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STEADY-STATE AEROELASTIC ANALYSIS AND NUMERICAL DESIGN 
OPTIMIZATION OF AIRCRAFT STRUCTURES 

SUMMARY 

Recent advances in aeroelasticity led to multidisciplinary optimization techniques 
being employed in the field widely. In this work, a generic aircraft wing has been 
optimized to find the optimum thicknesses of structural members by using 
commercial codes. Using a commercial software, which utilizes a gradient based 
algorithm to find sensitivities, an optimal design set has been obtained. However, 
since the commercial software utilizes finite differencing scheme, it was concluded 
that analytical sensitivities can be used to decrease computational costs.  

To form a basis for an analytical sensitivity based optimization study, a benchmark 
wing configuration, AGARD 445.6, was selected from the literature and an academic 
code was used to perform a steady-state aeroelastic analysis of the wing. Finite 
element code was modified to support modelling the orthotropic wing and to provide 
a general finite element for sensitivity analysis. Modal structural and steady-state 
aerodynamic analyses were done to validate the structural and flow models. Finally, 
steady-state aeroelastic analysis was performed and the result was compared to the 
existing literature. It was concluded that results compared well. It is the aim of this 
study that the finite element added will be used to perform sensitivity computations 
as further study. 
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UÇAK YAPILARININ DAİMİ REJİMDE AEROELASTİK ANALİZİ VE 
SAYISAL TASARIM OPTİMİZASYONU 

ÖZET 

Aeroelastisite alanındaki son gelişmeler nedeni ile çok disiplinli sayısal optimizasyon 
teknikleri bu alanda genişçe uygulama olanağı bulmuştur. Bu çalışmada bir uçak 
kanadının yapısal elemanlarının en uygun kalınlık değerlerini elde etmek için 
optimizasyon yapılmıştır. Gradyan tabanlı algoritmaya sahip bir ticari yazılım 
kullanılarak oluşturulan metodoloji ile bu kanada ait optimum tasarım kümesi elde 
edilmiştir. Ancak yazılımın türevleri sonlu farklar yöntemi ile elde etmesi sebebiyle 
çözüm zamanının arttığı gözlenmiştir. Çalışmadan hesaplama zamanını azaltmak için 
analitik türevlere ihtiyaç duyulduğu anlaşılmıştır. 

 

Daha sonra yapılacak analitik hassaslık tabanlı bir optimizasyon çalışmasına temel 
oluşturmak için literatürden deneysel bir kanat konfigürasyonu olan AGARD 445.6 
seçilmiş ve bu kanadın statik aeroelastik analizini gerçekleştirmek amacı ile 
akademik yazılım kullanılmıştır. Kanat konfigürasyonunu modelleyebilmek için 
ortotropik sonlu eleman desteği yazılıma eklenmiştir. Yapı ve akış modellerini 
doğrulamak için ise yapısal modelin modal analizi ve akışkan modelinin daimi 
şartlarda analizleri gerçekleştirilmiştir. Son olarak statik aeroelastik analiz 
gerçekleştirilmiş, elde edilen sonuçların literatür ile uyumlu olduğu gözlenmiştir. Bu 
çalışmanın amacı eklenen sonlu elemanın ilerideki bir çalışmada malzemeye bağlı 
analitik türevlerinin alınarak sayısal optimizasyonun gerçekleştirilmesidir. 

. 
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1.  INTRODUCTION 

Aeroelasticity has rapidly become a major field in aircraft design. The nature of the 

aeroelastic problem requires high-fidelity software for solution which needs high 

computational capabilities. Moreover, recent advances in the numerical optimization 

techniques led to multidisciplinary optimization (MDO) studies increasing the need 

for computational power. In fluid-structure interaction (FSI) problems, nearly all of 

the MDO studies are reported in the field of aeroelasticity [49].  

1.1 Purpose and Outline of the Thesis 

One of the solutions to decrease the computational costs for MDO in aeroelasticity is 

to use gradient based optimization algorithms. These require semi-analytical 

differentiations where finite difference is used only if necessary.  

One of the purposes of this thesis is to perform a study based on gradient-based 

optimization algorithms. For this purpose, different packages of commercial software 

were used to numerically optimize a generic aircraft wing with a gradient based 

algorithm.  

Another purpose of this thesis is to form a framework for a CFD based MDO 

analysis. For this purpose, as a benchmark case, an experimental wing is chosen and 

a general finite element with orthotropic properties has been added to a readily 

available finite element code to model this wing. The future work of this thesis is to 

compute semi-analytical derivatives of material properties of the finite element w.r.t 

design variables. Before such a study is conducted, the finite element code written 

for this purpose and the aeroelastic model has to be validated. Thus, a steady-state 

aeroelastic analysis is performed to validate the benchmark model. 
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2.  REVIEW OF AEROELASTICITY AND MDO 

2.1 Review of Aeroelasticity 

In aircraft design, aeroelastic effects have been a major design driving factor for a 

long time. The field of aeroelasticity has witnessed the emergence of aeroelastic 

codes that use different methods to model fluid-structure interaction with better 

accuracy and efficiency. These methods show diversity since computational 

aeroelasticity (CAA) deals with coupling both the fluid and structure equations.  

Fluid-structure interaction problem formulation is modelled with respect to the 

problem. As the complexity in the physics of flow and mechanics increase, the 

equations that will be solved have to be coupled more efficiently and accurately. 

CAA focuses on coupling these equations to provide accurate results with minimal 

computational costs. This review makes use of some recently published surveys to 

show how CAA has changed in methodology. Additionally, prominent work of some 

authors in the field is examined. 

CAA has some intrinsic issues arising from its focus on coupling the equations of 

several different domains. A major problem is the transformation of physical data 

such as pressure and displacement field between the two domains. Another one is 

increased fidelity in flow physics that leads to complex formulations with high 

computational costs. Different methodologies are employed to tackle such problems. 

As stated by Smith and Hodges [1] and Kamakoti et. Al. [3], there are three methods 

of coupling the two physics. The rest of the terminology in present work is based on 

the context established by these authors. 

First of the coupling methods is the fully coupled one where governing equations of 

the fluid and structure domain is treated as a single set of equations and solved. 

Usually, structure is simply modelled as plates and beams with analytical equations 

while a fluid solver using Navier-Stokes equations is employed [1]. Since this 

method is considered computationally expensive, it is generally used for simple 2D 

geometries such as beam/plate like structures. 



4 

The first of these is the fully coupled method where the governing equations of the 

fluid and structure domain is written as a single set of equations and solved. Usually, 

the structural model is simple such as plates and beams while the fluid solver uses 

Navier-Stokes equations [1]. It is usually considered computationally expensive and 

generally used for 2D models (such as beams and plates). 

The second of these is the closely coupled method that is widely used. In this 

method, the transformation of the data between two domains is done at different 

modules and transformed at each step. The flow is usually solved using 

Euler/Navier-Stokes equations and the solid can be modelled using finite elements 

such as solids, beams, shells and plates. Since the coupling is done with the 

transformation of data at each iterative step, the fluid and structural models can be 

changed according to the model [1]. Closely coupled methods show diversity in 

approach according to the problem and there are numerous works published in the 

area. 

The last method is the loosely coupled one that is used only for simple problems such 

as subsonic flow over thin airfoils. The flow is modelled using velocity potential 

theory/ transonic small perturbation theory while the solid model is usually 

represented as modal shapes [3]. This method is still widely used in industrial 

applications as results can be obtained in a short time for even complex problems to 

get some early insight into the problem. 

Another difficulty arises when interpolating/extrapolating the data between models. 

Such a difficulty can be overcome with an algorithm selected from a number of 

efficient ones.  

This subject is reviewed extensively in [1], [2] and [3]. It can be said a number of 

efficient algorithms exist for certain types of problems such as multiquadratic 

biharmonic, spline matrix, geometric conservation law, linear 

interpolation/extrapolation.  

One more difficulty in treating aeroelastic problems is to find a convenient way to 

provide a robust solution for mesh motion. Large displacements can occur in highly 

elastic structures. This can be a problem when element quality is decreased or bad 

elements form which leads to failure of aeroelastic analysis [53]. This problem can 
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usually be overcome with treating the fluid mesh with rotational and/or translational 

springs so that mesh motion can be solved as a mechanical problem. 

Overall, the problems of computational aeroelasticity include the coupling of the 

fluid and structure domains, interpolation/extrapolation of transferable data and 

dynamic mesh generation. 

Huttsell and Schuster, et al. [2], evaluated some aeroelastic codes used to solve 

divergence, flutter, control surface buzz and a number of other aeroelastic problems.  

One of the codes is CAP-TSD which solves three dimensional transonic small 

disturbance potential flow equations (inviscid, compressible) for partial and complete 

aircraft configurations. The structure is modelled as thin plates and represented with 

modal shapes. No mesh movement is necessary so the code is computationally 

efficient. Another code is ENS3DAE which uses the Euler/Navier-Stokes equations 

to solve the fluid. It includes two different turbulence models and uses mode shapes 

to represent the structure. It incorporates dynamic mesh algorithms and is usually run 

on an 8-10 processor computer. The last one is CFL3DAE which also solves Navier-

Stokes equations and uses mode shapes that represent the structure linearly. The 

primary difference between CFL3DAE and ENS3DAE is that the first uses finite 

volumes as the second one uses central finite difference formulation. Several models 

including an aeroelastically tailored model, an F-15 flutter model and an AV8B wind 

tunnel model are employed to solve different problems (that has nonlinear 

behaviours) and evaluate the codes. The results obtained are in favor of CAP-TSD 

for simple geometrical and physical models. Otherwise, CFL3DAE is more robust 

since it has more recent mesh and turbulence formulation with a better algorithm. 

However, it is suggested the Euler/Navier-Stokes solution of the flow should be 

limited to static phenomena since it is computationally expensive for dynamical 

problems.  

Dowell, Carlson et al. [4] suggested two different reduced-order models for highly 

nonlinear aeroelastic problems. These methods are the proper orthogonal 

decomposition method which is analogues to structural modes and the harmonic 

balancing model which involves solving the Navier-Stokes or Euler equations 

without having to integrate time integrations to predict dynamic behaviour. The two 

models are solved for the flow over a cylinder and the results are compared. The 

results show good agreement with the experimental data. 
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Farhat [5] addresses some issues related to computational problems in aeroelasticity. 

He concluded that the stability of arbitrary Lagrangean/Eulerian formulation of 

Navier-Stokes or Euler equations is proved and a mature way to represent dynamic 

meshes. It is also suggested that the spring method or corotational method is used as 

mesh deformation algorithms. The AERO code which is presented as an example of 

the mentioned accomplishments proved to solve a complete aircraft configuration 

giving valuable insight to aeroelastic problems.  

In their study, Gordnier et al. [6], a nonlinear structural solver is coupled with a 

Navier-Stokes solver to model aeroelastic effects on an isotropic plate.  The finite 

element model is based on the von Karman plate equations for an isotropic plate and 

the mesh is of uniform elements with four nodes. The structural solver is first 

validated for both clamped and pinned models, then the aeroelastic problem of the 

plates are solved. It is stated that the results are in good agreement with experimental 

data.  

Lohner et al. [7] has addressed the coupling issue and suggested using ALE scheme 

for discretization of the fluid/structure domain and obtains efficient dynamic meshes. 

Attention is also directed to some drawbacks of the ALE formulation in certain 

cases.  

Massjung [8] used 2D Euler and von Karman equations for fluid and structure 

modelling respectively for solving flutter and bifurcation problems. The domains are 

discretized with a so called “energy budget of the continuous problem” method and 

predictor strategies and fixed-point iterations are employed for coupling. The method 

is validated for the aeroelasticity of a plate.  It is also shown that the discrete 

geometric conservation law for predicting the stability of dynamic grids proposed by 

Farhat and Lesoinne is in compliance with the energy method used. The results show 

that the convergence of the solution is directly dependent on the time step taken.  

Newman, et al. [9] has done a nonlinear aeroelastic wing analysis solving nonlinear 

Euler equations for subsonic, transonic and supersonic flows. The structure is 

modelled with tetrahedrons allowing complex geometries. A convergence criterion is 

established with “interaction analysis control” where the interaction between two 

domains is terminated when this criterion is satisfied. As a result, only 10% more 

time is required for solving when compared to static wing analysis. It is also noted 
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that unstructured solid mesh allowed observing the stress gradients along the 

structure which is impossible with modal representation.  

In Suleman et al. [10], modelled the structure with corotational finite element theory 

and a staggered algorithm (improved serial staggered) proposed by Farhat and 

Lesoinne is used. The results show that the corotational theory can predict the limit 

cycle oscillations that are related with geometric nonlinearities which otherwise is 

predicted as unstable behaviour when linear structural models are used.  

Liu et al. [11], performed the static aeroelastic computation for the AGARD wing. 

The structural model is represented as modal shapes and the flow is solved with 

Euler/Navier-Stokes equations. The interpolation between the moving grids is 

achieved with spline matrices. The original code used (ACES3D) is originally 

designed for solving dynamic behaviour so the code is modified so that time-accurate 

terms are ignored. This approach is disadvantageous if large deformations occur so a 

relaxation method is employed to make the solution converge for these geometries. 

The code partitions the flow domain into multiple blocks that are distributed over a 

number of parallel processors so that computational efficiency is maintained. The 

results show that only 10% more time is needed for static aeroelastic solution when 

compared to a rigid solution. The relaxation method proves to be useful to make the 

solution converge when the model endures large deformations. 

Guruswamy et al. [12], investigated the divergence speed and aileron reversal 

problems for a wing with a control surface. The flow is solved by using Reynolds 

averaged Navier-Stokes (RANS) formulation while the aeroelastic equations of 

motions is solved using Rayleigh-Ritz method which uses assumed modes to find 

aeroelastic displacements. The flow equations are solved by using an upwind 

differencing scheme. From the results, it is shown that in the transonic regime the 

Navier-Stokes equations could predict the aeroelastic behaviour well though a better 

turbulence model could lead to better predictions. 

Relvas and Suleman [13] employed the nonlinear corotational theory to account for 

large displacements and adopted the staggered aeroelastic procedure proposed by 

Farhat and Lesoinne [57] to solve the aeroelastic problem. 

An integrated solution method is proposed by Newmann and Newman et al. [14] 

such that the fluid and structure equations are solved separately and matched at 
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boundaries. The method is compared to domain decomposition methods which 

utilize several domains while the present approach only employs two domains (fluid 

and structure) and interfaces them at the boundaries of these two domains (i.e.: the 

surfaces of the structures). The structure and the flow are modelled with finite 

elements and the Euler equations. The aerodynamic forces are transferred at the 

boundaries of the domains by using lumped forces technique. The configuration is a 

full aspect ratio wing with a truss frame. Spring method is used to move the surface 

mesh. System convergence criterion is the rms of the wing surface deflections. The 

analysis is run for three different flow conditions including subsonic, transonic and 

supersonic and loss of lift is observed especially for the transonic case.  

Karpel  [15] solved dynamic equations for the modal representation of the structure 

by having the solution converge to steady state by introducing an artificial structural 

damping. The configuration is a rocket with fins at the back. Euler equations are 

solved for inviscid flow. Modal equations are used to overcome the singularity 

problem in a free-free configuration. The analysis is run for a stream speed of 3.5 

Mach and an angle of attack of 5 degrees. The results show that while the aeroelastic 

deflections can be neglected, the lift distribution and moment coefficient changes 

significantly.  

Schuster [16] performed the static aeroelastic analysis of an aeroelastically tailored 

wing. The aim is to predict vortices, shock waves, separated flow in an unsteady flow 

using Navier-Stokes equations. The code used includes its own grid generating 

technique which is called zonal grids. Either the influence coefficient or modal 

equations can be used to solve for static aeroelastic deflections. It is argued that 

though the influence coefficient model demands much more memory and storage 

(convergence requires more grid points) when compared to modal equations, the 

influence coefficient model gives more reliable results and worth the extra time. A 

simple algebraic method is used to deflect the grid. The pressure coefficients and 

aeroelastic deflections are calculated. The results show that the turbulence model 

(Baldwin-Lomax model) used predicts the flow separation location aft when 

compared to the experimental data. The pressure coefficients seem to correlate with 

the experimental pressure coefficients.  

In the study of Liu et al. [17], the closely coupled method utilizes multiple grids and 

multiple domains to predict static aeroelastic behaviour. The grids are interfaced 
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using the spline matrix interpolation method. The test case is a cantilevered wing 

(AGARD 445.6). The spring method is used to deflect the grids and the code is 

parallelized using domain decomposition. Modal equations are used to solve static 

deflections by using an artificial structural damping ratio that forces the system into 

steady state. The method proposed works in case of small deformations, but for large 

deformations a relaxation procedure is utilized to overcome convergence issues. Both 

the Euler and Navier-Stokes equations are used to solve the flow and the solutions 

are compared. Significant differences between the two solutions arose such as flow 

separation prediction, twist and pressure coefficients.  

In Guruswamy et al.’s [18] work an arrow-like experimental configuration is used for 

unsteady transonic static aeroelastic computations. Both rigid and flexible solutions 

are obtained and compared. The effect of flap deflection on the aeroelastic 

characteristics is considered. An artificial damping term is introduced to dynamic 

modal equations to converge the solution to steady state forcefully. The wing is 

modelled as a flat plate and aeroelastic deflections at various stations along the span 

and pressure distribution are evaluated. The results show that significant lift loss 

(compared to rigid solution) related with aeroelastic behaviour is observed. It is 

concluded that the computed solution correlates well with the experimental data. 

Guruswamy et al. in their study argued that the use of wing box structure made 

modal equations impractical since it would be difficult to find a mode shape 

compatible with the aeroelastic deflection of the structure that includes a wing box 

[19]. Instead finite element analysis is employed using different kind of elements. 

Further, the structure can have composite material properties which would be 

difficult to implement with modal representation. The in-plane motions of the 

membrane elements used to model panels are neglected, a so called static 

condensation method is used and chord wise rigidity is assumed to decrease 

computation time. Several schemes for transferring aerodynamic loads on the 

structure are proposed in the work. It is concluded that promising static aeroelastic 

results are obtained and the most important outcome of the work is assumed to be the 

usage of full finite element model which is advantageous since stress distribution is 

also obtained for the structure.  

Kamakoti et al. developed a pressure based solver for aeroelastic problems [20]. Full 

Navier-Stokes is solved for the AGARD 445.6 wing model and a membrane model 
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without compressibility effects.  The membrane structure is modelled using shell 

elements using hyperelastic Mooney’s law. Multiple grids are used to solve structure 

and fluid equations and the interfacing is done with linear interpolation and 

extrapolation. The domain is divided into blocks for parallelization and new methods 

such as numerical diffusion for convection and pressure terms are used. As the 

turbulence model, the widely used k-ε model is adopted. The aerodynamics is solved 

to obtain pressure on surface of the structure so that these values are converted to 

nodal forces acting on the structure. As in similar studies, the cross section of the 

AGARD wing is assumed to be rigid which leads to easy prediction of twist and span 

wise deflection. Pressure distribution and aeroelastic deflections are computed for 

both of the models.  

Farhat and Lieu [24] modelled the flow with proper orthogonal decomposition 

(POD) to reduce the order of magnitude of flow equations. By changing Mach 

number and angle of attack, effect of these changes on POD model was inspected. 

This reduced order model was applied to a full aircraft configuration. Good 

correlation is claimed between the full order analysis and the reduced order analysis 

in the transonic regime. 

In the last 20 years, significant advances have been gained in the field of 

aeroelasticity as seen from above studies. The first studies generally aimed at solving 

the flow around a rigid structure. (These studies were not included in the review.) 

With more computational power, the theory of the solvers shifted from the simple 

models such as transonic disturbance model to Euler and/or full Navier-Stokes 

equations with turbulence models. This leaded the way to predict complex flows with 

turbulence, flow separation, viscosity, compressibility etc. After these studies, the 

time had come to inspect the fluid-structure interaction. In the first years of the field, 

simple structural models were used to predict static elastic deflection. As more 

computational is gained in time, finite element analysis for complex structures 

became more favoured. Later on, the work was more focused on the problems of 

aeroelastic modelling such as the interfacing of the fluid and structure domains, 

faster algorithms for solving the flow and structure equations, algorithms for grid 

generation and deflection, grid generation for complex models.  

As the number of solvers increased, the need for experimental data arose to validate 

these codes. The result is the wind-tunnel models specifically designed to collect data 
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related with flow and aeroelastic behaviour. The most used and widely known ones 

are the AGARD 445.6 aeroelastic configuration, the aeroelastic research wing and an 

arrow-like configuration [21, 22, 23] . 

Table 2.1: Methodology Comparison in CAA  

Author CFD Solver Structural 
Solver 

Moving Mesh 
Algorithm 

Interfacing 
Method 

Cunningham 
et al (1988) 

[20] 
TSD Modal none None 

Robinson et 
al. 

(1991) [20] 
Euler Modal Spring Method None 

Lee-Rausch 
and 

Batina(1993) 

[20] 

Navier-Stokes Modal Spring Method None 

Soulaimani 
(2000) [20] FEM Based (Commercial) ALE None 

Liu, et al.   
(2000) [17] Euler FEA TFI Spline 

method 
Farhat and 
Lessoine 
(2000) [20] 

Navier-Stokes FEA ALE 
Conservative 

geometric 
law 

Kamakoti et. 
al. (2002) [20] Navier-Stokes Bernoulli-Euler 

Beam TFI 

Linear 
Interpolation 

& 
Extrapolation

Guruswamy 
et. al. 1994 [19] Navier-Stokes FEA Grid Generation 

Local 
Conservation 

Scheme 

Newmann et. 
al. 1999 [9] Euler FEA Spring Method 

Lumped 
forces 

technique 
Liu et. al 
(1993) [11] 

Euler or 
Navier-Stokes Modal Grid remeshing Spline 

Method 

Schuster et. al. 
1990 [16] 

Euler or 
Navier-Stokes 

Influence 
Coefficient or 

Modal 

Algebraic 
Shearing None 

Lieu and 
Farhat[24] 

Navier-Stokes 
with POD FEA ALE 

Conservative 
geometric 

law 

Some of the work in the field of aeroelasticity is summarized in Table 2.1. It includes 

the details such as the fluid and structure model, interfacing technique, grid moving 

method etc. 
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2.2 Review of MDO 

In recent years, design optimization of complex aircraft structures for maximum 

performance and minimum cost has been a challenging research area for aircraft 

manufacturer companies. The multi-objective task of attaining minimum weight and 

cost with maximum reliability of structure is one of the most time-consuming phases 

of an aircraft design project. Therefore, robust computational methodologies are 

strongly required in order to increase the efficiency and success of this design phase. 

A strong and easy-to-apply methodology can be developed by implementing the 

numerical optimization techniques directly into the everyday-used analysis tools that 

have been well and commonly employed in aerospace engineering. Numerical 

optimization is an iterative scheme to reach the most desired design within a design 

space bounded by the lower and upper limits of optimization variables. The design 

criteria, defined as functions of optimization variables, have to be evaluated at each 

optimization iteration as variables are updated. Thus, optimization studies require a 

high number of sequential analyses automatically and needs longer computational 

time as compared to only analysis studies. For that reason, a serious research is 

focusing on developing more efficient optimization algorithms for problems with 

large analysis size. For only optimization purposes simpler analysis models can be 

preferred in the iterative process and parametric geometries can be used to reduce the 

number of optimization variables that can sufficiently describe a problem. In 

literature, for the structural analysis component of aircraft wing multi-disciplinary 

optimization, mostly simple structural models are employed. Bowman et al. [30] 

used finite element analysis with bars, panels, and membranes to model the wing as a 

rectangular prism with a constant chord. In order to model a helicopter rotor blade, 

Friedman [32] used finite element analysis for thin walled, rectangular box sections 

representing the structural member at each span-wise station. Barthelemy et al. [27] 

and Dovi et al. [31] used an equivalent laminated plate formulation to model aircraft 

wings by the trapezoidal plates. Jha and Chattopadhyay [36] modelled the wing 

configuration of a high speed business jet with a rectangular box beam with taper and 

sweep and used a panel code as the flow solver. Meanwhile, the validity of the 

results obtained by using these simple models have been increasingly questioned as 

advanced structural analysis methods have been developed. Tzong et al. [42] and 

Maute et al. [38] used high fidelity structural codes for coupled optimization. 
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Optimization problems can be solved by a broad range of algorithms which can be 

classified into two main groups as gradient-free algorithms and gradient based 

algorithms. As examples of gradient-free algorithms, genetic algorithms and 

evolutionary strategies provide the most robust tools to find the global optimum 

(Goldberg [33], Grierson and Hajela [34], Back [26]). However, these algorithms 

require a large number of function evaluations that may be computationally 

expensive. On the other hand, when the optimization criteria are sufficiently smooth 

functions of optimization variables, the gradient based methods are computationally 

more efficient since they require only a few function evaluations. However, they 

require evaluating the gradients of the optimization criteria. These gradients of the 

optimization criteria with respect to the optimization variables are called sensitivities 

and can be found either by finite differencing (numerical methods), complex-step or 

by analytical sensitivity analysis. Different first order and second order algorithms 

can be used to determine the search direction such as Steepest Descent, Conjugate 

Gradient, Newton Method(and Quasi-Newton methods DFP ve BFGS), Sequential 

Quadratic Programming (SQP and NLPQL [40]) . Some examples to gradient-based 

optimization applications in aircraft design are work of Baysal and Eleshasky [28], 

Giunta [35], Kirsch [37], Bendsoe [29] , Maute [39], and Nikbay [40] . 

These numerical methods are increasingly being used in multidisciplinary problems 

such as aeroelasticity. Since multidisciplinary analyses are computationally 

expensive, to find optimum solution at a relatively lesser cost, either the governing 

equations are kept simple or gradient based methods are employed. Early MDO work 

in aeroelasticity usually involves eliminating instabilities by modelling the physical 

problem with simple flow/structural equations and solving the optimization problem 

while recent work focuses on problems with more complex physics. 

Kolonay [43] employed nonlinear transonic small disturbance to solve flow physics 

and used gradient based sensitivities to find optimum flutter speed of a rectangular 

wing. It was concluded that nonlinear theory yielded significantly different results 

when compared to linear flow equations. Bowman [30] used strip theory for 

modelling aerodynamics and tried to alleviate control reversal and divergence by 

evaluating gradient based sensitivities of divergence speed and lift. Delaurentis et al. 

[44] employed Design of Experiments/Response Surface Methods to find a balance 

between computational cost and higher fidelity.  Battoo [45] optimized a 600 seat 
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aircraft with large numbers of constraints to maximize flutter speed by employing 

linear aerodynamics and simple finite elements. Thickness distributions were 

optimized to find a structure with a constrained weight.  More recent work includes 

Ricci’s [46] where a morphing wing is optimized for minimum weight under 

aerodynamic load and constrained by material strength. Martins et. Al. [47] proposed 

using coupled sensitivities to optimize a complete wing configuration by Euler 

equations for aerodynamics and detailed finite elements for structural analysis thus 

maintaining higher fidelity. Epstein [48] employed genetic algorithms (GAs) as an 

optimization tool in combination with a reduced-order-models (ROM) method, based 

on full Navier–Stokes computations. It was reported that considerable aerodynamic 

efficiency was gained. In conclusion, as Guruswamy [49] reports, general trend in 

aeroelasticity is to preserve high fidelity in modelling physics while using gradient 

based optimization algorithms. It was also pointed out that all of the high fidelity 

optimization techniques in MDO were done in the field of aeroelasticity.  
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3.  NUMERICAL DESIGN OPTIMIZATION 

A generic optimization problem associated for a given system can be formulated as 

[25]: 

min ( )

( ) 0,  ( )

( ) 0,  ( )
{ | }

h

g

s

s S
n

n

n
L U

z s

h s h s R

g s g s R
S s R s s s

∈

= ∈

≤ ∈

= ∈ ≤ ≤

 (3.1)

where s is a set of sn  abstract parameters restricted by lower and upper bounds Ls  

and Us , z is a cost function of interest, h denotes a set of n equality constraints, g is a 

set of gn inequality constraints. The physical design parameters can be defined as 

functions of the abstract optimization variables s. In this work, the optimization 

problem will cover structural type of inputs as the optimization criteria and 

optimization variables. The structural design parameters can be cross sectional and 

thickness dimensions of the structural elements and some shape parameters. The 

optimization criteria h and g can cover the structural behaviour descriptors such as 

mass, displacements, stresses, strains, and modal frequencies. 

3.1 Application of Numerical Design Optimization 

We consider multi-objective structural design optimization of a simple aircraft wing 

which has a NACA0012 airfoil profile [50]. The wing geometric model consists of 

skin panels, ribs, spars, stringers, and stiffeners while the finite element model is 

constructed by using shell and beam elements. The aim of this study is to optimize 

the thicknesses of these structural members and positioning of selected ribs and spars 

by employing only commercial software for engineering applications. CATIA V5 is 

used as a parametric 3D solid modeller where as ABAQUS 6.7, structural finite 

element method solver, is used to compute the structural response of the wing 

system. As a multi-objective and multidisciplinary optimization driver, commercial 
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software, modeFRONTIER 4.0, is used for its gradient-based optimization algorithm 

options. 

The optimization problem involves minimizing mass while maximizing first 

fundamental natural frequency of a wing as a measure of the rigidity. This 

multiobjective problem has constraints enforced on the mass and frequency as well 

as the geometrical properties of structural members and the wing’s static response. 

The design variables are chosen as the thicknesses of all structural members and 

geometric positions of selected rib and spar members. Abstract optimization 

variables will be introduced to reduce the number of optimization variables which 

will be still enough to relate the full set of design variables to the optimization 

criteria and update the geometry. 

3.2 Problem Formulation 

In the optimization problem, the minimum mass of the wing is the objective function 

while constraints concerning the maximum displacement and stress of the structure 

are formed. Thus, optimization problem can be formulated as:  

1

max
1 2 max

0

1
3 4 0

0 1

min ( )  max ( )

( ) 0,  ( )
( ) 1.5( ) 1 0,  ( ) ( ) 1 0

( )( )( ) 1 0,  ( ) 1 1 0
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∈ ∈
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(3.2) 

where M  is the total mass, maxu  and maxσ  is the maximum displacement and 

maximum von Mises stress of the wing structure and yieldσ  is the yield strength of the 

material. 0 187u mm= and 0 330M kg=  are chosen as reference values from reference 

wing (explained in the next chapter) to constraint the displacement and mass.  

3.3 Structural Analysis Model 

A simple aircraft wing which has a NACA0012 airfoil profile is modelled 

parametrically in CATIA V5. The wing three dimensional geometric model consists 
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of 90 skin panels, 10 ribs and 4 spars while some of the skin panels are stiffened by 

stringers along the wing span. The wing has a rectangular planform with 6 m semi-

span and 1.6 m chord length. Finite element model of the wing is composed of linear 

shell and beam elements. The model prepared in ABAQUS (as shown at right in 

Figure A.2), consists of 17070 linear quadrilateral elements of shell type, 1264 linear 

line elements of beam type, total element number of 18334 and 16024 nodes, thus 

96144 degrees of freedom. As material aluminium is employed with Young’s 

modulus 70E GPa= , Poisson ratio 0.33ν = , density 32700 /kg mρ = , yield 

strength 400yield MPaσ = . As a cantilevered boundary condition, all of the degrees of 

freedom at the root of the wing are set to zero. The aerodynamic load that will be 

applied to the wing is supplied from a computational fluid dynamics (CFD) analysis 

performed for the initial design. An Euler inviscid flow analysis by using Fluent 

commercial software was made for 0.3M =  at sea level to have an idea about the 

total force exerted on the wing. The obtained total lift force of approximately 

25000N  is then expressed as an elliptic lift function which changes along the wing 

span but assumed to be constant along the chord. A static load analysis of a similar 

wing structure will be used as a reference to dictate the desired optimization 

constraints for this study. The structural criteria related to the reference analysis are 

shown in Table 3.1. The maximum displacement and the stress distribution on the 

reference wing are shown in Figures A.3 and A.4. 

Criteria Values 

Maximum displacement  187 mm 
Maximum von Mises stress 202 MPa 
Mass 336 kg 
First modal frequency 4.35 Hz 

3.4 Optimization Variables 

The set of design parameters s  used for the optimization problem are summarized as 

follows. Since ribs, spars and skin panels are modelled as shell elements, the 

thicknesses of these elements and the diameter of the stringers are chosen as design 

parameters. The thicknesses of spars, ribs and skin panels are divided into three 

groups along the wing span, introducing 9 design variables. The outer diameter of all 

Table 3.1: Structural analysis results of the reference wing
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the stringers are kept constant along the span and expressed as only one design 

parameter while the wall thickness of the stringers are taken as one over third of the 

outer diameter. In Figure A.1, the structural components of the wing and the 

thickness parameters related to these components are presented so that each different 

colour shows a different design parameter. 

The computational time that will be spent for optimization will be shortened if the 

number of optimization variables that will be used in the optimization loop can be 

reduced by using abstract optimization variables. 

Therefore, four abstract optimization variables 1 2 3 4, , ,k k k k  will be used to describe 9 

design variables related to the thicknesses of all spars, ribs and stringers. The relation 

between design parameters and abstract optimization variables are as follows; 

1 1 2 3 1

2 2 3 4 2

3 3 4 1 3

A A

A A

A A

t k k k t
t k k k t
t k k k t

=

=

=

 (3.3) 

where 1At , 2At  and 3At  are the physical design variables describing the skin panel 

thicknesses for the three partitions along the span. 1At  is chosen to be on the 

cantilevered side. 1At , 2At  and 3At  are the reference values of the thicknesses of the 

three type skin panels which are dictated in the initial wing design. Similarly; 

1 1 2 3 1

2 2 3 4 2

3 3 4 1 3

B B

B B

B B

t k k k t
t k k k t
t k k k t

=

=

=

 (3.4) 

where 1Bt , 2Bt  and 3Bt  are the physical design variables describing the spar 

thicknesses for the three partitions along the span. 1Bt  is chosen to be on the 

cantilevered side. 1Bt  , 2Bt  and 3Bt   are the reference values for the thicknesses of the 

three spar partitions which are dictated in the initial wing design. Finally; 

1 1 2 3 1

2 2 3 4 2

3 3 4 1 3

C C

C C

C C

t k k k t
t k k k t
t k k k t

=

=

=

 (3.5) 
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where 1Ct , 2Ct and 3Ct  are the physical design variables describing the rib thicknesses 

for the three partitions along the span. 1Ct  is chosen for the first rib on the 

cantilevered side. 1Ct , 2Ct , 3Ct are the reference values for the thicknesses of the three 

different rib groups which are dictated in the initial wing design. In addition, two 

more design variables, the stringer outer diameter 0d  and the inner wall thickness of 

the stringer beam wt are:  

0 4 0

0 / 3w

d k d
t d

=
=

 (3.6)

where 0d  is the reference diameter value of the initial wing design. The abstract 

optimization variables are chosen to be less than one so that the initial rough 

structure will be forced to get lighter. The lower and upper limits of the abstract 

optimization variables are determined as: 

1

2

3

4

0.8 1.0
0.6 1.0
0.4 1.0
0.2 1.0

k
k
k
k

≤ ≤
≤ ≤
≤ ≤
≤ ≤

 (3.7)

In addition, the geometric location of the first four ribs which is the group on the 

wing root side and the geometric location of the middle two spars are chosen to be 

variable. The absolute distances from the root to each of the first four ribs are chosen 

as four optimization variables 1 2 3 4, , ,y y y y . For two middle spars, the ratio of the 

distance between the leading edge of the wing to the spar divided by the chord length 

is chosen as two dimensionless optimization variables 1 2,c c . Thus, 16 independent 

design variables are introduced in total.  

1

2
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4
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2
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900 1300
1400 1950
2150 2800
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mm y mm
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≤ ≤

 (3.8)
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A rather bulk wing initial design will be given for the optimization problem since 

abstract variables are chosen as such to reduce the thicknesses in any ways. At the 

initial configuration, 

1 2 3

1 2 3

1 2 3

1

2

3

4

1

2

5
20
16
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1100
1600
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0.65

A A A
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t t t mm
t t t mm
t t t mm
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= = =

= = =

= = =
=
=
=
=
=
=

 

It is expected that the optimum wing will be thinner such that the structural elements 

thicknesses decrease from root to tip in order to increase first natural frequency and 

decrease mass.  

3.5 Optimization Methodology 

As an optimization driver, commercial software is employed to update the geometry 

and analysis data in CATIA and ABAQUS and check the given criteria for 

optimality. There are both gradient-based and gradient-free optimization algorithms 

available in this driver, but we prefer to run gradient-based algorithm NLPQLP for 

its well known computational efficiency. Figure A.5 shows the optimization 

flowchart for the multiobjective problem. In the Design of Experiments (DOE) phase 

of the optimization, with the given lower and upper bounds of the optimization 

variables, a number of initial guess points are determined for the gradient based 

search of the optimum. These values of the variables are transferred to ABAQUS 

environment and the boundary conditions are dictated and the structure mesh is 

generated automatically for the analysis. The analysis results for the criteria (mass, 

stress, displacement, frequency etc.) are monitored by the optimization driver and the 

design variables are updated along the new search direction and the analysis is 

repeated automatically many times until optimum point or the maximum number of 

iterations is reached. modeFRONTIER reads the selected criteria values from the 

output files that ABAQUS writes. 
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As a gradient-based optimization algorithm, NLPQL developed by Schittkowski 

[41], is based on sequential quadratic programming method (SQP) for solving 

nonlinear constrained optimization problems with differentiable objective and 

constraint functions. At any iteration, the search direction is the solution of a 

quadratic programming subproblem. A Lagrange function for the nonlinear 

constrained optimization problem (defined by Equation 3.9) can be introduced as: 

( , , ) ( ) ( ) ( )t tL s z s h s g sη γ η γ= + +  (3.9)

where η and γ are the Lagrange multipliers for the equality and inequality 

constraints. The solution of the Karush-Kuhn-Tucker conditions for Lagrange 

function is same as the solution of the following quadratic optimization problem 

successively at each iteration “k” of the optimization loop. 
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In NLPQL, 
2 ( )

2

kL
s

∂
∂

is usually approximated by a first-order derivative by using BFGS 

formula. In this work, to find gradients, the central finite differencing scheme with a 

relative perturbation of 310−  is used. It is the fraction of the variable value that is 

used to perturb the starting point in order to compute the derivative. 

The goal of a multi-objective optimization problem is to find a compromise solution 

to minimize a multidimensional vector of objective functions such as, 

1 2min ( ) ( ( ), ( ),..., ( ))
zns S

z s z s z s z s
∈

=  (3.11)

where zn  is the number of objective functions. The solution concept of optimization 

problems with multiobjectives is that of Pareto optimality. “A vector of design 

variables s∗  is said to be Pareto optimal if, for any other vector s , either the values of 

all the objective functions remain the same, or at least one of them worsens 

compared to its value at s∗” [51]. Scalarization methods such as weighted sum 
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method, weighted global criterion method are used to combine the components of the 

objective function to form a scalar objective function and then use standard single 

objective methods to optimize the resulting scalar function. In this work, the two 

objective functions are treated to be equally important. 

3.6 Optimization Results 

The optimization algorithm derives a merit function from the optimization variables 

and checks if the convergence criterion is met by evaluating this merit function. In 

this study, the convergence criterion was 0.001ε = . The multi-objective problem 

converges to five Pareto optimal designs. The first three Paretos are very close to 

each other while the last two Paretos are very close to each other as also shown in 

Table 3.2. The first group gives approximately 15% decrease in mass and 21% 

increase in frequency while the second group gives an 8% decrease in mass and a 

28% increase in frequency with respect to the reference values of  330 kg and 

4.35Hz. The design engineer can make a choice among these two designs according 

to the importance of mass and frequency objectives.   
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 Pareto Optimal set Variables & Criteria  
1st 2nd 3rd 4th 5th 

Rib group 1 (mm)  12.8 12.8 12.81 16 16 
Rib group 2 (mm)  14.52 14.53 14.51 12.34 12.34
Rib group 3 (mm) 4.25 4.24 4.24 2.47 2.47 
Skin group 1 (mm)  3.63 3.63 3.63 3.86 3.86 
Skin group 2 (mm)  1.33 1.33 1.32 0.77 0.77 
Skin group 3 (mm)  1.06 1.06 1.06 0.77 0.77 
Spar section 1 (mm) 12.8 12.8 12.83 20 20 
Spar section 2 (mm) 16 16 16.01 20 20 
Spar section 3 (mm)  14.53 14.53 14.53 15.43 15.43
d (mm)  4.38 4.38 4.38 3 3 
Rib location 1 (mm)  800 800 800 800 800 
Rib location 2 (mm)  1000 1000 1000 1000 1000
Rib location 3 (mm)  1950 1950 1950 1950 1950
Rib location 4 (mm)  2800 2800 2800 2800 2800
Spar location 1 (mm) 0.37 0.37 0.37 0.31 0.31 
Spar location 2 (mm) 20.75 0.75 0.75 0.74 0.73 
Mass (kg)  282 282 282 303 303 
Frequency (Hz) 5.26 5.26 5.26 5.55 5.55 
Displacement (mm) 186.9 186.9 186.9 186.9 186.9
Stress (MPa) 203 203 204 265 265 
Improvement in mass -15% -15% -15% -8% -8% 
Improvement in frequency  21% 21% 21% 28% 28% 

Table 3.2: Pareto set  for the problem
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Figure 3.1 : Pareto optimal solution graph 

 

As expected, the optimal set includes designs such that the thicknesses of the 

structural elements decreased from the root to the tip. In Figure 3.2, it can be seen 

that the thicknesses decrease from the root to the tip so that first natural frequency 

can increase and the total mass can decrease. 
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Figure 3.2 : Thickness variation of structural elements along the span 

 

3.7 Conclusion 

In this work, a wing structure composed of ribs, skin panels, spars and stringers is 

successfully optimized. A commercial finite element structural solver, ABAQUS, 

and commercial multi-objective optimization software, modeFRONTIER, are 

coupled to demonstrate a practical robust optimization methodology which can be 

applied in industry. A gradient-based algorithm called NLPQL is used as 

optimization algorithm and abstract optimization variables are introduced for 

computational efficiency. The multiobjective problem gave 5 Pareto optimal designs 

with equal importance level of the two objectives. This result can be further 

evaluated by introducing significant levels between objectives. For better designs, 

the number of optimization variables can be increased and also the design variables 

can also be constrained by considering issues related to manufacturing such as a 

continuous increase or decrease between consecutive thickness groups making the 

variables discrete.  

This study formed the basis of the framework for a CFD based two way coupled 

aeroelastic optimization in another study [53]. The logical flowchart used in this 
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work could be used by replacing structural analysis with an FSI analysis. As a future 

work, abstract optimization variables will be used for a greater number of design 

variables and the abstract optimization variables will be chosen by an efficient 

method.  
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4.  AEROELASTIC ANALYSIS 

4.1 Introduction 

In MDO review of this work, it was concluded that analytical sensitivities could be 

used to significantly decrease computational cost of a numerical design optimization. 

A benchmark configuration in the field of aeroelasticity was selected as a test case to 

perform a study of MDO by using analytical sensitivities in a future study. For this 

purpose, AERO suite of open source code was used as an aeroelastic solver. This set 

of code also includes an optimization library. 

To model the benchmark configuration, a general finite element that supports 

anisotropic material properties has been added to the element library of the structural 

code of the suite. It is aimed that this element will be used to compute structural 

sensitivities. However, the finite element and aeroelastic analysis has to be validated 

first. 

To model the structure of the benchmark case, a hexahedral element has been added 

to finite element library. A brief element stiffness formulation is given in the next 

chapter. To validate the aeroelastic analysis, the structural and aerodynamic models 

are validated first. The last chapters are devoted to these studies. Also, general 

information about the aeroelastic solver AERO-F-S is provided. 

4.2 Aeroelastic Solver AERO-F-S 

The aeroelastic analysis couples a 3D second-order finite volume Euler code 

(AERO-F) designed for flow computations on moving grids with Arbitrary 

Lagrangian Eulerian (ALE) Roe fluxes and with a general purpose finite element 

structural code (AERO-S or FEM) [53]. This set of codes is the product of 

collaborative work of various researchers from Colorado University (CU) and INRIA 

through many years. It was used by Nikbay [38] during doctoral studies in CU. In the 

present study, the feasibility of futher developing AERO-F-S will also be 

investigated. 
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In the steady-state aeroelastic analysis, the fluid goes through a transient analysis to 

reach steady-state solution. The aeroelastic coupling algorithm was based on three-

field formulation of Farhat et al. [54] whose discrete form for steady-state can be 

written as follows 

( , , ) 0
( , ) 0
( , ) 0

S u x w
D u x
F x w

=
=
=

 (4.1) 

where u is the vector of the structural displacements, x  is the mesh motion and w  is 

the fluid state vector. Here, S  is the state equation of the structure and can be written 

as 

( , )S Ku P x w= −  (4.2) 

Where K is the finite element stiffness matrix associated with the structure, P is the 

external load vector that combines the aerodynamic load TP  transferred from the 

fluid to the structure and other specified structural loads such as gravity denoted here 

by oP , and can be written as 

0 TP P P= +  (4.3) 

 

The second equation in system 4.1 governs the motion of fluid mesh. Using the 

spring analogy method proposed by Farhat et al. [55], mesh motion equation can be 

expressed as 

0
t

xK K
x fK K
ΩΩΩ ΩΓ

ΓΩΓ ΓΓ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦⎣ ⎦

 (4.4) 

with 

/  T F Sx u onΓ = Γ  (4.5) 

where  Tu  is the displacement vector of the grid points on the wet surface of the 

structure. In equation 4.4, K  is a fictitious stiffness matrix associated with the fluid 
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mesh, the subscript Ω  designates the fluid mesh points lying inside the fluid domain, 

the subscript Γ those lying on the fluid-structure interface /F SΓ  while f  is the 

fictitious force needed to enforce equation 4.5. In order to project the structural 

displacement to the fluid mesh, the displacement projector UT is defined as 

T uu T u=  (4.6)

From equation 4.6, it follows that equations 4.4 and 4.5 are rewritten as 

0
0

u

u

K x K T u
x T u

ΩΩ Ω ΩΓ

Γ

+ =

− =
 (4.7)

Then, xΓ and xΩ is computed. Finally, F is the state equation of the fluid and can be 

expressed as 

2F ( , )F x w=  (4.8)

Where 2F denotes the vector of Roe fluxes resulting from a second-order finite 

volume discretization of the Euler flow equations. 

The three-field formulation outlined leads to a computational strategy that is in 

general 25% computationally more expensive than a comparable computational 

method based on a two-field formulation ( , )u w  of aeroelastic problem [56]. 

However, most two-field formulations of computational aeroelasticity assume a 

small displacement field for the structure, and therefore are restricted to few 

applications. The flow solver AERO is based on Euler equations discretized by 

finites volumes. In conservative form, 

( ) 0w F w
t

∂
+∇• =

∂
 (4.9)
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The fluid state conservative variable, w  is defined as 

1

2

3

u
w u

u
E

ρ
ρ
ρ
ρ

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 (4.10) 

where ρ  is the fluid density, 1 2 3, ,u u u  are three velocities and E is the total internal 

energy per mass. The flux, F has three components, 1 2 3, ,F F F as follows; 

31 2
2

3 11 2 1
2

1 2 1 3 21 2 2
2
31 3 2 3

31 2

, ,

( )( ) ( )

uu u
u uu p u u

F F F u uu u u p
u pu u u u

E p uE p u E p u

ρρ ρ
ρρ ρ
ρρ ρ
ρρ ρ

⎧ ⎫⎧ ⎫ ⎧ ⎫
⎪ ⎪⎪ ⎪ ⎪ ⎪+ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪= = =+⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎪ ⎪ ⎪ ⎪ ⎪ ⎪
++ +⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 (4.11) 

where p is the fluid pressure. Taking integral of equation 4.9 over a control volume 

iC in the flow domain and using the divergence theorem gives the fluid equation in 

continuous form as; 

( ) 0
i i

i
C C

wd F w d
t

η σ
∂

∂
Ω+ =

∂ ∫ ∫ i  (4.12) 

where iC∂ is the boundary of control volume iC  centred at vertex" "i , iη  the unit 

outward normal to the cell boundary, and dσ  is the differential area. Assembling all 

the control volumes in the fluid mesh gives equation 4.13 in discrete form as, 

( ) ( , ) 0 in control volume d Vw F w x
dt

+ = Ω  (4.13) 

Where V is diagonal matrix of cell volumes, w  the discretized fluid state variables 

vector of size 5 sn× , where sn is the total number of the vertices in the fluid mesh, 

and x  the grid point coordinates vector of size 3 sn× . The numerical flux F  

approximates the integral of the physical flux function over the cell interfaces. 
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The three-way coupled system of equations 4.1 can be solved efficiently by an 

iterative staggered procedure that allows the usage of three different solvers, each 

tailored to each different subproblem [57]. A staggered algorithm is employed. It is 

graphically depicted in Figure 4.1 where superscript ( )n denotes the iteration 

number. 

 

Figure 4.1 : Staggered algorithm for computation of the aeroelastic 
steady-state 

1. For a given external load ( )nP , determine the structural response ( )nu by 

solving equation 4.2. Then, for numerical stability purposes, perform the 

following under relaxation 

( ) ( 1)(1 )n nu u uθ θ−= − +  (4.14)

    where  

1 ( )nu K P−=  (4.15)

and 0 1θ≤ ≤ is the relaxation factor. 

2. Transfer the motion of the wet surface of the structure to the fluid system: 
( ) ( )n n

Tu u→ . The general relation between ( )n
Tu and ( )nu can be written as 
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( ) ( )n n
T uu T u=  (4.16) 

where uT  is a transfer matrix that accounts for potentially non-matching fluid and 

structure meshes [58]. 

3. Update the motion of the fluid mesh by solving equation 4.15; 

( ) ( ) ( )
/

0
 with  on n n n

T F SKx x u
f

⎡ ⎤
= = Γ⎢ ⎥
⎣ ⎦

 (4.17) 

Hence, x is updated by setting 

( ) ( )n n
ux T uΓ =  (4.18) 

and solving; 

( ) ( )n n
uK x K T uΩΩ Ω ΩΓ= −  (4.19) 

Equation 4.18 is solved for mesh motion,
( )n

xΩ , with Preconditioned Conjugate 

Gradient (PCG) algorithm by applying a few iterations so that a valid mesh 

update which does not produce penetrating elements. 

4. Compute the new fluid state vector ( 1)nw + by applying a single Newton-

Raphson subiteration to third equation of the set of equations 4.1. The steady 

state equation is solved with the following approach; 

( )

2( ) ( , ) 0
n

n

w wV F w x
τ
−

+ =  (4.20) 

where V is the matrix of cell volumes and  ( )nτ is the pseudo time-step. 

5. Extract the fluid pressure ( 1)np + on the fluid/structure interface /F SΓ , compute 

the aerodynamic load ( 1)n
FP +  by integrating the fluid pressure over /F SΓ , and 

transfer the following load to the structure. 

( 1) ( 1)n n
T p FP T P+ +=  (4.21) 
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where pT  is a transformation matrix that accounts for potentially non-matching 

fluid and structure meshes. Here, pT  is constructed according to the conservative 

load transfer algorithm described in [54] and therefore satisfies; 

t
p uT T=  (4.22)

6. Solve the structure subsystem for ( 1)nu +  and under-relax the solution with 

( ) ( 1) ( ) ( )(1 )n n n nu uθ θ+ + −  (4.23)

where ( )nθ is the relaxation factor at thn iteration. 

7. Transfer the relaxed displacement of wet surface to the fluid mesh at surface 

and solve for the new mesh motion. Check for convergence of the aeroelastic 

steady-state. 

The above staggered algorithm can be described as a block Gauss-Seidel method. 

The convergence is checked by monitoring the relative residuals of the structure 

and fluid subproblems and requiring simultaneously. 

( 1) ( 1) ( 1) (0) (0) (0)
2 2|| ( , , || || ( , , ||n n n AAS u x w S u x wε+ + + ≤  

( ) ( 1) (0) (0)
2 2|| ( , || || ( , ) ||n n AAF x w F x wε+ ≤  

(4.24a)

(4.24b)

where AAε  is a specified tolerance, and the superscript AA stands for Aeroelastic 

Analysis. Note that only the first inequality (4.24a) assesses the convergence of the 

proposed staggered procedure. The second inequality (4.24b) emphasizes the 

importance of requiring that the flow solver converges to the same precision as that 

imposed on the staggered algorithm. 

4.3 Implementation of Finite Element Model with Orthotropic Properties 

A brick element with anisotropic material support is implemented to the element 

library of the finite element code AERO-S. Since this element is a general solid 

element, it can be used to perform a gradient based optimization of a complex 
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geometry. This element will be used to model an orthotropic wing and make a 

steady-state aeroelastic analysis. 

An 8 noded, isoparametric, hexahedral element is added to the element library. It has 

3 translational d.o.f’s per node with a total of 24 dofs as seen in Figure 4.2.  

 

Figure 4.2 : 8 noded hexahedral element 

A summary of element stiffness formulation is as the following [59]. 

The strain-displacement relationship is; 

{ } [ ]{ }d uε =  (4.25) 

Here [ ]6 1x
ε  is the strain, [ ]6 3x

d is the strain-displacement operator, [ ]3 1x
u is the 

displacement and defined as; 
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{ } { }
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∂ ∂⎧ ⎫ ⎡ ⎤
⎪ ⎪ ⎢ ⎥∂ ∂⎪ ⎪ ⎢ ⎥⎧ ⎫
⎪ ⎪ ⎢ ⎥∂ ∂⎪ ⎪ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎢ ⎥∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪ ⎢ ⎥

⎩ ⎭⎪ ⎪ ⎢ ⎥∂ ∂ ∂ ∂
⎪ ⎪ ⎢ ⎥

∂ ∂ ∂ ∂⎪ ⎪ ⎣ ⎦⎩ ⎭

 (4.26)

If { }6 1x
σ  is stress and [ ]6 6x

E  is the elastic matrix, the relationship between them is; 

{ } [ ]{ }Eσ ε=  (4.27)

For an orthotropic material, elastic matrix [ ]6 6x
E in terms of engineering constants is; 

[ ]

1 21 2 31 3

12 1 2 32 3

13 1 23 2 3 1

12

23

13

1 0 0 0
1 0 0 0

1 0 0 0
,  

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

E E E
E E E
E E E

C E C
G

G
G

υ υ
υ υ
υ υ −

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −

= =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.28)

To define axes rotation, the stress vector is written as stress tensor so that the rotation 

matrix R  is defined such that; 

[ ] [ ] [ ][ ][ ]
11 12 13

'
21 22 23

31 32 33

,  TR R
σ τ τ

σ τ σ τ σ σ
τ τ σ

⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.29)

 

[ ]
11 12 23 1 1 1

21 22 23 2 2 2

31 32 33 3 3 3

l m n
R l m n

l m n

λ λ λ
λ λ λ
λ λ λ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (4.30)

Here, , ,l m n are directional cosine values defining the axis of rotation. The rotation 

matrix in compliance with the strain vector can be written as; 
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{ } [ ]{ }' Tεε ε=  (4.31) 

[ ]

1 2 2 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 4 3 3

1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1

2 3 2 3 2 3 2 3 3 2 2 3 3 2 2 3 3 2

3 1 3 1 3 1 3 1 1 3 3 1 1 3 3 1 1 3

2 2 2
2 2 2
2 2 2

l m n l m m n n l
l m n l m m n n l
l m n l m m n n l

T
l l m m n n l m l m m n m n n l n l
l l m m n n l m l m m n m n n l n l
l l m m n n l m l m m n m n n l n l

ε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥+ + +⎢ ⎥
⎢ + + +
⎢

+ + +⎢⎣ ⎦

⎥
⎥
⎥

 (4.32) 

The stress vector is written as { } [ ]{ }' Tσσ σ= so that the rotation matrix becomes 

[ ] [ ] TT Tσ ε
−= . The stress and strain vectors in global coordinates become; 

{ } { } [ ]{ } [ ]{ }' ' ' 'E T E Tσ εσ ε σ ε⎡ ⎤ ⎡ ⎤= → =⎣ ⎦ ⎣ ⎦  (4.33) 

If equation 4.33 is multiplied by [ ] 1Tσ
− ; 

{ } [ ] [ ]{ }'TT E Tε εσ ε⎡ ⎤= ⎣ ⎦  

[ ][ ][ ]' TE T Tσ σσ⎡ ⎤ =⎣ ⎦  

(4.34a) 

(4.34b) 

The coordinates of a point inside the hexahedral can be written with shape functions 

as; 

8 8 8

1 1 1
,  ,  i i i i i i

i i i
x f x y f y z f z

= = =

= = =∑ ∑ ∑  (4.35) 

1 2

3 4

5 6

7 8

1 1(1 )(1 )(1 ),   (1 )(1 )(1 )
8 8
1 1(1 )(1 )(1 ),   (1 )(1 )(1 )
8 8
1 1(1 )(1 )(1 ),   (1 )(1 )(1 )
8 8
1 1(1 )(1 )(1 ),   (1 )(1 )(1 )
8 8

f f

f f

f f

f f

ξ η ζ ξ η ζ

ξ η ζ ξ η ζ

ξ η ζ ξ η ζ

ξ η ζ ξ η ζ

= − − − = + − −

= + + − = − + −

= − − + = + − +

= + + + = − + +

 (4.36) 
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The Jacobian of the element is 

[ ]
, , ,

, , ,

, , ,

x y z
J x y z

x y z

ξ ξ ξ

η η η

ζ ζ ζ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.37)

The strain-displacement relationship is rewritten as equation 4.34; 

{ } [ ]{ }i i iqε = B  (4.38)

Here; 

[ ] [ ]{ }

,

,

,

, ,

, ,

, ,

0 0
0 0
0 0

0
0

0

i x

i y

i z
i i

i y i x

i z i y

i z i x

f
f

f
d f

f f
f f

f f

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B  (4.39)

In Cartesian coordinates, the stiffness matrix of the element is; 

[ ] [ ] [ ][ ]T

V

K B E B dxdydz= ∫  
(4.40)

If the elastic constants are constant through the element, In natural coordinates, the 

stiffness matrix in natural coordinates becomes   

[ ] [ ] [ ][ ]
1 1 1

1 1 1
( , , ) ( , , ) | ( , , ) |TK B E B J d d dξ η ζ ξ η ζ ξ η ζ ξ η ζ

− − −
= ∫ ∫ ∫  (4.41)

4.4 Model Validation 

The well-known AGARD (Advisory Group for Aerospace Research and 

Development) 445.6 wing is chosen as the wing geometry for this study. This wing is 

the first aeroelastic configuration that is tested in the “Transonic Dynamics Tunnel 

(TDT)” at the NASA Langley Research Centre [21]. The AGARD 445.6 wing is a 

swept-back wing with a quarter-chord sweep angle of 45 degrees. Cross sections of 

the wing are NACA 65A004 airfoils. The wing has a taper ratio of 0.66, a span of 
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0.762 m and an aspect ratio of 1.65. It is a wall-mounted model made with laminated 

mahogany. In this study, weakened model 3 of the wing is used. 

 

 

Figure 4.3 : AGARD 445.6 wing geometry 

4.4.1 Structural Model Validation 

The AGARD wing has experimental data available for validating natural vibration 

frequencies. A pre-processing tool was not readily available for creating finite 

element mode so it was formed in ABAQUS by using 14356 linear hexahedral 

structural elements with 54978 d.o.f’s. The material properties of the wing are taken 

from the work of Yosibash et al [60] for the solid model and modified to represent 

the weakened model. The modified material properties are shown in constitutive 

form below.  

[ ] 7

46.719 1.5197 2.1533 0 0 0
1.5197 29.2223 15.9277 0 0 0
2.1533 15.9277 48.8434 0 0 0

10
0 0 0 32.1350 0 0
0 0 0 0 39.0000 0
0 0 0 0 0 13.6500

C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Figure 4.4 : Constitutive matrix corresponding to orthotropic matrix 

The wing is clamped at root and a modal analysis is run. The comparison of modal 

shapes and frequencies are shown in Figure B.1. 
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Mode 

Number 

Yates [21] 

Calculated-Experimental 

(Hz) 

Present 

Study 

(Hz) 

Error % 

(w.r.t experimental data) 

1st 9.59-9.60 9.61 0.1 

2nd  38.16-38.10 37.33 2.0 

3rd  48.34-50.70 55.94 10.3 

4th  91.54-98.50 104.12 5.7 

Additionally, the mass of the original wing is 1.8627kg  while mass is calculated to 

be 1.8609kg in the present study. The results show good agreement with the 

experiments. The first and second modes are pure bending and pure torsion modes 

while the third and fourth modes are coupled bending/torsion modes as expected. 

4.4.2 Aerodynamic Model Validation 

Before steady-state aeroelastic is run, the aerodynamic model has to be validated. For 

this purpose, an unstructured CFD grid with 403321 tetrahedras is prepared with 

ANSYS ICEMCFD. A simple code was written to convert the aerodynamic grid to 

AERO format since a pre-processing tool was not readily available. The fluid domain 

was decomposed into 4 subdomains with TOP/DOMDEC which uses numerical 

optimization techniques to minimize intercommunication between parallel nodes 

[61]. A steady-state analysis with Mach number 0.85 and 5 degrees of angle of attack 

is performed. In Figures B.2 and B.3, CFD grid is seen with boundary conditions. 

The steady-state flow analysis results are compared with those from Liu [11]. The 

pressure contours for the rigid wing are below from the reference work at left and 

from the present study at right;  

The pressure coefficients of upper and lower surfaces at 34% and 67% stations along 

the span for the rigid wing are compared in Figures B.8, B.9, B.10 and B.11. 

Table 4.1: Comparison of  calculated frequencies with experimental data 
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The pressure coefficients ( pc ) generally agree well with the reference work. For 

0.34ξ = , Liu [11] predicted a pc larger than -1.4, while in the present study it is 

1.16− . At the leading edge, for 0.67ξ = , pc is greater than -1.4 though the present 

analysis shows a pc  of 1.17. The difference at the leading edge can be contributed to 

the detailed O-grid mesh used in the reference work whereas in the present study a 

coarse grid was used.  

4.5 Steady-state Aeroelastic Analysis 

For the steady state analysis, the CFL number for the flow number is fixed at 100 

which is equal to a pseudo time-step size of 40.12 10−× s. The structural time step for 

the finite element analysis is 20.995 10−×  s that is more than 100 times of the fluid 

time step. The relaxation parameter, fixed at 0.5, is used to prevent divergence that 

may occur when the initial structural displacement vector is transferred to the fluid 

mesh.  

The aeroelastic convergence criterion AAε  is set to 810− and the solution converged 

within 3740 fluid time steps. The solution converged after 3h 36 min wall clock time 

on 4 Xeon 3.4 GHz processors for the fluid domain and 1 Xeon 3.4 GHz processor 

for the structural domain. 

In Figure 4.5, the deflected wing is shown. The deflections on trailing edge and 

leading edge at the wing tip are 58.2 mm and 51.3 mm, respectively. The results 

compare well with the reference work where deflections are about 67 mm and 53 

mm. 

 

 

 

Figure 4.5 : Deflected and undeflected wing 
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4.6 Conclusion 

Steady-state aeroelastic analysis of an experimental wing configuration is performed. 

The aerodynamic coefficients generally agree well with the data from literature 

considering the coarseness of the fluid grid. The deflections obtained are lesser when 

compared to the reference study. This can be contributed to the pressure coefficients 

obtained being smaller. As stated by Liu [11], the pseudo time-step approach 

requires conflicting orders of magnitude in structural and flow time-steps. This 

results in the solution requiring typically longer computational times (more than a 

factor of 100) when compared to a fully steady-state analysis which does not take 

time dependent terms into account. Finally, the finite element was adequate to model 

complex geometries and will form a basis for sensitivity calculations. 

Table 4.2: Displacement comparison at leading and trailing edges 

 Displacement (mm) at  

 Leading Edge Trailing Edge 

Liu 53  67 

Present Study 51.3 58.2 
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5.  CONCLUSION AND FUTURE WORK 

A generic wing was parametrically modelled and numerically optimized under 

design constraints to increase its stiffness. A gradient-based algorithm was used to 

find optimum thickness values of the structural members. Since commercial software 

was used to perform the analysis, finite differencing scheme had to be used for 

evaluating sensitivities of the design variables. It is concluded that analytical 

sensitivities are advantageous in decreasing the computational time, however open 

source software has to be generally employed to compute gradient based sensitivities 

efficiently.   

Also, steady-state aeroelastic analysis of an experimental orthotropic wing is 

performed. In order to model the wing, a hexahedral element has been added to the 

finite element library of the structural code. After both of the flow and structural 

models are validated, steady-state aeroelastic response of the wing is obtained. 

Results show good agreement with the reference work. However, a detailed grid for 

the flow solver can be used to get better results. Overall, this study can form a basis 

for computing the sensitivities of the constitutive matrix of a general finite element 

so that a gradient based optimization is performed. 
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APPENDIX A.1 

 

Figure A.1 : The optimization variables shown by colour groups 

 
Figure A.2 : Quad dominated structural mesh of the wing 
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Figure A.3 : Displacement field of reference wing under static load (mm) 

 

Figure A.4 : Stress field of reference wing under static load (MPa) 
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Figure A.5 : Optimization logical flowchart 
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APPENDIX B.1 

 

Experimental Data [21] Present Study 

1st Bending Mode 
 

1st Bending Mode (9.61 Hz) 

1st Torsion mode 

 

1st Torsion mode (37.33 Hz) 

1st Bending/Torsion mode 

 

1st Bending/Torsion mode (55.94 Hz) 

2nd Bending/Torsion Mode 

 

2nd Bending/Torsion Mode (104.12 Hz) 

 

Figure B.1:  Computed modal shapes compared to experimental data 
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Figure B.2: Coarse CFD grid with 403321 tetras 

 

Figure B.3: Close-up to the wet surface of the wing 
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Figure B.4: Pressure contours for the upper surface of rigid wing, present study 

 

 
Figure B.5: Pressure contours for the upper surface of the rigid wing, Liu [11] 
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Figure B.6: Pressure contours for the lower surface of rigid wing, present study 

 

Figure B.7: Pressure contours for the upper surface of rigid wing, Liu [11] 
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Figure B.8:  Pressure coefficients for the elastic wing at 34% span, Liu [11] 
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Figure B.9: Pressure coefficients for the elastic wing at 34% span, present study 
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Figure B.10: Pressure coefficients for the elastic wing at 67% span, Liu [11] 
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Figure B.11: Pressure coefficients for the elastic wing at 67% span, present study 
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