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IN SITU PREPARATION OF CYCLOHEXANONE FORMALDEHYDE 

RESIN / LAYERED SILICATE NANOCOMPOSITES 

SUMMARY 

Polymer / layered silicate nanocomposites show enhanced properties, opposed to the 

high volume fraction loading (>50%) in traditional advanced composites,  at very 

low volume fraction loading (1-5%) of layered silicates. Commercial resins are 

generally solid materials with low molecular weight and they can be processed 

easily.  They are often mixed with cellulose nitrate and alkyd resins for coating 

applications.  This type of resins are mainly used in surface coatings, varnishes, inks, 

textile and paper industries as additive materials.  Previous studies demonstrated the 

synthesis of copolymers of CF resins is possible with polydimethylsiloxanes (PDMS) 

by one step method of in situ modification of ketonic resin. 

In this study, in situ modified cyclohexanone formaldehyde resin samples and 

nanocomposite forms of these resins were prepared from direct addition of MMT 

clay (montmorillonite: whose cation-exchange capacity is 80 meq / 100 g sodium, 

average particle sizes are smaller than 10 µm, density is 2,6 g cm
3
) and amine chain 

ended polydimethylsiloxane (bis(3-adminopropyl) terminated), DA.PDMS, in the 

presence of base catalyst.  Different clay contents (from 0,5 to 3 wt%) were used to 

produce clay modified nanocomposite resins. With this method PDMS modified 

polymeric nanocomposite material would be synthesized in one step.  

The characterizations of the final samples were performed by fourier transform 

infrared spectroscopy (FTIR-ATR), nuclear magnetic resonance spectroscopy 

(NMR), differential scanning calorimetry (DSC), X-ray diffractometer (XRD) and 

scanning electron microscopy (SEM). In FTIR-ATR measurements, with the 

characteristic peaks of neat cyclohexanone formaldehyde resin, Si-O-Si stretch and 

Si-CH3 peaks of PDMS and O-H stretching of structural OH groups and Si-O 

deformation peaks of clay were obtained for nanocomposite resin copolymer 

samples. Methylol bridges, N-H and Si-CH3 bonds of resin copolymer samples 

observed with using 
1
H-NMR spectroscopy. The effect of the clay amount on the 

thermal properties of materials were investigated by DSC. Glass transition 

temperatures (Tg) of resin and resin / clay nanocomposite samples were determined. 

Basal spacing betwen clay sheets in nanocomposites investigated and calculated by 

XRD. Distribution of clay particles in polymeric resin matrix and morphology of 

samples were determined with SEM. 
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 SİKLOHEKZANON FORMALDEHİT REÇİNE / KİL 

NANOKOMPOZİTLERİNİN IN SITU HAZIRLANMASI 

ÖZET 

Nanokompozitler, seçilen bir matris içerisinde nanometre boyutunda parçacıkların 

dağılması ile elde edilirler. Matris seçimi için polimer, seramik, metal gibi bir çok  

malzeme seçilebileceği gibi, matris içerisinde dağılan nanomalzeme de inorganik, 

organik, kristal veya yarı kristal olailir. Kullanılan nano malzemelerin boyutları bir 

boyutlu da olabilir iki veya üç boyutlu da olabilir. Örnek olarak, bu çalışma sırasında 

kullanılan montmorilonit kili tabakalı bir yapıya sahip olup, iki oyutlu bir 

malzemedir. Her bir tabakasının kalınlığı 1-2 nm civarında, uzunluğu ise 100-200 nm 

civarındadır. 

Nano malzemelerin matris içerisinde dağılışlarını etkili bir şekilde yapmak için 

doğru sentez tekniği seçilmelidir. Çeşitli bir çok sentez tekniğinden bahsedilebilir. 

Kompozit malzemeler, in situ interkalatif poimerizasyon, eriyik maddenin katkı 

maddesi ile karıştırılması ve başka bir çok yöntemle hazılanabilir. Bu iki teknik 

birçok araştırmacı tarafından en çok kullanılan nanokompozit hazırlama 

teknikleridir. Özellikler bu çalışmadaki gibi polimer / kil kompozit malzemeleri 

hazırlamak için en çok in situ polimerizasyon tercih edilmektedir. Polimer 

malzemenin kendi elde edilme reaksiyonu gerçekleşirken içerisine eklenen kilin 

homojen dağıtılması ve tabakalar arası mesafenin aralanması sağlanmış olur. 

Polimer / kil nanokompozitlerin, klasik kompozitlerdeki katkı oranına (>50%) 

karşın, çok düşük miktarda tabakalı silikat (1-5%) eklenmesiyle bile, birçok 

özelliklerinde gelişmişlik gözlenir. Klasik kompozitlerin göstermiş olduğu özellikrin 

gelişmişliği çok uzun zamandır bilinmektedir ve bu gelişmişlikler nanokompozitler 

ile daha da arttırılmıştır. Nano kompozitlerin gösterdiği çeşitli özellikler klasik 

kompozitlere kıyasla çok daha fazladır. Bunlar mekanik, termal, optik, elektriksel 

iletkenlik gibi birçok yönde olabilir. Bunun en temel nedeni katkı maddesi olarak 

kullanılan nano malzemelerdeki yüzey alanının hacme olan oranının klasik 

kompositlerdeki katkı malzemelerine oranla çok daha fazla olmasıdır. Bunun doğal 

sonucu olarak katkı maddesi ve matris arasındaki etkileşim çok daha fazla olur.  

Polimer matris olarak poliimidler, poliamidler, çeşitli reçineler ile yapılan bir çok 

çalışma mevcutur. Bu çalışmada polimer malzeme olarak bir ketonik reçine olan 

siklohekzanon formaldehit reçinesi kullanıldı. İçerisinde dağıtılan nano malzeme 

olarak ise bir tabakalı kil olan montmorilonit kullanıldı. Kullanılan kilin en önemli 

özelleği düşük maliyetine rağmen malzemeye vermiş olduğu gelişmişlik derecesidir. 

Tabakalı killer montmorillonit, betonit gibi bir çok madde olabilir. Killer bir çok 

organik zincir molekülleri ile modifiye edilebilirler, bunun neticesinde matris 

içerisinde dağılmaları, kil moleküllerinin matris ile etkileşmelerinin artmasından 

dolayı daha da kolaylaşır. 
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Tabakalı killerin matris içerisinde dağılımı da önemli bir konudur. Nano parçaların, 

killer gibi, aralarındaki etkileşimlerle bir araya gelme eğilimleri vardır ve bu nedenle 

yüksek katılım oranlarında homojen kompozit malzeme elde etmek zordur. Tabakalı 

killerin matris içerisinde dağılımı kil tabakalarının arasındaki mesafenin aralanması 

ile değerlendirilir. Mesafenin doğru polimer seçimi ve değişik yöntemlerle, kil 

modifiye etmek gibi, daha fazla arttırılması mümkündür. Tabakaların aralanması ile 

polimer ile kil tabakalarının etkileşimi daha fazla olacağından özelliklerindeki 

gelişmişlikler giderek artar. Bu aralanma genel olarak üç guruba ayrılabilir. Bunlar, 

kasik kompozit yapıdaki gibi tabakaların çok çok az aralanması, bir diğeri tabakalar 

arası mesafenin ciddi derecede aralanması ve matrisin bu aralanan tabakalar arasına 

yerleşmesi, sonuncusu ise kil tabakalarının birbirlerinden bağımsız olarak yani 

tamamen ayrılarak matris içerisinde dağılması olarak tanımlanabilir. Son bahsedilen 

aralanma miktarına ulaşmak, gerek nano malzemelerin aralarında ki etkileşimlerden 

olsun gerekse yapılarının kararlılığından olsun, kolay değildir. Kil tabakalarının tam 

aralanması gerçekleşmese bile aralarında ki mesafenin olabildiğince arttırılmak 

istenmesi önemlidir. En iyi gelişmiş özellikler bu yapı da gözlemlenmektedir. 

Kilin polimer içerisinde dağılışı sırasında gözlemlenebilecek bir diğer önemli olay 

ise kil nano partiküllerinin bir araya gelerek topaklanma istekleridir. Bu partiküller 

arası etkileşim aslında zayıf iyonik kuvvetlerden ve zayıf Van der Waals 

etkileşimlerinden ileri gelmektedir. Bu etkileşimler zayıf olabilir fakat, 

partiküllerinin boyutlarının çok küçük olması ve yüzey alanlarının bu boyutta çok 

yüksek olması ile birlikte sayıca çok artmakta ve böylece aralarında kuvvetli bir 

etkileşime yol açmaktadır. Bu da kil nano partiküllerinin matris içerisinde bir 

yüzdeyi geçtikten sonra bir araya gelmelerine neden olmaktadır. Bu son derece 

istenmeyen bir durumdur, çünkü malzemenin özelliklerinde gerilemeye neden 

olmaktadır. 

Polimer nano kompozit malzemelerin kullanım alanları olarak uçak, savunma, 

elektronik, ilaç, enerji gibi bir çok alan örnek olarak gösterilebilir. Bu alanlarda ve 

diğer alanlarda polimer nano kompozitlerin kullanımı yapılan çalışmalar ve elde 

edilen bulgular ışığında her geçen gün artmakta ve daha fazla araştırmacının 

dikkatini çekmektedir. Bunun en temel nedeni, tabii ki, zaten kullanılmakta olan 

doğal malzemelerin bulunabilme zorlukları ve bunun hep devam etmesidir. İleride bu 

tip kompozit malzemeleri markette daha sık görmek mümkün olacaktır. 

Ticari reçineler; genellikle katı, düşük molekül ağırlıklı ve kolay işlenebilir 

malzemelerdir. Genellkile selüloz nitrat ve alkid reçineler ile karıştırılarak yüzey 

kaplama uygulamalarında kullanılırlar. Bu reçinelerin en çok yüzey kaplama, vernik, 

mürekkep, tekstil ve kağıt endüstrisinde katkı maddesi olarak kullanılırlar. Önceki 

çalışmalar, ketonik reçinelerin, tek aşamalı in situ modifikasyon ile, 

polidimetilsiloksanlarla kopolimer oluşturabileceğini göstermektedir. Bu çalışmada 

hem modifiye edilmiş hem de edilmemiş reçine içersinde ham kilin dağılımı 

incelendi. 

Bu çalışmada, in situ modifikasyon ile elde edilen siklohekzanon formaldehit reçine 

örnekleri ve bunların nanokompozit formları MMT kilinin (katyon değiştirme 

kapasitesi 80 meq / 100 g olan, ortalama tanecik boyutu 10 µm ve yoğunluğu 2,6 g 

cm
3 

olan montmorillonite) ve amin sonlu polidimetilsiloksanın (bis(3-adminopropyl) 

in situ reaksiyon ortamına bazik ortamda direk reaksiyon ortamına eklenmesi ile elde 

edildi. Kütlece %0.5 ten %3’ e kadar değişik kil oranları denendi. Bu yöntemle 
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polidimetilsiloksan modifiyeli polimer / kil nanokompozitleri bir aşamada 

sentezlenmiş oldu. 

Elde edilen örneklerin karekterizasyonu bir çok spektroskopik, termal vb. yöntem 

kullanılarak yapıldı. Kimyasal yapının tayin edilmesi için fourier dönüşümlü infrared 

spektroskopi (FTIR-ATR) ve nükleer manyetik rezonans spektroskopisi (NMR), 

kullanıldı. Sentezlenen örneklerin termal özelliklerinin belirlenmesi için kademeli 

tarayıcılı kalorimetri (DSC) ve termal gravimetrik analiz (TGA) yöntemleri 

kullanıldı. Morfolojinin daha iyi anlaşılması için sentezlenen örnekler X ışınları 

kırınımı (XRD) ve taramalı elektron mikroskopisi (SEM) ile incelendi.  

FTIR-ATR sonuçları ile siklohekzanon formaldehit reçinesinin karekterisitk pikleri 

rahat bir şekilde gözlemlenebilir. Bunun yanında polidimetilsiloksan modifileli 

siklohekzanon formaldehit reçinesi için Si-O-Si ve Si-CH3 gerilim pikleri 

sentezlenen örneklerde gözlemlendi. Sentezlenen nanokompozit örnekleri 

içerisindeki kil moleküllerinin Si-O deformasyon pikleri, bu örneklerdeki en belirgin 

ve ayırt edici pik olarak gözlemlendi.  

Kimyasal yapının tayini için kullanılan bir diğer yöntem olan 
1
H-NMR spektroskopi 

ile sentezlenen örneklerdeki metilol köprüleri, N-H ve Si-CH3 pikleri gözlemlendi.  

Kilin reçine kopolimer örnekleri içerisindeki dağılımı ile meydana gelen termal 

davranışındaki değişimler DSC ve TGA ile incelendi. Nanokompozitlerdeki camsı 

geçiş sıcakları (Tg), bozunmanın başlama sıcaklğı ve belirli değerlerdeki kalıntı 

miktarları belirlendi. Bu verilerden yola çıkılarak sentezlenen reçine malzemelerinin 

nanokompozit formlarının saf hallerine göre termal olarak daha dayanıklı oldukları 

gözlemlendi.  

Nanokompozitlerdeki kil tabakaları ve tabakaların basal boşluk mesafeleri XRD ile 

incelendi. Bu veriler ışığında kilin tabakalr arası boşluklarının artmış olduğu ve 

yapının istenildiği gibi gerçekleştiği kanıtlandı Kilin polimerik reçine içerisindeki 

homojen dağılımı ve örneklerin morfolojileri SEM ile incelendi. Sentezlenen 

nonaokompozit numunelerindeki kil oranının kütlece %3 olduğu durumlar için kil 

nanoparçacıklarının topaklanması gözlemlendi. 
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1. INTRODUCTION 

Blended organic and inorganic components called hybrid materials, either occurring 

naturally or prepared synthetically, have gained much interest in industry and 

research communities [1-7]. Polymers are commonly used materials and over periods 

of time their applications have increased in our lives. Therefore, it is necessity to 

develop new polymeric materials with improved properties to address the growing 

number of applications. The maximum benefits of nanoscience can be defined by 

developing materials providing multiple advantageous properties and designing such 

materials by incorporating various properties is therefore vital. Polymer 

nanocomposite materials are a particular kind of synthetic hybrid material, which 

shows multiple unique properties [8-18]. To enhance the properties of a polymer, 

fillers are often added to obtain a homogeneous mixture called a composite. If one of 

the dimensions of the filler particles is in the nanometer range then these composite 

materials are termed as polymer nanocomposites. The transition of length scale from 

micrometer to nanometer yields dramatic changes in physical properties as nano 

scale particles have a large surface area for a given volume. Usually fillers used are 

inorganic in nature, and act as reinforcing material. The role of the matrix is to 

adhere and lo bind fillers. The resulting material will have properties which will be a 

combination of the individual properties of polymer and filler particles. The 

properties of polymer nanocomposites depend not only on the properties of 

individual components but also on their morphology and interfacial interactions [19]. 

The effective properties of polymer nanocomposites are dependent on various filler 

properties, such as their size, area, aggregate structure, surface chemistry, and 

interactions with the polymer matrix, all of which will affect the dispersion of inor-

ganic fillers in the polymer matrix. Due to its extreme utility and importance both in 

research and industry, it becomes imperative to understand the relationship between 

the microstructure and the macroscopic properties that are of interest. To achieve 

maximum property enhancement a homogeneous dispersion of nanoscale fillers is 

highly desired [20-21].  
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As a result there is a need to understand the design of nanometer scale architecture 

and factory affecting such structures and how they can affect the final properties of 

materials. Often these improvements in properties may occur at the expense of other 

useful polymeric properties, such as thermal behaviors, mechanical toughness and 

crack resistance. Consequently it is highly desirable to be able to use fillers which 

can improve properties, but not at the cost of polymeric properties.  

It can be said that the smaller the diameter, the greater the surface area per unit 

volume. Particle diameter changing, layer thickness, or fibrous material diameter 

from the micrometer to the nanometer range will affect the surface area-to-volume 

ratio thereby affecting surface interactions and thus final properties [22-26]. 

As a nanoscale material, layered slicate montmorillonite clay was used to obtain 

nanocomposites forms of in situ modified with polydimethylsiloxane cyclohexanone 

formaldehyde resins in this study. Also, samples were studied with using several 

characterization techniques. 
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2. THEORETICAL PART 

2.1. Composites 

The term composite could mean almost anything if taken at face value, since all 

materials are composed of dissimilar subunits if examined at close enough detail. But 

in modern materials engineering, the term usually refers to a matrix material that is 

reinforced with  bers. For instance, the term FRP (for Fiber Reinforced Plastic) 

usually indicates a thermosetting polyester matrix containing glass  bers, and this 

particular composite has the lion's share of today's commercial market [27].  

Composites that forms  heterogeneous structures which meet the requirements of 

specific design and  function, imbued with desired properties which limit the scope 

for classification. However, this lapse is  made up for, by the fact new types of 

composites are being innovated all the time, each with their own  specific purpose 

like the filled, flake, particulate and laminar composites. Fibers or particles 

embedded in matrix of another material would be the best example of modernday  

composite materials, which are mostly structural. 

Composites cannot be made from constituents with  divergent linear expansion 

characteristics. The interface is the area of contact between the reinforcement and the 

matrix materials. In some cases, the  region is a distinct added phase. Whenever there 

is interphase, there has to be two interphases between  each side of the interphase and 

its adjoint constituent. Some composites provide interphases when  surfaces 

dissimilar constituents interact with each other. Choice of fabrication method 

depends on matrix properties and the effect of matrix on properties of 

reinforcements. One of the prime  considerations in the selection and fabrication of 

composites is that the constituents should be  chemically inert non-reactive. 

Classification of matrices could be seen in Figure 2.1. 
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Figure 2.1: Classification of matrices in composite materials. 

2.1.1. Polymer matrix materials 

Polymers make ideal materials as they can be  processed easily, possess lightweight, 

and desirable  mechanical properties. It follows,  therefore, that high temperature  

resins are extensively used in  aeronautical applications. 

Two main kinds of polymers are thermosets and thermoplastics. Thermosets have 

qualities such as a  well-bonded three-dimensional molecular structure after curing. 

They decompose instead of melting on hardening. Merely changing the basic 

composition of the resin is enough to alter the conditions suitably for curing and 

determine its other characteristics. They can be retained in a partially cured condition 

too  over prolonged periods of time, rendering Thermosets very flexible. Thus, they 

are most suited as matrix  bases for advanced conditions fiber reinforced composites. 

Thermosets find wide ranging applications in the chopped fiber composites form 

particularly when a premixed or moulding compound with fibers of  specific quality 

and aspect ratio happens to be starting material as in epoxy, polymer and phenolic  

polyamide resins.  Thermoplastics have one or two dimensional molecular structure 

and they tend to at an elevated temperature and show exaggerated melting point. 

Another advantage is that the process of softening at elevated temperatures can 

reversed to regain its properties during cooling, facilitating applications of  

conventional compress techniques to mould the compounds. 

Resins reinforced with thermoplastics now comprised an emerging group of 

composites. The theme of most experiments in this area to improve the base 
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properties of the resins and extract the greatest  functional advantages from them in 

new avenues, including attempts to replace metals in die-casting  processes. In 

crystalline thermoplastics, the reinforcement affects the morphology to a 

considerable  extent, prompting the reinforcement to empower nucleation. Whenever 

crystalline or amorphous, these resins possess the facility to alter their  creep over an 

extensive range of  temperature. But this range  includes the point at which the usage 

of resins is constrained, and the reinforcement in such systems can  increase the 

failure load as well as creep resistance [28]. 

2.2. Resins 

Most of the commercial resins are generally solid materials with low molecular 

weight. Also they can be processed easily.  These types of resins are mainly used in 

surface coatings, varnishes, inks, textile and paper industries as additive        

materials [29]. 

If we give a defination for resin, according to DIN 55947, resin is the general term 

used technically for solid, hard to soft, organic, noncrystalline products having a 

broader or narrower molecular mass distribution. They normally have a melting or 

softening range, are brittle in the solid state, and then usually show conchoidal (shell-

like) fracture. They have a tendency to flow at room temperature (“cold flow”). 

Resins are in general raw materials, for example for binders, curable moulding 

compositions, adhesives and coatings. 

There are another definations for resins for example, European Standard CEN/TC 

139, a resin is somewhat different and more concise: “A solid, semisolid or liquid 

substance of nonuniform and often high molecular weight, which in the solid state 

usually possesses a softening or melting range and exhibits conchoidal fracture” 

Note: In the broader sense, this expression is used to denote any polymer which 

forms the basis of a thermoplastic. Following agreement, bitumen, grades of pitch, 

gums and waxes are excluded [30]. 

2.2.1. Thermoset resins 

The most common thermosetting resin used today is polyester resin, followed by 

vinyl ester and epoxy. Thermosetting resins are popular because uncured, at room 
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temperature, they are in a liquid state. This allows for convenient impregnation of 

reinforcing fibers such as fiberglass, carbon fiber, or Kevlar. 

A room temperature liquid resin is easy to work with. Laminators can easily remove 

all air during manufacturing, and it also allows the ability to rapidly manufacture 

products using a vacuum or positive pressure pump. (Closed Molds Manufacturing) 

Beyond ease of manufacturing, thermosetting resins can exhibit excellent properties 

at a low raw material cost. 

Properties of thermoset resins includes; Excellent resistance to solvents and 

corrosives, Resistance to heat and high temperature, Fatigue strength, Tailored 

elasticity, Excellent adhesion, Excellent finishing (polishing, painting, etc.) 

In a thermoset resin, the raw uncured resin molecules are crossed linked through a 

catalytic chemical reaction. Through this chemical reaction, most often exothermic, 

the resin creates extremely strong bonds to one another, and the resin changes state 

from a liquid to a solid. 

A thermosetting resin, once catalyzed, it can not be reversed or reformed. Meaning, 

once a thermoset composite is formed, it cannot be remolded or reshaped. Because of 

this, the recycling of thermoset composites is extremely difficult. The thermoset resin 

itself is not recyclable, however, there are a few new companies who have 

successfully removed the resin through pyrolization and are able to reclaim the 

reinforcing fiber. 

2.2.2. Thermoplastic resins 

Thermoplastic polymer resins are extremely common, and we come in contact with 

thermoplastic resins constantly. Thermoplastic resins are most commonly 

unreinforced, meaning, the resin is formed into shapes and have no reinforcement 

providing strength. 

Examples of common thermoplastic resins using today and their applications: 

 PET - Water and soda bottles 

 Polyproplyene - Packaging containers 

 Polycarbonate - Safety glass lenses 

 PBT - Children's Toys 

 Vinyl - Window frames 
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 Polyethlene - Grocery bags 

 PVC - Piping 

 PEI - Airplane armrests 

 Nylon - Footwear 

Many thermoplastic products use short discontinuous fibers as a reinforcement. Most 

commonly fiberglass, but carbon fiber too. This increases the mechanical properties 

and is technically considered a fiber reinforced composite, however, the strength is 

not nearly as comparable to continuous fiber reinforced composites. 

In general, FRP composites refers to the use of reinforcing fibers with a length of ¼" 

or greater. Recently, thermoplastic resins have been used with continuous fiber 

creating structural composite products. There are a few distinct advantages and 

disadvantages thermoplastc composites have against thermoset composites. 

2.2.3. Advantages and disadventageous of thermoplastic resins 

If we mention about two major advantages of thermoplastic resins, the first one is 

that many thermoplastic resins have an increased impact resistance to comparable 

thermoset composites. In some instances, the difference is as high as 10 times the 

impact resistance. 

The other major advantage of thermoplastic composites is the ability reform. See, 

raw thermoplastic composites, at room temperature, are in a solid state. When heat 

and pressure impregnate a reinforcing fiber, a physical change occurs; not a chemical 

reaction as with a thermoset. 

This allows thermoplastic composites to be reformed and reshaped. For example, a 

pultruded thermpostic composite rod could be heated and remolded to have a 

curvature. This is not possible with thermosetting resins. This also allows for the 

recycling of the thermoplastic composite at end of life, in theory, not yet commercial. 

Offcourse there are some disanventegeous of thermoplastic resins, a thermoplastic 

resin is naturally in a solid state, it is much more diffcult to imprenate reinforcing 

fiber. The resin must be heated to the melting point, and pressute is required to 

impregnate fibers, and the composite must then be cooled under this pressure. This is 

complex and far different from traditional thermoset composite manufacturing. 
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Special tooling, technique, and equipment must be used, many of which is expensive. 

This is the major disadvantage of thermoplastic composites. 

Advances in thermoset and thermoplastic technology are happening constantly. 

There is a place and a use for both, and the future of composites does not favor one 

over the other [31].  

2.2.4. Ketone and aldehyde resins 

Ketone and aldehyde resins are obtained by self-condensation or another word 

cocondensation between formaldehyde and aliphatic, cycloaliphatic, aliphatic-

aromatic ketones or respectively aldehydes [32, 33]. In addition, further monomers, 

such as phenols and urea, also play a part. The aromatic hydrocarbon-formaldehyde 

resins are prepared from alkylated aromatic hydrocarbons, formaldehyde and  

sometimes  other monomers.  

Although the resin groups involved have been known for a long time, their chemistry 

and applications remain areas of change even today. The following monomers are 

were given in Figure 2.2. 

The resins are formed by polymerization of the vinyl ketones, giving polymers 

having an alternating structure or by complex condensation reactions of the methylol 

compounds with one another or with further ketone molecules, leading to partially 

branched oligomers. In industrial processes, the two mechanisms usually take place 

alongside one another. Excess formaldehyde may lead to the reduction of the 

carbonyl group-to hydroxyl groups [34]. Provided no substitution is carried out at the 

vinyl group, the polymerization activity of the vinyl ketone intermediate shows little 

dependence on the nature of the ketone employed [35, 36]. The industrial preparation 

of the resins is performed in reactors for condensation reactions, usually in a 

batchwise procedure. 

Ketone and aldehyde resins are employed in a large number of applications. In the 

coatings sector, as with most other applications, the products are used in combination 

with other binders, plasticizers, pigments and auxiliaries. The final formulations include 

marine saints, metal primers and wash primers, powder coatings and roadmarking 

paints. Among inks for printing and other purposes, mention may be made not only of 
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the well-established flexographic and gravure printing inks based on cellulose nitrate 

but also of transfer printing inks, radiation-curable systems and ink-jet inks. The 

ballpoint pastes produced nowadays are primarily based on hydrogenated 

acetophenone-formaldehyde resins. Further important applications are in recording 

and copying technology (toners), printed circuits, adhesives, binders for corrugated 

card, foundry moulding sands and laminates [37]. 
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Figure 2.2: Monomers using in resin synthesis. 

2.2.4.1. Aliphatic and cycloaliphatic ketone resins 

Linear aliphatic ketones like methyl ethyl ketone and acetone are reacted to form 

resins with formaldehyde in particular. In the same way, methyl isobutyl ketone is 
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used to produce resins for adhesives. Higher aliphatic ketones no longer form resins. 

As regards the cycloaliphatic ketones, cyclohexanone and methylcyclohexanone are 

the most important, although cyclopentanone, cycloheptanone and cyclic ketones with 

longer side chains have been described as raw materials for resins. Some of these 

type resins will be illustrated further parts. 

2.2.4.2. Methyl ethyl ketone formaldehyde resins 

These resins are used in particular as binders for coatings and adhesives. They differ 

from resins based on cycloaliphatic or on aliphatic-aromatic ketones in their 

solubility and compatibility with other raw materials used in coatings. Their 

properties derive from the polarity of the ketone and from its specific behaviour 

during the alkaline-catalysed condansation. 

The methyl ethyl ketone-formaldehyde resins possess a slight inherent coloration 

and are soluble in polar solvents such as alcohols, esters, ketones and glycol ethers. 

The resins are strongly polar, hygroscopic and have an oxygen content of from 21 to 

29 per cent by mass. The molar masses are between 3000 and 5000 g/mol, the 

softening range between 80 and 125 °C. 

The resins are prepared by alkaline-catalysed condensation of methyl ethyl ketone 

and formaldehyde in a molar ratio of from 1:2 to 1:2.5 in a batch process, With out 

purification beforehand, the ketone is reacted with formaldehyde in the presence of 

water. NaOH and KOH have proven to be the best catalysts for this reaction. The 

increase in the melting point from 80 to 120 °C can be achieved by raising the 

excess of formaldehyde. High softening points are also obtained by phase transfer 

catalysis. Special waning processes likewise lead to high-melting products which 

are light in colour [38]. 

The resins are often used together with film formers such as cellulose nitrate, 

acetylcellulose, cellulose ethers or natural resins. Among the properties endowed 

are, in partin-lar, hardness, drying, sandability and good light stability. The resins 

possess the capacity to bring about gelatinization of cellulose nitrate. The free 

hydroxyl groups are explore for crosslinking in isocyanate two-pack coatings, in 

adhesives and in moulding sands [39]. 
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2.2.4.3. Acetone formaldehyde resins 

The alkaline-catalysed condensation of acetone and formaldehyde does not give rise 

to any solid synthetic resins which can be used. The substantially greater 

resinification tendency of the unstable methylolation stages of acetone [40, 41] leads 

to a crosslinked, insoluble final structure. However, self-curing precondensates can 

also be prepared, which can be employed alone or in combination with other curable 

precondensates, such as phenol  resols. Water-soluble products are obtained when 

acetone and formaldehyde are reacted in a ratio of 1 to 3 [42]. These products can 

be crosslinked under alkaline conditions [43]. 

Rigid foams are obtained when the methylol compounds are foamed in the presence 

of alkali metal hydroxide, alone or in the presence of elastomer latex. In the 

production of mouldings, sands can be solidified using acetone-formaldehyde 

precondensates. Descriptions have also been given of quick-setting mouldings from 

cement. Acetone-formaldehyde condensation products find a wide variety of uses in 

the adhesive bonding of paper and of wood. In these applications, phenol resols are 

often cocondensed in order to obtain chipboard and wooden materials with 

particular weather resistance  or to provide corrugated card with waterproof 

bonding. Further appli-cations of acetone precondensates are as photoreceptors in 

electrophotography and for the production of additives [44]. 

2.2.4.4. Cyclohexanone resins 

Cyclohexanone and methylcyclohexanone are also capable of self-condensation [45]. 

In this case an aldol condensation takes place between the carbonyl group and the 

activated methylene group of a second molecule. The carbonyl group of the 

intermediates reacts with a further molecule of cyclohexanone; similar reactions 

follow until the final product is formed. The reaction can be catalysed by basic, 

acidic or neutral agents, with potassium methylate being used most often. 

The softening points are between 80 and 120 °C of the light-coloured, neutral resins. 

Under normal conditions the resins are resistant to acids and bases. But, under the 

action of acid they eliminate water at elevated temperatures (>80°C), and their 

properties are altered substantially. The cyclohexanone resins are lightfast, soluble 
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in many solvents and compatible with the majority of raw materials. They are more 

expensive than cyclohexanone-formaldehyde resins. 

In coating materials, the primary functions of cyclohexanone resins are to improve 

full-ness, gloss and hardness. They may also increase the lightfastness and weather 

resistance and the adhesion. The resins are added in quantities of from 5 to 50 per 

cent by mass (based on the film former) to coating materials based on alkyd resins, 

vinyl chloride copolymers, chlorinated rubber, cellulose nitrate or oils. Their use as 

a carrier resin for pigment preparations has also been described. Reduction and 

partial esterification are possible ways to improve stability and flexibility. 

LaropalK80 (BASF) is an commercial product of an cyclohexanone resin [44, 46]. 

2.2.4.5. Cyclohexanone formaldehyde resins 

Cyclohexanone can be reacted with aldehydes, especially formaldehyde, to give 

methylol compounds or resinous products. In this case it is the molar ratio and the 

reaction conditions which determine the properties of the end products. A high 

formaldehyde excess promotes the formation of methylol compounds, whereas basic 

catalysis leads to resin formation [45].  

Higher aldehydes can likewise be used to produce resins, but have not found any 

industrial significance. On the other hand, methylcyclohexanone or mixtures with 

aliphatic ketones and, more recently, trimethylcy-clohexanone have been employed. 

The modification of the resins with phenols, epoxides, polyesters and 

sulphonamides is known. Small beads are obtained by addition of dispersants. The 

continuous preparation process has been described . Hydrogenation and treatment 

with reducing agents are ways in which the light stability can be increased. 

Cyclohexanone-formaldehyde resins do not have the broad compatibility and 

solubility of the pure cyclohexanone resins. However, they are less expensive while 

being of ade-quate light stability. Although they can no longer be combined with 

oils, combination with a range of important paint binders is possible. The use of 

methylcyclo-hexanone as a raw material usually leads to enhanced solubility and 

compatibility. By using trimethylcyclohexanone, resins can be obtained whose 

compatibility and solubility are virtually universal. 
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A reaction which has become important for the industrial production of the resin is 

the condensation of cyclohexanone with formaldehyde in the presence of alkalis.  

In many cases, the resins are used in order to improve drying, hardness, fullness, 

gloss and solids content. In coatings they are used in every case only as an 

accompaniment it other binders, for example in alkyd/acrylic coating materials, 

cement paints. Epoxy resin systems and marine paints. In addition to conventional 

printing ink, UV-curing printing inks also play an increasing role. A further 

principal area of application is represented by adhesives and sealing compound. 

Another application which has been described is in optical recording media. The 

broad compatibility of resins based on trimethylcyclohexanone makes them ideally 

used to use in pigment pastes capable of universal application. Some examples of 

commmercial resins are Kunstharz AFS  (Bayer), Kunstharz CA (Hills), Kunstharz 

EP (Hiils),Krumbhaar-Types (Lawter) and MR85 (A.O. Polymers) [46]. 

All the resins mentioned can be modified with many molecules for different 

purposes. Cyclohexanone-formaldehyde resins was in situ modified with using 

methyl isobutyl ketone, methyl ethyl ketone, methyl cyclohexanone, acetaldehyde, 

propion-aldehyde, cinnamaldehyde, dicynadiamide, arninotriazine and phenol     

[47, 48]. Alo siloxane-containing block copolymers were invetigated and reported. 

Many types of cyclohexanone-formaldehyde block copolymers with poly-siloxanes 

and their unique properties was reported [29, 49]. 

2.3. Nanocomposites 

The term "nanocomposites" is a relatively new one in material science and is used to 

refer to a combination of two or more phases, where at least one dimension is in the 

nanometer size range. The parent phases may be inorganic, organic, or both, and may 

be amorphous, crystalline or semicrystalline. These types of materials are expected to 

exhibit new and improved catalytic, electronic, magnetic, and optical properties 

relative to both the parent phases and their corresponding micro- or 

macrocomposites. This synergistic behavior is a consequence of their ultrafine sizes 

and the existence of intra- or interphasic interactions [50]. 

Layered silicate-based polymer nanocomposites have demonstrated a significant 

potential to become the basis for development of the next generation of enhanced 
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performance polymer compounds. Incorporation of only a small loading (1 to 5%) of 

properly treated, well dispersed/exfoliated organoclay into the base polymer results 

in a compound with a substantial improvement in thermal, mechanical, as well as 

other physical properties over those of the base polymer. Until q, most development 

efforts have focused on determining proper surface treatment to make the clay 

compatible with the base polymer and therefore improve the ease with which it can 

be dispersed in the polymer. Most publications still concentrate on the importance of 

the chemistry used to modify the surface of the clay. They provide a description of 

resultant product properties but do not include the role of processing or give details 

of the compounding setup. Therefore, the key challenge facing many new entrants 

into the field is to determine how to maximize the clay exfoliation. Of course, using 

clay modified specifically for compatibility with the polymer matrix is extremely 

important; however, proper design and operation of the  compounding system is 

equally critical [51]. 

Interest in nano-particle-based polymer composites has expanded significantly since 

the late 1980s when the patent of Okada et al. (assigned to Kabushiki Kaisha Toyota 

Chou Kenkyusho) for in situ polymerization of a Nylon 6/clay nanocomposite with, 

as stated in claim, “high mechanical strength and excellent high-temperature 

characteristics” was issued. The results presented in the patent show that polymer 

nancomposites based on layered silicates provide a significant potential for 

development of a wide range of enhanced performance polymer compounds. As 

demonstrated by several researchers, a relatively small loading of properly dispersed 

(well-exfoliated) organoclay provides a substantial improvement in a polymer’s 

properties. These include improved thermal properties such as heat distortion 

temperature (HDT), mechanical properties such as flexural strength and modulus 

(without significant loss of impact), barrier properties, flame resistance, and abrasion 

resistance. However, until the early to mid 2000s, there were few commercial 

materials. Those in the market were mostly based on Nylon 6, and were for niche 

market applications. The reason for this, at least in part, is that many of the initial 

composites, such as the Toyota material previously noted, were developed using 

direct polymerization of a monomer clay mixture. While this method is suitable for 

certain polymers such as Polyamide 6, the complexity and expense of building a 

production facility limits entry of many smaller firms into the market   [52-56]. 
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2.3.1. Polymer / clay nanocomposites 

Polymer nanocomposites are defined as polymers with nanometric fillers. The 

nanometric fillers are 1-100nm in size. Common polymer host matrices are nylon, 

polyepoxides, PDMS, LDPE, XLPE, PMMA, etc. Common inorganic filler particle 

candidates include MMT, TiO2, ZnO, SiO2, etc. An ideal nanocomposite should be 

free of any agglomerates and contain optimum filler content. 

There are various methods to mix the polymer and filler particles. For thermoplastic 

polymers, such as polyethylene, filler particles are typically mixed into the polymer 

during melt mixing. For thermoset polymers, particles are normally added before or 

during polymerization. However, it is often very difficult to disperse nanoparticles 

well in polymers especially at a commercial production scale. Nanometric filler 

particles with high surface energy tend to agglomerate. In addition, hydrophilic 

nanoparticles and hydrophobic polymers are not compatible in nature. All these 

could affect particle dispersion in the polymer matrix and thus result in poor 

interfacial interaction [57, 58]. 

Conventional polymer composites are widely used in diverse applications, such as 

construction, transportation, electronics, and consumer products. Composites offer 

improvedproperties, including higher strength and stiffness, compared to pristine 

polymers. The properties of polymer composites are greatly affected by the 

dimension and microstructure of the dispersed phase. Nanocomposites are a new 

class of composites that have a dispersed phase with at least one ultrafine dimension, 

typically a few nanometers [59-61]. Nanocomposites possess special properties not 

shared by conventional composites, due primarily to large interfacial area per unit 

volume or weight of the dispersed phase (e.g., 750 m
2
/g). Clay layers dispersed at the 

nanoscale in a polymer matrix act as a reinforcing phase to form polymer clay 

nanocomposites, an important class of organic/inorganic nanocomposites. 

These nanocomposites are also referred to as polymer–silicate nanocomposites and 

organic/inorganic hybrids. Polymer/clay nanocomposites can drastically improve 

mechanical reinforcement and high-temperature durability, provide enhanced barrier 

properties, and reduce flammability [62-64]. Clays that have a high aspect ratio of 

silicate nanolayers are desirable for polymer reinforcement. Montmorillonite filled 
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polymers are enjoying renewed interest, following publications of Toyota on nylon-

clay nanocomposites [65, 66]. 

Colloid and surface chemistry play important roles in the synthesis of polymer/clay 

nanocomposites. Dispersion of clay layers in polymers is hindered by the inherent 

tendency to form face-to-face stacks in agglomerated tactoids due to high interlayer 

cohesive energy. Nanoscale dispersion of the clay tactoids into individual nanolayers 

is known as exfoliation or delamination. Exfoliation is further prevented by the 

incompatibility between hydrophilic clay and hydrophobic polymers. Treatment or 

functionalization of clay by adsorption of organic molecules weakens the interlayer 

cohesive energy. Intercalation, i.e., penetration of organic molecules into the clay 

interlayers, increases the compatibility between clay and polymer matrix. Due to the 

negative charge on the clay surface, cationic surfactants and polymers are commonly 

used for intercalation. The ion exchange of inorganic cations in clay galleries by 

organic cations renders the clay organophilic. Such organoclays have found large-

scale applications for decades in cosmetics, drilling mud, paints, coatings, inks, and 

wastewater treatmen. There is a growing interest in the surface chemistry of clays in 

pursuit of nanocomposite synthesis using specific monomers, prepolymers, and 

polymer melts [67]. 

2.3.2. Resin / clay nanocomposities 

Contemporarily there are many types of resin/clay nanocomposites and it’s still 

progressing day by day. The major types of resin/clay nanocomposites were 

elucidated below. 

2.3.2.1. Epoxy resin nanocomposites 

Clay mineral fillers, used for preparing nanocomposites based on epoxy matrices 

include layered double hydroxides, micas, and smectites. The common method used 

to obtain epoxy resin/ clay minera nanocomposites is in-situ intercalative 

polymerization, based on dispersion of the clay within the epoxy resin followed by 

the addition of the hardener and subsequent curing. Studies on epoxy 

resin/montmorillonite nanocomposites were carried out with various types of epoxy 

resins, hardeners and systems with both exfoliated and intercalated particles were 

presented [68]. 
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Last studies shows that organicaly modified clay reinforcement epoxy resins shows 

enhanced properties like elastic modulus, tensile strength, and impact toughness   

[69-71]. 

2.3.2.2. Phenolic resin nanocomposites 

Phenolic resins, also called phenolic plastics or phenoplasts, were among the first 

synthetic resins composed by deliberate synthesis anda re therefore among the 

earliest synthetic binders of any kind. Consequently, it is hardly surprising that the 

reaction mechanisms in the synthesis of these resins and their reactions with other 

substances have been the subject of particularly intense study. 

Phenolic resins are produced by the reaction of phenol with aldehyde and are 

classified as resol and novolac by synthetic conditions and curing mechanism. It is 

very difficult to synthesize a phenolic resin/layered silicate nanocomposite, since 

phenolic resin has threedimensional structure, even if it is not cross-linked [72]. 

Usuki et al. [73] tried to synthesize phenolic resin/layered silicate nanocomposite by 

intercalative polymerization of phenolic resin with phenol and formaldehyde in the 

presence of oxalic acid and montmorillonite modified with 4-aminophenol 

hydrochloride. Resol type phenolic resins was not studied in the polymer/layered 

silicate nanocomposite field because of difficulty in making linear resol type 

phenolic oligomers at the time. 

Choi et al. [74, 75] synthesized phenolic resin/ layered silicate nanocomposites by 

the melt intercalation of linear novolac with intercalated or exfoliated nanostructures 

by melt intercalation using linear novolac.  

Kızılcan et al. [76] synthesized phenolic resin/layered silicate nanocomposites by in 

situ technic with direct addition of DH.PDMS and pristine clay molecules and 

achived better thermal and mechanical properties. Nanocomposites were obtained 

which can be used for thermal insulation materials, coatings, molding compounds 

and aerospace components. 

2.3.2.3. Urea formaldehyde resin nanocomposites 

Urea formaldehyde resins are the products of condensation reaction of formaldehyde 

with urea containing two amine groups, under basic or acid conditions. Urea 

formaldehyde resins are the most prominent examples of the class of surface-coating 
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thermosetting resins usually referred to as amino resins. The excellent color 

retention, hardness, and chemical resistance of the urea formaldehyde resins are 

transmitted to the coating system [77].  

Lei et al. [78] reported that the addition of small percentages of Na+-montmorillonite 

(NaMMT) nanoclay appears to considerably improve the performance of 

thermosetting urea formaldehyde (UF) resins used as adhesives for plywood and for 

wood particleboard. The influence of NaMMT addition was particularly noted in 

plywood by the increase in water resistance of the UF-bonded panel. 

Kızılcan et al. [79] reported that Tg-Tm region of some nanocomposites is enhanced 

and by assessing the results of hardness measurements, it is concluded that these 

samples have further improved mechanical properties as a coating material than urea 

formaldehyde resin have. 

2.3.3. Nanocomposite preparation 

Several strategies have been considered to prepare polymer-layered silicate 

nanocomposites. 

They include four main processes [80]: 

a) In situ intercalative polymerization: In this technique, the layered silicate is 

swollen within the liquid monomer (or a monomer solution) so as the polymer 

formation can occur in between the intercalated sheets. Polymerization can be 

initiated either by heat or radiation, by the diffusion of a suitable initiator or by an 

organic initiator or catalyst fixed through cationic exchange inside the interlayer 

before the swelling step by the monomer. 

b) Exfoliation adsorption: The layered silicate is exfoliated into single layers using a 

solvent in which the polymer (or a prepolymer in case of insoluble polymers such as 

polyimide) is soluble. It is well known that such layered silicates, owing to the weak 

forces that stack the layers together can be easily dispersed in an adequate solvent. 

The polymer then adsorbs onto the delaminated sheets and when the solvent is 

evaporated (or the mixture precipitated), the sheets reassemble, sandwiching the 

polymer to form, in the best case, an ordered multilayer structure. Under this process 

are also gathered the nanocomposites obtained through emulsion polymerization 

where the layered silicate is dispersed in the aqueous phase. 
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c) Melt intercalation: The layered silicate is mixed with the polymer matrix in the 

molten state. Under these conditions and if the layer surfaces are sufficiently 

compatible with the chosen polymer, the polymer can crawl into the interlayer space 

and form either an intercalated or an exfoliated nanocomposite. In this technique, no 

solvent is required. 

d) Template synthesis: This technique, where the silicates are formed in situ in an 

aqueous solution containing the polymer and the silicate building blocks has been 

widely used for the synthesis of double-layer hydroxide-based nanocomposites but is 

far less developed for layered silicates. In this technique, based on self-assembly 

forces, the polymer aids the nucleation and growth of the inorganic host crystals and 

gets trapped within the layers as they grow.  

2.3.4. Nanoparticle dispersion in polymers 

There are three main dispersion way for nanoparticles in polymers [81, 82]. These 

are non-intercalated, intercalated and exfoliated which is illustrated in Figure 2.3. 

 

Figure 2.3: Dispersion of nanoparticles in polymers [81, 82]. 

a) Non-intercalated: In this case, the clay tactoids are dispersed simply as a 

segregated phase, resulting in poor mechanical properties of the composite. When the 

polymer is unable to intercalate between the silicate sheets, a phase separated 

composite is obtained, whose properties stay in the same range as traditional 

microcomposites. 
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b) Intercalated: In intercalated nanocomposites, the insertion of a polymer matrix 

into the layered silicate structure occurs in a crystallographically regular fashion, 

regardless of the clay to polymer ratio. Intercalated nanocomposites are normally 

interlayer by a few molecular layers of polymer. Properties of the composites 

typically resemble those of ceramic materials. 

c) Exfoliated: When the silicate layers are completely and uniformly dispersed in a 

continuous polymer matrix, an exfoliated or delaminated structure is obtained. In an 

exfoliated nanocomposite, the individual clay layers are separated in a continuous 

polymer matrix by an average distances that depends on clay loading. Usually, the 

clay content of an exfoliated nanocomposite is much lower than that of an 

intercalated nanocomposite. Exfoliation is particularly desirable for improving 

specific properties that are affected by the degree of dispersion and resulting 

interfacial area between polymer and clay nanolayers. 

Homogeneous dispersion of clay nanolayers in a polymer matrix provides maximum 

reinforcement via distribution of stress and deflection of cracks resulting from an 

applied load. Interactions between exfoliated nanolayers with large interfacial area 

and surrounding polymer matrix lead to higher tensile strength, modulus, and thermal 

stability. Conventional polymer–filler composites containing micron-size aggregated 

tactoids also improve stiffness, but at the expense of strength, elongation, and 

toughness. However, exfoliated clay nanocomposites of Nylon-6 and epoxy have 

shown improvements in all aspects of thermomechanical behavior. Exfoliation of 

silicate nanolayers with high aspect ratio also provides other performance 

enhancements that are not achievable with conventional particulate composites. The 

impermeable clay nanolayers provide a tortuous pathway for a permeant to diffuse 

through the nanocomposite. The hindered diffusion in nanocomposites leads to 

enhanced barrier property, reduced swelling by solvent, and improvements in 

chemical stability and flame retardance [83]. 

2.3.5. Montmorillonite 

For preparing polymer–clay nanocomposites, commonly using clays are belong to 

the 2:1 layered structure type. A member of the 2:1 family, montmorillonite is one of 

the most interesting and widely investigated clays for polymer nanocomposites. The 

structure of montmorillonite consists of layers made up of one octahedral alumina 
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sheet sandwiched between two tetrahedral silica sheets, as shown in Figure 2.4. 

Stacking of the silicate layers leads to a regular van der Waals gap between the 

layers. Approximately one in six of the aluminum ions in the octahedral layers of 

montmorillonite is isomorphously substituted by magnesium or other divalent ions. 

The isomorphic substitution renders negative charges that are counterbalanced by 

cations residing in the interlayer. Pristine clay usually contains hydrated inorganic 

cations such as Na
+
, K

+
, and Ca

+2
. When the inorganic cations are exchanged by 

organic cations, such as from surfactants and polyelectrolytes, the clay surface  

changes from hydrophilic to hydrophobic or organophilic. The organic cations lower 

the surface energy and decrease the cohesive energy by expanding the interlayer 

distance, thus facilitating the wetting and intercalation of monomer or polymer. In 

addition, the organic cations may contain various functional groups that react with 

monomer or polymer resin to improve interfacial adhesion between clay nanolayers 

and polymer matrix [84]. 

 

Figure 2.4: Montmorilloite stracture T: Tetrahedral sheet; O: Octahedral sheet [84]. 

2.2.6. Agglomeration of nanoparticles in polymer matrix 

Aggregates are particles combined by covalent bonds. Agglomerates are particles 

held together by van der Waals attraction and polar bonds. However, the literature is 

very large and often uses contradictory terminology. Prior to establishing the above 

terminology, the term “aggregation” was used to include gelling, coagulation, 

flocculation, and coacervation (liquid precipitation). Small particles tend to 

agglomerate. This is due to inter-particle attractive forces. As the particle sizes 

decrease, the surface area becomes large relative to mass. The large surface areas 



22 

include agglomeration. This tendency is much greater for polar particles such as 

oxides (SiO2, TiO2, etc.) and carbonates (CaCO3) than for nonpolar particles such as 

carbon black. When polar particles are suspended in polar media containing ions, 

they tend to accumulate ions on their surfaces, making them electrically charged. At 

the negative charged colloidal particle surface, counter-ions accumulate and form an 

electrical doublelayer, called the Stern layer and the diffuse layer. The electrostatic 

potential is highest at the particle surface and decreases as distance from it increases. 

Charged particles with counter-ions repel each other, while uncharged particles 

attract each [85]. 
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3. EXPERIMANTAL PART  

3.1. Materials 

Cyclohexanone and formaldehyde solution (37%) were supplied by Riedel-de Haen 

and LAB-SCAN respectively for synthesis of cyclohexanone formaldehyde resin.  

Sodium hydroxide pellets were supplied by Riedel-de Haen.  The nanofiller, sodium-

montmorillonite (MMT) (Nanofil 757) was used from Süd-Chemie (Switzerland). It 

is a highly purified natural sodium montmorillonite with cation-exchange capacity of 

80 meq/100 g,m medium particle size as  <10 μm, and bulk density of approximately 

2.6 g cm
-3

. ,- diamine poly(dimethylsiloxane) (DA.PDMS) was the product of 

Sigma-Aldrich (Germany).  Molecular weight of DA.PDMS was 100080.  

3.2. Synthesis of Cyclohexanone Formaldehyde Resin (CFR) 

98 g (1 mol) of cyclohexanone, 25 ml of cyclohexane and 30 ml of 37% formalin 

were put into a three-necked flask equipped with a stirrer and a condenser.  When the 

temperature of the mixture was raised to 70-80 
o
C, refluxing started, subsequently, 

100 ml of 37% formaline was added.   As a catalyst NaOH solution (20 wt%) was 

used.  The reaction was further continued under pH values of 11-12 for 5h.   After 

reaction time was completed, two layers were formed.  The resin was separated and 

purified by decanting the water layer and washed several times with warm water 

until it was free from then it was dried at 100
o
C in vacuumed oven. 

3.3. Synthesis of DA.PDMS Modified Cyclohexanone Formaldehyde Resin 

(DA.PDMS-CFR) 

98 g (1 mol) of cyclohexanone, 25 ml of cyclohexane, 30 ml of 37% formalin and 2 

wt% of DA.PDMS were put into a three-necked flask equipped with a stirrer and a 

condenser.  When the temperature of the mixture was raised to 70-80 
o
C, refluxing 

started, subsequently, 100 ml of 37% formaline was added.   The reaction was further 

continued under pH values of 11-12 for 5h.   After reaction time was completed, two 
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layers were formed.  The resin was separated and purified by decanting the water 

layer and washed several times with warm water until it was free from, then it was 

dried at 100
o
C in vacuumed oven. 

3.4. Synthesis of Layered Clay Nanocomposites of Cyclohexanone 

Formaldehyde Resin Samles (LC-CFR) 

LC-CFR samples were synthesized in initially fed four different clay contents of 

several weight fractions (0,5 wt%, 1 wt%, 1,5 wt%, 3 wt%).  Unmodified 

montmorillonite (pristine) clay was used to prepare resin/clay nanocomposites. 98 g 

(1 mol) of cyclohexanone, 25 ml of cyclohexane, 30 ml of 37% formalin and desired 

clay content were put into a three-necked flask equipped with a stirrer and a 

condenser.  When the temperature of the mixture was raised to 70-80 
o
C, refluxing 

started, subsequently, 100 ml of 37% formaline was added.  As a catalyst NaOH 

solution (20 wt%) was used. The reaction was further continued under pH values of 

11-12 for 5h.  After reaction time was completed, two layers were formed.  The resin 

was separated and purified by decanting the water layer and washed several times 

with warm water until it was free from, then it was dried at 100
o
C in vacuumed oven. 

Final samples were named with reference to their clay contents.  Clay contents of 

resin samples are given below on the Table 3.1. 

Table 3.1: Contens of LC-CRF nanocomposite samples. 

Resins 
Clay content 

wt% 
C:F molar ratio 

LC-CFR1 0,5 1:1.6 

LC-CFR2 1 1:1.6 

LC-CFR3 1,5 1:1.6 

LC-CFR4 3 1:1.6 

3.5. Synthesis of DA.PDMS Modified Layered Clay Nanocomposites of 

Cyclohexanone Formaldehyde Resin (DA.PDMS-LC-CFR) 

DA.PDMS-LC-CFR samples were synthesized in four different initial feed clay 

contents by weight (0,5 wt%, 1 wt%, 1,5 wt%, 3 wt%).  Unmodified montmorillonite 

clay was used to prepare resin/clay nanocomposites. 98 g (1 mol) of cyclohexanone, 
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25 ml of cyclohexane,  30 ml of 37% formalin, 2 wt% of DA.PDMS and desired clay 

content were put into a three-necked flask equipped with a stirrer and a condenser.  

When the temperature of the mixture was raised to 70-80 
o
C, refluxing started, 

subsequently, 100 ml of 37% formaline was added.  As a catalyst NaOH solution (20 

wt%) was used.  The reaction was further continued under pH values of 11-12 for 5h.  

After reaction time was completed, two layers were formed.  The resin was separated 

and purified by decanting the water layer and washed several times with warm water 

until it was free from, then it was dried at 100
o
C in vacuumed.  Final samples named 

with reference to their clay contents. Clay and PDMS contents of resin samples are 

given below on the Table 3.2. 

Table 3.2: Contens of DA.PDMS-LC-CRF nanocomposite samples. 

Resin Sample 
Clay content 

wt% 

DA.PDMS 

content wt% 
C:F molar ratio  

DA.PDMS-LC-CFR1 0,5 2 1:1.6 

DA.PDMS-LC-CFR2 1 2 1:1.6 

DA.PDMS-LC-CFR3 1,5 2 1:1.6 

DA.PDMS-LC-CFR4 3 2 1:1.6 

3.6. Characterization of CFR, DA.PDMS-CFR, LC-CFR and DAPDMS-LC-

CFR Samples 

FT-IR spectra was measured using model recorded Perkin-Elmer Spectrum One FT-

IR (ATR sampling accessory) spectrophotometer, directly from the sample without 

help of the KBr discs.   

1
H-NMR data were obtained from a Varian (AC 500 MHz, Germany) spectrometer, 

using CD2Cl2 as solvent and TMS as internal reference. 

DSC thermograms were obtained by using Perkin-Elmer DSC-6 instrument (USA); 

the heating rate was 10 
 
°C/min starting from 30 °C under a nitrogen atmosphere. 

TGA was carried out in nitrogen atmosphere at a heating rate 10 °C/min up to 800 °C 

temperature by Perkin-Elmer Pyris 1.  Weight loss (%) of samples was calculated at 

temperature range 20-760 °C. 

XRD results were obtained by using Rigaku  D/Max-Ultima+/PC XRD instrument. 

Scanning rate was 10
o
 to 70

o
. 
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Morphology of products was examined by scanning electron microscope, ESEM 

XL30 ESEM-FEG Philips and the samples for the SEM measurement are prepared 

by gold coating. 
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4. RESULT AND DISCUSSION  

4.1. Reaction Mechanism and Characterization of CFR 

The formation of CF resin starts with an aldol-like reaction. Reaction follows a base 

catalyzed elimination reaction of water from methylol derivatives of cyclohexanone 

[86, 87]. Then methylol derivatives of cylohexanones are joining together and 

polymerizing with monomers in the reaction media. The final product, CF resin, is 

obtained with the polymerization between them. The figure of the reaction 

mechanism illustrated below. 
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Figure 4.1: Reaction mechanism of CFR. 
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4.1.1. 
1
H-NMR spectroscopy of CFR 

The 
1
H-NMR spectra were recorded from the deutareted solvent solution which is 

CD2Cl2. In Figure 4.2, the peaks were appeared at about 1.1 – 2.4 ppm were due to 

the aliphatic -CH2 and –CH groups, 3.2 – 4.2 ppm due to the –CH2 methylen bridges 

and methyl groups, 4.5 – 4.8 ppm due to the –OH groups of the methyl groups [88].  

 

Figure 4.2: 
1
H-NMR spectrum of CFR. 

4.1.2. FTIR-ATR spectroscopy of CFR 

According to the previous studies, characteristric peaks of cyclohexanone 

formaldehyde resin are 3400 cm
-1

, 2920 cm
-1

, 1700 cm
-1

 and  1450 cm
-1

 [78, 89]. 

In this study, these charectristic peaks were observed at 3399 cm
-1

, 2925 cm
-1

, 1699 

cm
-1

 and 1445 cm
-1

.
 
These peaks respectively attributed to hydroxy methyl groups, 

aliphatic –CH2, carbonyl C=O, and –CH2 methylene bridges. Also between 970-1200 
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cm
-1 

three main peaks were observed which belongs to the C-O stretch between 

methylne bridges and cyclohexanone ring. The spectrum of the synthesized pure 

resin was given in the Figure 4.3. These charecteristic wavelenghts of the pure CF 

resin and observed wavelenghts of the pure CF resin were given in the Table 4.1.  

 

Figure 4.3: FTIR spectrum of CFR. 

Table 4.1: Characteristic  literature  wavenumber  values and observed  wavenumber 

values of of CFR. 

CFR 

Literature 

wavenumber values, 

cm
-1

 

Observed 

wavenumber values, 

cm
-1

 

Functional group 

3400 3399 -OH 

2920 2925 Aliphatic –CH2 

1700 1699 Carbonyl C=O 

1450 1445 
–CH2 methylene 

bridge  

4.1.3. DSC thermal analysis of CFR 

DSC results of CFR was operated with one cycle. The cycle was heated 30
o
C to 300

o
 

with 10
o
/min heating rate. In the literature Tg value of CFR is about 30

o
C [90]. In this 

study, as it is seen in the Figure 4.4, Tg value of CFR was determined as 45
 o
C. 
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Figure 4.4: DSC thermogram of CFR. 

4.2. Reaction Mechanism and Characterization of DA.PDMS-CFR 

The formation of DA.PDMS-CFR resin starts with an aldol-like reaction. Reaction 

follows a base-catalyzed elimination reaction of water from methylol derivatives of 

cyclohexanone. As a result of the reaction between formaldehyde and amine chain 

ended PDMS (bis(3-adminopropyl) terminated), dimethylol PDMS molecules is 

occured. Then methylol derivatives of cylohexanones are joining together and 

polymerizing with monomers and dimethylol PDMS molecules in the reaction 

media. The final product, DA.PDMS-CF resin, is obtained with the polymerization 

between them. Diamine polydimethylsiloxanes with an amine chain end probably 

acted as an amine component of the Mannich type reaction under the conditions of 

the resin preparation. Because the molar ratio of formaldehyde to amine was rather 

high, each -NH2 groups should have reacted with 2 mol of formaldehyde and 2 mol 

of ketones. The intermediate formed from aldol-like reactions and Mannich type 

reactions combined by the effect of the base catalyst to form modified resin similar 

to base-catalyzed ketonic resin formation [29, 91]. The figure of the reaction 

mechanism illustrated on Figure 4.5. 
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 Figure 4.5: Reaction mechanism of DA.PDMS-CFR. 

4.2.1. 
1
H-NMR spectroscopy of DA.PDMS-CFR 

The 
1
H-NMR spectra were recorded from the deutareted solvent solution which is 

CD2Cl2. In Figure 4.6, the peaks were appeared at about 1.1 – 2.4 ppm were due to 

the aliphatic -CH2 and –CH groups, 3.2 – 4.2 ppm due to the –CH2 methylen bridges 

and methyl groups, 4.5 – 4.8 ppm due to the –OH groups of the methyl groups [88].  

The peaks are appearing at about 0.05– 0.1 ppm due to –Si-CH2 and Si-CH3 groups, 

0.9 – 1 ppm due to –NH groups because of DA.PDMS [29]. 
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Figure 4.6: 
1
H-NMR spectrum of DA.PDMS-CFR. 

4.2.2. FTIR-ATR spectroscopy of DA.PDMS-CFR 

Previously, characteristric peaks of cyclohexanone formaldehyde resin were 

mentioned. When examining the DA.PDMS-CFR, in addition of the CFR, 860-

760cm
-1

 peaks and increase in absorbance level at 1000-1100 cm
-1

 were observed. 

These peaks respectively belong to Si-CH3 groups and Si-O-Si groups [29]. Because 

of -CH vibrations between 1150-750 cm
-1

, these Si-CH3 and Si-O-Si vibrations are 

barely noticeably on the spectrum, but the intensity is getting stronger with addition 

of DA.PDMS to the samples. 

 

Figure 4.7: FTIR spectrum of DA.PDMS-CFR. 
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In this study, charectristic peaks were observed at 3392 cm
-1

, 2926 cm
-1

, 1698 cm
-1

, 

1445 cm
-1

 1043 cm
-1 

and 868 cm
-1

. These peaks respectively attributed to hydroxy 

methyl groups, aliphatic -CH2, carbonyl C=O, -CH2 methylene bridge, Si-O-Si 

groups and Si-CH3 groups. The spectrum of the synthesized DA.PDMS-CFR was 

given in the Figure 4.7. These charecteristic wavelenghts of the DA.PDMS-CFR and 

observed wavelenghts of the pure DA.PDMS-CFR were given in the Table 4.2. 

Table 4.2: Characteristic  literature  wavenumber  values  of  DA.PDMS-CFR  and 

observed wavenumber values of DA.PDMS-CFR. 

DA.PDMS-CFR 

Literature 

wavenumber values, 

cm
-1

 

Observed 

wavenumber values, 

cm
-1

 

Functional group 

3400 3392 -OH 

2920 2926 Aliphatic –CH2 

1700 1698 Carbonyl C=O 

1450 1445 
Methylene bridge  

–CH2  

1000-1100 1043 Si-O-Si groups 

860-800 868 Si-CH3 groups 

 

4.2.3. DSC thermal analysis of DA.PDMS-CFR 

DSC results of DA.PDMS-CFR was operated with one cycle. The cycle was heated 

30
o
C to 300

o
 with 10

o
/min heating rate. As it was seen in the Figure 4.8,  it is realized 

that, Tg value of DA.PDMS-CFR is higher than the pure CFR and it was determined 

as 68
o
. 
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Figure 4.8: DSC thermogram of DA.PDMS-CFR. 

4.3. Characterization of MMT Clay 

4.3.1. FTIR-ATR spectroscopy of MMT clay 

As it is seen in the Figure 4.9, characteristic peaks of MMT clay was observed at 

3635 cm
-1

, 1631 cm
-1

, 992 cm
-1

, 795 cm
-1

 and 764 cm
-1

. According to the literature 

[92-94], these peaks attributed to O-H stretching vibration of structural -OH, bending 

vibration of -OH in water (moisture), streching of  Si-O-Si bonds and final two peaks 

attributed to deformation of  Si-O-Si bonds. 

 

Figure 4.9: FTIR spectrum of MMT clay. 
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4.3.2. XRD analysis of MMT clay 

By using Bragg equation, the distances between clay sheets of neat clay and 

resin/clay nanocomposites are calculated from their XRD test results. Wavelenght of 

radiation (λ) used was 0,7698 Å.   

Bragg equation: λ = 2d sinθ 

As it is seen in the equation, if 2θ values (diffraction angles) would be put into the 

equation to their positions, the distances (d) between sheets of clays (d001 spacings, 

basal spacings) can be calculated easily. 

 

Figure 4.10: XRD pattern of MMT clay. 

As it seen in the Figre 4.10, the 2θ value of neat montmorillonite clay used was 

found at 7.3
o
. If the value put into the Bragg equation to its position, the basal 

spacing of neat MMT can be found as 12.2 Å.  Further XRD results of 

nanocomposites can be calculated by using this equation with using their 2θ values 

from their test results. 

4.4. Characterization of LC-CFR Nanocomposite Samples 

4.4.1. FTIR-ATR spectroscopy of LC-CFR nanocomposite samples 

The FTIR spectrum of LC-CFR1 was illustrated in Figure 4.11 and the characteristic 

peaks of LC-CFR1 were observed at 3402 cm
-1

, 2926 cm
-1

,     1698 cm
-1

, 1445 cm
-1

, 

1044 cm
-1

 and 749 cm
-1

. These peaks respectively attributed to hydroxy methyl 
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groups, aliphatic –CH2, carbonyl C=O, –CH2 methylene bridges, streching of         

Si-O-Si of MMT and deformation of  Si-O-Si of MMT. 

 

Figure 4.11: FTIR spectrum of LC-CFR1. 

The FTIR spectrum of LC-CFR2 was illustrated in Figure 4.12 and the characteristic 

peaks of LC-CFR2 were observed at 3398 cm
-1

, 2926 cm
-1

, 1704 cm
-1

, 1445 cm
-1

 

1051 cm
-1 

and 749 cm
-1

. These peaks respectively attributed to hydroxy methyl 

groups, aliphatic –CH2, carbonyl C=O, –CH2 methylene bridges and streching of Si-

O-Si of MMT. 

 

Figure 4.12: FTIR spectrum of LC-CFR2. 

The FTIR spectrum of LC-CFR3 was illustrated in Figure 4.13 and the characteristic 

peaks of LC-CFR3 were observed at 3390 cm
-1

, 2927 cm
-1

, 1698 cm
-1

, 1445 cm
-1

, 

1051 cm
-1 

and 750 cm
-1

. These peaks respectively attributed to hydroxy methyl 

groups, aliphatic –CH2, carbonyl C=O, –CH2 methylene bridges and streching of  Si-

O-Si of MMT. 
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Figure 4.13: FTIR spectrum of LC-CFR3. 

The FTIR spectrum of LC-CFR4 was illustrated in Figure 4.14 and the characteristic 

peaks of LC-CFR4 were observed at 3339 cm
-1

, 2926 cm
-1

, 1703 cm
-1

, 1445 cm
-1

, 

1041 cm
-1 

and 747 cm
-1

 These peaks respectively attributed to hydroxy methyl 

groups, aliphatic –CH2, carbonyl C=O, –CH2 methylene bridges, streching of  Si-O-

Si of MMT and deformation of  Si-O-Si of MMT. 

 

Figure 4.14: FTIR spectrum of LC-CFR4. 

4.4.2. DSC thermal analysis of LC-CFR samples 

In this study, as it is seen in the Figure 4.16, it is realized that the results of DSC 

mesurments, Tg values of LC-CFR1, LC-CFR2 and LC-CFR3 samples were 

determined as 60
 o

C, 61 
o
C, and 68

o
C, respectively. The Tg value of neat CFR was 

determined as 45 
o
C. As it seen in the Figure 4.15, Tg values of clay containing 

samples slightly change with the increasing clay content (wt%).  
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Because of the agglomeration of clay nanoparticles after 1,5 wt%, optimal clay 

content level was detected at the level of 1,5 wt%. It can be said that the 

nanocomposite of resin samples shows enhanced glass transition temrerature points 

with addition of MMT to resin media to an optimal level. Increasing of glass 

transition temperature points were specified nearly %50 in comparison with neat 

CFR. 

 

Figure 4.15: Variation  of Tg (
o
C) for various resin clay nanocomposites with diffrent  

filler contents. 

 

Figure 4.16: DSC thermogram of LC-CFR samples. 

4.4.3. TGA thermal analysis of LC-CFR samples 

Thermal decomposition behaviors of neat CFR, LC-CFR1, LC-CFR2, LC-CFR3 and 

LC-CFR4 were determined via TGA mesurements. Degregation was carried out in a 

static air atmosphere until the maximum temprature of 800 
o
C. Onset temperature of 

CFR LC-CFR1 LC-CFR2 LC-CFR3 
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degradation (˚C), temperature at %50 residue amount and residue  amount (%) at  

500 
o
C was calculated and these values are given in the Table 4.3. Also, 

thermograms of neat CFR, LC-CFR1, LC-CFR2, LC-CFR3 and LC-CFR4 were 

given in the Figure 4.17.  

Table 4.3: TGA values of CFR and LC-CFRs. 

Samples 

Onset 

Temperature of 

Degradation(˚C) 

T%50 (˚C) 
Residue  (%) at 

500 (
o
C) 

CFR 141 344 2,1 

LC-CFR1 143 328 2,3 

LC-CFR2 148 350 2,3 

LC-CFR3 152 352 2,6 

LC-CFR4 164 338 9,8 

As it seen in the Figure 4.17, different stages of degradation obtained. In the first 

stage (until 350 
o
C) formaldehyde was released and methylene bridges were broke. 

Then, the second stage of decomposition, oxidation of the network were occured. It 

can be clearly seen, addition of clay to the resin media help to improve thermal 

resistance of neat CFR. As it seen in the table,  T %50 (˚C) value of LC-CFR1 and 

LC-CFR4 is lower than neat CFR, agglomeration might be the reason for this. 

 

Figure 4.17: TGA thermograms of CFR and LC-CFRs. 
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4.4.4. XRD analysis of LC-CFR samples 

By using Bragg equation, the distances between clay sheets of resin/clay 

nanocomposites are calculated from their XRD test results. Wavelenght of radiation 

(λ) used was 0,7698 Å.  

Bragg equation: λ = 2d sinθ 

XRD patterns, 2θ mesurements of samples was given in the Figure 4.18. The 2θ 

value of neat montmorillonite clay used was found at 7.3
o
. As it seen in the figure, 2θ 

values shifted lower 2θ degrees comprasion with neat clay. In the Table 4.4, it can be 

seen the 2θ values of samples and calculated mesurements of d001 spaces between 

clay sheets.  

In this case the interlayer space was increased from 12.2 Å to 15.7 Å. Increase of 

space between layers was about from 19% to 28% for different clay containing 

resin/clay nanocomposites. Best results achived for 3 wt% clay containing 

nanocomposite which is LC-CFR4.  

 

Figure 4.18: XRD patterns of LC-CFR samples. 

It can be said, results indicate that the interlayer space of pristine clay was increased 

significantly by one step process and this results shows the intercalation of clay 

molecules in the resin media was succesfully achived.  
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Table 4.4: Interlayer spaces between clay sheets of LC-CFR samples. 

Sample 
Additive, wt% 

of clay 
2θ (°) d001 (Å) 

Pristine Clay - 7.03 12.2 

LC-CFR1 0.5 6.02 14.6 

LC-CFR2 1 6.02 14.6 

LC-CFR3 1,5 5.74 15.3 

LC-CFR4 3 5.60 15.7 

4.4.5. SEM analysis of LC-CFR samples 

SEM analysis were done because of understanding of dispersion of clay particles in 

resin media and observe the intercaliation of clay layers. For conventional imaging in 

the SEM, specimens must be electrically conductive, at least at the surface. Because 

of that reason surfaces of nanocomposite samples plated with gold before examined. 

SEM images of LC-CFR1, LC-CFR2, LC-CFR3 and LC-CFR4 were shown in 

Figure 4.19, Figure 4.20, Figure 4.21 and Figure 4.22 respectively. As it seen in 

figures, embedded nano clay particles can be seen on the samples surfaces. With 

magnification x15,000 homogeneous dispersion of clay particles can be seen. Also 

with magnification of x50,000 or higher, angled clay particles became visible. In 

addition, microvoids were observed because of the curing of by-product of water 

molecules released during the polymerization reaction.  

 

Figure 4.19: SEM images of LC-CFR1 (a; x15,000, b; x80,000). 
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Figure 4.20: SEM images of LC-CFR2 (a; x15,000, b; x50,000). 

Homogen dispersing of clay particles was not a problem for samles having clay 

contents of 0.5 wt%, 1 wt% and 1,5 wt%. But after having content of 1.5 wt %, as it 

seen in the Figure 4.22 (b), agglomeration of clay particles occured. High surface 

energy of nanoparticles force them to agglomerate and to form clay tactoids. 

Therefore clay content higher than 1.5 wt% had the problem to disperse 

homogeneously. Dispersion can be improved by using techniques like high shear 

mixing and ultrasonication. Also modificaion of pristine clay may help the better 

dispersion of clay particles in the resin media. In this study, the amount of dispersed 

clay in CFR media was achived with 1.5 wt% MMT. 

 

Figure 4.21: SEM images of LC-CFR3 (a; x15,000, b; x50,000). 

 

Figure 4.22: SEM images of LC-CFR4 (a; x15,000, b; x15,000). 
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4.5. Characterization of DA.PDMS-LC-CFR Nanocomposite Samples 

4.5.1. FTIR-ATR spectroscopy of LC-CFR nanocomposite samples 

The FTIR spectrum of DA.PDMS-LC-CFR1 was illustrated in Figure 4.23 and the 

characteristic peaks of DA.PDMS-LC-CFR1 were observed at 3382 cm
-1

, 2926 cm
-1

, 

1698 cm
-1

, 1445 cm
-1

, 1043 cm
-1

, 864 cm
-1

 and 749 cm
-1

. These peaks respectively 

attributed to hydroxy methyl groups, aliphatic –CH2, carbonyl C=O, –CH2 methylene 

bridges, streching of  Si-O-Si of MMT and DA.PDMS, Si-CH3 of DA.PDMS and 

finally deformation of  Si-O-Si of MMT. 

 

Figure 4.23: FTIR spectrum of DA.PDMS-LC-CFR1. 

The FTIR spectrum of DA.PDMS-LC-CFR2 was illustrated in Figure 4.24 and the 

characteristic peaks of DA.PDMS-LC-CFR2 were observed at 3392 cm
-1

, 2926 cm
-1

, 

1698 cm
-1

, 1445 cm
-1

, 1042 cm
-1

, 863 cm
-1

 and 750 cm
-1

. These peaks respectively 

attributed to hydroxy methyl groups, aliphatic –CH2, carbonyl C=O, –CH2 methylene 

bridges, streching of  Si-O-Si of MMT and DA.PDMS, Si-CH3 of DA.PDMS and 

finally deformation of  Si-O-Si of MMT. 

The FTIR spectrum of DA.PDMS-LC-CFR3 was illustrated in Figure 4.25 and the 

characteristic peaks of DA.PDMS-LC-CFR3 were observed at 3392 cm
-1

, 2926 cm
-1

, 

1698 cm
-1

, 1445 cm
-1

, 1044 cm
-1

, 867 cm
-1

 and 749 cm
-1

. These peaks respectively 

attributed to hydroxy methyl groups, aliphatic –CH2, carbonyl C=O, –CH2 methylene 
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bridges, streching of  Si-O-Si of MMT and DA.PDMS, Si-CH3 of DA.PDMS and 

finally deformation of  Si-O-Si of MMT. 

 

Figure 4.24: FTIR spectrum of DA.PDMS-LC-CFR2. 

 

Figure 4.25: FTIR spectrum of DA.PDMS-LC-CFR3. 

The FTIR spectrum of DA.PDMS-LC-CFR4 was illustrated in Figure 4.26 and the 

characteristic peaks of DA.PDMS-LC-CFR4 were observed at 3399 cm
-1

, 2926 cm
-1

, 

1701 cm
-1

, 1445 cm
-1

, 1045 cm
-1

, 865 cm
-1

 and 756 cm
-1

. These peaks respectively 

attributed to hydroxy methyl groups, aliphatic –CH2, carbonyl C=O, –CH2 methylene 
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bridges, streching of  Si-O-Si of MMT and DA.PDMS, Si-CH3 of DA.PDMS and 

finally deformation of  Si-O-Si of MMT. 

 

Figure 4.26: FTIR spectrum of DA.PDMS-LC-CFR4. 

4.5.2. DSC thermal analysis of DA.PDMS-LC-CFR samples 

In this study, as it is seen in the Figure 4.28, it is realized that the results of DSC 

mesurments, Tg values of DA.PDMS-LC-CFR1, DA.PDMS-LC-CFR2, DA.PDMS-

LC-CFR3 and DA.PDMS-LC-CFR4 samples were determined as 119
 o

C, 113 
o
C, 

117
 o

C and 122 
o
C, respectively. The Tg value of DA.PDMS-CFR was determined as 

68 
o
C. As it seen in the Figure 4.27, Tg values of clay containing samples slightly 

change with the increasing clay content (wt%).  

 

Figure 4.27: Variation   of   Tg (
o
C)   for  various   resin   clay   nanocomposites  with  

different filler contents. 
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Figure 4.28: DSC thermogram of DA.PDMS-LC-CFR samples. 

Because of the agglomeration of clay nanoparticles after 1,5 wt%, optimal clay 

content level was detected at the level of 1,5 wt%. It can be said that the 

nanocomposite of resin samples shows enhanced glass transition temrerature points 

with addition of MMT to resin media to an optimal level. Increasing of glass 

transition temperature points were specified nearly %78 in comparison with neat 

DA.PDMS-CFR. 

4.5.3. TGA thermal analysis of DA.PDMS-LC-CFR samples 

Thermal decomposition behaviors of neat DA.PDMS-CFR, DA.PDMS-LC-CFR1, 

DA.PDMS-LC-CFR2, DA.PDMS-LC-CFR3 and DA.PDMS-LC-CFR4 were 

determined via TGA mesurements. Degregation was carried out in a static air 

atmosphere until the maximum temprature of 800 
o
C. Onset temperature of 

degradation (˚C), temperature at %50 residue amount and residue  amount (%) at  

500 
o
C was calculated and these values are given in the Table 4.5. Also, 

thermograms of neat DA.PDMS-CFR, DA.PDMS-LC-CFR1, DA.PDMS-LC-CFR2, 

DA.PDMS-LC-CFR3 and DA.PDMS-LC-CFR4 were given in the Figure 4.29.  



47 

As it seen in the Figure 4.29, different stages of degradation obtained. In the first 

stage (until 350 
o
C) formaldehyde was released and methylene bridges were broke. 

Then, the second stage of decomposition, oxidation of the network were occured. It 

can be clearly seen, addition of clay to the resin media help to improve thermal 

resistance of neat DA.PDMS-CFR. As it seen in the table,  % residue amount at 500 

o
C value of DA.PDMS-LC-CFR4 is lower than neat DA.PDMS-CFR, agglomeration 

might be the reason for this. 

Table 4.5: TGA values of DA.PDMS-CFR and DA.PDMS-LC-CFRs. 

Sample 

Onset 

Temperature of 

Degradation(˚C) 

T%50 (˚C) 
Residue  (%) at 

500 (
o
C) 

DA.PDMS-CFR 144 336  2,4 

DA.PDMS-LC-CFR1 151 337 2,4 

DA.PDMS-LC-CFR2 156 336  2,1 

DA.PDMS-LC-CFR3 166 352  2,2 

DA.PDMS-LC-CFR4  150  336  2,5 

 

 

Figure 4.29: TGA thermograms of DA.PDMS-CFR and DA.PDMS-LC-CFRs. 
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4.5.4. XRD analysis of DA.PDMS-LC-CFR samples 

By using Bragg equation, the distances between clay sheets of resin/clay 

nanocomposites are calculated from their XRD test results. Wavelenght of radiation 

(λ) used was 0,7698 Å.  

Bragg equation: λ = 2d sinθ 

XRD patterns, 2θ mesurements of samples was given in the Figure 4.30. The 2θ 

value of neat montmorillonite clay used was found at 7.3
o
. As it seen in the figure, 2θ 

values shifted lower 2θ degrees comprasion with neat clay. In the Table 4.6, it can be 

seen the 2θ values of samples and calculated mesurements of d001 spaces between 

clay sheets.  

In this case the interlayer space was increased from 12.2 Å to 14.9 Å. Increase of 

space between layers was about from 7% to 22% for different clay containing 

resin/clay nanocomposites. Best results achived for 3 wt% clay containing 

nanocomposite which is DA.PDMS-LC-CFR4.  

 

Figure 4.30: XRD patterns of DA.PDMS-LC-CFR samples. 

It can be said, results indicate that the interlayer space of pristine clay was increased 

significantly by one step process and this results shows the intercalation of clay 

molecules in the resin media was succesfully achived.  



49 

Table 4.6: Interlayer spaces between clay sheets of DA.PDMS-LC-CFR samples. 

Sample 
Additive, 

wt% of clay 
2θ (°) d001 (Å) 

Pristine Clay 100 7.03 12.2 

DA.PDMS-LC-CFR1 0.5 6.76 13.1 

DA.PDMS-LC-CFR2 1 6.26 14.1 

DA.PDMS-LC-CFR3 1,5 6.10 14.5 

DA.PDMS-LC-CFR4 3 5.90 14.9 

4.5.5. SEM analysis of DA.PDMS-LC-CFR samples 

SEM analysis were done because of understanding of dispersion of clay particles in 

resin media and observe the intercaliation of clay layers. For conventional imaging in 

the SEM, specimens must be electrically conductive, at least at the surface. Because 

of that reason surfaces of nanocomposite samples plated with gold before examined. 

SEM images of DA.PDMS-LC-CFR1, DA.PDMS-LC-CFR2, DA.PDMS-LC-CFR3 

and DA.PDMS-LC-CFR4 were shown in Figure 4.31, Figure 4.32, Figure 4.33 and 

Figure 4.34 respectively. As it seen in figures, embedded nano clay particles can be 

seen on the samples surfaces. With magnification x15,000 homogeneous dispersion 

of clay particles can be seen. Also with magnification of x50,000 or higher, angled 

clay particles became visible. In addition, microvoids were observed because of the 

curing of by-product of water molecules released during the polymerization reaction.  

 

Figure 4.31: SEM images of DA.PDMS-LC-CFR1 (a; x7,500, b; x50,000). 
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Figure 4.32: SEM images of DA.PDMS-LC-CFR2 (a; x15,000, b; x50,000). 

Homogen dispersing of clay particles was not a problem for samles having clay 

contents of 0.5 wt%, 1 wt% and 1,5 wt%. But after having content of 1.5 wt %, as it 

seen in the Figure 4.34 (b), agglomeration of clay particles occured. High surface 

energy of nanoparticles force them to agglomerate and to form clay tactoids. 

Therefore clay content higher than 1.5 wt% had the problem to disperse 

homogeneously. Dispersion can be improved by using techniques like high shear 

mixing and ultrasonication. Also modificaion of pristine clay may help the better 

dispersion of clay particles in the resin media. In this study, the amount of dispersed 

clay in DA.PDMS-CFR media was achived with 1.5 wt% MMT. 

 

Figure 4.33: SEM images of DA.PDMS-LC-CFR3 (a; x15,000, b; x50,000). 

 

Figure 4.34: SEM images of DA.PDMS-LC-CFR4 (a; x15,000, b; x25,000). 
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5. CONCLUSION 

FTIR and 
1
H-NMR results of final samples indicates that copolymers of 

polydimethylsiloxane cyclohexanone formaldehyde and nanocomposites forms of 

resin samples were successfully synthesized with one step process.  When looking at 

the thermal analysis results, the glass transition temperatures and heat resistance 

levels of final samples were clearly shown to be increased by the addition of PDMS 

and MMT clay to the resin media.  Increased levels were determined by using these 

results and they were used in explaining the conditions in detail.  In order to 

determine the basal spaces of MMT clay in resin media XRD analysis were used and 

the results show that the interlayer space of pristine clay was increased significantly 

and these results show that the intercalation of clay molecules in the resin media was 

successfully achieved.  Also homogeneous dispersion of clay can be seen in SEM 

images until the weight percentage of clay wt 1.5 %, and above this percentage clay 

tactoids can be seen due to the agglomeration of clay nanoparticles.  It can be said 

determining factor of clay content is agglomeration which is about wt 1.5% content 

of clay in the resin media. 

This study showed that as a ketonic resin cyclohexanone formaldehyde can be 

synthesized as a form of nanocomposite with direct addition of clay nanoparticles 

into the resin media, also all known resin/layered silicate nanocomposites, such as 

epoxy or phenolic resins, can be reacted to become nanocomposites with this one 

step process in situ modification. 
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