c]

where [J]= [Jno Jn1 ... Jnnl and [G] =[Bo Bi ... B.]". As an example cubic case
can be considered (n=3), and defined in matrix notation:

BO
Bl
Py =la-v° 3ta-0> 3t2@-v t3]B

B;

By collecting the parameter coefficients, the above equation for cubic Bezier curves

can be decomposed into a more convenient form:
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-1 3 -3 1B,

3 -6 3 0||B

po=IiNflel=l ¢ « > 0 o)P
2

1 0 0 o|B

w

This matrix representation can be generalised as:
[T]=t ot -t

The terms of the matrix N(n,n) are derived from the following equation:

ny( n—j L L
()( ) .](—1)nlJ 0<i+j<n
Ni+1,j+1= J/j\n—-1-]
else

where i, j denote rows and columns, respectively.
[ (n)(n . n\n-1 el n\n-n 0~
oo (acer = (e
n)y n —1)“"‘ njn-1 B . 0
0 n—l( 1 An-2 )
n\(n D! n n—: 1 N O
ol (-1 o D" -
1 = 0 0
L \0A0 D i

[B]=[B0 B, -+ B, Bn]T

Basic properties of Bezier curves can be summarised as follows:

e The degree of the Bernstein basis polynomial is one less than the number of the

vertices of the control polygon.

e The Bezier curve segments are convex combinations of the control polygon
vertices, hence lies within the convex hull of the defining polygon (convex hull

property).
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e Only the first and last vertices of the control polygon lie on the curve (end point
interpolation), the other vertices define the shape, order and derivatives of the
curve.

e The tangent vectors at the ends of the curve have the same direction as the first

and last polygon spans, respectively.

e The curve exhibits variation-diminishing property. Hence, no plane has more
intersections with the Bezier curve than with its characteristic polygon, in other
words, Bezier curve wiggles no more than its control polygon.

e The curve is invariant under affine transformation (affine invariance). The shape
of a Bezier curve is determined only by its vertices, independent of any
coordinate system.

e A multiple vertex will act as a weighting factor, and the curve will follow the
polygon closer in that region at the expense of obtaining higher degree curves.

e Raising the degree of the defining polynomial curve by adding an additional
vertex to the defining polygon increases the flexibility of a Bezier curve.

e A change in a vertex affects the whole Bezier curve and re-computation of all
points on the curve is required.

Two characteristics of the Bernstein Basis Bezier curves limit the flexibility of the
resulting curves. First, the number of the specified polygon vertices fixes the degree
of the curve. The second limitation is due to the global nature of Bernstein
polynomials. All of the defining polygon vertices influence the shape of the curve
hence the curve is a blend of their values. This lack of local control eliminates the
ability to perform a local change within the curve.

Using the above formulation, Bezier splines are applied to typical ship sections as
can be seen in Figure 3.16. The applications indicate that Bezier curves can provide
far representations with some deviation from the original offset points. This limits
the application of Bezier curves and surfaces in mathematical representation of ship
lines. However, this method has found wide application areas in the field of ab initio
design where an experienced designer creates a new hull form from limited data

available.
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3.2.3. B-Spline Techniques

Many 3D computer graphics modelling and animation systems use a B-spline
representation for curves and surfaces because of their unique geometric properties
such as smoothness and controllable C" parametric continuity between patches.
These advantages have made B-spline curves and surfaces popular in CASD
applications and today many ship hull form design software use B-spline techniques.

3.2.3.1. B-Spline Curves

B-spline curves, within the context of approximation techniques, are the result of a
further intensive development of the Bezier curves described in the previous
subsection. They are a special class of polynomials with unique properties that result
in several practical advantages in comparison to other spline functions and
polynomials. The Bernstein basis blending functions used in the Bezier
approximation are replaced with a polynomial spline basis that has superior
characteristics. Schoenberg (1946), introduced the polynomial spline called the B-
spline and used for statistical data smoothing. His paper started the modern theory of
spline approximation but it was applied to Computer Aided Geometric Design
(CAGD) by Riesenfeld (1973) and Gordon and Riesenfeld (1974). The application
of this theory in CAGD has made it possible to avoid the drawbacks of Bezier
curves. Specifically, fixed degree of curves due to the number of defining polygon
vertices, and global nature of Bernstein basis. Higher flexibility and superior
geometric properties of B-spline curves have caused it to become a standard tool of
computational geometry and geometric modelling.

A B-spline curve or surface is specified by a set of points called the control vertices.
Although these vertices do not generally lie on the generated surface curve or
surface, like in Bezier curves, their positions completely determine its shape. These
defining vertices form the control polygon of the curve. The generated curve or
surface tends to mimic the overall shape of the control polygon, and manipulation of

a control vertex causes a modification in the resulting shape over a limited range.

B-spline basis also contains the Bernstein basis as a special case but B-spline
functions are defined locally. This non-global behaviour is due to the fact that each
vertex B; is associated with a unique basis function. Thus, each vertex affects the
shape of a curve only over a range of parameter values where its associated basis
function is non-zero. The B-spline basis also allows the order of the basis function
and hence the degree of the resulting curve to be changed without changing the
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number of defining polygon vertices. Moreover, it is possible to introduce new
control points without increasing the polynomial degree, and even to change the
order of continuity between neighbouring spline segments

B-spline Basis:

B-spline basis functions can be derived and expressed in different ways. The most
convenient definition was independently given by Cox (1971) and de Boor (1972).
The recursive formulation of the i™ normalised B-spline basis functions of order k

are expressed as:

N, ()= 1 if x, <t<x,
Y0 otherwise
Ni,k )= ﬂ_i_)__Ni,k_l Q) .,.&:fk__t)Nm’k_l (t) 1<i<n+l
i+k-1 = A itk T i+l

The convention % =0 is adopted here for numerical purposes.

It can clearly be seen from recursive Cox-de Boor relation that in order to calculate a
specified basis function of order k, all lower order basis functions up to 1 has to be
computed. Thus, this dependence forms a triangular pattern and illustrated in
Figure 3.17.

Nig
Nik-1 Niv1x1
Nix2 Nit1 k2 Nit2k-2
v v v v v
Nix Nivit N2t AP E— > | Niews

Figure 3.17. Dependence of B-spline basis functions.
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The values x; in normalised B-spline functions are elements of a knot vector
satisfying the relation x; < x;+1, i.e., monotonically increasing series of real numbers.
This knot vector denoted with X shows the parameterisation of the basis function,
which affects its properties. The elements of the knot vector X are parameter values t
and they vary from tyin to tmax denoting the parameter range along the curve.

The normalised B-spline basis functions are positive, and have local support. Some
of their properties can be expressed in mathematical terms:

o Nix()>0 forx;<t<zxuk (positivity)

o Nix)=0 forx;<t<x;, Xuk<t<xpu+1 (localsupport)

n+l

* ZNi,k (=1

e Nj(t) has continuity C*? at each of the knots

The choice of the knot vector has a significant influence on the B-spline basis
functions Nk and hence on the resulting curve. Thus, B-spline bases are classified
through knot vector types:

a) Uniform and non-uniform B-spline bases
b) Periodic and non-periodic B-spline bases

The first classification is the type of parameterisation, and the latter determines the
resulting curve to be open or closed curve.

In general, uniform knot vectors are evenly spaced, and begin at zero and

incremented to some maximum value or normalised in the range between 0 and 1,
e.g.,

X= [0 0.25 0.50 0.75 1.0]

An open uniform knot vector has multiplicity of knot values at the ends of the knot
vector equal to the order k of the B-spline basis function, e.g.,

X=[00012333] fork=3
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An open uniform knot vector can be computed by the following expressions:

0 1<i<k
i-k k+1<ig<n+1
n-k+2 n+2<i<n+k+1

Il

1

MM
I

i

1

Open uniform B-spline basis functions are computed using recursive Basis functions
and the above open uniform knot vector expression. An example is illustrated in
Figure 3.18 for order three (k=3) and for four defining polygon vertices (n+1=4).
The knot vector is obtained as

X=[0001222]

Ni3 Ngj3
N2,3 N3,3

' t
0 1 2

Figure 3.18. Open (non-periodic) uniform B-spline basis functions, k=3,n+1=4.

It is important to note that when the number of defining polygon vertices is equal to
the order of the B-spline basis, and an open uniform knot vector is used, the B-spline
basis reduces to Bernstein basis. If we consider four polygon vertices, and order is
chosen as four (k =4), a cubic Bezier/B-spline curve is generated, and the knot vector
becomes;

X=[00001111]

Non-uniform knot vectors are formed of unequally spaced parameter values. They
can also possess multiple internal knot values. An example for non-uniform basis
functions is illustrated in Figure 3.19. The order is taken as three (k=3) for five
defining polygon vertices (n+1=5). The knot vector which contains an interior
repeated knot value is taken as

X=[0001133 3]

74



N1‘3 N5,3

N33 Nys

0 ' t
0 1 2 3

Figure 3.19. Open non-uniform B-spline basis functions, k=3,n+1=15,

An open non-uniform knot vector can be computed using the following formulae.
The interior knot values are proportional to the chord distances between polygon
vertices:

i/ -k +2)]c.,, + Zi:cj

= - H (n-k+2) 1<i<n-k+l
>e,
i=1

X, =n-k+2 n+1<i<n+k

X.

itk

where ¢, = | B, - Bi} . For equally spaced polygon vertices the result reduces to an

open uniform knot vector.

Both uniform and non-uniform knot vectors can be periodic (closed). In this case, the
knot values range from generally 0 to tmax = ntk, and the number of knot values is
n+k+1, e.g., for k = 3 and for four polygon vertices n+1 = 4, the knot vector for the
periodic basis functionis; X=[0 1 2 3 4 5 6].

For a given order k, uniform knot vectors yield periodic uniform basis functions that
satisfy

N ) =N, t-D=N,, (t+1)

This property of periodic basis functions is illustrated in Figure 3.20.
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Figure 3.20. Periodic (closed) uniform B-spline basis functions, k =4, n +1 =4.

De Boor Algorithm:

De Boor algorithm allows the computation of points on a B-spline curve without
explicit background knowledge of the B-spline basis functions described in the
foregoing. The algorithm is generalisation of de Casteljau algorithm which is used
for obtaining Bezier curves. The basis of the algorithm is constructing B-spline curve
points from defining control polygon points which are also called de Boor points.
The algorithm, which yields B-spline curve points for the corresponding parameter
value t, is defined by the following recursive expression:

. Xipgi —t . —X. .
Bi(§) =B+ — =B/ (1)

irn—j — X Xim-j ~Xia

j=L..,n—r
i=l-n+k+1..,I1+1

where x represents knot vector values, n degree of the curve, and r multiplicity of

parameter value t, usually taken as zero (r = 0). Parameter value t should be in the
interval t € [x;, x1+1]. Control polygon points are denoted with; B{(t) =B, in the

above recursive formulation. The value of the B-spline curve at parameter value t is:
P(t) = By, (1)

An example is given for the case of four defining polygon vertices, namely de Boor
points, and evaluation of a B-spline curve P(t) of degree n = 3 at parameter value t is
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considered. Parameter value t is assumed to be in the interval [x;, x3], and the B-

spline curve value at t is computed from de Boor algorithm as follows:

X, —t t—X
Bi(t)=—" LB (1)

B3+

X3 —X, X3 =X,

Figure 3.21 shows the geometric interpretation of the Boor algorithm as repeated
linear interpolation in this case.

v
-

Figure 3.21. The de Boor algorithm for the k = 4 case.

Mathematical Definition of B-spline Curves:

The general form of a B-spline curve is given by

n+l

P(t)=) BN, (1)  t,, Stst 2<k<n+l
i=1

max *

where P(t) represent position vectors along the B-spline curve, and B; control
polygon vertices, also called de Boor points. N; ((t) are the normalised B-spline basis
functions. A B-spline curve is the linear combination of defining polygon vertices
and B-spline basis functions.

The uniform B-spline basis is considered to be standard spline basis in CAGD and
hence used in the context of this thesis. An open uniform B-spline curve and its
defining polygon is illustrated in Figure 3.22.
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Figure 3.22. An open uniform B-spline curve of order k = 4, and its defining
polygon.

Due to the flexibility of B-spline curves, various natural shape control handles can be
used to modify the shape of the curve. These can be listed as:

e The type of the knot vector, and basis function,

e The order of the basis function,

e The number and position of control polygon vertices,
e Multiple polygon vertices,

e Multiple knot values.

The effect of using different types of knot vectors on B-spline curves is illustrated for
comparison in Figure 3.23. The non-uniform B-spline curve is chord length
proportional parameterised and for equally spaced polygon vertices the resulting
curve reduces to evenly spaced integer interior knot values, i.e., an open uniform
knot vector.

It can clearly be seen from Figure 3.23 that non-uniform B-spline curves do not
greatly differ from uniform B-spline curves unless the relative distances between

polygon vertices differ radically.

78



B B
. uniform (k=3)  » Bs

/

non-uniform
(k=3)

B;

Figure 3.23. Comparison of quadratic open uniform and non-uniform B-spline
curves.

The effect of varying order and multiple polygon vertices on B-spline curves is
illustrated in Figure 3.24 and 3.25, respectively.

Figure 3.24. Effect of varying order on a B-spline curve.

Basically, the order the B-spline curve determines how close the curve will follow
the defining polygon. As the order decreases, the generated curve lies closer to the
defining polygon. For order two (k=2), the curve is the identical to the defining

polygon.
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Figure 3.25. Effect of multiple vertices at B4 on a B-spline curve of order four, k=4.

Using double or triple vertex produces knuckles depending on the order of the spline.

This ability is a common requirement in ship hull form design.

Basic properties of B-spline curves can be summarised as follows:

They allow a high degree of local variation without propagation along the entire
curve, since each control vertex is associated with a unique basis function. Each
curve segment of a B-spline curve of order k is controlled by adjacent k vertices
of the defining polygon, and completely unaffected by other control vertices.
Conversely, the effect of moving a vertex is confined to k segments. This local
control effect is illustrated in Figure 3.26. The three curves of order four (k=4)
are obtained by changing the position of the fifth vertex of the control polygon
successively from Bs to B and BY. The modified polygons are denoted with
dashed lines. Clearly, the curve is affected over the neighbouring +k/2 spans
around the displaced vertex.

B-spline curve segments of degree k-1 join with continuity of the parametric k-2
derivative vectors. Thus, an entire B-spline curve of degree k-1 is everywhere
continuous along with its first k-2 derivatives, C2.

The associated knot vector of a B-spline curve denotes its parameterisation, and
controls the degree of the continuity between polynomial segments. If multiple
interior knot values are used to yield sharp corners or cusps, (e.g., multiplicity r,
Xi = Xj#1 = ... = Xjur-1, I < k-1) then the differentiability of the basis function is
reduced to C¥™! at that knot value due to introducing a span of zero length. This
property is also useful when interpolating first and last polygon vertices by
making the multiplicity of the first and last knot equal to the order of the spline
(end point interpolation).
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Figure 3.26. Effect of vertex modifications over a B-spline curve.

Though the order of the B-spline representation is independent of the number of
control vertices, the maximum order is confined with the number of defining
polygon points. It is a general requirement that the order must be sufficiently
high to offer enough freedom to satisfy various constraints, however it may be
desirable to maintain the order as low as possible.

Although the generated curve reflects the shape of the control polygon, it tends to
produce a smoother curve due to B-splines variation diminishing property.

A point on a B-spline curve of degree k-1 is a convex combination of k control
vertices. The set of all possible convex combinations of these vertices is their
convex hull. Thus, each order k B-spline segment lies within the convex hull of
its k defining control vertices. Since the entire B-spline curve is composed of a
sequence of these segments, it will pass through the union of the convex hulls of
each segment (convex hull property). Figure 3.27 shows the convex hulls of the
control polygons for several B-spline curves of varying orders.

They can be controlled interactively by defining vertex polygons and can be
made to closely resemble the defining polygon.

The relationship between a B-spline curve and its control polygon is invariant
under affine transformation. Any affine transformation can be applied to the
curve by applying it to its defining control polygon (affine invariance).
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Figure 3.27. Convex hulls of B-spline segments of various orders.

e They allow slope and curvature (first and second order derivatives) to possess
discontinuity along the curve enabling flat part or knuckles to be represented by a
single spline definition. A B-spline curve, which contains a line segment is
illustrated in Figure 3.28.

Collinear polygon vertices

" g

k=4 Collinear curve
segment

Figure 3.28. Effect of collinear control points over a B-spline curve.

o The flexibility of a B-spline curve can be increased by raising the order of the
defining B-spline basis and hence of the defining polynomial segments. Also, the
flexibility can be increased by inserting additional knot values into the defining
knot vector.

B-splines have sufficient degrees of freedom to capture any possible curve shape
likely to be met in ship curve design. Therefore, in the context of the thesis, B-
splines have been used both for representation of ship curves and surfaces, and in
developing effective fairing procedures. B-splines of low order (4 < k < 6) generally
give satisfactory results in designing and fairing procedures. In Figure 3.29, cubic
uniform B-spline representation of typical ship sections is presented. It can be seen
from the applications that B-splines curves are likely to represent any possible shape,
including knuckles.
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3.2.3.2. B-Spline Surfaces

Tensor product B-spline surfaces are obtained as a straightforward generalisation of
the B-spline curves, therefore share most of the properties of B-spline curves
demonstrated in the previous section. They play an important role in current surface
design methods. Tensor product B-spline surfaces can be computed using the
following expression

n+l m+1
Q,w) =YY B, N, WM, (W) u,, Susu,,, 2<k<n+l,

i=1 j=1
Won SWEW_, 22/<m+1
where Njk(u) and M; (w) are the B-spline basis functions of degree k-1, and /-1 in
the bi-parametric u and w directions, respectively. The set of control points are
usually referred to as control net. The expressions of the B-spline basis functions are
given similarly to that of B-spline curves,

1 if x;,<u<x,,
Ni,l (w) = :
0 otherwise
N (w) = —(u;x—i)—Ni,k—l (w) +—(Xi+—k—'£)—Ni+l,k-l () 1<i<n+l
i+k=1 — Xk — Xin
1 if y,<w<y,
Mj,l (w)= ) !
0 otherwise

Mj,ﬂ (W) = MMLZ—] (W) +MMj+L@_1 (W) 1 < i <m +1

i1 — i i+ = Jin
where x; and y; are elements of knot vectors, and defined as follows:

[XT=[% ... Xake2l,  [Y]=[V1.. Yol

The number of defining vertices Bi; in the u and w parametric directions is n+1 and
m+1, respectively. A degree (k,/) tensor product B-spline surface is a piecewise
polynomial surface defined over a rectangular domain. Clearly, the shape of a B-
spline surface is greatly influenced by the type of knot vectors in both directions.
Open, uniform, non-uniform knot vectors can be used. Although different types of
knot vectors can be used for u and w parametric directions, it is not common, and

used only for specific occasions. (e.g., a cylindrical surface of varying cross-sectional
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area, an open knot vector is used for one parametric direction and a periodic knot
vector is used for the other.)

Figure 3.30 shows an example of a bi-cubic B-spline surface and its defining control
net. The defining control net is formed of a 4 x 4 polygon net, and the order in both

parametric direction is four.
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Figure 3.30. (a) Bi-cubic B-spline surface (b) Its control net.

A tensor product B-spline surface has the following properties, most of them
inherited from B-spline curves.

e The maximum order of the surface in each parametric direction is equal to the
number of defining polygon vertices in that direction.

e The continuity of the surface in each parametric direction is two less than the
order in each direction provided that knot vectors do not contain multiple knot
values. Thus, a B-spline surface of degree k-1, and /-1 in u and w parametric
directions is everywhere continuous along with its first k-2 (Ck'z), and £-2 (C*?)
derivatives. For multiple knots the differentiability decreases by one for each
increase in multiplicity. Multiple knots can thus be used to generate local
knuckles or discontinuity in surfaces.

e The surface is invariant with respect to an affine transformation. Hence, the
surface is transformed by its defining polygon net. This is a consequence of the
fact that the B-spline basis functions are positive and sum to one.
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e The influence of a single polygon vertex is limited to * k/2, + #/2 spans in each
parametric direction.

o The B-spline surface reduces to a Bezier surface if the number of defining
polygon vertices is equal to the order in each parametric direction.

o The surface lies within the convex hull of the defining polygon net formed by
taking the union of all convex hulls of k, # neighbouring polygon net vertices.
This strong convex hull property for B-spline surfaces follows directly from B-

spline curves.

e Tensor product B-spline surfaces can only be used if the surface to be modelled
can be associated with a rectangular domain.

As a consequence of strong convex hull properties originated basically from B-spline
basis, a B-spline surface can contain flat regions and lines of sharp discontinuity.
This particular characteristic is especially required in hull form design environment
as some ship forms are likely to be formed of these parts. (e.g., a hard chine form
contains lines of sharp continuity, and a full ship is likely to contain a flat part)

Applications of B-spline surfaces for a mathematical hull form which was first
suggested by Wigley (1934), and a high-speed displacement type hull form used as
the parent hull for NPL series described by Bailey (1976), are shown in Figures 3.31
and 3.32, respectively. Their defining polygon net is formed of hull form offset
points. Since a typical hull form is conventionally defined by offset points over a
rectangular domain, it is common to represent the hull surface by tensor product B-
spline surfaces.
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Figure 3.32.a. Bi-cubic B-spline surface wireframe model of NPL hull form.

Figure 3.32.b. Bi-cubic B-Spline surface representation of NPL hull form.
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3.2.4. Comparison of Spline Techniques

Detailed discussion of spline techniques (i.e., cubic splines, Bezier and B-spline
curves) can be found in Barnhill and Riesenfeld (1974), Faux and Pratt (1981),
Yamaguchi (1988), Rogers and Adams (1990), Lyche and Schumaker (1992),
Hoschek and Lasser (1993). Some of the theoretical characteristics of the spline

methods are listed in Table 3.3. Compared characteristics are computer storage,

computing difficulty, continuity, local control capabilities, and available shape

control parameters or handles, and the ability to represent a knuckle.

Local control

Shape control
handles

e  Offset points
e End tangent
vectors

Offset points

Table 3.3. General characteristics of spline curves.

‘ B-sphne Curves .

e  Offset points
e Order

| Requires matrix

Bemnstein-basis

B-spline basis

. . functions are functions + knot
inversion
. (high) computed vector computed
. (medium-low) (medium-high)
Depends on the
Cubic number of offset Eﬁ:;g:ﬁ;egé een-1)
points. (n-1) er

Up to second

| derivative. (C?)

Two less than number
of offset points.
€

Two less than order of
the basis functions.
)

No local control

No local control

High local control

e Location of offset
points

e End tangent
vectors

e Location of offset
points

e Number of offset
points

e Location of offset
points

o  Number of offset
points

e  Order of the basis
function

e Type of the knot
vector

e Multiple
knot/polygon
vertices

‘| Requirement of curve
‘| subdivision

Requirement of curve
subdivision

Defining multiple(k-1)
polygon vertices or
knot values at that
point
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4. GEOMETRIC PROPERTIES OF SHIP HULL FORMS

In this chapter some elementary techniques and properties of curves and surfaces are
discussed and identified that will be useful for the description of hull form geometry
and fairing methodologies. Curves and surfaces for both design, approximation and
fairing are characterised by those properties.

4.1. Parametric Curve Representation

In Computer Aided Geometric Design (CAGD) environment it is more common to
define curves parametrically in terms of a single scalar parameter. Thus, as stated by
Farin (1993), the exploration of the use of parametric curves and surfaces can be
viewed as the origin of CAGD. The reason of the popularity of this representation is
due to its greater flexibility and easy-to-manipulate property. The conventional
scalar-valued, explicit and implicit forms in the Cartesian coordinate system are only
capable of describing a small class of curves and surfaces. For example, such a
function can not represent a non-planar curve twisted in space. Moreover, it can not
be used to describe a multiple-valued curve or surface. Also, the choice of the
coordinate system should have no effect on the shape of the curve. It is obvious that

all these crucial requirements can only be satisfied with parametric representation.

In CAGD environment, the curves are generally specified as polynomial functions of
parameter t, where t is an arbitrary curve parameter and usually lies in the range of
0 <t <1. The curve can be expressed with a differentiable vector valued function on
an interval Z the function X(t) is called the parameterisation of the curve.

X® = [x®), y©, z0] te[ab]

Parametric representation can be conceptualised as a mapping from parameter space
to Euclidean space. For a given parametric value, the coordinates of a point on the
curve or surface is obtained. This mapping is illustrated for a space curve in
Figure 4.1.
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Figure 4.1. Mapping from t parameter space into R> space for a spatial curve.

A parameterisation is said to be regular provided that it is at least continuously
differentiable, and satisfies the following condition

|X’(t)| #0 forallte 7

Another important way to represent a curve parametrically, which has obvious
geometric significance, is to parameterise the curve in terms of arc length where the
arc length of curve can be given as,

s(t) = t_ﬂX'(t)| dt where

to

X'(0)] = yX' ()% +¥'(0) +2(t)?

Under arc length parameterisation |X'(s)] =1 everywhere. Although arc length is an

important concept, it is primarily used for theoretical considerations and for the
development of curve algorithms.

4.2. Geometric Characterisation of Curves

Geometric character of a curve is usually described in terms of tangent, curvature
and torsion quantities. A trihedral frame, which is called the Frenet Frame is
introduced in differential geometry that will facilitate the description of these
properties. This frame is composed of the curve’s tangent (t), normal (n), and
binormal (b) vectors. Each vector can be defined as follows:
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Tangent of the Curve:

At any point on a curve in the plane, the line best approximating the curve that passes
through this point is tangent to the curve. The tangent t(u) at a point X(u) is the
direction of the curve at X(u) where u is the curve parameter. Thus, the tangent is in
the direction of the first derivative of the curve.

_ X'
Xw)

t(u)

Binormal of the Curve:

The binormal of the curve at a point on X(u) is perpendicular to the plane, the curve
lies at X(u). Thus, the binormal is perpendicular to the first and second derivatives.

X' () X"(u)

b(u) = |X’(u) X X”(u)|

Normal of the Curve:

The normal of the curve at a point on X(u) is perpendicular to the tangent and

binormal vectors.

n(u) = b(u)x t(u)

These three vectors define a set of three planes; the osculating plane, the normal
plane, and the rectifying plane.

The osculating plane is spanned by the tangent and normal vectors and is named for
the best approximating tangent circle (osculating circle) that passes through the point
on the X(u). The normal plane is spanned by normal and binormal vectors. The
rectifying plane is spanned by tangent and binormal vectors, and is named for the
fact that as it moves along a curve, it sweeps out a rectifying developable surface.

The Frenet Frame of a space curve can be seen in Figure 4.2.

This special local coordinate system varies its orientation as parameter (t) traces out
the curve. The fundamental properties of curves are curvature and torsion, which
uniquely define the curve shape. They are intrinsic differential characteristics of
curves and surfaces.
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Figure 4.2. The Frenet Frame. Moreton (1992)

4.2.1. Curvature

Global and local shape characteristics of curves are completely described by
curvature, and fairness criteria for curves are generally associated with the curvature
properties, thus it has emerged as a necessity to introduce curvature defined in
differential geometry. Moreton (1992) defines curvature as an instantaneous
measure of how much the curve is bending in the osculating plane away from the
tangent direction. The reciprocal of the radius of the best approximating tangent
circle that passes through this point called osculating circle is the curvature of the
curve at this point. The circle lying to the left of the curve denote positive, and
conversely to the right of the curve denote negative curvature.
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For an arbitrary curve, the curvature of a circle of radius R is given by x = 1/R, and
R = 1/ is called the radius of curvature at the point u = u,. The radius of curvature
can be interpreted geometrically as the radius of the circle whose first and second
derivatives agree with those of the curve X(u) at the point u = u,.

When a curve is arc length parameterised, the second derivative is equal to the
curvature, thus X"(u)is generally used as an approximation to the curvature. Most

features of a curve can be conveniently expressed in terms of curvature k, as listed in
Table 4.1. (Wesselink, 1996)

Table 4.1. The relationship of curve features with curvature.

Inflection point k changes its sign
Convex curve k>0
Concave curve k<0
Flat point k=0

Corner, chine, knuckle, break Max | K |

Accelerating/Decelerating curve | Monotonous increasing/decreasing | x|

Frenet-Serret equations are direct results of these definitions:

t'(s) = k(s) n(s)
b'(s) = 1(s) n(s)
n'(s) = —«(s) t(s) — t(s) b(s)

where 1(s) represents torsion of the curve, and s denotes arc length parameterisation.

The expression of the curvature can be derived directly from Frenet-Serret equations:

| X'(u)x X" (u)|
| X'

K(w) =

where X = X(u) is a vector-valued function of a parameter u defined on an interval I
and the components of X will be real-valued functions of parameter u. Highly curved
splines yield large curvature values. If x(u) = 0 for all u € I than the curve reduces to
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a straight line. If x(u) = 0 holds locally, then the curve has a point of inflection or a
flat point.

X"(s) = w(s)n(s)

The Frenet Frame vectors, the curvature and torsion can be expressed in terms of arc
length instead of regular parameterisation. Although simplified expressions can be
obtained, no obvious advantage regarding computer implementation is achieved.

It is a well-known fact that curvature, along with torsion, completely characterises
the shape, thus fairness of curves. The requirement of eliminating unnecessary
variations applies directly to the curvature and torsion of a spatial curve. It is also
worth noting that C* continuity is required for the torsion, hence curvature of a
spatial curve to be continuous. Consequently, curvature plots of curves are frequently
used as fairness indicators in most curve design schemes.

4.2.2. Torsion

Torsion is specifically used for describing a curve’s shape, like the curvature of a
curve. It is an instantaneous measure of how much the curve is bending away from or
out of the osculating plane, hence a curve with zero torsion denotes a planar curve.
t(u) is the rate of change of the angle between b(u) and b(u=0), in other words
torsion measures how far the curve is from being planar. The expression of torsion

can be given as:

_ det] X'(w), X"(w), X" (W) |
[X'(u)x X" ()|

The curvature and torsion are invariants of a curve, i.e., their values are independent
of the parameterisation. Thus, they uniquely determine a curve’s shape.
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4.3. Geometric Characterisation of Surfaces

The idea for curves can further be developed for surfaces, such as a surface which
bulges out in all directions (the surface of a sphere) is positively curved, i.e., if the
surface lies all on one side of the tangent plane of a point taken on the surface.
Conversely, a saddle shaped surface has negative curvature; every plane through a
point on the saddle actually cuts the saddle surface in two or more pieces. In other
words, a positive curvature value means the surface is locally either peak or a valley,
and negative value means the surface has locally saddle points. The zero value
indicates the surface is flat at least in one direction. Thus, the geometric character of
a surface is described by position, surface normal and the principal curvatures.

If the surface is assumed to be represented by a vector-valued function of two
variables, its equation becomes;

Qu,v) = [x(u,v), y(w,v), z(wv) ],  [u,v] ¢ [a,b]

where u and v are arbitrary surface parameters, and the surface is parameterised
regularly.

The unit surface normal is the most elementary differential characteristic of a surface
and defines the tangent plane to the surface at a given point. It is computed from the
partial derivatives of the surface such as;

0o Q,(w,v)xQ,(u,v)
|Q, (u,v)xQ, (u,v)]

Currently, the best mathematical technique for analysing surface characteristics is by
means of Eulerian (orthogonal) nets of minimum and maximum curvature, and
specifically Gaussian. At any point P on a surface, the curve of intersection of a
plane contains the normal to the surface at a point on the surface, and the surface has
curvature , at that point. As the plane is rotated about the normal, the curvature
changes. Euler, has found out that minimum and maximum curvatures have unique
directions. The curvatures in these directions are called the principal curvatures
and ,. Moreover, the principal curve directions are orthogonal. Two combinations
of the principal curvatures are of special interest, the mean and Gaussian curvatures.
The mean curvature is defined as
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and the Gaussian curvature is

K=xx

1772

Dill (1981) has shown that for bi-parametric surfaces the mean and Gaussian
curvatures can simply be expressed as

oAl -28,Q, +CQ,f

2Q, xQ,[’
_ AC-B?
|Q, xQ, [
where
A:|Qu XQWIQUU
B=|Q,xQ,|Q,,
C=|Q, xQ,|Qu

As noted before, the sign of the Gaussian curvature serves to characterise the local
shape of the surface, i.c., elliptic, hyperbolic, or conical. In Table 4.2 surface types
along with their sign conventions are given. Thus, the distribution of , over the
surface indicates the shape of the regions.

Table 4.2. Surface types.

Sa;ne sign >0 | Elliptic (bump or hollow)
Opposite sign <0 Hyperbolic (saddle point )
One/both zero =0 Cylindrical (flat point)
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A convenient method for displaying the variation of a scalar quantity is by means of
colour encoded maps, an even gradation of colour corresponding to a range of values
for that quantity. A contour map is a sequence of planar curves lying on a surface,
cach parallel to a fixed reference plane. These level curves are typically evenly
spaced and change shape in a smooth and continuous manner between successive
levels. Figure 4.3 shows a contour map for a test surface used in Figure 3.30, and
Figure 4.4 shows the contour map of a mathematical hull form named as Wigley
form that has been generated by a set uniformly spaced sectioning planes. The
mathematical expression of Wigley form can be found in Chapter 5.

-15.00 -10.00 -5.00 0.00 5.00 10.00 15.00

Figure 4.3. Colour encoded contour lines (y = const.) for the surface of Figure 3.30.

Surface interrogation aims at the extraction and visualisation of geometric properties
of surfaces, and current surface analysis tools also use contour maps of curvature for
detecting surface characteristics. The most effective technique is accepted as the
colour encoded Gaussian curvature plots over the surface. Contour maps provide
direct and natural interpretation of computer-generated surfaces. They are
specifically used to derive detailed local information.
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Figure 4.4. Colour encoded contour lines (y = const.) for Wigley form.

Figure 4.5 shows colour encoded Gaussian curvature image of a mathematical hull
form (Wigley form). In this case, the expected smooth transitions between contour
lines of Gaussian curvature can be seen from the figure as the hull form is
intrinsically fair due to its mathematical base.

The mean curvature, on the other hand indicates whether the region is full or hollow,
hence measures the deviation of a surface from a minimal surface. Positive values of
mean curvature, (H>0) indicate local bumps, and similarly, negative values (H<O0)
indicate hollow surfaces.

Figure 4.6 shows encoded mean curvature image of Wigley form. The gradual
transitions of contour lines of mean curvature can clearly be seen from the figure as
expected. It is also worth noting that the contour lines of mean curvature appear to be
rather smooth.

In practise, detailed curvature analyses on surfaces should be performed by using
both Gaussian and mean curvatures.

In addition to the predefined mean and Gaussian curvatures, another fairness
indicator can be defined using the principal curvatures of surfaces. This measure is
also used as a standard fairness criterion for surfaces in engineering. It is defined by

the following equation as the sum of squared principal curvatures of surfaces:
S=x; +x,
This criterion approximates the strain (bending) energy in a thin rectangular elastic

plate with small deflection. Figure 4.7 gives the illustration of the colour-encoded
sum of squared principal curvatures of Wigley form.
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4.4. The Concept of Fairness

The inherent subjectivity of assessing the appearance of a curve makes the definition
of fairness difficult. The difficulty arising is due to the fact that the definition
depends on the application. Consequently, a variety of definitions can be found in
literature, mostly associated with curvature properties of curves and surfaces for the

judgement of fairness.

e The maximum rate of change of curvature must be as small as possible,
(Birkhoff, 1933).

e The curve should be convexity preserving, (Theilheimer and Starkweather,
1961).

o Atkins et al (1966) give six requirements for a fair ship curve:
1. Continuity of a curve
2. Continuity of first derivative
3. Continuity of second derivative
4. Absence of extraneous inflection points
5. Minimal deviation from the scaled offsets (by approximation)
6. Good outlook to the eye.

e A frequency analysis of the radius of curvature plotted against arc length might
give some measure of fairness, the lower the dominant frequency, the fairer the
curve, (Forrest, 1968).

e A fair curve has minimum strain energy, (Reese, 1985).

e A curve’s curvature plot must be almost piecewise linear, with only a small
number of segments. Continuity of curvature is an obvious additional
requirement, (Farin et al, 1987).

¢ In many design applications a gentle, gradual development of curvature along a
curve is much desired and is often used as a subjective measure of curve fairness,
(Meier and Nowacki, 1987).
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A curve is fair if its curvature plot consists of few monotone pieces, (Farin and
Sapidis, 1989).

Bu-Qing and Ding-Yuan (1989) suggests a plane curve is called fair if the
following three conditions are satisfied:

1. The curve should be G2 (Geometric Continuity)
2. There should be no unwanted inflection points on the curve
3. The curvature of the curve should vary in an even manner.

@) The number of extreme points on the curvature should be as
small as possible

(ii)  The curvature of the curve between two adjacent extreme

points should vary almost linearly.
Calkins et al (1989) defines the fairing process as follows:

First and second differences are plotted and shown adjacent to the enlarged
curve. Bumps or unfairness in the first and second differences reflect an
unfairness in the original curve. The user then changes the point values of the
original curve until the first and second differences are considered fair enough.

Fairness is measured as the integral of the square of the second derivative of the
curve, (Nowacki et al, 1990).

A curve is characterised as fair, if its curvature plot is continuous, has the
appropriate sign (if the convexity of the curve is prescribed), and it is as close as
possible to a piecewise monotone function with as few monotone pieces as
possible, (Sapidis and Farin, 1990).

The properties desired of a fair curve are smoothness, shape preservation,
absence of extraneous inflection points and the like, but a curve which satisfies
all of these criteria as well as the original constraints may still fail to be fair.
Fairness measures must depend only on the geometric invariants of the curve and
be independent of the curve’s parameterisation. A curve’s shape should minimise
either variation of the radius of curvature or the variation of curvature, (Roulier
et al, 1991).
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e A curve is fair if its curvature plot is continuous and consists of only a few
monotone pieces, (Farin, 1993).

e A fair curvature plot should be free of any unnecessary variation, i.c., the
distribution of curvature on a fair curve must be as uniform as possible,
(Pigounakis et al, 1996).

e A C2curve is considered fair if it minimises the integral of the squared curvature
with respect to the arc length, (Roulier and Rando, 1994).

o Snaith (1998) gives the definition of geometric fairness as devoid of unintended,

localised;

1. Erratically distributed, high frequency, high amplitude undulations, i.e.,
statistical variability / statistical error / noise

2. Low frequency, low amplitude undulation involving inflections
3. Flattening tendencies
4. Bulging tendencies.

Based on these definitions the requirements for a fair curve or surface can be listed as

follows:
> The curve must be continuous along with its first and second derivatives,

> The curve must be continuous free of extraneous inflection points causing the
curve to have bumps, while possessing those specified by the naval architect,

» Deviation must be as small as possible,

> The curvature should vary gradually along the curve, i.e., maximum rate of

change of curvature should be as small as possible.

All curves satisfying the four conditions stated above will look ‘fair’ or ‘pleasing to
the eye of an experienced loftsman and loftsman’s batten has been used for many
years widely and satisfactorily for interpolating and fairing of previously defined

points.
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4.5. Smoothing Process

Most hull representation techniques are sensitive to erroneous input data points.
Thus, smoothing process should be applied to given points representing the ship lines
as a pre-processing step of fairing in which the aim is to eliminate gross errors due to
misreading a scale, transcribing the data points incorrectly. Therefore, reasonable set
of points is obtained before initiating the fairing process.

The fundamental difficulty lies in distinguishing input human errors (e.g.,
misreading, etc.) from points that are inconsistent due to lack of fairness in the initial
raw data. The former errors are regarded as random and hence should be eliminated.
However, the latter may represent the designer’s intentions (e.g., knuckles, chines,
etc), and their character should be preserved.

The data points which serve as input to the lofting system, are traditionally obtained
from offsets of a small scale preliminary design drawing prepared by the naval
architect. This drawing is generally, one-fiftieth the size of the actual ship. The small
size of the drawing, although beneficial to the architect in many ways, invariably

causes small reading errors in the scaled offsets.

The first problem and step in smoothing process is to separate the erroneous points
which do not at all reflect the naval architect’s intention from the rest. Traditionally,
in the mould loft, this operation is achieved by visual observations. Before
proceeding with fairing process, the naval architect checks all the points to see if they
seem to fit well with one another. Subsequently, the suspected points are rechecked
with the lines plan and re-scaled if necessary. However, to automate this system in a
computer environment seems difficult due to the possibility that it may cause the
designer’s intended bad points (e.g., knuckles) to be rejected. Therefore, in these
conditions, automated system of lofting cannot be regarded as effective. However,
the smoothing process can produce excellent results if applied with the basic
assumptions of hull form design. These assumptions are:

o The initial set of offset points for the hull surface to be analysed is assumed to be
reasonable points and sufficiently describes the ship which was intended to be
fair.

e The erroneous points are assumed to be due to human error being a small fraction
of the total number of points.

106



e The curves should not have too many or too closely spaced inflection points to
prevent the occurrence of bumps.

In connection with the last assumption, one can easily verify that two closely spaced
inflection points in a curve causes it to have bump in that region. Such bumps are not
considered smooth and thus, inflection points need to be relatively isolated from one
another to prevent the occurrence of bumps.

It is stated above that the fairness problem in hull form design can be investigated
separately in preliminary and later stages of ship design. In the first problem, the
hull form is roughly defined and designer is relatively free to suggest gross
modifications in order to improve fairness. Under the assumption that number of
data points that cause unfairness is small these points can be detected in the curvature
curve by two consecutive sign changes. Modified original points can be obtained by
a spline fit through data points excluding the erroneous one. This process which is
referred to as “smoothing” should not be confused with a “fairing” problem where
the number of data points to be modified is large and the relative errors in offsets are
not large enough to be detected by a change of sign in curvature plot. A smoothing
process may be extremely useful when applied before a fairing process in order to
detect and eliminate gross errors which may occur during data input or transfer. A
typical example is illustrated in Figure 4.8.a where the original section line, taken
from Bailey (1976) obviously includes a misprinted offset value. The first and
second differences magnify the error and a change of sign in curvature plot enables
us to locate the erroneous point. This point is then eliminated and a cubic spline fit is
applied to the remaining offsets. The new section line with smooth first and second
differences are shown in Figure 4.8.b.
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SECTION NO.11 1st DERIVATIVE 2nd DERIVATIVE
(MODIFIED)

®)
Figure 4.8. Smoothing process applied to a section line. (Narh and Sanéz, 1998)
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5. FORWARD FAIRING OF SHIP HULL FORMS

The design of complex curved shapes such as ships and aircraft has always posed a
problem and the technology employed has changed radically over the century. It was
common practice in the past to lay out the design of a ship in the lofting room where
elastic splines are used as a fairing tool to generate ship lines plans called manual
lofting process. The results of this process were impressive, and precise hull
geometry was produced that could be reliably used for production. The physical
splines assumed shapes, which was both aesthetically pleasing and mechanically

sound being the curve of minimum strain energy.

The effectiveness of manual lofting and drafting methods with the use of elastic
battens and weights at that time had caused late initiation of the research for
mathematical representation techniques. However, the obvious advantages in design
calculations and production stages have motivated many researchers. Different
mathematical methods varying from simple polynomials to complex rational/non-
rational B-spline methods have been used in hull form design applications, and B-
spline methods have overcome many problems encountered in other techniques and
therefore preferably implemented in many CASD (Computer Aided Ship Design)
software packages. However, even in state of the art NURBS based system one often
faces undesirable shape feature in curves that must be eliminated, as a flawless
network of curves is a necessary condition for creating an acceptable hull surface.
The full manual lofting process is transferred into computer environment in these
packages. This interactive fairing process is similar to the manual fairing process
achieved by batten and weights. The only difference is that the corresponding
curvature plots of curves, and the effect of modifications can be seen simultaneously.
Curvature plots are extensively used by CAD researchers, and developers for
inspecting curves and surfaces. Although this interactive process seems
advantageous, judgement of fairness is again on subjective bases, depending on the
person who is performing the process. Hence, this type of fairing can be doubtful in
many cases as it is prone to human errors. Also, the fairing is a global feature of
curves and surfaces, local modifications of curvatures are likely to produce unfair
curves. Therefore, there is an extensive need of an efficient global fairing process
based on an objective fairness criterion.
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The early ship lines fairing computer software used polynomials to represent basic
ship curves such as waterlines and section lines. The least square or area/moment
methods employed by these early systems to compute the coefficients of the
polynomials had difficulties of controllability requiring skilled personnel. The early
ship lines fairing procedures were based on graphical means in which the actual
shape of the hull was represented by lines drawn with views along the principal axes
of the hull. Many weeks and sometimes months had to be spent obtaining fair lines,
since fairness control was accomplished by visual inspections.

More recent applications, although achieved graphically, are based on more powerful
and flexible mathematical representation techniques. They are based on various
spline techniques which are found to be more suitable than the polynomial methods.
It is widely accepted that B-spline methods emerged as providing more satisfactory
results in most cases but it is still difficult to automate the process. Fairing
procedures employed in most Computer Aided Ship Design (CASD) software are
computerised versions of the manual method and hence have similar drawbacks.

Mathematical fairing of ship lines has been proposed as an alternative method by
various authors. Mathematical ship fairing brings some principal advantages

compared to graphical method.

In this chapter a flexible numerical procedure for fairing hull form design curves
which form the three-dimensional ship body is presented. The traditional solution to
the problem of fairing ship hull forms is to reduce the problem to simultaneous
fairing of two-dimensional curves on three orthogonal planes, called the section

lines, waterlines and buttock lines.

The approach adopted in this chapter is based on approximation of ship lines by B-
splines of suitable order. It is shown that the degree of fairness can be improved by
increasing the order of the B-spline, however this may result in excessive deviations
from the original offset points. A balance between closeness and fairness can be
identified by successive applications of B-spline to original offsets in an iterative

manncr,

An alternative approach based on B-spline fitting is presented in the next section.

This approach is shown to minimise the deviation from original offset points.

In order to obtain three-dimensional fairness, two-dimensional ship lines on three

orthogonal planes need to be faired simultaneously. The fairing process is first
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applied to waterlines and the modified offsets are transferred to other planes. The
iterative process is repeated until specified degree of fairness is achieved.

This procedure is applied for fairing the lines of a distorted mathematical hull form,
the parent hull of a well-known high-speed displacement hull form series, and a
high-speed naval corvette form.

While the objective is to obtain three-dimensional fairness it is reasonable to assume
that designer should preserve the hull form characteristics which may be selected for
the best hydrodynamic performance. Therefore, there should be certain limits on
variation from the original lines plan. These limits are expressed in terms of
conventional naval architectural parameters, i.e., the block coefficient, longitudinal
centre of buoyancy etc. The results indicate that these procedures are particularly
useful for high-speed displacement hull forms and can be used as practical design
tools in the early stages of ship design.

5.1. Fairness and Closeness Metrics

Fairness is not a local property of a curve, and for a fair curve the maximum rate of
change of curvature must be as small as possible along the curve. The radius of
curvature R of any curved line is expressed as

At any selected point a curve has an effective radius of curvature equal to that of a

circle. The absolute curvature, 1/R, approaches zero with second derivative
d?y/dx? - Curvature plot of a curve can be used to detect geometric properties such

as fairness. Two properties of a curve readily available from a plot of its curvature
are the presence of inflection points and the variation of curvature. Therefore, the
fairness problem in design of ship lines may be defined as:

e Mminimum rate of change of curvature,

o limited number of inflection points, and
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e minimum deviation from given offset points within which the fitted lines must
lie.

In many Computer Aided Hull Form Design Software the fairing process is based on
interactive modification of curvature plots. However, this process is not suitable in
an automated computational procedure and numerical criteria, which reflect visual
observations are needed. For any ship line the sum of squares of second differences
calculated at offset points may be used as an indicator of fairness. This sum which

will be referred to as the fairness number, is proposed as a numerical criterion, to

indicate a reduced rate of change of curvature as it gets smaller. It should be noted
here that the second derivatives may be used as a good approximation for curvature,
and as the ship lines are defined by discrete points, divided differences can be used
instead of derivatives. Therefore, second differences can be used to compute the
fairness numbers of the hull forms.

However, another criterion is needed to represent the similarity between the original
and modified ship lines. This criterion may either be defined as the maximum
absolute difference between the offset values or the sum of squares of differences. In
this study, the first option is preferred and the absolute maximum difference is called

the closeness number.

The ship line to be faired is defined as [x;, yi: i=1, ..., n] and the modified offsets
are defined as [x!,y!: i=1, ..., n]. The fairness and closeness criteria will be given

respectively as

o £ a2.\? n 2.\?
i et
i=1 X

i=] dX'2

CN = max |y§—yi| where i=1,..,n

where FN and CN represent the fairness and closeness numbers respectively. The
objective of the designer is to minimise both numbers simultaneously, however this

is not possible in many cases and a compromise is needed. (Narh and Saréz, 1998)
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3.2. Fairing of Hull Forms by Iterative B-Spline Approximation

The B-spline approximation process adopted in this section is based on the
approximation of a given form plan by mathematical functions. Various
mathematical tools such as polynomials, cubic splines, Bézier curves and B-splines
arc available and the experience has shown that B-spline curves provide the best
alternative for approximating ship lines. As the order of the B-spline curves is
increased smoother curves can be obtained but the deviation from the original data
points will increase. This feature of B-spline curves has led to the development of
practical fairing procedures.

This procedure is based on successive application of B-spline curves for ship
waterlines and section lines in an iterative manner until a satisfactory degree of
fairness is achieved. The offset points of each waterline in the lines plan is assumed
to be the polygon vertices for the B-spline representation and the modified offsets are
then obtained from the B-spline curve. These offsets then become the polygon
vertices for the corresponding section lines. The process is successively applied until
satisfactory levels of fairness and deviation from original offsets are obtained.

In conventional CASD applications B-spline curves are used to represent ship lines
which are defined by a small number of polygon vertices. These points are generally
defined interactively to give a close approximation to the original offset points or
alternatively the position of polygon vertices can be obtained from the position of
offset points. When the number of offset points that define the design curve is
relatively large (21 for a typical waterline) these offset points can be used as the
defining polygon and the resulting B-spline curve will preserve the characteristic
shape with not excessive deviation from the original offsets. As the degree of the B-
spline increases fairness and deviation from the original points will also increase.
This is illustrated in Figure 5.1 where original offset points and B-spline curves
which take these offsets as polygon vertices are shown on the left hand side of the
figure. The degree of the B-spline curve increases downwards so does the fairness.
This can be verified by visual observation of the first and second derivatives, which
are shown in the middle and on the right hand side of the figure, respectively. It is
also clear that as the degree of the B-spline curve is increased we obtain a poorer
representation of the offset points.
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This feature of B-spline representation can be applied in fairing of ship lines. The
problem obviously is three-dimensional, however it can be reduced to fairing of two-
dimensional lines on three two-dimensional planes, i.e., the waterlines, buttock lines
and section lines. The fairing process, as illustrated in Figure 5.2 starts with B-
spline representation of waterlines. In many cases the number of offset points which
define any waterline is more than 20, hence a low order (4th or 5th) B-spline curve
will provide close representation of the original waterline. Then the modified offsets
are transferred into body plan and they form the polygon vertices for new section
lines. The order of B-spline curves will depend on the number of offset points and
for cases with more than 10 offsets to define each section line, low order B-spline

curves provide excellent representations.

To demonstrate the performance of the fairing procedure a mathematical hull form
which was first suggested by Wigley (1934) selected. The hull surface, which has a
fore-aft and port-starboard symmetry, is defined by the following equation:

y(x,2) =%{1- (2x/L)2}{1- (z/D)Z} where

L : length

B : breadth

D : depth

X : distance from amidships, positive forward

y(x,z) : offset value at (x,2)
z : distance from deck line, positive downwards

This mathematical hull form, labelled as Parent Hull in Figure 5.3, has a fair
surface and hence fair waterlines, buttocks and section lines. This form is then
randomly distorted to obtain a starting point for the fairing process, which is based
on successive approximation of ship lines by B-splines of suitable order. The order
of the B-spline depends on the number of offset points and low orders should be
preferred in order to minimise deviation from the original offsets. After five
iterations a final form as shown in Figure 5.3 is obtained.
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SMOOTHING

FAIRING
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CHECK CURVATURE

REMOVE UNWANTED
OSCILLATIONS

REPLACE BY
CUBIC SPLINE

ITERATE UNTIL

APPLY SUITABLE

B-SPLINES FOR SECTIONS

SATISFACTORY
FAIRNESS IS
ACHIEVED

Figure 5.2. Hull form fairing process. (Narh and Sandz, 1998)
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CN=0.0
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FN=609
FINAL FORM CN=§.75

Figure 5.3. B-spline approximation of Wigley form. (Narh and Saréz, 1998)
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As can be seen from Figure 5.3, the final form has a smaller fairness number, which
indicates fairer lines as can be observed visually. However, there is a penalty
involved in the process, which is characterised by the closeness number, i.e., the
maximum deviation between the original and faired offset points. As can be seen,
this number increases with increasing fairness. In this case the process is terminated
after 5 iterations in order to stay within specified deviation limits. Some geometric
properties of each hull form is shown in Table 5.1.

These results indicate that the variation in geometric properties and displacement
may be up to 6%, which may not be acceptable in many cases. These differences
may be reduced by sacrificing in fairness, however a better way would be to apply
affine transformation techniques that are described in Chapter 2. This would not
detoriate the fairness characteristics already obtained but will provide a closer

approximation to the original hull form.

Table 5.1. B-spline approximation of Wigley form.

// Poma - | wei | os | NO.4
L@m) | 16.000 16.000 | 16000 16.000 16.000 16.000
B (m) 1.600 1618 | 1598 1.580 1.546 1530
Da) | 1.000 1.000 [ 1.000 1.000 1.000 1.000
Cwr 0.667 0.662 |  0.662 0.662 0.660 0.659
Cp | 0444 0.440 | 0.440 0.439 0.437 0.436
Cw 0.667 0.661 |  0.662 0.662 0.661 0.660
LCB (%) | 0.000 0.018 | 0012 0.012 0.009 0.008
Vanh) | 11375 11393 | 11240| 11092 10.803 [  10.662
FN | 73115 889.36 |  744.75 691.98 632.24 609.34
CN 0.000 0.000 | 1.490 2.570 4.720 5.750

As a second example the parent hull of NPL high-speed displacement hull series
Bailey (1976) is selected. The original offsets include a misprinted value, which is
detected and eliminated by the smoothing routine prior to the fairing process. The
lines plan of the original hull form and the final form of the iterative fairing process
are shown in Figures 5.4.a and 5.4.b. Three-dimensional shaded images of the
initial and final NPL forms are also shown in Figure 5.5 and 5.6, which clearly
indicate the success of the process.

118



FN: 201.94

Figure 5.4.a. Initial NPL form. (Narh and Saniz, 1998)

FN: 5.32

Figure 5.4.b. B-spline approximation of NPL form. (Narh and Sari6z, 1998)
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Figure 5.5.a. NPL initial hull form.

Figure 5.5.b. NPL final hull form.

Figure 5.6.a. NPL initial hull form. Figure 5.6.b. NPL final hull form.



Some geometric properties of the parent form and the alternatives developed during
the fairing process as well as those of the final form are given in Table 5.2.

Table 5.2. B-spline approximation of NPL parent hull.

Similar trends can be observed in both examples (Wigley and NPL form), i.e., a fair
set of ship lines can be produced after a few iterations. However, there may be
excessive deviations from the original form, which may not be acceptable by the
designer. This is a direct consequence of B-spline approximation method, and the use
of B-spline fitting, which is illustrated in the next section, could be used to obtain
closer representations. Alternatively, the offsets of the faired hull may be multiplied
by a constant obtained by comparing the beam or volume values of the original and
final forms, or linear distortion techniques may be used to preserve the original hull

form characteristics.

A typical corvette form has also been selected as a third application. The form
labelled as the parent form can be seen in Figure 5.7.a. The process is applied with
varying order of B-splines where low orders provide close representation of the
original curves with the sacrifice in fairness so it has been decided to adopt high
orders and number of iterations in order to produce a fairer form. After 15 iterations
the final hull form as shown in Figure 5.7.b is obtained.
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The results of this application indicate that the variation in geometric properties and
displacement may be up to %10, which may be unacceptable in many cases. In order
to overcome this excessive deviation problem due to high number of iterations, and
selection of high-order B-splines, linear distortion techniques, described in Chapter 2
are applied to the final form. Linear distortion techniques have found practical
applications in deriving the lines for a new design from a similar basis ship which
permits the longitudinal spacing of the transverse sections to be adjusted to suit the
new curve of areas. Hence, a new acceptable form with same fairness characteristics,
which is not much deviated from the initial form is obtained, and labelled as the
distorted form. Thus, fairness characteristics already obtained will remain, providing

a closer approximation to the original form.

The final form obtained as the product of the fairness process and distorted form
obtained by applying one-minus prismatic method to the final form to preserve
original hull form characteristics are shown in Figure 5.8, where dotted lines
indicate the distorted form. Some geometric properties and fairness numerals of each
hull form developed during the fairing process as well as those of the distorted form

can be seen in Table 5.3.

Table 5.3. B-spline approximation of corvette form.

| Noi ™| rorm
79.100 79.100 | ... 79.100 79.100 79.100
12.600 12.600 | ... 12.600 12.600 12.600
3.150 3.150 | ... 3.150 3.150 3.150
0.796 0.794 | ... 0.773 0.771 0.803 “
0.464 0.459 | ... 0.418 0.415 0.469 l
0.708 0.704 | ... 0.645 0.642 0.659
-3.890 3772 ... -2.790 -2.736 -3.750
1275.78 1262.38 | ... 1135.82 1128.10 1273.85
0.150 0.120 | ... 0.053 0.051 0.078
0.000 3.575 8.924 9.110 0.28_1_J|

Figure 5.9.a and 5.9.b depicts shaded images of parent and final forms of the
corvette, respectively.
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FINAL FORM

—-~-- DISTORTED

Figure 5.8. Final and distorted hulls of the corvette. (Narh, 1997)

Figure 5.9. (a) Original corvette, (b) Final form.
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5.3. Fairing of Hull Forms by Iterative B-Spline Fitting

The second procedure adopted is similar in its iterative manner with the first
approach. This useful fairing procedure is also obtained from B-spline curves, which

is called the B-spline Curve Fit. Here, the successive application of B-spline curves

starts with section lines and continues with B-spline curve fit for waterlines. The B-
spline curve fit process provides the polygon vertices, which yield a B-spline curve
representation of the original offset points.

By selecting suitable number of polygon vertices one can increase the degree of
fairness with increasing penalty on closeness to original points. If the number of
polygon vertices is the same as the offset points, the generated B-spline curve from
this polygon fits through all offset points. This feature of B-spline curve fit satisfies
the closeness requirement, as there is no deviation from original points. However, the
fitted curve may develop unacceptable oscillations due to increasing number of
polygon vertices requiring the inversion of a large ill-conditioned matrix. Therefore,
a compromise between the degree of fairness and closeness should be sought by
changing the number of polygon vertices.

In this approach, the offset data points are used to obtain the defining polygon to
generate the B-spline curve passing through all data points. Hence, the B-spline
curve in matrix form can be written as

[D}=IN][B] 2<k<n+1<j

D, (ty) B,
Dz(t2) Nl,k(tl) o Ni,k(t]) B2
[D]= : [N]=| ¢ - : [B]= :
D, (t,) Nig(t) - Ny (ty) B,

Here, [D] represents the given set of offset data, [N] the basis functions, and [B] the
defining polygon. In this case, number of defining polygon points is equal to the
number of data points. So the matrix [N] is square and its inverse can be taken to
obtain the defining polygon likewise

[BI=[NT"' [D]
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If the number of defining polygon points is less than the data points, the fitted B-
spline curve does not pass through all data points but represent the original points
very closely. Consequently, a fairer curve showing minimum deviation from original
offsets is obtained. This feature of B-spline curve fit can be used in developing
fairing processes. When fewer polygon points than data points are defined, the
matrix [N] be no longer square. To make it square for taking the inverse, it should be
multiplied by its transpose. Following this procedure the defining polygon is thus
obtained.

[D]=[N]B]
[N [P]=[N] [N][3]

[B]= [N N [N )

Therefore, by using this defining polygon the B-spline curve that fairs the given data
is obtained. More details about B-spline approximation and fitting can be found in
(Rogers and Adams, 1990).

The fairness and closeness characteristics of the new curve will depend on the
number of polygon vertices selected. By increasing the number of vertices one can
obtain closer representation with degrading fairness properties. An iterative process
best achieves a compromise solution between fairness and closeness requirements
where the number of original offset points determines the number of polygon

vertices.

This procedure is also applied for fairing the lines of a distorted Wigley form and the
parent hull of NPL series. The results generally indicate that one can obtain closer
representations of the original hull form compared with the B-spline approximation
procedure. Fairing of the distorted Wigley form by B-spline fitting process is
illustrated in Figure 5.10. Compared with B-spline approximation this process
produces smaller closeness numbers with a slight penalty in fairness number. Similar
trends are observed in NPL case which is shown in Figure 5.11.
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ITERATION NO.1 AP ITERATION NO.7  FN=723

CN=1.09

ITERATION NO.13  FN-T13 ITERATION NO.19  §\77,

FINAL FORM FN=T03

Figure 5.10. B-spline fitting of Wigley form. (Narh and Sariéz, 1998)
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k FIN: 201.94
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FN: 6.62

Figure 5.11.b. B-spline fitting of NPL form. (Narh and Sarioz, 1998)
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Geometric properties of the original and final forms with those generated during the
iterative process of fairing are presented in Tables 5.4 and 5.5 for Wigley and NPL
hull forms, respectively. These tables also indicate that B-spline fitting could produce
closer representations to the original hull forms as required with a slight penalty in

fairing characteristics.

Table 5.4. B-spline fitting of Wigley form.

“orm - | N0l | 'Nos
16.000 | 16.000 | 16.000
L.618 1.609 1.609 | .. 1.609 1.609 1.609
1.000 1.000 1.000 | .. 1.000 1.000 1.000
0.662 0.666 0.666 | .. 0.666 0.666 0.666
0.440 0.442 0442 | .. 0.435 0.435 0.435
0.661 0.663 0.662 | .. 0.654 0.653 0.652
0.018 0.011 0.013 | .. 0.008 0.008 0.008
11.393 | 11.380 | 11.367 | .. 11.205 | 11.196 11.186
889.36 | 735.06 | 730.70 | .. 705.79 | 704.46 703.15
0.000 1.117 1.220 | .. 1.931 2.005 2.008

PARENT
FORM ;

2.540 2.540 2.540
0.438 0.437 0.437 0.437 0.437
0.240 0.240 0.240 0.240 0.240
0.848 0.849 0.849 0.849 0.849
0.540 0.539 0.538 0.538 0.537
0.710 0.711 0.710 0.709 0.709
-6.126 -6.170 -6.150 -6.130 -6.110
0.144 0.144 0.143 0.143 0.143
201.940 6.658 6.628 6.623 6.618
0.000 4.694 4.699 4,703 4.704
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6. INVERSE FAIRING OF SHIP HULL FORMS

It is a well-known fact that fairness of curves and surfaces are closely related to their
curvature characteristics, and they provide a powerful means for curve and surface
interrogation. Thus, both the interactive and mathematical fairing procedures are
largely concerned with improvement and control of curvature. There are specific
requirements for a given ship line to be considered as fair, as mentioned in Chapter 4
(e.g., distribution of curvature on fair curve must be as uniform as possible, devoid of
unintentional knuckles indicated by multiple sign changes in the curvature plot etc.).
Whenever, all these requirements are fulfilled the generated curve or surface can be
considered as fair. More recently, several algorithms have been developed based on
modifications of curvature. Some worth noting can be listed as knot removal, knot
insertion, and energy minimisation procedures. The knot removal and insertion
algorithms are mainly based on local modifications of the curvature, and used in the
development of local fairing algorithms. The essence of the method is removing
offending knots by means of a curvature related fairness criterion and reinserting
new ones. Details of these techniques can be found in Farin et al (1987). However,
the fairness is a global feature of curves, and eliminating erroneous points by local
fairing methods does not necessarily produce acceptable results as local
modifications of curvature do not affect curve’s fairness characteristics. It is evident
that erroneous points inherent in the given data indicated by multiple sign changes in
the curvature curve should be eliminated, but a global fairing method is extensively
required to eliminate randomly distributed relatively small erroneous points which
do not indicated by sign changes in the curvature plot. Energy minimisation or
variational methods are generally accepted as the most effective fairing methods.
Some of the researchers in this field can be listed as Moreton (1992), Welch and
Witkin (1992), Welch (1995) and Wesselink (1996). Applications of these
techniques for hull surface design will be addressed in Chapter 7.

Consequently, it is widely accepted that an efficient fairing methodology should
improve curvature characteristics of curves (i.e., the maximum rate of change of
curvature must be as small as possible). With these requirements in mind, a new
global fairing algorithm is presented in this chapter. This approach has a simple base,
but different in its manner from the previous forward fairing algorithm described in

Chapter 5. The aim in this process is directed towards smoothing the curvature plot
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of curves and surfaces. If a smooth curvature plot can be obtained, obviously its
corresponding curve or surface will be smooth. The process starts with eliminating
gross errors using smoothing process as described in Chapter 4, and continues with
representing curvature plots with suitable mathematical curves and surfaces. Devoid
of gross errors the curvature plot represented with approximating mathematical curve
and surface methods is likely to produce fair curves and surfaces. The new improved
curves/surfaces are obtained by an inverse procedure.

As the ship lines and surfaces are described by a set of discrete offset, divided
differences can be used to represent derivatives, and thus curvature. The improved
ship lines or the overall surface is obtained by integrating twice the improved
curvature plot. However, the new curve/surface to be obtained should not be much
deviated form the original. To accomplish both the fairness and closeness goals,
various mathematical techniques have been tried and implemented in this process. It
is found out that this closeness requirement can only be achieved by using B-spline
curve and surface techniques of low order, and acceptable results are obtained. The
detailed applications for typical ship sections and waterlines can be found in Narh
(1995). A detailed description of B-spline techniques is given in Chapter 3.

Low order B-splines represent curvature curves with sufficient accuracy, and as the
B-spline curvature plot is not constrained to pass through original values but closely
mimic the overall curvature curve, a fair curvature plot can thus be obtained. This
fairing process is first applied to typical ship curves and taken into account as a two-
dimensional problem. The application of the process for three-dimensional problems
is also considered. Distorted mathematical Wigley form is used to present the

effectiveness of the process.

6.1. Two-Dimensional Problem — Inverse Fairing of Ship Curves

The first step in the application of inverse fairing procedure is the fairing of two-
dimensional curves. A two-dimensional hull form design curve is assumed to be
defined by a set of offset points. Section lines and waterlines are typical hull form
design curves.

In order to apply the inverse fairing procedure the curvature plot of the curve is
required. As the hull form design curves are defined by a set of discrete offset points,
divided differences can be used to represent derivatives. Thus, the curvature of the
design curve may be represented by the second divided differences.
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The first crucial step in the inverse fairing procedure is the representation of the
curvature plot by a suitable mathematical expression. A wide range of mathematical
tools including polynomials and various types of splines are available, and
experience has shown that B-splines provide the best results. The order of the B-
splines determines the degree of the fairness. As the order of the spline
representation increases the degree of fairness of the curvature plot will also increase.

The second crucial step is the evaluation of the offset points from the modified
curvature plot by double integration. Since the derivation is carried out in a

numerical manner, the integration is also achieved by using numerical procedures.

The fairness of the curvature plot greatly depends on the order of the B-spline used to
represent the curvature curve. Fairness of the curvature curve and hence of the
original curve can be improved by increasing the order of B-spline. However, the
deviation from the original offset points will also increase with increasing order.
Therefore, the designer must seek a compromise solution.

A typical example of application of inverse fairing procedure for a tanker section is
shown in Figure 6.1. In each figure the original section, its first and second
derivatives, the B-spline representation of curvature curve, and the modified curve
are shown. In each case a different order of B-spline is used, i.e., 3, 4, 5, and 6
corresponding to quadratic, cubic, quartic, and quintic B-splines. The results clearly
indicate that fairness of the curve can be improved by increasing the order of the B-
spline, however, the deviation from the original offsets will also increase. Experience
has shown that cubic and quartic B-splines provide satisfactory results in many cases.
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6.2. Three-Dimensional Problem — Inverse Fairing of Ship Surfaces

The success of the inverse fairing procedure for two-dimensional curves have
motivated the generalisation of the process for three-dimensional ship hull forms. In
three-dimensional case the hull form is assumed to be defined by a number of offset
points along the ship length, and in the vertical direction. It is also assumed that the
curvature of the surface can be represented by second derivatives along the length
and depth directions. The second derivatives in both directions were predicted by
using suitable finite difference schemes.

The second derivatives, which are assumed to represent the curvature surface greatly,
exaggerate the wrinkles and deformations on the hull surface. A typical example is
shown in Figure 6.2 where the second derivatives in length (u), and depth (w)
directions are illustrated for a Wigley parabolic form, which was randomly distorted
in order to be used as a test case in this thesis. As can be seen in the figure, the
second derivatives in the (w) direction is far more obvious compared with the hull
surface.

In a fairing problem second derivatives in u and w directions may not be sufficient
on their own. More suitable measures to indicate the fairness of a surface are the
mean and Gaussian curvatures, which are described as

Kmean = — (K, +K,)

N~

Kgaussian = K1 K2

where K1, K, corresponds to principal curvatures.

The application of these measures to the distorted Wigley form is illustrated in
Figure 6.3. These colour-coded maps clearly indicate the poor fairness
characteristics of this particular form.

The principal of inverse fairing procedure is to represent the curvature plot by a
suitable B-spline curve (or surface) and obtain the original offsets by double
integration from the modified curvature coordinates. For a surface this process must

be carried out in u and w parametric directions in a simultaneous manner.
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Figure 6.2. Distorted Wigley hull form and parametric second derivatives.
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The selection of the suitable order of B-spline surface is again crucial and a
compromise between the fairness and closeness characteristics must be achieved.
Applications to several ship forms indicates that the best results can be obtained by
using cubic and quartic B-spline surfaces to represent the curvature plot of the hull
surface. It is also possible to select a B-spline surface with different orders in u and w
parametric directions.

The results of the application of the inverse fairing procedure to the distorted Wigley
form are shown in Figures 6.4, and 6.5. Figure 6.4 illustrates the second derivatives
for the modified Wigley form which was obtained by representing the curvature plot
of the distorted form by a cubic B-spline surface. Figure 6.5 illustrates the mean and
Gaussian curvature plots for the modified form which has much more improved
fairness characteristics compared with the distorted form.
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7. AN OPTIMISATION APPROACH FOR FAIRING OF HULL FORMS

Hull form design process is a structured decision process from a set of requirements
to a solution meeting technical and economic goals, therefore the problem can be
regarded as a multi-criteria optimisation problem. Hull form fairing as a part of this
design process can also be formulated in terms of an optimisation problem. A typical
engineering optimisation problem is characterised by the following elements:

e Design variables
o Measure of merit
e Constraints

In the fairing problem of ship hulls, the free form parameters of the hull shape can be
accepted as design variables, and the fairness measure can be chosen as measure of
merit and geometric conditions, hydrodynamic properties may act as constraints.
The selection of objective function and constraints is the vital part of an optimisation
problem. For the problem of fairing ship hull forms many different types of objective
functions and constraints can be used. In the following sections an optimisation
problem is formulated and solved for fairing of ship hull forms.

7.1. Formulation of the Optimisation Problem

Formulation of an optimisation problem involves transcribing a verbal statement of
the problem into a well-defined mathematical statement. This standard mathematical
statement should be in the following general form

Minimise f(x) = f(xy, X2, ... , Xn)

where x(X1,X2,...,Xn) represent the design variables.

Subject to gx)>0 j=1,...,n
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Note that an equality constraint, such as A.x =B, can be converted into two inequality
constraints as A.x>B and A.x<B.

Constraints define the boundaries of the feasible design space. In general two types
of constraints are used in engineering problems.

®  Constraints on design variables

= Direct limitations on design variables (side constraints)
where i=12,....n

® Relations between design variables (variable linking)
®  Constraints on system behaviour

® Limits on system output

®  Physical laws governing the system

In a fairing problem, f(x) is a fairness measure which may have different forms as
discussed in the following section. Both geometrical constraints such as position,
tangent, curvature, etc. and practical design constraints such as area and volume are
included in gi(x). For the purpose of the numerical treatment of these constraints, an
internal penalty function technique can be applied which transforms the problem into
a unconstrained optimisation problem where the objective function is

N
1
F(x,r =fx+r§—, r, >0
() ® ki=l g;(x) “

The optimisation problem as outlined is amenable to solution by non-linear
programming techniques. Basically, the above function is taken as an object function
with related geometric and functional constraints in the following sections. The
Hooke and Jeeves (1961) direct search method, which is described in detail in the
following section has been found to work well for the problem under discussion.

The structure of the optimisation based fairing procedure is illustrated in Figure 7.1.
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Figure 7.1. Structure of the optimisation based hull form fairing procedure.

7.1.1. Objective Function

A formal optimisation problem will require the definition of an objective function to
be minimised (or maximised) which is a function of some geometric design
variables, and related geometric constraints. In a fairing problem the objective
function is related to the fairness of the curve or surface to be optimised. Different
approaches may be adopted to represent the fairness of a curve or surface.
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Fairness is a necessarily fuzzy notion based on our perception of curve or surface
quality: but it is intimately related to the distribution of curvature over the form.
Some of the basic properties of a mathematically fair curve or surface are

= C? curvature continuity
®  Curvature almost piecewise linear with as few spans as possible

The curvature of a surface at a particular point in a particular tangent direction can be
measured by slicing the surface with a perpendicular cutting plane and measuring the
curve of intersection. The result is called the normal section curvature in the given
direction. One of the first results in the classical differential geometry of surfaces,
due to Gauss, is that the sectional curvature in the neighbourhood of a surface point
is a smooth function of tangent direction and takes on its maximum and minimum
values in orthogonal tangent directions. These values are referred to as the principal
curvatures k; and ;. The principal curvatures completely characterise the shape of
the surface about a point, and in turn give rise to important geometric quantities, such
as Gaussian curvature

KKz

and mean curvature
1
5 (x; +%,)

The simplest measure of fairness of a curve is its elastic bending energy, i.e., the
integral of the squared curvature with respect to arc length

E= IK(S)zdS = I(css)zds

where the subscript indicates differentiation with respect to the arc-length parameter
s, and the squared vector in the integrand is shorthand for the dot-product of the
vector with itself .

The elastic curve functional can be generalised to surfaces using principal curvatures
as follows:

E = [(x] +x})dS
S
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where dS is the differential area form. This is commonly called the thin plate
functional, because it approximates the strain energy of a thin elastic plate.

Moreton (1992) pointed out that minimising bending energy alone tends to
concentrate curvature near the endpoints of a faired region. He uses a curve fairness
functional that measures the variation of curvature over the interval, i.e.,

(&)«

Minimising this functional is reported to yield curves that seek constant curvature
with results that look much more draftsman-like than those arising from strain
energy. This functional can be generalised to surfaces as follows

2 2
Oe, Oe,

where ¢,, e, are the corresponding directions of principal curvature.

7.1.2. Constraints

In a fairing problem it is necessary to apply at least some geometric constraints to the
form, since the energy of an unconstrained surface can be made zero by collapsing
the surface to a single point. In general two types of constraints are used in the
formulation described in this section. The geometric constraints are used to control
over some aspect of the form. The geometric constraints for the problem can be
stated as,

" the location of points (positional constraints) which restrict the location of points

on the curve or surface.
®  direction of tangents (directional constraints)

= continuity constraints which require the curvature be described in a point of the

curve.

" distance constraints can be used to control the deviation between the original and
the modified forms

®  area and volume constraints are used to control the surface are or internal volume
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The second type of constraints are called the performance constraints and used to
preserve or improve the performance characteristics of the original form. These
performance characteristics may include but not limited to powering, intact and
damaged stability, and seakeeping.

7.2. Method of Solution

Optimisation problems, in general require the best solution to some underconstrained
problem. Usually, the problem contains a single function of a set of free variables
that returns one real number for any position in its domain. This function is called the
objective function. The solution is defined as either the minimum or maximum value
possible of the objective function depending on the problem. Constraints are
requirements on the values of the variables in the objective function and reduce the

size of the domain.

One of the simplest forms of constrained optimisation, in terms of formulations of
the problem, is linear programming. The objective function and the constraints are all
linear. The space of interest is limited to some convex region of the objective
function’s domain. A commonly used solution method for linear programming is the

simplex method.

If the objective function is non-linear, further non-linear mathematical programming
techniques, i.e., searching should be used. Search techniques of these methods are
generally performed by computing gradients of the objective function and using this
information for search direction. In non-linear programming, the solution to be
global minimum, a good estimation of initial search point and bounded constraints on
variables are required. Also, the convexity of the domain is not assured, therefore
solving techniques should avoid of bound areas rather than following edges as in
linear programming. The simplest of the methods is gradient descent, just follows
the gradient of the objective function until it intersects a local minimum or the edge
of the domain. However, the method is not very efficient. Conjugate gradient
method use more complicated functions of the objective function’s gradient to
determine search direction and hence less susceptible to getting involved in

undesired local minima.
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7.2.1. Direct Search Method of Hooke and Jeeves

Hooke and Jeeves (1961) method is one of the most widely used direct search
methods. It attempts in a simple though ingenious way to find the most profitable
search directions. The method is developed for non-constrained problems and based
on two types of step-by-step searches alternating in turn, a local search, which is an
unidirectional variation of each design variable resulting in the direction of steepest
descent, and a pattern move which represents a rotation of the search direction which
accelerates the search by the aid of increasing the step widths.

The search routine to minimise the object function can only proceed in a feasible

space as outside that space the penalty functions are not defined.

If we consider the problem of minimising f(x1,X2,...,Xs), the general procedure,
which is shown in Figure 7.2, can be described as follows:

® Start with an arbitrarily chosen initial base point (b;,bs,...,by) and step lengths
(hy,hy,...,hy) for the respective variables (x},Xa,...,Xp).

®  The method proceeds by a sequence of exploratory and pattern moves. The
procedure for an exploratory move about the point (by,b,,...,by) is as follows:

® Evaluate f (b;+h;). If the move from b; to bi+h; is a success, replace the base point
b; by bit+h;. If it is a failure, evaluate f(b;-h;). If this move is a success, replace b;
by bi-h;. If it is another failure, retain the original base point b;.

m  Repeat the above procedure for each variable in turn finally arriving at a new
base point after (2n+1) function evaluations at most.

® If bi1=bi, halve each of the step lengths h; and return to first step. The
calculations terminate when the step lengths have been reduced to some
prescribed level. If bi+1#bi, make a pattern move from b;s;.

® A pattern move attempts to speed up the search by using information already
acquired about f(xi,xs,...,xp). It is invariably followed by a sequence of
exploratory moves, with a view to finding an improved direction of search in
which to make another move. The procedure for a pattern move from by is as
follows:

146



Objective function f(X,X55m0X,)
Initial base point b(b,,b,,....b,)

Step length h(h,,h,,...,h )

:L
-

Evaluate f(b, +h,)

it+1

i

YES NO
_" b;,, =b; +h;

Evaluate f(b; —h;)

i=i+1

YES

Evaluate
f[2bi+l P bi]

f[2bi+1 -b, ] < f[bi+l]

NO

i=i+1

n : number of variables
O : termination criterion

STOP

Figure 7.2. Hooke and Jeeves direct search algorithm.
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® It seems sensible to move from b;y; in the direction (bj+1-b;), since a move in this
direction has already led to a decrease in the value of f (x1,Xy,...,Xn). Therefore,
move from bj+; to (2bi1-b;) and continue with a new sequence of exploratory
moves about (2b;+1-b;).

® If the lowest function value obtained during the pattern and exploratory moves of
(2bj+1-b;) is less than by, then a new base point by, has been reached. In this
case, return to (2bi.1-b;) with all suffices increased by unity. Otherwise abandon
the pattern move from b and continue with a new sequence of exploratory
moves about b+

7.3. Two Dimensional Optimisation; Curves

Before involving in 3D shape optimisation problems, consideration of two-
dimensional surface entities i.e., curves will be rather beneficial for the realisation of
the underlying theory. Hence, the counterpart of fairing objective for curves can be
expressed as

E= Iszs

which corresponds to the elastic bending energy of a physical spline. The constraints
of the problem may be specified as

® positional constraints can be used to control the position of any point on the

curve

® Distance constraint can be used to control the distance between the original
points and the modified points on the curve

In many cases what the designer desires is a fair curve which is not much deviated
from the original one. In such cases a modified objective function may be more
useful. This objective function will include both the fairness and closeness terms and

some weight functions for each term as follows

o, [K*ds+o, [y, —y;)ds
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where y; and y; represent the original and modified points respectively. o) and o, are
the weighting functions, which are specified by the designer to determine the
deviation from the original curve.

In order to illustrate the optimisation procedure some typical results are presented
below. A quadratic function (y =x*) was deliberately distorted in order to test the
fairing procedure. The optimisation procedure is run for 11 cases in which the
fairness weighting function decreases from 1.0 to 0.0, and the closeness weighting
increases from 0.0 to 1.0 in regular steps of 0.1. These weighting functions indicate
the relative importance of fairness and the closeness to the original curve. For
example, when the weighting functions are selected as 0.5 and 0.5, both the fairness
and closeness are taken as equally important. The fairness and closeness numbers,
number of iterations and the value of objective function are given for each case in
Table 7.1. Typical results are also illustrated in Figure 7.3.

Table 7.1. Variation of fairness and closeness functions for a distorted quadratic
curve.

Na. of
, , | Iterations -
00001 117.1611

0.9 0.1 3.1596 |  38.0738 6.6510| 1062
0.8 0.2 6.7657 16.2744 8.6674 | 772
0.7 0.3 9.4693 7.9058 9.0002| 756
0.6 0.4 11.4540 4.1486 85319 | 635
0.5 0.5 12.9956 2.2397 7.6176 | 454
0.4 0.6 14.1842 1.2560 6.4273 284
0.3 0.7 15.2085 0.6960 5.0498 325
0.2 0.8 16.1752 0.3710 35319 268
0.1 0.9 17.3951 0.1611 1.8845 200
0.0 1.0 22.9610 0.0001 0.0001 61
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7.4. Hull Form Optimisation

This section presents a generalised optimisation formulation to obtain ship hull forms
with desired fairing properties subject to specified geometric and performance
constraints. The basic elements of any engineering optimisation formulation are the
optimisation variables, objective function and the constraints of the problem.
Selection of these elements for the current problem is described below.

The hull form is assumed to be defined by a hull surface equation in the form
yii=Yy(Xi,Z;), and these ordinates are taken directly as optimisation variables.

There are several fairness measures, which can be used as the objective function of
the problem. Details of these measures are presented in Chapter 4. The following
fairness measures are considered to be suitable for a hull form fairing procedure:

Energy minimisation:
[ +1x3)dS
Mean curvature:

1
jE(K, +1¢,)dS

Gaussian curvature;
!KI K,dS

Variation of curvature:

2 2
oK
oe, e,
A measure of goodness, i.e., non-linear fairness metric, is formulated at each surface
point, and integrated over the entire surface to get a single number which describes
the desirability of the surface shape under that metric. The search for desirable shape

continues until the form which optimises this quantity while satisfying the geometric
constraints specified for this case is achieved.
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The problem must be geometrically constrained in order to produce realistic hull
forms. Typical geometric constraints may be as follows:

= All offsets are positive and less or equal to maximum beam
0<¥; <Y
= Known offsets as lower bound of the hull
Vi 2Y;
®  Known offsets as upper bound of the hull
Yi <Yj

A typical application of the optimisation procedure is presented for a distorted
parabolic form (Wigley form). The distorted original form and its curvature
characteristics are shown in Figure 7.4. The objective function of the problem is
selected as the minimisation of the elastic bending energy function which is defined

in terms of curvatures as follows
Minimise Jacf +x3)ds

The energy of an unconstrained surface can be made zero by collapsing the surface
to a single point. Therefore, the fairness objective must be modified by a closeness
requirement which is described as follows

[(v: -, fds

where y; and y; represent the original and modified offset points. Then the modified
objective function becomes

o, [(] +x3)dS+w, [(y, —y;)*dS

®; and o, are the weighting functions applied to emphasise fairness or closeness. In
the typical example presented here both weighting functions are taken as 0.5.
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Figure 7.4.a. Original distorted Wigley form.
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Figure 7.4.b. Optimised distorted Wigley form.



In a fairing process the modified form must be as close to the original form in order
not to degrade performance characteristics of the original vessel. This can be
achieved by using various geometric constraints such as closeness functions.
Alternatively the designer can specify the performance requirements as a constraint
of the problem. For instance the powering performance of the final form may be
constrained to be not worse than that of the original form. This will require the
availability of reliable numerical performance prediction tools. Once these tools are
available, they can easily be implemented into the optimisation procedure.
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8. APPLICATION AND COMPARISON OF DEVELOPED FAIRING
PROCEDURES

In this thesis three novel computer aided fairing procedures, which make heavy use
of B-splines and optimisation methods are developed and described. To evaluate the
efficiency and flexibility of these tools, the procedures are applied to actual ship hull
form fairing problems as presented in Chapters 5, 6, 7. However, it appears that a
more realistic comparative study would require the application of all procedures on
the same ship hull. This would be useful for the assessment of the relative efficiency
of the methodologies. In this prospect, a high-speed displacement form is selected
and fairing procedures are applied for this hull form. The lines plan of the initial hull
form to be faired can be seen in Figure 8.1. The numerical data for the hull form is
given in Appendix B. The selected form is a result of a preliminary design study and
hence lacks the fairing qualities required for further detailed design calculations.
Therefore, the procedures developed here, namely the forward fairing process, the
inverse fairing process and the optimisation-based approach have been applied to
obtain a hull form with improved fairing properties. The results of these applications
are presented in the following sections.

8.1. Application of Forward Fairing Procedure for the Test Case

The forward fairing procedures are based on an iterative approach in which ship lines
are represented by B-splines of suitable order. The forward fairing can be achieved
either by B-spline approximation or B-spline fitting. Both procedures are applied for
the current problem to produce final forms with improved fairing characteristics after
a few iterations. It can be seen from Table 8.1 that smaller fairness numbers can be
obtained by B-spline approximation, and the deviation problem is overcome by
selecting relatively low number of iterations, also low orders should be preferred in
order to minimise deviation from the original offsets. In this case, after three
iterations a final form as shown in Figure 8.2 is obtained.

As can be seen from Figure 8.2, the final form has a smaller fairness number, which
indicates fairer lines as can be observed visually. However, there is a penalty

involved in the process, which is characterised by the closeness number, i.e., the
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maximum deviation between the original and faired offset points. As can be seen,
this number increases with increasing fairness. In this case the process is terminated
after 3 iterations in order to stay within specified deviation limits. Geometric
properties of the original and final forms with those generated during the iterative
process of fairing are also presented in Table 8.1. For the cases where a higher
degree of fairness is required the final form may not satisfy the closeness
requirement and a geometric variation may be applied to achieve the original form
coefficients.

Table 8.1. Forward fairing of the high-speed hull form using B-spline

approximation.
ITERATION e
NO.1 .

42.000

8.2. Application of Inverse Fairing Procedure for the Test Case

This process is based on the assumption that the fairness characteristics of a curve or
surface is indicated by its curvature plot, hence the original curve or surface can be
modified by representing its curvature plot by B-splines of suitable order. The
original offset points are obtained from the curvature plot in an inverse manner. The
order of the B-spline representation determines the degree of fairness. In general a
compromise solution must be sought in order to preserve the original form
characteristics. The inverse fairing procedures have successfully been applied to
realistic ship forms as well as a mathematical form, in the previous chapters. The
experience has shown that cubic and quartic B-splines provide the best results.

The inverse fairing process is applied to the fairing of the high-speed form which is
accepted as the test case of this study. The second derivatives, which are assumed to

represent the curvature surface greatly, exaggerate the wrinkles and deformations on
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the hull surface. This is shown in Figure 8.3 where the second derivatives in length
(u), and depth (w) directions are illustrated for the high-speed hull. As can be seen in
the figure, the second derivatives in the (w) direction is far more obvious indicator of
fairness compared with the hull surface.

The principal of inverse fairing procedure is to represent the curvature plot by a
suitable B-spline curve (or surface) and obtain the original offsets by double
integration from the modified curvature coordinates. For a surface this process must
be carried out in u and w parametric directions in a simultaneous manner.

The selection of the suitable order of B-spline surface is again crucial and a
compromise between the fairness and closeness characteristics must be achieved. For
the test case, the inverse fairing is achieved by using cubic B-splines in both u and w
directions, however it is also possible to select a B-spline surface with different
orders in u and w parametric directions.

The results of the application of the inverse fairing procedure to the high-speed form
are shown in Figures 8.4. These figures indicate that the curvature plot has a smooth
surface resulting in a form with better fairing characteristics.

8.3. Application of the Optimisation Approach for the Test Case

In Chapter 7, the fairing of ship hull forms problem is formulated as a non-linear
optimisation problem in which the objective function is a fairness functional to be
optimised subject to appropriate geometric and performance constraints. Various
fairness functionals are available including energy minimising, mean curvature,
Gaussian curvature and the variation of curvature.

The application of the optimisation procedure is presented for the high speed form.
The initial form and its shaded image are shown in Figure 8.5. The objective
function of the problem is selected as the minimisation of the elastic bending energy
function which is defined in terms of curvatures and a closeness requirement which
is described as follows:

o, [} +x3)dS+w, [(y; —y;)*dS
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The optimisation process will also require a set of geometric constraints to ensure
that the final form has satisfactory form properties. In this case the geometric
constraints are selected as follows:

e y;=0, ie., all the offsets must be positive

e y;i<B/2, i.e, the offsets must be less or equal to zero

The results of the optimisation procedure is shown in Figures 8.6.

Figure 8.5.a. 3D mesh view of initial high-speed hull form.

Figure 8.5.b. Shaded view of initial high-speed hull form.

164



s
B

i

d high-speed hull form.

imise

t

Figure 8.6.a. 3D mesh view of op

Figure 8.6.b. Shaded view of optimised high-speed hull form.
165



8.4. Comparative Assessment of Alternative Methodologies

In the previous sections, a typical high-speed hull form, with preliminary fairing
properties, has been selected as a test case and three different fairing procedures,
namely the forward fairing, the inverse fairing and the optimisation based fairing
procedures have been applied to improve poor fairing characteristics. The results
clearly indicate that the procedures, introduced and described in this study, manage
to produce an alternative feasible hull form design with better fairing properties
compared with the original hull form. However, the methodologies may differ in
terms of flexibility, accuracy, human interaction and computational cost. In general,
the following trends have been observed in the applications:

e The forward fairing process produces an alternative design only after few
iterations. It can be seen from Figure 8.2 that the final form closely represents
the original design. This similarity is also proved by the low and acceptable
degree of change in displacement and basic form parameters that are shown in
Table 8.1. The method is flexible and easy to use, with no special experience

needed. However, user intervention may be needed to terminate the iterations.

e The inverse fairing process also produces hull forms with improved fairness
characteristics as the basics of the method stems from the fact that with improved
curvature characteristics, it is possible to generate high quality surfaces in terms
of fairness. The improved curvature characteristics of the selected hull (see
Figure 8.4) approve the method as a useful and easy-to-use-fairing tool.

e The optimisation approach emerges as a rapidly evolving fairing tool. High
quality surfaces can be obtained if the constraints of the fairing problem are
clearly defined. The applications clearly indicate the flexibility and applicability
of the method in real hull form fairing problems. The final hull form is obtained
with no human intervention, which makes the process desirable in terms of

automation, however there is no control over the outcome of the process.

The advantages and drawbacks of the developed procedures are summarised in
Table 8.2.
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Table 8.2. Comparison of the developed fairing methodologies.
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9. CONCLUSIONS

The concept of a fair curve or surface is very important for designers of products
involving free form curves and surfaces. Ship forms are typical examples for this
type of products. Clearly, if the surface of a hull form is not fair, a fairing process
should be carried out in order to obtain the required degree of fairness. The
conventional solution of the problem is based on physical splines and experienced
draftsman who will reduce the three-dimensional fairing problem into several two
dimensional sub-problems and solve it in an iterative manner. Although, this method
has been used successfully for many years, the designer clearly needs less time
consuming and robust methods.

In this thesis three novel computer aided fairing procedures, which make heavy use
of numerical splines and optimisation techniques are developed and described. The
research conducted has yielded computational design tools for improving fairing
characteristics of ship hull forms. The efficiency and flexibility of these tools are
proved by applications to actual ship hull form fairing problems. The fairing
procedures developed in this study are organised in three main groups:

Forward Fairing Procedures: Two distinct procedures based on B-spline
approximation and B-spline fitting are developed and applied for fairing of
two-dimensional ship lines. Three-dimensional fairing is obtained by simultaneous
fairing of two-dimensional ship lines on three orthogonal planes, namely, the body
plan waterlines and buttocks. The objective in both procedures is to minimise the rate
of change of curvature while the deviation from original offset points should remain
within specified limits. The objective is characterised by fairness and closeness
numbers, which are introduced to evaluate the new forms generated throughout the
fairing process. Although both numbers should be optimised simultaneously, this is
not possible due to their diverse effects, hence the designer must seek a compromise
solution by changing the order of B-spline curves, or by changing the number of
iterations.

Both procedures are applied for fairing the lines of a distorted mathematical hull
form and the parent hull of a semi-displacement hull form series. These procedures
are shown to produce fair final forms after a few iterations. In general, smaller
fairness numbers can be obtained by B-spline approximation but there may be
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unacceptable deviations from the original offset points. This excessive deviation
problem may be overcome by applying linear distortion techniques to preserve
original hull form characteristics without losing already obtained fairness
characteristics or by applying alternative B-spline fitting process. This alternative
process could produce very close forms with specified degree of fairness. Moreover,
the fairness and closeness of the final form can easily be controlled by selecting
suitable number of polygon vertices.

Inverse Fairing Procedures: This process is based on the assumption that the
fairness characteristics of a curve or surface is indicated by its curvature plot, hence
the original curve or surface can be modified by representing its curvature plot
by B-splines of suitable order. The original offset points are obtained from the
curvature plot in an inverse manner. The order of the B-spline representation
determines the degree of fairness. In general a compromise solution must be sought
in order to preserve the original form characteristics. The inverse fairing procedures
have successfully been applied to realistic ship forms as well as a mathematical form.
The experience has shown that cubic and quartic B-splines provide the best results.

Fairing as a Non-Linear Optimisation Problem: As a further contribution, the
fairing of ship hull forms problem is formulated as a non-linear optimisation problem
in which the objective function is a fairness functional to be optimised subject to
appropriate geometric and performance constraints. Various fairness functionals are
available including energy minimising, mean curvature, Gaussian curvature and the
variation of curvature. The applications indicate that these fairness functionals based
on geometric properties of curvature yield quite similar results, producing high
quality surfaces at significant computational cost.

In order to produce realistic hull forms both geometric and performance constraints
should be used. The geometric constraints typically include positions and directions
while the performance constraints may include volume, surface area, powering, cost,
etc. Typical applications indicate that, provided that the designer can specify the
objectives and constraints of the problem clearly, feasible and fair hull forms can be

obtained after a reasonable number of iterations.
The main conclusions of the study are as follows:

®  The need to develop automated fairing procedures has been apparent to ship
designers with the advent of new computer aided hull form design procedures
and developments in mathematical spline techniques. Three distinct novel
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procedures have been developed and presented in this thesis whereby fairing of a
given hull form can be improved within the constraints of the design problem.

Curves and surfaces computed using non-linear numerical optimisation
techniques were until recently too computationally expensive to be practical for
general use. However, with wide availability of high computer processing power,
optimisation techniques have been both practical and attractive. The applications
in this thesis demonstrate optimisation as a superior and efficient tool in hull
form fairing, and we can conclude that this process emerges as a rapid evolving
and promising tool in hull form design environment.

The discussions in this thesis have been concerned with the improvement of
fairing characteristics of hull forms. In a real design problem, the designer must
evolve a hull configuration, which satisfies many requirements, fairing being one
of these. Therefore, major performance characteristics such as powering, cost and
seakeeping must be a part of the fairing procedure.

Applications, which include both mathematical and real ship hull forms have
demonstrated the flexibility of the procedures.

The research program should now be expanded to include other problems in the

following areas:

Incorporation of the fairing procedures developed into a larger computer aided
ship design system where all major design considerations are taken into account

simultaneously.

Further development of the optimisation based fairing procedures to include

multi-objective decision making approaches.

Generalisation of the fairing procedures for multi-hulls, developable surfaces and
other hull form types.

In conclusion, it is believed that this study has succeeded in clearly describing a

contribution to the fairing design effort, taking place in the Department of Ocean

Engineering at ITU.
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APPENDIX A - TEST CURVE DEFINITIONS

HARD-CHINE SECTION 1st DERIVATIVE 2nd DERIVATIVE

/52

Figure A.1. Hard-chine section in Figure 3.5.

Table A.1. Offsets, first and second derivative values of hard-chine section.

Depth (m) | Half-Breadth ’ 1* Derivative Pnd Deﬁvaﬁve}

0.00 0.00

0.10 0.75 ;fg 16.00
0.20 1.66 7 40 -17.00
0.30 2.40 8.90 8.00
0.40 3.22 7 80 -4.00
0.50 4.00 220 -56.00
0.60 422 160 -6.00
0.70 438 220 6.00
0.80 4.60 270 5.00
0.90 4.87 130 -14.00
1.00 5.00
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TANKER-SECTION NO.13 1st DERIVATIVE 2nd DERIVATIVE

Figure A.2. Tanker section No. 13.

Table A.2. Offsets, first and second derivative values of Tanker section No.13.

[ Depth (m) | Half-Breadth | 1 Derivative | 2" Derivative

0.00 1.306

0.10 1.641 ?3;23 -9.1000
0.30 2.038 1.4850 -2.5000
0.50 2.335 1.0450 -2.2000
0.70 2.544 0.7900 -1.0200
1.00 2.781 0.7450 -0.1800
1.20 2.930 0.7275 -0.0583
1.60 3.221 0.6975 -0.0750
2.00 3.500 0.8100 0.2812
2.40 3.824 0.8750 0.1625
2.80 4.174 L0175 0.3562
3.20 4.581 0.9725 -0.1125
3.60 4.970 0.8125 -0.4000
4.00 5.295 0.6875 -0.3125
4.40 5.570 0.5725 -0.2875
4.80 5.799 0.4750 -0.2483
5.20 5.989 0.4150 -0.1500
5.60 6.155 0.3500 -0.1625
6.00 6.295 03100 -0.1000
6.40 6.419 0.2900 -0.0500
6.80 6.535 0.2450 -0.1125
7.20 6.633 0.2100 -0.0875
7.60 6.717 0.1725 -0.0937
8.00 6.786
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LPD 17-SECTION NO.27 1st DERIVATIVE 2nd DERIVATIVE
] ]

- g

Figure A.3. LPD 17 — Section No. 27.

Table A.3. Offsets, first and second derivative values of LPD 17-Section No.27.

Depth (m) | HalfBreadth | 1* Derivative

-0.0140 10.1104

0.0276 10.7322 1;5240711 -171.1158
0.0693 11.0583 4.8432 -38.5113
0.1822 11.6051 39181 -14.4009
0.2950 11.9681 22368 -5.9961
0.5095 12.4479 15566 -3.1698
0.7242 12.7821 1.0977 -1.8047
1.0181 13.1047 0.7958 -1.0273
1.3119 13.3385 0:5738 -0.5531
1.8208 13.6305 0.4024 -0.3369
2.3292 13.8351 02828 -0.2070
2.9767 14.0182 02153 -0.1042
3.6236 14.1575 0.1859 -0.0260
5.2349 14.4571 0.1778 -0.0050
6.8462 14.7436 0.1767 -0.0005
10.2187 15.3394 0.1757 -0.0003
13.5911 15.9319 0.1783 0.0015
13.6943 15.9503 0.1788 0.0049
13.8000 15.9692
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LPD 17-SECTION NO.38 1st DERIVATIVE 2nd DERIVATIVE

.

Figure A.4. LPD 17 — Section No. 38.

Table A.4. Offsets, first and second derivative values of LPD 17-Section No.38.

[ Depth (m) | Half-Breadth | 1% Derivative
-0.0139 0.7462
0.0424 1.0579 gzggj -48.0305
0.0990 1.2178 18985 -8.7336
0.2546 1.5132 L3762 -3.3575
0.4101 1.7272 Lo ® -1.4145
0.7447 2.0717 v -0.7662
1.0788 2.3301 oA -0.3694
1.7189 2.7100 0.4690 -0.1946
2.3586 3.0100 0-3596 -0.1416
3.2647 3.3358 02764 -0.0918
4.1705 3.5862 0211 -0.0738
5.0327 3.7638 01744 -0.0427
5.8944 3.9186 0.1882 0.0166
6.6911 4.0685 02538 0.0824
7.4870 4.2705 0,394 0.1467
8.6050 47112 0.5626 0.1506
9.7236 5.3405 0.6516 0.0683
11.2117 6.3102 06711 0.0131
12.7002 73091 0.6724 0.0006
15.9946 9.5244 0.6714 -0.0003
18.8500 11.4415 '
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LPD 17-SECTION NO.44 1st DERIVATIVE 2nd DERIVATIVE

o

Figure A.5. LPD 17 — Section No. 44.

Table A.5. Offsets, first and second derivative values of LPD 17-Section No.44.

Depth (m) | Half-Breadth | 1% Derivative | 2" Derivative

0.0228 0.0027

0.0959 0.3319 ;223471 -20.5528
0.2099 0.6261 13603 -7.5895
0.4175 0.9085 0.7979 -3.0285
0.5813 1.0392 0.4867 -1.5985
0.8069 1.1490 0'3020 -0.2897
1.8565 1.4660 0:1242 -0.1695
2.9057 1.5963 -0.0409 -0.1559
3.9742 1.5526 02654 -0.2100
5.0433 1.2689 -0.4947 -0.3346
5.3451 1.1196 -0.8808 -1.3118
5.6319 0.8670 -1.1910 -1.3398
5.8083 0.6569 -1.6540 -3.9099
5.8687 0.5570 25651 -18.0245
5.9094 0.4526 46278 -29.7863
6.0072 0.0000 0.0000 8.4859
7.0001 0.0000 0.1725 0.2082
7.6639 0.1145 0.1339 -0.0581
8.3277 0.2034 0.2783 0.1660
9.4038 0.5029 0.4319 0.1427
10.1809 0.9681 0.5386 0.0665
12.6103 2.1149 0.5849 0.0217
14.7404 3.3607 0.6082 0.0101
17.2175 4.8672 0.6263 0.0088
18.8500 5.8896
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SECTION NO.11 1st DERIVATIVE 2nd DERIVATIVE

Figure A.6. NPL— Section No.11.

Table A.6. Offsets, first and second derivative values of NPL-Section No.11.

Depth (m) | Half-Breadth | 1% Derivative | 2" Derivative

0.0000 0.0034

0.0100 0.0110 %’;?)%% 4.0000
0.0200 0.0190 0.7900 -1.0000
0.0300 0.0269 0.7500 -4.0000
0.0400 0.0344 0.7300 -2.0000
0.0500 0.0417 0.7200 -1.0000
0.0600 0.0489 0.7100 -1.0000
0.0700 0.0560 0.6700 -4.0000
0.0800 0.0627 0.6900 2.0000
0.0900 0.0696 0.6800 -1.0000
0.1000 0.0764 0.6600 -2.0000
0.1100 0.0830 0.6600 0.0000
0.1200 0.0896 0.6500 -1.0000
0.1300 0.0961 0.6500 0.0000
0.1400 0.1026 1.6600 101.0000
0.1500 0.1192 -0.3500 -201.0000
0.1600 0.1157 0.6450 66.3333
0.1800 0.1286 0.7250 4.0000
0.2000 0.1431 0.7200 -0.2500
0.2200 0.1575 0.7800 3.0000
0.2400 0.1731
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WATERLINE NO.11 1st DERIVATIVE 2nd DERIVATIVE

Figure A.7. NPL — Waterline No. 11

Table A.7. Offsets, first and second derivative values of NPL-Waterline No.11.

! Yot Half-Breadth 1* Derivative | 2" Derivative

. Length (m) (m) -
0.0000 0.1505
0.1270 0.1554 ggzzg 0.2232
0.2540 0.1639 0.0480 -0.1488
0.3810 0.1700 0.0661 0.1426
0.5080 0.1784 0.0358 -0.1591
0.7620 0.1875 0.0134 -0.0884
1.0160 0.1909 -0.0445 -0.2279
1.2700 0.1796 -0.0835 -0.1535
1.5240 0.1584 -0.1409 -0.2263
1.7780 0.1226 0.1559 -0.0589
2.0320 0.0830 0.1661 -0.0537
2.1590 0.0619 0.1614 0.0372
2.2860 0.0414 0.1575 0.0310
2.4130 0.0214 -0.1685 -0.0868
2.5400 0.0000
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QUADRATIC CURVE 1st DERIVATIVE 2nd DERIVATIVE

Figure A.8. Deliberately distorted quadratic curve.

Table A.8. Offsets, first and second derivative values of quadratic curve.

Depth (m) | Half-Breadth | 1% Derivative L Derivative
0.0000 0.0000
1.0000 1.0000 ;gggg 1.0000
2.0000 3.0000 6.0000 4.0000
3.0000 9.0000 70000 1.0000
4.0000 16.0000 9.0000 2.0000
5.0000 25.0000
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APPENDIX B - TEST HULL SURFACE DEFINITIONS AND RESULTS

Figure B.1. Defining control net in Figure 3.10.

Table B.1. Control net points of the test surface illustrated in Figure 3.10.

-15.00 5.00 5.00
-15.00 5.00 -5.00
-15.00 0.00 -15.00
-5.00 5.00 15.00
-5.00 10.00 5.00
-5.00 10.00 -5.00
-5.00 5.00 -15.00
5.00 5.00 15.00
5.00 10.00 5.00
5.00 10.00 -5.00
5.00 5.00 -15.00
15.00 0.00 15.00
15.00 5.00 5.00
15.00 5.00 -5.00
15.00 0.00 -15.00
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Figure B.2. Mathematical Wigley hull form body plan.

Table B.2. Wigley hull form offsets obtained from three different fairing procedures.
(Forward, inverse and optimisation)

Station

Original

Distorted

Forward

Inverse

. Optimisation

Fairing (1) | Fairing () | Fairing .. Approach
X Y (m) Y m) Y (m) Y (m) Y (m) Y
0.0000 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
0.0526 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
0.1053 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
0.1579 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
0.2105 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
02632 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
03158 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
0.3684 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
0.4211 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
0.4737 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
0 0.5263 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
0.5789 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
0.6316 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
0.6842 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
0.7368 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
0.7895 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
0.8421 | 0.000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
0.8947 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
0.9474 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
1.0000 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
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0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0526 0.0156 0.0111 0.0128 0.0137 0.0138 0.0147
0.1053 0.0303 0.0322 0.0259 0.0275 0.0276 0.0292
0.1579 0.0442 0.0433 0.0389 0.0414 0.0415 0.0433
0.2105 0.0573 0.0544 0.0517 0.0551 0.0553 0.0567
0.2632 0.0695 0.0655 0.0642 0.0682 0.0687 0.0693
0.3158 0.0808 0.0866 0.0757 0.0804 0.0811 0.0809
0.3684 0.0914 0.0977 0.0860 0.0912 0.0920 0.0914
0.4211 0.1011 0.1088 0.0947 0.1006 0.1013 0.1010
1/2 0.4737 0.1099 0.1099 0.1016 0.1086 0.1091 0.1095
0.5263 0.1179 0.1110 0.1075 0.1156 0.1159 0.1171
0.5789 0.1251 0.1221 0.1132 0.1219 0.1221 0.1240
0.6316 0.1314 0.1332 0.1189 0.1279 0.1280 0.1303
0.6842 0.1368 0.1343 0.1243 0.1335 0.1337 0.1360
0.7368 0.1415 0.1454 0.1292 0.1387 0.1391 0.1411
0.7895 0.1453 0.1465 0.1335 0.1432 0.1437 0.1456
0.8421 0.1482 0.1476 0.1371 0.1467 0.1474 0.1494
0.8947 0.1503 0.1587 0.1396 0.1491 0.1498 0.1526
0.9474 0.1516 0.1598 0.1403 0.1505 0.1509 0.1558
1.0000 0.1520 0.1509 0.1398 0.1514 0.1515 0.1589
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0526 0.0295 0.0215 0.0247 0.0263 0.0264 0.0279
0.1053 0.0574 0.0524 0.0498 0.0526 0.0527 0.0554
0.1579 0.0838 0.0838 0.0746 0.0787 0.0790 0.0822
0.2105 0.1085 0.1045 0.0989 0.1043 0.1049 0.1078
0.2632 0.1316 0.1356 0.1223 0.1288 0.1297 0.1320
0.3158 0.1532 0.1562 0.1438 0.1516 0.1527 0.1542
0.3684 0.1731 0.1771 0.1633 0.1720 0.1733 0.1744
0.4211 0.1915 0.1985 0.1803 0.1900 0.1912 0.1925
0.4737 0.2082 0.2092 0.1940 0.2056 0.2066 0.2085
1 0.5263 0.2234 0.2204 0.2059 0.2193 0.2200 0.2227
0.5789 0.2369 0.2319 0.2171 0.2317 0.2321 0.2354
0.6316 0.2498 0.2428 0.2279 0.2431 0.2435 0.2467
0.6842 0.2593 0.2533 0.2378 0.2536 0.2541 0.2569
0.7368 0.2681 0.2641 0.2468 0.2631 0.2638 0.2658
0.7895 0.2752 0.2752 0.2547 0.2713 0.2722 0.2731
0.8421 0.2808 0.2868 0.2612 0.2777 02787 0.2793
0.8947 0.2848 0.2878 0.2658 0.2823 0.2832 0.2846
0.9474 0.2872 0.2882 0.2675 0.2852 0.2857 0.2896
1.0000 0.2880 0.2890 0.2674 0.2873 0.2873 0.2948
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0526 0.0525 0.0515 0.0455 0.0477 0.0480 0.0499
0.1053 0.1021 0.1021 0.0909 0.0951 0.0957 0.0993
0.1579 0.1489 0.1439 0.1349 0.1412 0.1422 0.1472
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0.2105 0.1929 0.1949 0.1768 0.1855 0.1867 0.1931
0.2632 0.2340 0.2350 0.2164 0.2275 0.2289 0.2362
0.3158 0.2723 0.2763 0.2534 0.2666 0.2681 0.2758
0.3684 0.3078 0.3078 0.2876 0.3026 0.3043 0.3116
0.4211 0.3404 0.3484 0.3185 0.3354 0.3371 0.3438
0.4737 0.3702 0.3792 0.3450 0.3649 0.3665 0.3726
0.5263 0.3971 0.3901 0.3680 0.3913 0.3927 0.3981
0.5789 0.4212 0.4212 0.3890 0.4147 0.4160 0.4212
0.6316 0.4425 0.4425 0.4085 0.4354 0.4366 0.4419
0.6842 0.4609 0.4639 0.4256 0.4535 0.4547 0.4598
0.7368 0.4765 0.4745 0.4402 0.4691 0.4704 0.4751
0.7895 0.4893 0.4853 0.4527 0.4823 0.4836 0.4877
0.8421 0.4992 0.4962 0.4631 0.4930 0.4943 0.4981
0.8947 0.5063 0.5073 0.4709 0.5012 0.5023 0.5070
0.9474 0.5106 0.5186 0.4752 0.5075 0.5081 0.5154
1.0000 0.5120 0.5100 0.4770 0.5129 0.5130 0.5237
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0526 0.0689 0.0619 0.0611 0.0630 0.0636 0.0649
0.1053 0.1340 0.1320 0.1218 0.1255 0.1265 0.1291
0.1579 0.1955 0.1935 0.1801 0.1858 0.1872 0.1914
0.2105 0.2532 0.2542 0.2350 0.2434 0.2450 0.2510
0.2632 0.3071 0.3051 0.2865 0.2979 0.2996 0.3072
0.3158 0.3574 0.3564 0.3352 0.3487 0.3506 0.3591
0.3684 0.4039 0.4079 0.3808 0.3959 0.3979 0.4066
0.4211 0.4468 0.4488 0.4218 0.4392 0.4413 0.4496
0.4737 0.4859 0.4899 0.4574 0.4784 0.4805 0.4884
0.5263 0.5212 0.5202 0.4889 0.5136 0.5155 0.5228
0.5789 0.5529 0.5519 0.5179 0.5448 0.5467 0.5536
0.6316 0.5808 0.5828 0.5442 0.5724 0.5742 0.5810
0.6842 0.6050 0.6030 0.5670 0.5962 0.5980 0.6049
0.7368 0.6255 0.6245 0.5863 0.6165 0.6182 0.6249
0.7895 0.6422 0.6452 0.6024 0.6335 0.6351 0.6412
0.8421 0.6552 0.6562 0.6153 0.6473 0.6487 0.6541
0.8947 0.6646 0.6676 0.6253 0.6583 0.6595 0.6647
0.9474 0.6701 0.6781 0.6316 0.6672 0.6679 0.6743
1.0000 0.6720 0.6790 0.6356 0.6753 0.6755 0.6837
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0526 0.0787 0.0717 0.0705 0.0720 0.0726 0.0739
0.1053 0.1532 0.1522 0.1406 0.1432 0.1444 0.1469
0.1579 0.2234 0.2234 0.2077 0.2121 0.2137 0.2175
0.2105 0.2893 0.2843 0.2703 0.2780 0.2798 0.2852
0.2632 0.3510 0.3550 0.3292 0.3404 0.3424 0.3490
0.3158 0.4085 0.4065 0.3854 0.3988 0.4010 0.4080
0.3684 0.4617 0.4677 0.4383 0.4527 0.4551 0.4621
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0.4211 0.5106 0.5186 0.4855 0.5019 0.5044 0.5115
0.4737 0.5553 0.5593 0.5262 0.5463 0.5486 0.5558
0.5263 0.5957 0.5907 0.5625 0.5862 0.5882 0.5959
0.5789 0.6318 0.6318 0.5962 0.6218 0.6238 0.6314
0.6316 0.6638 0.6628 0.6268 0.6536 0.6556 0.6624
0.6842 0.6914 0.6934 0.6533 0.6813 0.6834 0.6886
0.7368 0.7148 0.7148 0.6755 0.7050 0.7071 0.7108
0.7895 0.7340 0.7350 0.6939 0.7248 0.7267 0.7290
0.8421 0.7489 0.7469 0.7085 0.7408 0.7425 0.7441
0.8947 0.7595 0.7575 0.7193 0.7536 0.7548 0.7570
0.9474 0.7659 0.7689 0.7267 0.7639 0.7646 0.7684
1.0000 0.7680 0.7690 0.7321 0.7734 0.7736 0.7796
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0526 0.0820 0.0810 0.0737 0.0751 0.0758 0.0786
0.1053 0.1596 0.1526 0.1469 0.1494 0.1507 0.1561
0.1579 0.2327 0.2337 0.2170 0.2211 0.2228 0.2309
0.2105 0.3014 0.3044 0.2824 0.2897 0.2915 0.3019
0.2632 0.3657 0.3657 0.3438 0.3546 0.3566 0.3684
0.3158 0.4255 0.4265 0.4024 0.4152 0.4175 0.4300
0.3684 0.4809 0.4879 0.4577 0.4713 0.4738 0.4861
0.4211 0.5319 0.5389 0.5069 0.5225 0.5250 0.5365
0.4737 0.5784 0.5794 0.5494 0.5687 0.5710 0.5816
0.5263 0.6205 0.6205 0.5874 0.6102 0.6123 0.6221]
0.5789 0.6582 0.6512 0.6225 0.6475 0.6495 0.6585
0.6316 0.6914 0.6924 0.6545 0.6808 0.6828 0.6907
0.6842 0.7202 0.7232 0.6823 0.7099 0.7120 0.7191
0.7368 0.7446 0.7446 0.7055 0.7348 0.7369 0.7437
0.7895 0.7645 0.7655 0.7247 0.7554 0.7575 0.7641
0.8421 0.7801 0.7861 0.7399 0.7718 0.7737 0.7812
0.8947 0.7911 0.7971 0.7511 0.7848 0.7861 0.7956
0.9474 0.7978 0.7988 0.7588 0.7950 0.7958 0.8093
1.0000 0.8000 0.8090 0.7648 0.8043 0.8045 0.8232
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0526 0.0787 0.0717 0.0705 0.0721 0.0728 0.0739
0.1053 0.1532 0.1522 0.1406 0.1435 0.1447 0.1469
0.1579 0.2234 0.2234 0.2077 0.2123 0.2139 0.2175
0.2105 0.2893 0.2843 0.2703 0.2781 0.2799 0.2852
0.2632 0.3510 0.3550 0.3291 0.3403 0.3423 0.3490
0.3158 0.4085 0.4065 0.3851 0.3985 0.4006 0.4080
0.3684 0.4617 0.4677 0.4380 0.4524 0.4547 0.4621
0.4211 0.5106 0.5186 0.4855 0.5018 0.5042 0.5115
0.4737 0.5553 0.5593 0.5269 0.5464 0.5487 0.5558
0.5263 0.5957 0.5907 0.5635 0.5864 0.5885 0.5959
0.5789 0.6318 0.6318 0.5967 0.6222 0.6242 0.6314
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0.6316 0.6638 0.6628 0.6270 0.6540 0.6560 0.6624
0.6842 0.6914 0.6934 0.6533 0.6817 0.6837 0.6886
0.7368 0.7148 0.7148 0.6755 0.7053 0.7074 0.7108
0.7895 0.7340 0.7350 0.6939 0.7250 0.7269 0.7290
0.8421 0.7489 0.7469 0.7084 0.7407 0.7424 0.7441
0.8947 0.7595 0.7575 0.7193 0.7531 0.7544 0.7570
0.9474 0.7659 0.7689 0.7269 0.7630 0.7637 0.7684
1.0000 0.7680 0.7690 0.7326 0.7718 0.7720 0.7796
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0526 0.0689 0.0619 0.0614 0.0627 0.0632 0.0650
0.1053 0.1340 0.1320 0.1223 0.1249 0.1258 0.1292
0.1579 0.1955 0.1935 0.1804 0.1852 0.1865 0.1914
0.2105 0.2532 0.2542 0.2351 0.2430 0.2445 0.2512
0.2632 0.3071 0.3051 0.2863 0.2978 0.2995 0.3076
0.3158 03574 0.3564 0.3346 0.3491 0.3510 0.3597
0.3684 0.4039 0.4079 0.3800 0.3968 0.3987 0.4076
0.4211 0.4468 0.4488 0.4216 0.4405 0.4427 0.4510
0.4737 0.4859 0.4899 0.4584 0.4799 0.4821 0.4899
0.5263 0.5212 0.5292 0.4905 0.5150 0.5171 0.5249
0.5789 0.5529 0.5519 0.5189 0.5458 0.5478 0.5564
0.6316 0.5808 0.5828 0.5446 0.5728 0.5746 0.5839
0.6842 0.6050 0.6030 0.5670 0.5962 0.5978 0.6071
0.7368 0.6255 0.6245 0.5862 0.6163 0.6178 0.6261
0.7895 0.6422 0.6452 0.6023 0.6333 0.6347 0.6412
0.8421 0.6552 0.6562 0.6152 0.6476 0.6488 0.6537
0.8947 0.6646 0.6676 0.6253 0.6595 0.6604 0.6643
0.9474 0.6701 0.6781 0.6321 0.6696 0.6701 0.6734
1.0000 0.6720 0.6790 0.6368 0.6790 0.6791 0.6824
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0526 0.0525 0.0515 0.0467 0.0481 0.0484 0.0493
0.1053 0.1021 0.1021 0.0927 0.0957 0.0964 0.0980
0.1579 0.1489 0.1439 0.1363 0.1417 0.1428 0.1452
0.2105 0.1929 0.1944 0.1775 0.1857 0.1870 0.1904
0.2632 0.2340 0.2350 0.2162 02274 0.2288 0.2332
0.3158 0.2723 0.2763 0.2524 0.2662 0.2677 0.2732
0.3684 0.3078 0.3078 0.2860 0.3022 0.3037 0.3099
0.4211 0.3404 0.3484 0.3170 0.3353 0.3369 0.3432
0.4737 0.3702 0.3792 0.3445 0.3652 0.3668 0.3726
0.5263 0.3971 0.3901 0.3687 0.3918 0.3934 0.3984
0.5789 0.4212 0.4212 0.3899 0.4152 0.4167 0.4212
0.6316 0.4425 0.4425 0.4091 0.4358 0.4371 0.4411
0.6842 0.4609 0.4629 0.4260 0.4537 0.4549 0.4583
0.7368 0.4765 0.4735 0.4404 0.4692 0.4703 0.4729
0.7895 0.4893 0.4843 0.4528 0.4824 0.4835 0.4852
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0.8421 0.4992 0.4952 0.4630 0.4934 0.4945 0.4955
0.8947 0.5063 0.5063 0.4709 0.5023 0.5032 0.5047
0.9474 0.5106 0.5176 0.4755 0.5096 0.5101 0.5137
1.0000 0.5120 0.5180 0.4780 0.5162 0.5163 0.5229
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0526 0.0295 0.0295 0.0272 0.0279 0.0283 0.0270
0.1053 0.0574 0.0584 0.0536 0.0553 0.0560 0.0536
0.1579 0.0838 0.0877 0.0778 0.0814 0.0822 0.0796
0.2105 0.1085 0.1065 0.1003 0.1058 0.1067 0.1047
0.2632 0.1316 0.1356 0.1217 0.1287 0.1295 0.1287
0.3158 0.1532 0.1552 0.1418 0.1497 0.1506 0.1511
0.3684 0.1731 0.1741 0.1602 0.1690 0.1699 0.1717
0.4211 0.1915 0.1935 0.1768 0.1867 0.1875 0.1904
0.4737 0.2082 0.2022 0.1917 0.2029 0.2035 0.2071
’ 0.5263 0.2234 0.2214 0.2054 0.2177 0.2183 0.2222
0.5789 0.2369 0.2329 0.2178 0.2312 0.2318 0.2355
0.6316 0.2498 0.2438 0.2291 0.2436 0.2442 0.2470
0.6842 0.2593 0.2543 0.2390 0.2546 0.2553 0.2567
0.7368 0.2681 0.2651 0.2478 0.2642 0.2650 0.2649
0.7895 0.2752 0.2762 0.2554 0.2720 0.2730 0.2722
0.8421 0.2808 0.2878 0.2616 0.2779 0.2790 0.2786
0.8947 0.2848 0.2888 0.2657 0.2816 0.2826 0.2846
0.9474 0.2872 0.2892 0.2668 0.2834 0.2840 0.2906
1.0000 0.2880 0.2800 0.2662 0.2845 0.2844 0.2966
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0526 0.0156 0.0196 0.0146 0.0149 0.0152 0.0146
0.1053 0.0303 0.0383 0.0286 0.0296 0.0300 0.0290
0.1579 0.0442 0.0472 0.0411 0.0434 0.0438 0.0429
0.2105 0.0573 0.0556 0.0526 0.0562 0.0567 0.0561
0.2632 0.0695 0.0645 0.0635 0.0681 0.0686 0.0684
0.3158 0.0808 0.0838 0.0740 0.0790 0.0795 0.0799
0.3684 0.0914 0.0924 0.0837 0.0890 0.0894 0.0904
0.4211 0.1011 0.1021 0.0922 0.0981 0.0985 0.1002
: 91, 0.4737 0.1099 0.1039 0.0998 0.1065 0.1067 0.1092
0.5263 0.1179 0.1149 0.1071 0.1142 0.1145 0.1176
0.5789 0.1251 0.1251 0.1138 0.1215 0.1217 0.1253
0.6316 0.1314 0.1364 0.1199 0.1282 0.1285 0.1323
0.6842 0.1368 0.1378 0.1253 0.1343 0.1346 0.1385
0.7368 0.1415 0.1485 0.1301 0.1395 0.1400 0.1437
0.7895 0.1453 0.1493 0.1342 0.1438 0.1444 0.1478
0.8421 0.1482 0.1482 0.1374 0.1468 0.1475 0.1511
0.8947 0.1503 0.1573 0.1395 0.1484 0.1491 0.1539
0.9474 0.1516 0.1566 0.1398 0.1488 0.1492 0.1565
1.0000 0.1520 0.1550 0.1390 0.1487 0.1488 0.1592
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r 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0526 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1053 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1579 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2105 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2632 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.3158 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.3684 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
- 0.4211 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.4737 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 0.5263 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.5789 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.6316 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.6842 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.7368 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.7895 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.8421 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.8947 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.9474 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
where
Station - X Station numbers
WL - Z Waterline depths
Original - Y Half-breadth values of original mathematical form
Forward Fairing (1) - Y Half-breadth values obtained from B-spline
approximation

Forward Fairing (2) - Y : Half-breadth values obtained from B-spline fitting
process

Inverse Fairing - Y : Half-breadth values obtained from inverse fairing
process

Optimisation Approach -Y : Half-breadth values obtained from optimisation
process
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Figure B.3. NPL hull form body plan.

Table B.3. NPL form offsets obtained from two alternative forward fairing
procedures.

Station Waterline Oﬁgina}g;NPL Forward 4 .quward
No. Depths Form Offsets Fairing (1) Faiﬁng (2)«
. Z (m) Y (m) Y (m) - Y (m)

0.0000 0.0000 0.0000 0.0000
0.0100 0.0000 0.0000 0.0000
0.0200 0.0000 0.0000 0.0000
0.0300 0.0000 0.0000 0.0000
0.0400 0.0000 0.0000 0.0000
0.0500 0.0000 0.0000 0.0000
0.0600 0.0000 0.0000 0.0000
0.0700 0.0197 0.0140 0.0151
0.0800 0.0652 0.0579 0.0608
0.0900 0.1026 0.0949 0.0983
0 0.1000 0.1316 0.1234 0.1267
0.1100 0.1505 0.1431 0.1460
0.1200 0.1597 0.1552 0.1572
0.1300 0.1645 0.1620 0.1631
0.1400 0.1666 0.1654 0.1660
0.1500 0.1678 0.1672 0.1675
0.1600 0.1684 0.1680 0.1682
0.1800 0.1691 0.1689 0.1690
0.2000 0.1695 0.1694 0.1695
0.2200 0.1699 0.1699 0.1699
0.2400 0.1703 0.1703 0.1703
0.0000 0.0000 0.0000 0.0000
0.0100 0.0000 0.0000 0.0000
0.0200 0.0000 0.0000 0.0000
0.0300 0.0000 0.0000 0.0000
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0.0400 0.0000 0.0000 0.0000
0.0500 0.0000 0.0000 0.0000
0.0600 0.0000 0.0000 0.0000
0.0700 0.0400 0.0347 0.0373
0.0800 0.0824 0.0750 0.0786
0.0900 0.1172 0.1084 0.1122
0.1000 0.1405 0.1336 0.1368
0.1100 0.1554 0.1510 0.1533
12 0.1200 0.1646 0.1620 0.1636
A 0.1300 0.1705 0.1685 0.1697
0.1400 0.1739 0.1722 0.1732
0.1500 0.1761 0.1743 0.1752
0.1600 0.1772 0.1754 0.1763
0.1800 0.1780 0.1766 0.1773
0.2000 0.1782 0.1774 0.1780
0.2200 0.1787 0.1780 0.1785
0.2400 0.1792 0.1785 0.1791
0.0000 0.0000 0.0000 0.0000
0.0100 0.0000 0.0000 0.0000
0.0200 0.0000 0.0000 0.0000
0.0300 0.0000 0.0000 0.0000
0.0400 0.0000 0.0000 0.0000
0.0500 0.0000 0.0000 0.0000
0.0600 0.0189 0.0150 0.0161
0.0700 0.0596 0.0551 0.0580
0.0800 0.0984 0.0916 0.0954
0.0900 0.1317 0.1215 0.1254
1 0.1000 0.1510 0.1437 0.1467
0.1100 0.1639 0.1589 0.1608
0.1200 0.1724 0.1687 0.1700
0.1300 0.1776 0.1749 0.1760
0.1400 0.1806 0.1788 0.1798
0.1500 0.1824 0.1811 0.1822
0.1600 0.1836 0.1824 0.1835
0.1800 0.1849 0.1839 0.1849
0.2000 0.1856 0.1850 0.1858
0.2200 0.1864 0.1858 0.1865
0.2400 0.1870 0.1865 0.1872
0.0000 0.0000 0.0000 0.0000
0.0100 0.0000 0.0000 0.0000
0.0200 0.0000 0.0000 0.0000
0.0300 0.0000 0.0000 0.0000
0.0400 0.0000 0.0000 0.0000
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0.0500 0.0000 0.0000 0.0000
0.0600 0.0443 0.0367 0.0397

0.0700 0.0794 0.0736 0.0774

0.0800 0.1158 0.1066 0.1113

0.0900 0.1413 0.1333 0.1379

0.1000 0.1587 0.1528 0.1565

0.1100 0.1700 0.1662 0.1686

1% 0.1200 0.1773 0.1750 0.1767
o 0.1300 0.1825 0.1808 0.1822
0.1400 0.1862 0.1846 0.1859

0.1500 0.1886 0.1870 0.1884

0.1600 0.1903 0.1885 0.1899

0.1800 0.1918 0.1904 0.1917

0.2000 0.1929 0.1917 0.1929

‘ 0.2200 0.1937 0.1927 0.1938
; , - 0.2400 0.1946 0.1936 0.1946
| - i 0.0000 0.0000 0.0000 0.0000
0.0100 0.0000 0.0000 0.0000

0.0200 0.0000 0.0000 0.0000

0.0300 0.0000 0.0000 0.0000

0.0400 0.0000 0.0000 0.0000

0.0500 0.0224 0.0176 0.0202

0.0600 0.0629 0.0541 0.0598

0.0700 0.0985 0.0885 0.0949

0.0800 0.1306 0.1186 0.1257

0.0900 0.1535 0.1426 0.1494

2 0.1000 0.1689 0.1601 0.1657
' 0.1100 0.1784 0.1720 0.1763
0.1200 0.1849 0.1800 0.1833

0.1300 0.1892 0.1854 0.1880

0.1400 0.1922 0.1891 0.1914

0.1500 0.1943 0.1916 0.1937

0.1600 0.1959 0.1932 0.1953

0.1800 0.1983 0.1954 0.1976

0.2000 0.1996 0.1970 0.1992

0.2200 0.2006 0.1983 0.2003

0.2400 0.2015 0.1994 0.2013

0.0000 0.0000 0.0000 0.0000

0.0100 0.0000 0.0000 0.0000

0.0200 0.0000 0.0000 0.0000

0.0300 0.0000 0.0000 0.0000

0.0400 0.0231 0.0172 0.0222

0.0500 0.0584 0.0492 0.0583
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0.0600 0.0923 0.0808 0.0910
0.0700 0.1215 0.1098 0.1214
0.0800 0.1487 0.1346 0.1462
0.0900 0.1683 0.1543 0.1650
0.1000 0.1802 0.1688 0.1781
0.1100 0.1875 0.1789 0.1867
0.1200 0.1926 0.1859 0.1925
0.1300 0.1967 0.1909 0.1965
0.1400 0.1995 0.1945 0.1995
0.1500 0.2019 0.1972 0.2018
0.1600 0.2036 0.1991 0.2035
0.1800 0.2065 0.2020 0.2062
0.2000 0.2084 0.2043 0.2083
0.2200 0.2100 0.2062 0.2099
0.2400 0.2113 0.2080 0.2113
0.0000 0.0000 0.0000 0.0000
0.0100 0.0000 0.0000 0.0000
0.0200 0.0000 0.0000 0.0000
0.0300 0.0253 0.0164 0.0255
0.0400 0.0582 0.0435 0.0569
0.0500 0.0880 0.0714 0.0858
0.0600 0.1152 0.0977 0.1127
0.0700 0.1374 0.1211 0.1352
0.0800 0.1567 0.1411 0.1544
0.0900 0.1722 0.1572 0.1698
0.1000 0.1833 0.1695 0.1811
0.1100 0.1909 0.1786 0.1891
0.1200 0.1962 0.1854 0.1949
0.1300 0.2003 0.1905 0.1993
0.1400 0.2032 0.1944 0.2026
0.1500 0.2054 0.1976 0.2051
0.1600 0.2072 0.2000 0.2071
0.1800 0.2104 0.2040 0.2102
0.2000 0.2130 0.2074 0.2127
0.2200 0.2149 0.2103 0.2148
0.2400 0.2166 0.2130 0.2168
0.0000 0.0000 0.0000 0.0000
0.0100 0.0000 0.0000 0.0000
0.0200 0.0223 0.0124 0.0209
0.0300 0.0480 0.0344 0.0472
0.0400 0.0742 0.0578 0.0727
0.0500 0.0973 0.0805 0.0962
0.0600 0.1173 0.1013 0.1159
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0.0700 0.1348 0.1197 0.1329
0.0800 0.1491 0.1356 0.1479
0.0900 0.1612 0.1489 0.1606
0.1000 0.1713 0.1597 0.1711
0.1100 0.1796 0.1684 0.1796
0.1200 0.1865 0.1754 0.1864
0.1300 0.1920 0.1811 0.1919
0.1400 0.1966 0.1858 0.1964
0.1500 0.2004 0.1898 0.2000
0.1600 0.2039 0.1932 0.2030
0.1800 0.2077 0.1989 0.2078
0.2000 0.2124 0.2041 0.2119
0.2200 0.2157 0.2087 0.2153
0.2400 0.2188 0.2132 0.2185
0.0000 0.0000 0.0000 0.0000
0.0100 0.0148 0.0072 0.0132
0.0200 0.0340 0.0228 0.0322
0.0300 0.0525 0.0407 0.0505
0.0400 0.0700 0.0587 0.0693
0.0500 0.0863 0.0759 0.0857
0.0600 0.1017 0.0916 0.1012
0.0700 0.1157 0.1058 0.1155
0.0800 0.1279 0.1184 0.1275
0.0900 0.1391 0.1295 0.1384
0.1000 0.1490 0.1391 0.1483
0.1100 0.1584 0.1474 0.1572
0.1200 0.1656 0.1547 0.1650
0.1300 0.1721 0.1610 0.1718
0.1400 0.1780 0.1666 0.1778
0.1500 0.1831 01716 0.1831
0.1600 0.1879 0.1761 0.1877
0.1800 0.1957 0.1843 0.1956
0.2000 0.2029 0.1920 0.2027
0.2200 0.2088 0.1994 0.2090
| 0.2400 0.2145 0.2066 0.2149
_1 0.0000 0.0034 0.0000 0.0000
0.0100 0.0164 0.0110 0.0151
0.0200 0.0294 0.0233 0.0293
0.0300 0.0418 0.0363 0.0432
0.0400 0.0540 0.0490 0.0540
0.0500 0.0650 0.0611 0.0650
0.0600 0.0760 0.0724 0.0755
0.0700 0.0864 0.0829 0.0856
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0.0800 0.0960 0.0925 0.0955
0.0900 0.1054 0.1015 0.1048
0.1000 0.1141 0.1097 0.1136
0.1100 0.1226 0.1173 0.1219
0.1200 0.1303 0.1243 0.1297
0.1300 0.1378 0.1308 0.1371
0.1400 0.1447 0.1369 0.1442
0.1500 0.1515 0.1426 0.1508
0.1600 0.1576 0.1481 0.1571
0.1800 0.1694 0.1587 0.1690
0.2000 0.1813 0.1693 0.1805
0.2200 0.1922 0.1799 0.1917
0.2400 0.2031 0.1905 0.2027
0.0000 0.0034 0.0034 0.0034
0.0100 0.0110 0.0095 0.0112
0.0200 0.0190 0.0173 0.0197
0.0300 0.0269 0.0254 0.0275
0.0400 0.0344 0.0332 0.0346
0.0500 0.0417 0.0408 0.0416
0.0600 0.0489 0.0481 0.0487
0.0700 0.0560 0.0552 0.0557
0.0800 0.0627 0.0620 0.0626
0.0900 0.0696 0.0686 0.0695
0.1000 0.0764 0.0750 0.0763
0.1100 0.0830 0.0813 0.0829
0.1200 0.0896 0.0873 0.0894
0.1300 0.0961 0.0933 0.0959
0.1400 0.1026 0.0992 0.1024
0.1500 0.1192 0.1050 0.1089
0.1600 0.1157 0.1109 0.1154
0.1800 0.1286 0.1231 0.1288
0.2000 0.1431 0.1358 0.1429
0.2200 0.1575 0.1492 0.1577
0.2400 0.1731 0.1629 0.1729
0.0000 0.0000 0.0000 0.0000
0.0100 0.0084 0.0061 0.0072
0.0200 0.0137 0.0120 0.0131
0.0300 0.0190 0.0180 0.0186
0.0400 0.0246 0.0238 0.0245
0.0500 0.0297 0.0294 0.0301
0.0600 0.0350 0.0350 0.0356
0.0700 0.0404 0.0404 0.0411
0.0800 0.0455 0.0458 0.0464
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0.0900 0.0510 0.0511 0.0519
0.1000 0.0564 0.0563 0.0573
0.1100 0.0619 0.0616 0.0628
0.1200 0.0672 0.0668 0.0683
0.1300 0.0726 0.0721 0.0738
81 0.1400 0.0784 0.0774 0.0794
' 0.1500 0.0841 0.0829 0.0851
0.1600 0.0901 0.0885 0.0910
0.1800 0.1022 0.1004 0.1038
0.2000 0.1165 0.1132 0.1177
0.2200 0.1317 0.1271 0.1329
0.2400 0.1490 0.1414 0.1488
0.0000 0.0000 0.0000 0.0000
0.0100 0.0043 0.0013 0.0016
0.0200 0.0077 0.0050 0.0055
0.0300 0.0113 0.0090 0.0091
0.0400 0.0147 0.0130 0.0134
0.0500 0.0174 0.0170 0.0175
0.0600 0.0220 0.0210 0.0215
0.0700 0.0256 0.0249 0.0254
0.0800 0.0293 0.0288 0.0293
0.0900 0.0333 0.0327 0.0333
9 0.1000 0.0372 0.0366 0.0374
0.1100 0.0414 0.0407 0.0416
0.1200 0.0455 0.0447 0.0459
0.1300 0.0497 0.0490 0.0502
0.1400 0.0543 0.0533 0.0546
0.1500 0.0577 0.0579 0.0592
0.1600 0.0638 0.0628 0.0643
0.1800 0.0740 0.0732 0.0754
0.2000 0.0865 0.0847 0.0880
0.2200 0.1004 0.0974 0.1025
0.2400 0.1170 0.1107 0.1179
0.0000 0.0000 0.0000 0.0000
0.0100 0.0000 0.0000 0.0000
0.0200 0.0000 0.0000 0.0000
0.0300 0.0000 0.0000 0.0000
0.0400 0.0044 0.0011 0.0011
0.0500 0.0068 0.0035 0.0037
0.0600 0.0093 0.0060 0.0061
0.0700 0.0116 0.0084 0.0085
0.0800 0.0140 0.0108 0.0111
0.0900 0.0164 0.0133 0.0136
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0.1000 0.0189 0.0158 0.0162
0.1100 0.0214 0.0185 0.0191
0.1200 0.0242 0.0212 0.0220
0.1300 0.0280 0.0242 0.0251
0.1400 0.0299 0.0273 0.0282
9y 0.1500 0.0333 0.0307 0.0314
: 0.1600 0.0369 0.0344 0.0351
0.1800 0.0444 0.0423 0.0435
0.2000 0.0537 0.0512 0.0535
m . 0.2200 0.0645 0.0613 0.0655
3‘ 0.2400 0.0781 0.0720 0.0785
: 0.0000 0.0000 0.0000 0.0000
0.0100 0.0000 0.0000 0.0000
0.0200 0.0000 0.0000 0.0000
0.0300 0.0000 0.0000 0.0000
0.0400 0.0000 0.0000 0.0000
0.0500 0.0000 0.0000 0.0000
0.0600 0.0000 0.0000 0.0000
0.0700 0.0000 0.0000 0.0000
0.0800 0.0000 0.0000 0.0000
0.0900 0.0000 0.0000 0.0000
10 0.1000 0.0000 0.0000 0.0000
0.1100 0.0000 0.0000 0.0000
0.1200 0.0000 0.0000 0.0000 '
0.1300 0.0000 0.0000 0.0000
0.1400 0.0000 0.0000 0.0000
0.1500 0.0056 0.0015 0.0015
0.1600 0.0082 0.0035 0.0036
0.1800 0.0134 0.0080 0.0083
0.2000 0.0196 0.0132 0.0139
0.2200 0.0268 0.0196 0.0216
0.2400 0.0360 0.0263 0.0300
where
Original - Y :Half-breadth values of original NPL hull form offsets

Forward Fairing (1) - Y :Half-breadth values obtained from B-spline
approximation

Forward Fairing (2) - Y :Half-breadth values obtained from B-spline fitting
process
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Figure B.4. Parent trawler form.

Table B.4. Trawler form offsets obtained from different distortion techniques.

. Swing e Moor :

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.2515 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.3770 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5030 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.6285 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0 0.7545 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1.0060 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1.5085 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2.0115 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2.5150 0.9195 0.9195 0.9195 0.9195 0.9195 0.9195

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.2515 0.0690 0.0822 0.0943 0.0622 0.0708 0.0690

0.3770 0.0755 0.0930 0.1094 0.0668 0.0775 0.0755

0.5030 0.0870 0.1086 0.1290 0.0764 0.0893 0.0870

‘ 0.6285 0.0895 0.1145 0.1384 0.0775 0.0919 0.0895
172 0.7545 0.0950 0.1229 0.1497 0.0817 0.0975 0.0950
1.0060 0.1150 0.1493 0.1824 0.0987 0.1180 0.1150

1.5085 0.1790 0.2340 0.2868 0.1530 0.1837 0.1790

2.0115 0.5740 0.6672 0.7480 0.5240 0.5892 0.5740

2.5150 1.5525 1.6325 1.6976 1.5065 1.5942 1.5525

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.2515 0.1790 0.2252 0.2584 0.1599 0.1841 0.1790

0.3770 0.2295 0.2938 0.3392 0.2025 0.2361 0.2295

1 0.5030 0.2790 0.3582 0.4135 0.2454 0.2871 0.2790
0.6285 0.3170 0.4102 0.4746 0.2771 0.3262 0.3170

0.7545 0.3525 0.4588 0.5323 0.3070 0.3628 0.3525




1.0060 0.4325 0.5633 0.6533 0.3764 0.4451 0.4325
1.5085 0.6735 0.8615 0.9854 0.5896 0.6930 0.6735
2.0115 1.2260 1.4311 1.5605 1.1307 1.2598 1.2260
2.5150 2.0255 2.1553 2.2360 1.9644 2.0786 2.0255
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2515 0.5385 0.7023 0.8130 0.4876 0.5482 0.5385
0.3770 0.7010 0.9008 1.0332 0.6375 0.7136 0.7010
0.5030 0.8415 1.0710 1.2209 0.7676 0.8565 0.8415
0.6285 0.9615 1.2155 1.3786 0.8787 0.9786 0.9615
0.7545 1.0740 1.3442 1.5138 0.9841 1.0930 1.0740
1.0060 1.2920 1.5867 1.7640 1.1901 1.3146 1.2920
1.5085 1.7560 2.0527 22155 1.6449 1.7858 1.7560
2.0115 2.2730 2.5016 2.6150 2.1803 2.3099 2.2730
2.5150 2.6670 2.7986 2.8616 2.6124 2.7087 2.6670
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2515 1.0660 1.3223 1.5304 0.9987 1.0803 1.0660
0.3770 1.3310 1.6264 1.8604 1.2524 1.3480 1.3310
0.5030 1.5505 1.8664 2.1067 1.4645 1.5694 1.5505
0.6285 1.7270 2.0441 2.2766 1.6377 1.7469 1.7270
0.7545 1.8695 2.1875 2.4142 1.7790 1.8902 1.8695
1.0060 2.1185 24144 2.6146 2.0306 2.1396 2.1185
1.5085 2.5110 2.7296 2.8615 2.4412 2.5309 2.5110
2.0115 2.8005 2.9242 2.9900 2.7587 2.8175 2.8005
2.5150 2.9590 3.0173 3.0437 2.9379 2.9737 2.9590
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2515 1.6320 1.8900 2.0244 1.5861 1.6418 1.6320
0.3770 1.9720 2.2467 2.3870 1.9219 1.9827 1.9720
0.5030 2.2170 2.4763 2.6050 2.1678 2.2275 2.2170
0.6285 2.3815 2.6255 2.7461 2.3348 2.3915 2.3815
0.7545 2.5135 2.7360 2.8433 2.4695 2.5229 2.5135
1.0060 2.6995 2.8842 2.9719 2.6619 2.7076 2.6995
1.5085 2.9130 3.0156 3.0618 2.8905 2.9181 29130
2.0115 3.0120 3.0454 3.0565 3.0027 3.0145 3.0120
2.5150 3.0500 3.0499 3.0462 3.0478 3.0511 3.0500
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2515 2.0255 1.9741 2.0130 2.0255 2.0255 2.0255
0.3770 2.3895 2.3415 2.3797 2.3895 2.3895 2.3895
0.5030 2.6065 2.5638 2.5987 2.6065 2.6065 2.6065
0.6285 2.7450 2.6988 2.7351 2.7450 2.7450 2.7450
0.7545 2.8385 2.7920 2.8275 2.8385 2.8385 2.8385
1.0060 2.9620 29112 2.9475 2.9620 2.9620 2.9620
1.5085 3.0500 3.0078 3.0365 3.0500 3.0500 3.0500
2.0115 3.0500 3.0311 3.0451 3.0500 3.0500 3.0500
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f2.5 150 3.0500 3.04%4 3.0536 3.0500 3.0500 3.0500
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2515 1.7720 1.4994 1.6496 1.8915 1.8290 1.7720
0.3770 2.1210 1.8001 1.9788 2.2542 2.1863 2.1210
0.5030 2.3490 2.0191 2.2044 2.4808 24159 2.3490
0.6285 2.4870 2.1613 2.3447 2.6168 2.5541 2.4870
0.7545 2.5915 2.2797 2.4559 2.7147 2.6569 2.5915
1.0060 2.7270 2.4431 2.6039 2.8397 2.7893 2.7270
1.5085 2.8715 2.6483 2.7768 2.9559 2.9245 2.8715
2.0115 2.9470 2.7765 2.8776 3.0026 2.9906 2.9470
2.5150 2.9940 2.8727 2.9457 3.0320 3.0313 2.9940
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2515 1.1180 0.9023 1.0123 1.4157 1.2983 1.1180
0.3770 1.3460 1.0966 1.2230 1.6999 1.5600 1.3460
0.5030 1.5390 1.2706 1.4071 1.9141 1.7708 1.5390
0.6285 1.6790 1.4018 1.5435 2.0569 1.9184 1.6790
0.7545 1.8065 1.5251 1.6700 2.1787 2.0493 1.8065
1.0060 1.9995 1.7209 1.8659 2.3502 22414 1.9995
1.5085 2.2665 2.0032 2.1426 2.5719 2.5000 2.2665
2.0115 2.4550 2.2199 2.3456 2.7144 2.6749 2.4550
2.5150 2.6190 24182 2.5270 2.8261 2.8211 2.6190
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2515 0.5315 0.4393 0.4833 0.7985 0.6551 0.5315
0.3770 0.6765 0.5707 0.6215 0.9785 0.8288 0.6765
0.5030 0.8065 0.6857 0.7439 1.1420 0.9855 0.8065
0.6285 0.9065 0.7749 0.8384 1.2665 1.1058 0.9065
0.7545 1.0040 0.8622 0.9307 1.3850 1.2229 1.0040
1.0060 1.1715 1.0135 1.0903 1.5775 1.4230 1.1715
1.5085 1.4360 1.2629 1.3475 1.8610 1.7354 1.4360
2.0115 1.6745 1.4945 1.5834 2.0885 2.0136 1.6745
2.5150 1.9140 1.7363 1.8247 2.3015 2.2899 1.9140
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2515 0.1455 0.1126 0.1267 0.2891 0.1687 0.1455
0.3770 0.2135 0.1710 0.1893 0.3929 0.2562 0.2135
0.5030 0.2740 0.2264 0.2468 0.4795 0.3390 0.2740
0.6285 0.3270 0.2763 0.2980 0.5493 0.4135 0.3270
0.7545 0.3750 0.3203 0.3437 0.6169 0.4793 0.3750
1.0060 0.4645 0.4053 0.4305 0.7346 0.6064 0.4645
1.5085 0.6345 0.5654 0.5948 0.9478 0.8456 0.6345
2.0115 0.8020 0.7245 0.7574 1.1522 1.0834 0.8020
2.5150 1.0030 0.9156 0.9529 1.3840 1.3692 1.0030
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
02515 0.0000 0.0000 0.0000 0.0601 0.0000 0.0000
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r 1 0.3770 0.0195 0.0117 0.0141 0.1023 0.0178 0.0195
0.5030 0.0530 0.0428 0.0460 0.1500 0.0659 0.0530
0.6285 0.0870 0.0746 0.0786 0.1950 0.1152 0.0870
9 1/ 0.7545 0.1135 0.0992 0.1039 0.2329 0.1533 0.1135
77 710060 | 01755 | 0.1575 | 0.1636 03116 0.2437 0.1755
1.5085 0.2815 0.2565 0.2650 0.4551 0.3969 0.2815
2.0115 0.3915 0.3595 0.3705 0.6001 0.5564 0.3915
o 2.5150 0.5300 0.4923 0.5054 0.7731 0.7622 0.5300
= 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2515 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.3770 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.5030 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 0.6285 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.7545 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1.0060 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1.5085 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2.0115 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2.5150 0.0675 0.0675 0.0675 0.0675 0.0675 0.0675
where
Station - X : Station numbers
WL - Z : Waterline depths
Parent -'Y : Half-breadth values of BSRA trawler parent form
Swing - Y : Half-breadth values obtained by swinging the sectional area curve
1-Cp - 'Y : Half-breadth values obtained by one-minus prismatic method

Lackenby -Y : Half-breadth values obtained by Lackenby’s method
Moor - Y : Half-breadth values obtained by Moor’s method

Non-Linear -Y : Half-breadth values obtained by using a non-linear distortion
method
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Table B.5. Offset tables of parent, variant and final trawler forms obtained from
shape averaging method.

Variant 1 | Variant2 | Variant3 | Variant4

» Y (m) Y (m) Y (m)
0.0000 | 0.0000 | 0.000 | 0.0000 | 0.0000 0.0000 | 0.0000
02515 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
03770 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
0.5030 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
0 | 06285 | 00000 | 00000 | 0.0000 0.0000 0.0000 0.0000
0.7545 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
1.0060 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
1.5085 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
2.0115 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
25150 | 09195 | 09195 | 09195 0.9195 0.9195 0.9195
] 0.0000 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
02515 | 0.0690 | 0.0909 | 0.1128 0.1346 0.1565 0.1784
03770 | 00755 | 0.1061 | 0.1368 0.1674 0.1981 02287
0.5030 | 0.0870 | 0.1252 | 0.1634 02016 0.2398 0.2780
0.6285 | 0.0895 | 0.1348 | 0.1800 0.2253 0.2705 0.3158
V2 525 T o050 | o146 | 01574 0.2487 0.2999 03511
1.0060 | 0.1150 | 0.1782 | 02413 0.3045 0.3676 0.4308
15085 | 0.1790 | 02774 | 03758 0.4742 0.5726 0.6710
20115 | 05740 | 07039 | 0.8337 0.9636 1.0934 12233
25150 | 15525 | 16468 | 1.7410 1.8353 1.9295 2.0238
0.0000 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
02515 | 0.1790 | 02252 | 02715 03177 0.3640 0.4102
03770 | 02295 | 02914 | 03533 04153 0.4772 0.5391
05030 | 02790 | 03536 | 04283 0.5029 0.5776 0.6522
0.6285 | 03170 | 04033 | 04895 0.5758 0.6620 0.7483
1 —sas T 03525 | oasor | 05477 0.6452 0.7428 0.8404
1.0060 | 04325 | 05506 | 0.6688 0.7869 0.9051 1.0232
15085 | 0.6735 | 08294 | 0.9853 1.1412 12971 1.4530
20115 | 12260 | 13834 | 1.5408 1.6982 1.8556 2.0130
25150 | 2.0255 | 2.1231 | 22208 23184 24161 25137
0.0000 | 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 0.0000
02515 | 05385 | 0.6181 | 06977 0.7772 0.8568 0.9364
03770 | 0.7010 | 0.7966 | 0.8923 0.9879 1.0836 1.1792
05030 | 08415 | 09499 | 1.0584 1.1668 12753 1.3837
5 | 06285 | 09615 | o797 | 11980 13162 1.4345 1.5527
07545 | 10740 | 1.1977 | 13214 1.4451 1.5688 1.6925
1.0060 | 12920 | 14226 | 15532 1.6838 1.8144 1.9450
1.5085 | 17560 | 18790 | 2.0020 2.1251 22481 23711
20115 | 22730 | 23616 | 24501 2.5387 2.6272 2.7158
25150 | 2.6670 | 2.7168 | 2.7665 2.8163 2.8660 2.9158
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0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2515 1.0660 1.1369 1.2078 1.2786 1.3495 1.4204
0.3770 1.3310 1.4123 1.4936 1.5749 1.6562 1.7375
0.5030 1.5505 1.6367 1.7230 1.8092 1.8955 1.9817
0.6285 1.7270 1.8129 1.8988 1.9846 2.0705 2.1564
0.7545 1.8695 1.9552 2.0409 2.1265 22122 2.2979
1.0060 2.1185 2.1974 2.2762 2.3551 2.4339 2.5128
1.5085 2.5110 2.5680 2.6251 2.6821 2.7392 2.7962
2.0115 2.8005 2.8321 2.8638 2.8954 2.9271 2.9587
2.5150 2.9590 2.9736 2.9882 3.0027 3.0173 3.0319
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2515 1.6320 1.6690 1.7060 1.7431 1.7801 1.8171
0.3770 1.9720 2.0116 2.0512 2.0909 2.1305 2.1701
0.5030 2.2170 2.2547 2.2924 2.3302 2.3679 2.4056
0.6285 2.3815 24171 2.4526 2.4882 2.5237 2.5593
0.7545 2.5135 2.5462 2.5789 2.6116 2.6443 2.6770
1.0060 2.6995 2.7268 2.7542 2.7815 2.8089 2.8362
1.5085 2.9130 2.9285 2.9440 2.9595 2.9750 2.9905
2.0115 3.0120 3.0174 3.0228 3.0281 3.0335 3.0389
2.5150 3.0500 3.0503 3.0506 3.0508 3.0511 3.0514
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2515 2.0255 2.0255 2.0255 2.0255 2.0255 2.0255
0.3770 2.3895 2.3895 2.3895 2.3895 2.3895 2.3895
0.5030 2.6065 2.6065 2.6065 2.6065 2.6065 2.6065
0.6285 2.7450 2.7450 2.7450 2.7450 2.7450 2.7450
0.7545 2.8385 2.8385 2.8385 2.8385 2.8385 2.8385
1.0060 2.9620 2.9620 2.9620 2.9620 2.9620 2.9620
1.5085 3.0500 3.0500 3.0500 3.0500 3.0500 3.0500
2.0115 3.0500 3.0500 3.0500 3.0500 3.0500 3.0500
2.5150 3.0500 3.0500 3.0500 3.0500 3.0500 3.0500
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2515 1.7720 1.8047 1.8375 1.8702 1.9030 1.9357
0.3770 2.1210 2.1571 2.1932 2.2292 2.2653 2.3014
0.5030 2.3490 2.3844 24198 2.4552 2.4906 2.5260
0.6285 2.4870 2.5219 2.5568 2.5916 2.6265 2.6614
0.7545 2.5915 2.6245 2.6576 2.6906 2.7237 2.7567
1.0060 2.7270 2.7572 2.7875 2.8177 2.8480 2.8782
1.5085 2.8715 2.8940 2.9164 2.9389 2.9613 2.9838
2.0115 2.9470 2.9613 2.9756 2.9899 3.0042 3.0185
2.5150 2.9940 3.0036 3.0132 3.0229 3.0325 3.0421
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2515 1.1180 1.2065 1.2950 1.3836 1.4721 1.5606
0.3770 1.3460 1.4514 1.5568 1.6622 1.7676 1.8730
0.5030 1.5390 1.6502 1.7614 1.8726 1.9838 2.0950
0.6285 1.6790 1.7905 1.9020 2.0135 2.1250 2.2365
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0.7545 1.8065 1.9156 2.0248 2.1339 2.2431 2.3522

1.0060 1.9995 2.1015 2.2035 2.3054 2.4074 2.5094

1.5085 2.2665 2.3536 2.4407 2.5277 2.6148 2.7019

2.0115 2.4550 2.5278 2.6007 2.6735 2.7464 2.8192

2.5150 2.6190 2.6760 2.7330 2.7901 2.8471 2.9041

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.2515 0.5315 0.6231 0.7147 0.8063 0.8979 0.9895
0.3770 0.6765 0.7805 0.8846 0.9886 1.0927 1.1967

0.5030 0.8065 0.9210 1.0354 1.1499 1.2643 1.3788

8 0.6285 0.9065 1.0281 1.1496 1.2712 1.3927 1.5143
0.7545 1.0040 1.1313 1.2585 1.3858 1.5130 1.6403

1.0060 1.1715 1.3045 1.4375 1.5704 1.7034 1.8364

1.5085 1.4360 1.5717 1.7074 1.8432 1.9789 2.1146

2.0115 1.6745 1.8037 1.9330 2.0622 2.1915 2.3207

| 2.5150 1.9140 2.0323 2.1507 2.2690 2.3874 2.5057
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.2515 0.1455 0.2001 0.2548 0.3094 0.3641 0.4187

0.3770 0.2135 0.2801 0.3468 0.4134 0.4801 0.5467

0.5030 0.2740 0.3508 0.4277 0.5045 0.5814 0.6582
0.6285 0.3270 0.4106 0.4942 0.5779 0.6615 0.7451

9 0.7545 0.3750 0.4660 0.5570 0.6481 0.7391 0.8301
1.0060 0.4645 0.5671 0.6697 0.7723 0.8749 0.9775

1.5085 0.6345 0.7523 0.8700 0.9878 1.1055 1.2233

2.0115 0.8020 0.9321 1.0623 1.1924 1.3226 1.4527

2.5150 1.0030 1.1413 1.2796 1.4178 1.5561 1.6944
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.2515 0.0000 0.0321 0.0642 0.0962 0.1283 0.1604
0.3770 0.0195 0.0621 0.1047 0.1473 0.1899 0.2325

0.5030 0.0530 0.1015 0.1499 0.1984 0.2468 0.2953

91, 0.6285 0.0870 0.1395 0.1920 0.2446 0.2971 0.3496
0.7545 0.1135 0.1707 0.2278 0.2850 0.3421 0.3993

1.0060 0.1755 0.2385 0.3015 0.3646 0.4276 0.4906

1.5085 0.2815 0.3581 0.4347 0.5114 0.5880 0.6646

2.0115 0.3915 0.4803 0.5690 0.6578 0.7465 0.8353

2.5150 0.5300 0.6320 0.7341 0.8361 0.9382 1.0402

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.2515 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.3770 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.5030 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.6285 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
;: 0.7545 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1.0060 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1.5085 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2.0115 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2.5150 0.0675 0.0675 0.0675 0.0675 0.0675 0.0675
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Figure B.11. Typical high-speed craft used in applications in Chapter 8.

Table B.6. Parent and final hull form offsets with computed first and second
derivatives.

20.1285 | 0.0000 0.0000

0.2257 0.1561

21.0000 | 0.1967 0.1360 -0.0651 | -0.0361

| 25.2000 | 0.4507 0.4068 38(6)83 gg?gi -0.0123 | -0.0124

1 29.4000 | 0.4884 0.4590 00331 | -0.0315 -0.0100 | -0.0105
33.6000 | 0.3496 0.3266 00600 | -0.0539 -0.0064 | -0.0053
37.8000 | 0.0975 0.1004 0.0021 | -0.0005

-0. -0.0554
39.6131 | 0.0000 0.0000 0.0538 e

15.7774 | 0.0000 0.0000

0.3435 0.2701

16.8000 0.3513 0.2762 -0.0696 | -0.0460

| 21.0000 | 1.0311 0.9057 gé%: 3(1):22 -0.0352 | -0.0274

| 25.2000 | 1.0892 1.0513 00407 | -0.0376 -0.0130 | -0.0172
2 .| 29.4000 0.9183 0.8933 00764 | -0.0729 -0.0085 | -0.0084
| 33.6000 0.5973 0.5871 00910 | -0.0883 -0.0035 | -0.0037
37.8000 0.2152 0.2161 .0.0895 | -0.0907 0.0005 | -0.0008
39.9000 0.0272 0.0256 -0.0108 | -0.0045

20.1661 | 0.0000 | 0.0000 | 102 | -0-0960

11.4321 | 0.0000 0.0000

0.5245 0.4053

12.6000 0.6126 0.4733 02122 02122 -0.1164 | -0.0719
16.8000 | 1.5039 1.3647 0.0487 0.0608 -0.0389 | -0.0339
21.0000 | 1.7086 1.6577 _0239 00188 -0.0173 | -0.0211

3 25.2000 | 1.6082 1.5786 - 0661 00673 -0.0100 | -0.0115
29.4000 | 1.3305 1.2960 1153 01078 -0.0117 | -0.0096

| 33.6000 0.8461 0.8432 1194 -0.1203 -0.0010 | -0.0030
37.8000 0.3445 0.3379 1304 01253 -0.0035 | -0.0016

{ 39.9000 0.0707 0.0747 1121 01186 0.0134 0.0049

40.5303 0.0000 0.0000
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7.2521 0.0000 0.0000
8.4000 1.1685 0.8189 :)(;11',773 (())721636‘; -0.2994 | -0.1671
12.6000 | 2.0814 1.9381 0.0492 0.0743 -0.0400 | -0.0458
16.8000 | 2.2881 2.2500 0051 -0.0026 -0.0129 | -0.0183
| 21.0000 | 2.2668 2.2392 0445 10,0463 -0.0094 | -0.0104
} 25.2000 | 2.0800 2.0445 0952 -0.0941 -0.0121 | -0.0114
29.4000 | 1.6802 1.6492 1395 .0.1334 -0.0106 | -0.0093
33.6000 | 1.0943 1.0890 1471 0.1477 -0.0018 | -0.0034
37.8000 | 0.4765 | 0.4686 1602 | -0.1547 -0.0042 | -0.0022
39.9000 | 0.1401 0.1437 - 1469 -0.1507 0.0087 0.0026
40.8538 0.0000 0.0000
29757 | 0.0000 0.0000
42000 | 2.2503 1.4489 1)2(3)36317 1);3381 -0.6539 | -0.3448
8.4000 | 2.5221 2.4923 0.0298 0.0345 -0.0083 | -0.0509
12.6000 | 2.6474 2.6374 0.0155 0.0119 -0.0034 | -0.0054
16.8000 | 2.7126 2.6873 00205 | -0.0195 -0.0086 | -0.0075
21.0000 | 2.6263 2.6054 _0.0504 | -0.0546 -0.0071 | -0.0084
25.2000 | 2.4148 2.3759 0.1059 | -0.1046 -0.0132 | -0.0119
29.4000 | 1.9700 1.9367 01535 | -0.1483 -0.0113 | -0.0104
33.6000 | 1.3253 1.3138 01699 | -0.1682 -0.0039 | -0.0047
37.8000 | 0.6118 0.6073 01773 | -0.1770 -0.0023 | -0.0028
1 39.9000 | 0.2395 0.2357 01875 | -0.1845 -0.0060 | -0.0045
| 41.1772 0.0000 0.0000
0.0911 2.8087 2.8087
0.1248 | 2.8087 2.8097 ggggg ggigi 0.0164 0.0013
42000 | 2.9462 2.9331 0.0181 0.0198 -0.0038 | -0.0025
8.4000 | 3.0222 3.0161 0.0094 0.0093 -0.0021 | -0.0025
12.6000 | 3.0615 3.0552 0.0003 | -0.0033 -0.0021 | -0.0030
16.8000 | 3.0629 3.0412 -0.0306 | -0.0300 -0.0074 | -0.0063
21.0000 | 2.9343 29152 00579 | -0.0620 -0.0065 | -0.0076
25.2000 | 2.6911 2.6550 01095 | -0.1099 -0.0123 | -0.0114
29.4000 | 2.2313 2.1933 01636 | -0.1589 -0.0129 | -0.0117
33.6000 | 1.5440 1.5262 01891 | -01855 -0.0061 | -0.0063
37.8000 0.7498 0.7471 01934 | -01968 -0.0014 | -0.0036
39.9000 0.3435 0.3338 02179 | -02117 -0.0133 | -0.0081
41.4762 0.0000 0.0000
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0.0420 | 3.0576 | 3.0576
0.1248 | 3.0576 | 3.0590 g:gggg 82;3 0.0117 | 0.0019
42000 | 31564 | 3.0462 | ool | -0.0029 | -0.0018
84000 | 32074 | 32041 | oo | S| -0.0011 | -0.0016
12.6000 | 32384 | 32342 | o oos | -0.0014 | -0.0023
| 168000 | 32442 | 32234 | oo | T | 00071 | -0.0061
© | 210000 | 3.0251 | 3.0053 | "ol | T | -0.0067 | -0.0078
| 252000 | 2.8875 | 28504 | "o | " | -0.0126 | 00117
| 294000 | 24277 | 23887 | T | o | 00132 | -0.0123
| 33.6000 | 17348 | 17101 | "o | o0 | -0.0084 | -0.0080
| 37.8000 | 0.8941 | 08897 | " % o | " | 00023 | -0.008
| 399000 | 04583 | 04412 | "0 T 0 | -0.0199 | 00122
| 417562 | 0.0000 | 0.0000
-0.0063 | 3.2815 | 3.2815
0.1248 | 32853 | 3.2841 83?2; gg?gi -0.0062 | -0.0027
42000 | 33508 | 33435 | o | oo | 00021 | -0.0014
84000 | 33817 | 33807 | oo | 0l | -0.0003 | -0.0008
12.6000 | 3.4065 | 3.4037 | v | 0 C | -0.0010 | -0.0018
168000 | 3.4144 | 33954 | oo | oo | -0.0065 | -0.0057
21.0000 | 33082 | 32871 | " | Tl | -0.0072 | -0.0080
252000 | 3.0753 | 3.0384 | "o | T | 00126 | 00119
| 294000 | 26206 | 25805 | " | oo | -0.0136 | -0.0130
33.6000 | 19255 | 18938 | " 0o | " Co | -0.0108 | -0.0097
37.8000 | 1.0405 | 10354 | " ° L | "7 | -0.0033 | -0.0073
| 399000 | 05761 | 05582 | T Ceo | T Ol | 00199 | 00157
42.0000 | 00237 | 00120 | "% F | "L | 04499 | -0.1074
42.0320 | 0.0000 | 0.0000
"
| -0.0497 | 3.3580 | 3.3589
0.1248 | 33639 | 3.3624 ggi? ggfgg -0.0065 | -0.0029
42000 | 34257 | 34189 | oo ool | -0.0019 | -0.0013
84000 | 34554 | 34547 | 0| ool | <0.0003 | -0.0007
12.6000 | 34806 | 34778 | 0| oooe | -0-0010 | -0.0015
16.8000 | 34888 | 3.4743 | oo || -0.0049 | -0.0047
21.0000 | 3.4102 | 33875 | oo | ool | -0.0077 | -0.0079
252000 | 3.1952 | 31612 | oo b 00116 | 00115
294000 | 27762 | 27313 | " C 0 T | 00153 | -0.0140
33.6000 | 20875 | 20547 | " ool o | 00112 | 00106
37.8000 | 12017 | 11910 | "% T | -0.0070 | -0.0088
| 399000 | 07123 | 07007 | " S | T T | -0.0129 | 00200
42.0000 | 0.1660 | 01225 | " | T 0| 02632 | -0.1244
J 42.2889 | 0.0000 | 0.0000 | '
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-0.0930 | 3.4363 3.4363
0.1248 | 3.4364 3.4382 gg(l)g:: gg?gg 0.0064 0.0016
4.2000 3.4937 3.4872 0.0063 0.0077 -0.0019 | -0.0010
| 8.4000 3.5201 3.5197 0.0057 0.0053 -0.0001 | -0.0006
12.6000 | 3.5440 3.5420 0.0028 0.0007 -0.0007 | -0.0011
7: 16.8000 | 3.5559 3.5449 00128 | -0.0157 -.00037 | -0.0039
10 | 21.0000 | 3.5022 3.4792 0.0457 | -0.0478 -0.0078 | -0.0076
25.2000 | 3.3104 3.2786 0.0911 -0.0956 -0.0108 | -0.0114
‘ 29.4000 | 2.9277 2.8770 01635 | -0.1592 -0.0172 | -0.0151
33.6000 | 2.2410 2.2083 02102 | -0.2061 -0.0111 -0.0112
| 37.8000 1.3582 1.3425 02426 | -02387 -0.0103 | -0.0103
39.9000 0.8488 0.8413 02601 | -0.2860 -0.0083 | -0.0226
42.0000 0.3026 0.2406 05544 | -0.4408 -0.2225 | -0.1170
| 42.5458 0.0000 0.0000
£l
-0.1421 3.4728 3.4728
0.1248 | 3.4728 3.4749 gg?gg gg?zz 0.0063 0.0018
4.2000 3.5285 3.5226 0.0066 0.0078 -0.0017 | -0.0009
8.4000 3.5564 3.5553 0.0050 0.0050 -0.0004 | -0.0007
{ 12.6000 | 3.5776 3.5765 0.0035 0.0021 -0.0004 | -0.0007
1 16.8000 | 3.5923 3.5853 00065 | -0.0091 -0.0024 | -0.0027
1 | 21.0000 | 3.5649 3.5472 00318 | -0.0350 -0.0060 | -0.0062
25.2000 | 3.4314 3.4001 00764 | -0.0820 -0.0106 | -0.0112
1 29.4000 | 3.1104 3.0556 01711 | -0.1530 -0.0225 | -0.0169
| 33.6000 | 2.3917 2.4130 02066 | -0.2151 -0.0085 | -0.0148
| 37.8000 1.5240 1.5097 02525 | -0.2482 -0.0146 | -0.0105
| 39.9000 0.9937 0.9886 02646 | -0.2976 -0.0058 | -0.0236
42.0000 0.4381 0.3635 05436 | 04511 -0.1920 | -0.1056
_J 42.8059 0.0000 0.0000
|
-0.1913 | 3.5088 3.5088
0.1248 | 3.5088 3.5111 82(1)(3)2 88(1)’17: 0.0060 0.0018
42000 | 3.5628 3.5576 0.0070 0.0078 -0.0015 | -0.0009
8.4000 | 3.5924 3.5905 0.0044 0.0048 -0.0006 | -0.0007
12.6000 | 3.6107 3.6106 0.0042 0.0031 0.0000 | -0.0004
16.8000 | 3.6283 3.6238 00022 | -0.0048 -0.0015 | -0.0019
12 21.0000 | 3.6191 3.6037 00241 | -0.0276 -0.0052 | -0.0054
25.2000 | 3.5179 3.4877 00672 | -0.0718 -0.0103 | -0.0105
29.4000 | 3.2355 3.1861 01377 | -0.1414 -0.0168 | -0.0166
33.6000 | 2.6569 2.5922 02302 | -02184 -0.0220 | -0.0183
37.8000 | 1.6899 1.6751 02607 | -0.2557 -0.0097 | -0.0119
39.9000 | 1.1424 1.1381 02709 | -0.3084 -0.0048 | -0.0251
42.0000 | 0.5736 0.4903 05380 | -0.4599 -0.1687 | -0.0957
43.0661 0.0000 0.0000 '
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02384 | 3.5356 | 3.5356
0.1248 | 3.5356 | 3.5383 gg?gg gg?zz 0.0062 | 0.0019
42000 | 35916 | 3.5856 | oo | oo | 00017 | -0.0009
84000 | 3.6192 | 36180 | oo 0| -0.0004 | -0.0007
12.6000 | 3.6394 | 36386 | oo | 0| -0.0003 | -0.0004
| 168000 | 36550 | 36530 | oo | 00| -0.0007 | -0.0013
{3 | 210000 | 36582 | 36452 | oo | T | -0.0044 | -0.0046
4 | 252000 | 3.5832 | 35566 | oo | oo | -0.0090 | -0.0096
| 204000 | 33486 | 32988 | " C0 | "N | 00169 | -0.0165
| 33.6000 | 28153 | 27492 | "0 0 | -00196 | -0.0194
| 37.8000 | 19358 | 18579 | O | T 0| -0.0205 | -0.0167
39.9000 | 13011 | 13015 | " Ut | U | 00119 | -0.0269
42.0000 | 07190 | 06265 | " ° | "0 | 01533 | -0.0870
433311 | 0.0000 | 0.0000
|
-0.2852 | 3.5605 | 3.5605
0.1248 | 3.5605 | 3.5636 gg?gg gg?g 0.0064 | 0.0020
42000 | 36193 | 36121 | oo | Cooc | -0.0021 | -0.0011
84000 | 3.6441 | 3.6438 | oo | oo | -0.0001 | -0.0006
12.6000 | 3.6671 | 3.6654 | | U0 o | -0.0006 | -0.0004
16.8000 | 3.6799 | 3.6801 | oo | 00| 0.0001 | -0.0007
14 | 210000 | 36941 | 36834 | OOl | -0.0036 | -0.0037
252000 | 3.6440 | 3.6216 | o oo | -0.0076 | -0.0085
29.4000 | 34592 | 34089 | " " o | o | 00171 | -0.0164
33.6000 | 29729 | 29076 | [ L | T | 00215 | -0.0192
37.8000 | 2.1073 | 2.0668 |~ ° O | U 00| 00175 | -0.0201
39.9000 | 15589 | 15137 | "o | Tt S| <0.0306 | -0.0406
42.0000 | 0.8755 | 07816 | " "o | "0 oo, | <0.1205 | -0.0761
43.5971 | 0.0000 | 0.0000
03328 | 3.5802 | 3.5802
0.1248 | 3.5800 | 3.5835 88‘1)2: 88(1);? 0.0067 | 0.0021
42000 | 3.6405 | 3.6330 | oo 0| 0| -0.0022 | -0.0011
84000 | 36652 | 3.6651 | oo | (oo | 0.0000 | -0.0006
12.6000 | 3.6891 | 3.6874 | oo | igze | -0-0006 | -0.0003
16.8000 | 3.7026 | 3.7036 | oo | o0 | 0.0003 | -0.0004
15 | 210000 | 37221 | 37130 | o | -0.0031 | -0.0028
252000 | 3.6869 | 3.6726 | ‘oo | oo | -0.0049 | -0.0067
294000 | 3.5659 | 35133 | T | T o0 | 00179 | -0.0166
33.6000 | 3.1292 | 3.0607 | oo | T | 00233 | -0.0201
37.8000 | 22814 | 22531 | % 0| "0 | -0.0185 | -0.0199
39.9000 | 17350 | L7178 | |l | -0.0192 | -0.0456
42.0000 | 11038 | 09816 | "o | T | -0.1478 | -0.0894
43.8604 | 0.0000 | 0.0000
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-0.3808 | 3.5972 | 3.5972
0.1248 | 3.5969 | 3.6008 33:?17 %%‘E‘; 0.0069 | 0.0023
42000 | 36586 | 3.6510 | o | o0 | -0.0022 | -0.0011
84000 | 36844 | 3.6841 | ' | oo | -0.0001 | -0.0006
12.6000 | 37083 | 37070 | oo | oo | -0.0005 | -0.0003
| 168000 | 37243 | 37253 | oo | o0 | 00003 | -0.0003
16 | 210000 | 37462 | 37376 | oo o007g | 00029 | -0.0025
7" 1252000 | 3.7167 | 3.7050 '0'023 ¢ '0'0301 -0.0040 | -0.0053
1 29.4000 | 3.6174 | 3.5786 :0:0792 :0:0897 -0.0132 | -0.0142
33.6000 | 32850 | 32016 | " Coo0 | e | -0.0283 | -0.0227
37.8000 | 24525 | 24237 | 0O | 00| -0.0188 | -0.0215
39.9000 | 19118 | 18925 | " "L | " 0| -0.0215 | -0.0495
42.0000 | 12762 | 11429 | S| ol | 01415 | -0.0860
44.1224 | 0.0000 | 0.0000
| -0.4288 | 3.6143 | 3.6143
0.1248 | 3.6137 | 3.6180 83(1);411 gg?gz 0.0071 | 0.0025
42000 | 3.6766 | 3.6690 | oo | oot | -0.0022 | -0.0011
84000 | 37037 | 37031 | o | oo | -0.0002 | -0.0006
12.6000 | 37276 | 37266 | . | o ooqg | 0-0003 | -0.0002
16.8000 | 37459 | 37469 | oo | ooz | 00003 | -0.0003
7 | 210000 | 37702 | 37622 | o | oo | -0.0027 | -0.0024
252000 | 3.7464 | 37360 | " | oo | -0.0035 | -0.0049
29.4000 | 3.6602 | 3.6231 | ool | oo | -0.0126 | -0.0130
33.6000 | 33514 | 32816 | " C oo | N o] -0.0238 | -0.0202
| 37.8000 | 2.6236 | 25840 | o | L | -0.0259 | -0.0254
|39.9000 | 20885 | 20672 | o | o | 00238 | -0.0555
| 420000 | 1.4486 | 13058 | "o | T | -0.1351 | -0.0826
443843 | 0.0000 | 0.0000
i
04768 | 3.6313 | 3.6313
0.1248 | 3.6305 | 3.6352 83(1)5 gg(l)gz 0.0073 | 0.0027
42000 | 3.6946 | 3.6871 | o | oo | -0.0022 | -0.0011
84000 | 37229 | 37222 | oo | oo | -0.0002 | -0.0006
12.6000 | 3.7468 | 3.7463 | 0| oo, | -0.0002 | -0.0001
| 168000 | 3.7676 | 37685 | "o | 0| 0.0003 | -0.0002
g | 210000 | 37942 | 37868 | 1 0o | -0.0025 | -0.0022
7 [ 252000 | 37761 | 37669 | "o\ oo | -0.0031 | -0.0045
29.4000 | 37030 | 3.6673 | ' oo | oo, | 00121 | -0.0123
33.6000 | 34160 | 33506 | " C o | oCop | 00223 | -0.0187
37.8000 | 27364 | 27033 | "o S | 00216 | -0.0237
39.9000 | 22535 | 22231 | "ol | o | 00339 | -0.0626
42.0000 | 16209 | 14667 | "o || 01312 | -0.0818
44.6463 | 0.0000 | 0.0000
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-0.5248 | 3.6484 3.6484
0.1248 | 3.6473 3.6525 -83(1);3 gg?g; 0.0075 0.0028
42000 | 3.7127 3.7051 0:0070 0‘0086 -0.0022 | -0.0010
8.4000 | 3.7421 3.7412 0.0057 0'0059 -0.0003 | -0.0006
12.6000 | 3.7660 3.7659 0.0055 0.0058 0.0000 0.0000
| 16.8000 | 3.7892 3.7902 0:0069 0:0050 0.0003 | -0.0002
‘ 19 | 21.0000 | 3.8183 3.8114 -0.0030 | -0.0032 -0.0024 | -0.0020
: ‘ 25.2000 | 3.8058 3.7979 00143 | -0.0205 -0.0027 | -0.0041
- 29.4000 | 3.7457 3.7116 00631 | -0.0700 -0.0116 | -0.0118
| 33.6000 | 3.4806 3.4174 01535 | -0.1466 -0.0215 | -0.0182
37.8000 | 2.8361 2.8017 02243 | 02204 -0.0225 | -0.0234
39.9000 | 2.3651 2.3389 02856 | -0.3518 -0.0292 | -0.0626
42.0000 | 1.7652 1.6001 06070 | -0.5502 -0.1283 | -0.0792
44.9083 0.0000 0.0000

where
Waterline No. : Waterline numbers
X : Longitudinal distance of the waterlines

Parent - 'Y : Half-breadth values of the corresponding waterlines for the parent
high speed semi displacement form

Faired - Y : Half-breadth values of the corresponding waterlines obtained by
using forward fairing procedure

Parent 1* der. : First derivative values of the parent hull form
Faired 1% der. : First derivative values of the faired hull form
Parent 2" der. : Second derivative values of the parent hull form

Faired 2" der. : Second derivative values of the faired hull form
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