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A STUDY OF VANTAGE POINT NEIGHBOURHOOD SEARCH  IN THE 

BEES ALGORITHM  FOR COMBINATORIAL OPTIMIZATION 

PROBLEMS 

SUMMARY 

The overall aim of this work is to prove the hypothesis that the new Vantage Point 

Bees Algorithm capable of solving combinatorial optimization problems.  

In this thesis, Bees Algorithm is presented for Traveling Salesman Problem (TSP) 

with new neighbourhood local search algorithm. The Bees Algorithm for discrete 

problems including local and global search strategies used for algorithm. A new 

neighbourhood procedure was developed to deal with local search with 

combinatorial domains. 

Chapter 2 introduces to basic concepts of the additional background material needed 

for the reader to fully understand the main body of this thesis. It also defines the 

notion of optimization and the combinatorial, continuous, and mixed-variable 

optimization problems using the same common framework. It reviews the 

background literature on optimization, the definition of optimization and optimization 

techniques and combinatorial optimization problems. 

Chapter 3 reviews the definition of swarm intelligence and highlights swarm behaviours. 

Swarm Intelligence (SI) is an engineering branch and it is defined as the collective 

problem solving capabilities of social animals. There are lots of swarm-based 

optimization algorithms that mimic nature’s methods to drive a search towards the 

optimal solution. The developments of population-based algorithms are also presented 

in this chapter and background literature on swarm-based optimisation algorithms 

relevant to the work presented. This covers the Genetic Algorithms (GAs), Ant Colony 

Optimisation (ACO), Particle Swarm Optimisation (PSO) and bees-inspired algorithms 

including the Bees Algorithm itself. Behaviours of honey-bees in their natural 

environment, including food foraging are explained in details. Computational 

simulations of honey-bee behaviours are reviewed to show the link between nature 

and optimisation algorithms. Honeybees inspired algorithms are a branch of Swarm 

Intelligence algorithms, which are motivated by the fascinating behaviour of 

honeybees. Their behaviour is studied in order to develop metaheuristic algorithms 

that can mimic the bees searching abilities. 

 

Chapter 4 describes a study of the main characteristics of the standard Bees 

Algorithm. This is undertaken through an exploration of the parameters of the 

algorithm in order to help understand the methods by which its performance is 

improved. Then, it focuses on enhancements to the Bees Algorithm for local and 

global search. The algorithm is improved with the addition of dynamic recruitment, 

proportional patch shrinking and site abandonment ideas. 
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The Bees Algorithm required six parameters. There are number of scout bees (n), 

number of selected sites (m), number of top-ranking (elite) sites among the m 

selected sites (e), number of bees recruited for each non-elite site (nsp), number of 

bees recruited for each elite site (nep), and neighbourhood size (ngh) and the 

stopping criterion. The algorithm starts with the n scout bees being placed randomly 

in the search space and presents a neighbourhood search associated with a random 

search. The Bees Algorithm involves global and neighbourhood search. In step 1 the 

algorithm starts with the n scout bees being placed randomly in the search space. In 

step 2 the fitnesses of the points visited by the scout bees are evaluated. In step 4, 

bees that have the highest fitnesses are chosen as “selected bees” and those sites that 

have been visited will be chosen for neighbourhood search. Then, in steps 5 and 6, 

the algorithm conducts searches in the neighbourhood of the selected bees in terms of 

more bees for the e best bees. 

 

Chapter 5 describes applications of the Bees Algorithm in combinatorial domains. 

The Bees Algorithm as described above is applicable to both combinatorial and 

functional optimisation problems so the performance of the Bees Algorithm was 

tested on continuous and combinatorial problems. Travelling Salesman Problem 

(TSP) definition is given and several local search algorithms are suggested for the 

algorithm as well as site abandonment in continuous optimization problems. 

 

In chapter 6 The Bees Algorithm with Vantage Point Neihbourhood Search is 

described. The simplest vp-tree construction begins with selecting a pivot element, 

vantage point randomly. Given a set S of metric space elements (i.e combinatorial 

search space elements), the algorithm returns pointer to the root of an optimized vp-

tree that satisfied the local optimum value (for example in TSP returns the optimal 

tour for each iteration of recruit phase). The algorithm of making vantage point 

neighbourhood searh for the Bees Algorithm presents a modification of the 

neighbourhood search procedure in the Bees Algorithm for combinatorial domains. We 

proposed vantage point neighbourhood search procedure for the Bees Algorithm local 

search in the recruitment selection.  To develop a new local search in the recruitment 

phase we use the vantage point tree algorithm with median calculations. The Bees 

Algorithm with vantage point neihbourhood procedure is suggested as an addition to 

the Bees Algorithm to deal with combinatorial domains. The algorithm is applied to 

the Travelling Salesman Problem (TSP) to show that the algorithm is both robust and 

efficient. 
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BAKIŞ NOKTASI KOMŞULUK ARAMASININ ARI ALGORİTMASI İLE 

KOMBİNATORYAL OPTİMİZASYON PROBLEMLERİNE 

UYGULANMASI 

ÖZET 

Bu tez çalışmasının temel amacı arıların kaynak arama davranışlarını modelleyen arı 

algoritmasının, kombinatoryal uzaylarda komşuluk arama fazına yeni bir yaklaşım 

geliştirilmesidir. Geliştirilen yaklaşım Gezgin Satıcı Problemine uygulanarak Gezgin 

Satıcı Problemi çözümünün en iyilenmesi amaçlanmıştır.  

Bu tez altı bölümden oluşmaktadır ve birinci bölümde tezin amaç ve hedeflerinden 

bahsedilerek hipotezin açıklaması yapılmıştır. Tezin amacı sürü zekasına dayalı 

olarak geliştirilmiş sezgisel optimizasyon algoritmalarından biri olan arı 

algoritmalarının kesikli uzaylardaki lokal komşuluk aramasına yeni bir yaklaşım 

geliştirmektir. 

Çalışmanın ikinci bölümü optimizasyon kavramının açıklanması ve optimizasyon 

problemlerinin karakterizasyonuna ayrılmıştır. Temel tanım ve teoremlerden 

bahsedilerek kombinatoryal optimizasyon problemlerinin matematiksel modellemesi 

açıklanmıştır. Optimizasyon metotları temelde kesin çözüm üreten klasik teknikler 

ve yaklaşık çözüm üreten modern sezgisel teknikler olmak üzere iki kategoriye 

ayrılmaktadır. Gerçek hayattaki optimizasyon problemlerinin birçoğu matematiksel 

formül geliştirilerek çözülemeyecek kadar karmaşıktır. Klasik yöntemlerle böyle bir 

problem çözülmeye çalışıldığında, çözüm çok uzun sürebilir ve uzun sürmesine 

rağmen istenilen sonuca ulaşılamayabilir. Bu şekilde tanımlanması kolay fakat 

çözümü oldukça karmaşık olan NP-zor optimizasyon problemlerine çözüm aranırken 

sezgisel (heuristic) yöntemler geliştirilmiştir. Klasik yöntemler probleme özgüdür ve 

genellikle amaç fonksiyonu ve kısıtların türüne (doğrusal, doğrusal olmayan vb.) ve 

modellemede kullanılan değişkenlerin türüne (tamsayı, gerçek sayı vb.) bağlıdır.  

Sezgisel algoritmalar ise genel amaçlıdır ve değişik gerçek dünya problemlerine 

uygulanabilir. Günümüzde karmaşık optimizasyon problemlerinin modellenmesi ve 

çözülmesinde doğal benzetimlerin kullanımı oldukça artmıştır. Özellikle büyük 

boyutlu kombinatoryal, tamsayılı ve doğrusal olmayan matematiksel problemlerin 

çözülmesinde klasik optimizasyon teknikleri yetersiz kaldığından sezgisel ve doğal 

fenomenlerden esinlenilerek algoritmalar geliştirilmektedir. 

 

Kombinatoryal optimizasyon problemleri kesikli çözüm uzayına sahip problemler 

için en iyi çözümü arayan, dikkate alınan amaç fonksiyonunu en iyileyen kesikli 

karar değişkenlerinin değerlerini bulmayla uğraşan optimizasyon problemleridir. 

Kombinatoryal optimizasyon problemleri en azlama (minimization) ve en çoklama 

(maximization) olarak ikiye ayrılır. En kısa yol problemi, gezgin satıcı problemi, 

atama problemi, atölye çizelgeleme problemleri ve araç rotalama problemleri 
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kombinatoryal optimizasyon problemlerinin literatürdeki birçok uygulama 

alanlarından bazılarıdır.  

 

Üçüncü bölümde sürü zekası ve sürü zekası yaklaşımını temel alarak geliştirilmiş sürü 

tabanlı sezgisel optimizasyon algoritmaları incelenmiştir. Sürü, birbirleriyle etkileşen 

dağınık yapılı bireyler yığını anlamında kullanılır. Bireyler insan, karınca veya arı 

olarak ifade edilebilir. Sürü zekâsı N adet temsilcinin bir amaca yönelik davranışı 

gerçekleştirmek ve hedefe ulaşmak için birlikte çalışması olarak ifade edilmektedir. 

Doğadan esinlenen algoritmaların yeni bir dalı olan sürü zekâsı yaklaşımı, canlıların 

içgüdüsel problem çözme becerilerini kullanan etkili metasezgisel yöntemler 

geliştirebilmek için canlı davranışlarını matematiksel olarak modellemeye 

odaklanmıştır. Canlılar arasındaki etkileşimin bir sonucu olan kolektif zekânın en 

önemli parçalarından biri ise bireysel böcekler arasındaki bilgi paylaşımıdır. 

Kolaylıkla gözlenebilen bu “kollektif zekâ” temsilciler arasında sık tekrarlanan 

davranışlardan doğmaktadır. Temsilciler faaliyetlerini idare etmek için basit bireysel 

kurallar kullanmakta ve grubun kalan kısmıyla etkileşim yolu ile sürü amaçlarına 

ulaşmaktadır. Grup faaliyetlerinin toplamından bir çeşit kendini örgütleme 

doğmaktadır. Kuş sürülerinin havada süzülmesi ve farklı şekiller alması, karıncaların 

yiyecek arama davranışları, balık sürülerinin beraberce yüzmesi, bal arılarının 

buldukları yiyecek kaynağının kalitesi hakkındaki bilgiyi paylaşmaları ve salınım 

dansı yapmaları bu sürü davranışlarından sadece birkaçıdır. 

 

Sürü zekâsı (Swarm Intelligence) sürülerin davranışlarının nasıl modellenebileceğine 

ve sürüdeki bireyler arasındaki iletişimin mantığını çözmeye dair çalışmaları 

kapsamaktadır. Sürüde özerk yapıdaki basit bireyler kollektif bir zeka geliştirerek 

iletişim kurarlar ve birbirlerinin hareketlerini kendinden organizasyon yardımıyla 

(self-organization) önceden yapılmış herhangi bir plan olmadan yönlendirebilirler. 

Bu ise esnek ve sağlam, merkezi bir yönetim birimi olmadan yapılanmayı sağlar. 

Doğadaki bu sosyal sistemler sezgisel yöntemlerin geliştirilerek optimizasyon 

problemlerine uygulanmasıyla önemli tekniklerin ortaya çıkış noktası olmuştur. 

 

Sezgisel yöntemlerin geliştirilmesinde kullanılan yöntemlerin başında son yıllarda 

literatüre kazandırılmış sürü zekası davranışlarını modelleyen algoritmalar 

gelmektedir. Modern sezgisel algoritmaların en temeli gelişeme dayalı 

algoritmalardır. Gelişime dayalı algoritmaların birçok çeşidi vardır ve genetik 

algoritmalar bu alanda literatürdeki problemlere uygulanmaktadır. Karınca sürülerinin 

koloni halindeki davranışlarını modelleyen Karınca Kolonisi Optimizasyonu, kuş veya 

balık sürülerinin sosyal davranışlarından esinlenerek geliştirilmiş Parçacık Sürü 

Optimizasyonu ve arıların yiyecek arama davranışlarını modelleyerek geliştirilmiş olan 

Arı Algoritmaları sürü tabanlı optimizasyon algoritmalarıdır.  

 

Karınca Kolonisi Algoritmasında karınca çevre şartlarına göre besin kaynağı ile evi 

arasında gidebileceği yolları belirlemektedir. Belirlenen yollardan birinden ilk geçen 

karınca yola feremon adında kimyasal bir koku bırakmaktadır. Koku yoğunluğu zamana 

bağlı olarak azalmaktadır. Eğer yol kısa ise bu koku daha yoğun olmaktadır. İki yolun 

kesiştiği noktada karınca hangi yola gideceğini belirlemektedir. Hangi yolu seçeceğine 

ilk önce koku miktarının yoğunluğuna göre ikinci olarak ise gelişigüzel bir ölçüte 

göre karar vermektedir. Bu gelişigüzel seçimin nedeni ise bütün karıncaların aynı 

yolda gitmesini engelleyerek yeni ve daha kısa yolları keşfetmektir.  
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Sezgisel yöntemlerin bir diğeri olan Parçacık Sürü Optimizasyonu (PSO) tekniği ilk 

olarak kuş ve balık sürülerinin hareketlerinden esinlenerek doğrusal olmayan 

nümerik problemlere optimal sonuçlar bulmak için ortaya atılmıştır ve 

basitleştirilmiş sosyal sistemin bir simülasyonu olarak ortaya çıkmıştır. 

 

Arıların yiyecek arama davranışı, bilgi paylaşımı ve ezberleme özellikleri, son 

zamanlarda sürü zekâsında en ilginç araştırma alanlarından biri olmuştur. Kaliteli bir 

yiyecek kaynağı bulan arılar, yiyecek kaynağı hakkındaki yön, uzaklık ve nektar 

miktarı bilgilerini dans aracılığıyla diğer arılarla paylaşır. Bu başarılı mekânizma 

sayesinde arı kolonisi kaliteli yiyecek kaynağının olduğu bölgelere yönlendirilir.   

Dördüncü bölüm Arı Algoritmalarının temel teorisini, işleme mekanizmasını ve 

literatürdeki uygulamalarını kapsamaktadır. Arı Algoritması (AA) ilk olarak Pham 

(2005) tarafından önerilmiş olup, bal arılarının yiyecek arama davranışını taklit eden 

popülasyon tabanlı bir arama algoritmasıdır.  

Temel Arı Algoritması birçok parametre içermektedir: izci arı sayısı (n), ziyaret edilen n 

nokta içinden seçilen bölge sayısı (m), seçilen m bölge içindeki en iyi bölge sayısı (e), en 

iyi e bölgeye gönderilen arı sayısı (nep), kalan (m-e) bölgeye gönderilen arı sayısı (nsp), 

bölge boyutu (ngh) ve durdurma kriteri. Algoritma n adet izci arının araştırma uzayına 

rastgele yerleştirilmesi ile başlar. İzci arılarca ziyaret edilen noktaların uygunlukları 2. 

adımda değerlendirilir. 4. adımda en iyi uygunluk değerine sahip arılar elit arılar olarak, 

bu arılara ait bölgeler de komşuluk araması için seçilir. 5 ve 6. adımlarda seçilen arıların 

komşuluğunda araştırma başlar ve daha umut verici çözümleri temsil eden en iyi e 

bölgeye, seçilen diğer bölgelere göre daha fazla arı gönderilerek daha detaylı arama 

yapılır. 7. adımda yeni popülasyonun oluşturulması için her bölgedeki en iyi 

uygunluk değerine sahip arı seçilir. 8 nolu adımda popülasyondaki diğer arılar (n-m) 

yeni potansiyel çözümler elde etmek için rastgele olarak araştırma uzayına atanırlar. 

Her bir iterasyonun sonunda yeni popülasyon iki parçadan oluşacaktır: seçilen her bir 

bölgenin temsilcileri ve rastgele arama yapan izci arılar (Pham, 2006a, 2006b). 

Algoritma durdurma kriteri sağlanana kadar devam ettirilir. Burada 4-7 arası adımlar 

temel Arı Algoritmasının lokal arama (recruitment phase, local search) kısmını, son 

adım ise global arama kısmını oluşturmaktadır. Global arama ile rastgelelik 

(randomness) şansı devam ettireilerek algoritmanın olası yeni çöümler keşfetmesini 

sağlamak amaçlanmaktadır. 

Beşinci bölümde kombinatoryal uzaylarda Arı Algoritmasının uygulanması 

incelenmiştir. Gezgin Satıcı Problemi gibi NP-zor kombinatoryal optimizasyon 

problemleri Arı Algoritması ile en iyilenirken Arı Algoritmasının komşuluk arama 

fazında çeşitli modifikasyonlara gidilmektedir.  

Gezgin Satıcı Problemi, aralarındaki uzaklıkları bilinen noktalardan bir kez geçmek şartı 

ile tüm noktaların en az maliyetle dolaşılıp, başlangıç noktasına tekrar dönülmesini 

amaçlayan kombinatoryal bir optimizasyon problemidir. Problemin meşhur olmasının ve 

araştırmacıların yoğun ilgisini çekmesinin sebebi, gerçek hayattaki birçok soruna 

uyarlanabilir olmasıdır. 

Farlı bir komşuluk aramasının Arı Algoritmasıyla birleştirilerek Gezgin Satıcı 

Problemine uygulanması ile bu tez çalışması tamamlanmıştır. Temel Arı Algoritması 

komşuluk yaklaşımındaki uzaklık fonksiyonun tanımından dolayı sürekli optimizasyon 

problemlerine rahatça uygulanabilirken, kombinatoryal uzaylarda komşuluk araması 

çeşitli komşuluk operatörleri kullanılarak yapılabilmektedir.  
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Altıncı bölümde bakış noktası (vantage point) komşuluk aramasının Arı Algoritması 

ile Gezgin Satıcı Problemine uygulaması yapılmıştır. Gezgin Satıcı Problemi metrik 

TSP olarak tanımlanmış olup Simetrik Gezgin Satıcı Problemi metrik uzay tanımıyla 

uygulamaya alınmıştır. Metrik uzay yapısını kullanan yöntemlerin arama 

algoritmaları özellikle yüksek boyutlu uzaylarda iyi performans sergilemektedir. En 

yakın k komşu taraması, benzerlik taraması metrik uzaylarda kullanılan arama 

algoritmalarındandır. Bakış noktası (Vantage Point) seçilerek herhangi bir metrik 

uzayda Vantage Point Tree oluşturulması metrik uzaylardaki arama algoritmalarının 

bir başka uygulamasıdır. Vantage Point Arı Algoritması sırasıyla rastgele seçilen bir 

yiyecek kaynağının diğer yiyecek kaynaklarına uzaklıklarının hesaplanmasıyla 

başlar. Daha sonra bulunan uzaklıkların medyanı hesaplanır. Medyandan küçük 

uzaklıkta bulunan yiyecek kaynakları ile medyandan büyük ya da medyana eşit olan 

olan uzaklıkta bulunan yiyecek kaynakları iki ayrı kümede toplanır. Optimum 

çözüme ulaşmak için medyandan küçük olan uzaklıktaki yiyecek kaynakları 

arasından yeni gidilecek olan yiyecek noktası rastgele olarak seçilir. Çözüm 

uzayındaki tüm noktalar, yani olası tüm yiyecek kaynakları ( Gezgin Satıcı Problemi 

için gidilecek olan tüm şehirler) seçilene kadar iterasyona devam edilir. Bakış 

Noktası Arı Algortiması Temel Arı Algoritması  ile aynı parametlere sahiptir. 

Uygulanan modifikasyon lokal arama fazında olup global arama kısmı Bakış Noktası 

Arı Algoritmasında aynı şekilde geçerlidir. Adımlar, durdurma kriteri sağlanana 

kadar devam ederek optimum sürede en iyi çözüme yakınsama amacına ulaşana 

kadar algoritma çalıştırılır. 51 şehirlik Gezgin Satıcı Problemine uygulanan bu 

algoritma kısa sürede optimal değere oldukça hızlı bir yakınsama gerçekleştirmiş.  
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 INTRODUCTION 1. 

This thesis focuses on nature-inspired optimisation algorithms, in particular, the Bees 

Algorithm that developed for combinatorial domains with new local search 

procedure and applied to Traveller Salesman Problem (TSP).  

The Travelling Salesman Problem (TSP) is one of the most interesting and 

challenging combinatorial optimization problems. TSP is all about finding a 

Hamiltonian path with minimum cost. It may be defined as a problem that is a  

simple to describe, but a difficult to solve, which is why it has received so much 

attention from the scientific community. This problem is a mathematical NP-hard 

problem and has a world range of applications for many fields such as transportation, 

logistics and semiconductor industries. (Karaboga and Gorkemli, 2011). 

To solve the problem, many researchers have proposed different approaches 

including metaheuristic methods. Some animal behaviours have a potential to be 

adapted to solve TSP. In nature, there exist many processes which seek a stable state 

and these processes can be seen as natural optimization processes (Eberhart, 2001). 

Over the last 30 years, several attempts have been made to develop global 

optimization algorithms that simulate these natural optimization processes. 

In the literature a lot of metaheuristic algorithms have been applied to optimization 

problems to obtain better results in reasonable computational times. Some of these 

algorithms include Evolutionary algorithms may be considered as one of the first of 

this class of algorithms (Koç, 2010). Other algorithms include Ant Colony 

Optimization (ACO) (Dorigo et al., 1996), Particle Swarm Optimization (Kennedy 

and Eberhart, 1995) and bees-inspired algorithms including the Bees Algorithm (Pham 

et al. 2005, 2006a). 

In this thesis, Bees Algorithm is presented for Traveling Salesman Problem (TSP) 

with a new neighbourhood local search algorithm. The Bees Algorithm for 

combinatorial optimization problems including local and global search strategies 
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used for algorithm. A new neighbourhood procedure is developed to deal with local 

search with combinatorial domains. 

1.1 Purpose of Thesis 

In this thesis an efficient and robust local neighborhood search algorithm is proposed 

for combinatorial domains to increase the efficiency of the Bees Algorithm and it 

have been used successfully for the solution of the Travelling Salesman Problem 

(TSP). 

Neighborhood search is vital constituent of all swarm based optimization algorithms. 

The Bees Algorithm has originally developed for continuous domains but 

combinatorial domains need a completely different approach when it comes to 

mathematical definition of the mathematical distance (Koç, 2010). 

We aim to enhance the Bees Algorithm’s neighbourhood search procedure defined 

for combinatorial domains and improve its performance for combinatorial domains 

as its performing for continuous domains.  

For continuous domains in the original Bees Algorithm, “ngh” defines the initial size 

of neighbourhood for local searching. For example, if x is the position of an elite bee 

in the i
th

 dimension, follower bees will be replaced randomly in the interval 

iex  ngh  is set to define the boundaries of local search for new solution to improve 

the solution quality and performance (Ghanbarzadeh et al. 2007).  

For combinatorial domains, combinations of several methods have been deployed to 

perform the neighborhood search. After modifying the neighbourhood part of Bees 

algorithm we compare it with several exchange neighbourhood strategies and local 

search algorithms including simple (2 point) swap, double (4 point) swap, insert, 3 

point swap, 2-Opt and 3-Opt (Koç, 2010). 

In this thesis, the performance of the Bees Algorithm optimization with vantage point 

local search algorithm is evaluated for the Travelling Salesman Problem (TSP) and 

the results are compared with the original Bees Algorithm including several 

exchange local search strategies. 

In the context of developing an algorithm first, the biological and morphological 

features of honeybees are presented. Then original Bees Algorithm is presented with 
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vantage point local search. Then we are proposing mathematical simulation with 

experimental for understanding the succesfullnes of the modified algorithm. 

1.2 Literature Review 

The rapid development of engineering sciences and increases in the number of 

complex processes in industry and manufacturing mean that traditional optimisation 

techniques are no longer adequate to solve complex multi-variable optimisation 

problems with large numbers of parameters. These usually require intelligent 

optimisation tools such as the Bees Algorithm (Pham et al. 2005; 2006b). 

Over the years, swarm intelligence has inspired scientist to developed population-

based algorithms to deal with many complex multi-variable optimization problems. 

Because of many complex multi-variable optimization problems cannot be solved 

exactly within polynomially bounded computation times population-based 

algorithms were implemented (Koç, 2010). A recent trend in the field of Swarm 

Intelligence (Sl) is population-based algorithms and they are the utilisation of tools to 

solve optimisation problems which are defined as minimisation of cost functions. 

Among the most common population-based algorithms are Evolutionary Algorithms 

(EA), the Genetic Algorithms (GA) (Goldberg, 1989), Particle Swarm Optimization 

(PSO) (Eberhart and Kennedy 1995), Ant Colony Optimization (ACO) (Dorigo et 

al., 1991; Dorigo et al., 1996) and bees-inspired algorithms including the Bees 

Algorithm ( Pham et al., 2005, 2006) itself which mimics the foraging behaviour of 

honeybees in nature. 

Evolutionary Algorithms (Rechenberg et al, 1965), (Fogel et al, 1966) and Genetic 

Algorithms may be considered as one of the first class of this class of algorithms. 

(Koç, 2010). The Genetic Algorithms (Holland, 1975) is based on biological 

evolution and adaptation in nature. Although they are considered in population-based 

algorithms, they may also separated from swarm-based optimization due to their 

centralised control mechanism. Particle Swarm Optimization algorithm imitates the 

action of flying, swimming or walking agents keeping themselves close by other 

members in a swarm. Ant Colony Optimisation (Dorigo et al., 1991), is inspired by the 

ants’ foraging behaviour where they tend to choose the shortest route that links the food 

source and their nest which have no centralised control over their individuals.  
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In addition to these algorithms, The Bees Algorithm (Pham et al., 2005), which imitates 

the foraging behaviour of honey bees, is a bees-inspired algorithm. The algorithm has 

been widely applied to solve many complex optimisation problems and received a 

number of improvements (Ahmad, 2012). The Bees Algorithm is both implemented for 

continuous domains and combinatorial domains. For combinatorial domains, it is quite 

difficult to implement the current algorithm since it has been proposed originally for 

continuous domains. Therefore, it is interesting to explore the opportunities and 

limitations of the improved algorithm to this challenging new domain for the BA. 

Four forms of honeybee behaviour have emerged in the literature, namely, the 

foraging behaviour (Seeley, 1996), the nesting site selection (Seeley and Visscher, 

2003; Passino et al., 2008), the mating behaviour (Sung, 2003, Haddad et al., 2006) 

and the honeybee teamwork strategy (Sadik et al., 2006). These types of behaviour 

have been modelled to derive various Bees Algorithms with many applications (Otri, 

2011). 

The traveling salesman problem (TSP) is a well-known NP-hard optimization 

problem, in which we require to determine the shortest closed route passing through 

a set of n cities under the condition that each city is visited exactly once. Many 

problems in science, engineering, and bioinformatics fields, such as flexible 

manufacturing systems, routing as well as scheduling problems, physical mapping 

problems (Alizadeh, 1993), genome rearrangement (Sankoff, 1997) and phylogenetic 

tree construction (Korostensky, 2000), can be formulated as a TSP. A large number 

of approaches have been devoted to solve the TSP.  

1.3 Hypothesis 

The overall aim of this work was to prove the hypothesis that the Bees Algorithm 

with vantage point local search of neighbourhood is capable of solving Travelling 

Salesman Problem, which belongs to NP-hard optimization problem efficiently and 

robustly. We want to implement an efficient algorithm, which improves the local 

search structure of Bees Algorithm. In this thesis, Bees Algorithm is presented for 

Traveling Salesman Problem (TSP) with a new neighbourhood local search 

algorithm. The Bees Algorithm for combinatorial optimization problems including 

local and global search strategies used for algorithm. A new neighbourhood 

procedure is developed to deal with local search with combinatorial domains. 
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The objectives of this work were: 

1. To implement a new local search algorithm for combinatorial domains to 

increase the efficiency of the Bees Algorithm. 

2. To  determine whether a vantage point local search neighbourhood improves 

the efficiency of the Bees Algorithm. 

3. To compare both the original and improved versions of local search strategies 

of the Bees Algorithm for Travelling Salesman Problem. 
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 MOTIVATIONS, BACKGROUND AND BASIC DEFINITIONS  2. 

This chapter provides o comprehensive inside into background to understand the 

main body of this thesis. It also defines the notion of optimization and the 

combinatorial, continuous, and mixed-variable optimization problems using the same 

common framework.  

2.1 Optimization 

Optimization is everywhere and is one of the most important tools in different fields 

of engineering (Yang, 2010). However, many optimization problems turns out to be 

very difficult and can not be solved exactly within a polynomially bounded 

computation times ( Pham et., al 2006). The latest developments over the last two 

decedes tend to use metaheuristic optimization techniques to solve such NP-hard 

problem.  

Definition 2.1 Optimization is the search for a set of variables that either maximize 

or minimize a scalar cost function,   ( ⃗) . 

The n-dimensional decision vector,  ⃗ , consists of the n decision variables over 

which the decision maker has control. The cost function is multivariate since it 

depends on more than one decision variable, as is common of realworld 

relationships. The goal is to minimize (maximize) the cost function while satisfying 

the constraints in the problem. 

2.2 Optimization Problems 

An optimization problem defined as follows [Boyd and Vandenberghe 2004]: 

Definition 2.2 Given a function        ,find                       )        

(minimization) or       )        (maximization). 
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Function   is called objective function, its domain   is called the search space, and 

the elements of  , are called feasible solutions. A feasible solution X is a vector of 

optimization variables   {          }   A feasible solution      that minimizes 

(or maximizes) the objective function is called an optimal solution. 

Each optimisation problem consists of four essential components:  

1) An objective function or fitness function to be optimised,  

2) A set of variables that need to be calculated to find the value of the objective 

function(s),  

3) A set of constraints that determine the allowed values of the variables,  

4) The search space that encompass all possible solutions to a problem.  

With regards to these four components: 

1. The degree of nonlinearity of the objective function determines whether the 

problem solved is a linear or nonlinear problem. In addition, if we try to 

classify optimization problems according to number of objectives, then there 

are two categories: in one objective function it is called a single-objective 

problem, otherwise, in a multi-objective problem a number of objective 

functions are needed.  

2. The type of variables employed that divides problems into either continuous 

problems, or discrete and combinatorial problems, must be considered. In 

continuous problems the variables employed in the objective function are real 

values, whereas in discrete and combinatorial problems they are restricted to 

assume only discrete values (Socha, 2007) : 

 discrete optimization problems in which all the optimization 

variables ,   1, ,iX i n   are discrete, i.e., belong to a countable 

set,   ,    1, , .i iX D i n    

 continuous optimization problems in which all the optimization 

variables   ,   1,  ,iX i n   are continuous , 1, ,  iX i n   . 

 mixed-variable optimization problems in which p out of  

          variables are discrete, 
  ,    1, ,i iX D i p    and   are 

continuous  ,    1, ,iX i p p q     . 
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3. If the problem has no constraints or conditions that satisfy it, it is called an 

unconstrained problem, otherwise it is called a constrained problem where it 

contains one or more constraints that must be satisfied. 

4. The search space determines if the problem is a static/deterministic problem 

which does not change over time, or if it is a dynamic/stochastic problem where 

the search space changes over time (Blackwell and Branke, 2004), (Otri, 2011). 
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Figure 2.1 : Classification of optimization problems (Yang, 2010).  

 

Optimization problems involving a large number of finite solutions often arise in 

academia, government, and industry. However, for many real-world optimization 

problems, it is not necessary to guarantee to find an optimal solution. Often a 

reasonably good (or approximate) solution is sufficient to find. Hence, optimization 

algorithms and approximate methods were born. 

In this thesis, we mention Travelling Salesman Problem that plays an important role 

in combinatorial optimization problems. Combinatorial optimization problems are in 

fact a subset of discrete optimization problems characterised by finite size of their 

domain.  
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2.3 Combinatorial (Discrete) Optimization Problems 

The name given to combinatorial optimization problems, i.e. combinatorial, comes 

from the fact that such problems may be expressed as those of finding a permutation 

or combination of a finite set of elements. Combinatorial optimization problems are 

therefore characterized by a finite set of possible solutions and it is a branch of 

optimisation in applied mathematics and computer science, related to operations 

research, algorithm theory and computational complexity theory.  

Definition 2.3 A combinatorial optimization problem            can be defined by 

 1 2 n
X x , x , , x  is a set of variables   with domain 

1    nD D ,and constraints 

with variables defined over subsets of S where an objective function, 

1 2 n
f : D  D . D    


     

to be minimized and the set of all possible feasible assingment is  

     1 1 n n i i 
 s     x , v , , x , v  | v D ,  s satisfies all the constraints S       

S is solution space or search space of the optimization problem, as each element of 

set can be seen as a candidate solution but one has to find a solution       with 

minimum objective function value, that is    f s* f s ,          and       is 

called a globally optimal solution of      . 

Many algorithms and solution methods exist for solving combinatorial optimization 

problems. Some of them are exact methods called exact or complete algorithms that 

are guaranteed to find for optimal solutions given sufficient time called deterministic 

algorithms. Some others are approximation techniques, usually called metaheuristics, 

within stochastic algorithms which will give a good problem solution in a reasonable 

amount of time, with no guarantee to achieve optimality. 

Algorithms often compared in terms of their efficiency, robustness and speed. 

Algorithm analysis is usually compared actual running time of algorithms and the O 

notation is often used to provide an asymptotic upper bound of the complexity of an 

algorithm. An algorithm is of O(n) (Order n), where n is the size of the problem, if 

the total number of steps carried out by the algorithm is at most a constant times n. 
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In addition to analyzing the efficiency of an algorithm, it is sometimes necessary to 

know what types of algorithms exist for solving a particular problem. The field of 

complexity analysis analyzes problems rather than algorithms. Two important classes 

of problems are usually identified in this context. The first class is called P 

(polynomial time problems). It contains problems that can be solved using 

algorithms with running times such as O(n), O(log(n)) and O(  ) .They are relatively 

easy problems. Another important class is called NP-hard (non-deterministic 

polynomial time problems). NP-hard problems don’t have a a polynomial-time solution, 

for example TSP is a well-known combinatorial NP-hard optimization problem (Hosny, 

2010). 

In this study, practical solutions for TSP problem are addressed. In the literature, 

there are useful theories, solutions, and case studies to solve such combinatorial 

optimization problems and an optimization problem can be solved using 

metaheuristic algorithms. That are mostly nature-inspired and population-based. 

Population based algorithms is about basic concept of swarm intelligence theory. 

Swarm intelligence has inspired scientists to develop population-based algorithms to 

deal with complex optimisation problems.  

From a mathematical point of view, basic ingredients of a combinatorial optimization 

problem are: an instance; for example in the TSP the set of cities and the set of costs 

of traveling; a finite space of feasible solutions in the TSP, all the possible round-

trips with requested properties and a cost function over the space of feasible solutions 

in the TSP, the total cost of every round-trip. The optimization problem is solved 

when, given an instance, a feasible solution which minimizes the cost function is 

found. Swarm Intelligence (SI) and popular swarm-based algorithms in several 

optimization tasks and research problems and it have been successfully applied in a 

variety of problem domains. 
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 SWARM INTELLIGENCE  3. 

3.1 Swarm Intelligence 

Swarm Intelligence (SI) is an engineering branch and it is defined as the collective 

problem solving capabilities of social animals (Bonabeau , 1999), (Koç, 2010). There are 

variety of the interesting insect or animal behaviour in the nature, for example a flock of 

birds sweeps across the sky. A group of ants forages for food, a school of fish swims, 

turns, flees together etc. Scientists call this kind of aggregate motion “swarm behavior” 

and they studied how to model biological swarms to understand how such social animals 

interact, achieve goals, and evolve.  

             

Figure 3.1 : Fish scooling (left) and Birds flocking in V-formation (Xiong, 2010). 

Swarm Intelligence is the emergent collective intelligence of groups of simple 

autonomous agents (Bonabeau, 1999). An autonomous agents is a subsystem that 

interacts with its environment, which probably consist of other agents but acts 

independent from all others agents (Liu, 2000). 

SI is the direct result of self-organisation in which the interactions of lower-level 

components create a global-level dynamic structure that may be regarded as 

intelligence (Koç, 2010). These lower level interactions are guided by a simple set of 

rules. Individuals of colony only have local-level information about environment and 

they follow without any knowledge of global effects (Dorigo, 1999). 
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There are several other optimization techniques based on SI principles have been 

proposed in the literature, including Artificial Bee Colony (Karaboğa, 2005), 

Bacterial Foraging (Passino, 2002), Ant Colony Optimization (Dorigo, 1999), 

Artificial Immune System (De Castro, 1999) and Glowworm Swarm Optimization 

(Krishnanand and Ghose 2009). All these SI models intrinsically share the principal 

inspirational origin of the intelligence of different swarms in nature, such as swarms 

of E. coli bacteria as in Bacterial Foraging, swarms of cells and molecules as in 

Artificial Immune System (Hunt, 1996), (De Castro, 2002), (Read, 2012) and the 

amazing swarms of honeybees as in the Artificial Bee Colony System (Madureira, 

2005), (Panigrahi, 2011).  

3.2 Self-Organization in Nature 

Self-Organization is a set of dynamical mechanism whereby structures appear at the 

global level of a system from interactions of its lower-level components. The four 

basis of self-organization are positive feedback (amplification), negative feedback 

(for counter-balance and stabilization), amplification of fluctuations (ramdomness, 

errors, random walks) and multiple interactions (Dorigo, 1999). 

Positive feedback is defined as the first rule of self-organization and it is basically a 

set of simple rules that help to generate the complex structure. Negative feedback 

reduces the effects of positive feedback. Ramdomness adds an uncertainty factor to 

the system and enables the colonies to discover new solutions for example most 

challenging food sources, nest sites etc. Multible interactions between individulas are 

the last one. There should be minimum number of individulas individuals who are 

capable of interacting with each other to turn their independent local-level activities 

into one interconnected living organism. As a result of combination of these 

elements, a decentralised structure is created (Koç, 2010). 

Usually there is no central control structure dictating how the individual agents 

should behave, but local interactions between such agents often lead to the 

emergence of a global behavior. Examples of systems like this can be found in 

nature, including ant colonies, bird flocking, bee swarming, animal herding, bacteria 

molding and fish schooling. 
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Figure 3.2 : Self-organization in a termite simulation (Mitchel Resnick, 1994). 

3.3 Swarm-Based Optimization Algorithms 

There are lots of swarm-based optimization algorithms (SOAs) that mimic nature’s 

methods to drive a search towards the optimal solution. SOAs use a population of 

solutions for every iteration instead of a single solution (Koç, 2010).  This is key 

difference between SOAs and the others types of search algorithms. 

On the types of searches applied to solve the optimisation problem there are two 

possibilities: Single Point Search (Trajectory) (SPS) which is also known as a Direct 

Search (DS), and Population-Based Search (PBS) which is also known as a Swarm 

Based Search (SBS) (Otri, 2011). 

SOAs include Evolutionary Algorithms (i.e. the Genetic Algorithm), the Ant Colony 

Optimisation (ACO) and the Particle Swarm Optimisation (PSO). In this section, we 

will focus on the main chararcteristics and the ways that each algorithm generate new 

solutions.  
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3.3.1 Genetic algorithms 

Genetic Algorithms (GAs) was introduced by John Holland (Goldberg, 1989) and 

developed based on the genetic processes of biological organisms. It is based on 

natural selection and genetic recombination. It is a heuristic algorithm which 

simulates principles of evolution biology for finding solutions of complex problems 

which cannot be solved with any other exact algorithms. Genetic algorithms differ 

from the more normal optimization and search procedures in four ways (Goldberg, 

1989) : 

 GAs work with a coding of the parameter set, not the paramaters themselves; 

 GAs search from a population of points, not a single point; 

 GAs use ogjective function information, not derivatives or other auxiliary 

knowledge; 

 GAs use probabilistic transition rules, not deterministic rules. 

A genetic algorithm mimics this natural evolutionary process in its optimization 

problem cycle. A simple genetic algorithm based optimizer is characterized by 

individual encoding, individual fitness, selection mechanism and genetic operators. 

Individual encoding means that genetic algorithms encode solutions to the given 

problem as chromosomal strings and operate on these encodings during the 

optimization process. This helps minimize the amount of problem specific 

information needed during the optimization process of a genetic algorithm. An 

encoding scheme that maps each chromosome string to a unique solution is preferred 

as the genetic algorithm will not waste time evaluating multiple encodings of the 

same solution. The solution is traditionally represented by binary numbers, string of 

zeros and ones but it is possible to use any other representation. For example, for a 

traveling salesman problem (TSP), a permutation of all the cities in the problem 

instance can be used a solution encoding scheme. 

The fitness measure of the chromosome should reflect the quality of the 

corresponding solution to the problem. For example, in a TSP instance, the length of 

the overall tour represented by the permutation encoding could be assigned as the 

fitness measure.  
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The selection mechanism is used to select two individuals for crossover (mating). 

The purpose of these operations is to allow substrings in the fit individuals in a 

population to survive for many generations. Hence, the parent individuals for these 

operations are generally selected based on their fitness values. This will promote 

survival of fitter genes in the offspring and should lead to fitter individuals in the 

future generations. 

Genetic algorithms use two kinds of genetic operators called crossover and mutation. 

The crossover operator performs a probabilistic exchange of chromosomal 

information between two individuals to produce a new individual. The crossover 

operator selects two parent individuals from the population based on a selection scheme. 

The mutation operator typically picks a random individual from the population and 

performs an inversion or some other random operation on the individual 

chromosome. After a certain number of generations, the crossover operator tends to 

produce offspring that are very similar to the parent individuals. Then the mutation 

operator plays a critical role in restoring lost genetic material or providing diversity 

in the current population. Initialization – made first population which is usually generated 

randomly. This population can have any size – from a few to millions 

1. Evaluation – each population is evaluated = there is computed so-called fitness 

function of given solution. The purpose of this function is to find out to how extent 

this solution fulfills given requirements. This requirement can have different form – 

the fastest computing as possible, the best solution as possible etc. 

2. Selection – the purpose is to improve fitness value of population. So it is important 

to select just population which is the right pattern for find the best solution ≥ 

principle of evolution, only the strongest individuals can life. There are many 

methods of selection but the basic idea is still the same – selection of the best 

candidates for making the best possible future generation 

3. Crossover – this operation makes new population by making hybrid of two selected 

populations – they can be called parents. The basic idea is to combine the best 

attributes of each parent. 

4. Mutation – this operation makes the procedure of making new generation little bit 

random. It is important for possible improvement. 

5. Repeat! - generate new generation and continue from step two. 

Figure 3.3 : Pseudo-code of the GA algorithm. 
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Genetic Algorithms usually ends after a given count of iterations, after a given time 

of solving or after achieve given solutions. The solution of GAs  heavily depends on 

defined on count of populations and count of iterations.  

Count of iterations means how many times is algorithm repeated. First run has as 

input parameter random value but every next starts from the best founded solution 

from previous iterations. Count of iterations means how many times is algorithm 

repeated. First run has as input parameter random value but every next starts from the 

best founded solution from previous iteration. 

3.3.2 Ant colony optimization algorithms 

The successful swarm intelligence model is Ant Colony Optimization (ACO), which 

was introduced by M. Dorigo, and has been originally used to solve combinatorial 

optimization problems in the late 1980s. It is mimic the foraging behavior of social 

ant. It is a natural observation that a group of ‘almost blind’ ants can jointly figure 

out the shortest route between their food and their nest without any visual 

information.When searching for food, ants initially explore the area surrounding their 

nest randomly. As soon as an ant finds a food source, it evaluates the quantity and 

carries some of it back to the nest. During the return trip, the ant deposits a chemical 

pheromone trail on the ground. The quantity of pheromone deposited, which depends 

on the quantity and quality of the food, will guide other ants to the food source.  

Ant System (AS) was the first ACO approach to be published and it is an iterative 

distributed algorithm. (Dorigo et al., 1991; Dorigo et al., 1996), (Koç,2010). At each 

iteration, a set of artificial ants are considered. The general structure of any ACO 

algorithm, Starting with an initialization of the algorithm, iteration after iteration all 

ants first construct their tour and then update the pheromone trails accordingly. In an 

extended scenario i.e. an optional case, a local search method can be used to improve 

the ants' tours before updating the pheromone is positive feedback and decay is 

negative feedback. Pheromone is updated by all the ants after a complete tour is the 

key idea in this algorithm. Pheromone update (   ) for the edges of the graph (  ) 

that is joining the cities   and   is calculated as follows (Dorigo et al., 1991): 
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where   is the number of ants,         is the evaporation rate, and    
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Ants move from one city to another city according to probability. A transition 

functionis used to calculate the probability of an ant moving from the city   to  . 

Secondly, define a visible degree    ,             The probability of the kth ant 

choosing city is given by: 
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Figure 3.4 : Ants behaviour in finding the shortest route (Dorigo, 1996) 
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The basic idea and procedure of ACO algorithm: 

1. Represent the solution space by a construction graph. 

2. Set ACO parameters and initialize pheromone trails 

3. Generate ant solutions from each ant‘s walk on the construction graph mediated by 

pheromone trails. 

4. Update pheromone intensities. 

5. Go to step 3, and repeat until convergence or termination conditions are met. 

Figure 3.5 : Pseudo-code of the ACO algorithm. 

There are hundreds of implementations of the ACO metaheuristic successfully 

applied to numerous optimization problems in various domains, including famous 

NP-hard combinatorial optimization problems. While ACO was initially introduced 

with an application to the TSP as a proof-of-concept/classical application, and then 

ACO algorithms have later been successfully applied to a wide-range of optimization 

problems. 

3.3.3 Particle swarm optimization (PSO) 

Particle Swarm Optimisation (PSO) was introduced by Kennedy and Eberhart 

(Eberhart and Kennedy 1995, Kennedy et al. 1997). PSO is population-based 

stochastic optimisation technique and is inspired by the behaviour of a flock of birds. 

The algorithm consists of a swarm of particles moving in a space. Every particle holds a 

position and velocity vector representing a candidate solution to the problem. In 

addition, each particle memorises its own best position found so far and a global best 

position that is obtained through communication with its neighbour.  

Similar to evolutionary algorithms, the PSO initialises with a population of random 

solutions and  it searches for local optima by simply updating generations of individuals. 

The pseudo-code o f the PSO algorithm is given below: 
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1. Create particles (population) distributed over solution space 0 0( , )i is v . 

2. While (Stopping criterion not met) do 

3. Evaluate each particle’s position according to the objective function. 

4. If 
1k

is


 is better than 
k

is  (update pbest) 

         
1k k

i is s    

5. Determine the best particle (update gbest). 

6. Update particles’ velocities according to 

                  1    

1 1   2 2    ( )k kt k k

i i i i iv v c rand pbest s c rand pbest s       

7. Move particles to their new positions according to 

                                    
1    1k k k

i i is s v    

8. Go to step 3, until stopping criteria are satisfied. 

Figure 3.6 : Pseudo-code of the PSO algorithm (Eberhart and Kennedy, 1995). 

The algorithm starts with creating particles that are uniformly distributed throughout 

the solution space by defining the initial conditions for each agent. Each agent is 

defined with an initial position (  
  ) and an initial velocity (  

 ). Each particle has a 

memory function that remembers two pieces of information, the first piece of 

information results from the memory of the particle of its past states as the best-so-

far position that it has visited, called the local best, and the second piece of 

information results from the collective experience of all particles as the global best 

position attained by the whole swarm, called the global best. Both the local best 

position of each particle and the global best position of the entire swarm guide the 

movements of all particles towards new improved positions and eventuality to find 

the global minima/maxima (Otri, 2011). 
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3.3.4 Bees-inspired algorithms 

3.3.4.1 Bees in nature 

Honeybees inspired algorithms are a branch of Swarm Intelligence algorithms, which 

are motivated by the fascinating behaviour of honeybees. Their behaviour is studied 

in order to develop metaheuristic algorithms that can mimic the bees searching 

abilities in nature. There are several examples of such behaviour, such as waggle 

dance that is by a scout (worker) bees that has returned back to the comb with pollen 

or nectar. It is basically a language that “tells” other workers where the food is. By 

signaling both distance and direction with particular movements, the worker bee uses 

the dance language to recruit and/or direct other workers for gathering pollen and 

nectar.  

Austrian ethologist Karl von Frisch was one of the first people to translate the 

meaning of the waggle dance (Frisch, 1967). Bees communicate through this 

waggle dance, which contains the following information: 

 The direction of flower patches (angle between the sun and the patch) 

 The distance from the hive (duration of the dance) 

 The quality rating (fitness) (frequency of the dance) 

 The order of the source by pollens on their legs ( to specify the patch 

coordinates )  

 

 

Figure 3.7 : Round Dance (left) and Waggle Dance of honeybees (Frisch, 1967). 

Food sources that are at intermediate distances, between 50 and 150 meters from the 

hive, are described by the “sickle dance”. This dance is crescent-shaped and 
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represents a transitional dance between the round dance and a waggle dance 

(Winston, 1987). 

3.3.4.2 Nectar-source selection and the nest-site selection models 

A colony of honey bees can extend itself over long distances (more than 10 km) and 

in multiple directions simultaneously to exploit a large number of food sources. Bees 

Algorithm starts with scout bees being placed randomly on the search space.  

If the bees have no knowledge about the food sources in the search field they will be 

an unemployed foragers bees, so bee initializes its search as an unemployed. If the 

bee starts searching spontaneously without any knowledge, it will be a scout bee 

(Seeley, 1995). If the unemployed forager attends to a waggle dance done, the bee 

will start searching by using the knowledge from waggle dance is a recruit bee. 

When the recruit bee finds and exploits the food source, it will raise to be an 

employed forager who memorizes the location of the food source.  

The value of a food source depends on different parameters such as its proximity to 

the nest, richness of energy and ease of extracting this energy. According to the 

fitness, patches can be visited by more bees or may be abandoned. The bees evaluate 

the different patches according to nectar quality and energy usage. By performing the 

waggle dance, successful foragers share the information about the direction and 

distance to patches of flower and the amount of nectar within this flower with their 

hive mates. 

  

Figure 3.8 : The dancer bees meet other bees at the dance floor (Koç, 2010). 

Camazine presented a differential equations model to honey bees’ behaviors. 

Individual bees are represented in this model using a flow diagram for the nectar-

source selection processes and they do not have global information about the 
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distribution of nectar sources each one will comply with certain rules to determine 

where it will go to forage. This process is described by a flow diagram illustrated in 

Fig. 3.7. 

According to the model, there are seven decision making branches for the situation 

of a colony choosing between two nectar sources which nectar source to forage and 

whether to dance. There are foraging at nectar source A, foraging at nectar source B, 

dancing for nectar source    , dancing for nectar source   , unemployed foragers 

observing a dancer F, unloading nectar from source    and unloading nectar from 

source    . 

In this model, there are two factors affecting the proportion of the total forager 

number in each compartment: (1) the rate at which a bee moves from one 

compartment to another and (2) the probability that a bee takes a fork at each of the 

five branch points (diamonds), r, stands for a rate constant defined as the fraction of 

bees leaving a compartment in a given time interval equal to    „ where each T, is 

the time to get from one compartment to another. The unit of the rate constant is 

given as      (Camazine, 1991).  

The first branch point is encountered after a bee has unloaded her nectar in the hive. 

Here, bee may abandon the nectar source and return to the dance floor to follow 

another dancer.    stands for the abandoning function that denotes the probability 

that a bee may abandon the nectar source or go back to the dance floor to observe 

another dancer bee. This function depends on the profitability of the source, so   
   

represents the probability that a bee leaving   , abandoning the nectar source and 

becoming a follower bee (F).  

The second branch point is for the bees that did not abandon their source.  At this 

point, a bee decides whether to dance for the nectar source or to fly back to the nectar 

source.    denotes the probability of performing a dance for the nectar source. Its 

value also depends on the profitability o f thenectar source similar to the abandoning 

function   
  denotes the probability of performing a dance for the nectar source. 

The third branch occurs on the dance floor when a follower bee dances to decide for 

one of the nectar sources    
 , denotes the probability of a follower bee following 

dances for nectar source A and leaving for this nectar source. Thus, the probability of 
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following a dancer bee for A    
  , and the probability of following a dancer bee for 

B    
 ): 

 A A A
F

A A B B

D d
f

D d D d



                                (3.4) 

                          B B B
F

A A B B

D d
f

D d D d



              (3.5) 

The time limitation of    and     has been weighted and denoted as    and   . 

Therefore, each function indicates the proportion of the total dancing for each nectar source 

by taking into account the number of dancers and the time spent dancing.  Equations of the 

model, with some assumptions for simplicity, are written as the following set of differential 

equations (Camazine et al. 1991): 

1 2 4 3(1 )(1 )A A A

d X A A F
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dt
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A detailed derivation and discussion of these equations is given in Camazine and 

Sneyd (1991). 
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Figure 3.9 : A mathematical model shows how honey-bee colonies allocate foragers.       

                    At any moment each forager can be in one of the seven compartments 

shown (     ,     ,    , A, B, F) denote the compartments as well as 

the number of foragers in the compartments). The rate at which bees 

leave each compartment is indicated by        . The functions 

  
    

 ,   
    

  and so on, indicate the probability of taking one or the 

other fork at each of the five branch points black diamonds (Seeley 

Camazine, and Sneyd 1991) .  

Nest-site selection is another important practice which requires an optimisation 

process as nectar source selection behaviour does in honey-bee colonies. Nest-site 

selection in honey-bee colonies can be summarised as a social decision making 

process. In this process, scout bees locate several potential nest sites, evaluate them, 

and select the best one on a competitive signalling basis (Passino and Seeley, 2006). 
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In nature, honey bees have several complicated behaviors such as mating, breeding 

and foraging and these behaviors have been mimicked for several honey bee based 

optimization algorithms. Honey bees optimization algorithms are categorized in this 

work by concerning the behavioural characteristics of honey bees. There are foraging 

behaviours, marriage behaviours and Queen bee concept. 

The researches, their main contributions and applications are summarized as shown 

in Table3.1. Yonezawa and Kikuchi (1996) examine the foraging behaviour of honey 

bees and Sato and Hagiwara (1997) introduced honey-bees inspired algorithm called 

the bee system, as an improved version of genetic algorithms. This system claims to 

be inspired basically from ‘finding a source and recruiting others to i t ’ behaviour. 

Seeley and Buhrman (1999) investigated the nest site selection behaviour of honey 

bee colonies. The nest site selection process starts with several hundred scout bees. 

After the scouts return to the cluster, report their findings by means of waggle 

dances, and decide the new nest site. Luck and Teodorovic (2001) published the first 

study on Bee System based on the PhD thesis. They named the model the Bees 

System and aimed to deal with the Travelling Salesman Problem. So the algorithm 

was developed for combinatorial domains and applied to traveller salesman problems 

(TSP) that aim to find the minimum distance route. 

Yang (2005) was inspired The Virtual Bee Algorithm (VBA) by a swarm of virtual 

bees where it began with bees wandering randomly in the search space. The VBA 

initially created a population of virtual bees, where each bee was associated with a 

memory bank. Then, the functions of optimisation (objectives) were converted into 

virtual food. 

 

1. Creating a population of multi-agents or virtual bees, each bee is associated 

with a memory bank with several strings;  

2. Encoding of the objectives or optimization functions and converting into the 

virtual food;  

3. Defining a criterion fo r communicating the direction and distance in the 

similar fashion o f the fitness function or selection criterion in the genetic 

algorithms; 
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4. Marching or updating a population o f individuals to new positions fo r 

virtual food searching, marking food and the direction with virtual waggle 

dance;  

5. After certain time o f evolution, the highest mode in the number of virtual 

bees or intensity/frequency of visiting bees corresponds to the best estimates;  

6. Decoding the results to obtain the solution to the problem 

Figure 3.10 : Pseudo-code of the VBA algorithm. 

Karaboga and Basturk introduced the foraging behaviour of honey bee swarm and 

proposes a new algorithm simulating this behaviour for solving multi-dimensional 

and multi-modal optimization problems, called Artificial Bee Colony (ABC). The 

algorithm uses three types of bees, called employed bees, onlooker bees and scout 

bees and the main steps of the algorithm are: 

1. Send the employed bees onto the food sources and determine their nectar 

amounts; 

2. Calculate the probability value of the sources with which they are preferred 

by the onlooker bees;  

3. Stop the exploitation process of the sources abandoned by the bees;  

4. Send the scouts into the search area for discovering new food sources, 

randomly;  

5. Memorize the best food source found so far. 

For each flower patch, an artificial onlooker bee chooses a food source depending 

on the probability value associated with that food source,   , calculated by the 

following expression 

1

i
i SN

nN

fit
p

fit





                                                (3.13) 

where      is the fitness value of the solution i which is proportional to the nectar 

amount of the food source in the position i and SN is the number of food 

sourceswhich is equal to the number of employed bees or onlooker bee. 

In order to produce a candidate food position from the old one in memory, the 

ABC uses the following expression: 

           (       )                                      (3.14) 
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where k   {1; 2; . . . ; SN} and j   {1; 2; . . . ;D} and             are 

randomlychosen and k  . ABC also uses site abandonment, which is simply leaving 

a patch if no more improvement is observed on the patch after certain number of 

iterations. It is called ‘‘limit”. Assume that the abandoned source is       and 

 j     {1; 2; . . . ;D} then the scout discovers a new food source to be replaced 

with     . It defined in the following equation: 

   
      

                
      

 
                                 (3.15) 

1. Initialize the population of solutions    ;   {1; . . . ; SN} 

2. Evaluate the population 

3. cycle = 1 

4. repeat 

5. Produce new solutions    for the employed bees by using (7) and evaluate them 

6. Apply the greedy selection process for the employed bees 

7. Calculate the probability values Pi for the solutions    by (6) 

8. Produce the new solutions ti for the onlookers from the solutions xi selected 

depending on    and evaluate them 

9. Apply the greedy selection process for the onlookers 

10. Determine the abandoned solution for the scout, if exists, and replace it 

with  a new randomly produced solution    by (8) 

11. Memorize the best solution achieved so far 

12. cycle = cycle + 1 

13. until cycle = MCN 

Figure 3.11 : Pseudo-code of the ABC algorithm. (Koç, 2010). 

Another implementation of bee behaviour was presented by (Teodorovic, 2006) to 

solve transportation problems and was called Bee Colony Optimisation (BCO). A 

Fuzzy Bee System was also proposed in (Teodorovic et al., 2006). BCO has been 

developed for combinatorial problems and the pseudo-code of the algorithm is given 

below: 
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1. Initialization. Determine the number o f bees B, and the number of iterations I. 

Select the set of stages ST = {    ,    ,…,   }. Find any feasible solution x of 

the problem. This solution is the initial best solution. 

2. Set i 1. Until i = I, repeat the following steps: 

3. Set j 1. Until j = m, repeat the following steps: 

Forward pass: Allow bees to fly from the hive and to choose B partial        solutions 

from the set of partial solutions   at stage    . 

Backward pass: Send all bees back to the hive. Allow bees to exchange   

information about quality of the partial solutions created and to decide whether to 

abandon the created partial solution and become again uncommitted follower, 

continue to expand the same partial solution without recruiting the nestmates, or 

dance and thus recruit the nestmates before returning to the created partial 

solution. Set j: = j + 1. 

4. If the best solution    obtained during the i-th iteration is better than the 

bestknown solution, update the best known solution (x: =    . 

5. Set, i: = i + 1. 

Figure 3.12 : Pseudo-code of the BCO algorithm (Koç, 2010).
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4. THE BEES ALGORITHM 

The Bees Algorithm was developed by a group of researchers at the Manufacturing 

Engineering Centre, Cardiff University (Pham et al., 2005). It is a population based 

search algorithm that mimics the food foraging behaviour of honeybees to find the 

optimal solution for both continuous and combinatorial problem. In its basic version, the 

algorithm performs a kind of neighbourhood search combined with random search.  

The Bees Algorithm required six parameters. There are number of scout bees (n), 

number of selected sites (m), number of top-ranking (elite) sites among the m selected 

sites (e), number of bees recruited for each non-elite site (nsp), number of bees recruited 

for each elite site (nep), and neighbourhood size (ngh) and the stopping criterion. The 

algorithm starts with the n scout bees being placed randomly in the search space and 

presents a neighbourhood search associated with a random search.  

The Bees Algorithm (BA) involves global and neighbourhood search. A number of bees 

are employed to explore at random the solution space in the global search procedure that 

enables the bees to escape from local optima. This kind of search is crucial as it enables 

the bees to escape from local optima. At the same time, neighbourhood search 

concentrates exploitation around promising solutions. Both of them in population-based 

algorithms may locate solutions that gradually come closer to an optimal. Initialize 

population with random solutions;  

1. Evaluate fitness of the population. 

2. While (stopping criterion not met) 

3. Select sites for neighbourhood search.  

4. Recruit bees for selected sites (more bees for e best sites) and evaluate fitnesses.  

5. Select the fittest bee from each site to form the new population. 

6. Assign remaining bees to search randomly and evaluate their fitnesses. 

7.  End While. 

Figure 4.1 : Pseudo-code of the Bees Algorithm (Koç, 2010). 
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Table 4.1 : Basic parameters of the Bees Algorithm. (Koç, 2010). 

Parameter Symbols 

Number of scout bees in the selected patches n 

Number of best patches in the selected patches m 

Number of elite patches in the selected best 

patches 

e 

Number of recruited bees in the elite patches 

 

nep 

Number of recruited bees in the non-elite best 

patches 

               nsp 

 The size of neighborhood for each patch 

 

ngh 

Number of iterations  Maxiter 

 
In step 1 the algorithm starts with the n scout bees being placed randomly in the 

search space. In step 2 the fitnesses of the points visited by the scout bees are 

evaluated. In step 4, bees that have the highest fitnesses are chosen as “selected bees” 

and those sites that have been visited will be chosen for neighbourhood search. Then, 

in steps 5 and 6, the algorithm conducts searches in the neighbourhood of the 

selected bees in terms of more bees for the e best bees. 

 

Figure 4.2 : Flowchart of the basic Bees Algorithm (Otri, 2011). 
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Figure 4.3 : Flowchart of the basic Bees Algorithm. 

Example 4.1: Step1: Initialize population with random solutions with n = 20. 

Evaluate fitness of the population. 

 

Figure 4.4 : 20 scout bees are placed randomly in the search space. 
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Step 2: Select the parameters of Bees Algorithm: 

 n = 20 number of scout bees 

 m = 3 number of sites selected out of n visited sites 

 e = 1 number of best sites out of m selected sites 

 nep = 7 number of bees recruited for best e sites 

 nsp = 2 number of bees recruited for other (m-e) selected sites 

 ngh = 3 neighbourhood size     ± ngh 

 

Figure 4.5 : m=3 selected bees for neighbourhood search. 

  

 

Recruited bees for selected sites (more bees for best e sites) and 

evaluate fitnesses. 

 The best e sites (more bees for best e sites) 

Select sites for neighbourhood search. (Bees that have the highest 

fitnesses are chosen).   
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Figure 4.1 : Recruitment phase for local search.  

 

 

 

Figure 4.2 : Generate new population with local and global search phase.  

 

Select the fittest bee from each patch. ( For each patch, only the bee with the 

highest fitness will be selected to form the next bees population. ) 

Assing remaining bees to search randomly and evaluate their 

fitnesses. 

New Population 
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Figure 4.3 : Simple example of Bees Algorithm with n=10 scout bees (Koç, 2010). 

4.1 Neighbourhood / Local Search of Bees Algorithm 

As in all the evolutionary algorithms, the neighbourhood search is one of the 

essential parts of swarm-based algorithms as well as for the Bees Algorithm. In the 

Bees Algorithm, the searching process in a selected site is similar to that of the 

foraging field exploitation of honey bee colonies in nature. The harvesting process as 

explained in previous chapter includes a monitoring phase for the purpose of 

recruiting more bees to selected site that can be used as a neighbourhood search in 
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the Bees Algorithm. Essentially, when a scout bee finds a good field (good solution), 

she advertises her field to more bees. As we explained in the previous chapter the 

nesting-site selection of honeybees behaviour has been used as a neighbourhood 

search in the proposed Bees Algorithm. 

After ranking the sampled solutions and locating the most promising ones (i.e. the 

highest ranking locations), other bees are recruited to search the fitness landscape in 

the neighbourhood of these solutions. A neighborhood search sites of size ngh is 

selected which will be used to update the m bees declared. This is important as there 

might be better solutions than the original solution in the neighborhood area. 

In the neighbourhood search procedure, more forager bees are recruited in the 

neighbourhood of the elite (e) sites, and fewer bees around the non-elite (m-e) sites 

and thanks to this strategy the foraging effort was concentrated on the very best (i.e., 

elite) solutions. For every selected site, bees are randomly distributed to find a better 

solution within the given neighbourhood area (i.e., flower patch size). As shown in 

Fig. 4.7, only the fittest (best) bee is chosen as a representative bee and the centre of 

the neighbourhood shifted to the position of the best bee. (i.e from A to B). 

 

 

Figure 4.4 : Graphical Explanation of the Neighbourhood Search (Otri, 2011). 
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4.2 Improvements to the Bees Algorithm 

We purpose to impove the efficiency of the Bees Algorithm in local search and 

global search with dynamic recruitment, proportional shrinking for selected sites and 

site abandonment.  

Dynamic recruitment aim to improve the way that the bees are recruited into a 

selected site and it is deal with the local search space faster. With dynamic 

recruitment strategy if there is any improvement on the recruited site according to 

original bee, the recruited bee will replace the original and path will move to a new 

position around the fittest and new position. 

Proportional shrinking idea defined with which the initial patch size is set as a 

starting patch size in the first iteration of the algorithm. Shrinking Constant (sc) is 

called the to a contraction of patch sizes of all selected sites (m)  in every iteration of 

the algorithm proportional to a constant ratio. Depending on the iteration (i), the 

patch size of the site m        )) is calculated as a contraction from the previous 

size           )  proportional to the value of sc. 

where sc                   ))      

 

 

      
m

m

m m m

1                                             Ngh i
Ngh (i)

1         Ngh i Ngh i 1 1 SC    Ngh ( ) 0

i InitialPatchSize

i and i

  
 

    

      (4.1) 

 

This strategy is proposed to improve solution quality and evoluation time. To 

improve the efficiency of local search we use site abondenment strategy. If there is 

no improvement of the fitness, value of the fittest bee after a certain number of 

iterations the site will be abondened.  

The site abondenment strategy is proposed to escape from local in many complex 

optimization problems. Investigations are also given on details of the local and global 

search methods used in the algorithm. Also, details of the improvements made to 

local and global search methods are presented, including dynamic recruitment, 

proportional shrinking and abandonment strategies (Koç, 2010). 
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1. Initial population with n random solution. 

2. Evaluate fitness of the population. 

3. While (stopping criterion not met) 

4. Select sites (m) for neighbourhood search. 

5. Recruit bees for selected sites (more bees for best e sites), evaluate fitnesses, select the 

fittest bee from each site and shrink patches 

       for (k=l ; k=e ; k++) // Elite Sites 

          for (Bee=l ; Bee= nep ; Bee++) // More Bees for Elite Sites 

       BeesPositionlnNghO = GenerateRandomValueInNgh (from x+ngh to x-ngh), 

          Evaluate Fitness = Bee(i); //Evalute the fitnees of recruited Bee(i) 

         If (Bee(i) is better then Bee(i-l)) RepresentativeBee = Bee(i); 

     for (k=e ; k=m ; k++) // Other selected sites (m-e) 

         for (Bee=l ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sites (m-e) 

        BeesPositionlnNghO = GenerateRandomValuelnNgh(from x+ngh to x-ngh); 

             Evaluate Fitness = Bee(i); //Evalute the fitnees o f recruited Bee(i) 

               If (Bee(i) is better then Bee(i-l))  

         RepresentativeBee = Bee(i); 

6. for (patch=l; patch=m; patch++)  

     // Shrink all patches (m) proportional to SC 

                         (      ); 

7. If (Iteration > sat) 

      If (no improvement on the site) 

       Save the Best Fitness; 

       Abandon the Site; 

        Bee(m) = GenerateRandomValue(All Search Space); 

8. Assign remaining bees to search randomly and evaluate their fitnesses.        

   // (n-m) assigned to search randomly into whole solution space 

Figure 4.5 : Pseudo-code of the improved Bees Algorithm (Koç, 2010). 
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      4.3 Bees Algorithm Applications 

The Bees Algorithm as described above is applicable to both combinatorial and 

functional optimisation problems so the performance of the Bees Algorithm was 

tested on continuous and combinatorial problems. 

     4.3.1 Continuous domains applications 

Several continuous applications of the Bees Algorithm are including functional 

optimization problems with mathematical test functions are given below: 

 De Jong's function, Shekel’s Foxholes and Schwefel’s function. (Koç, 

2010). These problems were used to test the Bees Algorithm and establish 

the correct values of its parameters and seven problems for benchmarking 

the algorithm. 

 Mathematical benchmarks functions (Ghanbarzadeh 2007; Koç 2010; 

Sholedolu 2009)  and eight benchmark functions (Mathur, 2000).  

The results compared with those obtained using other optimisation 

algorithms. The test functions and their optima are shown in below: 

Table 4.2 : Test Functions (Mathur, 2000).
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Table 4.3 : Results (Mathur, 2000). 

 

Table 4.2 presents the results obtained by the Bees Algorithm and those by the 

deterministic Simplex method (SIMPSA), the stochastic simulated annealing 

optimisation procedure (NE SIMPSA, the Genetic Algorithm (GA) and the Ant 

Colony System (ANTS) (Mathur, 2000). Again, the numbers of points visited shown 

are averages for 100 independent runs. 

 Neural network training for a variety of industrial applications and recursive filter 

design. 

 Mechanical design like desing of welded beam, desing of coil spring (Ang 2009; 

Pham and Ghanbarzadeh 2007),  

 Wood defect classification (Pham and Haj Darwish 2010; Pham, 2007c; Pham 

2006b). 

 Environmental/Economic Power Dispatch Problems (EEDP) (Lee and Haj Darwish 

2008)  

 Chemical engineering process (Pham et al., 2008)  

 Digital Filter Optimization 

 Function Optimizastion 
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      4.3.2 Combinatorial domains applications 

There are lots of applications of Bees Algorithm to a combinatorial optimisation 

problem in the literature is given below below: 

 Job Shop Scheduling Problem (JSSP) (Pham, 2007b) 

 Wood defect classification (Pham and Haj Darwish 2010; Pham et al., 

2007c; Pham et al., 2006b). 

 Printed Circuit Board (PCB) problem (Ang, 2010) 

Before we focused on details of the Bees Algorithm for combinatorial domains 

we will give, a important no free lunch theorem that is about mathematical 

analysis of computing, computational complexity and optimization problems. 

4.4 No Free Lunch Theorem 

Theorem 4.5.1 (Weak NFL) Given search algorithms  ,   and function f     , 

there exists a function        such that      (     )        ( 
      )       

      is cardinality. 

Definition: A performance measure with respect to a set       is any function 

   defined over the collection of all search algorithms such that       is a 

function of the multiset {{           }}. Search algorithms perform equally 

well on F if they are evaluated identically by every performance measure with 

respect to F. 

Theorem 4.5.2 (NFL) Every efficient search algorithm performs equally well on 

F if and only if F is closed.  

No-free-lunch theorems may be of theoretical importance, and they can also have 

important implications for algorithm development in practice. The theorem says 

that, the fact there is no universally efficient algorithm so if algorithm A 

performed better than algorithm B in some class of problems, then algorithm B 

performed better than algorithm A in some other class of problems. On average, 

each algorithm produced similar performance in respect to other algorithms. In 

addition, the performance of an algorithm on a set of benchmarking problems did 

not guarantee giving similar performance on a different class of problems 

(Wolbert 1997). 

http://en.wikipedia.org/wiki/Computational_complexity
http://en.wikipedia.org/wiki/Optimization_%28mathematics%29
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Obviously, in reality, the algorithms with problem-specific knowledge typically 

work better than random search, and that there is no universally generic tool that 

works best for all the problems. Therefore, we have to seek balance between 

speciality and generality, between algorithm simplicity and problem complexity, 

and between problem-specific knowledge of optimization problems. 
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5. BEES ALGORITHM FOR COMBINATORIAL SPACES 

Combinatorial optimization problems have attracted much attention of researchers 

over the years can generally be defined as problems that require searching for the 

best solution among a large number of finite discrete candidate solutions. 

Approximation algorithms, like population-based algorithms are techniques that 

solve ‘NP-hard’ CO problems in a reasonable amount of computation time. 

In this chapter, the Bees Algorithm is presented for combinatorial domains and it was 

tested on Travelling Salesman Problem with different neighbourhood strategies. 

In the basic version of the Bees Algorithm, a kind of neighbourhood search 

combined with a random search to enable it to locate the global optimum. In 

combinatorial domains, unlike continuous domains, there is no mathematical 

distance definition for neighbourhood search. So we use similar but not same version 

of the Bees Algorithm for continuous domains as we presented in the previous 

chapter.  

In combinatorial domains, the patch idea of the Bees Algorithm for continuos 

domians replaced by a local search operator to be able to perform a local search the 

main difference of combinatorial domains. Removing the shrinking procedure is also 

another difference. However, the abondonment procedure can be used in both of the 

solution spaces to improve the global search part. The pseudo-code of the Bees 

Algorithm for combinatorial domains is given in Figure5.1. 
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1. Initial population with n random solution; random(Sequence(n)). 

2. Evaluate fitness of the population. 

3. While (stopping criterion not met) 

4. Select sites (m) for neighbourhood search. 

5. Recruit bees for selected sites (more bees for best e sites), evaluate fitnesses, select the 

fittest bee from each site and shrink patches 

for (k=l ; k=e ; k++) // Elite Sites 

for (i=l ; i= nep ; i++) // More Bees for Elite Sites 

RecruitedBee(k)(i) = NeighbourhoodOperator(Sequence(k)); 

Evaluate Fitness = RecruitedBee(k)(i); //Evalute the fitnees of recruited Bee(i) 

   If (Bee(i) is better than Bee(i-l)) RepresentativeBee = RecruitedBee(k)(i); 

     for (k=e ; k=m ; k++) // Other selected sites (m-e) 

     for (Bee=l ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sites (m-e) 

     RecruitedBee(k)(i) = NghOperator(Sequence(k)); 

Evaluate Fitness = RecruitedBee(k)(i); //Evalute the fitnees of recruited Bee(i) 

If (Bee(i) is better than Bee(i-l)) RepresentativeBee = RecruitedBee(k)(i); 

6. If (Iteration > sat) 

If (no improvement on the site) 

Save the Best Fitness; 

Abandon the Site; 

Bee(m) = GenerateRandomValue(All Search Space); 

7. Assign remaining bees to search randomly and evaluate their fitnesses. // (n-m) 

assigned to search randomly into whole solution space 

8. End While 

Figure 5.1 : The pseudo-code of the Bees Algorithm for combinatorial domains 

(Koç, 2010). 
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     5.1 The Travelling Salesman Problem  

Traveling Salesman Problem (TSP) is about finding a Hamiltonian path with 

minimum cost. This cost is referred to as the tour length. Since it is the length of 

the tour a salesman would make when visiting the cities in the order specified by 

the permutation, returning at the end to the initial city. 

Definition 5.1 A graph G is a composite of a set    of vertices and another set 

   of edges, where an edge is a set of two distinct vertices. For example we may 

have     = {1, 2, 3, 4} with    = {{1, 2}, {1, 3}, {2, 3}, {2, 4}}. 

Definition 5.2 Let G = (V,E) be an undirected graph. A Hamiltonian cycle of G 

is a cycle that visits every vertex v   V exactly once. Instead of Hamiltonian 

cycle, we sometimes also use the term tour. 

Suppose a salesman is given a set of cities associated with traveling distances (or 

costs) from any city to any other city. 

The salesman must visit every city only once and then return to the starting city 

with minimum distances (or costs). Given a starting city, it has       choices 

for the second city,       choices for the third city, etc. Multiplying these 

together one gets         for one city and       for the V cities. Another 

solution is to try all the permutations (ordered combinations) and see which one 

is cheapest. At the end, the order is also factorial of the number of cities. Briefly, 

the solutions which appear in the literature are quite similar. The TSP is therefore 

to determine a Hamiltonian tour with minimum cost that is one of the discrete 

optimization problems which is classified as NP-hard combinatorial optimization 

problem. 

Definition 5.3 Let G = (V,E) be a graph. V is a set of m cities, V = {  , …,   } 

and E is a set of arcs or edges,     {              }.  

Remember that to formulate an optimization model, we need to define a search 

space and search space contains the set of feasible solutions of an optimization 

problem. Furthermore, a search space can define relationships (for example 

distances) between solutions. 
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Very generally, a search space can be defined as a topological space.A topological 

space is a generalization of metric search spaces (as well as other types of search 

spaces) 

Definition 5.4 A topological space is an ordered pair        where   is a set of 

solutions (points) and   is a collection of subsets of   called open sets. A set   is in 

X (denoted      ) if every element     Y is also in X (x   Y   x   X).  

A topological space       has the following properties: 

1. the empty set   and whole space   are in  , 

2. the intersection of two elements of T is again in  , and 

3. the union of an arbitrary number of elements of   is again in  . 

Metric search spaces are a specialized form of topological spaces where the 

similarities between solutions are measured by a distance. Therefore, in metric search 

spaces, we have a set X of solutions and a real-valued distance function also called a 

metric:                that assigns a real-valued distance to any combination of 

two elements x, y   X. In metric search spaces, the following properties must hold: 

1.             

2.             

3.                  

4.                                                                

            example of a metric that can be defined on    is the Euclidean 

metric. In Euclidean spaces, a solution x = (          is a vector of continuous 

values (      ). The Euclidean distance between two solutions   and   is defined   

2

 

1

( , ) ( )
n

i i

i

d x y x y


                           (5.1) 

For n = 2, we have a standard 2-dimensional search space and the distance between 

two elements       . Many optimization models use metric search spaces. A 

metric search space is a topological space where a metric between the elements of 

the set X is defined. Therefore, we can define similarities between solutions based on 

the distance d. 
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Definition 5.5 (Metric TSP) Let G be a complete undirected graph G with a weights   

             that satisfy the triangle inequality      ,    ,  , d u w d u v d v w   for 

all            . E is normally associated with a distance (or cost) matrix, which 

is defined as                 the problem is a symmetric TSP (STSP). Otherwise, it 

becomes an asymmetric TSP (ATSP).  

 

Figure 5.2 : Triangularity in a road network. The distance from A to B is                                        

determined by the shortest route                        for 

every X  (Hetland, 2009). 

Example 5.2: Sabrina has the following list of errands: 

 Pet store (the black cat needs a new litterbox) (P) 

 Greenhouse (replenish supply of deadly nightshade) (G) 

 Pick up black dress from cleaners (C) 

 Drugstore (eye of newt, wing of bat, toothpaste) (D) 

 Target (weekly special on cauldrons) (T) 

 

In witch which order should Sabrina do these errands in order to minimize the time 

spent? 
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Figure 5.3 : The Hamiltonian path minimize the time spent. 

 



51 

 

5.2 Proximity Queries in Metric Spaces 

Let D be a set, d a distance function defined on  , and           a metric space. 

Given a set    , structure the elements of   so that similarity queries can be 

answered basically three types of queries in metric spaces: 

1. Find objects whose feature values fall within a given range or where the distance, 

using a suitably defined distance metric, from some query object falls into a 

certain range (range queries). 

2. Find objects whose features have values similar to those of a given query object 

or set of query objects (nearest neighbor queries). In order to reduce the 

complexity of the search process, the precision of the required similarity can be 

an approximation (approximate nearest neighbor queries). 

3. Find pairs of objects from the same set or different sets which are sufficiently 

similar to each other (closest pairs queries). 

5.2.1 Range query 

This is the most common type of query that is meaningful almost in every 

application. The query        is specified by the query object   and the query radius 

  and retrieves all objects which are within the distance of r from q, shown in 

Figure5.4: 

              = {   |        }                                      (5.2) 

 

Figure 5.4 :        retrieves all objects which are within the distance of   to the 

query object                . 
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5.2.2 Nearest neigbor query (NN(q)) 

This query finds one nearest neighbor, that is, the object closest to the given query 

object. In general case where for k nearest neighbors that is, k-NN(q) query retrieves 

k nearest neighbors to the object q: 

      {   |                    } 

        {     | |                                         }  

In case of         we are satisfied with any set of k elements satisfying the 

condition. Here we select the q as a pivot element sometimes called centers. 

5.3 Neighbourhood Strategies  

Definition 5.4 A neighbourhood is a function  

       

that assigns to every                                and N(s) called the 

neigbourhood of s, S is the search space containing all possible solutions. 

A neighborhood definition can be viewed as a mapping that assigns to each solution 

s¸ S a set of solutions y that are neighbors of s. 

There are several exchange neighbourhood strategies and local search algorithms in 

the literature. Among simple local search algorithms, the most famous are 2-Opt and 

3-Opt and insert ect. that swap operators are considered as exchange neighbourhood 

strategies (Aarts and Lenstra, 1997). They simply change the position of a randomly 

selected city to create an altered path. By contrast, 2-Opt and 3-Opt are simple local 

search algorithms that delete two or three edges, thus breaking the tour into two paths 

and then reconnecting those paths later.  

These approaches can be roughly divided into local (heuristic) search and global 

search approaches. Some of the local search approaches are such as 2-opt, 3-opt (Lin, 

1965). The global search approaches, such as simulated annealing (KirkkPatrick, 

1983),  Hopfield neural networks, and evolutionary algorithms (Nagata, 1997) , 

(Freisleben, 1996), (Dorigo, 1997), (Tao, 1998), (Mulhem, 1998) ,(Zhenya, 1999) 

have been proposed to reduce the ill effect of these local search methods, but they 

often converge more slowly compare to local search approaches (Tsai, 2002).  
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2-Opt algorithm deletes two edges, thus breaking the tour into two paths, and then 

reconnects those paths in the other possible way. See Figure 5.2. 

 

Figure 5.5 : A 2-Opt move: original tour on the left and resulting tour on the right 

(Johnson, 1997). 

3-Opt algorithm deletes three edges, thus breaking the tour into three paths, and then 

reconnects those paths in the other possible way. See Figure 5.4. 

 

Figure 5.6 : A 3-Opt move: original tour and resulting tour (Johnson, 1997). 

We don’t necessarilly have to stop at 3-opt, we can continue with 4-opt and so on, 

but each of these will take more and more time and will only yield a small 

improvement on the 2- and 3-opt operator. 

 

 

Figure 5.7 : The double bridge move 4-opt move is called “the crossing bridges” 

(Davendra, 2010). 
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6. VANTAGE POINT NEIGHBOURHOOD SEARCH IN THE BA 

6.1 Preliminaries 

The Nearest Neighbor field includes the study of decision making and learning based 

on neighborhoods, the underlying metrics and spaces, and the matter of 

computing/searching for the neighborhood about a point (Yianilos,1993). Searching 

includes several forms of vantage point tree (vp-tree). It is the data structure 

introduced in several forms, together with associated algorithms, as an improved 

method for these difficult search problems. 

Each element of metric space distances to every other element formed a perspective 

on the entire space. Vantage points sometimes called pivot element cuts/ divide the 

entire space and it formed a vantage point tree.  

 

Figure 6.1 : Vantage point decomposition (Yialinos, 1993). 
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Vantage Point Trees (vp-tree) formed by simplest algorithm. Its distinguished 

vantage point then splits the space into left and right space. This is building a binary 

tree recursively, taking any element p as the root (vantage point) and taking the 

median of the set of all distances, M =      {       |   }. The left space or left 

subtree contains the elements u, which satisfied           and right subtree 

contains the elements u, which satisfied          . The algorithm construct this 

subtrees with selecting a vantage point element ramdomly. 

The VPT takes O(n) space and is built in O(nlogn) worst case time, since it is 

balanced. We first measure             If       enter the element to the left 

space, if       enter it to the right. Notice that this selecting algorithm can be 

used both for discrete distance functions and continuous distance functions. 

 

Figure 6.2 : Example VPT with root                     

 6.2 The Bees Algorithm with Vantage Point Neihbourhood Search 

The simplest vp-tree construction begins with selecting a pivot element, vantage 

point randomly. Given a set S of metric space elements (i.e combinatorial search 

space elements), the algorithm returns pointer to the root of an optimized vp-tree that 

satisfied the local optimum value (for example in TSP returns the optimal tour for 

each iteration of recruit phase).  

The algorithm of making vantage point neighbourhood searh for the Bees Algorithm 

recruitment phase is given below: 
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1. Recurse the following steps until all sites are chosen. 

2. Select a vantage point    ( pivot site) randomly from the all sites. 

      Add vantage point to the solution list; // i.e hist list 

3. Calculate median of the set of all distances, M =       {       |   }. 

     // return a list hist of the distances from the item to each vantage point  

4. Splits site list into two list L and R. Take only left site list (L) for optimal 

solution. 

       for (site=1; site < allSites; site ++)  

       if (            median) add site to L,  

5. Select new vantage point from the L randomly. Add pivot site to the solution 

list and delete selected site from all sites. 

6. Go to step 3, and repeat until convergence or termination conditions are met. 

7. Return solution site list for evaluating fitness.  

Figure 6.3 : Proposed pseudo-code of the Vantage Point Bees Algorithm 

recruitment phase  

This algorithm presents a modification of the neighbourhood search procedure in the 

Bess Algorithm for combinatorial domains. We proposed vantage point neighbourhood 

search procedure for the Bees Algorithm local search in the recruitment selection.  

Like the original Bess Algorithm, this new algorithm required the same six parameters 

(n, m, e, nsp, nep, ngh). Initially, a number of bees (n) were sent randomly to the search 

space. Each bee was associated with one solution. The solutions representing the fitness 

of individual bees were then ranked in descending order. The top m solutions were 

regarded as selected sites. Of m sites, a number of top e site(s) were considered as elite 

one(s). Each of non-elite (m-e) and elite (e) sites respectively received nsp and nep 

forager bee(s) to exploit the discovered food source. All this steps are the same with the 

original Bees Algorithm. 

To develop a new local search in the recruitment phase we use the vantage point tree 

algorithm with median calculations. The Bees Algorithm with vantage point 

neihbourhood procedure is suggested as an addition to the Bees Algorithm to deal 
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with combinatorial domains. The algorithm is applied to the Travelling Salesman 

Problem (TSP) to show that the algorithm is both robust and efficient.  

1. Initial population with n random solution. 

2. Evaluate fitness of the population. 

3. While (stopping criterion not met) 

4. Select sites (m) for neighbourhood search. 

5. Recruit bees for selected sites (more bees for best e sites), evaluate fitnesses, select 

the fittest bee from each site and shrink patches 

       for (k=l ; k=e ; k++) // Elite Sites 

          for (Bee=l ; Bee= nep ; Bee++) // More Bees for Elite Sites 

       BeesPositionlnNghO = GenerateVantagePointTree (Bee(i), all sites), 

        Evaluate Fitness = Bee(i); //Evalute the fitnees of recruited Bee(i) 

         If (Bee(i) is better then Bee(i-l)) RepresentativeBee = Bee(i); 

     for (k=e ; k=m ; k++) // Other selected sites (m-e) 

         for (Bee=l ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sites (m-e) 

        BeesPositionlnNghO = GenerateVantagePointSolution (Bee(i) ,all sites), 

             Evaluate Fitness = Bee(i); //Evalute the fitnees o f recruited Bee(i) 

               If (Bee(i) is better then Bee(i-l))  

         RepresentativeBee = Bee(i); 

6. If (Iteration > sat) 

      If (no improvement on the site) 

       Save the Best Fitness; 

       Abandon the Site; 

        Bee(m) = GenerateRandomValue(All Search Space); 

7. Assign remaining bees to search randomly and evaluate their fitnesses.        

   // (n-m) assigned to search randomly into whole solution space 

8. End While 

Figure 6.4 : Proposed Pseudo-code of the Vantage Point Bees Algorithm.  
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6.3 A Proposed VPBA for TSP and Experimental Results 

The performance of the VPBA is investigated by appliying the algorithm to 

benchmark problem taken from TSPLIB. As an instance we choose Eil51, that is a 

51-city TSP problem and we compare the test result with the performance of the 

Bees Algorithm with several local search operators including simple (2 point) swap, 

double (4 point) swap, insert, 3 point swap, 2-Opt and 3-Opt.    

The experiments were performed using the Vantage Point Bees Algorithm to evolve its 

own parameter values. It was run 50 times for each parameter setting on eil51 

benchmark problem. 

The computing platform used to perform the experiments was a 2.50GHz Intel(R) 

Core(TM) i5-2450M CPU PC with 4 GB of RAM. The experimental programs were 

coded in the Java language and compiled with Eclipse IDE. Each problem instance was 

run across 50 random seeds. The parameters of Vantage Point Bees Algorithm for 

eil51 TSP shown in Table 6.1: 

Table 6.1 : Parameters for VPBA of eil51 TSP. 

Parameter Symbols 

Number of scout bees in the selected patches n = 80 

Number of best patches in the selected patches m = 20 

Number of elite patches in the selected best 

patches 

e = 5 

Number of recruited bees in the elite patches 

 

nep = 80 

Number of recruited bees in the non-elite best 

patches 

         nsp = 40 

 Number of iterations                       50 

  

Table 6.2 summarizes the results of the Bees Algorithm with (2 point) swap, double 

(4 point) swap, insert, 3 point swap, 2-Opt and 3-Opt operator on eil51 TSP. 

(Koç,2010). 
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Table 6.2 : Performance of the Bees Algorithm with different local search methods. 

 

The eil51 problem was tested 50 independent runs. From the experimental result we 

select the best tour length, average tour length, and calculate standard deviation of 

trails are used to measure the performance of comparative methods. where solution is 

the experimental value and optimum is the optimum of a TSP problem. For each 

problem the proposed algorithm can find the best tour in almost each trial and the 

error rate is only 0.02% away from the optimal. 

The average       for the 50 runs was computed as follows: 

      ( ∑
          

    

 
       )  ⁄                                        (6.1) 

Where    is the fitnees value generated by the VPBA in each run ,      is te 

reference fitness value from eil51 TSP in TSPLIB and R=50 is the total number of 

runs,respectively.      denotes the standard deviation over the R runs. 

 

Table 6.3 : Benchmark results for 51 city TSP with VPBA. 

R=number of 

runs 

          

50 2,42723 
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To investigate the performance of vantage point Bees Algorithm (VPBA) on these 

50 independent runs, we compare the  for the best case tour (best_tour) and average 

case tour (average_tour) and the worst case tour (worst_tour) is chosen see the 

following graph: 

 

Figure 6.5 : Performance of the Vantage Point Bees Algorithm. 

6.4 Conclusions 

The performance of the VPBA was significantly fast in finding the optimal optimum 

of tested benchmark function.  

The performance of the Vantage Point Bees Algorithm was evaluated using 51-city 

TSP and the results were compared to original Bees Algorithm with several local 

search operators including simple (2 point) swap, double (4 point) swap, insert, 3 

point swap, 2-Opt and 3. 

The results can be improved and the VPBA performs well against one that uses 

standard/fixed parameter values. This is attributed to the fact that parameter values 

suitable for a particular problem instance can be automatically derived and varied 

throughout the search process. 
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Figure 6.6 : Distribution graph of eil51 TSP problem with the VPBA. 

 

Figure 6.7 : This graph compare the performance of the BA with several local   

search   operators including simple (2 point) swap, double (4 

point) swap, insert, 3 point swap, 2-Opt and 3-Opt (Koç, 2010) 

with the performance of Vantage Point . 
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