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KOMPLEX GEOMETRİLERDE TÜRBÜLANSLI AKIŞIN SAYISAL 

ÇÖZÜMÜ 

ÖZET 

 

Bu çalışmada komplex geometrilerde türbülanslı akışın sayısal çözümü incelenmiştir. 

Sözkonusu akış iki boyutlu, sıkıştırılamaz, ve daimi bir türbülanslı akıştır. 

Hesaplamalar Sonlu hacimler Yöntemi kullanılarak genelleştirilmiş eğrisel 

koordinatlarda yapılmıştır. Yapısal bir ağ kullanılmış ve hücre merkezli bir ağ düzeni 

kullanılmıştır. Basıncın ve hızların hesaplanması için SIMPLE ve SIMPLEC 

yöntemi kullanılmıştır. Yapısal ağlarda hücre-merkezli ağ düzeni kullanılması ile 

ortaya çıkan fiziksel olmayan dalgalanmayı engellemek içim Momentum 

İnterpolasyon yöntemi uygulanmıştır. 

 

Yazılan bilgisayar kodunda kullanılan türbülans modelleri duvar fonksiyonlarının 

kullanımını içeren standard k-ε modeli , Lam-Bremhorst’un düşük Reynolds sayılı k-

ε modeli ve 1988 ve 1998 yıllarında Wilcox tarafından geliştirilen k-ω modelleridir. 

Fakat, düşük Reynolds sayılı k-ε modeli için, bu çalışma kapsamında bir 

yakınsamaya ulaşılamamıştır.  

 

Sonunda, deneysel sonuçları bulunan iki farklı test prolemi seçilmiş ve sayısal olarak 

çözülmüştür. Elde edilen sayısal sonuçlar, deneysel sonuçlarla karşılaştırılmış ve her 

türbülans modelinin performansı incelenmiştir. 1998 k-ω modelinin, viskoz etkilerin 

çok önemli olduğu düşük Reynolds sayılı akışlarda en iyi sonucu verdiği tesbit 

edilmiştir. Öte yandan, yüksek Reynolds sayılı akışlarda da diğer iki model daha iyi 

sonuçlar vermektedir.  



 x 

NUMERICAL COMPUTATION OF TURBULENT FLOW IN COMPLEX 

GEOMETRIES 

SUMMARY 

 

In this study, the numerical computation of turbulent flow in complex geometries has 

been accomplished. The considered flow is a 2-D, incompressible, and turbulent flow 

at steady state. Computation is done using finite volume method in generalized 

curvilinear coordinates. A structured grid and with a non-staggered (collocated) grid 

arrangement is used. SIMPLE and SIMPLEC algorithms have been used for the 

computation of pressure and velocities. Momentum interpolation method has been 

implemented to avoid the non-physical oscillation or so called red-black 

checkerboard splitting of the pressure field due to collocated grid arrangement.  

 

The turbulence models employed in computer code are the standard k-ε model with 

wall functions, low Reynolds k-ε model of Lam-Bremhorst and two k-ω models 

developed by Wilcox in 1988 and 1998. However, with the low Reynolds model, 

convergence has not been achieved during this study. 

 

In the end, two different test cases of which experimental data is available, has been 

chosen and solved numerically. The numerical results have been compared with the 

experimental ones and the performance of each turbulence model has been 

examined. It is concluded that for low Reynolds number flows, where the viscous 

effects play a very important role, 1998 k-ω model gives the best results. Though, the 

other two models give better predictions for high Reynolds number flows. 
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1 INTRODUCTION 

Since, 1960s, there has been an increasing interest towards Computational Fluid 

Dynamics (CFD), with the development of computer technology. Especially after the 

invention of super computers in 1970s, and as the computing capacities get stronger 

in time, CFD has become more and more widespread among scientists. As, it was 

very expensive to set up and carry out experiments, scientists have tried to predict 

internal and external flows in numerical ways which are far less expensive, yet quite 

efficient at least in engineering aspects. 

 Today, CFD is a widely known and used technique and there are a lot of commercial 

CFD codes available to be used in many areas such as aerospace industry, food 

industry, glass industry etc. However, studies about CFD are still being carried on in 

every part of the world with full concentration. Scientists are trying to create a 

perfect code that can be applied to every physical problem in nature.  

1.1 Literature Survey 

Today, the "classical" or standard approach used most often in commercial software 

and research codes is Finite Volume Method (FVM). FVM, in fact, was originally 

developed as a special finite difference formulation. It is a method for representing 

and evaluating partial differential equations as algebraic equations. Similar to the 

finite difference method, values are calculated at discrete places on a meshed 

geometry. The numerical algorithm consists of the following steps (Versteeg and 

Malalasekera, 1995): 

 

 Formal integration of the governing equations of fluid flow over all the 

(finite) control volumes of the solution domain. 

 Discretisation involves the substitution of a variety of finite-difference-type 

approximations for the terms in the integrated equation representing flow 

http://en.wikipedia.org/wiki/Finite_difference
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Rate of change of 

φ in the C.V with 

respect to time 

Net flux of φ due 

to convection into 

the C.V 

Net flux of φ due 

to diffusion into 

the C.V 

process such as convection, diffusion sources. This converts the integral 

equations into a system of algebraic equations. 

 Solution of the algebraic equations by an iterative method. 

The first step, the control volume integration, distinguishes the FVM from all other 

CDF techniques. The resulting statements express the (exact) conservation of 

relevant properties for each finite size cell. This clear relationship between the 

numerical algorithm and the underlying physical conservation principle forms one of 

the main attractions of the FVM and makes its concepts much more simple to 

understand by engineers than finite element and spectral methods. The conservation 

of a general flow variable φ, for example a velocity component or enthalpy, within a 

finite control volume can be expressed as a balance between the various processes 

tending to increase or decrease it. In words we have: 

 

                               =                                  +                                  + 

 

In the set of fluid flow equations, pressure is the only variable that does not have a 

governing equation and especially in incompressible flows, it creates a big problem 

in the solution that there is not a direct link between pressure and velocity. With the 

general idea of solving the governing equations implicitly, various pressure schemes 

have been published to overcome this problem. One major distinction between the 

schemes is whether an equation for the pressure itself, an equation for a pressure 

correction, or both of these are solved. One method to handle this problem is the so-

called “Semi-Implicit Method for Pressure Linked Equations” (SIMPLE) algorithm 

originally put forward by Patankar and Spalding (1972). The essential feature is 

the replacement of the continuity equation (which does not contain the pressure) with 

a pressure correction equation, and subsequent sequential manipulations of the 

velocity field. Here, instead of solving an equation for the pressure itself, an equation 

for a pressure correction is solved. And once the pressure correction has been solved 

for, the velocities and pressures are upgraded accordingly. Still similar method of 

this kind was proposed by Patankar (1980) and is called SIMPLER (SIMPLE 

Revised). In this algorithm, the discretisized continuity equation is used to derive a 

discretisized equation for pressure, instead of a pressure correction equation as in 

Net rate of 

creation of  φ 

inside the C.V 
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SIMPLE. Thus, the intermediate pressure field is obtained directly without the use of 

a correction. Velocities are, however, still obtained through the velocity corrections 

of SIMPLE. The SIMLEC (SIMPLE-Consistent) algorithm of Van Doormall and 

Raithby (1984) follows the same steps as the SIMPLE algorithm, with the difference 

that the momentum equations are manipulated so that the SIMPLEC velocity 

correction equations omit terms that are less significant than those omitted in 

SIMPLE. There are also other improved versions of SIMPLE, like PISO algorithm 

(Isaa, 1986).  

One other decision to be made is the grid arrangement to be used; staggered or non-

staggered (collocated). When staggered grids are used, no interpolations are required 

for the velocity components at the faces of a pressure cell and it gives consistent 

pressure formulations (Patankar, 1980). In this approach, the Cartesian velocity 

components are computed at the control volume faces through which the grid lines 

parallel to the corresponding Cartesian coordinate direction, pass. Although this 

approach is very successful in Cartesian grids, it loses its physical basis when applied 

to generalized coordinates, where the Cartesian velocity and the grid line directions 

are totally independent. The “equivalent” approach in a generalized coordinates 

formulation would be to locate the contravariant velocities at the control volume 

faces. The formulation for momentum equations using, contravariant velocities as 

dependent variables, however, incurs significant increases in complexity and may 

create non-conservative errors when the grid is not smooth (Shyy and Vu, 1991). 

An alternative is to use a collocated grid arrangement where all the variables are set 

at the same set of grid points and are stored in the same control volume. The 

collocated arrangement was out of favor for a long time for incompressible flow 

computation due to the difficulties with pressure-velocity coupling and the 

occurrence of oscillations in the pressure. The problem is that, storing both the 

pressure and velocities at the same grid point will cause non-physical oscillation or 

so-called red-black checkerboard splitting of the pressure field. This undesirable 

behavior stems from the fact that the resulting equations couple the pressure and 

velocities only at alternate nodes if a linear interpolation is used to express the 

gradients of pressure in the momentum equations and the variations of velocity in the 

continuity equation. To solve this problem, Rhie and Chow (1983) proposed a 

scheme based on momentum interpolation, and their approach resulted in a 
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revolution on the use of collocated grids. In this scheme, momentum equations are 

solved at the main grid points for Cartesian velocity components and the cell-face 

velocities are obtained by the interpolation of the momentum equations on the 

neighboring nodes. This original method is then further refined and extended to be 

used in general curvilinear coordinates by Miller and Schmidt (1988).  

Almost all fluid flow which we encounter in daily life is turbulent. Typical examples 

are flow around (as well as in) cars, aeroplanes and buildings. Thus, it excited the 

scientists interest to understand the physics of turbulence and then to model it 

somehow. If we accept the time-averaged Navier-Stokes equation as the origin of 

turbulence modeling, this takes us to back to the end of the nineteenth century when 

Reynolds (1895) published results of his research on turbulence. The earliest 

attempts at developing a mathematical description of turbulent stress sought to mimic 

the molecular gradient-diffusion process. In this spirit Boussinesq (1877) introduced 

the concept of a so-called eddy viscosity. However, neither Reynolds nor Boussinesq 

attempted a solution of the Reynolds-averaged Navier-Stokes equation in any 

systematic manner. Much of the physics of viscous flows was a mystery in the 

nineteenth century, and further progress awaited Prandtl’s discovery of the boundary 

layer in 1904. focusing upon turbulent flows, Prandtl (1925) introduced the mixing 

length (an analogy of the mean free path of the gas) and a straightforward 

prescription for computing the eddy-viscosity in terms of the  mixing length. 

Important contributions were also made by several authors, most notably by von 

Karman (1930). In modern terminology, we refer to a model based on the mixing-

length hypothesis as an algebraic model or a zero-equation model of turbulence. By 

definition an n-equation model signifies a model that requires solution of n additional 

differential transport equations in addition to those expressing conservation of mass, 

momentum, and energy for the mean flow.  

To improve the ability to predict properties of turbulent flows and to develop a more 

realistic mathematical description of the turbulent stresses, Prandtl (1945) 

postulated a model in which the eddy viscosity depends upon the kinetic energy of 

turbulent fluctuations, k. he proposed a modeled partial-differential equation 

approximating the exact equation for k. thus was born the concept of the so-called 

one-equation model of turbulence. 
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Kolmogorov (1942) introduced the first complete model of turbulence. In addition to 

having a model equation for k, he introduced a second parameter ω that he referred 

to as “the rate of dissipation of energy in unit volume and time.” The reciprocal of ω 

serves as a turbulence time scale, while k
1/2

ω serves as the analog of the mixing 

length and  kω is the analog of the dissipation rate, ε. In this model, known as a k-ω 

model, ω satisfies a differential equation somewhat similar to the equation for k. the 

model is thus termed a two-equation model of turbulence. 

While Kolmogorov’s k-ω model was the first of this type, it remained in obscurity 

until the coming of the computer. By far, the most extensive work on two-equation 

models has been done by Launder and Spalding (1972) and a continuing success of 

students and colleagues. Launder’s k-ε model is as well-known as the mixing-length 

model is the most widely used two-equation model. With no prior knowledge of 

Kolmogorov’s work, Saffman (1970) formulated a k-ω model that enjoys advantages 

over the k-ε model, especially for integrating through the viscous sublayer and for 

predicting effects of adverse pressure gradient. Wilcox and Alber (1972), Saffman 

and Wilcox (1974), Wilcox and Traci (1976), Wilcox and Rubesin (1980), and 

Wilcox (1988), for example, have pursued further development and application of k-

ω models. And later Wilcox (1998) introduced a new version of the k-ω model with a 

significant improvement over that described in the first edition. 

On the other hand, Chou (1945) and Rotta (1951) laid the foundation for turbulence 

models that obviate the use of the Boussinesq approximation. Rotta devised a 

plausible model for the differential equation governing evaluation of the tensor that 

represents the turbulent stresses, i.e., the Reynolds-stress tensor. Such models are 

most appropriately described as stress-transport models. By 1970s, sufficient 

computer resources became available to permit serious development of this class of 

model. The most notably efforts were those of Donaldson (1968), Daly and Harlow 

(1970) and Launder, Reece and Rodi (1975). The latter has become the baseline 

stress-transport model: more recent contributions by Lumley (1978), Speziale (1985, 

1987, 1991) and Reynolds (1987) have added mathematical rigor to the closure 

process. However, because of the large number of equations and complexity 

involved, they have found their way into a relatively small number of applications 

compared to algebraic and two-equation models. 
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2 GOVERNING EQUATIONS 

In this chapter, the governing equations of a 2-D, turbulent, incompressible flow 

at steady-state will be presented. Since the main property of the computer code 

written as a part of this masters study is the usage of generalized curvilinear 

coordinates, equations will be first presented in Cartesian coordinates and then in 

generalized curvilinear coordinates. 

2.1 General Convection-Diffusion Equation Form 

The momentum, and turbulence equations are all considered to be specific cases of a 

general convection-diffusion scalar transport equation. Therefore, it is appropriate to 

give the general convection-diffusion equation before proceeding into the specific 

forms (in conservative form): 


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In order to obtain a numerical solution on a curvilinear grid, equations in Cartesian 

coordinates should be transformed into general curvilinear coordinates. For the 

details of this transformation, reader is referred to the thesis of Anton H. Basson 

(1992). Below can be seen the final form of the transport equation after the 

transformation: 
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where JG1 and JG2 are contravariant velocity fluxes , and G1 and G2 are contravariant 

velocity components along ξ and η directions respectively. Contravariant velocity 

fluxes will be used as dependent variables in the momentum equations. 

 

  fUvxuyJG   1            contravariant velocity flux in ξ direction         (2.2a) 

  fVvxuyJG   21           contravariant velocity flux in η direction        (2.2b) 

 

22

 xy   

22

 xy                  (2.2c) 

 xxyy 1  

 yxyxJ   

 

In the following subsections, the momentum and the turbulence equations will be 

presented by substituting the dependent variable with proper variables.  

2.1.1 Momentum equations 

The momentum equation is a statement of Newton's Second Law and relates the sum 

of the forces acting on an element of fluid to its acceleration or rate of change of 

momentum. The details of the general development of the equation are given in 

many fluid mechanics texts (White, 1974)  

In this section, with the approximation of a 2-D, incompressible steady-state flow, 

and with constant flow properties, the general form of the momentum equations will 

be presented. However, as a general tendency in CFD, pressure term is taken out of 

the source term and written explicitly: 
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Likewise, v momentum equation is: 
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2.2 Turbulence Equations 

Mainly two different turbulence models have been implemented in the computer 

code, namely the k-ε and k-ω models. For k-ε model, wall-function approach 

(Launder & Spalding, 1972) and low-Reynolds approach of Lam-Bremhorst 

(1981), and for k-ω model, two versions of Wilcox’s k-ω have been chosen. Before 

going into the details of these two models, the base of those models, Reynolds-

Averaged Equations will be analyzed. 

2.2.1 Reynolds-averaged equations 

The beginning step of turbulence modeling is the time-averaged Navier-Stokes 

equations and the origin of this approach dates back to the end of nineteenth century 

with Reynolds’s studies on turbulence in 1895. Naturally, the starting point of the 

derivation is the conservation equations of mass and momentum. For a 2-D, 

incompressible, constant-property flow, they are as follows: 
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where µ is the molecular viscosity and tij is the viscous stress tensor, defined by 

 

ijij st .2                       (2.7) 

 

and sij is the strain-rate tensor: 
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At this point, defining the instantaneous velocity, ui(x,t) in terms of a mean,Ui(x,t) 

and a fluctuating part, u’i(x,t) : 
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    ),(, txuxUtxu iii
                            (2.9) 

 

instantaneous       fluctuating                      

 

          mean 

 

and time (ensemble) averaging equations (2.5) and (2.6), “Reynolds Averaged 

equations of motion in conservation form” are obtained: 
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 Reynolds-Averaged Navier-Stokes (RANS) Equations 

 

                                                                                         Reynolds-Stresses-tensor 

 

Time-averaged and instantaneous mass-conservation equations are the same in  

shape, only difference being the replacement of the instantaneous velocities by the 

mean ones as a result of the averaging. However for the momentum equations, aside 

from the replacement of the instantaneous velocities, there is an extra term in the 

time-averaged equation due to the fluctuations in turbulence, ijuu . , namely the 

Reynolds-stress tensor. 

“Herein lies the fundamental problem of turbulence. In order to compute all mean-

flow properties of the turbulent flow under consideration, a prescription is needed for 

computing ijuu . .”(Wilcox,1998) 

So, at this point, for a 3-D flow, there are 10 unknowns; 4 from mean flow 

(P,U,V,W), and 6 from turbulence ( wwvwvvuwuvuu ,,,,, ). On the other hand, there 

are only 4 equations available (3 momentum + continuity); meaning that 6 more 



 10 

equations are needed to close the system. This is the famous turbulence closure 

problem.  

Over the years, there have been different approaches to this problem as mentioned in 

the literature survey of this thesis. Shortly, mentioning here again, the first attempt 

was to model the Reynolds stress as a function of the mean-flow equations (zero-

equation models). Later other scientists developed one-equation models, where they 

created an extra transport equation, and two-equation models, where two-extra 

equations are developed in order to close the system. Apart from these, in Stress-

Transport models, 6 more transport equation is developed for each Reynolds-stress 

component by taking the moment of the Navier-Stokes equations.  

The main concentration of this thesis is the two-equation models with Boussinesq 

Eddy-viscosity assumption. 

2.2.2 Boussinesq assumption 

In eddy viscosity turbulence models, Reynolds-stresses are expressed in terms of 

mean-flow equations with a proportionality coefficient in between named as the 

turbulent viscosity. This approach is called as the Boussinesq assumption , and in 

analogy with Stokes’ postulate for laminar flows, it assumes that the principal axes 

of the Reynolds stress-tensor are coincident with those of mean strain-rate tensor at 

all points in a turbulent flow (Boussinesq,1877). 
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where, µt is the turbulent or eddy viscosity to be defined accordingly in different 

turbulence models. 

2.3 k-ε model  

By far, the most popular two-equation model is the k-ε model. Several scientists 

helped progress of the model such as Chou (1945), Davidov (1961), and Harlow 

and Nakayama (1968). However, the most famous paper accepted today as the 

source of the standard the k-ε model was published by Jones and Launder (1972). 
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And Launder and Sharma (1974) indicated the model’s closure coefficients that are 

still being used by most of the researches today. The standard k-ε model is as 

follows: 

Turbulence kinetic energy, k equation: 
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Dissipation rate, ε equation: 
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                 (2.14) 

with the closure coefficients being: 

 

44.11 C        92.02 C       09.0C         0.1k         3.1         (2.15) 

 

and turbulence viscosity, µt defined as: 

 


 

2k
Ct                  (2.16) 

 

In these equations, the term Pk is the source term. It is defined as follows: 
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and it is calculated with the insertion of Boussinesq assumption (eq.(2.12)) into the 

Reynolds-stress term. Doing so, source term gets the following final shape for flows 

away from the wall: 
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2.3.1 Wall-functions 

The standard k-ε model has been developed for regions with sufficiently high 

Reynolds-numbers. Because of this, it is not valid in regions very close to the wall 

where viscous effects are important and the local Reynolds-numbers are relatively 

low. For wall-bounded flows, one approach for this problem is to use the standard 

equations of k-ε far from the wall, in fully-developed turbulent regions and to use the 

empirical wall-functions to bridge the distance to the wall and in this section, 

information about this approach will be given. Another approach named as low-

Reynolds turbulence modeling will be presented in the following sections. 

2.3.1.1 The use of wall functions 

On figure (2.1), a near wall situation can be seen. As explained above, for the fully-

developed turbulent part of the flow, that is, for the regions away from the solid 

boundaries, standard k-ε equations are used. Wall functions are used to link this 

turbulent zone and the wall and they are applied to the first grid point above the wall, 

P. 

 

 

 

Figure 2.1: Near Wall Situation 

 

In wall-functions approach, the vicinity of the wall is assumed to be made up of a 

two-layer structure; a viscous sublayer very near the wall, and a log-layer just above 

it. With this assumption, for a fully developed turbulent flow near a no-slip wall, the 

normalized tangential velocity can be written as follows (White, 1974): 
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   Ey
u

U
U

t

ln
1



                 63.11y             (2.19) 

  yU                                      63.11y             (2.20) 

 

where 

 


 yu

y             





wallu                 (2.21) 

 

In these equations, κ, the von Karman constant has the value 0.4187 and the constant 

E is assigned to be 9.793 for smooth walls. With this first definition of wall 

functions, researches encountered some problems in near flow separation regions. 

The reason is that in these regions, the friction velocity, uτ goes to zero causing y
+
 

also to be so. To overcome this problem, new assumptions have been made as below: 

 Couette flow 

 Local equilibrium between production and dissipation 

 Constant stress layer near the wall 

Using these assumptions, the wall shear stress is related to the turbulent kinetic 

energy and defined as: 

 

kCwall





                      (2.22) 

or equivalently 

 

kCu 4

1

                  (2.23) 

 

This new form avoids the singularity problem, since k does not become zero at 

separation, and neither does wall . Below can be seen a different presentation of  wall  

with the new definitions: 
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Inserting the definitions above shear stress (in the log layer), equation (2.24) can also 

be expressed as: 
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2.3.1.2 k and ε at a near wall node 

There are several techniques to solve the turbulent kinetic energy and dissipation rate 

equation at a near wall node. As a general tendency, the dissipation rate, ε at near-

wall nodes is most often assigned a value, making the same local equilibrium 

assumption, instead of solving the equation governing it. On the other hand, for the 

turbulent kinetic energy, k, there is not a single common approach. It is either 

assigned a value (Patel et al., 1985, Sondak and Pletcher, 1995) or computed using 

its governing equation (Launder and Spalding, 1974). In this thesis, this second 

approach has been implemented, and source terms in the k-equation (production and 

dissipation of k) have been predicted using the assumptions made in the definition of 

wall functions. 

Performing integration from the wall to the node P and assuming constant wall  in the 

near wall region, the production of k term, Pk is defined as follows in the near wall 

region: 
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and by introducing the definitions, it gets the following form: 
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Consistent with the approximation of the production term given above, the 

dissipation termin k equation,   is estimated as follows: 
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As explained above in the introduction part of this section, ε-equation is not solved at 

a near wall node. Instead of this, ε is fixed according to: 
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which is a direct consequence of using the definition of friction velocity with the log-

law (eq. (2.19)), with the assumption of local equilibrium between the production 

and dissipation of turbulent kinetic energy. 

2.3.2 Low-Reynolds number models 

Another technique to capture the flow in the near wall region is to use a so-called 

low-Reynolds number model. In this model, instead of using wall-functions in the 

near wall region and standard equations in the outer fully-developed turbulent region, 

same equations are used throughout the whole domain (integration through the 

viscous sublayer). By the help of the viscous damping functions introduced to the 

turbulent kinetic energy and dissipation rate equations, viscous effects dominating 

the near wall region are taken into consideration.  
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Throughout the history, several different k-ε low Reynolds number models have been 

developed by scientists, some of which are by Jones and Launder (1972), Launder 

and Sharma (1974), Lam and Bremhorst (1981). In this thesis, Lam and 

Bremhorst’s model developed in 1981 has been implemented in the code. Below are 

the equations and closure coefficients and the damping functions of the model: 
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         (2.33) 

In the dissipation rate equation, the newly introduced variable, ~ is related to the 

dissipation,   by: 

 

 ~
0                  (2.34) 

 

In the equations, (2.32) and (2.33), there are five empirical damping functions, f1, f2, 

fµ, ε0 and E. These functions depend upon one or more of the following three 

dimensionless parameters: 

 


 ~Re

2k
            



yk
Ry

2
1

           

 yu

y             (2.35) 

 

and the damping functions and closure coefficients of Lam-Bremhorst model are as 

follows: 

 

Lam-Bremhorst Model 
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 3

1 /05.01 ff               (2.36b) 
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2
Re

2 1 
 ef               (2.36c) 

 

00                 (2.36d) 

 

44.11 C        92.02 C       09.0C         0.1k         3.1       (2.36e) 

2.4 k-ω model 

In 1942 Kolmogorov (1942) proposed the first two-equation turbulence model. His 

two turbulence parameters were the turbulent kinetic energy, k, as in k-ε models and 

the dissipation per unit turbulence kinetic energy, ω. After this first version of k- ω, 

several contributions were made to the model by several scientists as mentioned in 

the literature survey part. The contributions and improvements were especially for 

the ω equation and ω equation has changed as the model has evolved throughout the 

history. In this thesis, two versions of Wilcox’s k- ω model that he developed in 1988 

(Wilcox, 1988) and in 1998 (Wilcox, 1998) will be discussed.  

The governing equations of these two models are completely the same. The 

differences are in the coefficients as shown below: 

Turbulence kinetic energy, k equation: 
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Specific Dissipation Rate, ω equation: 
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                 (2.38) 

Kinematic Eddy Viscosity: 

 

 ktt                 (2.39) 
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Closure Coefficients: 

Wilcox-1988: 

 

56.0     075.0     09.0*       2k
       2           (2.40) 

Wilcox-1998: 
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        2         (2.41a) 
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The most important difference in the new version k-ω is in the coefficients of the 

dissipation terms, *  and  . The functions *f  and f , which depend upon k  

and   do not appear in Wilcox-1988 model. Also the values of α and β0 are a bit 

different from the values used at Wilcox 1988 model.  

The most important property of the first model, Wilcox-1988 is that it predicts 

boundary layer properties that are in very good agreement with measurements. With 

changes, Wilcox-1998 model still does so, because k  and   are very small close 

to a solid boundary. Therefore, they have a very little effect in those regions. 

However, with these changes, this new version dramatically improves predictive 

accuracy of Wilcox-1988 model for free shear flows. And this makes the new model 

applicable to both wall-bounded and free shear flows. 

2.4.1 Integration through the viscous sublayer 

The most distinctive property of k-ω model is the integration through the viscous 

sublayer without the need for viscous damping functions. Actually, wall-functions 

can also be used in the near wall region, like k-ε model, but integration through the 

viscous sublayer gives better results. Here are the equations for this near wall-
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integration, details of which can be found in “Turbulence Modeling for CFD” by 

David C. Wilcox (Wilcox, 1998): 

On the wall surface, ω is calculated by the following expression: 

R

w

S
u


 

2

          at        y=0              (2.42) 

 

where 

 

 2/50


 sR kS      , 25


sk               (2.43) 

 

The quantity wss kuk  /


 is the scaled surface-roughness height, sk  being the 

roughness height. 

In order to simulate a smooth surface, 


sk  is required to be less than 5, and for a 

perfectly-smooth wall, it can be assigned directly to be equal to1. 

Finally, ω equation is not solved in the near-wall region. Instead, for y
+
 values less 

than 2.5, it is calculated by the following equation: 
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3 DISCRETIZATION 

In this chapter, the discretization of the governing equations will be given using the 

finite-volume approach. As the general convection-diffusion equation presented in 

chapter 2 is analogous to most of the differential equations in fluid dynamics 

problems, its discretization will be performed. 

3.1 Finite-Volume Method 

The basics of the finite-volume method are to divide the computational domain into a 

set of control volumes and to express the conservation laws in an integral form for 

each of these control volumes. This control-volume approach has the advantage of 

preserving conservation properties, which is extremely desirable for engineering 

applications where overall balance of mass, momentum and other quantities are often 

of prime importance. 

Naturally, the grid to be used for the discretization, in other words, the computational 

domain is very important. In context of this thesis, physical domain of the real 

problem is transformed into a rectangular computational domain every time as shown 

in figure 3.1. In the figure, the crosses are the boundaries of the control volumes and 

the dots placed in the center of those four crosses surrounding the control volume are 

the computation points (grid points) of the dependent variables. The x direction in 

the physical domain is replaced by   in the computational domain; and y by  .  

In the computational domain, the distances between the grid points are denoted by 

  and  in   and  directions respectively. Meanwhile,   and   denote 

distance between the faces of the control volumes. As it will be seen further in this 

chapter, these four quantities,  ,  ,  ,  appear in the discretized 

transformed equations. Therefore, in order to simplify calculations, it would be 

appropriate to assign them all to be equal to unity no matter what their corresponding 

values in the physical domain are.  
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One other specific property of the grid for this study is the use of ghost cells at the 

boundaries. In figure 3.1, the solid lines symbolize the corresponding physical 

borders on the computational plane. And in a way, the crosses are the centers of the 

volumes created by the dashed lines of the computation points. The special case here 

is that the dashed lines and therefore the dots located at the very outer edge of the 

computational domain have no meaning on physical plane. They are completely 

imaginary. They are given the proper values, taking the physical boundaries into 

consideration, and they help simplify things in the boundaries as they cancel “half” 

control-volumes that would exist otherwise. 

 

Figure 3.1: Computational Space 

 

Last of all, the grid used in this thesis is arranged in a non-staggered way. That is, the 

dependent variables are all stored at the same grid points. The uppercase letters P, E, 

W, N and S indicate the grid points whereas the lowercase letters e, w, n and s, 

indicate the cell faces relative to point P (figure 3.2). 

3.2 Discretization of the General Convection-Diffusion Equation 

The general convection-diffusion equation in curvilinear coordinates (eq. (2.2)) 

presented in section 2.1 can be written with a little difference like this: 
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                                                                
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                                                                                            

 

 

 

Figure 3.2: Grid Arrangement 

 

The difference here is that contravariant velocity fluxes that are defined before in 

section 2.1 are used directly in the convection terms. Other coefficients are the same 

as before. 

The discretization form of this general governing equation can be obtained by 

integrating equation (3.1) over the control volume on the    plane.  
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where   denotes the control volume. Now, applying the Green theorem, equation 

(3.2) is given the following form: 
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In the above equation, “cs” denotes the surface of the given volume  . Now, if this 

equation is discretized over the control-volume cell in the computational space 

shown in figure 3.1 and the line integrals are taken accordingly, 
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Here, the quantities,  and   in the diffusion terms represent the derivatives of the 

dependent variable in   and  directions respectively and they can be determined 

using central differencing scheme such as: 
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After these arrangements are done for all the other derivatives accordingly and after 

assigning the value of unity to ,  ,  ,   terms from this point on, in order to 

simplify the calculations,  

uation (3.4) becomes: 
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Defining new variables, equation (3.7) can be expressed in a compact form, such as: 
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In the equation above, C’s represent the convection coefficients, D’s represent the 

diffusion coefficients and Se, Sw, Sn and Ss represent the additional source terms due 

to non-orthogonality of the coordinate system. And they are defined as follows in 

open form: 

 

Convection coefficients: 

 

   
efee UJGC  1                (3.9a) 

   
wfww UJGC  1               (3.9b) 

   
nfnn VJGC  2                (3.9c) 

   
sfss VJGC  2                (3.9d) 

 

Diffusion coefficients: 

 

 ee JD 1               (3.10a) 

 ww JD 1              (3.10b) 

 nn JD 1              (3.10c) 

 ss JD 1              (3.10d) 

Additional source terms due to non-orthogonality: 

 

 
ee JS 1
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 
ww JS 1

1                         (3.11b) 

 
nn JS 1

1              (3.11c) 

 
ss JS 1

1               (3.11d) 

 

The dependent variables at the north-east, north-west, south-east and south-west of P, 

are expressed as the average of the four surrounding nodes as follows: 

 NENEPne  
4

1
            (3.12a) 

 SESEPse  
4

1
            (3.12b) 
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 NWNWPnw  
4

1
            (3.12c) 

 SWSWPsw  
4

1
            (3.12d) 

 

Once again, equation (3.8) can be written in a more compact form by grouping all the 

source terms under one title such as: 

 

        JSSSSSS swsesnwnenswnwwseneet   .          (3.13) 

 

and by grouping each cell’s dependent variables seperately: 
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3.2.1 Discretization of the convection terms  

Discretization of the convective terms is of great importance for the accuracy and 

stability of the numerical computations. The discretization scheme to be used has to 

have some fundamental properties such as conservativeness, boundedness and 

transportiveness (Malalasekera, 1995).  

The discretization scheme used in this thesis is Hybrid scheme of Spalding (1972) 

based on a combination of central and upwind differencing schemes. A non-

dimensional number called the Peclet number is defined as a measure of the relative 

strengths of convection and diffusion and it is evaluated at the face of the control 

volume: 

 

termsdiffusion
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for example for an east face: 
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Central differencing scheme, which is accurate to second-order, is employed for 

small Peclet numbers ( 2Pe ) and upwind scheme, which is accurate for first order 

but accounts for the direction of the flow (transportiveness), is employed for large 

Peclet numbers ( 2Pe ). After the discretization of the convection terms is 

accomplished, the resulting algebraic equation is: 

 

tPSSNNWWEEPP SAAAAA .              (3.16) 
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JSAAAAA PSNWEP             (3.17c) 

 

a part of the source term is added to PA by linearizing it: 

 

PPttP JSSS   ..                (3.18) 

 

where PS  must be negative. 
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4 CONTINUITY AND PRESSURE CORRECTION EQUATIONS 

In this chapter, first, the discretization equations for contravariant velocity fluxes fU  

and fV  will be derived from the discretization equations for Cartesian velocity 

components. Then from these equations, with the dependent variables being the 

contravariant velocity fluxes, the pressure correction equations will be derived. 

Meanwhile, discretization equation for continuity equation will also be presented. 

And finally, momentum interpolation method against the problems with pressure-

velocity coupling and the occurrence of oscillations in the pressure is given. 

4.1 Momentum Equations for Contravariant Velocity Fluxes 

If the Cartesian velocity components, u and v are introduced into eq.(3.16), and 

pressure term is taken out of the source term, momentum equations are obtained: 

 

    tPuSNWESSNNWWEEPP SppyppyuAuAuAuAuA .
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         (4.1) 

    tPvSNWESSNNWWEEPP SppxppxvAvAvAvAvA .
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                   (4.2) 

 

Except for the source terms, the corresponding coefficients are identical in these two 

equations.  

Now, the discretization equation for fU  can be obtained by multiplying eq. (4.1) by 

Py )(   and eq. (4.2) by Px )(   and adding them up. When done so, the resulting 

equation has velocity components parallel to PfU )(  on the right side and they are 

EfU )( 0
, WfU )( 0

, NfU )( 0
 and SfU )( 0

 . However this is not a desired result as the two 
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sides of the equation has got different variables. Therefore, the “actual” neighbors of 

point P are introduced and the equation gets the following form:  

 

    U

CURV

U

PSNWE

SfSNfNWfWEfEPfP

SSpppp

UAUAUAUAUA





1
2

1

2

1

)()()()()(


                       (4.3) 

 

where: 

 

  and 1  are defined before in section 2.1 
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EPEPE vxuyU )()(0

                 (4.5a) 

WPWPW vxuyU )()(0

                 (4.5b) 

NPNPN vxuyU )()(0

                 (4.5c) 

SPSPS vxuyU )()(0

                 (4.5d) 

 

Similarly, the discretization equation for fV  can be obtained by multiplying eq.(4.1) 

by Py )(   and eq.(4.2) by Px )(   

 

The final resulting discretization equation is: 
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where 

 

represents the curvature effects 
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tPutPv

V
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and  
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                 (4.8a) 

WPWPW uyvxV )()(0

                 (4.8b) 

NPNPN uyvxV )()(0

                 (4.8c) 

SPSPS uyvxV )()(0

                 (4.8d) 

 

Finally, the discretization equation for continuity can be obtained from eq.(3.4) by 

setting 1  and 0S  : 

 

0)()()()(  sfnfwfef VVUU                (4.9) 

4.2 Pressure Correction Equation 

The need for a correction equation stems from the fact that the velocity field obtained 

by solving the momentum equations (4.3) and (4.6) do not satisfy the continuity 

equation. As the starting point of the SIMPLE or SIMPLEC calculation processes, 

the velocity flux results obtained from the momentum equations are accepted to be 

the outcomes of a guessed pressure field, p* and they are represented by 
*

fU  and 
*

fV : 
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                 (4.11) 

where nb stands for the neighboring points of P. 

Now, correct values must be defined as the sum of a guessed and a correction part: 
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ppp  *               (4.12a) 

 uuu  *               (4.12b) 

 vvv  *               (4.12c) 

 

Subtracting eq.(4.10) from eq.(4.3) and eq.(4.11) from eq.(4.6), and using the 

correction formulae (4.12a-4.12c), we obtain: 

 

   SNWEnbfnbPfP ppppUAUA   1
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   SNWEnbfnbPfP ppppVAVA   
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At this, point, there comes the difference in SIMPLE (Patankar and Spalding, 

1972) and SIMPLEC (Van Doormall and Raithby, 1984) algorithms. In the 

SIMPLE algorithm, the terms  
nbfnb UA )(  and  

nbfnb VA )(  are omitted. This is 

the main approximation of the SIMPLE algorithm and the logic behind is that these 

terms will be zero when convergence is reached. On the other hand, in the SIMPLEC 

algorithm, the terms  
Pfnb UA )(  and  

Pfnb VA )(  are first subtracted from 

eqns.(4.13) and (4.14), respectively. Then the new terms, 

 
Pfnbnbfnb UAUA )()(  and  

Pfnbnbfnb VAVA )()(  are dropped from this 

newly created equation. As these new terms are much smaller than the terms dropped 

in the SIMPLE algorithm, )( fU   and )( fV  are much less affected in the SIMPLEC 

algorithm. Hence, SIMPLEC algorithm is more reasonable than SIMPLE algorithm.  
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SIMPLE algorithm: 

 

P

P
A

b
1

                 (4.17) 

 

SIMPLEC algorithm: 

 




nbP

P
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b
1

               (4.18) 

 

Yet, in the SIMPLEC, there is the possibility of the denominator to be zero during 

the iterations. In order to overcome this problem, an underrelaxation factor is used in 

the discretization equation. So, eq. (3.14) is expressed as: 

 

)1(

. )1( 
n

P
P

tPnbnbP
P
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A
urfSA
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A
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here, urf   is the underrelaxation factor. )1( n

P  is the value from the previous iteration. 

With this adjustment, repeating the same procedure bp for SIMPLEC algorithm can 

be expressed as follows: 

 


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nbP

P
AurfA

b
1

              (4.20) 

 

Now, the equations (4.15) and (4.16) are to be inserted into the continuity equation. 

But to avoid solving the pressure correction equation for 9 points (P, N, S, E, W, NE, 

NW, SE, and SW), the non-orthogonality terms are neglected. Thus, eqns. (4.15) and 

(4.16) turn into: 
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So now, the equations (4.21) and (4.22) are inserted into the continuity equation, 

eq.(4.9):  

 

     
  0)*()*()*()*()()()(
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                 (4.23) 

 

rearranging equation (4.23): 

 

PSSNNWWEEPP mpApApApApA             (4.24) 

 

where 
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and  

 

sfnfwfefP VVUUm )*()*()*()*(             (4.25f) 

 

After the pressure correction equation is solved, velocities are corrected using 

equations (4.12b) and (4.12c) whereas the pressure is corrected using the equation 

below: 

 

purfpp p
 .*                (4.26) 

where purf  is the underrelaxation factor for pressure.  
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4.3 Momentum Interpolation Method 

As it is the non-staggered arrangement that is being used in this study, the non-

physical oscillation or so-called red-black checkerboard splitting of the pressure field 

problem that was mentioned in the first chapter has to be taken care of. In order to do 

this, the modified version of Rhie and Chow (1983) momentum interpolation 

method will be used (Miller and Schmidt, 1988) to calculate the cell face velocity 

fluxes. 

The discretization equations for fU  and fV  will be used to derive the formulation of 

the pressure weighted interpolation method (PWIM) or so called momentum 

interpolation method. Recalling once again eq. (4.3), below will be given the details 

using fU only and for fV , the resulting equation will be given at the end: 
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At this point, the coefficients of the SIMPLE or SIMPLEC algorithm is used and the 

equation is expressed in an appearance similar to the pressure correction equation, 

the coefficients, bP’s being defined by eq.(4.17) and (4.20): 
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where: 
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PnbfnbPPPU SSUAbH
f

             (4.29) 

 

However, to simplify things, the cross derivatives of pressure are neglected as in 

pressure correction equation. Only the influence of  -derivatives of pressure on fU  

and the  -derivatives on fV  are taken into account. With these considerations, 

eq.(4.28) becomes: 
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where 

 

PPPP bB )(                 (4.31) 

 

If equation (4.30) is written for point E (figure 3.2), it gets the following shape: 
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Now if we use this equation form to express the mainly concentrated term, that is, the 

velocity flux at the east cell face: 

 

  PEeeUef ppBHU
f

 )()(              (4.33) 

 

At this point, a linearization assumption is introduced to estimate the term, eU f
H )(  

as follows: 

 

PUEUeU fff
HfHfH ))(1()()(               (4.34) 

where f
+
 is the geometric interpolation factor and is defined in terms of the distance 

between nodal points: 

 

)/( eEPePef                 (4.35) 

 

In the equation above, those terms symbolize the distance between those letters 

(points) and since in the computational domain, those three distances are equal to 

each other   

 

f
+
=1/2  (for the grid used in this study)            (4.36) 

 

Now, inserting eq. (4.34) into eq. (4.33) and combining this new equation with eqns. 

(4.30) and (4.32), we get: 

 



 35 

     

  WEPP

PEEEEPEeePfEfef

ppB

ppBppBUUU









4

1

4

1
)(

2

1
)(

2

1
)(

        (4.37) 

 

Similarly, the value of )( fV  at the cell face n (north) can be obtained: 
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        (4.38) 

 

where as an illustration, 

 

PPPP bC )(                (4.39) 

 

Equations (4.37) and (4.38) are used to evaluate the velocity fluxes at the cell faces. 

In these equations, if the coefficients, PE BB ,  and PN CC ,  are considered to be 

approximately equal to eB  and nC  respectively, then equations (4.37) and (4.38) will 

return back to the expressions of the original Rhie and Chow’s scheme.  

4.4 Overall Solution Procedure 

Now that all the governing equations are examined in detail, it is appropriate to give 

the procedure of the solution algorithm used in the computer code step by step: 

 

1) Physical properties of the flow and some coefficients defining the solution 

algorithm like the under relaxation factors are read from an input file. 

2) Grid input file prepared in TECPLOT form is read and the grid points are 

labeled in i, j order. 

3) Jacobian and other metric terms of the transformations are computed. 

4) Initial conditions of the flow are imposed. 

5) Turbulent viscosity, μt is computed according to the turbulence model chosen. 

6) Contra-variant velocity components are computed at the cell faces using the 

initialized velocity components. 
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7) u-momentum discretization equation is solved to obtain the Cartesian velocity 

component in x-direction. 

8) v-momentum discretization equation is solved to obtain the Cartesian velocity 

component in y-direction. 

9) Contra-variant velocity components at the cell faces are updated by using the 

momentum interpolation method 

10)  Pressure correction equation is solved 

11) Pressure and velocity fields are updated 

12) Turbulence kinetic energy equation is solved. 

13)  Turbulence dissipation rate (or specific dissipation rate if  the turbulence 

model is k-ω) is solved. 

14)  Turbulent viscosity, μt is computed according to the turbulence model 

chosen. 

15) Steps 7-14 are repeated until convergence is reached. 
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5 VALIDATION CASES 

In this chapter, two cases of which experimental datas are available will be used to 

validate the computer code written for this thesis. Different turbulent models 

implemented in the code will be compared in performance according to their 

response in these cases.  

The two cases chosen to be used for validation are: 

1) Flow through an asymmetric diffuser 

2) 2D hill flow 

In both cases, there is separation in the flow which is a challenging situation for the 

computational models. But the first case is a more critical case where the Reynolds 

number is around 20000 and where it is harder to capture the separation. Conversely, 

in the second case, the Reynolds number is around 60000 and it is easier to capture 

the separation. 

5.1 Flow Through an Asymmetric Diffuser 

This validation case is one of the test cases (test case 8.2) of the 8
th

 

ERCOFTAC/IAHR/COST Workshop on Refined Turbulence Modeling, June 17-18, 

1999, HUT, Finland. And the results and the experimental datas of this test case are 

available on the web page: 

http://tmdb.ws.tn.tudelft.nl/workshop8/case8_2/case8_2.html 

There are three important physical features in this flow, which must be taken into 

account while handling it numerically: Firstly, there is the fully developed turbulent 

boundary layer at the inlet with a Reynolds number of 20000 based on the centerline 

velocity and the channel height. Secondly, there is a smooth-wall separation de to an 

adverse pressure gradient and prediction of the separation point and the extent of the 

recirculation region is particularly challenging for computational models. Finally, 

there is the reattachment and redevelopment of the boundary layer at downstream.  

http://tmdb.ws.tn.tudelft.nl/workshop8/case8_2/case8_2.html
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Figure 5.1: Configuration of the Diffuser 

 

5.1.1 Boundary conditions 

Inlet 

As mentioned above, a fully-developed turbulent velocity profile is used at the 

inlet (figure 5.2). But the important point here is that the inlet distance, that is, the 

distance from the inlet to the starting point of the diffuser should be sufficiently long 

(x/H<-5.87) so that the velocity profile is not affected.  

 U is interpolated from the experimental data 

 k is computed using the interpolated values of the Reynolds stresses 

available in the experimental data such as:  22 221 vuk   

 ε is computed as , 
l

k
C

23
43

   for k-ε models and ω is computed as, 

l

k
41*

21

)(
   for k-ω  where Ll 07.0   and L is the characteristic length. 

 

 

Figure 5.2: Inlet U Velocity Profile for the Asymmetric Diffuser 
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Outlet 

The outlet boundary should be at least at x/H=74 so that one may specify zero-

gradient conditions for all the variables.  

 

Upper and Lower Boundaries 

The upper and lower boundaries are walls and are treated accordingly in each 

turbulence model as explained in chapter 2.  

5.1.2 Meshes 

Two different meshes have been used: fine mesh (265*97) for low Reynolds number 

k-ε models and k-ω models, coarser mesh (265*53) for k-ε model with wall 

functions. For the fine mesh, the grid is highly refined close to the walls since the 

viscous sub-layer has to be solved. Especially for k-ω models, there should be at 

least 6-7 nodes in the viscous sublayer (y
+
<2.5). And for the wall function meshes, 

the first grid point has to be in the logarithmic layer 10030  y , so the first grid 

line is placed manually(figure (5.4e)), and then the refinement near the wall is 

started. Below can be seen the  two meshes in several views: 

5.1.3 Results  

There are 7 test points to be used for validation: 1)x/H=5.98, 2)x/H=13.56, 

3)x/H=16.93, 4)x/H=20.32, 5)x/H=27.09, 6)x/H=30.48 and 7)x/H=53.39 

 

Figure 5.3: Test Points for Asymmetric Diffuser 

 

 

  

a) Low-Re k-ε and k-ω Mesh 
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b) k-ε with Wall-Functions Mesh 

 

c) Low Re k-ε and k-ω Mesh, Closer Look 

 

d) ) k-ε with Wall-Functions Mesh, Closer Look 

 

e) k-ε with Wall-Function Mesh, Near Wall 

 

Figure 5.4: Meshes for Asymmetric Diffuser 

 

Here are the mean flow U velocities at the seven test points computed by k-ω88, k-

ω98 and k-ε wall-function models and their comparison with the experimental results 

shown by black dots: 

 

     

                     (a) x/H = 5.98         (b) x/H = 13.56 
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                 (c) x/H = 16.93                                                       (d) x/H = 20.32 

 

 

                     (e) x/H = 27.09     (f) x/H = 30.42 

 

(g) x/H = 53.39 

 

Figure 5.5: Numerical and Experimental Results of U Velocities at Various 

Positions of the Diffuser 
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The experimental results are available in dimensionless form by the height of the 

inlet H and the inlet bulk-velocity Ub. In the numerical computations, H and Ub are 

both accepted to be equal to 1.  

5.1.4 Discussion 

Numerical computation was made for 4 different turbulence models presented in 

chapter 2; namely k-ω models of Wilcox in 1988 and 1998, low Reynolds k-ε model 

and k-ε model with wall functions. As for the two k-ω models and the low Reynolds 

number k-ε model, there is viscous sublayer integration in the near wall region which 

makes the iterating procedure very unstable. Therefore for these three problems all 

the underrelaxation factors are kept to be very small; around 0.15 and the number of 

the iterations are very high (70000).  But for the k-ε model with wall functions, there 

is not such a danger of instability. So the underrelaxation factors are higher and the 

number of iterations is much lower. In figure (5.6) the histories of the iterations can 

be seen. However, it should be mentioned here that with low Reynolds model of k-ε, 

the residuals could not be reduced to an acceptable level. So that model’s results are 

not considered here.  

 

 

              (a) k-ω 1988       (b) k-ω 1998 

 

(c) k-ε (wall-func.) 

Figure 5.6: Convergence Histories of the Models for Asymmetric Diffuser Problem 
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In the figure above, it is clearly seen that there are great oscillations in the 

convergence history of the component, ω. These oscillations show that it is always 

the dissipation term in the turbulence models that cause the biggest troubles and that 

are harder to approximate. Now, with these convergence histories in mind, the results 

can be commented: 

 The best results are those of k-ω model 1998. This case is one of the 

critical examples where it is hard to capture the recirculation region in the 

flow. k-ε wall function model is not able to capture it anywhere in the 

flow.  

In the k-ω model 1988 backflow can be realized in very small regions near 

the wall and the results are still not very good compared to the 

experimental results. However in k-ω model 1998, results agree with the 

experiments in the recirculation region. 

 Apart from the recirculation region, for example in the 1
st
 and the 7

th
 test 

points, k-ε model with wall-function agrees not so badly with the 

experimental results. Especially at the 7
th

 test point where the flow is being 

fully developed again it is the k-ε model with wall-function that agrees 

best with the experimental results. And this shows that k-ε model handles 

the regions away from the wall (free shear regions) better than the k-ω 

model whereas the k-ω model is far more accurate for boundary layers 

especially when there is separation.  

In appendix A, previous numerical results of this case with the same turbulence 

models used in this thesis can also be found so as to make a comparison in the 

numerical performance of the code too. And it is concluded that the numerical results 

obtained here are completely the same as those previous ones.  

5.2 2D Hill Flow 

This test case has been presented before at ERCOFTAC Workshop on Data Bases 

and Testing of Calculation Methods for Turbulent Flows, April 3-7, 1995, University 

of Karlsruhe, Karlsruhe, Germany (test case 2a, 2D Hill Flow).  And the 

experimental data is available at the web page: 

http://cfd.me.umist.ac.uk 

http://cfd.me.umist.ac.uk/
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Figure 5.7: Configuration of the Hill 

 

As seen in the figure above, the flow configuration consists of a channel with a hill, 

located on the bottom of the channel. The most important feature of the flow is that, 

there is separation after the top of the hill and so a recirculation region. In this second 

test case, Reynolds number is higher than the first one and it is 60000 based on the 

centerline mean velocity at inlet, U0 = 2.147. With the effect of this high Reynolds 

number, it is not such a critical case as the previous case and it easier for the models 

to capture the properties of the flow.  

5.2.1 Boundary conditions 

Inlet 

 

A fully-developed channel flow is used as the inlet boundary condition and it is taken 

from the experimental data. This time there is both u and v velocity components at 

the inlet and they are interpolated according to the grid used in the computer code. 

The methodology to compute the other inlet variables are completely the same as 

explained in section 5.1.1 except the inlet turbulence kinetic energy. This time, as all 

the three components of the Reynolds stress are available, it is computed as: 

 22221 wvuk  . 

 

Outlet 

 

Fully-developed flow assumption is made and all the gradients are assigned to be 

zero. But in order to satisfy this assumption, the length of the channel is kept long as 

advised in the experimental study.  
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Upper and Lower Boundaries 

 

The upper and lower boundaries are walls and are treated accordingly in each 

turbulence model as explained in chapter 2.  

5.2.2 Meshes 

Again two different meshes have been used. The number of nodes in the x-direction 

is same in both meshes. However, in y-direction, there are more nodes in the meshes 

for low-Re k-ε model and the two k-ω models (226*161) than for k-ε model with 

wall functions (229*83). For the nodes in the near wall region, same considerations 

expressed in section 5.1.2 also hold here.  

 

 

a) low-Re k-ε and k-ω mesh 

 

 

 

b) k-ε with wall-functions mesh 
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c) low Re k-ε and k-ω mesh, closer look    d) ) k-ε with wall-functions mesh, closer 

look 

 

e) k-ε with wall-function mesh, near wall 

 

Figure 5.8: Meshes for 2D Hill  

5.2.3 Results 

7 test points have been used for validation: 1)x = -50 mm. 2)x = 0 mm. 2)x = 30 mm. 

4)x = 50 mm. 5) x = 90 mm 6)x = 134 mm. 7)x = 300 mm.  

 

Figure 5.9: Test Points for 2D Hill 
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Here are the mean flow U velocities at the seven test points computed by k-ω88, k-

ω98 and k-ε wall-function models and their comparison with the experimental results 

shown by black dots: 

           

                     (a) x = -50 mm.               (b) x = 0 mm 

           

                   (c) x = 30 mm.              (d) x = 50 mm. 

           

                 (e) x = 90 mm.      (f) x = 134 mm 
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(g) x = 300 mm. 

 

Figure 5.10: Numerical and Experimental Results of U Velocities at Various 

Positions of the Hill Problem 

The experimental results are available in dimensionless form by the height of the hill 

hmax and the mean centerline velocity at the inlet U0. So results obtained numerically 

also have been made dimensionless the same way. 

5.2.4 Discussion 

In this test case again, for the low-RE k-ε model, convergence could not been 

reached. Therefore, the results for the two k-ω models, k-ω 1988, k-ω 1998 and k-ε 

model with wall functions will be discussed. The explanation made about the 

underrelaxation factors and the corresponding iteration numbers are valid here, too. 

 

                  

 

                (a) k-ω 1988                                                                       (b) k-ω 1998 
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(c) k-ε (wall func.) 

 

Figure 5.11: Convergence Histories of the Models for 2D Hill Problem 

 

Again, as an outcome of the integration through the viscous sublayer and the 

instability caused by it, big oscillations are observed in the ω, specific dissipation. 

The most distinguishing property for this test case when compared with the previous 

one is that the Reynolds number is very high; 60000. As a result, not only the k-ω 

models but also k-ε model with wall functions was able to capture the recirculation 

zone (figure 5.12). Observing only the horizontal velocity components, one cannot 

see large differences between the models. However, it is the separation point and the 

reattachment point now that makes the distinction among each model. 

 

                          (a) k- ω 1988                                                 (b) k-ω 1998 
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(c) k-ε (wall func.) 

Figure 5.12: Streamline Plots of the Recirculation Zone for 2D Hill Problem 

 

If the beginning and the end of the recirculation zone is considered, k-ε model with 

wall functions gives the best results for the separation point and the reattachment 

point. Wilcox’s k-ω models on the other hand, predict bigger recirculation zones. 

However if one makes a comparison among them, the 1988 model’s results are 

better. The 1998 model’s recirculation zone starts the earliest and ends the latest 

among all. 

 

Table 5.1: Separation and Reattachment Points Predicted by the Three Models and 

Obtained by the Experiments 

 

 Separation Point Reattachment Point 

 x(mm) x (mm) 

k-ε (wall func.) 12.26 136.6 

k- ω 1988 8.1 151 

k- ω 1998 7.67 159 

Experiments 12 135 
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6 CONCLUSION 

The main concern of this study is the numerical computation of turbulence flow in 

complex geometries using a structured grid arrangement and two example cases were 

handled at the end of the thesis to be able to compare the performance of the 

computer code written and the turbulence models implemented. The example cases 

were the flow through an asymmetric diffuser and a 2D hill flow.  

Three turbulence models have been implemented successfully: k-ω models of 

Wilcox that he has developed in 1988 and 1998 and the standard k-ε model with wall 

functions. Low Reynolds number k-ε model of Lam and Bremhorst is also available 

in the code but convergence has not been achieved for that model in this study.  

The two different cases mentioned above were chosen on purpose in order to 

illustrate the responses of the turbulence models to different situations. In the first 

example case, which is the flow through an asymmetric diffuser, Reynolds number is 

20000 and this number can be accepted to be a low Reynolds in turbulence flows 

where the viscous effects are very important especially in the regions close to the 

wall. Then again, in the 2D hill flow problem, Reynolds number is 60000 and it is 

accepted to be a high Reynolds number where inertia dominates the flow. As an 

important thing to mention, there is this common asset in both flows that there is 

separation and consequently a recirculation region in both which is a challenging 

condition for computational models.  

Regarding this background information, the following conclusions can be made: 

 In the diffuser case, the standard k-ε model could not capture the recirculation 

region at all because the model is unable to solve the viscous effects in the 

near wall region which is a very important aspect in this specific case.  

 In the diffuser case, both of the k-ω models were able to capture the 

recirculation region. However, with the improvements in the coefficients of 

dissipation terms in the turbulence equations, the 1998 model gave better 

results than the 1988 model.  
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 None of the models was able to predict the redeveloped flow close to the 

outlet in the diffuser, well. But the standard k-ε model’s results were the best 

qualitatively. It can be said that outside the recirculation region and away 

from the solid boundaries, its performance is better than the k-ω model. 

 In comparison with the diffuser case, in the 2D hill case the viscous effects 

are not that important as the Reynolds number is very high. Therefore, all the 

turbulence models capture the recirculation region. 

 For the separation point and for the reattachment point in the 2D hill case, 

standard k-ε model gives the closest results to that of the experiments. And 

among the two k- ω models, it is the 1988 k-ω model that gives better results. 

1998 k-ω predicts the earliest separation point and the latest reattachment 

point. From this outcome, it can be concluded that in this new version of  k-

ω, the changes made to take the viscous effects into account, also made the 

model lose some performance for high Reynolds number flows.  

Finally, as a recommendation for further studies: 

 The underrelaxation factors have an huge effect on the solution. Therefore 

one has to be very careful in determining them. Too small underrelaxation 

factor may lead to too much computation time. On the contrary, if the 

underrelaxation factor is too big, it may lead the iterations to divergence 

especially in instable models that consist of viscous sublayer integration. 

 Mesh also affects the solution a lot. Particularly, great importance should be 

given the first node next to the solid boundaries according to the turbulence 

model used. 

 Different turbulence models can be implemented such as k-ω SST, which is a 

combination of k-ε and k-ω and gives considerably improved results using 

the advantages of both models in different regions of the flow.  
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APPENDIX A 

The diffuser problem taken as a test case in this thesis has been solved before by 

other researchers numerically. The results of those studies using the turbulence 

models that have been also used in this thesis will be presented here.  

 

     
                   (a)                                             (b)                                       (c) 

Figure A.1: Previous Numerical Results of U Velocity Profiles of the Diffuser at     

x /H = 5.98; (a) k-ε, (b) k-ω 1988, (c) k-ω 1998 

 

              
                  (a)            (b)     (c) 

Figure A.2: Previous Numerical Results of U Velocity Profiles of the Diffuser at     

x /H = 13.56; (a) k-ε, (b) k-ω 1988, (c) k-ω 1998 
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                      (a)            (b)           (c) 

Figure A.3: Previous Numerical Results of U Velocity Profiles of the Diffuser at     

x /H = 16.93; (a) k-ε, (b) k-ω 1988, (c) k-ω 1998 

             

                      (a)            (b)           (c) 

Figure A.4: Previous Numerical Results of U Velocity Profiles of the Diffuser at     

x /H = 20.32; (a) k-ε, (b) k-ω 1988, (c) k-ω 1998 

 

 
                      (a)            (b)           (c) 

Figure A.5: Previous Numerical Results of U Velocity Profiles of the Diffuser at     

x /H = 27.09; (a) k-ε, (b) k-ω 1988, (c) k-ω 1998 
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                      (a)            (b)           (c) 

Figure A.6: Previous Numerical Results of U Velocity Profiles of the Diffuser at     

x /H = 30.48; (a) k-ε, (b) k-ω 1988, (c) k-ω 1998 

 

     
                      (a)            (b)           (c) 

Figure A.7: Previous Numerical Results of U Velocity Profiles of the Diffuser at     

x /H = 53.39; (a) k-ε, (b) k-ω 1988, (c) k-ω 1998 
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APPENDIX B 

For the test cases used in this study, while deciding upon the number of meshes, the 

previous numerical studies were used as reference. Yet, those reference numbers 

were changed slightly sometimes by running the code several times and checking the 

results. With this kind of studies, it was made certain that the results were free from 

grid dependency. In the main part of the code, this study was not shown for every 

single solution. Instead, an example will be given here for one case: the solution of 

the 2D hill problem with k-ε using wall functions. 

This problem was tried using 3 different numbers of meshes: a) 282x103, b) 226x83 

and c) 170x63. However as it is very important to locate the first node inside the log 

layer in this turbulence model, for all the meshes, the first node series above the 

walls are located manually, and they are the same. 

In the end, it was decided that using a 170x63 mesh is enough and it gives the best 

results (a smaller mesh was tried and it was detected to make the iterations diverge). 

Below are the results of this grid independency study: 

 

                      
 

                      x = -50 mm.                                                            x = 0 mm. 
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                      x = 30 mm.                                                              x = 50 mm. 

                     
 

                     x = 90 mm.                                                              x = 134 mm. 

 

 
 

x = 300 mm. 

 

Figure B.1: Grid Dependency Results of the 2D Hill Problem using k-ε Model with 

Wall Functions 
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