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INVESTIGATION OF THE LUMINESCENCE PROPERTIES and WHITE 

LIGHT PRODUCTION FROM Nd3+ and Cr3+ DOPED METAL OXIDE 

NANO-POWDERS 

SUMMARY 

The main focus of this thesis is to provide a better understanding of the effect of the 

crystalline size on the luminescence properties of the Nd3+ doped Y2O3 nano-powder 

which is one of the best host materials for rare earth ions. Hence, the present research 

includes the synthesis, structural and optical characterization of Y2O3:Nd3+ nano-

powders.  

The nano-crystals of Y2O3 doped with different Nd3+ concentrations were 

synthesized using the thermal decomposition method which is based on the thermal 

decomposition of the yttrium-neodymium alginate gels. The powders were thermally 

treated to control the particles’ sizes at temperatures ranging from 600 to 1400 oC. 

The synthesized powders were then structurally characterized to determine the size 

of the nano-particles, the morphology and the crystalline phases occurred using X-

ray diffractometer and electron microscopes. 

The continuous emission spectra and the response to pulsed excitation measurements 

were conducted on the samples to determine the luminescence properties of the 

materials studied and to see the effect of the nano-size on the luminescence 

properties of the materials. The results of the optical characterization showed that the 

samples have enough strong emission even if they are in nano-size form and the 

luminescence properties of the materials are strongly related to the size of the 

particles. It was also shown that the Nd3+ concentration has a decisive role on the 

emission properties of the materials and concentration quenching effect takes place 

due to increasing dopant ion interactions at higher dopant concentrations.  

Another most important finding of this thesis which was not in its original purpose 

and which led us to make a patent application was the production of a bright, 

wideband white light emission from the studied nano-powders induced by a laser 

diode output. We determined most of the properties of this WL emission in detail and 

showed that the obtained white light emission was comparable with that of a 

commercial incandescent lamps and was 35 % more efficient than that of an 

incandescent lamp. 
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Nd3+ ve Cr3+ KATKILI METAL OKSİT NANO-TOZLARINDA 

LUMİNESANS SÜREÇLERİNİN ARAŞTIRILMASI ve BEYAZ IŞIK 

ÜRETİMİ  

ÖZET 

Her geçen gün gelişen teknolojiyle birlikte teknolojinin her alanında kullanılmak 

üzere yeni, uygun ve optimum özelliklere sahip malzeme ihtiyacı da artmaktadır. 

Özellikle fotonik teknolojisindeki hızlı gelişime parallel olarak yeni, optimum 

özelliklere sahip konak malzeme ihtiyacı da artmaktadır. Bu bağlamda ihtiyacı 

karşılayabilmek adına ilgi, boyutları küçüldükçe külçe kristal formlarına göre daha 

farklı ve gelişmiş optik, termal, manyetik vb gibi özellikler gösteren nano – boyutlu 

malzemeler üzerine odaklanmıştır. Bilhassa ıslak kimyasal metotların kullanımı ile 

nano – boyutlu malzeme sentezindeki önemli gelişmeler ve bu yöntemlerin ucuz 

olması, düşük sıcaklıklarda malzeme sentezine imkan tanımaları ve malzemelerin tek 

külçe kristallerinin büyütülmesinin zor, imkansız veya maliyetleri artıran çok yüksek 

sıcaklıkları gerektirdiği durumlarda kolayca malzeme sentezine imkan 

tanımalarından dolayı nano – boyutlu malzemeler üzerindeki ilgiyi oldukça 

artırmıştır. Dolayısıyla bu tez çalışmasının başlıca amacı kristal tane boyutunun, 

nadir toprak iyonları için en iyi konak malzemelerinden biri olan Nd3+ iyonları ile 

katkılandırılmış Y2O3 nano-tozlarınin lüminesans özellikleri üzerindeki etkisinin 

daha iyi anlaşılmasını sağlamaktır. Dolayısıyla bu çalışma, Y2O3:Nd3+ nano-

tozlarının sentezi, yapısal ve optik karakterizasyonunu içermektedir. 

%0.2 ile %10 aralığında değişen farklı konsantrasyonlarda Nd3+ katkılandırılmış 

Y2O3 nano-kristalleri, itriyum-neodim aljinat jellerinin termal bozunması temeline 

dayanan termal bozunma tekniği kullanılarak sentezlendi. Sentezleme sıcaklığının 

malzemelerin üretimi ve kristal tane boyutları üzerindeki etkisini araştırmal amacıyla 

malzemeler 350oC ile 500oC arasında değişen sıcaklıklarda sentezlendi. Tavlama 

sıcaklığının kristal tane boyutu üzerindeki etkisini araştırmak ve kristal tane 

boyutlarını kontrol etmek amacıyla tozlara 600 ila 1400 oC arasında değişen 

sıcaklıklarda termal işlem uygulandı. Sonrasında sentezlenen nano-tozların kristal 

tane boyutları, morfolojileri ve oluşan kristal fazlarını belirlemek için X-ışını 

difraktometresi ve elektron mikroskopları kullanılarak yapısal olarak karakterize 

edildi. Sentezi yapılan malzemelerin 10.6051 Å örgü sabiti ile kübik itriyum oksit 

fazında oldukları ve bunun dışında başka herhangi bir faz içermedikleri yapılan 

yapısal karakterizasyon sonucu belirlendi. Sentezlenen malzemelerin kristal 

boyutlarının sentezleme ve tavlama sıcaklığındaki artışla doğru orantılı olarak arttığı 

ve malzemelerin kristal boyutlarının 14 – 250 nm arasında değiştiği Scherrer Eşitliği 

kullanılarak X-ışını desenleri kullanılarak belirlendi. Yapılan elektron misroskop 

ölçümleri de Scherrer Eşitliği kullanılarak elde edilen kristal boyutlarını 

dogrulamıştır. 

Çalışılan malzemelerin luminesans özelliklerini belirlemek ve nano-boyutun 

malzemelerin luminesans özellikleri üzerindeki etkisini görmek için malzemelerde 

sürekli emisyon spektrumları ve atımlı uyarıma tepki ölçümleri gerçekleştirildi. 
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Optik karakterizasyon sonuçları, malzemelerin nano-boyutlu olmalarına rağmen 

halen daha yeterince güçlü emisyona sahip olduklarını ve malzemelerin luminesans 

özelliklerinin kristal tane boyutlarına sıkıca bağlı olduğunu gösterdi. Malzemelerin 

kristal boyutları küçüldükçe emisyon piklerinin şiddetlerinin düştüğü ve yine pik 

genişliklerinin (FWHM) arttığı belirlendi. Ortam sıcaklığına bağlı olarak 

gerçekleştirilen emisyon ölçümleri de malzemelerin emisyon piklerinin artan ortam 

sıcaklıgıyla kaydıklarını ve pik genişliklerinin arttığını göstermiştir Ayrıca Nd3+ 

konsantrasyonunun malzemelerin emisyon özellikleri üzerindeki etkileri araştırılmış 

ve iyon konsantrasyonunun emisyon özellikleri üzerinde belirleyici rol oynadığı 

belirlenmiştir. Artan katkı konsantrasyonu ile düşük konsantrasyonlarda ihmal 

edilebilir düzeyde olan katkı iyonu etkileşimlerinin baskın hale geldikleri ve bundan 

kaynaklanan çapraz durulma yolu ile konsantrasyon sönümlemesi etkisinin ortaya 

çıktığı gösterilmiştir. Ancak nano – boyut ile konsantrasyon sönümlemesinin külçe 

kristallere oranlar daha yüksek konsantrasyonlarda gerçekleştiği belirlenmiştir. 

Atımlı uyarıma tepki ölçümleri sonucunda elde edilen malzemelerin bozunma 

eğrilerinin eksponansiyel olmadıkları görülmüş ve sadece %1 Nd katkılı Y2O3 tek 

kristali için eksponansiyel bozunma eğrisi elde edilmiştir. En uzun yaşam süresi tek 

kristal için elde edilmiş olup malzemelerin yaşam sürelerinin azalan kristal boyutu ile 

azaldıkları belirlenmiştir. Malzemelerin yaşam sürelerinin en küçük boyutlu 

malzemeden en büyüğüne doğru 50 – 200 µs arasında değiştiği bulunmuştur. %1 

Nd3+ katkılı Y2O3 tek kristali için ise en uzun yaşam süresi ölçülmüş olup değerinin 

250 µs civarında değiştiği belirlenmiştir. Yine benzer şekilde azalan kristal tane 

boyutu ile malzemelerin bozunma eğrilerinin eksponansiyellikten daha fazla 

saptıkları belirlenmiştir. Artan iyon konsantrasyonu ile de benzer bir 

eksponansiyellikten daha fazla sapma gözlenmiştir.  

Bu tez çalışmasının orjinal kapsamı içerisinde olmayan ancak bizi farklı mecralara ve 

patent başvurusuna sürükleyen bir diğer ve en önemli bulgularından biri, 803.5 nm 

ile 975 nm dalgaboyunda çalıişan lazer diyot emisyonlarının indüklediği çalışılan 

nano-tozlardan yayılan parlak ve geniş bantlı beyaz ışık üretimidir. Elde edilen bu 

beyaz ışık emisyonunun karakteristikleri sürekli emisyon spektrumları, atımlı 

uyarıma tepki, CIE koordinatları, renk sıcaklığı, lüminesans vb gibi ölçümler 

yapılarak belirlendi. Yapılan ölçümler elde edilen geleneksel olmayan beyaz ışık 

emisyonunun 400 – 1100 nm dalgaboyu aralığında geniş bir bant olduğunu gösterdi. 

İlk olarak Nd katkılı itriyum oksit nano – tozlarında gözlenen beyaz ışık emisyonu 

sonradan %99.9999 oranında saf katkısız Y2O3 nano – tozlarında da gözlemlendi. 

Ultra saf nano – tozlarda da bu emisyonun gözlenmesi bu olgunun nadir toprak 

katkısı tarafından asist edilse de katkıdan bağımsız olduğunu ve konak malzemenin 

ve nano – boyutun bir özelliği olduğu belirlendi. Beyaz ışık emisyonunun kristal tane 

boyutu, nadir toprak iyon konsantrasyonu, sıcaklık, basınç, uyarıcı ışık kaynağının 

dalgaboyu ve gücü gibi etkilere bağımlılıkları detaylı bir biçimde araştırıldı. Elde 

edilen beyaz ışık emisyonunun şiddetinin basınç, uyarıcı ışık kaynağının gücü gibi 

parametrelere güçlü bir biçimde bağlı olduğu ve beyaz ışık emisyonunun 

gözlemlenebilmesi için uyarıcı eşik gücüne gereksinim olduğu belirlendi. Nadir 

toprak iyon konsantrasyonu varlığının beyaz ışık üretim sürecini kolaylaştırdığı ve 

artan iyon konsantrasyonu ile doğru orantılı olduğu gözlemlenmiştir. Özellikle 

katkısız ultra saf Y2O3 nano – tozlarından elde edilen beyaz ışık emisyonunun 

özellikleri ticari akkor lambalarla mukayese edildi ve 60W ticari akkor lambadan % 

35 daha verimli olduğu gösterildi. 

Nano – boyutlu Y2O3 nano – tozlarından elde edilen beyaz ışığın karakterizasyonunu 

müteakip farklı kristallerden de bu ışımanın elde edilip edilemeyeceği araştırıldı. Bu 
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bağlamda sırasıyla kimyasal çökeltme ve Pechini metotları kullanılarak elde edilmiş, 

55 ve 78 nm boyutlarındaki katkısız ve Cr3+ katkılı YAG (itriyum alüminyum garnet) 

ve GGG (galyum gadolinyum garnet) nano – tozlarından beyaz ışık üretimi 

araştırıldı. Yapılan denemelerde bu malzemelerden de beyaz ışık çıkışı gözlemlendi. 

Benzer şekilde bu malzemelerden elde edilen beyaz ışığın kristal tane boyutu, iyon 

konsantrasyonu, sıcaklık, basınç, uyarıcı ışık kaynağının dalgaboyu ve gücü gibi 

etkilere bağlılığı detaylı bir biçimde araştırıldı. Katkılı malzemelerde beyaz ışık 

üretim sürecinin daha kolay olduğu ancak katkı iyonları olmadan da beyaz ışık 

üretilebileceği gösterildi. YAG ve GGG nano – kristallerinden de beyaz ışık çıkışının 

gözlenebilmesi bu beyaz ışık olgusunun tamamen malzemelerin boyutuyla alakalı 

olduğunu doğrulamıştır. 
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1.  INTRODUCTION 

Synthesis, structural and optical characterization of new and suitable materials are 

very important in photonics technology due to the increasing materials requirement 

as a result of the fast developments in this field. Phosphor materials doped with 

different +3 valence rare earth ions (REI) such as glasses, crystals, nanopowders, 

quantum dots (QD) etc. are candidates to meet these requirements in photonics 

technology. These materials have attracted more interest due to their potential 

applications to optoelectronics and photonics [1-4]. In particular, they have many 

application areas such as displays, florescent lamps, light emitting diodes and bio-

sensing. Some phosphor materials converted infrared light to visible radiation, and 

are known as “optical transducers” [5]. 

REIs generally show an emission due to electronic transitions between the energy 

levels of the 4fn configuration. These 4f electrons are well-protected from the crystal 

field by the 5s2 and 5p6 electrons. So, the host material has a very small effect on REI 

energy levels.  Among these REIs there is a particular interest in Neodymium (Nd3+) 

due to its strong absorption at about 808 nm, which matches with the emission 

wavelength of the commercially available laser diodes [6].  

REIs doped materials have a very wide application area in photonics technology; a 

lot of research articles can be found in the literature about them. Their selection 

varies depending on the particular application. The priority target in the production 

and development of a laser is to increase its quantum yields in the wavelength range 

of interest. The factor that directly affects the quantum yield is the energy loss due to 

non-radiative interactions. So, it is important to select a material with minimum non-

radiative energy loss. 

In particular, among these materials, rare earth ions doped cubic Y2O3 (yttria) 

crystals with controllable size and morphology are worthy of investigation due to 

their excellent properties, such as stability, high thermal conductivity, high corrosion 

resistance, wide spectral range optical transparency (0.2 – 8 μm) and a high 
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refractive index (~1.8). Also, yttria is one of the best host material for REIs due to 

some similarities of Y3+ with the REIs such as chemical properties and ionic radius. 

Yttria is a sesquioxide with a higher melting point (~2410℃) and a phonon energies 

of about ~430 – 550 cm-1 [7, 8]. 

Synthesis, structural and optical characterization of the materials with nano-sizes 

have been studied over the last decade. Due to the size confinement effect, 

nanostructured materials possess optical, magnetic and thermal properties distinct 

from those of their bulk counterparts. It has been proven that as the size of the 

materials decreases, some optical, magnetic and thermal features of the materials are 

enhanced. It is expected in general that confinement may affect interionic electronic 

and vibronic (electron–phonon) interactions. Therefore, both radiative and 

nonradiative relaxation processes of optical centers in nanocrystals may be 

significantly influenced. 

REIs are particularly effective as luminescent centers in host lattices and are 

commonly utilized to produce high quantum efficiency bulk phosphors. Unlike the 

semiconductor QDs where the electronic states are spatially extended and thus 

quantum confined, REI 4f electronic states are highly localized and unaffected by 

reduced dimensions. However nanophosphor phonon levels are delocalized and the 

phonon density of states is reduced by particles of nano dimensions. Because 

phonons are responsible for the non-radiative relaxations of luminescence in 

nanophosphors, and because these modes are cut off due to spatial confinement, the 

optical properties of nanophosphors will differ from those of their bulk counterparts 

[9, 10]. 

It is difficult to grow yttria single crystals with large dimensions and high optical 

quality with traditional crystal growth techniques from the melt due to the high 

melting temperature (~2400℃) of yttria. It is also very expensive to growth yttria by 

using these techniques. Since these techniques are very expensive and it is difficult to 

obtain single crystals of yttria, in recent years, many wet chemical techniques 

described in literature have been used for synthesizing REIs doped yttria nano-

powders such as chemical co-precipitation [11], combustion [12], sol-gel [13], 

chemical vapor deposition [14] etc. Thermal decomposition technique used in this 

study is also a cheap and efficient wet chemical technique to obtain yttria 

nanopowders. 
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Most of the research on Y2O3 systems has concentrated on the synthesis with 

different REI dopants such as Europium (Eu3+) [2, 15], Thulium (Tm3+) [16], Erbium 

(Er3+) [17] ions, reduction and controlling of the particle sizes, structural and optical 

characterization and some applications such as biosensing, displays, lighting etc. 

There is not much detailed information available for the luminescence properties of 

the Nd3+ doped Y2O3 powders and the effect of confinement on the luminescence 

properties of these powders. 

In this study synthesis, structural and optical characterization of Neodymium (Nd3+) 

ions doped Y2O3 nano-powders were performed in a systematic way. The powders 

were synthesized at different temperatures by using thermal decomposition technique 

and annealed at temperatures between 600 – 1400 ℃ to control the particle sizes. The 

structure, morphology and particle sizes were investigated by using X-ray 

diffraction, Scanning Electron Microscope (SEM) and Transmission Electron 

Microscope (TEM) methods. Emission spectra, response to pulsed excitation, line-

width and the line-shift measurements were performed in order to investigate the 

effect of the particle sizes on the luminescence properties of the samples. 

The outline of this thesis is as follows: The theoretical background such as physical 

properties of Y2O3 crystal, properties of REIs, surface effects and effect of size 

confinement are presented in Chapter 2. Chapter 3 deals with the experimental 

procedures used for the synthesis of nano-powders, structural characterization and 

optical characterization. The results of the structural and optical characterization and 

the production of white light are presented in Chapter 4 to 9. The conclusions and the 

prospects for future studies of this study are given in Chapter 10. 
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2. THEORETICAL BACKGROUND 

2.1  Rare Earth Ions 

The rare earth ions (REI) are also called lanthanide ions are commonly used as 

luminescence activation centers in photonic materials and have wide range of 

applications in phophors, lasers, amplifiers, biological sensors etc. They are formed 

by ionization of a number of atoms with an atomic numbers range from 58 to 70 

which are ranging from the Cerium (Ce) which has an electronic configuration of 5s2 

5p6 5d1 4f1 6s2 to the Ytterbium (Yb) which has an electronic configuration of 5s2 5p6 

4f14 6s2, respectively. These atoms are generally incorporated in materials as an 

optically active centers in their divalent or trivalent forms. All of the optical 

properties of REIs are characterized by transitions between energy sublevels of the 

unfilled 4fn electronic configuration due to elimination of 5d, 6s and some 4fn 

electrons in the trivalent form of the REIs. On the other hand divalent ions contain 

one more electron and this may cause f-d interconfigurational transitions. This 

difference of one electron leads to differences in the spectroscopic properties of 

divalent and trivalent ions. 

Trivalent REIs have 4fn electronic configuration with n values range from 1 to 13 

which corresponds to Ce3+ and Yb3+ ions, respectively. The number of the 4f 

electrons for each trivalent ions are tabulated in Table 2.1. 

The most important property of REIs is the shielding effect of the outer 5s and 5p 

electrons on the 4f electrons. As the 5s and 5p orbitals fill before the 4f orbital, these 

two orbitals have a shielding effect on the 4f orbital. So, these 4f electrons are 

weakly affected by the surrounding medium, namely crystalline field in host 

crystalline material. As a result of this, REIs show sharp absorption and emission 

lines. 

When trivalent REIs are introduced into crystals, the spin-orbit interaction term of 

the ion Hamiltonian over the that of the crystalline field causes the splitting of the 

2S+1LJ states of the REIs. The crystalline field may cause small shifts and additional 
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splittings on these states but these effects are much smaller than the spin-orbit 

splitting, therefore the optical spectra of REIs in crystalline field are similar to those 

of the free ions. Furthermore, main features of a spectrum of REI doesn’t depend 

much on host material and does not change from one crystal to another [18, 19]. 

Table 2. 1: The number of 4f electrons (n) in trivalent lanthanide ions. 

Ion n 

Ce3+ 1 

Pr3+ 2 

Nd3+ 3 

Pm3+ 4 

Sm3+ 5 

Eu3+ 6 

Gd3+ 7 

Tb3+ 8 

Dy3+ 9 

Ho3+ 10 

Er3+ 11 

Tm3+ 12 

Yb3+ 13 

 

The interpretation of the REIs absorption and emission spectra can be made by 

employing the Dieke’s energy level diagram which obtained by Dieke [20] by 

systematically measuring the spectroscopic properties of all REIs in LaCl3 crystalline 

host material and is given in Figure 2.1. The diagram shows the energy values of all 

REIs. Since the main features of a spectrum of a REI remains similar from one 

crystal to another, as mentioned above, Dieke diagram can be used to interpret any 

spectrum obtained from REIs in any crystalline host material. A slight difference can 

be observed for different host material due to the energy splitting and center of 

gravity of the 2S+1LJ energy levels for a (REI)3+ ion can change slightly but most of 

the main features remains similar. Despite the fact that the maximum number of split 

components for each 2S+1LJ multiplet is (2J + 1) for integer J, or (J + 1/2) for half-

integer J, the actual number of components determined by the local symmetry around 

REI [18, 19]. 
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Figure 2.1 : An energy-level diagram for trivalent lanthanide rare earth ions in lanthanum chloride[20].
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As we mentioned above Dieke diagram uses to interpret both of absorption and 

emission spectra of REIs. Lets give an example of usage of Dieke diagram to 

interpret absorption spectrum of a REI. The room temperature absorption spectrum 

of Nd3+ ion in tellurite glass host [21] is given in Figure 2.2 with corresponding 

Dieke diagram. The sharp absorption lines given in the figure corresponds to 

transitions from sublevels of the ground state of Nd3+ to the upper excited sublevels 

of the different 2S+1LJ  states. These sublevels are the result of splitting effect of the 

crystalline field on the Nd3+. By using Dieke diagram located on the left hand side of 

the figure, we can easily define which absorption line arise from which interlevels 

transition. 

 

Figure 2.2 : The absorption spectrum of Nd3+ions in TeO2+WO3 glass system, taken 

at room temperature (right-hand side) [21]. The Dieke diagram levels 

corresponding to the Nd3+ion are shown on the left-hand side. 

We can also easily assign the emission spectra of REIs by using a same way given 

above for the absorption spectra of REIs. If we re-check the Dieke diagram, we can 

see that some energy levels of REIs are marked with a semicircle below them which 

are correspond to light emitting levels of the REIs. The levels without any semicircle 

below them are not give rise to direct light emission, they are non-radiatively relaxed 
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to the lower energy levels. As given in Figure 2.3. that every emission lines are 

assigned to different transition between sublevels in Dieke diagram. We can see 

several peaks for each emission bands in emission spectrum which are correspond to 

splitting of the energy levels. So, we can make a lot of similar interpretation of the 

emission spectrum by using Dieke diagram.   

As a result, the Dieke diagram is a useful tool for spectroscopists to roughly estimate 

average wavelength for each interlevel transitions of REIs in any crystal host. 

Also we should remind that all of these f-f transitions are parity forbidden but most 

of them become partially allowed at the electric dipole order, depending on crystal 

host, as a result of mixing with orbitals that have different parity because of a non-

inversion symmetry of crystal field [18, 19].  

 

Figure 2.3 : The low-temperature emission spectrum of Nd3+ions in Y2O3 and the 

Dieke diagram for the Nd3+ion for interpretation [22, 23]. 

2.1.1 Common properties of the rare earths 

These common properties apply to both the lanthanides and actinides.  

 The rare earths are silver, silvery-white, or gray metals. 

 The metals have a high luster, but tarnish readily in air.  
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 The metals have high electrical conductivity.  

 The rare earths share many common properties. This makes them difficult to 

separate or even distinguish from each other.  

 There are very small differences in solubility and complex formation between 

the rare earths.  

 The rare earth metals naturally occur together in minerals (e.g., monazite is a 

mixed rare earth phosphate).  

 Rare earths are found with non-metals, usually in the 3+ oxidation state. 

There is little tendency to vary the valence. (Eu also has a valence of 2+ and Ce also 

a valence of 4+) [24]. 

2.2 Properties of the Yttrium Oxide (Y2O3) Crystal 

Yttrium oxide (Y2O3) called yttria, is a sesquioxide crystal with a cubic bixbyite 

structure with the 𝑇ℎ
7 - Ia3 space group and a 10.6 Å lattice constant. The elementary 

cell of Y2O3 contains 16 formula units with 32 cation sites, 8 centro-symmetric sites 

with C3i symmetry (or S6) and 24 non centro-symmetric sites with symmetry C2, for 

which the trivalent REI dopants can substitute. The crystal structure of the Y2O3 is 

given in Figure 2.4. The trivalent ions can occupy the two types of sites with 

approximately equal probability and the optical transitions mostly occur within the 

ions at the C2 sites. Y2O3 is a refractory oxide with a melting point of about 2410 oC. 

Due to the high melting temperature of Y2O3, it is difficult to grow Y2O3 crystals 

from the melt by using traditional crystal growth techniques. Also, yttria is the one of 

the best host material for the REIs due to the some similarities with the REIs’ such as 

chemical properties and ionic radius with other REIs. Some of the physical properties 

of Y2O3 crystal have been collected from the literature and tabulated in Table 2.2. [7, 

8, 25]. 

http://chemistry.about.com/library/weekly/aa122002a.htm
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Figure 2.4 : Crystal structure of Y2O3 [26]. 

 

Table 2. 2:  Physical properties of Y2O3 [7]. 

Property Values 

Crystal system Cubic 

Structure type Bixbyite 

Space group 𝑇ℎ
7 - Ia3  

Y3+ site symmetry  C2 and C3i 

Y3+ site density 2.681 × 1022𝑐𝑚−3 

Lattice constant 10.607 Å 

Melting point 2410 oC 

Debye temperature 460 K 

Phonon Energy ~430 – 550 cm-1 

Specific heat 0.170 𝐽 𝑔 ∙ 𝐾⁄ 𝑎𝑡 100𝐾

0.360 𝐽 𝑔 ∙ 𝐾⁄ 𝑎𝑡 200𝐾

0.455 𝐽 𝑔 ∙ 𝐾⁄ 𝑎𝑡 300𝐾
 

Thermal Conductivity 40 𝑊 𝑚 ∙ 𝐾⁄ 𝑎𝑡 100𝐾
20 𝑊 𝑚 ∙ 𝐾⁄ 𝑎𝑡 200𝐾
13 𝑊 𝑚 ∙ 𝐾⁄ 𝑎𝑡 300𝐾

 

Thermal expansion 4.2 × 10−6𝐾−1𝑎𝑡 100𝐾
6.0 × 10−6𝐾−1𝑎𝑡 200𝐾
7.5 × 10−6𝐾−1𝑎𝑡 300𝐾

 

Density 5.04 𝑔 𝑐𝑚3⁄  

Mohs Hardness 6.8 

Index of refraction 1.8892 at 1 μm 
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2.3 Quantum Confinement and Surface Effects 

2.3.1 Quantum confinement effect 

Quantum confinement effect describes how the electronic and optical properties of 

materials change when the materials sampled sufficiently small, typically 10 nm or 

less. The phenomenon originates from the electrons and holes being squezed into 

small dimensions that approach to Bohr radius which is the critical quantum 

mechanical measurement, namely when electrons and holes confined by the crystal 

dimensions that is smaller than Bohr radius, the wavefunction of the electron is 

collapsed. Due to the size confinement effect, nano-structured materials possess 

optical properties different than those of their bulk counterparts. The most 

remarkable modifications arises from the effect of the size on the energy levels and 

densities of states. This phenomenon can easily describe by using the particle in 

potential well [27, 28].  

2.3.2 Particle in a one-dimensional potential well 

The time independent Schrodinger equation for a particle in a one-dimensional 

potential well is given by 

−
ћ2

2𝑚

𝑑2𝛹(𝑥)

𝑑𝑥2
+ 𝑈(𝑥)𝛹(𝑥) = 𝐸𝛹(𝑥) (2.1) 

where m is the mass of the particle, U(x) is the potential and E is the energy of the 

particle with Ψ(x) wave function. The potential U(x) can be describe like below 

𝑈(𝑥) = {
+∞,                     𝑥 < − 𝑎 2⁄

0,      − 𝑎 2⁄ ≤ 𝑥 ≤ 𝑎 2⁄

−∞,                         𝑥 > 𝑎 2⁄
                                            (𝟐. 𝟐) 

As the potential U(x) infinite, the probability of finding particle is zero at outside and 

at the boundary of the box. So, the problem convert into a free particle problem 

inside the box and we will only interested in solutions for the particle inside box 

because of the wave functions can only generate values which differ from zero inside 

the box. Also we assume that the probability of finding the particle is symmetric 

around the center of the box (x=0), ie U(x)=U(-x). So, the time independent 

Schrodinger equation becomes, 
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𝑑2𝛹

𝑑𝑥2
+ 𝑘2𝛹 = 0     𝑤𝑖𝑡ℎ    𝑘2 =

2𝑚𝐸

ℎ2
                                        (𝟐. 𝟑) 

The general solution is 

𝛹(𝑥) = 𝐴𝑠𝑖𝑛𝑘𝑥 + 𝐵𝑐𝑜𝑠𝑘𝑥                                                   (𝟐. 𝟒) 

If we apply the boundary conditions and as seen from Figure 2.5 we deduce that we 

can find two types of solutions which are given by cosine and sine functions 

corresponds to odd n and even n values, respectively. 

1) 

𝐵 = 0,   𝛹 (
𝑎

2
) = 𝐴𝑐𝑜𝑠 (

𝑘𝑎

2
)

                     ⇒ cos (
𝑘𝑎

2
) = 0

         ⇒ 𝑘 =
𝑛𝜋

𝑎
,    𝑛 = 1, 3, 5 …

 

2) 

𝐴 = 0,   𝛹 (
𝑎

2
) = 𝐵𝑠𝑖𝑛 (

𝑘𝑎

2
)

                     ⇒ sin (
𝑘𝑎

2
) = 0

         ⇒ 𝑘 =
𝑛𝜋

𝑎
,    𝑛 = 2, 4, 6 …

 

So 

𝛹𝑜𝑑𝑑 =
1

𝑁
cos(𝑘𝑥)                                                      (𝟐. 𝟓) 

𝛹𝑒𝑣𝑒𝑛 =
1

𝑁
sin(𝑘𝑥)                                                      (𝟐. 𝟔) 

where N is the normalization constant and |𝑥| ≤ 𝑎 2⁄  (inside the box otherwise 

wavefunctions are zero). If we insert k to the above wavefunctions 

𝛹𝑜𝑑𝑑 =
1

𝑁
cos (

1

ћ
√(2𝑚𝐸)𝑥)                                            (𝟐. 𝟕) 

𝛹𝑒𝑣𝑒𝑛 =
1

𝑁
sin (

1

ћ
√(2𝑚𝐸)𝑥)                                            (𝟐. 𝟖) 

Finally, normalization of wavefunctions read 

𝛹𝑜𝑑𝑑 = √
2

𝑎
cos (

1

ћ
√(2𝑚𝐸)𝑥)     𝑓𝑜𝑟 𝑜𝑑𝑑 𝑛                               (𝟐. 𝟗) 

𝛹𝑒𝑣𝑒𝑛 = √
2

𝑎
sin (

1

ћ
√(2𝑚𝐸)𝑥)   𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑛                            (𝟐. 𝟏𝟎) 
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Figure 2.5 : Energy levels and wave functions for (a) particle in a well with 

infinitely high walls, and (b) particle in a well with finite height. (c) 

The dispersion curve for a free particle. The dots on these curves are 

the quantized energy values for a particle in a box. In case of a finite 

well, above Uo the dispersion curve for a free particle is obtained [27]. 

As seen from Figure 2.5, the wavefunctions vanish at |𝑥| > 𝑎 2⁄ . When particle is in 

the well, the probability (|𝛹𝑛(𝑥)|2) must be nonzero. So the minimum energy of a 

particle is nonzero 

𝐸𝑛 =
𝜋2ℎ2

2𝑚𝑎2
 (2.11) 

The wave functions vanish at x>a. When a particle exists in the well, the product c 

must be nonzero somewhere. The minimum energy of a particle (n=1) is therefore 

nonzero and given by (see (4)): 

𝐸𝑛 =
𝜋2ℎ2

2𝑚𝑎2
 (2.12) 

All above equations can be derived by using Heisenberg uncertainty equation. 
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∆𝑥∆𝑝 ≥
ћ

2
 (2.13) 

with ∆𝑥 = 𝑎,  

∆𝐸 =
∆𝑝2

2𝑚
=

ћ
2

8𝑚𝑎2
 (2.14) 

The nature of the solutions obtained for the finite potential wells are almost same. 

There are few differences such as the probability of finding a particle outside the box 

is not zero and increases with increasing n value and after a certain kinetic energy 

value, the states form a continium. The number of states inside the well is given by; 

𝑎√2𝑚𝑈𝑜 > 𝜋ћ(𝑛 − 1) (2.15) 

For n = 1, there is at least one state inside the well. For a particle in an infinite 

potential well, the relation between k and E, called dispersion relation, consist of 

points on a parabola as seen from Figure 2.5. The dispersion relation is given by 

𝐸 =
ћ

2𝑘2

2𝑚
 (2.16) 

For a particle with a finite U0 wall’s height, below U0, the solutions are quantized. 

Above U0 any values of k is possible. All of these results are summarized in Figure 

2.5 [27-29]. 

2.3.3 Particle in a general three-dimensional potential 

In three dimensions, the wave functions are consist of a radial and an angular 

dependent part of Schrodinger equation. In order to characterize the wavefunctions in 

three dimensions, we need three following quantum numbers (without spin); 

 n→ The principal quantum number which describes the electron shell or 

energy level of an atom. The n value ranges from 1 to the shell which contains 

outermost electron (n = 1, 2, 3…) 

 l→The orbital (or azimuthal) quantum number which describes the subshells, 

ie for any value of n, n states (subshells) exist. The orbital quantum number 

determines the magnitude of orbital angular momentum through the relation 

𝐿2 = ћ2𝑙(𝑙 + 1)                                                         (𝟐. 𝟏𝟕) 
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The states with different l values are called s, p, d, f … orbitals. The orbital quantum 

numbers ranges from 0 to (n-1). 

 m→The magnetic quantum number which used to describe the components 

of L paralel to the quantization axis and yields the projection of the orbital angular 

momentum along a specified axis; 

𝐿𝑧 = 𝑚ћ2                                                          (𝟐. 𝟏𝟖) 

Every l states (2l+1) fold degeneracy due to m ranges from –l to +l. The priority of 

the wavefunction is determined by l. 

If we consider again a infinite potential well, we can obtain energy values for this 

system [27-29]. 

𝐸𝑛,𝑙 = (
ћ

2

2𝑚𝑎2
) 𝜒𝑛𝑙

2  (2.19) 

where 𝜒𝑛,𝑙 are the roots of the spherical Bessel functions. 

The smallest energy value for n = 1 and l = 0 is given by, 

𝐸1,0 =
𝜋2ћ

2

8𝑚𝑎2
 (2.20) 

2.3.4 Density of states in low dimensional structures 

In solid state and condensed matter physics, density of states (DOS) is used to 

describe the number of available states per energy interval at each energy level that 

are waiting to be occupied by electrons. The density of states phenomenon become 

more important in the determination of the spectroscopic properties of the nano-sized 

materials. 

We will consider a sphere in k-space for the evaluation of the DOS. Also we will 

consider the periodic boundary conditions of a crystal that is 𝑘 = 2𝑛𝜋
𝐿⁄ . The 

volume of the sphere with the radius k is; 

𝑉𝑠𝑝ℎ𝑒𝑟𝑒 =
4

3
𝜋𝑘3                                                       (𝟐. 𝟐𝟏) 

where 𝑘2 = 𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2 
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𝑘𝑥 =
2𝜋𝑛𝑥

𝐿𝑥

𝑘𝑦 =
2𝜋𝑛𝑦

𝐿𝑦

𝑘𝑧 =
2𝜋𝑛𝑧

𝐿𝑧

                                                          (𝟐. 𝟐𝟐) 

Also we know from the Schrödinger equation that energy of a particle is quantized 

and given by; 

𝐸 =
ћ2𝑘2

2𝑚
=

𝑃2

2𝑚
                                                   (𝟐. 𝟐𝟑) 

The smallest nonzero volume in this k-space, 

𝑉𝑠𝑡𝑎𝑡𝑒 = 𝑘𝑥𝑘𝑦𝑘𝑧 =
8𝜋3

𝐿𝑥𝐿𝑦𝐿𝑧
                                        (𝟐. 𝟐𝟒) 

So the total number of states is given by the ratio between the volume of the sphere 

and the state; 

𝑁 = 2
𝑉𝑠𝑝ℎ𝑒𝑟𝑒

𝑉𝑠𝑡𝑎𝑡𝑒
= 2 ∙

4

3
𝜋𝑘3

𝑘𝑥𝑘𝑦𝑘𝑧
=

𝑘3

3𝜋2
𝐿𝑥𝐿𝑦𝐿𝑧                         (𝟐. 𝟐𝟓) 

The 2 coefficient in the Eq. (2.25) arises from the spin degeneracy of electrons. Now 

we can define the DOS per unit volume which is 

𝜌 =
𝑁

𝐿𝑥𝐿𝑦𝐿𝑧
=

𝑘3

3𝜋2
                                             (𝟐. 𝟐𝟔) 

Finally if we consider an energy density, 

𝜌(𝐸)𝑑𝐸 =
1

2𝜋2
(

2𝑚

ћ2
)

3
2⁄

𝐸1 2⁄ 𝑑𝐸                                (𝟐. 𝟐𝟕) 

At this point we can easily calculate the DOS for two and one dimension. DOS for 

the two dimensions is given by 

𝜌2(𝐸)𝑑𝐸 =
1

𝜋

𝑚

ћ2
                                                 (𝟐. 𝟐𝟖) 

It is interesting to notice that the DOS of the 2D does not depend on the energy. For 

the 1D 
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𝜌1(𝐸)𝑑𝐸 =
1

𝜋
√

2𝑚

ћ2
(𝐸)−1 2⁄ 𝑑𝐸                                        (𝟐. 𝟐𝟗) 

Finally, in a zero dimensional systems (QDs), the DOS of such system is described 

just as a series of delta functions [27-30] 

𝜌(𝐸)𝑑𝐸 = 2 ∑ 𝛿 (𝐸 − 𝐸𝑛𝑥,𝑛𝑦,𝑛𝑧
)

𝑛𝑥,𝑛𝑦,𝑛𝑧

                                (𝟐. 𝟑𝟎) 

All results are summarized in Figure 2.6. 

 

Figure 2.6 : Density of states for 3, 2, 1, and zero dimensional systems [27]. 

2.3.5 Low-dimensional structures 

Since the dimension decrease by moving from crystal to the nano-particle, at least 

one of the dimensions of the nano-material may become the same order of the 

magnitude or even smaller than the wavelength of the electron and holes, or the Bohr 

radius of an exciton. This resulted in a quantized motion in the confined axis. One 

direction confinement results in a quantum well, two directions results in a quantum 

wire and finally three directions results in a QD.  
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We can define three limiting cases to classify confinement effect according to nano-

particle radius to Bohr radius ratio. First one is the “Weak Confinement Regime” that 

occurs when the radius of the nano-particle is few times larger than the Bohr radius, 

the second one is the “Intermediate Confinement Regime” which occurs when the 

radius of the nano-particle is close to Bohr radius and the last one is the “Strong 

Confinement Regime” which occurs when the radius of the nano-particle is much 

smaller than the Bohr radius [27]. 

2.3.6 Surface effects 

Another most important deal of the size reduction is the surface effects. As the 

particle sizes decrease, the surface area to volume ratio become larger and starts to 

play an important decisive role on the optical, catalytic, magnetic etc. properties of 

the nano-materials. Since the surface area to volume ratio of a sphere is proportional 

to the 1 𝑟⁄ , the fraction becomes larger with the decreasing r. As a result of this, the 

larger fraction of the atoms are found at the surface of the nano-crystal. For example, 

while the fraction of the atoms at the surface for 1μm crystal is less than 1 %, it is 15 

% for 5 nm CdS nano-crystal [31].  

One of the failings of the particle in a box model that mentioned above is that it does 

not take the surface of a QDs into account. Actually the surface of a QD is not an 

infinite potential barrier. Also the chemical potential of the surface is significantly 

differs from the interior of the materials due to the dangling bonds, reconstructions of 

the crystal and the possible adsorbates. Therefore, increasing ratio of surface area to 

volume can make particles very reactive or catalytic. As a result of this, smaller 

particles make more of themselves available at the surface to react chemically with 

other molecules [32]. 

Also at high temperature sintering, the high surface area to volume ratio provides a 

driving force for diffusion and nano-materials become more sinterable according to 

their bulk counterparts. So this makes low temperature sintering possible over a short 

time scales than for larger particles [33]. 

2.4 Spectroscopic Properties of Lanthanides in Nanocrystals 

Lanthanides doped luminescent materials are widely investigated due to their 

potential applications in solid-state lasers, luminescent lamps, flat panel displays, 
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optical fiber communication systems, biological sensors and other photonic devices. 

The great interest on lanthanides is due to the their notable luminescent properties 

which originate from intraband transitions between their unique well-protected 4f 

orbitals. Since the 4f electrons are well protected from the crystal field by 5s and 5p 

electrons, lanthanides shows a sharp emission transitions within 4fn configuration [6, 

18, 19]. The better understanding of the spectroscopic properties of the lanthanides 

has been provided with many researchs in the literature under the illumination of the 

pioneer work by Dieke, Judd, Wybourne, Carnall and others [20, 34-36]. 

Although the spectroscopic properties of lanthanide ions are well-understood, the 

requirement of the understanding of the lanthanides in nano-materials has been came 

out with rapid evolution of the nanotechnologies. Especially, with the development 

of the new, cheap and low temperature methods, materials synthesis based on wet 

chemical techniques and the change in the physical properties of the nano-materials 

according to their bulk counterparts, the growing interest has been re-focused on the 

understanding of the spectroscopic properties of the lanthanides in nano-materials. 

The understanding of these materials is important because of optimizing and 

adapting their emissive properties for their potential applications. Most of the 

researchs in the literature shown that the some physical properties of nano-materials, 

particularly, some optical, thermal and catalytic properties enhanced with decreasing 

dimensions of the materials according to their bulk counterparts, but there is no 

definite evidence of a trend of these properties with decreasing particle size. 

Therefore the change in the particle size and as a result in the physical properties 

affect the luminescent dynamics of the optically active lanthanide ion in nano-sized 

materials. These effects can manifest itself as a change in the radiative lifetimes, 

luminescence quantum efficiency and concentration quenching phenomena. All of 

these observed changes are arised from the change in the local environments of the 

doped lanthanide ions due to the possible structural defects induced by size 

reduction. As a result, the site symmetry, crystal field strength, and the index of 

refraction may be significantly different from that in the bulk materials. Although 

electronic energy levels shift and excited state lifetime varies as a function of particle 

size, literally, many of these effects are not considered as a result of nano-

confinement on electronic states [37]. 
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It is well known that in solid phases electrons in the 4fn orbitals of lanthanides are 

localized, therefore do not exhibit quantum confinement even in nanocrystals [9, 10]. 

According to crystal field theory, the electronic energy levels for lanthanide ions in 

nanoparticles may vary because of changes in the strength of local electrostatic field 

and site symmetry. In nanocrystals, structure disordering and surface defects are 

inevitable, thus induce more significant inhomogeneous line broadening than that in 

bulk crystals. However, in the literature, some observed variations in energy levels 

have been attributed to quantum-confinement effects when the particle diameter is 

less than 5 nm. It is reported that, for nanoparticles doped with transition metal ions 

such as Mn2+:ZnS, the luminescence lifetime becomes shorter by several orders of 

magnitude. Similar effect has been reported for lanthanide ions in 

nanosemiconductors. Such size dependent effects are postulated to result from 

mixing of the s–p electrons of the host with the d–f valence electrons of the activator 

due to quantum confinement, causing the normally forbidden d–d or f–f transitions to 

become allowed. Although research in nanostructured semiconductors has long been 

conducted to produce a clear theoretical picture of these materials, very little 

theoretical work addressed the size-dependence of localized emissive ions in 

nanostructured hosts [9, 10, 37]. 

Nanophenomena due to size confinement in lanthanide nanoparticles may indeed 

occur because of ion–phonon coupling that directly affect excited state lifetime and 

energy transfer. Namely, the size confinement is not on electronic states, but lattice 

vibration modes. In a nanocrystal, the density of phonon states becomes discrete and 

application of Debye approximation of a continuous density function is 

inappropriate. Moreover, low-frequency acoustic phonon modes are cut off. 

Nanoparticles not only become thermal insulators, but electron–phonon coupling 

may be restricted. It is expected in general that the confinement effects on 

spectroscopy and luminescence dynamics can be induced by inter-ionic electronic 

and vibronic interactions. Significant size dependence of the excited state dynamics 

and luminescence properties is the most commonly observed nano-phenomenon for 

lanthanide ions in nanomaterials. Given the localized nature of the 4f orbitals of 

lanthanides in complexes, it is obvious that changes in local environment would 

influence, mostly through ion–phonon coupling, the dynamics of the 4f–4f 

transitions, whereas the static energy levels of the 4f states experience less impact. 
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Size effects on electron–phonon interaction are primarily due to the modification of 

the phonon density of states (PDOS) in a nanocrystal. Discrete phonon spectrum and 

the low-energy acoustic phonon modes cutoff are the consequence of the size 

reduction. As a result, luminescence dynamics for lanthanide ions in nanocrystals, 

particularly nonradiative relaxation and energy transfer efficiency are expected to 

differ from that in bulk materials [9, 10, 37]. 

2.4.1 Size Effects on the structure of electronic levels 

In a 4fn configuration electrons in the partially occupied 4f orbitals are shielded by 

the 5s2 and 5p6 sub-shells and prevented from interacting with the ligands; therefore 

they have little participation in chemical bonding. On placing a lanthanide ion in a 

dielectric crystal, the energy levels split under the influence of the electric field 

produced by the crystalline environment. The f-electrons have very localized states 

that are conventionally described within the framework of crystal field theory. In 

general, quantum confinement effects on the energy level structure are not expected 

for the localized electronic states of the lanthanide ions doped in insulating 

nanocrystals. The electrostatic crystal field which splits the 2S+1LJmultiplet of a 

lanthanide ion up to several hundreds cm−1 may be divided into short-range 

components and long-range electric dipolar interactions [37]. 

2.4.2 Confinement on excited-state dynamics 

The nanostructure dependence of the excited state dynamics can be derived from the 

interaction of the electronic excitation with the surrounding environment and its 

phonon modes. A variety of nanophenomena, particularly, the lifetime of excited 

states of lanthanide ions in nanostructures may exhibit strong size-dependence. 

Energy transfer rate and luminescence efficiency in lanthanide activated phosphors 

are also sensitive to particle size and surrounding environment [37]. 

2.4.2.1  Radiative and nonradiative relaxation 

According to Judd–Ofelt theory, one can evaluate the radiative lifetime of any 

excited state of interest via Einstein spontaneous emission coefficients. The rate of 

relaxation, A, from an initial state |𝛹𝐽〉 to final state |𝛹′𝐽′〉 through radiative 

processes is given by: 
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𝐴(𝛹𝐽, 𝛹′𝐽′) =
64𝜋2(∆𝐸)3

3ℎ(2𝐽 + 1)
(𝜒𝐹̅2 + 𝑛3𝑀̅2) (2.31) 

where F2 and M2 are the matrix elements of the electric dipole and magnetic dipole 

moments, respectively, ∆E (cm−1) represents the energy gap between states |𝛹𝐽〉 

and|𝛹′𝐽′〉, 𝜒 = 𝑛 (𝑛2 + 2)2 9⁄  is the Lorentz correction for local field with n being 

the refractive index of the host material. The observed lifetime of a particular excited 

state, τT, is determined by the sum of the inverse of the radiative and nonradiative 

lifetimes. Thus 

(𝜏𝑇)−1 = 𝐴(𝛹𝐽) + 𝑊𝑇(𝛹𝐽) (2.32) 

where A(ψJ) is the total radiative relaxation rate from state |𝛹𝐽〉, that is, the sum of 

the rates of radiative decay to all states with energy less than that of |𝛹𝐽〉. If τR is the 

total radiative lifetime of |𝛹𝐽〉, then 𝜏𝑅 = [𝐴(𝛹𝐽)]−1. Similarly, 𝜏𝑁𝑅 = [𝑊𝑇(𝛹𝐽)]−1 

is a total nonradiative lifetime summed over all nonradiative relaxation processes. 

The magnitude of the energy gap between a luminescent state and the next lower-

energy state plays a major role in determining the nonradiative lifetime of that state. 

As a result of ion–phonon interaction, the population of the excited state decreases 

via nonradiative transition from the excited state to a lower electronic state. The 

energy difference between the two electronic states is converted into phonon energy. 

This process of population relaxation is characterized by a relaxation time, τT, which 

depends on the energy gap between the two electronic states, the frequencies of 

vibration modes, and temperature. At room temperature, the excited state lifetime is 

dominated by the nonradiative relaxation except in a few cases such as the 5D0 level 

of Eu3+and 6P7/2 level of Gd3+for which the energy gap is much larger than the 

highest phonon frequency of the lattice vibrations. 

With the assumption that the phonons involved are of equal energy, a commonly 

used expression for the temperature-dependent multiphonon relaxation rate is, 

𝑊(𝑇) = 𝑊(0) [
exp (ћ𝜔𝑚 𝑘𝑇⁄ )

exp(ћ𝜔𝑚 𝑘𝑇⁄ ) − 1
]

∆𝐸 ћ𝜔𝑚⁄

 (2.33) 

where ћ𝜔𝑚 is the maximum phonon energy of the lattice vibrations that couples to 

the electronic transition of the metal ion, ∆𝐸 is the energy gap between the populated 
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state and the next low-lying state, and W(0) is the spontaneous transition rate at T = 0 

when the phonon modes are all initially in their ground state. At low temperatures 

where ћ𝜔𝑚 ≫ 𝑘𝑇, the nonradiative relaxation rate is dominated by W(0), which can 

be expressed as a simple exponential function depending on the energy gap, ∆𝐸: 

𝑊(0) = 𝐶𝑒𝑥𝑝(−𝛼∆𝐸 ћ𝜔𝑚⁄ ) (2.34) 

where C and α are empirical parameters which are characteristic of the particular 

crystal. Known as the energy-gap law, this exponential dependence has been used to 

describe the energy-gap dependence of multiphonon transitions rates for the 4f states 

[37]. 

2.4.2.2  Line broadening and shifts 

One of the direct consequences of ion–phonon interaction is a broadening of the line 

widths of electronic transitions. A spectral line is called “sharp” if its width ΔE, full 

width at half maximum intensity, is much smaller than ћωD, where ωD is the Debye 

frequency of the solid. The temperature dependence of the widths and positions of 

sharp (no phonon) spectral lines has been studied by many workers on 3d, 4f and 5d 

ions in crystals and mostly explained in terms of a simple ion-phonon interaction as a 

perturbation and of a Debye phonon distribution. The ion-phonon interaction causes 

the thermal broadenings and shifts of the energy levels of the impurity ion [22, 38]. 

The broadening of an energy level is mainly due to the crystal strain inhomogeneity, 

direct one-phonon processes, multiphonon processes, and Raman phonon scattering 

processes. The width of the ith level is given by 

∆𝐸𝑖(𝑐𝑚−1) = ∆𝐸𝑖
𝑠𝑡𝑟𝑎𝑖𝑛 + ∆𝐸𝑖

𝑀 + ∆𝐸𝑖
𝐷 + ∆𝐸𝑖

𝑅 (2.35) 

where 

∆𝐸𝑖
𝐷(𝑐𝑚−1) = ∑ 𝛽̅𝑖𝑗 (

1

𝑒∆𝐸𝑖𝑗 𝑘𝑇⁄ − 1
+ 1) +

𝑗<𝑖

∑ 𝛽̅𝑖𝑗

1

𝑒∆𝐸𝑗𝑖 𝑘𝑇⁄ − 1
𝑗>𝑖

 
(2.36a) 

∆𝐸𝑖
𝑅(𝑐𝑚−1) = 𝛼̅𝑖 (

𝑇

𝑇𝐷
)

7

∫
𝑥6𝑒𝑥

(𝑒𝑥 − 1)2
𝑑𝑥

𝑇𝐷 𝑇⁄

0

 (2.36b) 
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∆𝐸𝑖
𝑠𝑡𝑟𝑎𝑖𝑛 is the contribution to the width due to the random microscopic strains of the 

crystal, which give rise to an inhomogeneous broadening and hence produce a 

Gaussian line shape, and is assumed to be temperature independent. ∆𝐸𝑖
𝑀 is due to 

the multiphonon emission processes, which can take place between two levels whose 

energy difference is greater than the greatest energy of the avaliable phonons, and 

has been shown to be essentially temperature independent. Multiphonon absorption 

processes are negligible in the temperature range of interest. ∆𝐸𝑖
𝐷 is due to direct 

one-phonon processes between ith energy level and other nearby levels. The first and 

second terms in Eq. (2.36a) correspond to one-phonon emission processes and one-

phonon absorption, respectively. ∆𝐸𝑖
𝑅 is due to Raman phonon scattering processes 

which consist of the absorption of one phonon and the emission of another phonon 

without changing the electronic state of the ion. 𝛼̅𝑖 and 𝛽̅𝑖𝑗 are the coupling 

coefficients for the ion-phonon interaction. TD is the effective Debye temperature of 

the phonon distribution. The broadenings due to the direct one-phonon, multiphonon, 

and Raman phonon scattering processes are homogeneous and give Lorentzian line 

shapes [22, 38]. 

It is useful to rewrite Eq. (2.36a) as follows: 

∆𝐸𝑖
𝐷(𝑐𝑚−1) = ∑ 𝛽̅𝑖𝑗 + ∆𝐸𝑖

𝐷𝑇

𝑗<𝑖

 
(2.37) 

where 

∆𝐸𝑖
𝐷𝑇 ≡ ∑ 𝛽̅𝑖𝑗

1

𝑒∆𝐸𝑖𝑗 𝑘𝑇⁄ − 1
+

𝑗<𝑖

∑ 𝛽̅𝑖𝑗

1

𝑒∆𝐸𝑗𝑖 𝑘𝑇⁄ − 1
𝑗>𝑖

 
(2.37a) 

We can see from Eq. (2.37) that the broadening, due to direct one-phonon processes, 

consist of a temperature dependent part ∆𝐸𝑖
𝐷𝑇, and a temperature independent part 

∑ 𝛽̅𝑖𝑗𝑗<𝑖  which is due to spontaneous one-phonon emission. For rare earth ions, the 

energy separation among the Stark levels is of the order 10-102 cm-1, and ∑ 𝛽̅𝑖𝑗𝑗<𝑖  

could produce an observable broadening. 

Now we can write Eq. (2.35) as 

∆𝐸𝑖(𝑐𝑚−1) = ∆𝐸𝑖
𝑠𝑡𝑟𝑎𝑖𝑛 + ∆𝐸𝑖

𝑀 + ∑ 𝛽̅𝑖𝑗

𝑗<𝑖

+ ∆𝐸𝑖
𝐷𝑇 + ∆𝐸𝑖

𝑅 (2.38) 
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When T = 0 K, 

∆𝐸𝑖(𝑐𝑚−1) = ∆𝐸𝑖
𝑠𝑡𝑟𝑎𝑖𝑛 + ∆𝐸𝑖

𝑀 + ∑ 𝛽̅𝑖𝑗

𝑗<𝑖

≡ ∆𝐸𝑖0 
(2.38a) 

The ∆𝐸𝑖 at T = 0 is due to the random crystal strains, the spontaneous one-phonon 

and multiphonon emission processes, and is the residual width of the ith level. 

Since the crystal strain width ∆𝐸𝑖
𝑠𝑡𝑟𝑎𝑖𝑛 gives inhomogeneous broadening with a 

Gaussian shape and the other terms in Eq. (2.36) give rise to homogeneous 

broadening with a Lorentzian shape, the simple summation in Eq. (2.36) is a rough 

approximation. A shape composed of a homogeneous part and an inhomogeneous 

part can be represented by a Voigt profile. The width may be resolved into 

homogeneous and inhomogeneous contributions by using the Posener tables [39]. 

The shift of the ith energy level is due to the stationary effects of the ion-phonon 

interaction. Using the perturbation theory, the shift is given by 

𝛿𝐸𝑖(𝑐𝑚−1) = 𝛿𝐸𝑖
𝑅 + 𝛿𝐸𝑖

𝐷 (2.39) 

where 

𝛿𝐸𝑖
𝑅 = 𝛼𝑖 (

𝑇

𝑇𝐷
)

4

∫
𝑥3

𝑒𝑥 − 1

𝑇𝐷 𝑇⁄

0

𝑑𝑥 (2.39a) 

𝛿𝐸𝑖
𝐷 = ∑ 𝑇𝑖𝑗𝛽𝑖𝑗

𝑗≠𝑖

(
𝑇

𝑇𝑖𝑗
)

2

𝑃 ∫
𝑥3

𝑒𝑥 − 1

𝑇𝐷 𝑇⁄

0

𝑑𝑥

(𝑇𝑖𝑗 𝑇2⁄ ) − 𝑥2
 (2.39b) 

The 𝛼𝑖 and 𝛽𝑖𝑗 are the coupling coefficients, 𝑇𝑖𝑗 = (𝐸𝑖 − 𝐸𝑗) 𝑘⁄  is in the range of 

±ћ𝜔𝐷, and P denotes the principal value of the integral. 

2.4.2.3  Modification of radiative lifetimes 

The decay patterns of the luminescent Nd3+ ions embedded in the nanoparticles are 

expected to deviate from an exponential decay of the same ions in the crystal for two 

reasons: 

1) The role played by the surfaces will be incresingly important as the radius of 

the particle is reduced, producing a deviation from exponentiality. Molecular groups 
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such as O-H residing on the surface may enhance the decay process due to their stiff 

vibrations that rob the ion of its excitation energy. We reasonably expect that a 

deviation from exponentiality at the beginning of the decay pattern. 

2) The ensemble of particles in the sample differs also from the bulk material for 

the presence of the interstices between the particles. In what follows we shall 

describe how we can handle the problem presented by this difference [22, 38]. 

The rate of spontaneous electric dipole radiative relaxation of an atomic system is 

given by [40] 

𝐴(𝛹 𝐽, 𝛹′𝐽′) =
64𝜋2(∆𝐸)3

3ℎ(2𝐽 + 1)
𝜂𝐹2 (2.40) 

where F = matrix element of the electric dipole operator, ΔE = energy gap between 

the states |𝛹𝐽〉 and |𝛹′𝐽′〉, and 𝜂 =
𝑛(𝑛2+2)

2

9
; is the Lorentz correction for the local 

field with n = index of refraction of the host material. 

Applying those considerations to the ions embedded in the nanoparticles, we can say 

that the rate of their spontaneous emission (inverse of the radiative lifetime) depends 

on an effective index of refraction neff which consist of a combination of the index of 

refraction of the nanoparticle nNP and of the index of refraction of the surrounding 

medium nmed : 

𝑛𝑒𝑓𝑓(𝑥) = 𝜒𝑛𝑁𝑃 + (1 − 𝜒)𝑛𝑚𝑒𝑑 (2.41) 

where χ is the filling factor indicating the fraction of space that is occupied by the 

nanoparticles. The validity of the usage of neff in calculating the probability of decay 

rests on the fact that the size of the particles is much smaller than the wavelength of 

light [22, 38].  

2.4.2.4  Modification of phonon density of states and confinement on electron–

phonon interaction 

Although no quantum confinement should occur in the electronic energy level 

structure of lanthanides in nanoparticles because of the localized 4f electronic states, 

the optical spectrum and luminescence dynamics of an impurity ion in dielectric 

nanoparticles can be significantly modified through electron–phonon interaction. 



28 

Confinement effects on electron–phonon interaction are primarily due to the effect 

that the phonon density of states (PDOS) in a nanocrystal is discrete and therefore 

the low-energy acoustic phonon modes are cut off. As a consequence of the PDOS 

modification, luminescence dynamics of optical centers in nanoparticles, 

particularly,the nonradiative relaxation of ions from the electronically excited states, 

are expected to behave differently from that in bulk materials.  

The most essential property of acoustic vibrations in a nanoparticle is the existence 

of minimum size-quantized frequencies corresponding to acoustic resonances of the 

particle. In dielectric nanocrystals, the Debye model is not valid for evaluation of the 

PDOS if the radius of the nanocrystal is less than 10 nm [37].  
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3. MATERIALS AND METHODS 

3.1 Synthesis of the Nd3+ Doped Y2O3 Nano-Powders 

Nd3+ doped Y2O3 samples were synthesized by using the Thermal Decomposition 

Technique. 

3.1.1 Thermal decomposition method 

Thermal decomposition, also known as thermolysis, is a chemical decomposition 

caused by heat. The decomposition temperature of a substance is the temperature at 

which the substance chemically decomposes. The reaction is usually endothermic as 

heat is required to break chemical bonds in the compound undergoing 

decomposition. If decomposition is sufficiently exothermic, a positive feedback loop 

is created producing thermal runaway and possibly an explosion. 

The method we used is based on the thermal decomposition of alginate gels. In this 

process yttrium nitrate hexahydrate 𝑌(𝑁𝑂3)3 ∙ 6𝐻2𝑂, neodymium nitrate 

hexahydrate 𝑁𝑑(𝑁𝑂3)3 ∙ 6𝐻2𝑂 and low viscosity (250 cps of 2% solution) alginic 

acid sodium salts with analytical grade were used as a starting reagents. Alginate is a 

biopolymer which is extracted from brown sea algea. It is a heteropolysaccharide 

which is composed of D-mannuronic and L-guluronic acids. Gelation of alginate is 

possible by the interaction of the carboxylate group with divalent ions [41]. Alginate 

is used in food industry and in medicine. The reaction that occurs in thermal 

decomposition process is given in Eq (3.1) and the procedure followed to obtain 

nano-powders is given below [42]; 

4[𝑌(𝑁𝑂3)3 ∙ 6𝐻2𝑂] → 2𝑌2𝑂3 + 6𝑁2𝑂5 + 24𝐻2𝑂 (3.1) 

 0.2M yttrium-neodymium nitrate solution is prepared by dissolving 

appropriate amounts of yttrium nitrate hexahydrate and neodymium nitrate 

hexahydrate salts in ultra pure water (conductivity <0.1 μS cm−1). 

http://en.wikipedia.org/wiki/Chemical_decomposition
http://en.wikipedia.org/wiki/Temperature
http://en.wikipedia.org/wiki/Endothermic
http://en.wikipedia.org/wiki/Chemical_bond
http://en.wikipedia.org/wiki/Exothermic
http://en.wikipedia.org/wiki/Positive_feedback_loop
http://en.wikipedia.org/wiki/Thermal_runaway
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 A 1% w/w alginate solution is prepared by dissolving appropriate amount of 

sodium alginate in ultra pure water. 

 Yttrium alginate beads were obtained via dropwise additon of the alginate 

solution into yttrium-neodymium nitrate solution with a stainless steel needle. 

 The obtained gel beads were maintained in the gelling medium under gentle 

magnetic stirring. 

 After that, the beads were separated from the gelling medium by employing a 

stainless steel grid. 

 The beads were placed into a porcelain crucible heated up to the desired 

synthesis temperature with a heating rate of 10C/min for 24 hours. 

 Formed nanophosphors were annealed to temperatures 600 oC, 800 oC, 1000 

oC and 1400 oC to investigate the effect of annealing temperature on particle sizes 

and to study the effect of particles’ sizes on the emission properties of 

nanophosphors. 

3.2 Structural Characterization of Nd3+ Doped Y2O3 Nano-powders 

Three different methods were employed to determine the morphology and the 

particle sizes of the synthesized samples. These are; 

3.2.1 X-ray diffraction (XRD) 

XRD is one of the most important structural characterization technique in materials 

science used to determine atomic and molecular structure of a crystal by using Bragg 

condition. As the name suggests, it is a diffraction pattern obtained by the collecting 

diffracted X-rays from the planes of the crystallites into many specific directions 

which satisfies the Bragg condition [43]. 

nλ = 2d sinθ (3.2) 

Since the each crystalline solid has its unique X-ray pattern like fingerprint, by 

measuring the angles and intensities of these diffracted beams, one can determine the 

mean positions of the atoms in the crystal, as well as their chemical bonds, their 

disorder and various other information [44]. XRD can also be used for estimating the 

mean crystallite sizes by using Scherrer Equation [45]; 

http://en.wikipedia.org/wiki/Chemical_bond
http://en.wikipedia.org/wiki/Entropy
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𝐿 =
𝐾𝜆

𝛽𝑐𝑜𝑠𝜃
 (3.3) 

where L is the crystallite length, K is a constant that varies with the method of taking 

the breadth (0.89<K<1), λ is the wavelength of the incident X-ray beam, β is the 

width of the peak at half maximum intensity of a specific phase (hkl) in radians and θ 

is center angle of the peak.  

X-ray diffraction investigations were carried out with a Bruker AXS D8 Model (Cu-

Kα radiation) diffractometer at 40 kV and 30 mA setting in the 2θ range from 20o to 

70o. 

3.2.2 Scanning electron microscope (SEM) 

The scanning electron microscope (SEM) is one of the most widely used instrument 

in materials research and is common in various forms in fabrication plants. SEM is 

central to microstructural analysis and therefore important to any investigation 

relating to the processing, properties, and behavior of materials that involves their 

microstructure. The SEM provides information relating to topographical features, 

morphology, phase distribution, compositional differences, crystal structure, crystal 

orientation, and the presence and location of electrical defects. SEM is also capable 

of determining elemental composition of micro-volumes with the addition of an x-

ray or electron spectrometer and phase identification through analysis of electron 

diffraction patterns. The strength of the SEM lies in its inherent versatility due to the 

multiple signals generated, simple image formation process, wide magnification 

range, and excellent depth of field. 

Due to these unique features, SEM images frequently appear not only in the 

scientific literature but also in the daily newspapers and popular magazines. SEM is 

relatively easy to operate and affordable and allows for multiple operation modes, 

corresponding to the collection of different signals [46]. 

SEM uses a focused beam of high-energy electrons to generate a variety of signals at 

the surface of solid specimens. The signals that derive from electron-sample 

interactions reveal information about the sample including external morphology 

(texture), chemical composition, and orientation of materials making up the sample. 

In most applications, data are collected over a selected area of the surface of the 

http://serc.carleton.edu/research_education/geochemsheets/electroninteractions.html
http://serc.carleton.edu/research_education/geochemsheets/electroninteractions.html
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sample, and a 2-dimensional image is generated that displays spatial variations in 

these properties. SEM is also capable of performing analyses of selected point 

locations on the sample; this approach is especially useful in qualitatively or semi-

quantitatively determining chemical compositions using Energy Dispersive X-Ray 

Spectroscopy (EDS) [47]. SEM images and EDS analysis of the samples were made 

by using JEOL 840JXA SEM (equipped with EDS system for microanalysis) model 

equipment located in Marmara Research Center of TÜBİTAK, Gebze. 

3.2.3 Transmission electron microscope (TEM) 

Transmission electron microscopy (TEM) is a microscopy technique whereby a 

beam of electrons is transmitted through an ultra thin specimen, interacting with the 

specimen as it passes through. An image is formed from the interaction of the 

electrons transmitted through the specimen; the image is magnified and focused onto 

an imaging device, such as a fluorescent screen, on a layer of photographic film, or 

to be detected by a sensor such as a CCD camera. 

TEMs are capable of imaging at a significantly higher resolution than SEM, owing to 

the small de Broglie wavelength of electrons. This enables the instrument's user to 

examine fine details even as small as a single column of atoms, which is tens of 

thousands times smaller than the smallest resolvable object in microscope. TEM 

forms a major analysis method in a range of scientific fields, in both physical and 

biological sciences. TEMs find application in cancer research, virology, materials 

science as well as pollution, nanotechnology, and semiconductor research. 

At smaller magnifications TEM image contrast is due to absorption of electrons in 

the material, due to the thickness and composition of the material. At higher 

magnifications complex wave interactions modulate the intensity of the image, 

requiring expert analysis of observed images. Alternate modes of use allow for the 

TEM to observe modulations in chemical identity, crystal orientation, electronic 

structure and sample induced electron phase shift as well as the regular absorption 

based imaging. 

The first TEM was built by Max Knoll and Ernst Ruska in 1931, with this group 

developing the first TEM with resolving power greater than that of light in 1933 and 

the first commercial TEM in 1939 [48]. A block diagram of a TEM is shown in 

Figure 3.1. 

http://serc.carleton.edu/research_education/geochemsheets/eds.html
http://en.wikipedia.org/wiki/Microscope
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Focus_%28optics%29
http://en.wikipedia.org/wiki/Fluorescent
http://en.wikipedia.org/wiki/Photographic_film
http://en.wikipedia.org/wiki/CCD_camera
http://en.wikipedia.org/wiki/Optical_resolution
http://en.wikipedia.org/wiki/De_Broglie_wavelength
http://en.wikipedia.org/wiki/Cancer_research
http://en.wikipedia.org/wiki/Virology
http://en.wikipedia.org/wiki/Materials_science
http://en.wikipedia.org/wiki/Materials_science
http://en.wikipedia.org/wiki/Pollution
http://en.wikipedia.org/wiki/Nanotechnology
http://en.wikipedia.org/wiki/Semiconductor
http://en.wikipedia.org/wiki/Contrast_%28vision%29
http://en.wikipedia.org/wiki/Max_Knoll
http://en.wikipedia.org/wiki/Ernst_Ruska
http://en.wikipedia.org/wiki/Resolving_power
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Figure 3.1 : Block diagram of typical TEM with STEM capability [46]. 

JEOL 2010F Model TEM located in Boston College was used to get images of the 

samples. 

3.3 Optical Characterization 

Three different types of measurements were performed on the samples;  

i) luminescence spectra,  

ii) responses of the samples to pulsed excitation, 

iii) thermal dependent spectral line-widths and line-shifts.  

The components of the used instruments for these measurements are described 

below. 
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3.3.1 Components of the optical Set-up 

3.3.1.1  Optic components 

Monochromator 

We used a McPherson model 2051 one-meter scanning monochromator. The 

instrument is fitted with a 600 G/mm grating, blazed at 1.25 μm. It has a resolution 

and wavelength resettability of 0.1 Å with repeatability of ± 0.05 Å. The dispersion 

is 8.33 Å/mm with a 1200 G/mm grating. The scan controller used is model 789A-3, 

allowing to set the scanning speed, manually with thumbwheel, from 0.1 to 999.9 Å 

per minute. The entrance and exit slits are adjustable from 5 μm to 2 mm. 

Titanium – Sapphire laser 

We used a Titan-P Model pulsed, tunable Ti-Sapphire laser, made by Schwarz 

Electro-Optics, for pulsed excitation. It can be tuned from 680 nm to 940 nm, and 

produces pulses of 10 ns duration with energy up to about 100 mJ. The system is 

typically operated at 10 Hz. It is equipped with a second harmonic generator crystal, 

resulting in laser pulses between 350 nm and 430 nm. The resonator utilizes two Ti-

Sapphire crystals, a multiple prism tuning system, ad a graded reflectivity mirror as 

the output coupler in an unstable resonator configuration. The Ti-Sapphire crystals 

are pumped with frequency-doubled pulses from a Q-switched Nd:YAG 

oscillator/amplifier system, thus also making accessible laser pulses at both 1064 nm 

and 532 nm. 

Diode laser 

We used a Laser Drive Inc. LDI 820 diode laser for the continuous wave (CW) 

excitation of the samples. This CW thermoelectrically cooled laser is capable of 

providing 3 W of output power. The laser was operated at 803.5 nm wavelength. 

Photomultiplier tube (PMT) 

The photomultiplier tubes used were the Hamamatsu types R1387 and 7102. The 

useful spectral response is from 300 to 850 nm (S-20) curve for the R1387, and 400 

to 1200 nm (S-1) for the 7102. Each PMT is powered by a bench-top variable power 

supply. The voltage is adjusted, as required, to prevent saturation of the output. The 

output current of the PMT is proportional to the voltage applied to the bleeder ladder 
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network. Cooling for the PMT is provided by a thermoelectric cooler that cools the 

tube to about 50 C below ambient. 

3.3.1.2  Sample environment 

Cryogenic cooler 

The cryogenic refrigerator operates on the Gifford-McMahon (GM) principle using a 

closed helium gas cycle. The advantage of GM is that the compressor unit can be 

separated from the Cold Head which is the part of the Sample Chamber, thus 

allowing the flexibility of mounting the Cold Head in any position. The compressor 

and the Cold Head are connected with a pressure flexible tubing. The system is filled 

with helium to a pressure of 16 bar, capable of cooling the sample to 20K. 

Vacuum system 

The vacuum system lowers the pressure of the sample chamber to about 2 ×

10−5Torr. A mechanical roughing pump was used to achieve this vacuum.  

Sample chamber 

The sample chamber was manufactured by the Janis Research Co. The sample can be 

easily mounted on a pedestal and adjusted for orientation with the Monochromator 

input and the light source beam. It has five optical windows for versatility of beam 

positioning and steering. The sample can be cooled to about 20 K in a vacuum of 10-5 

Torr. Because of the vibration and noise generated by the cyrogenic pump, the 

sample chamber is mounted on a steady optical table.  

3.3.1.3  Signal conditioning 

Pre-Amplifier 

The output current of the PMT anode is read as voltage via load resistor with respect 

to the ground potential. The effective bandwidth (BW) of the output pulse is 

inversely proportional to the product of the resistor and all parasitic capacitance in 

the PMT output circuit, including cabling. Thus to increase the BW an amplifier is 

put close to the PMT output and the load resistor is made as small as possible. The 

pre-amplifier is home-made using an ultra-low distortion high speed integrated 

circuit, the Analog Devices AD 8008. The chip has a BW specification of 230 MHz 

for a voltage gain of 2. With the pre-amplifier in place the PMT output is 50 to 1000 
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ohms, depending on the output signal strength. The pre-amplifier gain can be 2 or 20. 

The pre-amplifier is powered by AA cells.  

Chopper 

The chopper is placed at the entrance of the monochromator continuous wave (CW) 

optical signal. In esence the mechanical chopper, operated at nominally 150 Hz, 

reduces the carrier frequency of the optical signal, thus removing all the DC biases 

introduced by the intrumentation and amplifiers. 

Lock-in amplifier 

The purpose of this instrument is to amplify the low level AC signal of the PMT 

output, when the signal is chopped, and demodulate it to recover the base-band 

optical signal. In this set-up we use an EG&G Model 5206 lock-in amplifier. It has a 

1 μV to 5 V rms input sensitivity, with a carrier frequency of 0.2 Hz to 200 kHz. The 

signal to reference phase shift can be controlled in 0.025 degree steps from 0 to 360 

degree. 

3.3.2 Luminescence spectral measurements set-up 

The continuous emission spectra of the samples were obtained by pumping the 

samples with the output of a Laser Drive Inc. Model LDI-820 laser diode, that 

resulted in the excitation of the levels 2H9/2 – 4S5/2. The luminescence signal was 

directed toward the entrance slit of the 1 m McPherson Model 2051 monochromator 

and chopped at a frequency of 150 Hz before entering the slit. The monochromator 

provided a resolution 0.8 Å with the slits set at 50 μm and a wavelength 

reproducibility of 0.1 Å.  

The optical signal was detected by a Hamamatsu 7102 photomultiplier tube with a S1 

response sent to an EG&G Model 5210 lock-in amplifier and recorded in a computer.  

The same arrangement was used for the line-width and line-shift measurements with 

the entrance and output slits of the monochromator set at 80 – 150 µm,  which 

correspond to 1 -2 Å spectral width and a 5 Å/min scanning rate. A schematic 

diagram of the system is given in Figure 3.2. 
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Figure 3.2 : Luminescence setup for the continuous light source. 

3.3.3 Response to pulsed excitation measurements set-up 

The experimental data on the responses of the samples to the pulsed excitation were 

obtained by using the system given in Figure 3.3. Unlike the luminescence system 

given in Figure 3.2, Titan P Model Ti-Sapphire laser and Tektronix Model 

TDS3052B oscilloscope were employed as an excitation source and for recording the 

response of the samples to the pulsed excitation, respectively. 

For the experiments in the temperature range 30-300 K, the samples were mounted 

on the cold finger of a closed cycle Helium refrigerator. This system uses a Janis 

Research Model RD dewar connected with a Leybold Model RW2 compressor. The 

temperature was controlled by using the Lake Shore Cryotonics 805 Model 

controller. For the experiments at higher temperatures the samples were placed on a 

hot plate which provided up to 700 K temperatures and the surface temperatures of 

the samples were precisely measured by using a J-type thermocouple. 
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Figure 3.3 : Block scheme of the response to pulsed excitation mesurements set-up. 
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4. FABRICATION AND SPECTRAL INVESTIGATION OF 1% Nd3+ 

DOPED Y2O3 NANO-PARTICLES 

4.1 Introduction 

New avenues to research have been opened by the fabrication of nano-powders 

doped with optically active ions. Experimental results indicate that the energy levels 

are not much affected by the spatial confinement, whereas the dynamical properties 

are dependent on the size of the nano-particles.Another important result indicates 

that nano-powders doped with optically active ions may luminesce even when the 

dopant concentration exceeds the maximum concentration at which solids of the 

same nature can emit luminescence radiation [49, 50]. 

The problem of the role played by the particles’ surfaces versus their inner parts 

needs investigation, especially in regard to the setting of the phonon spectrum in the 

presence of the spatial confinement. 

Thermal decomposition is a powerful and cheap wet chemical technique that can be 

used to synthesize Y2O3 nanopowders. This process is based on the chemical 

decomposition of the materials caused by heat [42]. In this study, we used thermal 

decomposition to synthesize Y2O3 nano-powders. The composition of the prepared 

formulations, synthesis and annealing temperatures and mean crystallite sizes are 

given in Table 4.1. 

Table 4. 1 : Formulations of yttrium-neodymium alginate solution prepared, 

synthesis and annealing temperatures and mean particle sizes 

estimated from Scherrer Equation. 

Alginate  

(% w/w) 

Ytrium Nitrate 

(Molar) 

Neodymium 

Nitrate 

(Molar) 

Synthesis 

Temperature 

(℃) 

Annealing 

Temperature 

(℃) 

Mean 

Size  

(nm) 

1 %99 of 0,2M %1 of 0,2M 

350 -- 13,8 

400 -- 16.0 

450 -- 20.4 

500 -- 27.1 

500 600 32.3 

500 800 40.0 

500 1000 49.7 

500 1400 248.2 
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4.2 Experimental 

4.2.1 Preparation of the Nd3+ doped Y2O3 powders 

Nanosized Y2O3 samples doped with 1.0 %mol Nd3+ ions concentration were 

prepared by thermal decomposition of yttrium-neodymium alginate. Yttrium nitrate 

hexahydrate Y(NO3)3.6H2O, neodymium nitrate hydrate Nd(NO3)3.H2O and low-

viscosity (250 cps of 2% solution) alginic acid sodium salt of an analytic grade were 

purchased from the Sigma Aldrich Company. 

The yttrium-neodymium alginate beads were prepared by thermal decomposition 

method according to the prescription given in the literature [42]. 0,2M 100ml 

yttrium-neodymium nitrate solution were prepared by dissolving the appropriate 

amount of the yttrium nitrate and neodymium nitrate salts in ultra pure water. Also 

50ml alginate solution with 1%w/w concentration were prepared by dissolving an 

appropriate amount of the sodium alginate salt in the ultra pure water under magnetic 

stirring. 

Alginate is a biopolymer which is extracted from three species of brown algae. It is a 

linear heteropolysaccharide composed of D-mannuronic acid and L-guluronic acid. 

Gelation of alginate is possible by the interaction of the carboxylate group with 

divalent ions and the formation of beads can be achieved by dropwise addition of 

sodium alginate into divalent solution by using a syringe with a needle or pipette [41, 

42]. The formation of the yttrium-neodymium alginate beads was achieved by the 

dropwise addition of the sodium alginate solution into yttrium-neodymium salts 

solution by using a syringe. 

The prepared beads were kept in their gelling medium for 30 minutes under gentle 

stirring; then they were removed from their gelling medium, placed in a porcelain 

crucible and heated to different temperatures ranging from 350 to 500oC for 24h with 

a heating rate of 10 oC/min in an electric furnace in air medium. Some of the 

products obtained were annealed at 600, 800, 1000 and 1400oC, to investigate the 

particle size dependence on the annealing temperature. 

4.2.2 Structural characterization 

X-ray diffraction investigations were carried out with a Bruker AXS D8Model (Cu-

Kα radiation) diffractometer at 40 kV and 30 mA setting in the 2θ range from 20o to 
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70o with a scanning steps of 0.02o. A JEOL 6335F model scanning electron 

microscope was used to get SEM images of the samples. Elemental analysis was 

made by using an energy dispersive spectroscopy (EDS) attached to SEM. TEM 

images of the samples were obtained by using a JEOL 2010F model transmission 

electron microscope operated at 200 kV with a field emission gun. TEM specimens 

were prepared by depositing a few drops of a sample dispersed in ethanol by using an 

ultrasonic bath, on a carbon coated copper grid. 

4.2.3 Spectroscopic measurements 

The continuous emission spectra of the samples were obtained by pumping the 

samples with the output of a Laser Drive Inc. Model LDI-820 laser diode, that 

resulted in the excitation of the levels 2H9/2 – 4S5/2. The luminescence signal was 

directed toward the entrance slit of a 1 m  McPherson Model 2051 monochromator 

and chopped at a frequency of 250 Hz before entering the slit. The monochromator 

provided a resolution 0.8 Å with the slits set at 50 μm and a wavelength 

reproducibility of 0.1 Å.  

The optical signal was detected by a Hamamatsu 7102 photomultiplier tube with an 

S1 response, sent to a EG&G Model 5210 lock-in amplifier and recorded in a 

computer.  

The same arrangement was used for the line-width and line-shift measurements with 

the entrance and output slits of the monochromator set at 80 – 150 µm,  which 

correspond to 1 -2 Å spectral width and a 5 Å/min scanning rate.  

The experimental data on the responses of the samples to pulsed excitation were 

obtained by using a Schwarz Electro-Optics Inc. Model Titan-P Model Titanium-

Sapphire laser and a Tektronix Model TDS3052B oscilloscope.  

For the experiments in the temperature range 34-300 K, the samples were mounted 

on the cold finger of a closed cycle Helium refrigerator. This system uses a Janis 

Research Model RD dewar connected with a Leybold Model RW2 compressor. The 

temperature was controlled by using the Lake Shore Cryotonics 805 Model 

controller. For the experiments at higher temperatures the samples were placed on a 

hot plate which provided up to 700 K temperatures and the surface temperatures of 

the samples were precisely measured by using a J-type thermocouple. 
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4.3 Experimental Results 

4.3.1 Structural characterization 

The XRD patterns of the 1 % Nd3+ doped Y2O3 samples are given in Figure 4.1. The 

crystal structure and phase of all samples were analyzed by using these patterns. The 

cubic phase of the yttria without any other phases was identified by comparing the 

peak positions and the intensities with those in the Joint Committee on Powder 

Diffraction Standards (JCPDS) data files. It was clearly seen that the peak positions 

correspond well to the standard card with number 41-1105. 

 

Figure 4. 1: XRD patterns of the 1 % Nd3+ doped Y2O3 nanopowders. 

Figure 4.2 shows the SEM images of the Y2O3 samples which were as-synthesized at 

500oC and annealed at 1000oC. The nanopowders with spherical shapes are relatively 

uniform and have an average diameter of ~30 nm and ~50 nm in as-prepared (500oC) 

and annealed (1000oC) samples, respectively. It is clearly seen from the SEM images 

that the particle sizes of the samples strongly depend on the synthesis and annealing 

temperature and show an increasing tendency with the increasing annealing 

temperature. Also SEM images confirmed the particle sizes estimated from XRD 

measurements by using Scherrer Equation. The inset of Figure 4.2 shows the EDS 

(Energy Dispersive X-Ray Spectroscopy) spectra of the samples. 
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Figure 4. 2: (a) SEM image of as-prepared (500 oC) 1 % Nd3+ doped Y2O3 

nanopowders (inset: corresponding EDS spectrum) (b) SEM image of 

1 % Nd3+ doped Y2O3 nanopowders annealed at 1000 oC (inset: 

corresponding EDS spectrum). 

We also conducted a series of TEM measurements to confirm the particle sizes and 

the morphologies of the synthesized samples. Representative TEM images are given 

in Figure 4.3. It is clearly seen from the micrographs that the particle sizes are in 

(a) 

(b) 



44 

good agreement with the results obtained from both of XRD and SEM 

measurements. 

 

Figure 4. 3: Representative TEM micrographs of 1 % Nd3+ doped Y2O3 sample (a) 

synthesized at 350oC and (b) annealed at 1000oC. 

4.3.2 Spectroscopic characterization  

The measurements of continuous luminescence spectra were conducted from 35 to 

300 K and in the 850 – 1150 nm wavelength range. The luminescence spectra of all 

the samples at 35 K and 300 K and the corresponding energy level scheme are given 

in Figure 4.4a-b and Figure 4.5, respectively.  

(a) 

(b) 
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Figure 4. 4: Continuous emission spectra of samples at (a) 35 K and (b) 300 K. 

(a) 

(b) 
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The emission spectra of the samples consist of two groups of emission peaks due to 

the 4F3/2→
4I9/2 and4F3/2→

4I11/2 transitions. We note that the general aspect of the 

spectra is the same for all the samples. The intensity of the emission lines increase 

for all samples with the decreasing temperature; it is also found to increase with the 

increasing particle sizes. The spectra with greatest intensity are those of the crystal. 

Examining the spectra in detail we see that the smaller is the size of the particles, the 

wider are the spectral lines and the greater is the shift of each line toward longer 

wavelengths with respect to the corresponding line in the crystal. Figure 4.6 presents 

the shift of a well isolated line at 914.5 nm with respect to the corresponding line in 

the crystal. This is the line we have chosen in order to study the effects of 

temperature on the width and position of the spectral lines of the samples. The results 

of these measurements are reported in Figure 4.7 and 4.8. 
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Figure 4. 6: Red-shift of a line position of different samples with respect to the 

crystal line. 

 

Figure 4. 7: Variation of linewidth as a function of temperature in 1 % Nd3+ doped 

Y2O3. The dots are experimental results and the solid curve is the 

theoretical fittings with respect to the crystal line. 
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Figure 4. 8: Line-shift as a function of temperature 1% Nd3+ doped Y2O3. The solid 

red line is the theoretical fitting to the crystals’ experimental data. 

The measurements of the response of the samples to pulsed excitation were carried 

out in the 35 – 700 K temperature range. The results are given Figure 4.9a–d. Since 

the luminescence output of the Nd-doped samples consists of spectral lines related to 

transitions that initiate in the doublet 4F3/2, the response of these systems to pulsed 

excitation is the same, regardless of the spectral line at which it is measured. We 

have chosen to measure this response at  = 892.5 nm (see Figure 4.5).The lifetime 

of the 4F3/2 doublet is host-dependent: it is 480s in YLF [51], 230 s in YAG [52, 

53], 33 s in YVO4 [51, 52], and 260 s in Y2O3 [53] etc., but it is generally 

independent of temperature due to the large gap between the 4F3/2 doublet and the 

lower 4I15/2 multiplet [54]. We have found that the lifetime of the 4F3/2 doublet in the 

Y2O3 crystal the value ~ 250 s, almost independent of temperature. 
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Figure 4. 9: Response to pulsed excitation results of all powders at (a) 33 K (b) 

300K (c) 600 K (d) 700 K. 

The response pattern of the crystal is close to an exponential, more so at high 

temperatures. The response of the powder samples deviates from exponentiality at 

early times and then becomes exponential with a decay constant greater than that of 

the crystal, so that at a time after the initial response the two patterns (the pattern of 

the crystal and that of the sample) cross out. 

The smaller is the particle and the lower is the temperature the greater is the 

deviation of the initial pattern from exponentiality and the longer is the time at which 

the two patterns cross. Figure 4.10 presents the lifetimes of all the samples as 

function of temperature. When a decay pattern was exponential, the lifetime was 

calculated from an exponential fit. When a pattern was not exponential, we took as 

measure of the lifetime the area under the decaying signal, having set the intensity of 

the initial signal equal to one. 

(a) (b) 

(c) (d) 
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Figure 4. 10: Variation of lifetimes with the temperature. 

4.4 Discussion of Results 

4.4.1 Structural properties 

The cubic phase of the yttria was determined by using XRD patterns. It was observed 

that the lattice parameter increases with the addition of dopant ions and found up to 

10.6051 Å which is the proof of the incorporation of the Nd3+ ions into Y3+ sites due 

to the larger ionic radius of the Nd3+ (112.3 pm) than Y3+ (104 pm) [15, 55]. It was 

observed that the widths of the diffraction lines broadened with the decreasing 

temperature because of the decreasing crystallite sizes. The most narrow line was 

observed for the sample annealed at 1400oC. The crystallite sizes of the powders 

were estimated by using the Scherrer Equation [45] reported below: 

𝐿 =
𝐾𝜆

𝛽𝑐𝑜𝑠𝜃
                                                                      (𝟒. 𝟏) 

where L is the crystallite length, K is a constant that varies with the method of taking 

the breadth (0.89<K<1), λ is the wavelength of the incident X-ray beam, β is the 

width of the peak at half maximum intensity of a specific phase (hkl) in radians and θ 

is center angle of the peak. The (222) peaks were used to estimate the particles’ size. 



51 

As seen from the Figure 4.1 and our calculations given in the Table 4.1, the particle 

size of the samples increases with increasing annealing temperature. 

The SEM and TEM images confirmed the particle sizes calculated by using the 

Scherrer Equation. A nebulous structure which we attributed to the existence of 

organic compound (alginate) was seen in some SEM images of the samples. This 

structure disappears with increasing annealing temperature. On the other hand the 

EDS results confirm the presence of Nd3+ content. All of the structural 

characterization measuments showed that the particle sizes can be effectively 

controlled by the synthesis and annealing temperature, and increase with increasing 

treatment temperature. 

4.4.2 Spectroscopic response 

The general aspect of the spectral output of the powder samples strongly resembles 

the spectra of the crystal confirming the fact that the confinement provided by the 

restrictions of the particles’ sizes does not affect by much the energy levels of the 

Nd3+ ion.  

The shifts reported in Figure 4.6 indicate that their magnitude becomes greater the 

smaller is the dimension of the particle. It seems then legitimate to attribute this 

behavior to the increasingly important role played by the surfaces in smaller 

particles. The Nd ions at the surface are in a different environment with respect to the 

ions in the interior of the material. In a crystal the ions in the surface are a negligible 

minority with respect to the ions in the bulk of the material, but in a particle it is not 

so. In very small particles going from the surface toward the center of the particle, 

there is gradation in the Nd-O bond lengths, approaching the conditions of Nd in a 

single bulk crystal. It is possible that, even in the interior of the particle, the 

conditions of the environment in the bulk will never be reached. This may account 

for the fact that the shift of the lines increases with decreasing of the particles’ sizes. 

The results concerning the thermal line broadening were handled as follows. 

The experimental data were compared with the following equation [38] 

∆𝐸(𝑐𝑚−1) = ∆𝐸0 + ∆𝐸𝑅                                                         (𝟒. 𝟐) 

where 
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∆𝐸𝑅 = 𝛼̅ (
𝑇

𝑇𝐷
)

7

∫
𝑥6𝑒𝑥

(𝑒𝑥 − 1)2
𝑑𝑥

𝑇𝐷 𝑇⁄

0

                                           (𝟒. 𝟐𝐚) 

In Eq. (4.2), ∆𝐸0 is the temperature independent-residual width from the two levels 

due to random crystal strains and spontaneous phonon emission processes and ∆𝐸𝑅 is 

the temperature-dependent contribution to the width due to the Raman scattering of 

phonons: 𝛼̅, 𝑇𝐷 and ∆𝐸0 are treated as adjustable parameters to get best fit (a least 

square fit) to the experimental line-width data shown in Figure 4.7. 

The values of the parameters that were used to produce the fitting of the 

experimental data with the theoretical formula are listed in Table 4.2. It is of interest 

to note that the residual line-width at low temperature increases with decreasing 

particle size. 

Table 4. 2 : Best fit parameters (α, 𝛂̅, TD, and ΔE0) obtained from line-shift and line-

width measurements. 

 Line shifts Line widths 

Particle Size 
TD 

[K] 

α 

[cm-1] 

ΔE0 

[cm-1] 

TD 

[K] 

𝜶̅ 

[cm-1] 
Crystal 429 22 2,46 440 95 

248.2 nm 285 12 4,88 397 80 

49.7 nm 263 11 5,65 360 62 

40 nm 258 9,1 7,46 305,7 44 

32.3 nm 207 8,3 7,88 305,5 46 

27.1 nm 352 12 7,96 210 21 

20.4 nm 236 5,7 8,36 109 5.9 

16 nm 272 9.5 8,40 194 18 

The effect of temperature on the position of the chosen sharp line is presented in 

Figure 4.8. We determined that the line position is red-shifted with increasing 

temperature. The experimental data were compared with the following Eq. (4.3) that 

expresses the shift as due to the process of emission and absorption of virtual 

phonons [38]: 

𝛿𝐸(𝑐𝑚−1) = 𝛿𝐸𝑅 =  𝛼 (
𝑇

𝑇𝐷
)

4

∫
𝑥3

𝑒𝑥 − 1

𝑇𝐷 𝑇⁄

0

𝑑𝑥                               (𝟒. 𝟑) 
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where α and TD are treated as adjustable parameters to get a best fit. The line position 

at T = 0 K was estimated by extrapolating the experimental data to zero temperature. 

The corresponding fitting values of α and TD for each line are listed in Table 4.2. 

The fitting values of the coupling coefficients 𝛼̅ and α obtained for the line-widths 

and line-shifts are typical for rare-earth ion doped laser crystals. They are usually 

less than 100 cm-1. In case of transition metal ion the coupling coefficients 𝛼̅ and α 

are usually about 500 cm-1 [56, 57]. 

The decay patterns of the luminescent Nd3+ ions embedded in the nanoparticles are 

expected to deviate from an exponential decay of the same ions in the crytal for two 

reasons: 

1) The role played by the surfaces will be incresingly important as the radius of 

the particle is reduced, producing a deviation from exponentiality. Molecular 

groups such as O-H residing on the surface may enhance the decay process 

due to their stiff vibrations that rob the ion of its excitation energy. We 

reasonably expect that a deviation from exponentiality at the beginning of the 

decay pattern. 

2) The ensemble of particles in the sample differs also from the bulk material for 

the presence of the interstices between the particles. In what follows we shall 

describe how we can handle the problem presented by this difference. 

The rate of spontaneous relaxation of an atomic system is given by [40] 

𝐴(𝛹 𝐽, 𝛹′𝐽′) =
64𝜋2(∆𝐸)3

3ℎ(2𝐽 + 1)
𝜂𝐹2                                               (𝟒. 𝟒) 

where F; matrix element of the electric dipole operator, ΔE = energy gap between the 

states |𝛹𝐽〉 and |𝛹′𝐽′〉, and 𝜂 =
𝑛(𝑛2+2)

2

9
; Lorentz correction for the local field with 

n= index of refraction of the host material. 

Applying those considerations to the ions embedded in the nanoparticles, we can say 

that the rate of their spontaneous emission (inverse of the radiative lifetime) depends 

on an effective index of refraction neff which consist of a combination of the index of 

refraction of the nanoparticle nNP and of the index of refraction of the surrounding 

medium nmed : 

𝑛𝑒𝑓𝑓(𝑥) = 𝜒𝑛𝑁𝑃 + (1 − 𝜒)𝑛𝑚𝑒𝑑                                               (𝟒. 𝟓) 
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where χ is the filling factor indicating the fraction of space that is occupied by the 

nanoparticles. The validity of the usage of neff in calculating the probability of decay 

rests on the fact that the size of the particles is much smaller than the wavelength of 

light [37].  

Since the ratio χ is independent of the size of the nanoparticles the tails of the 

response patterns of the particles with different sizes should be parallel after they 

cross the pattern corresponding to the crystal response to pulsed excitation. 

The responses of the samples to pulsed excitation present the following interesting 

aspects: 

1) At each temperature the decay patterns depend on the size of the particles 

with increasingly greater deviation from exponentiality for smaller particles 

(see Figure 4.9a-d) 

2) The patterns that deviate from exponentiality eventually cross the exponential 

pattern of the crystal. The greater is the deviation the more distant in time is 

the crossing. A possible explanation of these experimental finding is the 

existence of large amount of O–H groups at the surface of the each particle, 

which considering the stiff O–H vibration, could provide a quenching of the 

luminescence and the shortening of the lifetime. 

3) All the decay patterns of the particles of different sizes become paralel after 

they cross the decay pattern of the ions in the crystal. This behavior indicates 

that the effective index of refraction is lower for the nanoparticles than for the 

single crystal, hence decreasing the radiative decay rate, and the filling factor 

χ is independent of the particles size. 

4.5 Conclusions 

This study was focused on the synthesis and characterization of Y2O3 nanophosphors 

doped with 1 % Neodymium (Nd3+) ions. Nanoparticles were synthesized by using 

the thermal decomposition technique and annealed at different temperatures to 

control particle sizes. The synthesized particles were structurally characterized by 

using X-ray diffraction (XRD), scanning electron microscope (SEM) and 

transmission electron microscope (TEM). The cubic phase of the Y2O3 was 

determined and the size of the particles was found to range from ~ 15 to 300 nm. 
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A series of spectroscopic measurements on a number of these nano-particle samples 

were performed. For comparison we also characterized spectroscopically an Y2O3 

crystal sample.  

For each sample the emission spectrum was accurately measured in a wide range of 

temperatures ranging from 30 to 300K. The spectra consisted of the Nd3+ion’s 

narrow spectral lines corresponding to transitions from the 4F3/2 doublet level to the 

4I11/2 and 4I9/2 many-folds. 

We also measured the width and the position of a well isolated line in the 

temperature range 30–700K. The results indicate that the residual width at low 

temperatures is larger for powders with smaller particle sizes. 

Finally measurements were performed on the decay patterns of Nd3+ions following a 

pulsed excitation. These measurements were conducted in the temperature range of 

30 – 700 K. Such patterns vary considerably with the size of the nano-particle, so 

that they may be considered signatures of these sizes. When comparing the decay 

patterns of the powders with the exponential decays of the Y2O3:Nd3+ crystal we 

found larger deviations from exponentiality for the powders of smaller particles 

sizes, and smaller deviations from exponentiality at high temperatures. 
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5.  SYNTHESIS AND SPECTRAL CHARACTERIZATION OF YTTRIUM 

OXIDE NANO-POWDERS DOPED WITH Nd3+ IONS WITH A LARGE 

RANGE OF CONCENTRATIONS 

The introduction of Nd3+ dopants in yttrium oxide nano–powders at concentrations as 

high as 10% has motivated the study of their emission as function of concentration. 

The luminescence from these systems as function of temperature, particle size, and 

concentration of Nd3+ has been studied and the trends been able to be established is 

given below. 

5.1 Introduction 

The production of luminescent materials in the form of nano–powders has given rise 

to a new and important chapter in the investigations of such materials. Spectroscopy 

has the necessary tools to conduct these investigations and a large number of 

possibilities and situations exist due to the fact that a new parameter enters the 

scenario, the size of the nano–particles. In addition, the reduction of these materials 

to nano–powder form allows them to luminescence even when they are doped with 

the ions responsible for their spectroscopic properties at concentrations so high that 

they would not present any light emission when used in the same systems in bulk 

crystalline form [49, 50, 58, 59]. 

The expansion of experimental situations, and in particular that of the range of 

possible dopant concentrations, has motivated the investigation whose results we 

now report. 

As it has been generally found the attention of the researchers experimenting on 

doped nano–powder systems has to be directed to parameters which are sensitive to 

the particular situations of such systems. These parameters do not include ‘static’ 

features, e.g. energy levels, but ‘dynamical’ features, e.g. decay patterns and rise 

patterns of the luminescence emission. Of importance is also the possible broadening 

effect that the concentration may have on the spectral lines [22]. 
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5.2 Experimental Part 

5.2.1 Preparation of the samples 

In this thesis, Nano–sized Y2O3 samples doped with x = 0.2, 0.5, 1.0, 2.0, 5.0, 10.0 

mol % Nd3+ ions (Y2-xNdxO3) were prepared by thermal decomposition of yttrium-

neodymium alginate gels. Yttrium nitrate hexahydrate Y(NO3)3.6H2O, neodymium 

nitrate hydrate Nd(NO3)3.H2O and low-viscosity (250 cps of 2% solution) alginic 

acid sodium salt used for the preparation of yttrium-neodymium alginate beads were 

of analytical grade and were purchased from Sigma-Aldrich Company. The details 

about the synthesis procedure are given in our earlier works [22, 23, 60]. Briefly, this 

method is based on the thermal decomposition of the yttrium-neodymium alginate 

gels. The obtained nano–powders were then annealed at 600, 800 and 1000 oC, for 24 

hours with the heating rate of 10 oC/min to control the particle sizes. 

5.2.2 Structural characterization 

Analysis of the crystal structure of the Nd-doped samples was performed by X Ray 

Diffraction (XRD) method. XRD investigations were carried out with a Bruker AXS 

D8 Model (Cu-Kα radiation – λ = 1.5418 Å) diffractometer at 40 kV and 30 mA 

setting in the 2θ range from 20o to 70o with scanning steps of 0.02o.The average 

crystallite size L of the powders was estimated by using the Scherrer Equation [45]; 

𝐿 =
𝐾𝜆

𝛽𝑐𝑜𝑠𝜃
                                                            (𝟓. 𝟏) 

where K is a constant varying with the method of taking the breadth (0.89<K<1, with 

K=0.89 for spherical particles), λ is the wavelength of the incident X-ray beam, β is 

the width at half maximum of the XRD peak of a specific lattice plane (hkl) in 

radians and θ is the center angle of the considered Bragg reflection (XRD peak by 

the plane (hkl)).  

As a further confirmation of the average particle size, electron microscope images of 

the samples were visualized by a JEOL 6335F model scanning electron microscope 

(SEM). 
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5.2.3 Spectroscopic measurements 

Luminescence measurements were performed by pumping the samples with the 

output of a Laser Drive Inc. Model LDI-820 laser diode (λ = 808 nm) that resulted in 

the excitation of the levels 2H9/2 – 4S5/2. The luminescence signal was directed toward 

the entrance slit of a 1 m McPherson Model 2051 monochromator and chopped at a 

frequency of 250 Hz before entering the slit. The monochromator provided a 

resolution 0.8 Å with the slits set at 50 μm and a wavelength reproducibility of 0.1 Å. 

The entrance and output slits of the monochromator were set to 80 µm for continuous 

emission spectrum measurements and to 600 µm for response to pulsed excitation 

measurements. 

The optical signal was detected by a Hamamatsu 7102 photomultiplier tube with an 

S1 response, sent to a EG&G Model 5210 lock-in amplifier and recorded in a 

computer.  

The experimental data on the responses of the samples to pulsed excitation were 

obtained by using a Schwarz Electro-Optics Inc. Model Titan-P Model Titanium-

Sapphire laser and a Tektronix Model TDS3052B oscilloscope.  

For the experiments in the temperature range 30-300 K, the samples were mounted 

on the cold finger of a closed cycle Helium refrigerator. This system uses a Janis 

Research Model RD dewar connected with a Leybold Model RW2 compressor. The 

temperature was controlled by using the Lake Shore Cryotronics 805 Model 

controller. 

5.3 Experimental Results 

The X-ray diffraction patterns of the as-synthesized and thermally treated samples at 

1000 oC are shown in Figure 5.1 as a function of the Nd3+ content. The diffraction 

peaks observed in the XRD-pattern can be indexed to cubic phase Y2O3 (JCPDF: 

25/1200); no other phase was detected. The observed diffraction peaks correspond to 

the Bragg diffraction from the (211), (222), (400), (411), (332), (431), (440), (532), 

(622) and (613) planes. Only the (hkl) values of the most prominent peaks are 

indicated in the XRD pattern with the strongest peak observed at 2θ ≈ 29.5° 

corresponding to the plane (222) for all the samples. The room temperature lattice 

parameter of the unit cell of the yttria cubic phase estimated by the XRD patterns 
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was 10.6051 Å which is in good agreement with the JCPDS database of pdf number 

83–0927 [61]. The crystallite size of the samples, calculated by the Debye-Scherrer 

formula applied to the diffraction feature (222), resulted to be in the range 20 – 60 

nm. The representative SEM images of the thermally treated at 1000 oC samples are 

shown in Figure 5.2 and confirm such an estimation. 



61 

 

 

Figure 5. 1 XRD patterns of the samples (a) as-synthesized, (b) annealed at 1000 oC. 
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Figure 5. 2: SEM images of the (a) 0.2 %, (b) 0.5 %, (c) 1 %, (d) 2 %, (e) 5 %, (f) 

10 % Nd3+ doped Y2O3 annealed at 1000 oC. 

The continuous emission spectra of the samples were collected in the 30 – 300 K 

temperature range and in the 850 – 1150 nm wavelength range and the continuous 

emission spectra of the samples with 20 nm particle size at 30K and 300 K are given 

in Figure 5.3. Two groups of emission lines associated with the 4F3/2→
4I9/2 and the 

4F3/2→
4I13/2 radiative transitions of Nd3+ have been observed for all samples. We 

were able to see emission of Nd3+ even at 10 % Nd3+ doped Y2O3. The intensity of 

the sharp emission peaks was found to increase with Nd3+ concentration going from 

0.2 to 0.5 % and then decrease at higher concentrations. As it can be also clearly seen 

from Figure 5.3 sharp emission peaks become wider with increasing Nd3+ 

concentration. 

(b) 

(c) (d) 

(e) (f) 

(a) 
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Figure 5. 3: Continuous emission spectra at (a) 30 K and (b) 300 K. 
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The representative continuous emission spectra given in Figure 5.4 show the shifting 

and broadening of the Nd3+ spectral lines of 0.2 % Nd3+ doped Y2O3 as a function of 

temperature. 

 

Figure 5. 4: Representative broadening and shifting of the sharp emission peaks of 

0.2 % Nd3+ doped Y2O3. 

We also investigated the effect of particle size on the luminescence spectral lines. 

We found that for concentrations other than 10 % the intensity of the emission 

increases with particle size. On the contrary when the concentration is 10 % the 

reverse trend takes place (see Figure 5.5). It was also observed at this concentration 

that the peaks become wider and the Stark level splitting was not visible. 
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Figure 5. 5: Particle size dependence of the emission spectra of 10 % Nd3+ doped 

Y2O3. 

The decay patterns of the samples were measured in the 30 – 300 K temperature 

range. In what follows we shall designate as “decay time” the area under a decaying 

curve with the initial value of the intensity set at 1. The obtained results are 

summarized below; 

i. All decay patterns are not exponential. 

ii. The longest decay time was observed for the 0.5 % Nd3+ samples. The decay 

times were found to increase with Nd3+ concentration going from 0.2 to 0.5 % 

and then decrease at higher concentrations (see Figures 5.6 and 5.7). 
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Figure 5. 6: Decay patterns of the samples with 20 nm particle size at (a) 30 K, (b) 

300 K and (c) the variation of the decay times as function of 

concentration. 

iii. The decay patterns were found to deviate more from exponentiality with 

increasing Nd3+ concentration (see Figures 5.6 and 5.7). 
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Figure 5. 7; Decay patterns of the samples with 60 nm particle size at (a) 30 K, (b) 

300 K and (c) the variation of the decay times as function of 

concentration. 

iv. The decay patterns of all samples become slightly longer with increasing 

temperature (see Figure 5.8). 

v. The decay patterns deviates more from exponentiality at low temperatures 

(see Figure 5.8). 
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Figure 5. 8: Variation of the decay times of the samples with (a) 20 nm and (b) 60 

nm particle sizes as a function of temperature. 

vi. The decay patterns deviate more from exponentiality with decreasing particle 

sizes (see Figure 5.9). 
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Figure 5. 9: Variation of the decay times as a function of particle size at (a) 30 K 

and (b) 300 K. 

The decay times were found to increase with increasing particle sizes up to 2 % Nd3+ 

doped Y2O3. No remarkable decay time difference was observed for different particle 

sizes of 5 % and 10 % Nd3+ doped samples (see Figure 5.9). 
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5.4 Discussion of the Results 

The general behavior of the emission output of luminescent systems as function of 

concentration of dopant is as follows: 

a) The dopant concentrations generally used in crystals is of very few percents. 

Within these limits an increase of the emission is generally noted with the 

increase of concentration. Beyond these limits the luminescence is quenched. At 

concentration of 10% generally no emission can be seen. 

b) When the system has only one emitting level (such in the case for Nd3+) the 

decay time of the luminescence presents the same trend regarding the dopant 

concentration as the intensity. 

The most important finding regarding the emission in our samples is the presence of 

emission at high concentrations (10%) of the Nd3+ dopant. When doped with these 

concentrations no emission is presented by a crystal. 

This finding is in accordance with the mechanism that quenches the emission in a 

luminescent system. At high concentrations it is easier to the excitation to move 

resonantly from ion to ion and eventually find a “killer” site. The limited size of the 

particles impedes the easy transfer of excitation energy and the eventual encounter 

with killer sites. 

For both intensity and decay time we detect the same trend with increasing 

concentration: an initial increase in value followed by a decrease. 

As for the decay time an interesting result is the increase of it with temperature that 

takes place at any concentration. A possible explanation of this effect is the 

following. The emission from Nd3+ ions actually comes out of the doublet 4F3/2. The 

two levels are so close to that they are thermalized even at very low temperature. The 

lifetime of two thermalized levels is a combination of the lifetimes of the two levels, 

each weighed according to the population residing in each level. If the intrinsic 

lifetime of the upper level of the doublet is longer than the intrinsic lifetime of the 

lower level, then an increase of the lifetime with temperature may occur. This seems 

to be the case in the nano–powdered samples of Y2O3:Nd3+. This occurrence, not 

seen in the crystal, is most probably due to the sensitivity of the dynamical parameter 

“decay time” to the particular environment provided by nano–powders. 
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Finally lets spend a few words on the lack of exponentiality of the decay patterns. 

The Nd ions at the surface are in a different environment with respect to the ions in 

the interior of the material. In a crystal the ions in the surface are a negligible 

minority with respect to the ions in the bulk of the material, but in a particle it is not 

so. In very small particles going from the surface toward the center of the particle 

there is a gradation in the Nd-O bond lengths, approaching the conditions of Nd3+ in 

a single bulk crystal. It is possible that, even in the interior of the particle, the 

conditions of the environment in the bulk will never be reached. The observed decay 

patterns are a superposition of the decay curves of ions in different positions in each 

particle. 

5.5 Conclusions 

The results obtained point to the additional information provided by the reduction of 

luminescent systems to nano–powder form, extending from high dopant 

concentrations at which luminescence is observed to the behavior of decay patterns 

deviating from exponentiality. They indicate the possibility of harvesting interesting 

new information by spectroscopically investigating laser type systems reduced to 

nano–particle form. 

 

 



72 

 

 



73 

6.  UNCONVENTIONAL PRODUCTION OF BRIGHT AND EFFICIENT 

WHITE LIGHT EMISSION BY ND - DOPED AND NOMINALLY UN-

DOPED Y2O3 NANO-POWDERS 

6.1 Introduction 

Nano-phosphors (nanoscale-sized solid, inorganic crystallites showing luminescence 

upon excitation) based on rare earth (RE) doped Y2O3 are important optical 

materials, with Y2O3  being the best host matrix for RE-dopants due to its chemical 

and thermal stability, similar ionic radius with respect to RE ions and cut off phonon 

energy of 380 cm-1. Among optical materials, lanthanide ions have attracted the 

interest of researchers for their ability to up-convert infrared light to the visible one. 

Particularly, neodymium (Nd) ion, besides being very efficient for solid-state laser 

applications, is a very good candidate for accomplishing such up-conversion process 

[62, 63].  

Nano-phosphor based lighting is widely used but is suffering a drawback due to the 

fact that the luminescence spectra do not cover the whole visible light range (380- 

780 nm), namely a white light (WL) spectrum close to that of the sunshine. 

Therefore such artificial lighting sources are not optimal for indoor lighting or 

displaying [64] and the production of WL by engineered luminescence spectra 

remains an active research field. 

Nano-powders doped multiply with lanthanide ions have been found to emit WL. 

When a near-infrared (NIR) diode laser was used to excite (with high power above a 

certain threshold) nano-crystalline insulating powders containing lanthanide ions, a 

very bright white or yellowish light was observed, corresponding to a strong broad 

emission band covering almost the whole visible region [65-70]. 

A number of researchers have found anti-Stokes wide band emission by exciting 

nano-crystals of compounds in which Nd was one of the dopants [71] or a full 

stoichiometric part of the system [69, 72, 73].  
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Strek et al. have reported the bright up-converted WL emission from LiYbP4O12 [68], 

NdAlO3 [69] and LiNdP4O12 [72, 73] nano-crystals under low pressure and infrared 

(IR) excitation. The production of WL spectrum have also been reported by J. Wang 

et al. by using just lanthanide oxides (Yb2O3, Sm2O3, CeO2) [66] and Yb3Al5O12, 

(Yb,Y)2O3 crystals [67]. Sato et al. [74], Nolas et al. [75] and Zhou et al. [76] 

showed that the RE dopants reduce the thermal conductivity of the YAG, 

Skutterudites and Lanthanum Zirconate ceramics. Also Roura et al. [77, 78] observed 

broadband emission from SiC nano-particles and mechanically milled Si.  

Notably, while the WL production reported in the literature was obtained by 

materials doubly doped with different RE ions or including RE ions as stoichiometric 

components, we have observed WL by singly Nd doped and nominally un-doped 

insulating oxide materials too. In this respect, this paper reports our detailed 

experimental studies on the broadband “white light” (such nomenclature is supported 

by the evaluated Commission Internationale de l’Eclarage (CIE) coordinates) emitted 

following the IR laser-light excitation of Nd-doped Y2O3 (Y2O3:Nd) nano-crystals 

with different Nd concentrations ranging from zero to 20%. Surprisingly, we 

observed WL even in the nominal absence of Nd dopant in the samples. Moreover no 

WL was found to be emitted by Nd3+-doped Y2O3 bulk crystals. 

6.2 Experimental 

6.2.1 Preparation of the Y2O3:Nd3+nano-powders 

Samples of nano-sized Y2O3 particles doped with trivalent Nd concentration of 2, 5, 

10 and 20 % were prepared by thermal decomposition of yttrium-neodymium 

alginate. Details on the preparation method were described elsewhere [22, 23, 60]. 

Briefly, this method is based on the thermal decomposition of alginate gels. In this 

process yttrium nitrate hexahydrate 𝑌(𝑁𝑂3)3 ∙ 6𝐻2𝑂 (99.8%), neodymium nitrate 

hexahydrate𝑁𝑑(𝑁𝑂3)3 ∙ 6𝐻2𝑂 (99.9%) and low viscosity (250 cps of 2% solution) 

alginic acid sodium salts with analytical grade are used as starting reagents. The 

reaction that occurs in thermal decomposition process is given in the equation below 

4[𝑌(𝑁𝑂3)3 ∙ 6𝐻2𝑂] → 2𝑌2𝑂3 + 6𝑁2𝑂5 + 24𝐻2𝑂                           (𝟔. 𝟏) 
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The nano-particles were synthesized at 500°C and then annealed at 600, 800, 1000 

and 1400 °C. The effect of such annealing treatment was to increase the particle size 

from 20 to 248 nm. 

Here-after the Nd-doped Y2O3 samples will be referred to as Y2O3:Nd(%) where % 

stands for the corresponding Nd doping percentage. 

Commercially available Y2O3 nano-samples with particle sizes of 20 to 40 nm and 

with the purity of 99.999% purchased from US Research Nanomaterials, Inc.were 

also used to obtain WL emission. 

6.2.2 Structural characterization of the Y2O3:Nd3+ samples  

Analysis of the crystal structure of the Nd-doped samples was performed by X Ray 

Diffraction (XRD) patterns. XRD investigations were carried out with a Bruker AXS 

D8 Model (Cu-Kα radiation) diffractometer at 40 kV and 30 mA setting in the 2θ 

range from 20o to 70o with scanning steps of 0.02o.The average crystallite size L of 

the powders was estimated by using the Scherrer Equation [45]; 

𝐿 =
𝐾𝜆

𝛽𝑐𝑜𝑠𝜃
                                                           (𝟔. 𝟐) 

where K is a constant varying with the method of taking the breadth (0.89<K<1, with 

K=0.89 for spherical particles), λ is the wavelength of the incident X-ray beam, β is 

the width at half maximum of the XRD peak of a specific lattice plane (hkl) in 

radians and θ is the center angle of the considered Bragg reflection (XRD peak by 

the plane (hkl)).  

As a further confirmation of the average particle size, SEM images of the samples 

were obtained by a JEOL 6335F model scanning electron microscope. 

6.2.3 Emission characterization 

The continuous emission WL spectra were produced by pumping the samples with 

the output of a Laser Drive Inc. Model LDI-820 laser diode operating at 803.5 nm 

with the maximum output power of 3 W or of a similar diode operating at 975 nm 

with the maximum output of 10 W. The signal was directed toward the entrance slit 

of a 1 m McPherson Model 2051 monochromator and chopped at a frequency of 250 

Hz before entering the slit. The monochromator provided a resolution 0.8 Å with the 

slits set at 50 μm and a wavelength reproducibility of 0.1 Å. The optical signal was 
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detected by Hamamatsu R1387 photomultiplier tube with an S20 response, sent to a 

EG&G Model 5210 lock-in amplifier and recorded in a computer. 

Two spectral regions were investigated: 

1. A region from 850 to 1500 nm where the emission from the 4F3/2 level of Nd 

occurs, and 

2. An optical region from 400 to 900 nm where the WL emission occurs. 

To perform experiments in the temperature range 30-300 K, the samples were 

mounted on the cold finger of a closed cycle Helium refrigerator. This system uses a 

Janis Research Model RD dewar connected with a Leybold Model RW2 compressor. 

The temperature of the cold finger was controlled by using a Lake Shore Cryotronics 

331 Model temperature controller. 

The rise pattern and the decay pattern of the WL were measured by using a shutter 

that allowed the light to reach its full intensity and then cut sharply the pumping 

power, operating with a repetition cycle of 10 sec. 

The use of the diode operating at 975 nm allowed us to investigate the effect of 

excitation wavelength on the WL output of the samples. 

An Avantes AvaLight-Hal-Cal calibration light source was used to correct our 

spectra for the sensitivity of our system. 

We had also at our disposal an Allied Scientific Pro ASP-MK350 model illuminance 

meter that allowed us to measure the CIE (International Commission on 

Illumination) coordinates, the CCT(Correlated Color Temperature), the CRI(Color 

Rendering Index), illuminance, and to view the spectrum of the WL.We also 

measured the above parameters of a 60 W commercial incandescent bulb for 

comparison. 

6.3 Experimental Results 

The X-ray diffraction patterns of the as-synthesized Y2O3:Nd samples are shown in 

Figure 6.1 as function of the Nd content. The diffraction peaks observed in the XRD-

pattern can be indexed to cubic phase Y2O3 (JCPDF: 25/1200); no other phase was 

detected. The observed diffraction peaks correspond to the Bragg diffraction from 

the (211), (222), (400), (411), (332), (431), (440), (532), (622) and (613) planes. 
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Only the (hkl) values of the most prominent peaks are indicated in the XRD pattern 

with the strongest peak observed at 2θ = ~29.5° corresponding to the plane (222) for 

all the samples. The room temperature lattice parameter of the unit cell of the yttria 

cubic phase estimated by the XRD patterns was 10.6051 Å which was in good 

agreement with the JCPDS database of pdf number 83–0927. Notably, as the Nd 

concentration increases from 2 % to 10 %, the prominent diffraction peaks become 

sharper and more intense thus suggesting a refinement of the sample crystallinity 

and/or increased nano-powder sizes. One would expect that an increase of the Nd3+ 

ion concentration would lead to peaks with slightly broader width and reduced 

intensity, but the observed results agree with report according to which a Nd3+ 

dopant may act as an heterogeneous nucleation and crystallization site [79] and 

improve the sample crystallinity. On the other hand, doping-induced microstrain and 

local distortion of the host lattice structure due to the difference in the ionic radii 

between the Y host cation (0.9 Å) and Nd dopant (0.980 Å) are expected effects 

because of the relevant doping level of our samples. The crystallite size of the as 

synthesized phosphors, calculated by the Debye-Scherrer formula applied to the 

diffraction feature (222), resulted to be in the range 25 – 30 nm.The SEM image of 

the sample with Nd concentration of 2% shown in Figure 6.2 confirms such 

estimation. 

 

Figure 6. 1: XRD patterns of the samples. 



78 

 

Figure 6. 2: Representative SEM image of the Y2O3:Nd(2 %). 

6.3.1 Results of 803.5 nm excitation 

Turning to the emission properties of the Y2O3:Nd samples excited by the 803.5 nm 

wavelength, the IR spectrum consists of three groups of spectral lines due to the 

4F3/2→
4I 9/2, 

4I11/2 and 4I13/2 transitions. The general aspect of the spectra was found to 

be similar for Nd content ranging up to 10 %. Notably for Nd concentration of 10% it 

is not possible to see any Nd-related IR emission in bulk crystals; this is an indication 

that the concentration at which the luminescence quenches is higher in the nano-

powders than the one in the crystal [80].  

Since the IR emission of the Y2O3:Nd3+ systems was already investigated in our 

previous papers [22, 23], it will not be considered further. Instead, in the present 

paper our attention will be focused on the WL band accompanying the IR emission 

of our samples as a function of the Nd dopant content.  

In this regard, Figures 6.3 (a) and (b) show the WL spectrum collected in the 400-

900 nm wavelength range of the samples Y2O3:Nd(20%) and Y2O3:Nd (0%), 

corresponding to the highest (20%) and lowest (0%) Nd content, respectively, under 

excitation at 803.5 nm with pumping power of 2 W and various environment 
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temperatures. Some of our preliminary results on WL emitted by infrared excited un-

doped metal oxide nano-powders have been reported elsewhere [81, 82]. The WL 

spectra under examination were emitted by samples with nano-particle size of 26 nm. 

The spectrum of the doped sample consists of a wide band with three dips associated 

with the absorption of the Nd ion (the 803.5 nm wavelength matches with the strong 

absorption of the Nd ions in this region). The three dips due to the absorption of Nd 

can clearly be seen in the measured spectrum (Figure 6.3 (a)), the corrected spectrum 

(Figure 6.3 (a)) and the spectrum measured by using the illuminance meter (Figure 

6.4 (a)). There is also a good agreement between Figures 6.3 (d) and 6.4 (b), 

corresponding to the spectrum corrected and measured by using the illuminance 

meter, respectively, of the un-doped sample. 

 

Figure 6. 3: Environment temperature dependence and the general aspect of the 

white light spectrum under 803.5 nm excitation (a) uncorrected 

spectrum of 20% Nd doped sample (b) uncorrected spectrum of un-

doped sample (c) corrected spectrum of 20% Nd doped sample for 

system response (d) corrected spectrum of un-doped sample for system 

response. 

(a) (b) 

(c) (d) 
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Figure 6. 4: (a) Measured spectrum of 20% Nd doped sample by using illuminace 

meter (b) measured spectrum of un-doped sample by using illuminance 

meter (c) the CIE coordinates and the measured CCT, CRI values for 

20% Nd doped sample (d) the CIE coordinates and the measured CCT, 

CRI values for un-doped sample. 

The parameters CCT, CRI, illuminance and Commission Internationale de l’Eclarage 

(CIE) coordinates of the WL emitted by both doped and un-doped samples under 

examination are shown in the corresponding figures (Figures 6.4 (a) and (b)) and 

summarized in Table 6.1. 

Table 6. 1 : Summary of results when using 803.5 nm excitation. 

Sample CIE CCT CRI Efficiency 

Y2O3:Nd(20%) x = 0.47 

y = 0.39 

2422 K 96 327 lum/W 

Un-doped Y2O3 x = 0.45 

y = 0.40 

2756 K 99 864 lum/W 

Incandescent 

Lamp (60 W) 

x = 0.46 

y = 0.41 

2666 K 99 636 lum /W 

 

Y
2
O

3
:Nd(%20) Un-doped Y

2
O

3
 

(a) (b) 

(c) (d) 
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It was observed that both CCT and CRI: 

i) decrease turning from the un-doped to the doped sample ; 

ii) depend on the pumping power: while the CCT value goes up, CRI was found 

to go down with decreasing pumping power: 

iii) depend on the environmental pressure around the sample: while the CCT 

value goes up, CRI was found to go down with increasing environmental 

pressure.  

In regard to point i), the reduction of CCT and CRI upon increasing Nd content could 

be ascribed to the strong absorption of the Nd ions clearly observable from Figure 

6.3.  

One important CIE Standard Illuminant is the color point A, located in the CIE color 

space by the coordinates (0.448, 0.408) and called warm white point with CCT of 

2856 K. This point marks the chromaticity of tungsten incandescent lamps, namely 

the artificial light sources most comfortable for human eye. Accounting for the 

lighting standards, we also compared the performance of our samples with the one of 

a 60 Watt incandescent lamp (Figure 6.5 and Table 6.1). Notably, the CIE 

coordinates, CCT and CRI values of our obtained WL emission are very close to 

those of a commercial incandescent bulb source: CRI approaching the theoretical 

limit (100) and CCT closer to the warm white point were measured for the un-doped 

sample. Moreover, as a power excitation of 3 W was used for the 803.5 nm pumping 

diode, the efficiency of the WL emitted by our samples seems to be better than the 

one of the incandescent lamp source (Table 6.1). 
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Figure 6. 5: (a) Measured spectrum, (b) CCT, CRI and illuminance values, and (c) 

CIE coordinates of a commercial 60W incandescent bulb obtained by 

using illuminance meter. 

WL emission from commercially available 99.999% pure Y2O3 nano-powder was 

also obtained under both of 803.5 nm and 975 nm laser diode excitation. The general 

aspects of the WL emission from commercial Y2O3 were found to be the same as the 

ones observed for our synthesized samples. 

The investigation of the WL dependence on the nature and pressure of the 

background gas revealed that while it was easy to obtain WL under low pressure, it 

was possible to obtain WL at atmospheric pressure by increasing the pumping power. 

In this respect, as Figure 6.6 shows for the un-doped sample with nano-particle size 

of 26 nm, the WL intensity falls down rapidly upon increasing the background 

pressure. Figure 6.6 is representative, since the same behavior is shown by Nd-doped 

samples. The threshold value of the pumping power to obtain WL under 0.02 mbar 

pressure was found to decrease with increasing dopant concentration: 0.7 Watts and 

0.12 Watts for nominally un-doped and heavily doped materials, respectively. We 

were also able to detect WL at atmospheric pressure and in such a case the threshold 

power value was 0.73 Watts and 1.1 Watts for the 20 % Nd doped and the nominally 
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un-doped sample, respectively. Such findings indicate that the presence of the Nd 

ions makes easier to induce WL. 

 

Figure 6. 6: Pressure dependence of the white light intensity in nominally un-doped 

Y2O3. 

Tests dealing with the nature of the background gas were also performed. After 

filling the evacuated sample chamber with nitrogen (N2), quenching of the WL was 

observed. Similar results were observed by using helium (He), another inert gas. All 

of the performed checks indicate that the WL is sensitive to the pressure of the gas 

present in the sample chamber, as long as this gas is inert. 

The changes in the WL intensity with pumping power in an un-doped sample with 26 

nm powder size (shown in Figure 6.7) demonstrate that WL intensity ‘I’ varies with 

the pumping power ‘P’ according to the law I=Pn, n being an exponent depending on 

either the exciting wavelength or the laser diode pumping power (LD Power). As the 

fit results in Figure 6.7 indicate, the exponent n is found as 3.08 and 4.63 by linear 

fitting for two different linear region of the experimental data. 
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Figure 6. 7: White light intensity variation with pumping power in nominally un-

doped Y2O3. 

In order to further characterize the WL we measured its rise pattern and decay 

pattern, counting on such parameters being more sensitive to the conditions of 

measurements and to the composition of the samples. We summarize as follows our 

experimental findings for what concerns the WL emitted by the un-doped sample: 

i) The decay patterns of the un-doped Y2O3 were found to be sensitive to the 

temperature of the sample holder, as shown in Figure 6.8. 
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Figure 6. 8: Dependence of decay patterns on environment temperature in nominally 

un-doped Y2O3. 

ii) The decay patterns were found to be very sensitive to the environment 

pressure showing faster falling down with increasing pressure (Figure 6.9). 

 

Figure 6. 9: Variation of decay patterns with environment pressure in nominally un-

doped Y2O3. 
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iii) The decay patterns and rise patterns vs. the pumping powershown in Figs 

6.10 and 6.11, respectively indicate that, while no significant pumping 

power-dependence of the WL decay patterns occurs, the rising patterns are 

very sensitive to the pumping power, becoming shorter with increasing 

pumping power. 

 

Figure 6. 10: Dependence of decay patterns on pumping power in nominally un-

doped Y2O3. 
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Figure 6. 11: Rise pattern dependence on pumping power in nominally un-doped 

Y2O3. 

Considering now the results on the Y2O3:Nd(20%) sample, Figure 6.12 reports that 

the WL spectrum changes in intensity and in detail by changing the diode pumping 

power: the dips due to absorption by the Nd ions progressively disappear with 

increasing pumping power and the emission intensity is enhanced by increasing the 

pumping power. Such experimental findings suggest mechanisms of filling/saturation 

of the dopant energy levels. 
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Figure 6. 12: Pumping power dependence of the white light spectrum in 20 % Nd 

doped Y2O3 with size of 26 nm. 

In addition to the result in Figure 6.12, our measurements showed the following: 

i) The decay patterns did not vary sensibly with Nd concentration (Figure 

6.13), thus suggesting that the WL decay is mainly an host-dependent 

effect. 

 

Figure 6. 13: White light decay patterns variation with the Nd concentration. 
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ii) The onset of the WL strongly depends on Nd concentration with a delay 

before the rise of the WL to its maximum value longer with decreasing 

Nd content (Figure 6.14). 

 

Figure 6. 14: Rise pattern dependence on Nd concentration. 

iii) The decay patterns associated with the Y2O3:Nd(10%) sample plotted vs. 

particle size show that while no difference is observable in the 20 to 50 

nm size range, the pattern corresponding to 250 nm decays more slowly 

(Figure 6.15). 
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Figure 6. 15: Dependence of decay patterns on powder size in 10 % Nd Y2O3. 

The rise pattern behavior of the Y2O3:Nd(10%) sample depends on the particle size, 

namely it decreases and becomes steeper with decreasing particles size (Figure 6.16). 

 

Figure 6. 16: Rise pattern dependence on powder size 10 % Nd Y2O3. 
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6.3.2 Results of 975 nm excitation 

Turning to the laser diode operating at 975 nm, once again WL was observed when 

exciting the samples with such a source. The acquired spectrum was corrected for the 

sensitivity of the apparatus and also measured by using the illuminance meter for 

both doped and un-doped samples. We also measured the spectrum of the un-doped 

sample after the excitation at various times with time interval between successive 

measurements of 10 minutes.  

The following was inferred by our experiments: 

i) the general aspect of the broadband WL spectrum was similar to the one 

obtained by using the 803.5 nm exciting source (Figure 6.17) with a red-

shift of the peak position up to 50 nm; 

 

Figure 6. 17: General aspect of the white light spectrum under 975 nm excitation (a) 

uncorrected spectrum of 20% Nd doped sample (b) uncorrected 

spectrum of un-doped sample (c) corrected spectrum of 20% Nd 

doped sample for system response (d) corrected spectrum of un-doped 

sample for system response. 

ii) the threshold pumping power value was 6 Watts at 0.02 mbar; 

iii) a pressure value as low as 0.02 mbar was sufficient to obtain WL and no 

WL was detectable under atmospheric conditions; 

(a) (b) 

(c) (d) 
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iv) the corrected spectra and those measured by the illuminance meter 

(Figure 6.18) look similar and are in good agreement both for doped and 

un-doped samples; 

 

Figure 6. 18: (a) Measured spectrum of 20% Nd doped sample by using illuminace 

meter (b) measured spectrum of un-doped sample by using 

illuminance meter (c) the CIE coordinates and the measured CCT, 

CRI values for 20% Nd doped sample (d) the CIE coordinates and the 

measured CCT, CRI values for un-doped sample. 

v) while measuring the emission of the un-doped samples in 10 minutes 

steps, a blue-shift of the emission peak was observed (Figure 6.19) and, 

moreover, the intensity was found to increase 8 times with time and the 

spectrum became stable after 5 successive measurements. The amount of 

the shift was 15 nm which corresponds to temperature change of 77 K 

according to Wien Displacement Law; 
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Figure 6. 19: The change of the WL spectrum under 975 nm excitation with time. 

vi) in regard to the observed pumping power-dependence of the WL 

spectrum, with increasing pumping power an intensity change and a blue-

shift of 19 nm of the WL spectrum were detected (Figure 6.20); 

 

Figure 6. 20: The change of the WL spectrum with changing pumping power of 975 

nm laser diode. 
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vii) the intensity variation with pumping power under 975 nm excitation, 

shown in Figure 6.21, indicated a strong dependence of the WL emission 

on this power; 

 

Figure 6. 21: Power dependence of the WL intensity under 975 nm excitation. 

viii) all the decay patters were found to be non exponential, as observed in all 

previously examined cases; 

Turning to the sample characterization according to the lighting standards 

parameters, CIE coordinates, CCT, CRI and illuminance of the WL emitted from 

doped and un-doped samples under 975 nm excitation were measured. The results 

are given in Figs. 18a and 18b and summarized in Table 6.2. 

Table 6. 2 : Summary of results when using 975 nm excitation. 

Sample CIE CCT CRI Efficiency 

Y2O3:Nd(20%) x = 0.49 

y = 0.39 

2190 K 93 19.5 lum/W 

Un-doped Y2O3 x = 0.47 

y = 0.39 

2416 K 94 28.6 lum/W 
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Notably, as already observed under 803.5 nm excitation source, both of CCT and 

CRI values were found to decrease with the presence of the dopant. However, the 

same samples exhibited a better WL performance under the 803.5 nm than under the 

975 nm excitation. Moreover, a dependence on either the pumping power or 

environment pressure was observed for both CCT and CRI in the case under 

examination (975 nm excitation). In detail, while CCT goes up, the CRI value was 

found to go down with decreasing (increasing) pumping power (environment 

pressure).  

As a further result, WL emission from commercially available 99.999% pure Y2O3 

nano-powders was also obtained under both of 803.5 nm and 975 nm laser diode 

excitation. The general aspects of the WL emission from commercial Y2O3 were 

found to be the same as the ones observed for our synthesized samples. 

6.4 Discussion of the Results 

The amount of experimental results of our experiments demands careful 

consideration of their general aspects. The following basic observations can be made: 

1. Since no WL emission was observed by bulk samples of Nd-doped Y2O3 

exposed to the same exciting infrared light as the nano-particle samples, 

definitely the observed production of WL can be considered as typical of the 

nanoscale regime. 

2. The spectral distributionof the WL is to a large extent independent on the Nd 

concentration and even the presence of the Nd dopant. While Nd occurrence 

favors the WL generation but is not necessary to induce such process, the 

presence of Nd makes it easier to obtain WL emission under low pumping 

power and higher environment pressure conditions. 

3. The temperature of the sample’s holder does not influence the spectral shape 

and seemingly the intensity of the WL emission. 

4. The pressure in the sample environment has a great influence on the intensity 

of the WL. It acts in the opposite sense with respect to the intensity of the 

exciting infrared light: low pressure favors the emission of WL, and a strong 

excitation does likewise. The latter occurrence is expected: more exciting 

light results in greater absorption and consequently in a stronger emission. 

The former effect, the influence of pressure, needs a more elaborate 
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explanation. As nano-crystalline Y2O3 is very hygroscopic, adsorption of 

water on the nano-particle surface is very likely [83, 84] and this could 

contribute to the absorption of the pumping wavelengths. But adsorbed water 

molecules easily evaporate with decreasing environment pressure, even at 

room temperature, and due to the excitation-induced warming up effect. 

Hence, surface adsorption of H2O could contribute to the absorption of the 

infrared radiation at high atmospheric pressure, because H2O has a relatively 

broad absorption band peaking at 760 nm and at 800 nm its absorption 

coefficient is 0.02 cm-1 [83].The pressure dependence of the WL intensity 

indicates the occurrence of de-excitation mechanisms. As the nature of the 

gas-nano-particle interaction is not chemical when inert gases are considered, 

at given pressure conditions, the fact that the WL intensity is lower in the 

presence of light inert gases indicates the effective role of the collision 

density. Therefore, the pressure dependence of the WL intensity can be 

accounted for adsorption of polar species on the nano-particle surface as well 

as scattering effects gas-nano-particle causing de-excitation and/or heating 

dissipation. In this regard an alternative or concurrent pressure-dependent de-

excitation mechanism can be invoked based on the thermal conductivity of 

the nano-powders. This parameter is enhanced by the ambient pressure and 

reduced when this pressure is lowered. At low pressures the crystallites are 

more isolated from each other and from the cold finger and can reach higher 

temperatures favoring the emission of WL. 

5. The characterization of the spectral properties and of the processes taking 

place in the nano-systems must include the investigation of such dynamical 

characteristics as the patterns related to the rise of the WL intensity following 

the sudden excitation by the infrared radiation and the decay pattern that 

follow the sudden interruption of such a radiation. In this regard we may say 

that, as expected, the dynamical parameters  are remarkably sensitive to the 

variation of such experimental conditions as temperature of the samples (see 

Figure 6.8), pressure of the samples’ environment (see Figure 6.9) or 

dimension of the powder crystallites (see Figure 6.16). One expected 

outcome of the measurements of the decay patterns of the WL is their 

independence of how much energy was stored in the system (see Figure 

6.10). 
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6. The most noticeable aspect of the decay patterns is their deviation from 

exponentiality. Such behavior could be inferred by the role played by the 

powders’ surfaces, role that becomes more important as the radius of the 

particle is reduced. Going from the surface to the center of a particle one 

would encounter a variety of conditions, with each condition determining a 

different decay patterns. The observed pattern is the superposition of the 

various different patterns. Accordingly the deviation from an experimental 

pattern is in general more pronounced in smaller particles. 

7. The spectral distribution of the detected WL resembles very closely the one 

of an incandescent lamp, which is still unmatched with respect to its color 

quality, meaning inherent resembling the sun light which is the most 

comfortable for human perception. We have demonstrated the possibility to 

obtain WL with very high efficiency and CRI approaching the theoretical 

limit with an alternative approach. Our experimental results make our WL 

emission very interesting at both fundamental and applicative levels and open 

the way to an alternative route with respect to incandescent lamps. 

The following considerations deal with occurrences that manifest themselves in 

different ways depending on the wavelength of the exciting infrared light. 

1. The WL spectrum produced by the 975 nm excitation is not significantly 

different form that produced from the 803.5 excitation. The dependence of 

the WL intensity on the fourth power of the exciting 803.5 nm diode power 

suggests the multi-photon aspect of the absorption process. In fact, an 

interpretation of the exponent n occurring in the law I=APn is just in terms of 

number of photons in multi-photon absorption events. The same can be 

inferred in the case of the other exciting wavelength (975 nm). However, 

being a 975 nm photon less energetic than an 803.5 nm photon, more photons 

are required to induce multi-photon absorption in the un-doped system. This 

is indeed the case: the WL intensity was found to be proportional to a higher 

exponent n of the power of the exciting 975 nm source (Figure 6.21). 

2. Of particular interest is Fig 6.12 which shows the WL spectrum of 20% Nd-

doped Y2O3 nano-powder sample, with dips corresponding to Nd absorption. 

The dips become shallower as the excitation power increases, showing that as 
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this power increases the absorption process seems to receive dominant 

contribution from the host material rather than from Nd-based processes. 

3. The decay patterns following the 975 nm excitation are not significantly 

different than those following the 803.5 nm excitation, as one would expect. 

The different experimental conditions may produce different amount of 

excitation, but this should have no effect on the enfolding of the spontaneous 

decay. 

4. The wavelength of excitation has a greater influence on the rise patterns than 

on the decay patterns. A most notable effect is produced by the 975 nm 

excitation on the rise patterns, by which the WL intensity reaches its 

maximum value. Figure 6.19 is illustrative in this regard. In it we can see that 

it took about one hour for the WL intensity to reach its maximum intensity. 

Figure 6.20 represents a similar behavior obtained by exciting the sample 

with increasing power of the 975 nm light, confirming that the pattern 

represented in Figure 6.19 reflect a gradual absorption of the exciting infrared 

light. Such an occurrence is indeed, to our best knowledge, never seen before. 

The important thing to notice is that the wavelength of the exciting infrared light has 

an effect on the time it takes the system to fully absorbs this light. For practical 

applications wavelengths like 975 nm would have to be avoided and attention should 

be given to a proper choice of the infrared wavelengths that would ensure a prompt 

absorption response. 

6.5 Conclusions 

We have presented some experimental results concerning the emission of WL by Nd-

doped and, very importantly, nominally un-doped Y2O3 nano-particles under 

different conditions of excitation. Our study was directed toward the investigation of 

the basic parameters controlling the onset and build-up of the observed WL and its 

decay following the sudden cut-off of the exciting light. We found that the presence 

of Nd as an optically active dopant in the nano-particles favored the production of 

the WL, but was not essential for this production. 

Another important parameter was the pressure in the sample environment: low 

pressure favored the emission of the WL. However, we found that under appropriate 

conditions WL emission could be obtained even at atmospheric pressure. This last 
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result points to the potential applications of systems like the one we examined to the 

field of lighting. 
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7.  BROADBAND VISIBLE WHITE LIGHT EMISSION FROM 

NOMINALLY UN-DOPED AND Cr3+ DOPED GARNET NANOPOWDERS 

Synthetic garnet nano-powders of Y3Al5O12 (YAG) and Gd3Ga5O12 (GGG) were 

produced and the occurrence of a broadband bright visible emission by nominally 

un-doped YAG and GGG as well as Cr3+ doped GGG depending on the environment 

pressure as well as exciting on the pumping power was demonstrated. The results 

indicate that high intensity infrared laser irradiation in samples not only leads to 

heating (melting effects) but also produce a visible broadband emission. Low 

pressure of the powders’ environment favors the white light emission by lowering 

the threshold pumping power. A hypothesis on the nature of the emission is 

presented. 

7.1 Introduction 

White light (WL) optical emission from inorganic materials is an important research 

subject of research emerged in the last decade that finds numerous applications, 

especially in the fields of lighting and signaling. The majority of the papers that have 

appeared in the literature have dealt with WL obtained by using a blue or an 

ultraviolet (UV) light emitting diode exciting one or more suitable and efficient 

phosphors (only a yellow phosphor, both yellow and red phosphors or both green and 

red phosphors), with the combination of the emitted radiations originating the WL 

[85]. According to this strategy i) yellow phosphors enable to get WL with high 

efficiency but with low color rendering index (CRI), ii) yellow and proper red 

phosphors let achieve WL with appropriate CRI and moderate luminescence 

efficiency and iii) emission by green and red phosphors provides WL with high CRI 

but with low efficiency [86]. 

Other approaches exploit up-conversion mechanism with a suitable near-infrared 

(NIR) source excitation with high power above a certain threshold and nano-

crystalline powders of a transparent host material doped with lanthanide ions [87]. In 

several cases, very bright white or yellowish light was observed, corresponding to an 
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intense and broadband emission-band covering almost the whole visible region [65-

70]. The broadband emission was assigned to blackbody thermal emission in some 

cases, to charge transfer luminescence in other cases, or to a combination of these 

two processes. For what concerns materials, previously reported WL production 

stemmed from transparent host materials at least co-doped with rare earth (RE) ions 

or including RE ions as stoichiometric components.  

In particular, the garnets Y3Al5O12 (YAG) and Gd3Ga5O12 (GGG) are well known in 

nanocrystalline form [88] and are among the most widely used laser host materials 

[89] because of their hardness, general stability against chemical and mechanical 

changes, optical isotropy, good thermal conductivity and low-thermal expansion, 

high-optical transparency, low-acoustic loss, high threshold for optical damage and 

high receptiveness to rare earth ions. While YAG has slightly better thermal and 

optical properties than GGG, GGG is more easily available and in better crystalline 

quality than YAG.  

To the best of our knowledge, no study is available examining the possibility to 

generate broad-band WL emission by nominally un-doped or transition-metal-doped 

insulating oxide materials. Hence, this paper demonstrates the occurrence of 

broadband bright visible emission, depending on environment pressure and pumping 

power, by either nominally un-doped YAG and GGG or Cr3+ doped GGG nano-

crystalline samples excited by monochromatic CW infrared light (803.5 nm). 

7.2 Experimental 

7.2.1 Synthesis procedures 

To produce powders with grain size in the range of nanometers, the Pechini method 

[90] and the co-precipitation approach [92] were exploited. The former method 

besides being simple and inexpensive, has the advantage of providing reproducible 

and monodispersed samples. It is a common method for the synthesis of metal oxide 

materials with the aid of an organic polymer and a chelating agent to form a 

polyesteric network which can be eliminated by thermal treatment.  

Four nanocrystalline garnet samples were investigated in our study: 
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i) two samples of nominally undoped YAG, briefly named (YAG)Pech and 

(YAG)co hereafter, prepared by the Pechini method [93] and by co-

precipitation [91], respectively; 

ii) one nominally undoped GGG sample, named (GGG)Pech hereafter, 

prepared by the Pechini method [94]; 

iii) one Cr-doped GGG sample, named GGG:Cr hereafter, with 1 mol% Cr3+ 

(substituting Ga3+) 

The reagents used in the synthesis are given in Table 7.1. The heat treatment was 

carried out for 16 hours at 800 °C for the samples prepared by the Pechini method, 

and 3 hours at 900 °C for the YAG sample made by coprecipitation. The metallic 

precursors were obtained from Sigma-Aldrich, apart from Al(NO3)39H2O (Alfa 

Aesar).  

Table 7. 1: Garnet samples under investigation. 

Sample  Synthesis Doping Metal source and 

purity 

Metal source and 

purity 

Dopant source 

and purity 

(YAG)Pech Pechini Nominally undoped Y(NO3)36H2O 

(99.8%) 

Al(NO3)39H2O 

(99.999%) 

 

(YAG)co Coprecipitation Nominally undoped Y(NO3)36H2O 

(99.8%) 

NH4Al(SO4)212H2O 

(>99%) 

 

GGG-U Pechini Nominally undoped Gd2O3 (99.99+%) Ga(NO3)38.31H2O 

(99.999%) 

 

GGG:Cr Pechini 1 mol% Cr3+ 

(substituting Ga3+) 

Gd2O3 (99.99+%) Ga(NO3)38.31H2O 

(99.999%) 

Cr(NO3)39H2O 

(99.99+%) 

7.2.2 Structural characterization 

The powder samples were ground in a mortar and then deposited in a low-

background sample stage for the X-ray powder diffraction (XRPD) pattern 

collection. XRPD patterns were measured with a Thermo ARL X´TRA powder 

diffractometer, operating in Bragg–Brentano geometry (to increase intensity and 

angular resolution), equipped with a Cu-anode X-ray source (Kα, λ=1.5418 Å) and 

using a Peltier Si(Li) cooled solid state detector. The patterns were collected with a 

scan rate of 0.003°/s, time of exposure 9.0 s/step and 2θ range of 24–90°. The phase 

identification was performed with the PDF-4+2008 database provided by the 

International Centre for Diffraction Data (ICDD). 

The crystallite sizes of the single phase samples were evaluated using the 

Williamson-Hall method. 
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7.2.3 Spectroscopic measurements 

The continuous emission spectra of the samples were obtained by pumping the 

samples with the output of a Laser Drive Inc. Model LDI-820 diode laser operated at 

803.5 nm. The signal was directed toward the entrance slit of a 1 m  McPherson 

Model 2051 monochromator and chopped at a frequency of 250 Hz before entering 

the slit. The monochromator provided a resolution 0.8 Å with the slits set at 50 μm 

and a wavelength reproducibility of 0.1 Å.  

The optical signal was detected by a Hamamatsu R1387 photomultiplier tube with an 

S20 response, sent to a EG&G Model 5210 lock-in amplifier and recorded in a 

computer.  

The temporal evolution (decay and rise patterns) of the visible broadband emission 

intensity of all the samples was measured by employing a shutter to switch on or 

interrupt the diode laser beam and a Tektronix Model TDS3052B oscilloscope. 

The samples were mounted on the cold finger of a closed cycle Helium refrigerator. 

This system uses a Janis Research Model RD dewar connected with a Leybold 

Model RW2 compressor. The temperature of the cold finger was controlled by using 

a Lake Shore Cryotonics 805 Model controller and could be changed from 30 to 300 

K. 

An Avantes AvaLight-Hal-Cal calibration light source was used to correct our 

spectra for the sensitivity of our system. 

An Allied Scientific Pro ASP-MK350 Model Illuminance Meter was used to measure 

the CIE (International Commission on Illumination) coordinates, the CCT 

(Correlated Color Temperature), the CRI(Color Rendering Index), the luminous flux, 

and to view the spectrum of the WL. 

7.3 Results and Discussion 

7.3.1 Structural Characterization of the Samples 

The X-ray patterns corresponding to the four samples are shown in Fig. 7.1. The 

results of the structural investigation are summarized in Table 2: 
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i) the (YAG)co, (GGG)Pech and GGG:Cr samples were found to be 

nanocrystalline, single phase with a cubic garnet structure and with 

particle sizes in the range 50-80 nm (Table 7.2); 

Table 7. 2: Structural characterization of the garnet samples under investigation. 

Sample  Phase purity Particle size 

(YAG)Pech Not single phase: 

7% distorted YAG 

n.a. 

(YAG)co Single phase 55 nm 

GGG-U Single phase 53 nm 

GGG:Cr Single phase 78 nm 

ii) the (YAG)Pech sample was found to contain about 7 mass % of a slightly 

distorted garnet phase with a stoichiometry close to Y3.03Al4.97O12 [95] 

and, even if the average size of  such mixed phase sample was not 

determined, peak broadening indicates its nano-crystalline nature. 

Y3.03Al4.97O12 arises from Y3Al5O12 by substitution of a small portion of 

Al3+ions, occupying the trigonally distorted octahedral site (with S6 

symmetry), with Y3+ ones. Due to the mismatch of the ionic radii of Al3+ 

and Y3+ (the latter is larger than the former), the cell edge of Y3.03Al4.97O12 

is bigger than the one of Y3Al5O12. As a consequence, the diffraction 

peaks of Y3.03Al4.97O12 are shifted towards lower 2 theta values, with 

respect to the ones of Y3Al5O12. (Fig 7.1(a)). 
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Figure 7. 1: XRD patterns of (a) YAG and (b) GGG samples. 

It has been reported in the literature that nanocrystalline garnet materials show weak 

aggregation of the particles and the relatively small particle size is accompanied by 

significant porosity and surface area [96]. 

(a) 

(b) 
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7.3.2 Spectroscopic Investigation of the Samples 

The onset of a broad emission band extending from 400 to 900 nm was observed 

peaking in the anti-Stokes side of the exciting laser line (Fig. 7.2) with the samples 

under a pressure of 0.032 mbar, the cold finger at 300 K and the laser exciting power 

raised above a certain threshold (0.2 W for GGG:Cr and 1.05 W for (YAG)co). 

 

Figure 7. 2: (a) Spectral profiles of the broad band emission for (YAG)co and 

GGG:Cr (b) corrected spectra of YAG-Co and GGG-Cr for system 

response. 
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In the experimental conditions described above, a broad band emission could be 

visually observed with the maximum exciting power of 3.25 W for the other two 

samples, (YAG)Pech and (GGG)Pech, but its persistence was very short and no 

meaningful measurements could be carried out. For these reasons, in what follows, 

only the emission properties of the samples GGG:Cr and (YAG)co will be dealt with. 

Accordingly Fig. 7.2a reports the WL found emitted these two samples. The peak 

intensities are located at 680 and 700 nm for (YAG)co and GGG, respectively. 

The spikes that appear in Fig. 7.2a, superimposed to the WL band are due to the 

spurious modes of the laser. 

The WL was incoherent and with no preferential spatial direction. Fig. 7.2b reports 

the spectra in Fig. 7.2a corrected for the system response and Fig. 7.3 presents the 

spectra of the WL emitted by the two samples measured by using an illuminance 

meter. We may note the similarity of the spectra in Figs. 7.2a and 7.3. 

The chromaticity coordinates were found to be x=0.42 and y=0.36 for (YAG)co and 

x=0.45 and y=0.37 for GGG:Cr. These values lie in the greenish yellow region and 

correspond to correlated color temperature (CCT) values of approximately 2859 and 

2530 K with the CRI of 91 and 92, respectively (see Fig. 7.3). 

 

Figure 7. 3: (a) Measured spectrum for (YAG)co by using illuminance meter (b) 

measured spectrum for GGG:Cr by using illuminance meter (c) CIE 

coordinates for (YAG)co (d) CIE coordinates for GGG:Cr (e) CCT, CRI 

and illuminance values for (YAG)co (f) CCT, CRI and illuminace 

values for GGG:Cr. 
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We also measured the WL emitted by two samples when varying the temperature of 

the cold finger and noted that neither the profile nor the emission intensity appear to 

change significantly. This result, per se, indicates that the emitting part of the sample 

is at such high temperature that a change of temperature of the cold finger has no 

relevant effect on the WL emission (see Figure 7.4). 

 

Figure 7. 4: Temperature evolution of the broad band emission of GGG:Cr in the 

range 33-300 K. 

The emission intensity exhibits dependence on either the excitation power or the 

pressure of the sample surroundings. The peak emission intensity increases with the 

excitation power in a highly non-linear way, and the increase is more rapid for 

(YAG)co than for GGG:Cr (Figure 7.5). In fact, the power dependence of the 

intensity can be approximated by 𝐼 = 𝐴𝑃𝑛 , where I is the peak intensity, A is a 

constant, P is the diode laser power and the exponent n is 4.8 for (YAG)co and 3.7 for 

GGG:Cr, respectively. 



110 

 

Figure 7. 5: Evolution of the broad band peak intensity as a function of the diode 

laser power for (YAG)co and GGG:Cr. The atmospheric pressure was 

0.03 mbar. 

These findings have relevance on the mechanism by which the 803.5 nm radiation is 

absorbed and deposited in the sample. Accounting for the intrinsic energy band gaps 

of the considered host materials (6.6 eV for YAG and 5.4 eV for GGG), no direct 

interband linear absorption could occur by the host material at the considered 

exciting photon energy (1.28 eV). However, the high intensity radiation provided by 

the laser diode may be expected to produce a multiphoton absorption. 

Non resonant (i.e. without the presence of intermediate gap states) multiphoton 

absorption would require 5.07 and 4.21 incident photons for YAG and GGG, 

respectively. Based on the estimation of the exponent n occurring in the law I=APn
 

(Fig. 7.5), a resonant multi-photon absorption is likely to occur for YAG [97-100]. 

As for the absorption mechanism in GGG:Cr, we need to consider the possible role 

played by the Cr3+ ion. The WL emission of the GGG:Cr sample has a weak tail in 

spectral region near the exciting wavelength that happens to fall in an absorption 

band of Cr3+ [101]. 



111 

Investigations of GGG doped with Cr3+ ions report that such material strongly 

absorbs radiation with wavelength lower than 700 nm: two broad and intense 

absorption bands at 610 and 430 nm are typical for Cr3+ octahedrally-coordinated by 

O atoms [91]. Broadband emission by Cr3+ ion is known as due to the coupling 

between the electronic levels of the 3d-like electrons and the lattice vibrations and 

Cr3+ fluorescence properties are sensitive to the crystal field strength [102, 103]. The 

4A2 ground level and the excited levels 2E and 4T are involved in the emission 

dynamics. At low temperature the Cr3+ ion luminescence is dominated by the 

2E→4A2 transitions (with peaks at 730, 726, and 706 nm) [104, 105] and at room 

temperature a wide band occurs peaking at 719 nm. 

Since our samples GGG:Cr and (YAG)co yield broadband visible emission with 

analogous features (Fig. 7.2) and no temperature-dependence is exhibited by the 

broadband emission of the sample GGG:Cr (Fig. 7.3), then the occurrence of the 

visible broadband emission cannot be ascribed to the Cr presence. That is, the 

similarities of the emission properties of (YAG)co and GGG:Cr suggest that the 

nature of the general emission mechanism may be the same in both materials. 

The experimental findings indicate that the only nominally un-doped sample that 

shows stable broadband emission is (YAG)co, fabricated by using relatively low 

purity starting source reagents of both Y and Al [Y(NO3)36H2O (99.8%) and 

NH4Al(SO4)212H2O (>99%)]. On the other hand, no stable broad band emission was 

observed at atmospheric pressure by the samples (GGG)Pech, fabricated by very high 

purity reagents [Gd2O3 (99.99+%) and Ga(NO3)3xH2O (x=8.31; 99.999%)], and 

(YAG)Pech, produced by using a high purity reagent [Al(NO3)39H2O (99.999%)] and 

a low purity reagent [Y(NO3)36H2O (99.8%)]. Even if the very different behavior of 

our samples deserves further investigation, the following remarks can be made based 

on our experimental study. 

The GGG-based samples (GGG:Cr and(GGG)Pech), were synthesized by the better 

approach but consist of nano-crystallites with different sizes (78 nm for GGG:Cr and 

53 nm for (GGG)Pech). This issue can be related to the Cr-dopant. In fact, while 

synthesis thermal- treatments induce thermally activated nucleation due to improved 

superficial mobility, Cr-doping can be active in promoting heterogeneous nucleation 

by enhanced density of nucleation sites. In fact, the smaller ionic radius of Cr3+ ions 

as compared to Gd3+ cations introduces lattice-potential well favoring dopant 
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effectiveness as nucleation centre. Since larger nano-crystals exhibit improved 

crystalline quality, this refined structural order yield less defects which means 

reduction of the channels of non-radiative loss and, therefore, could result in 

measurable and stable broadband emission. 

Turning to the YAG-based samples ((YAG)co and (YAG)Pech), they were synthesized 

by different approaches and exhibited very different structural features: (YAG)co was 

single-phase with 55 nm-large nano-crystals and (YAG)Pech was not-single phase 

with distorted lattice. While Y-based precursors with equal purity were used to 

synthesize both samples, the used Al precursors had very different purity (99.999 % 

for (YAG)Pech and 99 % for (YAG)co). Even if the nature of these impurities is 

presently unknown, we point out that  Cr3+, Cu2+, Fe3+ and other transition metal ions 

are common metallic impurities in nominally pure compounds containing Al3+ [106, 

107]. Therefore, the overall minor purity of reagents may be responsible of the 

distorted phase of the sample (YAG)Pech. Once again, the different density of 

structural defects could account for the lack of stable visible broadband emission by 

(YAG)Pech as compared to (YAG)co. 

Another contribution to the reduction/suppression of the visible broadband emission 

might be the water (H2O) residing on the nano-particle surface, due to either 

synthesis residuals or adsorption in atmospheric pressure [83]. Since H2O has a 

relatively broad absorption band peaking at 760 nm and at 800 nm its absorption 

coefficient is 0.02 cm-1 [84], it could contribute to the absorption of the 803.5 

radiation. Under equal conditions of background pressure, the different surface-to-

volume ratio of the GGG-based samples involves greater density of adsorbed water 

on the surface of the sample (GGG)Pech as compared to GGG:Cr, thus contributing to 

suppress broadband emission by (GGG)Pech. Such conclusion is supported by the 

experimental finding that (GGG)Pech yields only unstable visible broadband emission 

at very high pumping power (nearly 3.25 W) under atmospheric pressure conditions. 

For what concerns (YAG)Pech and (YAG)co different water adsorption can only stem 

from the surface-characteristics as induced by the synthesis procedure. 

As for the dependence of the WL emission on the pressure present in the sample 

chamber Fig. 7.6 reports such pressure dependence for the GGG:Cr sample at the 

pumping power of 2 W; the WL intensity decreases sharply with increasing pressure. 

For the sample (YAG)co, no experiment as a function of pressure was carried out, as 
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the broadband emission is measurable only for the lowest available atmospheric 

pressures (below 0.1 mbar). 

 

Figure 7. 6: Evolution of the broad band peak intensity as a function of the 

atmospheric pressure for GGG:Cr. The excitation power was 2 W. 

The pressure dependence of the broadband emission can be due to the adsorption of 

polar species on the sample surface and the scattering events involving the nano-

powder surface and molecules of the background atmosphere that cause electron de-

excitation and/or heating dissipation. The heating effects on the samples after their 

exposure to the laser beam are demonstrated by their partial melting that can be 

ascribed to the low thermal conductivity of nano-materials and reduced melting 

temperature as compared to the bulk counterpart. In this regard an alternative or 

concurrent pressure-dependent de-excitation mechanism can be invoked based on the 

thermal conductivity of the nano-powders. This parameter is enhanced by the 

ambient pressure and reduced when this pressure is lowered. At low pressures the 

crystallites are more isolated from each other and from the cold finger and can reach 

higher temperatures favoring the emission of WL. 
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The decay and rise patterns of the visible broadband emission of the sample 

GGG:Cr, acquired at room temperature and under atmospheric pressure conditions, 

are shown in Figures 7.6 and 7.7, respectively. Following the instantaneous 

interruption of the diode laser irradiation by a shutter, the emission intensity decays 

in a non-exponential way, with an e-folding time on the order of 0.1 s (Figure 7.6). 

However, the decay rate appears to be strongly affected by the atmospheric pressure, 

as the first e-folding time for GGG:Cr approximately changes from 50 to 150 ms for 

pressures varying from 21 to 0.032 mbar. 

 

Figure 7. 7: Decay of the broadband emission intensity at 675 nm as a function of 

the atmospheric pressure for GGG:Cr at room temperature. The 

excitation power was 2 W. 

After the instantaneous opening of the shutter blocking the 803.5 nm CW excitation, 

the broadband intensity increases slowly as a function of the excitation pumping 

power (Fig. 7.8). In all the cases the rise of the emission intensity is not fast, but 

takes up to a few seconds to reach a common steady-state value. The rise becomes 

faster when the power is increased. Similar results were obtained for the (YAG)co 

samples. 

The active role of the de-excitation mechanisms aided by the background pressure is 

consistent with decay rate strongly affected by the atmospheric pressure and fastly 
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decreasing for increasing pressure (Fig. 7.6). Notably, while at the lowest 

background pressures the decay pattern is non-exponential, for increasing pressure 

nearly linear trend is approached. Since the decay accounts for both radiative and 

non-radiative processes and the contribution stemming from the background pressure 

is just an extrinsic non-radiative loss channel, such a finding suggests that just above 

the threshold pressure the decay time of the broadband emission is dominated by the 

material intrinsic mechanisms. High pumping power favors the onset of step-like 

build up of the broadband emission (Fig. 7.7). Such an evidence suggests that this 

emission is related to state-filling and threshold-filling mechanisms. As increasing 

pumping power means an increasing population of the excited level; the emission 

intensity is expected to build up proportionally to the filling of the excited states. In 

this picture, at low pumping power, the insufficient level filling should account for 

the tailing-effect observed in the rise-time curves (Fig. 7.7) corresponding to the 

lowest pumping-powers (1.7 and 2.2 W). The step-like increase of the WL onset for 

pumping power up 2.73 W can be indicative of a threshold filling-process. 

 

Figure 7. 8: Temporal rise of the broadband intensity at 675 nm as a function of the 

excitation power at ambient pressure (0.03 mbar). 
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7.4 Conclusions 

Visible broadband emission is reported in the literature by materials at least doubly 

doped with different rare earth ions or including them as stoichiometric components. 

The present study demonstrates that this emission can be obtained by nominally 

undoped oxide materials and, for the first time, by transition-metal-doped insulating 

oxide materials. This study has presented the occurrence of broadband bright visible 

emission by either nominally un-doped YAG and GGG or Cr3+ doped GGG nano-

crystalline samples excited by monochromatic CW infrared light (803.5 nm). It has 

also demonstrated the influence of the experimental conditions (synthesis approach, 

purity of the precursor powder, environment pressure and pumping power) in 

favoring or suppressing the broadband emission. Based on the analysis of the data 

and on our preliminary results [81, 82], it can be inferred that the observed 

broadband emission is due to a host dependent general mechanism. 
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8.  LASER DIODE INDUCED WHITE LIGHT EMISSION OF γ-Al2O3 

NANO-POWDERS 

A broadband white light emission was observed ranging from 450 to 900 nm from 

nominally un-doped γ-Al2O3 nano-powders under 803.5 nm and 975 nm laser diode 

excitations. The white light emission has a strong dependence on both the 

environment pressure and the pumping laser power. We spectroscopically 

characterized this white light emission in a systematic way by collecting spectra, 

measuring decay- and rise patterns and changing parameters such as pumping power, 

pumping wavelength, environment temperature and pressure. 

8.1 Introduction 

The production of white light (WL) has challenged physicists and engineers and has 

been widely studied due to its numerous applications in lighting, displays and so on. 

Much attention has gone to binary and ternary lanthanides doped materials [108-

111], mixing the emissions of LEDs that emit three primary colors (red, green, blue) 

[112] and using some phosphor based LEDs [113, 114] to obtain WL. Some recent 

studies have also shown that certain ultra-small semiconductor nano-crystals can 

emit WL [115-117]. WL emission from metal oxide nano-powders has only been 

achieved by the addition of lanthanides doubly or triply and, to the best of our 

knowledge, there is no information about WL emission from un-doped metal oxides 

in the literature. 

8.2 Experimental 

γ-Al2O3 nano-powders with the crystalline size of < 50 nm and the surface area of 

>40 m2/g were purchased from Sigma-Aldrich. 

The continuous emission spectra of the samples were obtained by pumping the 

samples with the output of a Laser Drive Inc. Model LDI-820 diode laser operating 

at 975 nm or 803.5 nm. The signal was directed toward the entrance slit of a 1 m 
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McPherson Model 2051 monochromator and chopped at a frequency of 250 Hz 

before entering the slit. The monochromator provided a resolution of 0.8 Å with the 

slits set at 50 μm and a wavelength reproducibility of 0.1 Å.  

The optical signal was detected by a Hamamatsu R1387 photomultiplier tube with an 

S20 response, sent to a EG&G Model 5210 lock-in amplifier and recorded in a 

computer.  

The experimental data on the responses of the samples to sudden changes in 

excitation were obtained by employing a shutter to interrupt the diode laser beam and 

a Tektronix Model TDS3052B oscilloscope. 

In order to obtain data on the temperature dependence of this WL in the range of 34 

K to 300 K, the samples were mounted on the cold finger of a closed cycle Helium 

refrigerator. The powdered sample was put in the indentation of a copper sample 

holder attached to the cold finger of the dewar (see Figure 8.1). A copper sample 

holder with a small hole in the middle into which the sample was filled was used to 

attach to the cold finger of the dewar. This system uses a Janis Research Model RD 

dewar connected to a Leybold Model RW2 compressor. The temperature of the 

sample holder was controlled using a Lake Shore Cryotronics 805 Model controller. 

 

Figure 8. 1: Scheme of the sample environment. 

For comparison with the original sample, an agate mortar and pestle was used to 

grind down the grains into a finer powder as the γ-Al2O3 came in a granular form 

similar to table salt. A little pressure was applied so that the grains simply broke 

apart. All measurements were performed before and after grinding. 



119 

An Avantes AvaLight-Hal-Cal calibration light source was used to correct the 

spectrum for the sensitivity of the system. 

An Allied Scientific Pro ASP-MK350 Model Illuminance Meter was also used to 

allow measurements of the International Commission on Illumination (CIE) 

coordinates, the Correlated Color Temperature (CCT), the Color Rendering Index 

(CRI) and the illuminance values of the WL to be obtained. 

8.3 Experimental Results 

The WL spectrum consists of a wide band that varies between 450 – 900 nm as 

shown in Figures 8.2(a) and (b). Figure 8.2(a) gives the spectrum directly obtained 

from the monochromator. This spectrum needed to be corrected for the response of 

the system using a calibration light source, and this corrected spectrum is given 

Figure 8.2 (b). The broad spectra appear to be structureless, minus the fact that there 

is a spike in the spectrum due to the exciting laser diode. Since the monochromator 

in the system operates in the second order a spike at half of the excitation wavelength 

appeared in the spectrum. The WL spectrum of the γ-Al2O3 after grinding is also 

given in Figures 8.2(a) and (b). A shift in the peak positions and a slight change in 

shape can be seen in both Figure 8.2(a) and (b). The value of the blue shift after 

grinding is 6.7 nm. This difference between the peak positions before and after 

grinding corresponds to a temperature difference of 40 K according to Wien’s 

Displacement Law. 

The WL spectrum was also measured using the illuminance meter. These results are 

given in Figure 8.2 (c). The corrected spectrum and the spectrum measured using 

illuminance meter look similar. 

WL output from the sample under 803.5 nm excitation was obtained, but its 

persistence was very short and no meaningful measurements could be carried out 

with the apparatus. However, the WL spectrum was obtained using the illuminance 

meter, shown in Figure 8.2 (d). 

The CIE coordinates were found to be x=0.392 and y=0.334 under 975 nm excitation 

and x=0.365 and y=0.324 under 803.5 nm excitation. These values lie in the 

yellowish region and correspond to CCT values of approximately 3285 K and 4012 
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K, each with a CRI of 86, respectively. The total incident luminous flux values were 

found to be 53 and 392, respectively. The results are summarized in Figure 8.3. 

 

Figure 8. 2: (a) Spectral profile of the WL emission from γ-Al2O3 nano-powders 

before and after grinding, (b) corrected spectra for the system response, 

(c) measured spectrum under 975 nm excitation by using illuminance 

meter, (d) measured spectrum under 803 nm excitation by using 

illuminance meter. 
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Figure 8. 3: (a) CIE coordinates of WL under 975 nm excitation, (b) CIE 

coordinates of WL under 803 nm excitation, (c) CCT, CRI and 

illuminance values of WL under 975 nm excitation, (d) CCT, CRI and 

illuminance values of WL under 803 nm excitation. 

A strong dependence on the pumping laser power was also observed. The threshold 

pumping power value to obtain WL emission was 3.5 Watts. When the power was 

increased threefold, the WL intensity increased by 75 times its original value. These 

results are given in Figure 8.4. The power dependence of the intensity can be 

approximated by the relation 𝐼 = 𝐴𝑃𝑛, where I is the peak intensity of the spectrum, 

A is a constant, P is the diode laser power and the exponent n is found to be 4.75. 
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Figure 8. 4: Pumping laser power dependence of the WL emission intensity. 

A strong dependence on the laser pumping power can also be seen from Figure 8.5, 

which shows the pumping power dependence of the WL spectrum. A blue shift in 

peak positions as pumping power increases can also be seen in Figure 8.5 with a 

value of 21.6 nm. This difference between the peak positions at low and high power 

values corresponds to a temperature difference of 129 K according to Wien’s 

Displacement Law. 

The WL spectrum from γ-Al2O3 was collected as a function of temperature of the 

sample holder, ranging from 34 K to 300 K. No dependence of the WL spectrum on 

this temperature was observed. 
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Figure 8. 5: Pumping laser power dependence of the WL spectrum. 

A strong dependence on the atmospheric pressure surrounding the sample was 

observed. WL emission was not possible to obtain at room pressure. This pressure 

dependence of WL emission is given in Figure 8.6. As seen from the Figure, when 

the pressure is reduced 400 times, the WL intensity increases 25 times. 
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Figure 8. 6: Pressure dependence of the WL emission intensity. 

In order to provide further characterization the decay patterns and rise patterns of this 

emission were also measured by changing the parameters that this emission is 

sensitive to. The results are summarized below: 

1. It was observed that the decay patterns did not change as a function of 

pumping power (see Figure 8.7), and the rise patterns seemed to increase in 

length with decreasing pumping power as seen from Figure 8.8. 
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Figure 8. 7: Pumping laser power dependence of the decay pattern of the WL 

emission. 

 

 

Figure 8. 8: Pumping laser power dependence of the rise pattern of the WL 

emission. 
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2. The decay patterns of the WL at different wavelengths were found to differ as 

seen in Figure 8.9 but there was no change in the rise patterns as seen in 

Figure 8.10.  

 

Figure 8. 9: Decay times measured at different wavelength positions in the WL 

spectrum. 

 

Figure 8. 10: Risetimes measured at different wavelength positions in the WL 

spectrum. 
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3. The sample holder’s temperature dependence of the decay and rise patterns 

was also measured. There was no relevant change in both the decay and rise 

patterns with this temperature as seen from Figures 8.11 and 12. 

 

Figure 8. 11: Environment temperature dependence of the decay pattern of the WL. 

 

Figure 8. 12: Environment temperature dependence of the rise pattern of the WL. 
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4. A correlation was observed between grinding the grains and the 

corresponding decay and rise times of the WL. It was found that grinding 

caused the decay and rise patterns to be shorter than they were before 

grinding the grains down. The lengths of the decay patterns before and after 

grinding were found to be 490 ms and 332 ms, respectively. 

5. All measurements were repeated to see if grinding the sample had any effect 

on these results. There were no differences except for the peak position shift 

in the spectrum and the decreasing length of the decay and rise patterns as 

discussed above. 

8.4 Discussion of the Results 

The production of WL has already been achieved and reported in the literature. In 

some recent works, Strek et al [69, 71, 72] showed the possibility of obtaining WL 

emission from lanthanide ions doped nano-materials. J. Wang et al [66] reported WL 

emission from lanthanide oxides. However, to the best of our knowledge, there is no 

information in the literature about WL emission of un-doped metal oxides.  

The production of WL emission by laser diode excitation of the un-doped γ-Al2O3 

nano-powders was obtained under low surrounding pressure. When discussing the 

mechanism for the production of the WL, absorption and emission processes need to 

be considered separately. As the γ-Al2O3 is transparent in a wide range of 

wavelengths [118], the first problem with obtaining WL under 975 nm excitation is 

addressing the absorption mechanism of the excitation wavelengths, namely the 

deposition of the energy. There could be some type of impurities which are 

responsible for the deposition of the energy, but we do not have any idea about the 

impurities that exist in the sample at this point. Some researchers have reported a 

relatively broad absorption band of H2O molecules peaking at 760 nm and 800 nm 

[84]. This could, in principle, be the mechanism responsible for the deposition of 

energy in this case. However, since low pressure was required for obtaining WL 

emission and it is well known that water can easily evaporate even at room 

temperature at low pressure values, this explanation seems unlikely. As mentioned 

above, γ-Al2O3 has a wide bandgap of 7 eV; it is clear that the absorption process is 

multiphotonic due to the sub-band energy of the exciting photon. This is confirmed 

by the fact that WL production requires an attentive focusing of the diode laser beam 
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on the powder. The process of absorption could be resonant with the band gap or 

nonresonant; in the latter case it would bring electrons in the conduction band.  

A result that confirms the multiphoton aspect of absorption is the dependence of the 

intensity of the WL on the power (4.75) of the excitation wavelength (Figure 8.4): 

the required 177 nm (7 eV) energy necessary for the excitation of alumina [118] 

requires five photons of wavelength 975 nm (1.27 eV). 

The 21.6 nm blue shift of the peak position with increasing pumping power (see 

Figure 8.5), which corresponds to a temperature change of 129 K, is due to the 

change of the surface temperature of the sample. 

As seen from Figure 8.6, the emission of WL increased with decreasing pressure. 

This behavior cannot be explained on the basis of optical emission due to the wide 

transparency region of γ-Al2O3, as well as the unknown impurities. However, a 

thermally originating mechanism could be related with this observation. Radiative 

thermal emission from lanthanide ions doped materials [71] and from silicon [77] 

nano-particles has been observed in the literature but it has never been observed for 

un-doped metal oxides. A similar intensity-pressure dependence has been reported 

previously in the literature for SiC nano-particles and mechanically milled Si which 

was then attributed to thermally originating emission and related to the low thermal 

conductivities of the nano-materials [77, 78, 119].  

It is important to note that laser induced partial melting of the samples was observed 

during the experiments. This observation indicates that the sample had reached 

temperatures close to or above its melting point (this value was provided from Sigma 

Aldrich to be 2040 oC). Researchers have reported experimental and theoretical 

studies on the relationship between laser induced heating and melting of some metal 

nano-particles and the optical properties of the materials [120]. 

There is no dependence of the decay patterns of the emission on the applied pumping 

power, but the rise patterns seem to be slightly dependent on this applied pumping 

power. They become longer with decreasing pumping power, seemingly because, as 

the pumping power decreases, the sample surface takes longer to heat up. This 

behavior can also be considered as a feature of thermal radiation. 

Another important observation is the variation of the decay patterns measured at 

different wavelengths. Decay patterns become longer as the wavelength values on 
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the spectrum increases. A possible explanation of this is that the temperature of the 

sample decreases during the measurement of the decay pattern, thus shifting the 

spectrum toward longer wavelengths and causing the disappearance of the short 

wavelength emission. 

The measurements of the lengths of the decay patterns before and after grinding were 

found to be 490 ms and 332 ms, respectively. Also we observed a 6.7 nm of blue 

shift of the peak positions after grinding. This may be due to a possible change of the 

surface shape or of the grain sizes as a result of this grinding. It has been shown in 

the literature that even grinding done using an agate mortar and pestle may cause 

relevant structural changes of the materials [121-123]. 

The most important result that points to a thermally originated WL is the similarities 

of the obtained WL spectrum with that of an incandescent lamp. 

8.5 Conclusions 

The production of the WL under laser diode excitation has been achieved using 

commercially obtained γ-Al2O3 nano-powders with a particle size of <50 nm. Strong 

surrounding pressure and pumping power dependence of the WL emission have been 

observed. The decay and rise patterns of the emission have also been measured with 

lengths of several hundred milliseconds and several tens of second, respectively. In 

accordance with the results and observations, the WL emission from the γ-Al2O3 has 

been attributed to thermal radiation. 
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9.  PECULIAR EFFECTS ACCOMPANYING THE PRODUCTION OF 

WHITE LIGHT BY IR EXCITED NANOPARTICLES 

9.1 Introduction 

We have recently achieved, in collaboration with other researchers, the production of 

a broad band (ranging from 400 to 900 nm) white light (WL) following the 

monochromatic infrared light (803.5 and 975 nm) excitation of both nominally un-

doped and rare earth and transition metal ions-doped oxide nano-powders. 

Experimental results indicate that such emission feature is a nano-scale phenomenon 

[81, 82], cannot be ascribed to an overlap of sharp emission bands in the un-doped 

case and, even if assisted by the dopant presence, is a host matrix-related process. 

The spectral distribution of the detected WL resembles very closely that of an 

incandescent lamp, which in turn is still unmatched with respect to its color quality, 

mimicking the sunlight, the most comfortable light to human eyes. We have 

demonstrated the possibility to obtain WL with very high efficiency and CRI 

approaching the theoretical limit with an alternative approach. Our experimental 

results make our WL emission very interesting at both the fundamental and the 

applicative level and may open the way to an alternative route with respect to 

incandescent lamps. 

The band produced by the different compounds occupies similar regions of the 

spectrum. The characterization of the various samples had to rely on parameters 

more sensitive to particular situations, such as patterns of decay and of rise in 

intensity. 

We shall recount briefly the conditions of the experiments and summarize the results 

and then we shall focus our attention on the peculiar aspects of some of our results. 
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9.2 Experimental 

The samples used in this work with the information about synthesis procedure and 

the average particle sizes are summarized in Table 9.1. The details about synthesis 

procedure and structural characterization were described elsewhere[22, 23, 60, 90, 

91]. 

The continuous emission WL spectra were produced by pumping the samples with 

the output of a Laser Drive Inc. Model LDI-820 laser diode operating at 803.5 nm 

with the maximum output power of 3 W or of a similar diode operating at 975 nm 

with the maximum output of 10 W. The signal was directed toward the entrance slit 

of a 1 m McPherson Model 2051 monochromator and chopped at a frequency of 250 

Hz before entering the slit. The monochromator provided a resolution 0.8 Å with the 

slits set at 50 μm and a wavelength reproducibility of 0.1 Å. The optical signal was 

detected by Hamamatsu R1387 photomultiplier tube with an S20 response, sent to a 

EG&G Model 5210 lock-in amplifier and recorded in a computer. 

The rise pattern and the decay pattern of the WL were measured by using a shutter 

that allowed the light to reach its full intensity and then cut sharply the pumping 

power. We used a 850 nm cut-on long pass filter to avoid second harmonic 

contribution of the short wavelength values.  

9.3 Experimental Results 

Table 9.1 reports the average particle sizes estimated by using XRD patterns and 

confirmed by SEM measurements. 

Table 9. 1: The samples studied, synthesizing procedure, average particle sizes. 

Sample Synthesizing Procedure Mean Particle Size 

(nm) 

Y2O3 Thermal Decomposition [22, 23, 60] 25 

Al2O3 Purchased from Sigma Aldrich < 50 

YAG Chemical Coprecipitation [91] 55 

GGG-Cr Pechini Method [90] 78 
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Figure 9.1 shows the obtained WL spectra collected in the 400-900 nm wavelength 

range for the Y2O3, Al2O3, YAG and GGG samples, respectively. The spectra are 

similar in their general aspects. 

 

Figure 9. 1: WL spectrum of all samples. The spikes in the spectrum are due to 

spurious modes in the laser diode emission. 

We shall summarize the experimental results that we obtained by characterizing a 

representative system, the Y2O3 un-doped system which emits WL when excited by 

either 803.5 or 975 nm infrared laser light. 

The WL emitted under these two conditions occupies similar regions of the 

spectrum. We shall briefly mention the results of the characterization. 

1. Since no WL emission was observed by bulk samples of Nd-doped Y2O3 

exposed to the same exciting infrared laser light as the nano-powder samples, 

definitely the observed production of WL can be considered as typical of the 

nano-scale regime. 

2. The spectral distribution of the WL is to a large extent independent on the Nd 

concentration and even the presence of the Nd dopant. While WL occurrence 

favors the WL generation but is not necessary to induce such process, the 
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presence of Nd makes easier to obtain WL emission under low pumping 

power and higher environment pressure conditions. 

3. The temperature of the sample’s holder does not influence the spectral shape 

and seemingly the intensity of the WL emission. 

4. The pressure in the sample environment has a great influence on the intensity 

of the WL. It acts in the opposite sense with respect to the intensity of the 

exciting infrared light: low pressure favors the emission of WL, and a strong 

excitation does likewise. 

5. The most noticeable aspect of the decay patterns is their deviation from 

exponentiality. Such behavior could be inferred by the role played by the 

powders’ surfaces, role that becomes more important as the radius of the 

particle is reduced. Going from the surface to the center of a particle one 

would encounter a variety of conditions, with each condition determining a 

different decay patterns. The observed pattern is the superposition of the 

various different patterns. Accordingly, the deviation from an experimental 

pattern is in general more pronounced in smaller particles. 

6. The spectral distribution of the detected WL resembles very closely the one 

of an incandescent lamp, which is still unmatched with respect to its color 

quality, since it resembles the sunlight, which is the most comfortable for 

human perception. 

The following considerations deal with occurrences that manifest themselves 

depending on the wavelength of the exciting infrared light. 

5. The WL spectrum produced by the 975 nm excitation is not significantly 

different from that produced by 803.5 nm excitation. The dependence of the 

WL intensity on the fourth power of the exciting 803.5 nm diode power 

suggests the multi-photon aspect of the absorption process. In fact, an 

interpretation of the exponent n occurring in the law I=APn is just in terms of 

number of photons in multi-photon absorption events. The same can be 

inferred in the case of the other exciting wavelength (975 nm). However, 

being a 975 nm photon less energetic than a 803.5 nm photon, more photons 

are required to induce multi-photon absorption in the un-doped system. This 

is indeed the case: the WL intensity found to be proportional to a higher 

exponent n of the power of the exciting 975 nm source. 
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The decay patterns following the 975 nm excitation are not significantly different 

than those following the 803.5 nm excitation, as one would expect. The different 

experimental conditions may produce different amount of excitation, but this should 

have no effect on the enfolding of the spontaneous decay. 

9.4 Peculiar Occurrences 

The wavelength of the excitation has a greater influence on the rise patterns than on 

the decay patterns of the Y2O3. This is evident when comparing the two figures 

(Figure 9.2 and 9.3) that report the rise patterns following the excitation by 803.5 and 

975 nm laser lights, respectively. 

 

Figure 9. 2: Rise pattern dependence on pumping power in un-doped Y2O3 (803.5 

nm excitation). 

An interesting feature that emerges when comparing the two figures is that the very 

first part of the Figure 9.3 pattern represented in the insert resembles the rise pattern 

of Figure 9.2. 
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Figure 9. 3: Rise pattern of un-doped Y2O3 under 975 nm excitation. The inset is the 

expanded sharp rise of the pattern. 

The spectra that appear in Figure 9.4 are an additional illustration of the process 

presented in Figure 9.3. They represent the WL emission of the un-doped Y2O3 nano-

powders taken at different times after exposing the sample to the 975 nm laser 

radiation. The measurement of each spectrum took ten minutes; it took about an hour 

for the spectrum to reach its ultimate intensity. 

Another peculiar effect regards the decay patterns of the WL. We have examined in 

detail the decay patterns of the samples listed in Table 9.1 by looking at them at 

different wavelengths. A typical result of our investigation is presented in Figure 9.5 

where we show the decay pattern of Y2O3 at different wavelengths. 
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Figure 9. 4: The blue shift of the WL spectrum of Y2O3 with time under 975 nm 

excitation. 

 

Figure 9. 5: Representative decay patterns of nominally un-doped Y2O3.measured at 

different part of the WL spectrum. 
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We have taken as a measure of the rapidity of a “lifetime” determined by 

determining 1/e times of the decays. The results are presented in Figure 9.6, where 

we can see that the lifetime increases starting at ~400 nm and, having reached a 

maximum, regain practically its initial value at ~800 nm. 

 

Figure 9. 6: 1/e time distribution of all samples as a function of measured 

wavelength. 
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10.  CONCLUSIONS 

This dissertation covers the results of an experimental study which provides detailed 

information about synthesis, structural and optical characterization of Y2O3 nano-

powders activated with Nd3+ ions. Since the photonics technology evolves everyday 

and requires new and suitable materials, this dissertation builds a better 

understanding of these materials by conducting these measurements and revealing 

the results which serve as the basis for the ultimate goal of this dissertation. Hence, a 

set of experiments have been conducted in a systematic way to fully characterize the 

samples. 

All the nano-powders studied were synthesized using the thermal decomposition 

technique and the crystalline sizes of samples succesfully controlled by thermal 

annealing.  

The obtained nano-powders were then structurally characterized by XRD, SEM and 

TEM measurements to determine crystalline sizes, morphology and phases of the 

material occurred. The results of the structural characterization showed that the 

crystalline sizes of the materials varied from 15 to 250 nm according to the Scherrer 

Formula and the results were confirmed by the SEM and TEM measurements. The 

cubic phase of the Y2O3 was determined without any other phases with the lattice 

parameter of 10.6051. 

The luminescence spectra and the response to pulsed excitation measurements were 

carried out at temperatures ranging from 30 to 300 K to characterize samples 

optically. Those of the Y2O3 single bulk crystal were also measured for comparison. 

The general aspect of the luminescence spectra of the samples was found to be 

similar but some differences were observed with changing the size of the powder, 

Nd3+ concentrations and the environment temperatures. The intensity of the sharp 

emission bands were found to decrease with decreasing powder sizes and increasing 

Nd3+ concentration and increasing environment temperatures. The width of the sharp 

emission bands were also observed to widen with decreasing powder sizes and 

increasing Nd3+ concentration and environment temperature. The thermal broadening 
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and the shift of the sharp emission bands were also studied. The emission bands were 

found to broaden and the line positions to red shift with increasing environment 

temperature. The most intense and narrowest emission peaks were observed for the 

single crystal of Y2O3. 

The response to pulsed excitation measurements showed that all the decay patterns of 

the samples were non-exponential except for the single crystal. The longest decay 

time was observed for the crystal and it was shown that the decay times of the nano-

powders decreased with decreasing crystalline sizes and increasing Nd3+ 

concentration. The decay time measurements indicate that the decay curves of the 

nano-powders deviate more from exponentiality with decreasing crystalline sizes and 

increasing Nd3+ concentration. It was also observed that decay times of the nano-

powders show a slight temperature dependence and they become longer with 

increasing temperature which is abnormal when compared to other materials, of 

which the lifetimes either remain constant or decrease with increasing temperature. 

Most of the observed properties of the materials studied were explained in a 

reasonable manner. The differences in the luminescence spectra and the decay curves 

were attributed to nano-sizes of the materials and the effect of the concentration 

quenching of the optically active ions. Even if materials are in nano-size, they 

showed an enough strong emission due to transitions between energy levels of the 

optically active ions. The thermal dependence of both luminescence spectra and the 

decay curves of the materials are due to the role played by the phonons. The 

increasing tendency of the lifetimes with increasing environment temperature which 

was observed for all samples was attributed to the effect on the emission lifetime of 

the thermally population of the most energetic 4F3/2 Stark level. 

The most important finding of this thesis which led us to make a patent application 

was production of bright and wideband white light (WL) from the nano-powders 

induced by a laser diode emission. The WL emission from the studied nano-powders 

was first observed in Nd3+ doped samples at relativley high pumping power levels of 

the excitation laser diode. Since WL emission was also obtained from %99.999 pure 

commercial Y2O3, such emission feature cannot be ascribed to an overlap of sharp 

emission bands of the dopant REIs in the un-doped case and, even if assisted by the 

Nd3+ presence, is a host matrix-related process, a nano-scale phenomenon. The WL 

emission was also observed from un-doped and Cr3+ activated YAG and GGG nano-
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powders and un-doped Al2O3 nano-powders. The pending patent application is given 

in Appendix A. 

The prospects for future works are given below in light of the information and results 

that we gathered during the period of preparation of this dissertation. 

a) Since the particles with the crystalline sizes less than 10 nm are considered as 

quantum dots and the powders studied are not less than 10 nm in diameter, 

any other ways or synthesis procedures might be use to obtain particles with 

sizes less than 10 nm. 

b) Since the low phonon energies are cut off in nano-materials, the role of the 

phonons on the luminescence properties of the samples can be studied in 

details for the present samples using Raman Spectroscopy and/or Neutron 

Scattering Techniques. 

c) Since the handling of studied materials is difficult, synthesizing of the nano-

structured transparent ceramics of the Nd3+ doped Y2O3 can be considered to 

investigate their potential usage as a host material of solid state lasers and for 

possible contributions to photonics technology. 

d) The production of the WL from nano-powders is still in its infancy and still 

there are some unknowns about WL that should be answered. Going further 

with this WL emission, we should fully explain the process that takes place 

for the production of the WL. To do so the role played by the phonons, 

crystalline sizes and the dopant REIs for the production of the WL should be 

investigated. Different type of materials with different crystalline sizes should 

also be considered. 

e) Since the handling of these materials in nano-powder form and their 

adaptation to technology in this form is difficult, the production of the WL 

from these materials in thin film and nano-structured transparent ceramics 

form can be tried since this makes them more suitable for adaptation to 

technology. 

f) The nano-powders can be introduced into some type of glass matrix such as 

silica which is transparent in a wide spectral region and has a stabilizing 

effect on nano-particle aggregation. Since Y2O3 is very hygroscopic and this 

has a serious drawback on the free standing yttria nano-powders by adsorbing 
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moisture and carbon dioxide from the surrounding atmosphere, introducing 

them into silica matrix can masoned a wall between the surrounding 

atmosphere and the REIs which are generally reside on the surface of the 

material due to the large surface areas of nano-materials. As mentioned in the 

chapters 6 to 9, the production of the WL is directly related to the low 

thermal conductivity of the nano–materials and as a result several thermal 

contact points between each nano-particle which causes the heating of the 

powders by excitation laser source. Hence, if we introduced them into silica 

glass matrix homogeneously, this may make them well isolated from each 

other and this may cause no energy (heat) losses from each particle. 

Introducing them into silica matrix make them more adaptable to technology. 

I can predict that the study of the doped oxides in nano-powders form will continue 

to be interest to researchers in the field of spectroscopy and that the present work on 

the production of WL will spur research about its related processes and applications 

to the field of lighting. 
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