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A STUDY OF VANTAGE POINT NEIGHBOURHOOD SEARCH IN THE
BEES ALGORITHM FOR COMBINATORIAL OPTIMIZATION
PROBLEMS

SUMMARY

The overall aim of this work is to prove the hypothesis that the new Vantage Point
Bees Algorithm capable of solving combinatorial optimization problems.

In this thesis, Bees Algorithm is presented for Traveling Salesman Problem (TSP)
with new neighbourhood local search algorithm. The Bees Algorithm for discrete
problems including local and global search strategies used for algorithm. A new
neighbourhood procedure was developed to deal with local search with
combinatorial domains.

Chapter 2 introduces to basic concepts of the additional background material needed
for the reader to fully understand the main body of this thesis. It also defines the
notion of optimization and the combinatorial, continuous, and mixed-variable
optimization problems using the same common framework. It reviews the
background literature on optimization, the definition of optimization and optimization
techniques and combinatorial optimization problems.

Chapter 3 reviews the definition of swarm intelligence and highlights swarm behaviours.
Swarm Intelligence (SI) is an engineering branch and it is defined as the collective
problem solving capabilities of social animals. There are lots of swarm-based
optimization algorithms that mimic nature’s methods to drive a search towards the
optimal solution. The developments of population-based algorithms are also presented
in this chapter and background literature on swarm-based optimisation algorithms
relevant to the work presented. This covers the Genetic Algorithms (GAs), Ant Colony
Optimisation (ACO), Particle Swarm Optimisation (PSO) and bees-inspired algorithms
including the Bees Algorithm itself. Behaviours of honey-bees in their natural
environment, including food foraging are explained in details. Computational
simulations of honey-bee behaviours are reviewed to show the link between nature
and optimisation algorithms. Honeybees inspired algorithms are a branch of Swarm
Intelligence algorithms, which are motivated by the fascinating behaviour of
honeybees. Their behaviour is studied in order to develop metaheuristic algorithms
that can mimic the bees searching abilities.

Chapter 4 describes a study of the main characteristics of the standard Bees
Algorithm. This is undertaken through an exploration of the parameters of the
algorithm in order to help understand the methods by which its performance is
improved. Then, it focuses on enhancements to the Bees Algorithm for local and
global search. The algorithm is improved with the addition of dynamic recruitment,
proportional patch shrinking and site abandonment ideas.
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The Bees Algorithm required six parameters. There are number of scout bees (n),
number of selected sites (m), number of top-ranking (elite) sites among the m
selected sites (e), number of bees recruited for each non-elite site (nsp), number of
bees recruited for each elite site (nep), and neighbourhood size (ngh) and the
stopping criterion. The algorithm starts with the n scout bees being placed randomly
in the search space and presents a neighbourhood search associated with a random
search. The Bees Algorithm involves global and neighbourhood search. In step 1 the
algorithm starts with the n scout bees being placed randomly in the search space. In
step 2 the fitnesses of the points visited by the scout bees are evaluated. In step 4,
bees that have the highest fitnesses are chosen as “selected bees” and those sites that
have been visited will be chosen for neighbourhood search. Then, in steps 5 and 6,
the algorithm conducts searches in the neighbourhood of the selected bees in terms of
more bees for the e best bees.

Chapter 5 describes applications of the Bees Algorithm in combinatorial domains.
The Bees Algorithm as described above is applicable to both combinatorial and
functional optimisation problems so the performance of the Bees Algorithm was
tested on continuous and combinatorial problems. Travelling Salesman Problem
(TSP) definition is given and several local search algorithms are suggested for the
algorithm as well as site abandonment in continuous optimization problems.

In chapter 6 The Bees Algorithm with Vantage Point Neihbourhood Search is
described. The simplest vp-tree construction begins with selecting a pivot element,
vantage point randomly. Given a set S of metric space elements (i.e combinatorial
search space elements), the algorithm returns pointer to the root of an optimized vp-
tree that satisfied the local optimum value (for example in TSP returns the optimal
tour for each iteration of recruit phase). The algorithm of making vantage point
neighbourhood searh for the Bees Algorithm presents a modification of the
neighbourhood search procedure in the Bees Algorithm for combinatorial domains. We
proposed vantage point neighbourhood search procedure for the Bees Algorithm local
search in the recruitment selection. To develop a new local search in the recruitment
phase we use the vantage point tree algorithm with median calculations. The Bees
Algorithm with vantage point neihbourhood procedure is suggested as an addition to
the Bees Algorithm to deal with combinatorial domains. The algorithm is applied to
the Travelling Salesman Problem (TSP) to show that the algorithm is both robust and
efficient.
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BAKIS NOKTASI KOMSULUK ARAMASININ ARI ALGORITMASI iLE
KOMBINATORYAL OPTIMIZASYON PROBLEMLERINE
UYGULANMASI

OZET

Bu tez ¢aligmasinin temel amaci arilarin kaynak arama davranislarint modelleyen ar1
algoritmasinin, kombinatoryal uzaylarda komsuluk arama fazina yeni bir yaklasim
gelistirilmesidir. Gelistirilen yaklasim Gezgin Satici Problemine uygulanarak Gezgin
Satic1 Problemi ¢6ziimiiniin en iyilenmesi amaglanmastir.

Bu tez alt1 boliimden olusmaktadir ve birinci boliimde tezin amag ve hedeflerinden
bahsedilerek hipotezin agiklamasi yapilmistir. Tezin amaci siirii zekasina dayali
olarak gelistirilmis sezgisel optimizasyon algoritmalarindan biri olan an
algoritmalarinin kesikli uzaylardaki lokal komsuluk aramasina yeni bir yaklagim
gelistirmektir.

Calismanin ikinci bolimii optimizasyon kavraminin agiklanmasi ve optimizasyon
problemlerinin karakterizasyonuna ayrilmigtir. Temel tanim ve teoremlerden
bahsedilerek kombinatoryal optimizasyon problemlerinin matematiksel modellemesi
aciklanmistir. Optimizasyon metotlar1 temelde kesin ¢6ziim iireten klasik teknikler
ve yaklagik ¢oziim iireten modern sezgisel teknikler olmak iizere iki kategoriye
ayrilmaktadir. Gergek hayattaki optimizasyon problemlerinin bir¢ogu matematiksel
formil gelistirilerek ¢oziilemeyecek kadar karmasiktir. Klasik yontemlerle boyle bir
problem c¢oziilmeye calisildiginda, ¢oziim ¢ok uzun siirebilir ve uzun silirmesine
ragmen istenilen sonuca ulasilamayabilir. Bu sekilde tanimlanmasi kolay fakat
¢ozlimii oldukga karmasik olan NP-zor optimizasyon problemlerine ¢oziim aranirken
sezgisel (heuristic) yontemler gelistirilmistir. Klasik yontemler probleme 6zgiidiir ve
genellikle amag¢ fonksiyonu ve kisitlarin tiiriine (dogrusal, dogrusal olmayan vb.) ve
modellemede kullanilan degiskenlerin tiiriine (tamsayi, gercek sayr vb.) baghdir.
Sezgisel algoritmalar ise genel amaghdir ve degisik gergek diinya problemlerine
uygulanabilir. Giinlimiizde karmasik optimizasyon problemlerinin modellenmesi ve
¢oziilmesinde dogal benzetimlerin kullanimi olduk¢a artmustir. Ozellikle biiyiik
boyutlu kombinatoryal, tamsayili ve dogrusal olmayan matematiksel problemlerin
¢oziilmesinde klasik optimizasyon teknikleri yetersiz kaldigindan sezgisel ve dogal
fenomenlerden esinlenilerek algoritmalar gelistirilmektedir.

Kombinatoryal optimizasyon problemleri kesikli ¢6ziim uzayina sahip problemler
icin en iyi ¢0ziimii arayan, dikkate alinan amag fonksiyonunu en iyileyen kesikli
karar degiskenlerinin degerlerini bulmayla ugrasan optimizasyon problemleridir.
Kombinatoryal optimizasyon problemleri en azlama (minimization) ve en ¢oklama
(maximization) olarak ikiye ayrilir. En kisa yol problemi, gezgin satict problemi,
atama problemi, atdlye c¢izelgeleme problemleri ve ara¢ rotalama problemleri
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kombinatoryal optimizasyon problemlerinin literatiirdeki birgcok uygulama
alanlarindan bazilardir.

Uciincii boliimde siirii zekas: ve siirii zekasi yaklasimini temel alarak gelistirilmis siirii
tabanli sezgisel optimizasyon algoritmalar1 incelenmistir. Siirii, birbirleriyle etkilesen
daginik yapili bireyler yigin1 anlaminda kullanilir. Bireyler insan, karinca veya ari
olarak ifade edilebilir. Siirii zekas1 N adet temsilcinin bir amaca yonelik davranisi
gerceklestirmek ve hedefe ulasmak icin birlikte calismasi olarak ifade edilmektedir.
Dogadan esinlenen algoritmalarin yeni bir dali olan siirli zekas1 yaklasimi, canlilarin
icgiidiisel problem ¢ozme becerilerini kullanan etkili metasezgisel yontemler
gelistirebilmek i¢in  canli  davraniglarimi  matematiksel olarak modellemeye
odaklanmistir. Canlilar arasindaki etkilesimin bir sonucu olan kolektif zekanin en
onemli parcalarindan biri ise bireysel bocekler arasindaki bilgi paylasimidir.
Kolaylikla go6zlenebilen bu “kollektif zekd” temsilciler arasinda sik tekrarlanan
davraniglardan dogmaktadir. Temsilciler faaliyetlerini idare etmek icin basit bireysel
kurallar kullanmakta ve grubun kalan kismiyla etkilesim yolu ile siirii amaglarina
ulagmaktadir. Grup faaliyetlerinin toplamindan bir ¢esit kendini Orgiitleme
dogmaktadir. Kus siiriilerinin havada stiziilmesi ve farkli sekiller almasi, karincalarin
yiyecek arama davranislari, balik siirlilerinin beraberce yiizmesi, bal arilarinin
bulduklar yiyecek kaynaginin kalitesi hakkindaki bilgiyi paylasmalar1 ve salinim
dans1 yapmalari bu siirli davranislarindan sadece birkagidir.

Siirli zekas1 (Swarm Intelligence) siiriilerin davraniglarinin nasil modellenebilecegine
ve sirliideki bireyler arasindaki iletisimin mantigini ¢ézmeye dair calismalar
kapsamaktadir. Siiriide 6zerk yapidaki basit bireyler kollektif bir zeka gelistirerek
iletisim kurarlar ve birbirlerinin hareketlerini kendinden organizasyon yardimiyla
(self-organization) onceden yapilmis herhangi bir plan olmadan yonlendirebilirler.
Bu ise esnek ve saglam, merkezi bir yonetim birimi olmadan yapilanmay1 saglar.
Dogadaki bu sosyal sistemler sezgisel yontemlerin gelistirilerek optimizasyon
problemlerine uygulanmasiyla dnemli tekniklerin ortaya ¢ikis noktasi olmustur.

Sezgisel yontemlerin gelistirilmesinde kullanilan yontemlerin basinda son yillarda
literatiire kazandirilmis siirii  zekast davraniglarini  modelleyen algoritmalar
gelmektedir. Modern sezgisel algoritmalarin en temeli geliseme dayali
algoritmalardir. Gelisime dayali algoritmalarin bir¢ok ¢esidi vardir ve genetik
algoritmalar bu alanda literatiirdeki problemlere uygulanmaktadir. Karinca siiriilerinin
koloni halindeki davraniglarin1 modelleyen Karinca Kolonisi Optimizasyonu, kus veya
balik siiriilerinin sosyal davraniglarindan esinlenerek gelistirilmis Parcacik Siirii
Optimizasyonu ve arilarin yiyecek arama davranislarini modelleyerek gelistirilmis olan
Ar Algoritmalan siirii tabanl optimizasyon algoritmalaridir.

Karinca Kolonisi Algoritmasinda karinca c¢evre sartlarina gore besin kaynagi ile evi
arasinda gidebilecegi yollar1 belirlemektedir. Belirlenen yollardan birinden ilk gecen
karinca yola feremon adinda kimyasal bir koku birakmaktadir. Koku yogunlugu zamana
bagl olarak azalmaktadir. Eger yol kisa ise bu koku daha yogun olmaktadir. Iki yolun
kesistigi noktada karinca hangi yola gidecegini belirlemektedir. Hangi yolu segecegine
ilk once koku miktarinin yogunluguna gore ikinci olarak ise gelisigiizel bir Olgiite
gore karar vermektedir. Bu gelisigiizel se¢imin nedeni ise biitiin karincalarin ayni
yolda gitmesini engelleyerek yeni ve daha kisa yollar1 kesfetmektir.
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Sezgisel yontemlerin bir digeri olan Parcacik Siirti Optimizasyonu (PSO) teknigi ilk
olarak kus ve balik siiriilerinin hareketlerinden esinlenerek dogrusal olmayan
nimerik problemlere optimal sonuglar bulmak icin ortaya atilmistir ve
basitlestirilmis sosyal sistemin bir simiilasyonu olarak ortaya ¢ikmistir.

Arnlarin yiyecek arama davranisi, bilgi paylasimi ve ezberleme ozellikleri, son
zamanlarda siirii zekasinda en ilging arastirma alanlarindan biri olmustur. Kaliteli bir
yiyecek kaynagi bulan arilar, yiyecek kaynagi hakkindaki yon, uzaklik ve nektar
miktar1 bilgilerini dans aracilifiyla diger arilarla paylasir. Bu basarili mekanizma
sayesinde ar1 kolonisi kaliteli yiyecek kaynaginin oldugu bolgelere yonlendirilir.

Dordiincti bolim Ar1 Algoritmalarinin  temel teorisini, isleme mekanizmasini ve
literatiirdeki uygulamalarin1 kapsamaktadir. Art Algoritmas: (AA) ilk olarak Pham
(2005) tarafindan Onerilmis olup, bal arilarinin yiyecek arama davranigimi taklit eden
popiilasyon tabanl bir arama algoritmasidir.

Temel Ar1 Algoritmasi birgok parametre igermektedir: izCi ar1 sayisi (n), ziyaret edilen n
nokta i¢inden segilen bolge sayisi (m), segilen m bolge igindeki en iyi bolge sayisi (e), en
iyi e bolgeye gonderilen ar1 sayisi (nep), kalan (m-e) bolgeye gonderilen ar1 sayisi (nsp),
bolge boyutu (ngh) ve durdurma Kriteri. Algoritma n adet izcCi arinin arastirma uzayina
rastgele yerlestirilmesi ile baslar. Izci arilarca ziyaret edilen noktalarm uygunluklari 2.
adimda degerlendirilir. 4. adimda en 1yi uygunluk degerine sahip arilar elit arilar olarak,
bu arilara ait bolgeler de komsuluk aramasi i¢in segilir. 5 ve 6. adimlarda secilen arilarin
komsulugunda arastirma baglar ve daha umut verici ¢6ziimleri temsil eden en iyi e
bolgeye, secilen diger bolgelere gore daha fazla ar1 gonderilerek daha detayli arama
yapilir. 7. adimda yeni popiilasyonun olusturulmasi i¢in her bdlgedeki en 1iyi
uygunluk degerine sahip ar1 segilir. 8 nolu adimda popiilasyondaki diger arilar (n-m)
yeni potansiyel ¢oziimler elde etmek igin rastgele olarak arastirma uzayina atanirlar.
Her bir iterasyonun sonunda yeni popiilasyon iki pargadan olusacaktir: segilen her bir
bolgenin temsilcileri ve rastgele arama yapan izci arilar (Pham, 2006a, 2006b).
Algoritma durdurma kriteri saglanana kadar devam ettirilir. Burada 4-7 arasi adimlar
temel Ar1 Algoritmasinin lokal arama (recruitment phase, local search) kismini, son
adim ise global arama kismini olusturmaktadir. Global arama ile rastgelelik
(randomness) sanst devam ettireilerek algoritmanin olast yeni ¢oiimler kesfetmesini
saglamak amaglanmaktadir.

Besinci  boliimde kombinatoryal uzaylarda Ar1  Algoritmasinin  uygulanmasi
incelenmistir. Gezgin Satict Problemi gibi NP-zor kombinatoryal optimizasyon
problemleri Ar1 Algoritmasi ile en iyilenirken Ari1 Algoritmasinin komsuluk arama
fazinda ¢esitli modifikasyonlara gidilmektedir.

Gezgin Satict Problemi, aralarindaki uzakliklar bilinen noktalardan bir kez gegmek sart1
ile tiim noktalarin en az maliyetle dolasilip, baslangic noktasina tekrar doniilmesini
amaclayan kombinatoryal bir optimizasyon problemidir. Problemin meshur olmasinin ve
aragtirmacilarin  yogun ilgisini ¢ekmesinin sebebi, gercek hayattaki bir¢cok soruna
uyarlanabilir olmasidir.

Farli bir komsuluk aramasinin Ar1 Algoritmasiyla birlestirilerek Gezgin Satici
Problemine uygulanmasi ile bu tez ¢aligmasi tamamlanmistir. Temel Ar1 Algoritmasi
komsuluk yaklasimindaki uzaklik fonksiyonun tanimindan dolay1 siirekli optimizasyon
problemlerine rahatca uygulanabilirken, kombinatoryal uzaylarda komsuluk aramasi
cesitli komsuluk operatorleri kullanilarak yapilabilmektedir.
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Altinc1 boliimde bakis noktasi (vantage point) komsuluk aramasinin Ar1 Algoritmasi
ile Gezgin Satic1 Problemine uygulamasi yapilmistir. Gezgin Satici Problemi metrik
TSP olarak tanimlanmis olup Simetrik Gezgin Satici1 Problemi metrik uzay tanimiyla
uygulamaya alinmigtir. Metrik uzay yapisimi kullanan yontemlerin - arama
algoritmalar1 ozellikle yiiksek boyutlu uzaylarda iyi performans sergilemektedir. En
yakin k komsu taramasi, benzerlik taramasi metrik uzaylarda kullanilan arama
algoritmalarindandir. Bakis noktas1 (Vantage Point) secilerek herhangi bir metrik
uzayda Vantage Point Tree olusturulmasi metrik uzaylardaki arama algoritmalarinin
bir baska uygulamasidir. Vantage Point Ar1 Algoritmasi sirasiyla rastgele segilen bir
yiyecek kaynagmin diger yiyecek kaynaklarmma uzakliklarmin hesaplanmasiyla
baslar. Daha sonra bulunan uzakliklarin medyani hesaplanir. Medyandan kiigiik
uzaklikta bulunan yiyecek kaynaklari ile medyandan biiyiik ya da medyana esit olan
olan uzaklikta bulunan yiyecek kaynaklar1 iki ayr1 kiimede toplanir. Optimum
¢oziime ulasmak i¢in medyandan kiigliik olan uzakliktaki yiyecek kaynaklari
arasindan yeni gidilecek olan yiyecek noktas1 rastgele olarak segilir. Coziim
uzayindaki tiim noktalar, yani olasi tiim yiyecek kaynaklar1 ( Gezgin Satici Problemi
icin gidilecek olan tiim sehirler) secilene kadar iterasyona devam edilir. Bakis
Noktast Art Algortimasi Temel Ari Algoritmasi ile ayni parametlere sahiptir.
Uygulanan modifikasyon lokal arama fazinda olup global arama kism1 Bakis Noktas1
Ar Algoritmasinda ayni sekilde gegerlidir. Adimlar, durdurma kriteri saglanana
kadar devam ederek optimum siirede en iyi ¢ozlime yakinsama amacina ulasana
kadar algoritma calistirilir. 51 sehirlik Gezgin Satict Problemine uygulanan bu
algoritma kisa siirede optimal degere olduk¢a hizli bir yakinsama gerceklestirmis.
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1. INTRODUCTION

This thesis focuses on nature-inspired optimisation algorithms, in particular, the Bees
Algorithm that developed for combinatorial domains with new local search

procedure and applied to Traveller Salesman Problem (TSP).

The Travelling Salesman Problem (TSP) is one of the most interesting and
challenging combinatorial optimization problems. TSP is all about finding a
Hamiltonian path with minimum cost. It may be defined as a problem that is a
simple to describe, but a difficult to solve, which is why it has received so much
attention from the scientific community. This problem is a mathematical NP-hard
problem and has a world range of applications for many fields such as transportation,

logistics and semiconductor industries. (Karaboga and Gorkemli, 2011).

To solve the problem, many researchers have proposed different approaches
including metaheuristic methods. Some animal behaviours have a potential to be
adapted to solve TSP. In nature, there exist many processes which seek a stable state
and these processes can be seen as natural optimization processes (Eberhart, 2001).
Over the last 30 years, several attempts have been made to develop global
optimization algorithms that simulate these natural optimization processes.

In the literature a lot of metaheuristic algorithms have been applied to optimization
problems to obtain better results in reasonable computational times. Some of these
algorithms include Evolutionary algorithms may be considered as one of the first of
this class of algorithms (Kog, 2010). Other algorithms include Ant Colony
Optimization (ACO) (Dorigo et al., 1996), Particle Swarm Optimization (Kennedy
and Eberhart, 1995) and bees-inspired algorithms including the Bees Algorithm (Pham
et al. 2005, 2006a).

In this thesis, Bees Algorithm is presented for Traveling Salesman Problem (TSP)
with a new neighbourhood local search algorithm. The Bees Algorithm for

combinatorial optimization problems including local and global search strategies



used for algorithm. A new neighbourhood procedure is developed to deal with local

search with combinatorial domains.

1.1 Purpose of Thesis

In this thesis an efficient and robust local neighborhood search algorithm is proposed
for combinatorial domains to increase the efficiency of the Bees Algorithm and it
have been used successfully for the solution of the Travelling Salesman Problem
(TSP).

Neighborhood search is vital constituent of all swarm based optimization algorithms.
The Bees Algorithm has originally developed for continuous domains but
combinatorial domains need a completely different approach when it comes to

mathematical definition of the mathematical distance (Kog, 2010).

We aim to enhance the Bees Algorithm’s neighbourhood search procedure defined
for combinatorial domains and improve its performance for combinatorial domains

as its performing for continuous domains.

For continuous domains in the original Bees Algorithm, “ngh” defines the initial size
of neighbourhood for local searching. For example, if x is the position of an elite bee
in the i™ dimension, follower bees will be replaced randomly in the interval

X, £ ngh is set to define the boundaries of local search for new solution to improve

the solution quality and performance (Ghanbarzadeh et al. 2007).

For combinatorial domains, combinations of several methods have been deployed to
perform the neighborhood search. After modifying the neighbourhood part of Bees
algorithm we compare it with several exchange neighbourhood strategies and local
search algorithms including simple (2 point) swap, double (4 point) swap, insert, 3
point swap, 2-Opt and 3-Opt (Kog, 2010).

In this thesis, the performance of the Bees Algorithm optimization with vantage point
local search algorithm is evaluated for the Travelling Salesman Problem (TSP) and
the results are compared with the original Bees Algorithm including several

exchange local search strategies.

In the context of developing an algorithm first, the biological and morphological

features of honeybees are presented. Then original Bees Algorithm is presented with



vantage point local search. Then we are proposing mathematical simulation with

experimental for understanding the succesfullnes of the modified algorithm.

1.2 Literature Review

The rapid development of engineering sciences and increases in the number of
complex processes in industry and manufacturing mean that traditional optimisation
techniques are no longer adequate to solve complex multi-variable optimisation
problems with large numbers of parameters. These usually require intelligent
optimisation tools such as the Bees Algorithm (Pham et al. 2005; 2006b).

Over the years, swarm intelligence has inspired scientist to developed population-
based algorithms to deal with many complex multi-variable optimization problems.
Because of many complex multi-variable optimization problems cannot be solved
exactly within polynomially bounded computation times population-based
algorithms were implemented (Kog, 2010). A recent trend in the field of Swarm
Intelligence (SI) is population-based algorithms and they are the utilisation of tools to

solve optimisation problems which are defined as minimisation of cost functions.

Among the most common population-based algorithms are Evolutionary Algorithms
(EA), the Genetic Algorithms (GA) (Goldberg, 1989), Particle Swarm Optimization
(PSO) (Eberhart and Kennedy 1995), Ant Colony Optimization (ACO) (Dorigo et
al., 1991; Dorigo et al., 1996) and bees-inspired algorithms including the Bees
Algorithm ( Pham et al., 2005, 2006) itself which mimics the foraging behaviour of
honeybees in nature.

Evolutionary Algorithms (Rechenberg et al, 1965), (Fogel et al, 1966) and Genetic
Algorithms may be considered as one of the first class of this class of algorithms.
(Kog, 2010). The Genetic Algorithms (Holland, 1975) is based on biological
evolution and adaptation in nature. Although they are considered in population-based
algorithms, they may also separated from swarm-based optimization due to their
centralised control mechanism. Particle Swarm Optimization algorithm imitates the
action of flying, swimming or walking agents keeping themselves close by other
members in a swarm. Ant Colony Optimisation (Dorigo et al., 1991), is inspired by the
ants’ foraging behaviour where they tend to choose the shortest route that links the food

source and their nest which have no centralised control over their individuals.



In addition to these algorithms, The Bees Algorithm (Pham et al., 2005), which imitates
the foraging behaviour of honey bees, is a bees-inspired algorithm. The algorithm has
been widely applied to solve many complex optimisation problems and received a
number of improvements (Ahmad, 2012). The Bees Algorithm is both implemented for
continuous domains and combinatorial domains. For combinatorial domains, it is quite
difficult to implement the current algorithm since it has been proposed originally for
continuous domains. Therefore, it is interesting to explore the opportunities and

limitations of the improved algorithm to this challenging new domain for the BA.

Four forms of honeybee behaviour have emerged in the literature, namely, the
foraging behaviour (Seeley, 1996), the nesting site selection (Seeley and Visscher,
2003; Passino et al., 2008), the mating behaviour (Sung, 2003, Haddad et al., 2006)
and the honeybee teamwork strategy (Sadik et al., 2006). These types of behaviour
have been modelled to derive various Bees Algorithms with many applications (Otri,
2011).

The traveling salesman problem (TSP) is a well-known NP-hard optimization
problem, in which we require to determine the shortest closed route passing through
a set of n cities under the condition that each city is visited exactly once. Many
problems in science, engineering, and bioinformatics fields, such as flexible
manufacturing systems, routing as well as scheduling problems, physical mapping
problems (Alizadeh, 1993), genome rearrangement (Sankoff, 1997) and phylogenetic
tree construction (Korostensky, 2000), can be formulated as a TSP. A large number

of approaches have been devoted to solve the TSP.

1.3 Hypothesis

The overall aim of this work was to prove the hypothesis that the Bees Algorithm
with vantage point local search of neighbourhood is capable of solving Travelling
Salesman Problem, which belongs to NP-hard optimization problem efficiently and
robustly. We want to implement an efficient algorithm, which improves the local
search structure of Bees Algorithm. In this thesis, Bees Algorithm is presented for
Traveling Salesman Problem (TSP) with a new neighbourhood local search
algorithm. The Bees Algorithm for combinatorial optimization problems including
local and global search strategies used for algorithm. A new neighbourhood

procedure is developed to deal with local search with combinatorial domains.
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The objectives of this work were:

1. To implement a new local search algorithm for combinatorial domains to

increase the efficiency of the Bees Algorithm.

2. To determine whether a vantage point local search neighbourhood improves

the efficiency of the Bees Algorithm.

3. To compare both the original and improved versions of local search strategies

of the Bees Algorithm for Travelling Salesman Problem.






2. MOTIVATIONS, BACKGROUND AND BASIC DEFINITIONS

This chapter provides o comprehensive inside into background to understand the
main body of this thesis. It also defines the notion of optimization and the
combinatorial, continuous, and mixed-variable optimization problems using the same

common framework.

2.1 Optimization

Optimization is everywhere and is one of the most important tools in different fields
of engineering (Yang, 2010). However, many optimization problems turns out to be
very difficult and can not be solved exactly within a polynomially bounded
computation times ( Pham et., al 2006). The latest developments over the last two
decedes tend to use metaheuristic optimization techniques to solve such NP-hard

problem.

Definition 2.1 Optimization is the search for a set of variables that either maximize

or minimize a scalar cost function, f(x) .

-

The n-dimensional decision vector, x, consists of the n decision variables over
which the decision maker has control. The cost function is multivariate since it
depends on more than one decision variable, as is common of realworld
relationships. The goal is to minimize (maximize) the cost function while satisfying

the constraints in the problem.

2.2 Optimization Problems

An optimization problem defined as follows [Boyd and VVandenberghe 2004]:

Definition 2.2 Given a function f: S— R find s* € S:Vx € Sf(s”) < f(X)

(minimization) or f('s*) = f(X) (maximization).



Function f is called objective function, its domain S is called the search space, and
the elements of S, are called feasible solutions. A feasible solution X is a vector of
optimization variables X = {X;,X,, ..., X,}. A feasible solution X *that minimizes

(or maximizes) the objective function is called an optimal solution.
Each optimisation problem consists of four essential components:

1) An objective function or fitness function to be optimised,

2) A set of variables that need to be calculated to find the value of the objective
function(s),

3) A set of constraints that determine the allowed values of the variables,

4) The search space that encompass all possible solutions to a problem.

With regards to these four components:

1. The degree of nonlinearity of the objective function determines whether the
problem solved is a linear or nonlinear problem. In addition, if we try to
classify optimization problems according to number of objectives, then there
are two categories: in one objective function it is called a single-objective
problem, otherwise, in a multi-objective problem a number of objective
functions are needed.

2. The type of variables employed that divides problems into either continuous
problems, or discrete and combinatorial problems, must be considered. In
continuous problems the variables employed in the objective function are real
values, whereas in discrete and combinatorial problems they are restricted to
assume only discrete values (Socha, 2007) :

e discrete optimization problems in which all the optimization

variables X, i=1,...,n are discrete, i.e., belong to a countable
set, X, eD,,i=1...,n.

e continuous optimization problems in which all the optimization

variables X,, i=1,...,n are continuous X, eR, i=1...,n.

e mixed-variable optimization problems in which p out of

n = p + q variables are discrete, X, eD,,i=1...,p and q are

continuous X, eR,i=p+1...,p+q.



3. If the problem has no constraints or conditions that satisfy it, it is called an
unconstrained problem, otherwise it is called a constrained problem where it
contains one or more constraints that must be satisfied.

4. The search space determines if the problem is a static/deterministic problem
which does not change over time, or if it is a dynamic/stochastic problem where
the search space changes over time (Blackwell and Branke, 2004), (Otri, 2011).

. . (single objective
objective e
multiobjective
.. funconstrained
constraint )
constrained
unimodel (convex)

multimodel
{ linear

landscape {

function form .
nonlinear {quadratlc

discrete {mteger

variables/response :
continuous

mixed
deterministic (all the above)
stochastic

kdeterminacy {

Figure 2.1 : Classification of optimization problems (Yang, 2010).

Optimization problems involving a large number of finite solutions often arise in
academia, government, and industry. However, for many real-world optimization
problems, it is not necessary to guarantee to find an optimal solution. Often a
reasonably good (or approximate) solution is sufficient to find. Hence, optimization

algorithms and approximate methods were born.

In this thesis, we mention Travelling Salesman Problem that plays an important role
in combinatorial optimization problems. Combinatorial optimization problems are in
fact a subset of discrete optimization problems characterised by finite size of their

domain.



2.3 Combinatorial (Discrete) Optimization Problems

The name given to combinatorial optimization problems, i.e. combinatorial, comes
from the fact that such problems may be expressed as those of finding a permutation
or combination of a finite set of elements. Combinatorial optimization problems are
therefore characterized by a finite set of possible solutions and it is a branch of
optimisation in applied mathematics and computer science, related to operations

research, algorithm theory and computational complexity theory.

Definition 2.3 A combinatorial optimization problem P = (S, f) can be defined by
X ={X,,X,,...,X, } isasetof variables with domain D,...D, ,and constraints

with variables defined over subsets of S where an objective function,
f:D,x D,...xD, > R"
to be minimized and the set of all possible feasible assingment is
S={s={(x,V),-.(x,,v,)} |V, €D, s satisfies all the constraints}

S is solution space or search space of the optimization problem, as each element of

set can be seen as a candidate solution but one has to find a solution s * € S with
minimum objective function value, that is f(s*)<f(s), v s €S and sx€ S is

called a globally optimal solution of (S, f).

Many algorithms and solution methods exist for solving combinatorial optimization
problems. Some of them are exact methods called exact or complete algorithms that
are guaranteed to find for optimal solutions given sufficient time called deterministic
algorithms. Some others are approximation techniques, usually called metaheuristics,
within stochastic algorithms which will give a good problem solution in a reasonable

amount of time, with no guarantee to achieve optimality.

Algorithms often compared in terms of their efficiency, robustness and speed.
Algorithm analysis is usually compared actual running time of algorithms and the O
notation is often used to provide an asymptotic upper bound of the complexity of an
algorithm. An algorithm is of O(n) (Order n), where n is the size of the problem, if

the total number of steps carried out by the algorithm is at most a constant times n.
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In addition to analyzing the efficiency of an algorithm, it is sometimes necessary to
know what types of algorithms exist for solving a particular problem. The field of
complexity analysis analyzes problems rather than algorithms. Two important classes
of problems are usually identified in this context. The first class is called P
(polynomial time problems). It contains problems that can be solved using
algorithms with running times such as O(n), O(log(n)) and O(n*) .They are relatively
easy problems. Another important class is called NP-hard (non-deterministic
polynomial time problems). NP-hard problems don’t have a a polynomial-time solution,

for example TSP is a well-known combinatorial NP-hard optimization problem (Hosny,
2010).

In this study, practical solutions for TSP problem are addressed. In the literature,
there are useful theories, solutions, and case studies to solve such combinatorial
optimization problems and an optimization problem can be solved using
metaheuristic algorithms. That are mostly nature-inspired and population-based.
Population based algorithms is about basic concept of swarm intelligence theory.
Swarm intelligence has inspired scientists to develop population-based algorithms to

deal with complex optimisation problems.

From a mathematical point of view, basic ingredients of a combinatorial optimization
problem are: an instance; for example in the TSP the set of cities and the set of costs
of traveling; a finite space of feasible solutions in the TSP, all the possible round-
trips with requested properties and a cost function over the space of feasible solutions
in the TSP, the total cost of every round-trip. The optimization problem is solved
when, given an instance, a feasible solution which minimizes the cost function is
found. Swarm Intelligence (SI) and popular swarm-based algorithms in several
optimization tasks and research problems and it have been successfully applied in a

variety of problem domains.
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3. SWARM INTELLIGENCE

3.1 Swarm Intelligence

Swarm Intelligence (SI) is an engineering branch and it is defined as the collective
problem solving capabilities of social animals (Bonabeau , 1999), (Kog, 2010). There are
variety of the interesting insect or animal behaviour in the nature, for example a flock of
birds sweeps across the sky. A group of ants forages for food, a school of fish swims,
turns, flees together etc. Scientists call this kind of aggregate motion “swarm behavior”
and they studied how to model biological swarms to understand how such social animals

interact, achieve goals, and evolve.

Figure 3.1 : Fish scooling (left) and Birds flocking in V-formation (Xiong, 2010).

Swarm Intelligence is the emergent collective intelligence of groups of simple
autonomous agents (Bonabeau, 1999). An autonomous agents is a subsystem that
interacts with its environment, which probably consist of other agents but acts

independent from all others agents (Liu, 2000).

Sl is the direct result of self-organisation in which the interactions of lower-level
components create a global-level dynamic structure that may be regarded as
intelligence (Kog, 2010). These lower level interactions are guided by a simple set of
rules. Individuals of colony only have local-level information about environment and

they follow without any knowledge of global effects (Dorigo, 1999).
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There are several other optimization techniques based on Sl principles have been
proposed in the literature, including Artificial Bee Colony (Karaboga, 2005),
Bacterial Foraging (Passino, 2002), Ant Colony Optimization (Dorigo, 1999),
Artificial Immune System (De Castro, 1999) and Glowworm Swarm Optimization
(Krishnanand and Ghose 2009). All these SI models intrinsically share the principal
inspirational origin of the intelligence of different swarms in nature, such as swarms
of E. coli bacteria as in Bacterial Foraging, swarms of cells and molecules as in
Artificial Immune System (Hunt, 1996), (De Castro, 2002), (Read, 2012) and the
amazing swarms of honeybees as in the Artificial Bee Colony System (Madureira,
2005), (Panigrahi, 2011).

3.2 Self-Organization in Nature

Self-Organization is a set of dynamical mechanism whereby structures appear at the
global level of a system from interactions of its lower-level components. The four
basis of self-organization are positive feedback (amplification), negative feedback
(for counter-balance and stabilization), amplification of fluctuations (ramdomness,

errors, random walks) and multiple interactions (Dorigo, 1999).

Positive feedback is defined as the first rule of self-organization and it is basically a
set of simple rules that help to generate the complex structure. Negative feedback
reduces the effects of positive feedback. Ramdomness adds an uncertainty factor to
the system and enables the colonies to discover new solutions for example most
challenging food sources, nest sites etc. Multible interactions between individulas are
the last one. There should be minimum number of individulas individuals who are
capable of interacting with each other to turn their independent local-level activities
into one interconnected living organism. As a result of combination of these

elements, a decentralised structure is created (Kog, 2010).

Usually there is no central control structure dictating how the individual agents
should behave, but local interactions between such agents often lead to the
emergence of a global behavior. Examples of systems like this can be found in
nature, including ant colonies, bird flocking, bee swarming, animal herding, bacteria

molding and fish schooling.
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Figure 3.2 : Self-organization in a termite simulation (Mitchel Resnick, 1994).

3.3 Swarm-Based Optimization Algorithms

There are lots of swarm-based optimization algorithms (SOAs) that mimic nature’s

methods to drive a search towards the optimal solution. SOAs use a population of

solutions for every iteration instead of a single solution (Kog, 2010). This is key

difference between SOAs and the others types of search algorithms.

On the types of searches applied to solve the optimisation problem there are two

possibilities: Single Point Search (Trajectory) (SPS) which is also known as a Direct

Search (DS), and Population-Based Search (PBS) which is also known as a Swarm

Based Search (SBS) (Otri, 2011).

SOA s include Evolutionary Algorithms (i.

e. the Genetic Algorithm), the Ant Colony

Optimisation (ACO) and the Particle Swarm Optimisation (PSO). In this section, we

will focus on the main chararcteristics and the ways that each algorithm generate new

solutions.
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3.3.1 Genetic algorithms

Genetic Algorithms (GAs) was introduced by John Holland (Goldberg, 1989) and
developed based on the genetic processes of biological organisms. It is based on
natural selection and genetic recombination. It is a heuristic algorithm which
simulates principles of evolution biology for finding solutions of complex problems
which cannot be solved with any other exact algorithms. Genetic algorithms differ
from the more normal optimization and search procedures in four ways (Goldberg,
1989) :

e GAs work with a coding of the parameter set, not the paramaters themselves;

e GAs search from a population of points, not a single point;

e GAs use ogjective function information, not derivatives or other auxiliary
knowledge;

e GAs use probabilistic transition rules, not deterministic rules.

A genetic algorithm mimics this natural evolutionary process in its optimization
problem cycle. A simple genetic algorithm based optimizer is characterized by

individual encoding, individual fitness, selection mechanism and genetic operators.

Individual encoding means that genetic algorithms encode solutions to the given
problem as chromosomal strings and operate on these encodings during the
optimization process. This helps minimize the amount of problem specific
information needed during the optimization process of a genetic algorithm. An
encoding scheme that maps each chromosome string to a unique solution is preferred
as the genetic algorithm will not waste time evaluating multiple encodings of the
same solution. The solution is traditionally represented by binary numbers, string of
zeros and ones but it is possible to use any other representation. For example, for a
traveling salesman problem (TSP), a permutation of all the cities in the problem

instance can be used a solution encoding scheme.

The fitness measure of the chromosome should reflect the quality of the
corresponding solution to the problem. For example, in a TSP instance, the length of
the overall tour represented by the permutation encoding could be assigned as the

fitness measure.
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The selection mechanism is used to select two individuals for crossover (mating).
The purpose of these operations is to allow substrings in the fit individuals in a
population to survive for many generations. Hence, the parent individuals for these
operations are generally selected based on their fitness values. This will promote
survival of fitter genes in the offspring and should lead to fitter individuals in the

future generations.

Genetic algorithms use two kinds of genetic operators called crossover and mutation.
The crossover operator performs a probabilistic exchange of chromosomal
information between two individuals to produce a new individual. The crossover

operator selects two parent individuals from the population based on a selection scheme.

The mutation operator typically picks a random individual from the population and
performs an inversion or some other random operation on the individual
chromosome. After a certain number of generations, the crossover operator tends to
produce offspring that are very similar to the parent individuals. Then the mutation
operator plays a critical role in restoring lost genetic material or providing diversity
in the current population. Initialization — made first population which is usually generated

randomly. This population can have any size — from a few to millions

1. Evaluation — each population is evaluated = there is computed so-called fitness
function of given solution. The purpose of this function is to find out to how extent
this solution fulfills given requirements. This requirement can have different form —
the fastest computing as possible, the best solution as possible etc.

2. Selection — the purpose is to improve fitness value of population. So it is important
to select just population which is the right pattern for find the best solution >
principle of evolution, only the strongest individuals can life. There are many
methods of selection but the basic idea is still the same — selection of the best
candidates for making the best possible future generation

3. Crossover — this operation makes new population by making hybrid of two selected
populations — they can be called parents. The basic idea is to combine the best
attributes of each parent.

4. Mutation — this operation makes the procedure of making new generation little bit

random. It is important for possible improvement.

5. Repeat! - generate new generation and continue from step two.

Figure 3.3 : Pseudo-code of the GA algorithm.
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Genetic Algorithms usually ends after a given count of iterations, after a given time
of solving or after achieve given solutions. The solution of GAs heavily depends on

defined on count of populations and count of iterations.

Count of iterations means how many times is algorithm repeated. First run has as
input parameter random value but every next starts from the best founded solution
from previous iterations. Count of iterations means how many times is algorithm
repeated. First run has as input parameter random value but every next starts from the

best founded solution from previous iteration.
3.3.2 Ant colony optimization algorithms

The successful swarm intelligence model is Ant Colony Optimization (ACO), which
was introduced by M. Dorigo, and has been originally used to solve combinatorial
optimization problems in the late 1980s. It is mimic the foraging behavior of social
ant. It is a natural observation that a group of ‘almost blind’ ants can jointly figure
out the shortest route between their food and their nest without any visual
information.When searching for food, ants initially explore the area surrounding their
nest randomly. As soon as an ant finds a food source, it evaluates the quantity and
carries some of it back to the nest. During the return trip, the ant deposits a chemical
pheromone trail on the ground. The quantity of pheromone deposited, which depends

on the quantity and quality of the food, will guide other ants to the food source.

Ant System (AS) was the first ACO approach to be published and it is an iterative
distributed algorithm. (Dorigo et al., 1991; Dorigo et al., 1996), (Ko¢,2010). At each
iteration, a set of artificial ants are considered. The general structure of any ACO
algorithm, Starting with an initialization of the algorithm, iteration after iteration all
ants first construct their tour and then update the pheromone trails accordingly. In an
extended scenario i.e. an optional case, a local search method can be used to improve
the ants' tours before updating the pheromone is positive feedback and decay is
negative feedback. Pheromone is updated by all the ants after a complete tour is the

key idea in this algorithm. Pheromone update (7;;) for the edges of the graph (a;)

that is joining the cities i and j is calculated as follows (Dorigo et al., 1991):
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Tij (—(1_p)'rij +kZATijk (3.1)
=1

where m is the number of ants, p € (0,1] is the evaporation rate, and Tijk is the

quantity of pheromone laid on the edge (ij).

The value of the quantity of pheromone laid on the edges is determined by the tour

length (L) of an ant defined by:

1 N,
) —— if antkused edge(i, j)initstour,

5y =1 (L) (3.2)

0 otherwise,

Ants move from one city to another city according to probability. A transition
functionis used to calculate the probability of an ant moving from the city i toj.
Secondly, define a visible degree n;;, n;; = 1/d;;. The probability of the kth ant

choosing city is given by:

Tij ni'jga y ifjeN(S,f),
p(cijs) = ZcijEN(skp]r" K (3.3)
0 otherwise,

Nest Nest Nest
id i 1&
?5 - H :WA i &?
3 s
Y el 43
E 4 *, ‘3’
Food Food Food

Figure 3.4 : Ants behaviour in finding the shortest route (Dorigo, 1996)
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The basic idea and procedure of ACO algorithm:

1. Represent the solution space by a construction graph.
2. Set ACO parameters and initialize pheromone trails

3. Generate ant solutions from each ant‘s walk on the construction graph mediated by

pheromone trails.
4. Update pheromone intensities.

5. Go to step 3, and repeat until convergence or termination conditions are met.

Figure 3.5 : Pseudo-code of the ACO algorithm.

There are hundreds of implementations of the ACO metaheuristic successfully
applied to numerous optimization problems in various domains, including famous
NP-hard combinatorial optimization problems. While ACO was initially introduced
with an application to the TSP as a proof-of-concept/classical application, and then
ACO algorithms have later been successfully applied to a wide-range of optimization

problems.
3.3.3 Particle swarm optimization (PSO)

Particle Swarm Optimisation (PSO) was introduced by Kennedy and Eberhart
(Eberhart and Kennedy 1995, Kennedy et al. 1997). PSO is population-based
stochastic optimisation technique and is inspired by the behaviour of a flock of birds.
The algorithm consists of a swarm of particles moving in a space. Every particle holds a
position and velocity vector representing a candidate solution to the problem. In
addition, each particle memorises its own best position found so far and a global best

position that is obtained through communication with its neighbour.

Similar to evolutionary algorithms, the PSO initialises with a population of random
solutions and it searches for local optima by simply updating generations of individuals.

The pseudo-code o f the PSO algorithm is given below:
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1. Create particles (population) distributed over solution space (s’,Vv”).

2. While (Stopping criterion not met) do

3. Evaluate each particle’s position according to the objective function.

K+l | k
4.1f S; s better than S; (update pbest)

5. Determine the best particle (update gbest).

6. Update particles’ velocities according to
Vit =vi* +¢ rand, ( pbest, —s )+ c,rand, (pbest —s)
7. Move particles to their new positions according to
Sik+1 _ Sik _|_Vik+1

8. Go to step 3, until stopping criteria are satisfied.

Figure 3.6 : Pseudo-code of the PSO algorithm (Eberhart and Kennedy, 1995).

The algorithm starts with creating particles that are uniformly distributed throughout
the solution space by defining the initial conditions for each agent. Each agent is
defined with an initial position (s{ ) and an initial velocity (v{). Each particle has a
memory function that remembers two pieces of information, the first piece of
information results from the memory of the particle of its past states as the best-so-
far position that it has visited, called the local best, and the second piece of
information results from the collective experience of all particles as the global best
position attained by the whole swarm, called the global best. Both the local best
position of each particle and the global best position of the entire swarm guide the
movements of all particles towards new improved positions and eventuality to find

the global minima/maxima (Otri, 2011).
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3.3.4 Bees-inspired algorithms
3.3.4.1 Bees in nature

Honeybees inspired algorithms are a branch of Swarm Intelligence algorithms, which
are motivated by the fascinating behaviour of honeybees. Their behaviour is studied
in order to develop metaheuristic algorithms that can mimic the bees searching
abilities in nature. There are several examples of such behaviour, such as waggle
dance that is by a scout (worker) bees that has returned back to the comb with pollen
or nectar. It is basically a language that “tells” other workers where the food is. By
signaling both distance and direction with particular movements, the worker bee uses
the dance language to recruit and/or direct other workers for gathering pollen and

nectar.

Austrian ethologist Karl von Frisch was one of the first people to translate the
meaning of the waggle dance (Frisch, 1967). Bees communicate through this

waggle dance, which contains the following information:
e The direction of flower patches (angle between the sun and the patch)
e The distance from the hive (duration of the dance)
e The quality rating (fitness) (frequency of the dance)

e The order of the source by pollens on their legs ( to specify the patch

coordinates )

y X '~ ~
X ‘ 2
ko
Figure 3.7 : Round Dance (left) and Waggle Dance of honeybees (Frisch, 1967).

Food sources that are at intermediate distances, between 50 and 150 meters from the

hive, are described by the “sickle dance”. This dance is crescent-shaped and
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represents a transitional dance between the round dance and a waggle dance
(Winston, 1987).

3.3.4.2 Nectar-source selection and the nest-site selection models

A colony of honey bees can extend itself over long distances (more than 10 km) and
in multiple directions simultaneously to exploit a large number of food sources. Bees
Algorithm starts with scout bees being placed randomly on the search space.

If the bees have no knowledge about the food sources in the search field they will be
an unemployed foragers bees, so bee initializes its search as an unemployed. If the
bee starts searching spontaneously without any knowledge, it will be a scout bee
(Seeley, 1995). If the unemployed forager attends to a waggle dance done, the bee
will start searching by using the knowledge from waggle dance is a recruit bee.
When the recruit bee finds and exploits the food source, it will raise to be an

employed forager who memorizes the location of the food source.

The value of a food source depends on different parameters such as its proximity to
the nest, richness of energy and ease of extracting this energy. According to the
fitness, patches can be visited by more bees or may be abandoned. The bees evaluate
the different patches according to nectar quality and energy usage. By performing the
waggle dance, successful foragers share the information about the direction and
distance to patches of flower and the amount of nectar within this flower with their

hive mates.

Dance floor

Figure 3.8 : The dancer bees meet other bees at the dance floor (Kog, 2010).

Camazine presented a differential equations model to honey bees’ behaviors.
Individual bees are represented in this model using a flow diagram for the nectar-

source selection processes and they do not have global information about the
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distribution of nectar sources each one will comply with certain rules to determine
where it will go to forage. This process is described by a flow diagram illustrated in
Fig. 3.7.

According to the model, there are seven decision making branches for the situation
of a colony choosing between two nectar sources which nectar source to forage and
whether to dance. There are foraging at nectar source A, foraging at nectar source B,
dancing for nectar source D,, dancing for nectar source Dg, unemployed foragers
observing a dancer F, unloading nectar from source H, and unloading nectar from

source Hg .

In this model, there are two factors affecting the proportion of the total forager
number in each compartment: (1) the rate at which a bee moves from one
compartment to another and (2) the probability that a bee takes a fork at each of the
five branch points (diamonds), r, stands for a rate constant defined as the fraction of
bees leaving a compartment in a given time interval equal to 1/T,, where each T, is
the time to get from one compartment to another. The unit of the rate constant is

given as min~1(Camazine, 1991).

The first branch point is encountered after a bee has unloaded her nectar in the hive.
Here, bee may abandon the nectar source and return to the dance floor to follow
another dancer. PX stands for the abandoning function that denotes the probability
that a bee may abandon the nectar source or go back to the dance floor to observe
another dancer bee. This function depends on the profitability of the source, so P
represents the probability that a bee leaving H,, abandoning the nectar source and

becoming a follower bee (F).

The second branch point is for the bees that did not abandon their source. At this
point, a bee decides whether to dance for the nectar source or to fly back to the nectar
source. P; denotes the probability of performing a dance for the nectar source. Its
value also depends on the profitability o f thenectar source similar to the abandoning

function P2 denotes the probability of performing a dance for the nectar source.

The third branch occurs on the dance floor when a follower bee dances to decide for
one of the nectar sources P#, denotes the probability of a follower bee following

dances for nectar source A and leaving for this nectar source. Thus, the probability of
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following a dancer bee for A (f#), and the probability of following a dancer bee for

B (f):

fa—_ Dada (3.4)
F  D,d,+Dgd,
£ Dsds (3.5)

F " D,d,+D.d,

The time limitation of D, and Dg has been weighted and denoted as d, and dj.
Therefore, each function indicates the proportion of the total dancing for each nectar source
by taking into account the number of dancers and the time spent dancing. Equations of the
model, with some assumptions for simplicity, are written as the following set of differential

equations (Camazine et al. 1991):

‘Z—f = (1= A~ £ pH, + p,Dy + P, F — p,A (3.6)
d(i*\ = (1= 1) pHA - p,D, 3.7)
d:tA = p,A—pH, (3.8)
z—?:(l— f)A- £.2)psHg + peDs + fp,F — p,A (3.9)
d(is = fy (1= 1) psHg — PeDg (3.10)
M pB-pH, (3.11)
dt
%—T: fopH, +f2p.H, —p,F (3.12)

A detailed derivation and discussion of these equations is given in Camazine and
Sneyd (1991).
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Figure 3.9 : A mathematical model shows how honey-bee colonies allocate foragers.

At any moment each forager can be in one of the seven compartments
shown (Ha,Hg, D, Dg, A, B, F) denote the compartments as well as
the number of foragers in the compartments). The rate at which bees
leave each compartment is indicated by p;
A 18, f4 fF and so on, indicate the probability of taking one or the

other fork at each of the five branch points black diamonds (Seeley

Camazine, and Sneyd 1991) .

Nest-site selection is another important practice which requires an optimisation
process as nectar source selection behaviour does in honey-bee colonies. Nest-site
selection in honey-bee colonies can be summarised as a social decision making
process. In this process, scout bees locate several potential nest sites, evaluate them,

and select the best one on a competitive signalling basis (Passino and Seeley, 2006).
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In nature, honey bees have several complicated behaviors such as mating, breeding
and foraging and these behaviors have been mimicked for several honey bee based
optimization algorithms. Honey bees optimization algorithms are categorized in this
work by concerning the behavioural characteristics of honey bees. There are foraging

behaviours, marriage behaviours and Queen bee concept.

The researches, their main contributions and applications are summarized as shown
in Table3.1. Yonezawa and Kikuchi (1996) examine the foraging behaviour of honey
bees and Sato and Hagiwara (1997) introduced honey-bees inspired algorithm called
the bee system, as an improved version of genetic algorithms. This system claims to
be inspired basically from ‘finding a source and recruiting others to i ¢  behaviour.

Seeley and Buhrman (1999) investigated the nest site selection behaviour of honey
bee colonies. The nest site selection process starts with several hundred scout bees.
After the scouts return to the cluster, report their findings by means of waggle
dances, and decide the new nest site. Luck and Teodorovic (2001) published the first
study on Bee System based on the PhD thesis. They named the model the Bees
System and aimed to deal with the Travelling Salesman Problem. So the algorithm
was developed for combinatorial domains and applied to traveller salesman problems
(TSP) that aim to find the minimum distance route.

Yang (2005) was inspired The Virtual Bee Algorithm (VBA) by a swarm of virtual
bees where it began with bees wandering randomly in the search space. The VBA
initially created a population of virtual bees, where each bee was associated with a
memory bank. Then, the functions of optimisation (objectives) were converted into

virtual food.

1. Creating a population of multi-agents or virtual bees, each bee is associated
with a memory bank with several strings;

2. Encoding of the objectives or optimization functions and converting into the
virtual food;

3. Defining a criterion fo r communicating the direction and distance in the
similar fashion o f the fitness function or selection criterion in the genetic

algorithms;
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4. Marching or updating a population o f individuals to new positions fo r
virtual food searching, marking food and the direction with virtual waggle
dance;

5. After certain time o f evolution, the highest mode in the number of virtual
bees or intensity/frequency of visiting bees corresponds to the best estimates;

6. Decoding the results to obtain the solution to the problem

Figure 3.10 : Pseudo-code of the VBA algorithm.

Karaboga and Basturk introduced the foraging behaviour of honey bee swarm and
proposes a new algorithm simulating this behaviour for solving multi-dimensional
and multi-modal optimization problems, called Artificial Bee Colony (ABC). The
algorithm uses three types of bees, called employed bees, onlooker bees and scout
bees and the main steps of the algorithm are:

1. Send the employed bees onto the food sources and determine their nectar
amounts;

2. Calculate the probability value of the sources with which they are preferred
by the onlooker bees;

3. Stop the exploitation process of the sources abandoned by the bees;

4. Send the scouts into the search area for discovering new food sources,
randomly;

5. Memorize the best food source found so far.

For each flower patch, an artificial onlooker bee chooses a food source depending
on the probability value associated with that food source, p;, calculated by the

following expression

o —— (3.13)

SN .
> it
where fit; is the fitness value of the solution i which is proportional to the nectar
amount of the food source in the position i and SN is the number of food

sourceswhich is equal to the number of employed bees or onlooker bee.
In order to produce a candidate food position from the old one in memory, the
ABC uses the following expression:
vij = xij + goij(xij—xkj) (314)
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where k € {1; 2; ... ; SN} and j € {1; 2; . . . ;D} and ¢;; € [-1,1] are

randomlychosen and k= i. ABC also uses site abandonment, which is simply leaving

a patch if no more improvement is observed on the patch after certain number of

iterations. It is called ‘limit”. Assume that the abandoned source is x; and

j € {1; 2; ... ;D} then the scout discovers a new food source to be replaced

with x;. It defined in the following equation:

X = Xppim + 7and[0,1] (xhyax — x) ) (3.15)

1. Initialize the population of solutions x; ; € {1;...; SN}

2. Evaluate the population

3. cycle=1

4. repeat

5. Produce new solutions v; for the employed bees by using (7) and evaluate them

6. Apply the greedy selection process for the employed bees

7. Calculate the probability values Pi for the solutions x; by (6)

8. Produce the new solutions ti for the onlookers from the solutions xi selected
depending on p; and evaluate them

9. Apply the greedy selection process for the onlookers

10. Determine the abandoned solution for the scout, if exists, and replace it
with a new randomly produced solution x; by (8)

11. Memorize the best solution achieved so far

12. cycle =cycle + 1

13. until cycle = MCN

below:

Figure 3.11 : Pseudo-code of the ABC algorithm. (Kog, 2010).

Another implementation of bee behaviour was presented by (Teodorovic, 2006) to
solve transportation problems and was called Bee Colony Optimisation (BCO). A
Fuzzy Bee System was also proposed in (Teodorovic et al., 2006). BCO has been
developed for combinatorial problems and the pseudo-code of the algorithm is given
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1. Initialization. Determine the number o f bees B, and the number of iterations I.
Select the set of stages ST = { St;, St,,...,.St,, }. Find any feasible solution x of
the problem. This solution is the initial best solution.

2. Setil. Untili=1I, repeat the following steps:

3. Setj 1. Until j = m, repeat the following steps:

Forward pass: Allow bees to fly from the hive and to choose B partial solutions

from the set of partial solutionsS; at stage st;.

Backward pass: Send all bees back to the hive. Allow bees to exchange
information about quality of the partial solutions created and to decide whether to
abandon the created partial solution and become again uncommitted follower,

continue to expand the same partial solution without recruiting the nestmates, or
dance and thus recruit the nestmates before returning to the created partial
solution. Setj: =j + 1.

4. If the best solution x; obtained during the i-th iteration is better than the
bestknown solution, update the best known solution (x: = x;).
5. Set,i:=1i+1.

Figure 3.12 : Pseudo-code of the BCO algorithm (Kog, 2010).
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4. THE BEES ALGORITHM

The Bees Algorithm was developed by a group of researchers at the Manufacturing
Engineering Centre, Cardiff University (Pham et al., 2005). It is a population based
search algorithm that mimics the food foraging behaviour of honeybees to find the
optimal solution for both continuous and combinatorial problem. In its basic version, the

algorithm performs a kind of neighbourhood search combined with random search.

The Bees Algorithm required six parameters. There are number of scout bees (n),
number of selected sites (m), number of top-ranking (elite) sites among the m selected
sites (e), number of bees recruited for each non-elite site (nsp), number of bees recruited
for each elite site (nep), and neighbourhood size (ngh) and the stopping criterion. The
algorithm starts with the n scout bees being placed randomly in the search space and

presents a neighbourhood search associated with a random search.

The Bees Algorithm (BA) involves global and neighbourhood search. A number of bees
are employed to explore at random the solution space in the global search procedure that
enables the bees to escape from local optima. This kind of search is crucial as it enables
the bees to escape from local optima. At the same time, neighbourhood search
concentrates exploitation around promising solutions. Both of them in population-based
algorithms may locate solutions that gradually come closer to an optimal. Initialize

population with random solutions;

Evaluate fitness of the population.
While (stopping criterion not met)
Select sites for neighbourhood search.

Recruit bees for selected sites (more bees for e best sites) and evaluate fitnesses.

o > e

Select the fittest bee from each site to form the new population.
6. Assign remaining bees to search randomly and evaluate their fitnesses.

7. End While.

Figure 4.1 : Pseudo-code of the Bees Algorithm (Kog, 2010).
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Table 4.1 : Basic parameters of the Bees Algorithm. (Kog, 2010).

Parameter Symbols
Number of scout bees in the selected patches n
Number of best patches in the selected patches m
Number of elite patches in the selected best e
patches
Number of recruited bees in the elite patches nep
Number of recruited bees in the non-elite best nsp
The size of neighborhood for each patch ngh
Number of iterations Maxiter

In step 1 the algorithm starts with the n scout bees being placed randomly in the
search space. In step 2 the fitnesses of the points visited by the scout bees are
evaluated. In step 4, bees that have the highest fitnesses are chosen as “selected bees”
and those sites that have been visited will be chosen for neighbourhood search. Then,
in steps 5 and 6, the algorithm conducts searches in the neighbourhood of the

selected bees in terms of more bees for the e best bees.

| Random Initialisation (n) |
I Selection n |
' v
—>| Fitness Evaluation | Elite Sites e Best Sites m
nep Bees per Patch nbp Bees per Patch

Local Search | Fitness Evaluation I I Fitness Evaluation |

| Select Patch Fittest I | Select Patch Fittest |
Global Search

2
New Population

No conv@

Yes

Solution

Figure 4.2 : Flowchart of the basic Bees Algorithm (Otri, 2011).

H

| Random (n-m) |

'

| Fitness Evaluation |
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Initialise a Population of # Scout Bees

> Evaluate the Fitness of the Population

__________________________________________________________________________

Select m Sites for Neighbourhood Search

l

Determine the Size of Neighbourhood
(Patch Size ngh)
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1

Recruit Bees for Selected Sites
(more Bees for the Best e Sites)

}

Select the Fittest Bee from Each Site

Assign the (n—m) Remaining Bees to Random Search

New Population of Scout Bees

Figure 4.3 : Flowchart of the basic Bees Algorithm.

Example 4.1: Stepl: Initialize population with random solutions with n = 20.

Evaluate fitness of the population.
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Figure 4.4 : 20 scout bees are placed randomly in the search space.
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Step 2: Select the parameters of Bees Algorithm:

n = 20 number of scout bees

m = 3 number of sites selected out of n visited sites
e = 1 number of best sites out of m selected sites
nep = 7 number of bees recruited for best e sites

nsp = 2 number of bees recruited for other (m-e) selected sites

ngh = 3 neighbourhood size x;, = ngh

Select sites for neighbourhood search. (Bees that have the highest

fitnesses are chosen).

o ® Y
L °
Y [ )
® ™
1 ) [ ]
" °

: ® L

T e
®

™ u i

N

Figure 4.5 : m=3 selected bees for neighbourhood search.

Recruited bees for selected sites (more bees for best e sites) and

evaluate fitnesses.

The best e sites (more bees for best e sites)
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Select the fittest bee from each patch. ( For each patch, only the bee with the
highest fitness will be selected to form the next bees population. )

Figure 4.1 : Recruitment phase for local search.

Assing remaining bees to search randomly and evaluate their

fitnesses.

\ New Population
Al.

° ® .
o
° ® °
°
\
®
)
e )
o ® e
° o
[ ] Y °
® ° ”

Figure 4.2 : Generate new population with local and global search phase.
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Figure 4.3 : Simple example of Bees Algorithm with n=10 scout bees (Kog, 2010).

4.1 Neighbourhood / Local Search of Bees Algorithm

As in all the evolutionary algorithms, the neighbourhood search is one of the
essential parts of swarm-based algorithms as well as for the Bees Algorithm. In the
Bees Algorithm, the searching process in a selected site is similar to that of the
foraging field exploitation of honey bee colonies in nature. The harvesting process as
explained in previous chapter includes a monitoring phase for the purpose of

recruiting more bees to selected site that can be used as a neighbourhood search in
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the Bees Algorithm. Essentially, when a scout bee finds a good field (good solution),
she advertises her field to more bees. As we explained in the previous chapter the
nesting-site selection of honeybees behaviour has been used as a neighbourhood

search in the proposed Bees Algorithm.

After ranking the sampled solutions and locating the most promising ones (i.e. the
highest ranking locations), other bees are recruited to search the fitness landscape in
the neighbourhood of these solutions. A neighborhood search sites of size ngh is
selected which will be used to update the m bees declared. This is important as there

might be better solutions than the original solution in the neighborhood area.

In the neighbourhood search procedure, more forager bees are recruited in the
neighbourhood of the elite (e) sites, and fewer bees around the non-elite (m-e) sites
and thanks to this strategy the foraging effort was concentrated on the very best (i.e.,
elite) solutions. For every selected site, bees are randomly distributed to find a better
solution within the given neighbourhood area (i.e., flower patch size). As shown in
Fig. 4.7, only the fittest (best) bee is chosen as a representative bee and the centre of
the neighbourhood shifted to the position of the best bee. (i.e from A to B).

Fitness Fitness

Best Bee T £ e 7

Figure 4.4 : Graphical Explanation of the Neighbourhood Search (Otri, 2011).
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4.2 Improvements to the Bees Algorithm

We purpose to impove the efficiency of the Bees Algorithm in local search and
global search with dynamic recruitment, proportional shrinking for selected sites and

site abandonment.

Dynamic recruitment aim to improve the way that the bees are recruited into a
selected site and it is deal with the local search space faster. With dynamic
recruitment strategy if there is any improvement on the recruited site according to
original bee, the recruited bee will replace the original and path will move to a new

position around the fittest and new position.

Proportional shrinking idea defined with which the initial patch size is set as a
starting patch size in the first iteration of the algorithm. Shrinking Constant (sc) is
called the to a contraction of patch sizes of all selected sites (m) in every iteration of
the algorithm proportional to a constant ratio. Depending on the iteration (i), the
patch size of the site m (Ngh,(i)) is calculated as a contraction from the previous

size (Ngh,,,(i — 1)) proportional to the value of sc.

where sc € [0,1] and (Ngh,, (i))= 0.

i=1 Ngh,, (i) = InitialPatchSize

| =
i>1  Ngh, (i)=Ngh, (i-1)((1-SC))and Ngh,, (i) >0 “.0

NghmG)z{

This strategy is proposed to improve solution quality and evoluation time. To
improve the efficiency of local search we use site abondenment strategy. If there is
no improvement of the fitness, value of the fittest bee after a certain number of

iterations the site will be abondened.

The site abondenment strategy is proposed to escape from local in many complex
optimization problems. Investigations are also given on details of the local and global
search methods used in the algorithm. Also, details of the improvements made to
local and global search methods are presented, including dynamic recruitment,

proportional shrinking and abandonment strategies (Kog, 2010).

38



1. Initial population with n random solution.
2. Evaluate fitness of the population.
3. While (stopping criterion not met)
4. Select sites (m) for neighbourhood search.

5. Recruit bees for selected sites (more bees for best e sites), evaluate fitnesses, select the

fittest bee from each site and shrink patches
for (k=I ; k=e ; k++) // Elite Sites
for (Bee=I ; Bee= nep ; Bee++) // More Bees for Elite Sites
BeesPositionInNghO = GenerateRandomValuelnNgh (from x+ngh to x-ngh),
Evaluate Fitness = Bee(i); //Evalute the fitnees of recruited Bee(i)
If (Bee(i) is better then Bee(i-1)) RepresentativeBee = Bee(i);
for (k=e ; k=m ; k++) // Other selected sites (m-e)
for (Bee=I ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sites (m-e)
BeesPositionInNghO = GenerateRandomValuelnNgh(from x+ngh to x-ngh);
Evaluate Fitness = Bee(i); //Evalute the fitnees o f recruited Bee(i)
If (Bee(i) is better then Bee(i-1))
RepresentativeBee = Bee(i);
6. for (patch=I; patch=m; patch++)
// Shrink all patches (m) proportional to SC
Nghp,, (i) = Nghy, (i — 1)((1 - SO));
7. If (Iteration > sat)
If (no improvement on the site)
Save the Best Fitness;
Abandon the Site;
Bee(m) = GenerateRandomValue(All Search Space);
8. Assign remaining bees to search randomly and evaluate their fitnesses.

/I (n-m) assigned to search randomly into whole solution space

Figure 4.5 : Pseudo-code of the improved Bees Algorithm (Kog, 2010).
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4.3 Bees Algorithm Applications

The Bees Algorithm as described above is applicable to both combinatorial and
functional optimisation problems so the performance of the Bees Algorithm was

tested on continuous and combinatorial problems.

4.3.1 Continuous domains applications

Several continuous applications of the Bees Algorithm are including functional

optimization problems with mathematical test functions are given below:

e De Jong's function, Shekel’s Foxholes and Schwefel’s function. (Kog,
2010). These problems were used to test the Bees Algorithm and establish
the correct values of its parameters and seven problems for benchmarking

the algorithm.

e Mathematical benchmarks functions (Ghanbarzadeh 2007; Kog¢ 2010;
Sholedolu 2009) and eight benchmark functions (Mathur, 2000).

The results compared with those obtained using other optimisation

algorithms. The test functions and their optima are shown in below:

Table 4.2 : Test Functions (Mathur, 2000).

No | Function Name | Interval Function Global Optimum
1 | Des LR048, F=(3905.9%) - 100G - ) - (- x|
o max F = 93) - -x,) ==
* 2.048) G T
Goldstein & n'nF=[I+(x|¢x,vl)'(l9-I4x‘+3x:-llx,+6x|x,+3x’:)] X(0,-1)
2 [-2,2] X(30+Q2x,-3x,) (18-32 x,+12 x] +48 x, - 36 x, x, +27 x2)]
Price F=3

minF=a(xz_bxl’+Cxl_d)z +e(l- f)oos(x) +e X(-22/7,12.275)

5 |iin (5.10] - | 4 X21.2.215)
ranin =y = =] —— B w— - = - N
ol 4[22) £ 22X7’d SenlQr 8X2 X(66/7,2.475)
F=0.3977272
Martin & X(5,5)
4 0,10 minF =(x,— x.)’ +((x, + x,—10)/3)
Gaddy [0, 10] X\~ X2 X+ X, —
(-1.2,1.2] 5 X(1,1)
5 | Rosenbrock min F =100 -y )2 +(0-5)?
[-10, 10] 0 (x, - x, Xi =
: 3 g : . X(1,1,1,1)
6 | Rosenbrock [-1.2,1.2] | min F =3 (100 (x/- x,,)" + (- x)"} ot
[-5.12, R X(0,0,0,0,0,0)
7 |H here min F =
. 5.12) 2. F=0
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Table 4.3 : Results (Mathur, 2000).

NE The Bees
SIMPSA SIMPSA GA ANTS Algorithm
¢ | mean | o | mean | mean | . | mean | o
func § no. of g no. of é no. of § no. of § mean no.
no 2 eval. | 2 eval. | 2 eval. 2 eval. | 2 | of eval
1 Rk | kkx ] k%% | ¥%% 1 100 | 10160 | 100 | 6000 | 100 1210
2 | REx | kRx | x| k%% | OO | 5662 | 100 | 5330 | 100 999
3 TEE | ek Lee | kR 1100 ) 7325 100 | 1936 | 100 1657
4 | ¥Rk | k%% | okkx | kx| 100 | 2844 | 100 | 1688 | 100 526
5a | 100 | 10780 | 100 | 4508 | 100 | 10212 | 100 | 6842 | 100 898
5b | 100 | 12500 | 100 | 5007 | *** il 100 | 7505 | 100 2306
6 99 | 21177 | 94 | 3053 | *** e 100 | 8471 | 100 | 29185
T | wee | e | kx| *x | 100 | 15468 | 100 | 22050 | 100 7113

*** Data not available

Table 4.2 presents the results obtained by the Bees Algorithm and those by the
deterministic Simplex method (SIMPSA), the stochastic simulated annealing
optimisation procedure (NE SIMPSA, the Genetic Algorithm (GA) and the Ant
Colony System (ANTS) (Mathur, 2000). Again, the numbers of points visited shown

are averages for 100 independent runs.

o Neural network training for a variety of industrial applications and recursive filter

design.

e Mechanical design like desing of welded beam, desing of coil spring (Ang 2009;

Pham and Ghanbarzadeh 2007),

e Wood defect classification (Pham and Haj Darwish 2010; Pham, 2007c; Pham

2006h).

e Environmental/Economic Power Dispatch Problems (EEDP) (Lee and Haj Darwish
2008)

e Chemical engineering process (Pham et al., 2008)

e Digital Filter Optimization

e Function Optimizastion
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4.3.2 Combinatorial domains applications

There are lots of applications of Bees Algorithm to a combinatorial optimisation

problem in the literature is given below below:
e Job Shop Scheduling Problem (JSSP) (Pham, 2007b)

e Wood defect classification (Pham and Haj Darwish 2010; Pham et al.,
2007c; Pham et al., 2006b).

e Printed Circuit Board (PCB) problem (Ang, 2010)

Before we focused on details of the Bees Algorithm for combinatorial domains
we will give, a important no free lunch theorem that is about mathematical

analysis of computing, computational complexity and optimization problems.
4.4 No Free Lunch Theorem

Theorem 4.5.1 (Weak NFL) Given search algorithms A4, A’and function f € Y* |
there exists a function f’ € Y* such that mx) (A(D),) = mx (A(f"),) , that

Tk is cardinality.

Definition: A performance measure with respect to a set f € Yy is any function
s defined over the collection of all search algorithms such that pf(A4) is a
function of the multiset {{A(f ), :f € F}}. Search algorithms perform equally

well on F if they are evaluated identically by every performance measure with

respect to F.

Theorem 4.5.2 (NFL) Every efficient search algorithm performs equally well on

F if and only if F is closed.

No-free-lunch theorems may be of theoretical importance, and they can also have
important implications for algorithm development in practice. The theorem says
that, the fact there is no universally efficient algorithm so if algorithm A
performed better than algorithm B in some class of problems, then algorithm B
performed better than algorithm A in some other class of problems. On average,
each algorithm produced similar performance in respect to other algorithms. In
addition, the performance of an algorithm on a set of benchmarking problems did
not guarantee giving similar performance on a different class of problems
(Wolbert 1997).
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Obviously, in reality, the algorithms with problem-specific knowledge typically
work better than random search, and that there is no universally generic tool that
works best for all the problems. Therefore, we have to seek balance between
speciality and generality, between algorithm simplicity and problem complexity,

and between problem-specific knowledge of optimization problems.
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5. BEES ALGORITHM FOR COMBINATORIAL SPACES

Combinatorial optimization problems have attracted much attention of researchers
over the years can generally be defined as problems that require searching for the
best solution among a large number of finite discrete candidate solutions.
Approximation algorithms, like population-based algorithms are techniques that

solve ‘NP-hard’ CO problems in a reasonable amount of computation time.

In this chapter, the Bees Algorithm is presented for combinatorial domains and it was

tested on Travelling Salesman Problem with different neighbourhood strategies.

In the basic version of the Bees Algorithm, a kind of neighbourhood search
combined with a random search to enable it to locate the global optimum. In
combinatorial domains, unlike continuous domains, there is no mathematical
distance definition for neighbourhood search. So we use similar but not same version
of the Bees Algorithm for continuous domains as we presented in the previous

chapter.

In combinatorial domains, the patch idea of the Bees Algorithm for continuos
domians replaced by a local search operator to be able to perform a local search the
main difference of combinatorial domains. Removing the shrinking procedure is also
another difference. However, the abondonment procedure can be used in both of the
solution spaces to improve the global search part. The pseudo-code of the Bees

Algorithm for combinatorial domains is given in Figure5.1.
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1. Initial population with n random solution; random(Sequence(n)).
2. Evaluate fitness of the population.

3. While (stopping criterion not met)

4. Select sites (m) for neighbourhood search.

5. Recruit bees for selected sites (more bees for best e sites), evaluate fitnesses, select the

fittest bee from each site and shrink patches
for (k=1 ; k=e ; k++) // Elite Sites
for (i=l ; i= nep ; i++) // More Bees for Elite Sites
RecruitedBee(k)(i) = NeighbourhoodOperator(Sequence(k));
Evaluate Fitness = RecruitedBee(Kk)(i); //Evalute the fitnees of recruited Bee(i)
If (Bee(i) is better than Bee(i-1)) RepresentativeBee = RecruitedBee(K)(i);
for (k=e ; k=m ; k++) // Other selected sites (m-e)
for (Bee=I ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sites (m-e)
RecruitedBee(k)(i) = NghOperator(Sequence(k));
Evaluate Fitness = RecruitedBee(K)(i); //Evalute the fitnees of recruited Bee(i)
If (Bee(i) is better than Bee(i-1)) RepresentativeBee = RecruitedBee(k)(i);
6. If (Iteration > sat)
If (no improvement on the site)
Save the Best Fitness;
Abandon the Site;
Bee(m) = GenerateRandomValue(All Search Space);

7. Assign remaining bees to search randomly and evaluate their fitnesses. // (n-m)

assigned to search randomly into whole solution space

8. End While

Figure 5.1 : The pseudo-code of the Bees Algorithm for combinatorial domains

(Kog, 2010).
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5.1 The Travelling Salesman Problem

Traveling Salesman Problem (TSP) is about finding a Hamiltonian path with
minimum cost. This cost is referred to as the tour length. Since it is the length of
the tour a salesman would make when visiting the cities in the order specified by
the permutation, returning at the end to the initial city.

Definition 5.1 A graph G is a composite of a set V,; of vertices and another set

E; of edges, where an edge is a set of two distinct vertices. For example we may

have V; = {1, 2, 3, 4} with E; = {1, 2}, {1, 3}, {2, 3}, {2, 4}}.

Definition 5.2 Let G = (V,E) be an undirected graph. A Hamiltonian cycle of G
is a cycle that visits every vertex v € V exactly once. Instead of Hamiltonian

cycle, we sometimes also use the term tour.

Suppose a salesman is given a set of cities associated with traveling distances (or

costs) from any city to any other city.

The salesman must visit every city only once and then return to the starting city
with minimum distances (or costs). Given a starting city, it has (V — 1) choices
for the second city, (V' — 2) choices for the third city, etc. Multiplying these
together one gets (VV — 1)! for one city and (V)! for the V cities. Another
solution is to try all the permutations (ordered combinations) and see which one
is cheapest. At the end, the order is also factorial of the number of cities. Briefly,
the solutions which appear in the literature are quite similar. The TSP is therefore
to determine a Hamiltonian tour with minimum cost that is one of the discrete
optimization problems which is classified as NP-hard combinatorial optimization

problem.

Definition 5.3 Let G = (V,E) be a graph. V is a set of m cities, V = {v,, ..., v, }
and E is aset of arcs or edges, E = {(i,j):i,j € V}.

Remember that to formulate an optimization model, we need to define a search
space and search space contains the set of feasible solutions of an optimization
problem. Furthermore, a search space can define relationships (for example

distances) between solutions.
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Very generally, a search space can be defined as a topological space.A topological
space is a generalization of metric search spaces (as well as other types of search

spaces)

Definition 5.4 A topological space is an ordered pair (X,T), where X is a set of
solutions (points) and T is a collection of subsets of X called open sets. A set Y is in

X (denoted Y < X) if every element x € Yisalsoin X (X €Y = x € X).
A topological space (X, T) has the following properties:

1. the empty set @ and whole space X are in T,

2. the intersection of two elements of T is again in T, and

3. the union of an arbitrary number of elements of T is againin T

Metric search spaces are a specialized form of topological spaces where the
similarities between solutions are measured by a distance. Therefore, in metric search
spaces, we have a set X of solutions and a real-valued distance function also called a
metric: d : X X X — Rthat assigns a real-valued distance to any combination of

two elements x, y € X. In metric search spaces, the following properties must hold:
1. d(x,y) =0,

2. d(x,x) =0,

3. d(x,y) = d(y,x),

4, d(x,z) < d(x,y) +d(y,z) (triangle inequality) where x,y,z € X.

Example 5.1 example of a metric that can be defined on R" is the Euclidean
metric. In Euclidean spaces, a solution x = (xq,...,x, is a vector of continuous

values (x; € R). The Euclidean distance between two solutions x and y is defined

d0x ) = [>06 — v,)? (5.1)

For n = 2, we have a standard 2-dimensional search space and the distance between
two elements x,y € R%. Many optimization models use metric search spaces. A
metric search space is a topological space where a metric between the elements of
the set X is defined. Therefore, we can define similarities between solutions based on

the distance d.
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Definition 5.5 (Metric TSP) Let G be a complete undirected graph G with a weights
d: E(G) - R, that satisfy the triangle inequality d(u,w)<d(u,v)+d(v,w) for
all u,v,w € V(G). E is normally associated with a distance (or cost) matrix, which
is defined as Ifd;; = d;; the problem is a symmetric TSP (STSP). Otherwise, it
becomes an asymmetric TSP (ATSP).

-
///\\\

Figure 5.2 : Triangularity in a road network. The distance from A to B is
determined by the shortest route d(4,B) < d(A4,X) + d(X,B) for
every X (Hetland, 2009).

Example 5.2: Sabrina has the following list of errands:
» Pet store (the black cat needs a new litterbox) (P)
» Greenhouse (replenish supply of deadly nightshade) (G)
» Pick up black dress from cleaners (C)
» Drugstore (eye of newt, wing of bat, toothpaste) (D)

» Target (weekly special on cauldrons) (T)

In witch which order should Sabrina do these errands in order to minimize the time

spent?
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Hamilton circuit:
HDTGPCH P

Hamilton circuit:
HCDTPGH

Figure 5.3 : The Hamiltonian path minimize the time spent.
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5.2 Proximity Queries in Metric Spaces

Let D be a set, d a distance function defined on D, and M = (D, d) a metric space.

Given a set X € D, structure the elements of X so that similarity queries can be

answered basically three types of queries in metric spaces:

1. Find objects whose feature values fall within a given range or where the distance,
using a suitably defined distance metric, from some query object falls into a

certain range (range queries).

2. Find objects whose features have values similar to those of a given query object
or set of query objects (nearest neighbor queries). In order to reduce the
complexity of the search process, the precision of the required similarity can be

an approximation (approximate nearest neighbor queries).

3. Find pairs of objects from the same set or different sets which are sufficiently
similar to each other (closest pairs queries).

5.2.1 Range query

This is the most common type of query that is meaningful almost in every
application. The query R(q, r) is specified by the query object g and the query radius
rand retrieves all objects which are within the distance of r from g, shown in

Figure5.4:

R(q,r)={u € Uld(q,uw) <7} (5.2)
u3
O ul2
u2
T O
uld s
w Sw O
u Q) 4 ,
6 ul4 D -
uls
O
~ ul
8 O 63 u8
O

Figure 5.4 : R(q,r) retrieves all objects which are within the distance of r to the
query object g (Chavez, 2001).
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5.2.2 Nearest neigbor query (NN(q))

This query finds one nearest neighbor, that is, the object closest to the given query
object. In general case where for k nearest neighbors that is, k-NN(q) query retrieves

k nearest neighbors to the object q:
NN(@) ={fueUlVveU,d(qu) <d(q,v)}
k—NN(Q@) ={R € X;|R|= kandVx € R; y €eX— R: d(q; x) < d(q; y)}

In case of k — NN(q) we are satisfied with any set of k elements satisfying the

condition. Here we select the g as a pivot element sometimes called centers.

5.3 Neighbourhood Strategies
Definition 5.4 A neighbourhood is a function
N:S - 25

that assigns to every s € S a set of neighbors N(s) €S and N(s) called the

neigbourhood of s, S is the search space containing all possible solutions.

A neighborhood definition can be viewed as a mapping that assigns to each solution
s, S a set of solutions y that are neighbors of s.

There are several exchange neighbourhood strategies and local search algorithms in
the literature. Among simple local search algorithms, the most famous are 2-Opt and
3-Opt and insert ect. that swap operators are considered as exchange neighbourhood
strategies (Aarts and Lenstra, 1997). They simply change the position of a randomly
selected city to create an altered path. By contrast, 2-Opt and 3-Opt are simple local
search algorithms that delete two or three edges, thus breaking the tour into two paths

and then reconnecting those paths later.

These approaches can be roughly divided into local (heuristic) search and global
search approaches. Some of the local search approaches are such as 2-opt, 3-opt (Lin,
1965). The global search approaches, such as simulated annealing (KirkkPatrick,
1983), Hopfield neural networks, and evolutionary algorithms (Nagata, 1997) ,
(Freisleben, 1996), (Dorigo, 1997), (Tao, 1998), (Mulhem, 1998) ,(Zhenya, 1999)
have been proposed to reduce the ill effect of these local search methods, but they

often converge more slowly compare to local search approaches (Tsai, 2002).
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2-Opt algorithm deletes two edges, thus breaking the tour into two paths, and then
reconnects those paths in the other possible way. See Figure 5.2.

Figure 5.5 : A 2-Opt move: original tour on the left and resulting tour on the right
(Johnson, 1997).

3-Opt algorithm deletes three edges, thus breaking the tour into three paths, and then
reconnects those paths in the other possible way. See Figure 5.4.
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Figure 5.6 : A 3-Opt move: original tour and resulting tour (Johnson, 1997).

We don’t necessarilly have to stop at 3-opt, we can continue with 4-opt and so on,
but each of these will take more and more time and will only yield a small
improvement on the 2- and 3-opt operator.

ANAL

\v 4 f

Figure 5.7 : The double bridge move 4-opt move is called “the crossing bridges”
(Davendra, 2010).
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6. VANTAGE POINT NEIGHBOURHOOD SEARCH IN THE BA

6.1 Preliminaries

The Nearest Neighbor field includes the study of decision making and learning based

on neighborhoods, the underlying metrics and spaces, and the matter of
computing/searching for the neighborhood about a point (Yianilos,1993). Searching
includes several forms of vantage point tree (vp-tree). It is the data structure
introduced in several forms, together with associated algorithms, as an improved

method for these difficult search problems.

Each element of metric space distances to every other element formed a perspective
on the entire space. Vantage points sometimes called pivot element cuts/ divide the

entire space and it formed a vantage point tree.
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Figure 6.1 : Vantage point decomposition (Yialinos, 1993).
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Vantage Point Trees (vp-tree) formed by simplest algorithm. Its distinguished
vantage point then splits the space into left and right space. This is building a binary
tree recursively, taking any element p as the root (vantage point) and taking the
median of the set of all distances, M =median{ d(u, p)|u € U}. The left space or left
subtree contains the elements u, which satisfied d(u,p) <M and right subtree
contains the elements u, which satisfied d(u,p) > M. The algorithm construct this

subtrees with selecting a vantage point element ramdomly.

The VPT takes O(n) space and is built in O(nlogn) worst case time, since it is
balanced. We first measure d = d(q,p). If d —r < M enter the element to the left
space, if d + r > M enter it to the right. Notice that this selecting algorithm can be

used both for discrete distance functions and continuous distance functions.
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Figure 6.2 : Example VPT with root u;; (Chavez, 2001).

6.2 The Bees Algorithm with Vantage Point Neihbourhood Search

The simplest vp-tree construction begins with selecting a pivot element, vantage
point randomly. Given a set S of metric space elements (i.e combinatorial search
space elements), the algorithm returns pointer to the root of an optimized vp-tree that
satisfied the local optimum value (for example in TSP returns the optimal tour for
each iteration of recruit phase).

The algorithm of making vantage point neighbourhood searh for the Bees Algorithm

recruitment phase is given below:
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1. Recurse the following steps until all sites are chosen.

2. Select a vantage point p ( pivot site) randomly from the all sites.
Add vantage point to the solution list; // i.e hist list

3. Calculate median of the set of all distances, M = median{ d(s,p)|s € S}.
/I return a list hist of the distances from the item to each vantage point

4. Splits site list into two list L and R. Take only left site list (L) for optimal

solution.
for (site=1; site < allSites; site ++)
if (d(site,p) < median) add site to L,

5. Select new vantage point from the L randomly. Add pivot site to the solution

list and delete selected site from all sites.
6. Go to step 3, and repeat until convergence or termination conditions are met.

7. Return solution site list for evaluating fitness.

Figure 6.3 : Proposed pseudo-code of the Vantage Point Bees Algorithm

recruitment phase.

This algorithm presents a modification of the neighbourhood search procedure in the
Bess Algorithm for combinatorial domains. We proposed vantage point neighbourhood

search procedure for the Bees Algorithm local search in the recruitment selection.

Like the original Bess Algorithm, this new algorithm required the same six parameters
(n, m, e, nsp, nep, ngh). Initially, a number of bees (n) were sent randomly to the search
space. Each bee was associated with one solution. The solutions representing the fitness
of individual bees were then ranked in descending order. The top m solutions were
regarded as selected sites. Of m sites, a number of top e site(s) were considered as elite
one(s). Each of non-elite (m-e) and elite (e) sites respectively received nsp and nep
forager bee(s) to exploit the discovered food source. All this steps are the same with the

original Bees Algorithm.

To develop a new local search in the recruitment phase we use the vantage point tree
algorithm with median calculations. The Bees Algorithm with vantage point

neihbourhood procedure is suggested as an addition to the Bees Algorithm to deal

57



with combinatorial domains. The algorithm is applied to the Travelling Salesman
Problem (TSP) to show that the algorithm is both robust and efficient.

1. Initial population with n random solution.
2. Evaluate fitness of the population.
3. While (stopping criterion not met)
4. Select sites (m) for neighbourhood search.

5. Recruit bees for selected sites (more bees for best e sites), evaluate fitnesses, select

the fittest bee from each site and shrink patches
for (k=1 ; k=e ; k++) // Elite Sites
for (Bee=I ; Bee= nep ; Bee++) // More Bees for Elite Sites
BeesPositionInNghO = GenerateVantagePointTree (Bee(i), all sites),
Evaluate Fitness = Bee(i); /Evalute the fitnees of recruited Bee(i)
If (Bee(i) is better then Bee(i-1)) RepresentativeBee = Bee(i);
for (k=e ; k=m ; k++) // Other selected sites (m-e)
for (Bee=I ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sites (m-€)
BeesPositionInNghO = GenerateVantagePointSolution (Bee(i) ,all sites),
Evaluate Fitness = Bee(i); //Evalute the fitnees o f recruited Bee(i)
If (Bee(i) is better then Bee(i-1))
RepresentativeBee = Bee(i);
6. If (Iteration > sat)
If (no improvement on the site)
Save the Best Fitness;
Abandon the Site;
Bee(m) = GenerateRandomValue(All Search Space);
7. Assign remaining bees to search randomly and evaluate their fitnesses.
/I (n-m) assigned to search randomly into whole solution space

8. End While

Figure 6.4 : Proposed Pseudo-code of the VVantage Point Bees Algorithm.
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6.3 A Proposed VPBA for TSP and Experimental Results

The performance of the VPBA is investigated by appliying the algorithm to
benchmark problem taken from TSPLIB. As an instance we choose Eil51, that is a
51-city TSP problem and we compare the test result with the performance of the
Bees Algorithm with several local search operators including simple (2 point) swap,
double (4 point) swap, insert, 3 point swap, 2-Opt and 3-Opt.

The experiments were performed using the Vantage Point Bees Algorithm to evolve its

own parameter values. It was run 50 times for each parameter setting on eil51

benchmark problem.

The computing platform used to perform the experiments was a 2.50GHz Intel(R)
Core(TM) i5-2450M CPU PC with 4 GB of RAM. The experimental programs were
coded in the Java language and compiled with Eclipse IDE. Each problem instance was
run across 50 random seeds. The parameters of Vantage Point Bees Algorithm for
eil51 TSP shown in Table 6.1:

Table 6.1 : Parameters for VPBA of eil51 TSP.

Parameter Symbols
Number of scout bees in the selected patches n=280
Number of best patches in the selected patches m =20

Number of elite patches in the selected best e=5
patches

Number of recruited bees in the elite patches nep = 80

Number of recruited bees in the non-elite best nsp =40
Number of iterations 50

Table 6.2 summarizes the results of the Bees Algorithm with (2 point) swap, double
(4 point) swap, insert, 3 point swap, 2-Opt and 3-Opt operator on eil51 TSP.
(Kog,2010).
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Table 6.2 : Performance of the Bees Algorithm with different local search methods.

The Bees Algorithm and local search methods for a 51 city TSP problem

900

800 X —e— Simple Swap
—=— Double Swap

700 —— Insert
‘L&E\V 3 point Swap
600

—x— 2-opt

f(x)

—e— 3-opt

500 -

400 ~Frrr T
1 21 41 61 81 101 121
iteration

The eil51 problem was tested 50 independent runs. From the experimental result we
select the best tour length, average tour length, and calculate standard deviation of
trails are used to measure the performance of comparative methods. where solution is
the experimental value and optimum is the optimum of a TSP problem. For each
problem the proposed algorithm can find the best tour in almost each trial and the

error rate is only 0.02% away from the optimal.

The average A,,,, for the 50 runs was computed as follows:
(F —Fre )
Dgyg = ( leB‘;r—ﬁf X 100)/R (6.1)

Where Fgyis the fitnees value generated by the VPBA in each run , F..f is te
reference fitness value from eil51 TSP in TSPLIB and R=50 is the total number of

runs,respectively. A4 denotes the standard deviation over the R runs.

Table 6.3 : Benchmark results for 51 city TSP with VPBA.

R=number of Agvg Agiq
runs
50 2,42723 1,14358
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To investigate the performance of vantage point Bees Algorithm (VPBA) on these

50 independent runs, we compare the for the best case tour (best_tour) and average
case tour (average_tour) and the worst case tour (worst_tour) is chosen see the

following graph:
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Figure 6.5 : Performance of the Vantage Point Bees Algorithm.

6.4 Conclusions

The performance of the VPBA was significantly fast in finding the optimal optimum

of tested benchmark function.

The performance of the Vantage Point Bees Algorithm was evaluated using 51-city
TSP and the results were compared to original Bees Algorithm with several local
search operators including simple (2 point) swap, double (4 point) swap, insert, 3

point swap, 2-Opt and 3.

The results can be improved and the VPBA performs well against one that uses
standard/fixed parameter values. This is attributed to the fact that parameter values
suitable for a particular problem instance can be automatically derived and varied

throughout the search process.
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