

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

M.Sc. THESIS

MAY 2014

A STUDY OF VANTAGE POINT NEIGHBOURHOOD SEARCH IN THE BEES

ALGORITHM FOR COMBINATORIAL OPTIMIZATION PROBLEMS

Thesis Advisor: Prof. Dr. Kamil ORUÇOĞLU

Sultan ZEYBEK

Department of Mathematical Engineering

Mathematical Engineering Programme

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

MAY 2014

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

A STUDY OF VANTAGE POINT NEIGHBOURHOOD SEARCH IN THE BEES

ALGORITHM FOR COMBINATORIAL OPTIMIZATION PROBLEMS

M.Sc. THESIS

Sultan ZEYBEK

 (509111080)

Department of Mathematical Engineering

Mathematical Engineering Programme

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

Thesis Advisor: Prof. Dr. Kamil ORUÇOĞLU

MAYIS 2014

İSTANBUL TEKNİK ÜNİVERSİTESİ  FEN BİLİMLERİ ENSTİTÜSÜ

BAKIŞ NOKTASI KOMŞULUK ARAMASININ ARI ALGORİTMASI İLE

KOMBİNATORYAL OPTİMİZASYON PROBLEMLERİNE UYGULANMASI

YÜKSEK LİSANS TEZİ

Sultan ZEYBEK

(509111080)

Matematik Mühendisliği Anabilim Dalı

Matematik Mühendisliği Programı

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

Tez Danışmanı: Prof. Dr. Kamil ORUÇOĞLU

vii

Thesis Advisor : Prof. Dr. Kamil ORUÇOĞLU

 Istanbul Technical University

Jury Members : Assoc. Prof. Dr. Ali ERCENGİZ

 Istanbul Technical University

 Assist. Prof. Dr. Ebubekir KOÇ

 Fatih Sultan Mehmet Vakıf University

Şişli Etfal Teaching Hospital

Bilkent University

Sultan Zeybek, a M.Sc. student of ITU Institute of Science and Technology student

ID 509111080, successfully defended the thesis entitled “A STUDY OF VANTAGE

POINT NEIGHBOURHOOD SEARCH IN THE BEES ALGORITHM FOR

COMBINATORIAL OPTIMIZATION PROBLEMS”, which she prepared after

fulfilling the requirements specified in the associated legislations, before the jury whose

signatures are below.

Date of Submission : 5 May 2014

Date of Defense : 28 May 2014

viii

ix

To my family,

x

xi

FOREWORD

I would like to express my gratitude to all those who have helped me, in any way, to

successfully complete my M.Sc. Thesis.

In particular, I would like to express my sincere thanks to my supervisor, Assistant

Professor Ebubekir Koç, who introduced me the to the the charming world of the

bees. Special thanks to him, for his encouragement, invaluable advice and guidance

throughout my research and his huge support in our weekly meetings.

As a matter of fact without assistance of Assistant Professor Ebubekir Koç this thesis

might not be possible to produce.

Finally, I would also like to thank my family for the support and encouragement they

have given me always.

May 2014

Sultan ZEYBEK

(Research Assistant)

xii

xiii

TABLE OF CONTENTS

Page

FOREWORD ... xi

TABLE OF CONTENTS ... xiii

ABBREVIATIONS .. xv

LIST OF TABLES ... xvii

LIST OF FIGURES .. xix

SUMMARY ... xxi

ÖZET ... xxiii

1. INTRODUCTION .. 1

1.1 Purpose of Thesis ... 2

1.2 Literature Review ... 3

1.3 Hypothesis .. 4

2. MOTIVATIONS, BACKGROUND AND BASIC DEFINITIONS 7

2.1 Optimization ... 7

2.2 Optimization Problems ... 7

2.3 Combinatorial (Discrete) Optimization Problems .. 10

3. SWARM INTELLIGENCE .. 13

3.1 Swarm Intelligence ... 13

3.2 Self-Organization in Nature ... 14

3.3 Swarm-Based Optimization Algorithms .. 15

3.3.1 Genetic algorithms .. 16

3.3.2 Ant colony optimization algorithms ... 18

3.3.3 Particle swarm optimization (PSO) .. 20

3.3.4 Bees-inspired algorithms .. 22

3.3.4.1 Bees in nature ... 22

3.3.4.2 Nectar-source selection and the nest-site selection models 23

4. THE BEES ALGORITHM ... 31

4.1 Neighbourhood / Local Search of Bees Algorithm .. 36

4.2 Improvements to the Bees Algorithm .. 38

xiv

4.3 Bees Algorithm Applications ... 40

4.3.1 Continuous domains applications ... 40

4.3.2 Combinatorial domains applications ... 42

5. BEES ALGORITHM FOR COMBINATORIAL SPACES 45

5.1 The Travelling Salesman Problem ... 47

5.2.1 Range query .. 51

5.2.2 Nearest neigbor query (NN(q)) ... 52

5.3 Neighbourhood Strategies .. 52

6. VANTAGE POINT NEIGHBOURHOOD SEARCH IN THE BA 55

6.1 Preliminaries ... 55

6.2 The Bees Algorithm with Vantage Point Neihbourhood Search...................... 56

6.3 A Proposed VPBA for TSP and Experimental Results 59

6.4 Conclusions .. 61

REFERENCES ... 63

CURRICULUM VITAE .. 71

xv

ABBREVIATIONS

SI : Swarm Intelligence

CO : Combinatorial Optimization

GA : Genetic Algorithms

EAs : Evolutionary Algorithms

ACO : Ant Colony Optimisation

PSO : Particle Swarm Optimization

SOAs : Swarm-based Optimisation Algorithms

BCO : Bee Colony Optimization

BA : Bees Algorithm

VBA : Virtual Bee Algorithm

ABC : Artificial Bee Colony

VPBA : Vantage Point Bees Algorithm

TSP : Travelling Salesman Problem

Vp-tree : Vantage Point Tree

n : Number of scout bees

m : Number of patches selected out of n visited points

e : Number of best patches out of m selected patches

nep : Number of bees recruited for e best patches

nsp : Number of bees recruited for the other (m-e) selected patches

ngh : Size of patches

sc : Shrinking constant

sat : Site abandonment threshold

xvi

xvii

LIST OF TABLES

Page

Table 4.1 : Basic parameters of the Bees Algorithm... 32

Table 4.2 : Test Functions (Mathur, 2000) ... 40

Table 4.3 : Results (Mathur, 2000) ... 41

Table 6.1 : Parameters for VPBA of eil51 TSP .. 59

Table 6.2 : Performance of the Bees Algorithm with different local search 60

Table 6.3 : Benchmark results for 51 city TSP with VPBA 60

xviii

xix

LIST OF FIGURES

Page

Figure 2.1: Classification of optimization problem……………………..…………...9

Figure 3.1 : Fish scooling Birds flocking inV-formation…………...……………….…13

Figure 3.2: Self-organization in a termite simulation (Mitchel Resnick, 1994)……15

Figure 3.3: Pseudo-code of the GA algorithm……………………………………...17

Figure 3.4: Ants behaviour in finding the shortest route between food and nest…. 19

Figure 3.5: Pseudo-code of the ACO algorithm……………………………………20

Figure 3.6: Pseudo-code of the PSO algorithm…………………………………….21

Figure 3.7: Round dance and Waggle dance of honeybees………………………...22

Figure 3.8: The dancer bees meet other bees at the dance ..23

Figure 3.9: A mathematical model shows how honey-bee colonies………………. 26

Figure 3.10: Pseudo-code of the VBA algorithm…………………………………..28

Figure 3.11: Pseudo-code of the ABC algorithm………………………………….29

Figure 3.12: Pseudo-code of the BCO algorithm…………………………………..30

Figure 4.1: Pseudo-code of the BA………………………………………………………..31

Figure 4.2: Flowchart of the basic Bees Algorithm with local and global search….32

Figure 4.3: Flowchart of the basic Bees Algorithm………………………………...33

Figure 4.4: 20 scout bees are placed randomly in the search space………………...33

Figure 4.5: m=3 selected bees for neighbourhood search……………………….....34

Figure 4.6: Recruitment phase for local search…………………………………….35

Figure 4.7: Generate new population with local and global search phase….………35

Figure 4.8: Simple example of Bees Algorithm with n=10 scout bees…………….36

Figure 4.9: Graphical Explanation of the Neighbourhood Search………………….37

Figure 4.10: Pseudo-code of the BA with proportional shrinking and site abondenment...39

Figure 5.1: The pseudo-code of the Bees Algorithm for combinatorial domains.....46

Figure 5.2: Triangularity in a road network…………………………………….…..49

Figure 5.3: The Hamiltonian path minimize the time spent………………………..50

Figure 5.4:retrieves all objects within the distance of to the query object……….. 51

xx

Figure 5.5: A 2-Opt move: original tour on the left and resulting tour on the right……….53

Figure 5.6: A 3-Opt move: original tour and resulting tour……………………….. 53

Figure 5.7: The double bridge move 4-opt move is called “the crossing bridges”…...53

Figure 6.1: Vantage point decomposition…………………………………………..55

Figure 6.2: Example VPT with root,………………………………………………..56

Figure 6.3: Pseudo-code of the VPBA recruitment phase………………………….57

Figure 6.4: Pseudo-code of the VPBA…………………………………………………….58

Figure 6.5: Performance of the VPBA……………………………………………...61

Figure 6.6: Distribution graph of eil51 TSP problem with the VPBA……….…….62

Figure 6.6: This graph compare the performance of the BA……………………….62

xxi

A STUDY OF VANTAGE POINT NEIGHBOURHOOD SEARCH IN THE

BEES ALGORITHM FOR COMBINATORIAL OPTIMIZATION

PROBLEMS

SUMMARY

The overall aim of this work is to prove the hypothesis that the new Vantage Point

Bees Algorithm capable of solving combinatorial optimization problems.

In this thesis, Bees Algorithm is presented for Traveling Salesman Problem (TSP)

with new neighbourhood local search algorithm. The Bees Algorithm for discrete

problems including local and global search strategies used for algorithm. A new

neighbourhood procedure was developed to deal with local search with

combinatorial domains.

Chapter 2 introduces to basic concepts of the additional background material needed

for the reader to fully understand the main body of this thesis. It also defines the

notion of optimization and the combinatorial, continuous, and mixed-variable

optimization problems using the same common framework. It reviews the

background literature on optimization, the definition of optimization and optimization

techniques and combinatorial optimization problems.

Chapter 3 reviews the definition of swarm intelligence and highlights swarm behaviours.

Swarm Intelligence (SI) is an engineering branch and it is defined as the collective

problem solving capabilities of social animals. There are lots of swarm-based

optimization algorithms that mimic nature’s methods to drive a search towards the

optimal solution. The developments of population-based algorithms are also presented

in this chapter and background literature on swarm-based optimisation algorithms

relevant to the work presented. This covers the Genetic Algorithms (GAs), Ant Colony

Optimisation (ACO), Particle Swarm Optimisation (PSO) and bees-inspired algorithms

including the Bees Algorithm itself. Behaviours of honey-bees in their natural

environment, including food foraging are explained in details. Computational

simulations of honey-bee behaviours are reviewed to show the link between nature

and optimisation algorithms. Honeybees inspired algorithms are a branch of Swarm

Intelligence algorithms, which are motivated by the fascinating behaviour of

honeybees. Their behaviour is studied in order to develop metaheuristic algorithms

that can mimic the bees searching abilities.

Chapter 4 describes a study of the main characteristics of the standard Bees

Algorithm. This is undertaken through an exploration of the parameters of the

algorithm in order to help understand the methods by which its performance is

improved. Then, it focuses on enhancements to the Bees Algorithm for local and

global search. The algorithm is improved with the addition of dynamic recruitment,

proportional patch shrinking and site abandonment ideas.

xxii

The Bees Algorithm required six parameters. There are number of scout bees (n),

number of selected sites (m), number of top-ranking (elite) sites among the m

selected sites (e), number of bees recruited for each non-elite site (nsp), number of

bees recruited for each elite site (nep), and neighbourhood size (ngh) and the

stopping criterion. The algorithm starts with the n scout bees being placed randomly

in the search space and presents a neighbourhood search associated with a random

search. The Bees Algorithm involves global and neighbourhood search. In step 1 the

algorithm starts with the n scout bees being placed randomly in the search space. In

step 2 the fitnesses of the points visited by the scout bees are evaluated. In step 4,

bees that have the highest fitnesses are chosen as “selected bees” and those sites that

have been visited will be chosen for neighbourhood search. Then, in steps 5 and 6,

the algorithm conducts searches in the neighbourhood of the selected bees in terms of

more bees for the e best bees.

Chapter 5 describes applications of the Bees Algorithm in combinatorial domains.

The Bees Algorithm as described above is applicable to both combinatorial and

functional optimisation problems so the performance of the Bees Algorithm was

tested on continuous and combinatorial problems. Travelling Salesman Problem

(TSP) definition is given and several local search algorithms are suggested for the

algorithm as well as site abandonment in continuous optimization problems.

In chapter 6 The Bees Algorithm with Vantage Point Neihbourhood Search is

described. The simplest vp-tree construction begins with selecting a pivot element,

vantage point randomly. Given a set S of metric space elements (i.e combinatorial

search space elements), the algorithm returns pointer to the root of an optimized vp-

tree that satisfied the local optimum value (for example in TSP returns the optimal

tour for each iteration of recruit phase). The algorithm of making vantage point

neighbourhood searh for the Bees Algorithm presents a modification of the

neighbourhood search procedure in the Bees Algorithm for combinatorial domains. We

proposed vantage point neighbourhood search procedure for the Bees Algorithm local

search in the recruitment selection. To develop a new local search in the recruitment

phase we use the vantage point tree algorithm with median calculations. The Bees

Algorithm with vantage point neihbourhood procedure is suggested as an addition to

the Bees Algorithm to deal with combinatorial domains. The algorithm is applied to

the Travelling Salesman Problem (TSP) to show that the algorithm is both robust and

efficient.

xxiii

BAKIŞ NOKTASI KOMŞULUK ARAMASININ ARI ALGORİTMASI İLE

KOMBİNATORYAL OPTİMİZASYON PROBLEMLERİNE

UYGULANMASI

ÖZET

Bu tez çalışmasının temel amacı arıların kaynak arama davranışlarını modelleyen arı

algoritmasının, kombinatoryal uzaylarda komşuluk arama fazına yeni bir yaklaşım

geliştirilmesidir. Geliştirilen yaklaşım Gezgin Satıcı Problemine uygulanarak Gezgin

Satıcı Problemi çözümünün en iyilenmesi amaçlanmıştır.

Bu tez altı bölümden oluşmaktadır ve birinci bölümde tezin amaç ve hedeflerinden

bahsedilerek hipotezin açıklaması yapılmıştır. Tezin amacı sürü zekasına dayalı

olarak geliştirilmiş sezgisel optimizasyon algoritmalarından biri olan arı

algoritmalarının kesikli uzaylardaki lokal komşuluk aramasına yeni bir yaklaşım

geliştirmektir.

Çalışmanın ikinci bölümü optimizasyon kavramının açıklanması ve optimizasyon

problemlerinin karakterizasyonuna ayrılmıştır. Temel tanım ve teoremlerden

bahsedilerek kombinatoryal optimizasyon problemlerinin matematiksel modellemesi

açıklanmıştır. Optimizasyon metotları temelde kesin çözüm üreten klasik teknikler

ve yaklaşık çözüm üreten modern sezgisel teknikler olmak üzere iki kategoriye

ayrılmaktadır. Gerçek hayattaki optimizasyon problemlerinin birçoğu matematiksel

formül geliştirilerek çözülemeyecek kadar karmaşıktır. Klasik yöntemlerle böyle bir

problem çözülmeye çalışıldığında, çözüm çok uzun sürebilir ve uzun sürmesine

rağmen istenilen sonuca ulaşılamayabilir. Bu şekilde tanımlanması kolay fakat

çözümü oldukça karmaşık olan NP-zor optimizasyon problemlerine çözüm aranırken

sezgisel (heuristic) yöntemler geliştirilmiştir. Klasik yöntemler probleme özgüdür ve

genellikle amaç fonksiyonu ve kısıtların türüne (doğrusal, doğrusal olmayan vb.) ve

modellemede kullanılan değişkenlerin türüne (tamsayı, gerçek sayı vb.) bağlıdır.

Sezgisel algoritmalar ise genel amaçlıdır ve değişik gerçek dünya problemlerine

uygulanabilir. Günümüzde karmaşık optimizasyon problemlerinin modellenmesi ve

çözülmesinde doğal benzetimlerin kullanımı oldukça artmıştır. Özellikle büyük

boyutlu kombinatoryal, tamsayılı ve doğrusal olmayan matematiksel problemlerin

çözülmesinde klasik optimizasyon teknikleri yetersiz kaldığından sezgisel ve doğal

fenomenlerden esinlenilerek algoritmalar geliştirilmektedir.

Kombinatoryal optimizasyon problemleri kesikli çözüm uzayına sahip problemler

için en iyi çözümü arayan, dikkate alınan amaç fonksiyonunu en iyileyen kesikli

karar değişkenlerinin değerlerini bulmayla uğraşan optimizasyon problemleridir.

Kombinatoryal optimizasyon problemleri en azlama (minimization) ve en çoklama

(maximization) olarak ikiye ayrılır. En kısa yol problemi, gezgin satıcı problemi,

atama problemi, atölye çizelgeleme problemleri ve araç rotalama problemleri

xxiv

kombinatoryal optimizasyon problemlerinin literatürdeki birçok uygulama

alanlarından bazılarıdır.

Üçüncü bölümde sürü zekası ve sürü zekası yaklaşımını temel alarak geliştirilmiş sürü

tabanlı sezgisel optimizasyon algoritmaları incelenmiştir. Sürü, birbirleriyle etkileşen

dağınık yapılı bireyler yığını anlamında kullanılır. Bireyler insan, karınca veya arı

olarak ifade edilebilir. Sürü zekâsı N adet temsilcinin bir amaca yönelik davranışı

gerçekleştirmek ve hedefe ulaşmak için birlikte çalışması olarak ifade edilmektedir.

Doğadan esinlenen algoritmaların yeni bir dalı olan sürü zekâsı yaklaşımı, canlıların

içgüdüsel problem çözme becerilerini kullanan etkili metasezgisel yöntemler

geliştirebilmek için canlı davranışlarını matematiksel olarak modellemeye

odaklanmıştır. Canlılar arasındaki etkileşimin bir sonucu olan kolektif zekânın en

önemli parçalarından biri ise bireysel böcekler arasındaki bilgi paylaşımıdır.

Kolaylıkla gözlenebilen bu “kollektif zekâ” temsilciler arasında sık tekrarlanan

davranışlardan doğmaktadır. Temsilciler faaliyetlerini idare etmek için basit bireysel

kurallar kullanmakta ve grubun kalan kısmıyla etkileşim yolu ile sürü amaçlarına

ulaşmaktadır. Grup faaliyetlerinin toplamından bir çeşit kendini örgütleme

doğmaktadır. Kuş sürülerinin havada süzülmesi ve farklı şekiller alması, karıncaların

yiyecek arama davranışları, balık sürülerinin beraberce yüzmesi, bal arılarının

buldukları yiyecek kaynağının kalitesi hakkındaki bilgiyi paylaşmaları ve salınım

dansı yapmaları bu sürü davranışlarından sadece birkaçıdır.

Sürü zekâsı (Swarm Intelligence) sürülerin davranışlarının nasıl modellenebileceğine

ve sürüdeki bireyler arasındaki iletişimin mantığını çözmeye dair çalışmaları

kapsamaktadır. Sürüde özerk yapıdaki basit bireyler kollektif bir zeka geliştirerek

iletişim kurarlar ve birbirlerinin hareketlerini kendinden organizasyon yardımıyla

(self-organization) önceden yapılmış herhangi bir plan olmadan yönlendirebilirler.

Bu ise esnek ve sağlam, merkezi bir yönetim birimi olmadan yapılanmayı sağlar.

Doğadaki bu sosyal sistemler sezgisel yöntemlerin geliştirilerek optimizasyon

problemlerine uygulanmasıyla önemli tekniklerin ortaya çıkış noktası olmuştur.

Sezgisel yöntemlerin geliştirilmesinde kullanılan yöntemlerin başında son yıllarda

literatüre kazandırılmış sürü zekası davranışlarını modelleyen algoritmalar

gelmektedir. Modern sezgisel algoritmaların en temeli gelişeme dayalı

algoritmalardır. Gelişime dayalı algoritmaların birçok çeşidi vardır ve genetik

algoritmalar bu alanda literatürdeki problemlere uygulanmaktadır. Karınca sürülerinin

koloni halindeki davranışlarını modelleyen Karınca Kolonisi Optimizasyonu, kuş veya

balık sürülerinin sosyal davranışlarından esinlenerek geliştirilmiş Parçacık Sürü

Optimizasyonu ve arıların yiyecek arama davranışlarını modelleyerek geliştirilmiş olan

Arı Algoritmaları sürü tabanlı optimizasyon algoritmalarıdır.

Karınca Kolonisi Algoritmasında karınca çevre şartlarına göre besin kaynağı ile evi

arasında gidebileceği yolları belirlemektedir. Belirlenen yollardan birinden ilk geçen

karınca yola feremon adında kimyasal bir koku bırakmaktadır. Koku yoğunluğu zamana

bağlı olarak azalmaktadır. Eğer yol kısa ise bu koku daha yoğun olmaktadır. İki yolun

kesiştiği noktada karınca hangi yola gideceğini belirlemektedir. Hangi yolu seçeceğine

ilk önce koku miktarının yoğunluğuna göre ikinci olarak ise gelişigüzel bir ölçüte

göre karar vermektedir. Bu gelişigüzel seçimin nedeni ise bütün karıncaların aynı

yolda gitmesini engelleyerek yeni ve daha kısa yolları keşfetmektir.

xxv

Sezgisel yöntemlerin bir diğeri olan Parçacık Sürü Optimizasyonu (PSO) tekniği ilk

olarak kuş ve balık sürülerinin hareketlerinden esinlenerek doğrusal olmayan

nümerik problemlere optimal sonuçlar bulmak için ortaya atılmıştır ve

basitleştirilmiş sosyal sistemin bir simülasyonu olarak ortaya çıkmıştır.

Arıların yiyecek arama davranışı, bilgi paylaşımı ve ezberleme özellikleri, son

zamanlarda sürü zekâsında en ilginç araştırma alanlarından biri olmuştur. Kaliteli bir

yiyecek kaynağı bulan arılar, yiyecek kaynağı hakkındaki yön, uzaklık ve nektar

miktarı bilgilerini dans aracılığıyla diğer arılarla paylaşır. Bu başarılı mekânizma

sayesinde arı kolonisi kaliteli yiyecek kaynağının olduğu bölgelere yönlendirilir.

Dördüncü bölüm Arı Algoritmalarının temel teorisini, işleme mekanizmasını ve

literatürdeki uygulamalarını kapsamaktadır. Arı Algoritması (AA) ilk olarak Pham

(2005) tarafından önerilmiş olup, bal arılarının yiyecek arama davranışını taklit eden

popülasyon tabanlı bir arama algoritmasıdır.

Temel Arı Algoritması birçok parametre içermektedir: izci arı sayısı (n), ziyaret edilen n

nokta içinden seçilen bölge sayısı (m), seçilen m bölge içindeki en iyi bölge sayısı (e), en

iyi e bölgeye gönderilen arı sayısı (nep), kalan (m-e) bölgeye gönderilen arı sayısı (nsp),

bölge boyutu (ngh) ve durdurma kriteri. Algoritma n adet izci arının araştırma uzayına

rastgele yerleştirilmesi ile başlar. İzci arılarca ziyaret edilen noktaların uygunlukları 2.

adımda değerlendirilir. 4. adımda en iyi uygunluk değerine sahip arılar elit arılar olarak,

bu arılara ait bölgeler de komşuluk araması için seçilir. 5 ve 6. adımlarda seçilen arıların

komşuluğunda araştırma başlar ve daha umut verici çözümleri temsil eden en iyi e

bölgeye, seçilen diğer bölgelere göre daha fazla arı gönderilerek daha detaylı arama

yapılır. 7. adımda yeni popülasyonun oluşturulması için her bölgedeki en iyi

uygunluk değerine sahip arı seçilir. 8 nolu adımda popülasyondaki diğer arılar (n-m)

yeni potansiyel çözümler elde etmek için rastgele olarak araştırma uzayına atanırlar.

Her bir iterasyonun sonunda yeni popülasyon iki parçadan oluşacaktır: seçilen her bir

bölgenin temsilcileri ve rastgele arama yapan izci arılar (Pham, 2006a, 2006b).

Algoritma durdurma kriteri sağlanana kadar devam ettirilir. Burada 4-7 arası adımlar

temel Arı Algoritmasının lokal arama (recruitment phase, local search) kısmını, son

adım ise global arama kısmını oluşturmaktadır. Global arama ile rastgelelik

(randomness) şansı devam ettireilerek algoritmanın olası yeni çöümler keşfetmesini

sağlamak amaçlanmaktadır.

Beşinci bölümde kombinatoryal uzaylarda Arı Algoritmasının uygulanması

incelenmiştir. Gezgin Satıcı Problemi gibi NP-zor kombinatoryal optimizasyon

problemleri Arı Algoritması ile en iyilenirken Arı Algoritmasının komşuluk arama

fazında çeşitli modifikasyonlara gidilmektedir.

Gezgin Satıcı Problemi, aralarındaki uzaklıkları bilinen noktalardan bir kez geçmek şartı

ile tüm noktaların en az maliyetle dolaşılıp, başlangıç noktasına tekrar dönülmesini

amaçlayan kombinatoryal bir optimizasyon problemidir. Problemin meşhur olmasının ve

araştırmacıların yoğun ilgisini çekmesinin sebebi, gerçek hayattaki birçok soruna

uyarlanabilir olmasıdır.

Farlı bir komşuluk aramasının Arı Algoritmasıyla birleştirilerek Gezgin Satıcı

Problemine uygulanması ile bu tez çalışması tamamlanmıştır. Temel Arı Algoritması

komşuluk yaklaşımındaki uzaklık fonksiyonun tanımından dolayı sürekli optimizasyon

problemlerine rahatça uygulanabilirken, kombinatoryal uzaylarda komşuluk araması

çeşitli komşuluk operatörleri kullanılarak yapılabilmektedir.

xxvi

Altıncı bölümde bakış noktası (vantage point) komşuluk aramasının Arı Algoritması

ile Gezgin Satıcı Problemine uygulaması yapılmıştır. Gezgin Satıcı Problemi metrik

TSP olarak tanımlanmış olup Simetrik Gezgin Satıcı Problemi metrik uzay tanımıyla

uygulamaya alınmıştır. Metrik uzay yapısını kullanan yöntemlerin arama

algoritmaları özellikle yüksek boyutlu uzaylarda iyi performans sergilemektedir. En

yakın k komşu taraması, benzerlik taraması metrik uzaylarda kullanılan arama

algoritmalarındandır. Bakış noktası (Vantage Point) seçilerek herhangi bir metrik

uzayda Vantage Point Tree oluşturulması metrik uzaylardaki arama algoritmalarının

bir başka uygulamasıdır. Vantage Point Arı Algoritması sırasıyla rastgele seçilen bir

yiyecek kaynağının diğer yiyecek kaynaklarına uzaklıklarının hesaplanmasıyla

başlar. Daha sonra bulunan uzaklıkların medyanı hesaplanır. Medyandan küçük

uzaklıkta bulunan yiyecek kaynakları ile medyandan büyük ya da medyana eşit olan

olan uzaklıkta bulunan yiyecek kaynakları iki ayrı kümede toplanır. Optimum

çözüme ulaşmak için medyandan küçük olan uzaklıktaki yiyecek kaynakları

arasından yeni gidilecek olan yiyecek noktası rastgele olarak seçilir. Çözüm

uzayındaki tüm noktalar, yani olası tüm yiyecek kaynakları (Gezgin Satıcı Problemi

için gidilecek olan tüm şehirler) seçilene kadar iterasyona devam edilir. Bakış

Noktası Arı Algortiması Temel Arı Algoritması ile aynı parametlere sahiptir.

Uygulanan modifikasyon lokal arama fazında olup global arama kısmı Bakış Noktası

Arı Algoritmasında aynı şekilde geçerlidir. Adımlar, durdurma kriteri sağlanana

kadar devam ederek optimum sürede en iyi çözüme yakınsama amacına ulaşana

kadar algoritma çalıştırılır. 51 şehirlik Gezgin Satıcı Problemine uygulanan bu

algoritma kısa sürede optimal değere oldukça hızlı bir yakınsama gerçekleştirmiş.

1

 INTRODUCTION 1.

This thesis focuses on nature-inspired optimisation algorithms, in particular, the Bees

Algorithm that developed for combinatorial domains with new local search

procedure and applied to Traveller Salesman Problem (TSP).

The Travelling Salesman Problem (TSP) is one of the most interesting and

challenging combinatorial optimization problems. TSP is all about finding a

Hamiltonian path with minimum cost. It may be defined as a problem that is a

simple to describe, but a difficult to solve, which is why it has received so much

attention from the scientific community. This problem is a mathematical NP-hard

problem and has a world range of applications for many fields such as transportation,

logistics and semiconductor industries. (Karaboga and Gorkemli, 2011).

To solve the problem, many researchers have proposed different approaches

including metaheuristic methods. Some animal behaviours have a potential to be

adapted to solve TSP. In nature, there exist many processes which seek a stable state

and these processes can be seen as natural optimization processes (Eberhart, 2001).

Over the last 30 years, several attempts have been made to develop global

optimization algorithms that simulate these natural optimization processes.

In the literature a lot of metaheuristic algorithms have been applied to optimization

problems to obtain better results in reasonable computational times. Some of these

algorithms include Evolutionary algorithms may be considered as one of the first of

this class of algorithms (Koç, 2010). Other algorithms include Ant Colony

Optimization (ACO) (Dorigo et al., 1996), Particle Swarm Optimization (Kennedy

and Eberhart, 1995) and bees-inspired algorithms including the Bees Algorithm (Pham

et al. 2005, 2006a).

In this thesis, Bees Algorithm is presented for Traveling Salesman Problem (TSP)

with a new neighbourhood local search algorithm. The Bees Algorithm for

combinatorial optimization problems including local and global search strategies

2

used for algorithm. A new neighbourhood procedure is developed to deal with local

search with combinatorial domains.

1.1 Purpose of Thesis

In this thesis an efficient and robust local neighborhood search algorithm is proposed

for combinatorial domains to increase the efficiency of the Bees Algorithm and it

have been used successfully for the solution of the Travelling Salesman Problem

(TSP).

Neighborhood search is vital constituent of all swarm based optimization algorithms.

The Bees Algorithm has originally developed for continuous domains but

combinatorial domains need a completely different approach when it comes to

mathematical definition of the mathematical distance (Koç, 2010).

We aim to enhance the Bees Algorithm’s neighbourhood search procedure defined

for combinatorial domains and improve its performance for combinatorial domains

as its performing for continuous domains.

For continuous domains in the original Bees Algorithm, “ngh” defines the initial size

of neighbourhood for local searching. For example, if x is the position of an elite bee

in the i
th

 dimension, follower bees will be replaced randomly in the interval

iex ngh is set to define the boundaries of local search for new solution to improve

the solution quality and performance (Ghanbarzadeh et al. 2007).

For combinatorial domains, combinations of several methods have been deployed to

perform the neighborhood search. After modifying the neighbourhood part of Bees

algorithm we compare it with several exchange neighbourhood strategies and local

search algorithms including simple (2 point) swap, double (4 point) swap, insert, 3

point swap, 2-Opt and 3-Opt (Koç, 2010).

In this thesis, the performance of the Bees Algorithm optimization with vantage point

local search algorithm is evaluated for the Travelling Salesman Problem (TSP) and

the results are compared with the original Bees Algorithm including several

exchange local search strategies.

In the context of developing an algorithm first, the biological and morphological

features of honeybees are presented. Then original Bees Algorithm is presented with

3

vantage point local search. Then we are proposing mathematical simulation with

experimental for understanding the succesfullnes of the modified algorithm.

1.2 Literature Review

The rapid development of engineering sciences and increases in the number of

complex processes in industry and manufacturing mean that traditional optimisation

techniques are no longer adequate to solve complex multi-variable optimisation

problems with large numbers of parameters. These usually require intelligent

optimisation tools such as the Bees Algorithm (Pham et al. 2005; 2006b).

Over the years, swarm intelligence has inspired scientist to developed population-

based algorithms to deal with many complex multi-variable optimization problems.

Because of many complex multi-variable optimization problems cannot be solved

exactly within polynomially bounded computation times population-based

algorithms were implemented (Koç, 2010). A recent trend in the field of Swarm

Intelligence (Sl) is population-based algorithms and they are the utilisation of tools to

solve optimisation problems which are defined as minimisation of cost functions.

Among the most common population-based algorithms are Evolutionary Algorithms

(EA), the Genetic Algorithms (GA) (Goldberg, 1989), Particle Swarm Optimization

(PSO) (Eberhart and Kennedy 1995), Ant Colony Optimization (ACO) (Dorigo et

al., 1991; Dorigo et al., 1996) and bees-inspired algorithms including the Bees

Algorithm (Pham et al., 2005, 2006) itself which mimics the foraging behaviour of

honeybees in nature.

Evolutionary Algorithms (Rechenberg et al, 1965), (Fogel et al, 1966) and Genetic

Algorithms may be considered as one of the first class of this class of algorithms.

(Koç, 2010). The Genetic Algorithms (Holland, 1975) is based on biological

evolution and adaptation in nature. Although they are considered in population-based

algorithms, they may also separated from swarm-based optimization due to their

centralised control mechanism. Particle Swarm Optimization algorithm imitates the

action of flying, swimming or walking agents keeping themselves close by other

members in a swarm. Ant Colony Optimisation (Dorigo et al., 1991), is inspired by the

ants’ foraging behaviour where they tend to choose the shortest route that links the food

source and their nest which have no centralised control over their individuals.

4

In addition to these algorithms, The Bees Algorithm (Pham et al., 2005), which imitates

the foraging behaviour of honey bees, is a bees-inspired algorithm. The algorithm has

been widely applied to solve many complex optimisation problems and received a

number of improvements (Ahmad, 2012). The Bees Algorithm is both implemented for

continuous domains and combinatorial domains. For combinatorial domains, it is quite

difficult to implement the current algorithm since it has been proposed originally for

continuous domains. Therefore, it is interesting to explore the opportunities and

limitations of the improved algorithm to this challenging new domain for the BA.

Four forms of honeybee behaviour have emerged in the literature, namely, the

foraging behaviour (Seeley, 1996), the nesting site selection (Seeley and Visscher,

2003; Passino et al., 2008), the mating behaviour (Sung, 2003, Haddad et al., 2006)

and the honeybee teamwork strategy (Sadik et al., 2006). These types of behaviour

have been modelled to derive various Bees Algorithms with many applications (Otri,

2011).

The traveling salesman problem (TSP) is a well-known NP-hard optimization

problem, in which we require to determine the shortest closed route passing through

a set of n cities under the condition that each city is visited exactly once. Many

problems in science, engineering, and bioinformatics fields, such as flexible

manufacturing systems, routing as well as scheduling problems, physical mapping

problems (Alizadeh, 1993), genome rearrangement (Sankoff, 1997) and phylogenetic

tree construction (Korostensky, 2000), can be formulated as a TSP. A large number

of approaches have been devoted to solve the TSP.

1.3 Hypothesis

The overall aim of this work was to prove the hypothesis that the Bees Algorithm

with vantage point local search of neighbourhood is capable of solving Travelling

Salesman Problem, which belongs to NP-hard optimization problem efficiently and

robustly. We want to implement an efficient algorithm, which improves the local

search structure of Bees Algorithm. In this thesis, Bees Algorithm is presented for

Traveling Salesman Problem (TSP) with a new neighbourhood local search

algorithm. The Bees Algorithm for combinatorial optimization problems including

local and global search strategies used for algorithm. A new neighbourhood

procedure is developed to deal with local search with combinatorial domains.

5

The objectives of this work were:

1. To implement a new local search algorithm for combinatorial domains to

increase the efficiency of the Bees Algorithm.

2. To determine whether a vantage point local search neighbourhood improves

the efficiency of the Bees Algorithm.

3. To compare both the original and improved versions of local search strategies

of the Bees Algorithm for Travelling Salesman Problem.

6

7

 MOTIVATIONS, BACKGROUND AND BASIC DEFINITIONS 2.

This chapter provides o comprehensive inside into background to understand the

main body of this thesis. It also defines the notion of optimization and the

combinatorial, continuous, and mixed-variable optimization problems using the same

common framework.

2.1 Optimization

Optimization is everywhere and is one of the most important tools in different fields

of engineering (Yang, 2010). However, many optimization problems turns out to be

very difficult and can not be solved exactly within a polynomially bounded

computation times (Pham et., al 2006). The latest developments over the last two

decedes tend to use metaheuristic optimization techniques to solve such NP-hard

problem.

Definition 2.1 Optimization is the search for a set of variables that either maximize

or minimize a scalar cost function, (⃗) .

The n-dimensional decision vector, ⃗ , consists of the n decision variables over

which the decision maker has control. The cost function is multivariate since it

depends on more than one decision variable, as is common of realworld

relationships. The goal is to minimize (maximize) the cost function while satisfying

the constraints in the problem.

2.2 Optimization Problems

An optimization problem defined as follows [Boyd and Vandenberghe 2004]:

Definition 2.2 Given a function ,find)

(minimization) or) (maximization).

8

Function is called objective function, its domain is called the search space, and

the elements of , are called feasible solutions. A feasible solution X is a vector of

optimization variables { } A feasible solution that minimizes

(or maximizes) the objective function is called an optimal solution.

Each optimisation problem consists of four essential components:

1) An objective function or fitness function to be optimised,

2) A set of variables that need to be calculated to find the value of the objective

function(s),

3) A set of constraints that determine the allowed values of the variables,

4) The search space that encompass all possible solutions to a problem.

With regards to these four components:

1. The degree of nonlinearity of the objective function determines whether the

problem solved is a linear or nonlinear problem. In addition, if we try to

classify optimization problems according to number of objectives, then there

are two categories: in one objective function it is called a single-objective

problem, otherwise, in a multi-objective problem a number of objective

functions are needed.

2. The type of variables employed that divides problems into either continuous

problems, or discrete and combinatorial problems, must be considered. In

continuous problems the variables employed in the objective function are real

values, whereas in discrete and combinatorial problems they are restricted to

assume only discrete values (Socha, 2007) :

 discrete optimization problems in which all the optimization

variables , 1, ,iX i n  are discrete, i.e., belong to a countable

set, , 1, , .i iX D i n  

 continuous optimization problems in which all the optimization

variables , 1, ,iX i n  are continuous , 1, , iX i n   .

 mixed-variable optimization problems in which p out of

 variables are discrete,
 , 1, ,i iX D i p   and are

continuous , 1, ,iX i p p q     .

9

3. If the problem has no constraints or conditions that satisfy it, it is called an

unconstrained problem, otherwise it is called a constrained problem where it

contains one or more constraints that must be satisfied.

4. The search space determines if the problem is a static/deterministic problem

which does not change over time, or if it is a dynamic/stochastic problem where

the search space changes over time (Blackwell and Branke, 2004), (Otri, 2011).

{

 {

 {

 {

 {

 {

 {
 {

 {

Figure 2.1 : Classification of optimization problems (Yang, 2010).

Optimization problems involving a large number of finite solutions often arise in

academia, government, and industry. However, for many real-world optimization

problems, it is not necessary to guarantee to find an optimal solution. Often a

reasonably good (or approximate) solution is sufficient to find. Hence, optimization

algorithms and approximate methods were born.

In this thesis, we mention Travelling Salesman Problem that plays an important role

in combinatorial optimization problems. Combinatorial optimization problems are in

fact a subset of discrete optimization problems characterised by finite size of their

domain.

10

2.3 Combinatorial (Discrete) Optimization Problems

The name given to combinatorial optimization problems, i.e. combinatorial, comes

from the fact that such problems may be expressed as those of finding a permutation

or combination of a finite set of elements. Combinatorial optimization problems are

therefore characterized by a finite set of possible solutions and it is a branch of

optimisation in applied mathematics and computer science, related to operations

research, algorithm theory and computational complexity theory.

Definition 2.3 A combinatorial optimization problem can be defined by

 1 2 n
X x , x , , x is a set of variables  with domain

1 nD D ,and constraints

with variables defined over subsets of S where an objective function,

1 2 n
f : D D . D


   

to be minimized and the set of all possible feasible assingment is

     1 1 n n i i
 s x , v , , x , v | v D , s satisfies all the constraints S   

S is solution space or search space of the optimization problem, as each element of

set can be seen as a candidate solution but one has to find a solution with

minimum objective function value, that is    f s* f s , and is

called a globally optimal solution of .

Many algorithms and solution methods exist for solving combinatorial optimization

problems. Some of them are exact methods called exact or complete algorithms that

are guaranteed to find for optimal solutions given sufficient time called deterministic

algorithms. Some others are approximation techniques, usually called metaheuristics,

within stochastic algorithms which will give a good problem solution in a reasonable

amount of time, with no guarantee to achieve optimality.

Algorithms often compared in terms of their efficiency, robustness and speed.

Algorithm analysis is usually compared actual running time of algorithms and the O

notation is often used to provide an asymptotic upper bound of the complexity of an

algorithm. An algorithm is of O(n) (Order n), where n is the size of the problem, if

the total number of steps carried out by the algorithm is at most a constant times n.

11

In addition to analyzing the efficiency of an algorithm, it is sometimes necessary to

know what types of algorithms exist for solving a particular problem. The field of

complexity analysis analyzes problems rather than algorithms. Two important classes

of problems are usually identified in this context. The first class is called P

(polynomial time problems). It contains problems that can be solved using

algorithms with running times such as O(n), O(log(n)) and O() .They are relatively

easy problems. Another important class is called NP-hard (non-deterministic

polynomial time problems). NP-hard problems don’t have a a polynomial-time solution,

for example TSP is a well-known combinatorial NP-hard optimization problem (Hosny,

2010).

In this study, practical solutions for TSP problem are addressed. In the literature,

there are useful theories, solutions, and case studies to solve such combinatorial

optimization problems and an optimization problem can be solved using

metaheuristic algorithms. That are mostly nature-inspired and population-based.

Population based algorithms is about basic concept of swarm intelligence theory.

Swarm intelligence has inspired scientists to develop population-based algorithms to

deal with complex optimisation problems.

From a mathematical point of view, basic ingredients of a combinatorial optimization

problem are: an instance; for example in the TSP the set of cities and the set of costs

of traveling; a finite space of feasible solutions in the TSP, all the possible round-

trips with requested properties and a cost function over the space of feasible solutions

in the TSP, the total cost of every round-trip. The optimization problem is solved

when, given an instance, a feasible solution which minimizes the cost function is

found. Swarm Intelligence (SI) and popular swarm-based algorithms in several

optimization tasks and research problems and it have been successfully applied in a

variety of problem domains.

12

13

 SWARM INTELLIGENCE 3.

3.1 Swarm Intelligence

Swarm Intelligence (SI) is an engineering branch and it is defined as the collective

problem solving capabilities of social animals (Bonabeau , 1999), (Koç, 2010). There are

variety of the interesting insect or animal behaviour in the nature, for example a flock of

birds sweeps across the sky. A group of ants forages for food, a school of fish swims,

turns, flees together etc. Scientists call this kind of aggregate motion “swarm behavior”

and they studied how to model biological swarms to understand how such social animals

interact, achieve goals, and evolve.

Figure 3.1 : Fish scooling (left) and Birds flocking in V-formation (Xiong, 2010).

Swarm Intelligence is the emergent collective intelligence of groups of simple

autonomous agents (Bonabeau, 1999). An autonomous agents is a subsystem that

interacts with its environment, which probably consist of other agents but acts

independent from all others agents (Liu, 2000).

SI is the direct result of self-organisation in which the interactions of lower-level

components create a global-level dynamic structure that may be regarded as

intelligence (Koç, 2010). These lower level interactions are guided by a simple set of

rules. Individuals of colony only have local-level information about environment and

they follow without any knowledge of global effects (Dorigo, 1999).

14

There are several other optimization techniques based on SI principles have been

proposed in the literature, including Artificial Bee Colony (Karaboğa, 2005),

Bacterial Foraging (Passino, 2002), Ant Colony Optimization (Dorigo, 1999),

Artificial Immune System (De Castro, 1999) and Glowworm Swarm Optimization

(Krishnanand and Ghose 2009). All these SI models intrinsically share the principal

inspirational origin of the intelligence of different swarms in nature, such as swarms

of E. coli bacteria as in Bacterial Foraging, swarms of cells and molecules as in

Artificial Immune System (Hunt, 1996), (De Castro, 2002), (Read, 2012) and the

amazing swarms of honeybees as in the Artificial Bee Colony System (Madureira,

2005), (Panigrahi, 2011).

3.2 Self-Organization in Nature

Self-Organization is a set of dynamical mechanism whereby structures appear at the

global level of a system from interactions of its lower-level components. The four

basis of self-organization are positive feedback (amplification), negative feedback

(for counter-balance and stabilization), amplification of fluctuations (ramdomness,

errors, random walks) and multiple interactions (Dorigo, 1999).

Positive feedback is defined as the first rule of self-organization and it is basically a

set of simple rules that help to generate the complex structure. Negative feedback

reduces the effects of positive feedback. Ramdomness adds an uncertainty factor to

the system and enables the colonies to discover new solutions for example most

challenging food sources, nest sites etc. Multible interactions between individulas are

the last one. There should be minimum number of individulas individuals who are

capable of interacting with each other to turn their independent local-level activities

into one interconnected living organism. As a result of combination of these

elements, a decentralised structure is created (Koç, 2010).

Usually there is no central control structure dictating how the individual agents

should behave, but local interactions between such agents often lead to the

emergence of a global behavior. Examples of systems like this can be found in

nature, including ant colonies, bird flocking, bee swarming, animal herding, bacteria

molding and fish schooling.

15

Figure 3.2 : Self-organization in a termite simulation (Mitchel Resnick, 1994).

3.3 Swarm-Based Optimization Algorithms

There are lots of swarm-based optimization algorithms (SOAs) that mimic nature’s

methods to drive a search towards the optimal solution. SOAs use a population of

solutions for every iteration instead of a single solution (Koç, 2010). This is key

difference between SOAs and the others types of search algorithms.

On the types of searches applied to solve the optimisation problem there are two

possibilities: Single Point Search (Trajectory) (SPS) which is also known as a Direct

Search (DS), and Population-Based Search (PBS) which is also known as a Swarm

Based Search (SBS) (Otri, 2011).

SOAs include Evolutionary Algorithms (i.e. the Genetic Algorithm), the Ant Colony

Optimisation (ACO) and the Particle Swarm Optimisation (PSO). In this section, we

will focus on the main chararcteristics and the ways that each algorithm generate new

solutions.

16

3.3.1 Genetic algorithms

Genetic Algorithms (GAs) was introduced by John Holland (Goldberg, 1989) and

developed based on the genetic processes of biological organisms. It is based on

natural selection and genetic recombination. It is a heuristic algorithm which

simulates principles of evolution biology for finding solutions of complex problems

which cannot be solved with any other exact algorithms. Genetic algorithms differ

from the more normal optimization and search procedures in four ways (Goldberg,

1989) :

 GAs work with a coding of the parameter set, not the paramaters themselves;

 GAs search from a population of points, not a single point;

 GAs use ogjective function information, not derivatives or other auxiliary

knowledge;

 GAs use probabilistic transition rules, not deterministic rules.

A genetic algorithm mimics this natural evolutionary process in its optimization

problem cycle. A simple genetic algorithm based optimizer is characterized by

individual encoding, individual fitness, selection mechanism and genetic operators.

Individual encoding means that genetic algorithms encode solutions to the given

problem as chromosomal strings and operate on these encodings during the

optimization process. This helps minimize the amount of problem specific

information needed during the optimization process of a genetic algorithm. An

encoding scheme that maps each chromosome string to a unique solution is preferred

as the genetic algorithm will not waste time evaluating multiple encodings of the

same solution. The solution is traditionally represented by binary numbers, string of

zeros and ones but it is possible to use any other representation. For example, for a

traveling salesman problem (TSP), a permutation of all the cities in the problem

instance can be used a solution encoding scheme.

The fitness measure of the chromosome should reflect the quality of the

corresponding solution to the problem. For example, in a TSP instance, the length of

the overall tour represented by the permutation encoding could be assigned as the

fitness measure.

17

The selection mechanism is used to select two individuals for crossover (mating).

The purpose of these operations is to allow substrings in the fit individuals in a

population to survive for many generations. Hence, the parent individuals for these

operations are generally selected based on their fitness values. This will promote

survival of fitter genes in the offspring and should lead to fitter individuals in the

future generations.

Genetic algorithms use two kinds of genetic operators called crossover and mutation.

The crossover operator performs a probabilistic exchange of chromosomal

information between two individuals to produce a new individual. The crossover

operator selects two parent individuals from the population based on a selection scheme.

The mutation operator typically picks a random individual from the population and

performs an inversion or some other random operation on the individual

chromosome. After a certain number of generations, the crossover operator tends to

produce offspring that are very similar to the parent individuals. Then the mutation

operator plays a critical role in restoring lost genetic material or providing diversity

in the current population. Initialization – made first population which is usually generated

randomly. This population can have any size – from a few to millions

1. Evaluation – each population is evaluated = there is computed so-called fitness

function of given solution. The purpose of this function is to find out to how extent

this solution fulfills given requirements. This requirement can have different form –

the fastest computing as possible, the best solution as possible etc.

2. Selection – the purpose is to improve fitness value of population. So it is important

to select just population which is the right pattern for find the best solution ≥

principle of evolution, only the strongest individuals can life. There are many

methods of selection but the basic idea is still the same – selection of the best

candidates for making the best possible future generation

3. Crossover – this operation makes new population by making hybrid of two selected

populations – they can be called parents. The basic idea is to combine the best

attributes of each parent.

4. Mutation – this operation makes the procedure of making new generation little bit

random. It is important for possible improvement.

5. Repeat! - generate new generation and continue from step two.

Figure 3.3 : Pseudo-code of the GA algorithm.

18

Genetic Algorithms usually ends after a given count of iterations, after a given time

of solving or after achieve given solutions. The solution of GAs heavily depends on

defined on count of populations and count of iterations.

Count of iterations means how many times is algorithm repeated. First run has as

input parameter random value but every next starts from the best founded solution

from previous iterations. Count of iterations means how many times is algorithm

repeated. First run has as input parameter random value but every next starts from the

best founded solution from previous iteration.

3.3.2 Ant colony optimization algorithms

The successful swarm intelligence model is Ant Colony Optimization (ACO), which

was introduced by M. Dorigo, and has been originally used to solve combinatorial

optimization problems in the late 1980s. It is mimic the foraging behavior of social

ant. It is a natural observation that a group of ‘almost blind’ ants can jointly figure

out the shortest route between their food and their nest without any visual

information.When searching for food, ants initially explore the area surrounding their

nest randomly. As soon as an ant finds a food source, it evaluates the quantity and

carries some of it back to the nest. During the return trip, the ant deposits a chemical

pheromone trail on the ground. The quantity of pheromone deposited, which depends

on the quantity and quality of the food, will guide other ants to the food source.

Ant System (AS) was the first ACO approach to be published and it is an iterative

distributed algorithm. (Dorigo et al., 1991; Dorigo et al., 1996), (Koç,2010). At each

iteration, a set of artificial ants are considered. The general structure of any ACO

algorithm, Starting with an initialization of the algorithm, iteration after iteration all

ants first construct their tour and then update the pheromone trails accordingly. In an

extended scenario i.e. an optional case, a local search method can be used to improve

the ants' tours before updating the pheromone is positive feedback and decay is

negative feedback. Pheromone is updated by all the ants after a complete tour is the

key idea in this algorithm. Pheromone update () for the edges of the graph ()

that is joining the cities and is calculated as follows (Dorigo et al., 1991):

19

  
1

1 .
m

k

ij ij ij

k

   


    (3.1)

where is the number of ants, is the evaporation rate, and
 is the

quantity of pheromone laid on the edge

The value of the quantity of pheromone laid on the edges is determined by the tour

length of an ant defined by:

 
1

 , ,
()

0 ,

k

k

ij

if ant k used edge i j in its tour
L

otherwise






 



 (3.2)

Ants move from one city to another city according to probability. A transition

functionis used to calculate the probability of an ant moving from the city to .

Secondly, define a visible degree , The probability of the kth ant

choosing city is given by:

 

 ,

()

0 ,

p
ij N s

k

ij ij p

k
p il il

i k c

n
if j N s

np c j s

otherwise

 

 




 
 
 







 




 (3.3)

Figure 3.4 : Ants behaviour in finding the shortest route (Dorigo, 1996)

20

The basic idea and procedure of ACO algorithm:

1. Represent the solution space by a construction graph.

2. Set ACO parameters and initialize pheromone trails

3. Generate ant solutions from each ant‘s walk on the construction graph mediated by

pheromone trails.

4. Update pheromone intensities.

5. Go to step 3, and repeat until convergence or termination conditions are met.

Figure 3.5 : Pseudo-code of the ACO algorithm.

There are hundreds of implementations of the ACO metaheuristic successfully

applied to numerous optimization problems in various domains, including famous

NP-hard combinatorial optimization problems. While ACO was initially introduced

with an application to the TSP as a proof-of-concept/classical application, and then

ACO algorithms have later been successfully applied to a wide-range of optimization

problems.

3.3.3 Particle swarm optimization (PSO)

Particle Swarm Optimisation (PSO) was introduced by Kennedy and Eberhart

(Eberhart and Kennedy 1995, Kennedy et al. 1997). PSO is population-based

stochastic optimisation technique and is inspired by the behaviour of a flock of birds.

The algorithm consists of a swarm of particles moving in a space. Every particle holds a

position and velocity vector representing a candidate solution to the problem. In

addition, each particle memorises its own best position found so far and a global best

position that is obtained through communication with its neighbour.

Similar to evolutionary algorithms, the PSO initialises with a population of random

solutions and it searches for local optima by simply updating generations of individuals.

The pseudo-code o f the PSO algorithm is given below:

21

1. Create particles (population) distributed over solution space 0 0(,)i is v .

2. While (Stopping criterion not met) do

3. Evaluate each particle’s position according to the objective function.

4. If
1k

is


 is better than
k

is (update pbest)

1k k

i is s 

5. Determine the best particle (update gbest).

6. Update particles’ velocities according to

  1

1 1 2 2 ()k kt k k

i i i i iv v c rand pbest s c rand pbest s     

7. Move particles to their new positions according to

1 1k k k

i i is s v  

8. Go to step 3, until stopping criteria are satisfied.

Figure 3.6 : Pseudo-code of the PSO algorithm (Eberhart and Kennedy, 1995).

The algorithm starts with creating particles that are uniformly distributed throughout

the solution space by defining the initial conditions for each agent. Each agent is

defined with an initial position (
) and an initial velocity (

). Each particle has a

memory function that remembers two pieces of information, the first piece of

information results from the memory of the particle of its past states as the best-so-

far position that it has visited, called the local best, and the second piece of

information results from the collective experience of all particles as the global best

position attained by the whole swarm, called the global best. Both the local best

position of each particle and the global best position of the entire swarm guide the

movements of all particles towards new improved positions and eventuality to find

the global minima/maxima (Otri, 2011).

22

3.3.4 Bees-inspired algorithms

3.3.4.1 Bees in nature

Honeybees inspired algorithms are a branch of Swarm Intelligence algorithms, which

are motivated by the fascinating behaviour of honeybees. Their behaviour is studied

in order to develop metaheuristic algorithms that can mimic the bees searching

abilities in nature. There are several examples of such behaviour, such as waggle

dance that is by a scout (worker) bees that has returned back to the comb with pollen

or nectar. It is basically a language that “tells” other workers where the food is. By

signaling both distance and direction with particular movements, the worker bee uses

the dance language to recruit and/or direct other workers for gathering pollen and

nectar.

Austrian ethologist Karl von Frisch was one of the first people to translate the

meaning of the waggle dance (Frisch, 1967). Bees communicate through this

waggle dance, which contains the following information:

 The direction of flower patches (angle between the sun and the patch)

 The distance from the hive (duration of the dance)

 The quality rating (fitness) (frequency of the dance)

 The order of the source by pollens on their legs (to specify the patch

coordinates)

Figure 3.7 : Round Dance (left) and Waggle Dance of honeybees (Frisch, 1967).

Food sources that are at intermediate distances, between 50 and 150 meters from the

hive, are described by the “sickle dance”. This dance is crescent-shaped and

23

represents a transitional dance between the round dance and a waggle dance

(Winston, 1987).

3.3.4.2 Nectar-source selection and the nest-site selection models

A colony of honey bees can extend itself over long distances (more than 10 km) and

in multiple directions simultaneously to exploit a large number of food sources. Bees

Algorithm starts with scout bees being placed randomly on the search space.

If the bees have no knowledge about the food sources in the search field they will be

an unemployed foragers bees, so bee initializes its search as an unemployed. If the

bee starts searching spontaneously without any knowledge, it will be a scout bee

(Seeley, 1995). If the unemployed forager attends to a waggle dance done, the bee

will start searching by using the knowledge from waggle dance is a recruit bee.

When the recruit bee finds and exploits the food source, it will raise to be an

employed forager who memorizes the location of the food source.

The value of a food source depends on different parameters such as its proximity to

the nest, richness of energy and ease of extracting this energy. According to the

fitness, patches can be visited by more bees or may be abandoned. The bees evaluate

the different patches according to nectar quality and energy usage. By performing the

waggle dance, successful foragers share the information about the direction and

distance to patches of flower and the amount of nectar within this flower with their

hive mates.

Figure 3.8 : The dancer bees meet other bees at the dance floor (Koç, 2010).

Camazine presented a differential equations model to honey bees’ behaviors.

Individual bees are represented in this model using a flow diagram for the nectar-

source selection processes and they do not have global information about the

24

distribution of nectar sources each one will comply with certain rules to determine

where it will go to forage. This process is described by a flow diagram illustrated in

Fig. 3.7.

According to the model, there are seven decision making branches for the situation

of a colony choosing between two nectar sources which nectar source to forage and

whether to dance. There are foraging at nectar source A, foraging at nectar source B,

dancing for nectar source , dancing for nectar source , unemployed foragers

observing a dancer F, unloading nectar from source and unloading nectar from

source .

In this model, there are two factors affecting the proportion of the total forager

number in each compartment: (1) the rate at which a bee moves from one

compartment to another and (2) the probability that a bee takes a fork at each of the

five branch points (diamonds), r, stands for a rate constant defined as the fraction of

bees leaving a compartment in a given time interval equal to „ where each T, is

the time to get from one compartment to another. The unit of the rate constant is

given as (Camazine, 1991).

The first branch point is encountered after a bee has unloaded her nectar in the hive.

Here, bee may abandon the nectar source and return to the dance floor to follow

another dancer. stands for the abandoning function that denotes the probability

that a bee may abandon the nectar source or go back to the dance floor to observe

another dancer bee. This function depends on the profitability of the source, so

represents the probability that a bee leaving , abandoning the nectar source and

becoming a follower bee (F).

The second branch point is for the bees that did not abandon their source. At this

point, a bee decides whether to dance for the nectar source or to fly back to the nectar

source. denotes the probability of performing a dance for the nectar source. Its

value also depends on the profitability o f thenectar source similar to the abandoning

function
 denotes the probability of performing a dance for the nectar source.

The third branch occurs on the dance floor when a follower bee dances to decide for

one of the nectar sources
 , denotes the probability of a follower bee following

dances for nectar source A and leaving for this nectar source. Thus, the probability of

25

following a dancer bee for A
 , and the probability of following a dancer bee for

B
):

 A A A
F

A A B B

D d
f

D d D d



 (3.4)

 B B B
F

A A B B

D d
f

D d D d



 (3.5)

The time limitation of and has been weighted and denoted as and .

Therefore, each function indicates the proportion of the total dancing for each nectar source

by taking into account the number of dancers and the time spent dancing. Equations of the

model, with some assumptions for simplicity, are written as the following set of differential

equations (Camazine et al. 1991):

1 2 4 3(1)(1)A A A

d X A A F

dA
f f p H p D f p F p A

dt
      (3.6)

  1 A 2 A 1 H DA AA
d X

dD
f f p p

dt
   (3.7)

3 1 A

A HAdH

p p
dt

  (3.8)

5 6 4 7(1)(1)B B B

d X B B F

dB
f f p H p D f p F p A

dt
      (3.9)

  5 B 6 B 1 H DB BB
d X

dD
f f p p

dt
   (3.10)

7 5 BB HBdH
p p

dt
  (3.11)

1 5 4

A B

X A X B

dF
f p H f p H p F

dt
   (3.12)

A detailed derivation and discussion of these equations is given in Camazine and

Sneyd (1991).

26

Figure 3.9 : A mathematical model shows how honey-bee colonies allocate foragers.

 At any moment each forager can be in one of the seven compartments

shown (, , , A, B, F) denote the compartments as well as

the number of foragers in the compartments). The rate at which bees

leave each compartment is indicated by . The functions

 ,

 and so on, indicate the probability of taking one or the

other fork at each of the five branch points black diamonds (Seeley

Camazine, and Sneyd 1991) .

Nest-site selection is another important practice which requires an optimisation

process as nectar source selection behaviour does in honey-bee colonies. Nest-site

selection in honey-bee colonies can be summarised as a social decision making

process. In this process, scout bees locate several potential nest sites, evaluate them,

and select the best one on a competitive signalling basis (Passino and Seeley, 2006).

27

In nature, honey bees have several complicated behaviors such as mating, breeding

and foraging and these behaviors have been mimicked for several honey bee based

optimization algorithms. Honey bees optimization algorithms are categorized in this

work by concerning the behavioural characteristics of honey bees. There are foraging

behaviours, marriage behaviours and Queen bee concept.

The researches, their main contributions and applications are summarized as shown

in Table3.1. Yonezawa and Kikuchi (1996) examine the foraging behaviour of honey

bees and Sato and Hagiwara (1997) introduced honey-bees inspired algorithm called

the bee system, as an improved version of genetic algorithms. This system claims to

be inspired basically from ‘finding a source and recruiting others to i t ’ behaviour.

Seeley and Buhrman (1999) investigated the nest site selection behaviour of honey

bee colonies. The nest site selection process starts with several hundred scout bees.

After the scouts return to the cluster, report their findings by means of waggle

dances, and decide the new nest site. Luck and Teodorovic (2001) published the first

study on Bee System based on the PhD thesis. They named the model the Bees

System and aimed to deal with the Travelling Salesman Problem. So the algorithm

was developed for combinatorial domains and applied to traveller salesman problems

(TSP) that aim to find the minimum distance route.

Yang (2005) was inspired The Virtual Bee Algorithm (VBA) by a swarm of virtual

bees where it began with bees wandering randomly in the search space. The VBA

initially created a population of virtual bees, where each bee was associated with a

memory bank. Then, the functions of optimisation (objectives) were converted into

virtual food.

1. Creating a population of multi-agents or virtual bees, each bee is associated

with a memory bank with several strings;

2. Encoding of the objectives or optimization functions and converting into the

virtual food;

3. Defining a criterion fo r communicating the direction and distance in the

similar fashion o f the fitness function or selection criterion in the genetic

algorithms;

28

4. Marching or updating a population o f individuals to new positions fo r

virtual food searching, marking food and the direction with virtual waggle

dance;

5. After certain time o f evolution, the highest mode in the number of virtual

bees or intensity/frequency of visiting bees corresponds to the best estimates;

6. Decoding the results to obtain the solution to the problem

Figure 3.10 : Pseudo-code of the VBA algorithm.

Karaboga and Basturk introduced the foraging behaviour of honey bee swarm and

proposes a new algorithm simulating this behaviour for solving multi-dimensional

and multi-modal optimization problems, called Artificial Bee Colony (ABC). The

algorithm uses three types of bees, called employed bees, onlooker bees and scout

bees and the main steps of the algorithm are:

1. Send the employed bees onto the food sources and determine their nectar

amounts;

2. Calculate the probability value of the sources with which they are preferred

by the onlooker bees;

3. Stop the exploitation process of the sources abandoned by the bees;

4. Send the scouts into the search area for discovering new food sources,

randomly;

5. Memorize the best food source found so far.

For each flower patch, an artificial onlooker bee chooses a food source depending

on the probability value associated with that food source, , calculated by the

following expression

1

i
i SN

nN

fit
p

fit





 (3.13)

where is the fitness value of the solution i which is proportional to the nectar

amount of the food source in the position i and SN is the number of food

sourceswhich is equal to the number of employed bees or onlooker bee.

In order to produce a candidate food position from the old one in memory, the

ABC uses the following expression:

 () (3.14)

29

where k {1; 2; . . . ; SN} and j {1; 2; . . . ;D} and are

randomlychosen and k . ABC also uses site abandonment, which is simply leaving

a patch if no more improvement is observed on the patch after certain number of

iterations. It is called ‘‘limit”. Assume that the abandoned source is and

 j {1; 2; . . . ;D} then the scout discovers a new food source to be replaced

with . It defined in the following equation:

 (3.15)

1. Initialize the population of solutions ; {1; . . . ; SN}

2. Evaluate the population

3. cycle = 1

4. repeat

5. Produce new solutions for the employed bees by using (7) and evaluate them

6. Apply the greedy selection process for the employed bees

7. Calculate the probability values Pi for the solutions by (6)

8. Produce the new solutions ti for the onlookers from the solutions xi selected

depending on and evaluate them

9. Apply the greedy selection process for the onlookers

10. Determine the abandoned solution for the scout, if exists, and replace it

with a new randomly produced solution by (8)

11. Memorize the best solution achieved so far

12. cycle = cycle + 1

13. until cycle = MCN

Figure 3.11 : Pseudo-code of the ABC algorithm. (Koç, 2010).

Another implementation of bee behaviour was presented by (Teodorovic, 2006) to

solve transportation problems and was called Bee Colony Optimisation (BCO). A

Fuzzy Bee System was also proposed in (Teodorovic et al., 2006). BCO has been

developed for combinatorial problems and the pseudo-code of the algorithm is given

below:

30

1. Initialization. Determine the number o f bees B, and the number of iterations I.

Select the set of stages ST = { , ,…, }. Find any feasible solution x of

the problem. This solution is the initial best solution.

2. Set i 1. Until i = I, repeat the following steps:

3. Set j 1. Until j = m, repeat the following steps:

Forward pass: Allow bees to fly from the hive and to choose B partial solutions

from the set of partial solutions at stage .

Backward pass: Send all bees back to the hive. Allow bees to exchange

information about quality of the partial solutions created and to decide whether to

abandon the created partial solution and become again uncommitted follower,

continue to expand the same partial solution without recruiting the nestmates, or

dance and thus recruit the nestmates before returning to the created partial

solution. Set j: = j + 1.

4. If the best solution obtained during the i-th iteration is better than the

bestknown solution, update the best known solution (x: = .

5. Set, i: = i + 1.

Figure 3.12 : Pseudo-code of the BCO algorithm (Koç, 2010).

31

4. THE BEES ALGORITHM

The Bees Algorithm was developed by a group of researchers at the Manufacturing

Engineering Centre, Cardiff University (Pham et al., 2005). It is a population based

search algorithm that mimics the food foraging behaviour of honeybees to find the

optimal solution for both continuous and combinatorial problem. In its basic version, the

algorithm performs a kind of neighbourhood search combined with random search.

The Bees Algorithm required six parameters. There are number of scout bees (n),

number of selected sites (m), number of top-ranking (elite) sites among the m selected

sites (e), number of bees recruited for each non-elite site (nsp), number of bees recruited

for each elite site (nep), and neighbourhood size (ngh) and the stopping criterion. The

algorithm starts with the n scout bees being placed randomly in the search space and

presents a neighbourhood search associated with a random search.

The Bees Algorithm (BA) involves global and neighbourhood search. A number of bees

are employed to explore at random the solution space in the global search procedure that

enables the bees to escape from local optima. This kind of search is crucial as it enables

the bees to escape from local optima. At the same time, neighbourhood search

concentrates exploitation around promising solutions. Both of them in population-based

algorithms may locate solutions that gradually come closer to an optimal. Initialize

population with random solutions;

1. Evaluate fitness of the population.

2. While (stopping criterion not met)

3. Select sites for neighbourhood search.

4. Recruit bees for selected sites (more bees for e best sites) and evaluate fitnesses.

5. Select the fittest bee from each site to form the new population.

6. Assign remaining bees to search randomly and evaluate their fitnesses.

7. End While.

Figure 4.1 : Pseudo-code of the Bees Algorithm (Koç, 2010).

32

Table 4.1 : Basic parameters of the Bees Algorithm. (Koç, 2010).

Parameter Symbols

Number of scout bees in the selected patches n

Number of best patches in the selected patches m

Number of elite patches in the selected best

patches

e

Number of recruited bees in the elite patches

nep

Number of recruited bees in the non-elite best

patches

 nsp

 The size of neighborhood for each patch

ngh

Number of iterations Maxiter

In step 1 the algorithm starts with the n scout bees being placed randomly in the

search space. In step 2 the fitnesses of the points visited by the scout bees are

evaluated. In step 4, bees that have the highest fitnesses are chosen as “selected bees”

and those sites that have been visited will be chosen for neighbourhood search. Then,

in steps 5 and 6, the algorithm conducts searches in the neighbourhood of the

selected bees in terms of more bees for the e best bees.

Figure 4.2 : Flowchart of the basic Bees Algorithm (Otri, 2011).

33

Figure 4.3 : Flowchart of the basic Bees Algorithm.

Example 4.1: Step1: Initialize population with random solutions with n = 20.

Evaluate fitness of the population.

Figure 4.4 : 20 scout bees are placed randomly in the search space.

34

Step 2: Select the parameters of Bees Algorithm:

 n = 20 number of scout bees

 m = 3 number of sites selected out of n visited sites

 e = 1 number of best sites out of m selected sites

 nep = 7 number of bees recruited for best e sites

 nsp = 2 number of bees recruited for other (m-e) selected sites

 ngh = 3 neighbourhood size ± ngh

Figure 4.5 : m=3 selected bees for neighbourhood search.

Recruited bees for selected sites (more bees for best e sites) and

evaluate fitnesses.

 The best e sites (more bees for best e sites)

Select sites for neighbourhood search. (Bees that have the highest

fitnesses are chosen).

35

Figure 4.1 : Recruitment phase for local search.

Figure 4.2 : Generate new population with local and global search phase.

Select the fittest bee from each patch. (For each patch, only the bee with the

highest fitness will be selected to form the next bees population.)

Assing remaining bees to search randomly and evaluate their

fitnesses.

New Population

36

Figure 4.3 : Simple example of Bees Algorithm with n=10 scout bees (Koç, 2010).

4.1 Neighbourhood / Local Search of Bees Algorithm

As in all the evolutionary algorithms, the neighbourhood search is one of the

essential parts of swarm-based algorithms as well as for the Bees Algorithm. In the

Bees Algorithm, the searching process in a selected site is similar to that of the

foraging field exploitation of honey bee colonies in nature. The harvesting process as

explained in previous chapter includes a monitoring phase for the purpose of

recruiting more bees to selected site that can be used as a neighbourhood search in

37

the Bees Algorithm. Essentially, when a scout bee finds a good field (good solution),

she advertises her field to more bees. As we explained in the previous chapter the

nesting-site selection of honeybees behaviour has been used as a neighbourhood

search in the proposed Bees Algorithm.

After ranking the sampled solutions and locating the most promising ones (i.e. the

highest ranking locations), other bees are recruited to search the fitness landscape in

the neighbourhood of these solutions. A neighborhood search sites of size ngh is

selected which will be used to update the m bees declared. This is important as there

might be better solutions than the original solution in the neighborhood area.

In the neighbourhood search procedure, more forager bees are recruited in the

neighbourhood of the elite (e) sites, and fewer bees around the non-elite (m-e) sites

and thanks to this strategy the foraging effort was concentrated on the very best (i.e.,

elite) solutions. For every selected site, bees are randomly distributed to find a better

solution within the given neighbourhood area (i.e., flower patch size). As shown in

Fig. 4.7, only the fittest (best) bee is chosen as a representative bee and the centre of

the neighbourhood shifted to the position of the best bee. (i.e from A to B).

Figure 4.4 : Graphical Explanation of the Neighbourhood Search (Otri, 2011).

38

4.2 Improvements to the Bees Algorithm

We purpose to impove the efficiency of the Bees Algorithm in local search and

global search with dynamic recruitment, proportional shrinking for selected sites and

site abandonment.

Dynamic recruitment aim to improve the way that the bees are recruited into a

selected site and it is deal with the local search space faster. With dynamic

recruitment strategy if there is any improvement on the recruited site according to

original bee, the recruited bee will replace the original and path will move to a new

position around the fittest and new position.

Proportional shrinking idea defined with which the initial patch size is set as a

starting patch size in the first iteration of the algorithm. Shrinking Constant (sc) is

called the to a contraction of patch sizes of all selected sites (m) in every iteration of

the algorithm proportional to a constant ratio. Depending on the iteration (i), the

patch size of the site m)) is calculated as a contraction from the previous

size) proportional to the value of sc.

where sc))

 

      
m

m

m m m

1 Ngh i
Ngh (i)

1 Ngh i Ngh i 1 1 SC Ngh () 0

i InitialPatchSize

i and i

  
 

    

 (4.1)

This strategy is proposed to improve solution quality and evoluation time. To

improve the efficiency of local search we use site abondenment strategy. If there is

no improvement of the fitness, value of the fittest bee after a certain number of

iterations the site will be abondened.

The site abondenment strategy is proposed to escape from local in many complex

optimization problems. Investigations are also given on details of the local and global

search methods used in the algorithm. Also, details of the improvements made to

local and global search methods are presented, including dynamic recruitment,

proportional shrinking and abandonment strategies (Koç, 2010).

39

1. Initial population with n random solution.

2. Evaluate fitness of the population.

3. While (stopping criterion not met)

4. Select sites (m) for neighbourhood search.

5. Recruit bees for selected sites (more bees for best e sites), evaluate fitnesses, select the

fittest bee from each site and shrink patches

 for (k=l ; k=e ; k++) // Elite Sites

 for (Bee=l ; Bee= nep ; Bee++) // More Bees for Elite Sites

 BeesPositionlnNghO = GenerateRandomValueInNgh (from x+ngh to x-ngh),

 Evaluate Fitness = Bee(i); //Evalute the fitnees of recruited Bee(i)

 If (Bee(i) is better then Bee(i-l)) RepresentativeBee = Bee(i);

 for (k=e ; k=m ; k++) // Other selected sites (m-e)

 for (Bee=l ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sites (m-e)

 BeesPositionlnNghO = GenerateRandomValuelnNgh(from x+ngh to x-ngh);

 Evaluate Fitness = Bee(i); //Evalute the fitnees o f recruited Bee(i)

 If (Bee(i) is better then Bee(i-l))

 RepresentativeBee = Bee(i);

6. for (patch=l; patch=m; patch++)

 // Shrink all patches (m) proportional to SC

 ();

7. If (Iteration > sat)

 If (no improvement on the site)

 Save the Best Fitness;

 Abandon the Site;

 Bee(m) = GenerateRandomValue(All Search Space);

8. Assign remaining bees to search randomly and evaluate their fitnesses.

 // (n-m) assigned to search randomly into whole solution space

Figure 4.5 : Pseudo-code of the improved Bees Algorithm (Koç, 2010).

40

 4.3 Bees Algorithm Applications

The Bees Algorithm as described above is applicable to both combinatorial and

functional optimisation problems so the performance of the Bees Algorithm was

tested on continuous and combinatorial problems.

 4.3.1 Continuous domains applications

Several continuous applications of the Bees Algorithm are including functional

optimization problems with mathematical test functions are given below:

 De Jong's function, Shekel’s Foxholes and Schwefel’s function. (Koç,

2010). These problems were used to test the Bees Algorithm and establish

the correct values of its parameters and seven problems for benchmarking

the algorithm.

 Mathematical benchmarks functions (Ghanbarzadeh 2007; Koç 2010;

Sholedolu 2009) and eight benchmark functions (Mathur, 2000).

The results compared with those obtained using other optimisation

algorithms. The test functions and their optima are shown in below:

Table 4.2 : Test Functions (Mathur, 2000).

41

Table 4.3 : Results (Mathur, 2000).

Table 4.2 presents the results obtained by the Bees Algorithm and those by the

deterministic Simplex method (SIMPSA), the stochastic simulated annealing

optimisation procedure (NE SIMPSA, the Genetic Algorithm (GA) and the Ant

Colony System (ANTS) (Mathur, 2000). Again, the numbers of points visited shown

are averages for 100 independent runs.

 Neural network training for a variety of industrial applications and recursive filter

design.

 Mechanical design like desing of welded beam, desing of coil spring (Ang 2009;

Pham and Ghanbarzadeh 2007),

 Wood defect classification (Pham and Haj Darwish 2010; Pham, 2007c; Pham

2006b).

 Environmental/Economic Power Dispatch Problems (EEDP) (Lee and Haj Darwish

2008)

 Chemical engineering process (Pham et al., 2008)

 Digital Filter Optimization

 Function Optimizastion

42

 4.3.2 Combinatorial domains applications

There are lots of applications of Bees Algorithm to a combinatorial optimisation

problem in the literature is given below below:

 Job Shop Scheduling Problem (JSSP) (Pham, 2007b)

 Wood defect classification (Pham and Haj Darwish 2010; Pham et al.,

2007c; Pham et al., 2006b).

 Printed Circuit Board (PCB) problem (Ang, 2010)

Before we focused on details of the Bees Algorithm for combinatorial domains

we will give, a important no free lunch theorem that is about mathematical

analysis of computing, computational complexity and optimization problems.

4.4 No Free Lunch Theorem

Theorem 4.5.1 (Weak NFL) Given search algorithms , and function f ,

there exists a function such that () (
)

 is cardinality.

Definition: A performance measure with respect to a set is any function

 defined over the collection of all search algorithms such that is a

function of the multiset {{ }}. Search algorithms perform equally

well on F if they are evaluated identically by every performance measure with

respect to F.

Theorem 4.5.2 (NFL) Every efficient search algorithm performs equally well on

F if and only if F is closed.

No-free-lunch theorems may be of theoretical importance, and they can also have

important implications for algorithm development in practice. The theorem says

that, the fact there is no universally efficient algorithm so if algorithm A

performed better than algorithm B in some class of problems, then algorithm B

performed better than algorithm A in some other class of problems. On average,

each algorithm produced similar performance in respect to other algorithms. In

addition, the performance of an algorithm on a set of benchmarking problems did

not guarantee giving similar performance on a different class of problems

(Wolbert 1997).

http://en.wikipedia.org/wiki/Computational_complexity
http://en.wikipedia.org/wiki/Optimization_%28mathematics%29

43

Obviously, in reality, the algorithms with problem-specific knowledge typically

work better than random search, and that there is no universally generic tool that

works best for all the problems. Therefore, we have to seek balance between

speciality and generality, between algorithm simplicity and problem complexity,

and between problem-specific knowledge of optimization problems.

44

45

5. BEES ALGORITHM FOR COMBINATORIAL SPACES

Combinatorial optimization problems have attracted much attention of researchers

over the years can generally be defined as problems that require searching for the

best solution among a large number of finite discrete candidate solutions.

Approximation algorithms, like population-based algorithms are techniques that

solve ‘NP-hard’ CO problems in a reasonable amount of computation time.

In this chapter, the Bees Algorithm is presented for combinatorial domains and it was

tested on Travelling Salesman Problem with different neighbourhood strategies.

In the basic version of the Bees Algorithm, a kind of neighbourhood search

combined with a random search to enable it to locate the global optimum. In

combinatorial domains, unlike continuous domains, there is no mathematical

distance definition for neighbourhood search. So we use similar but not same version

of the Bees Algorithm for continuous domains as we presented in the previous

chapter.

In combinatorial domains, the patch idea of the Bees Algorithm for continuos

domians replaced by a local search operator to be able to perform a local search the

main difference of combinatorial domains. Removing the shrinking procedure is also

another difference. However, the abondonment procedure can be used in both of the

solution spaces to improve the global search part. The pseudo-code of the Bees

Algorithm for combinatorial domains is given in Figure5.1.

46

1. Initial population with n random solution; random(Sequence(n)).

2. Evaluate fitness of the population.

3. While (stopping criterion not met)

4. Select sites (m) for neighbourhood search.

5. Recruit bees for selected sites (more bees for best e sites), evaluate fitnesses, select the

fittest bee from each site and shrink patches

for (k=l ; k=e ; k++) // Elite Sites

for (i=l ; i= nep ; i++) // More Bees for Elite Sites

RecruitedBee(k)(i) = NeighbourhoodOperator(Sequence(k));

Evaluate Fitness = RecruitedBee(k)(i); //Evalute the fitnees of recruited Bee(i)

 If (Bee(i) is better than Bee(i-l)) RepresentativeBee = RecruitedBee(k)(i);

 for (k=e ; k=m ; k++) // Other selected sites (m-e)

 for (Bee=l ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sites (m-e)

 RecruitedBee(k)(i) = NghOperator(Sequence(k));

Evaluate Fitness = RecruitedBee(k)(i); //Evalute the fitnees of recruited Bee(i)

If (Bee(i) is better than Bee(i-l)) RepresentativeBee = RecruitedBee(k)(i);

6. If (Iteration > sat)

If (no improvement on the site)

Save the Best Fitness;

Abandon the Site;

Bee(m) = GenerateRandomValue(All Search Space);

7. Assign remaining bees to search randomly and evaluate their fitnesses. // (n-m)

assigned to search randomly into whole solution space

8. End While

Figure 5.1 : The pseudo-code of the Bees Algorithm for combinatorial domains

(Koç, 2010).

47

 5.1 The Travelling Salesman Problem

Traveling Salesman Problem (TSP) is about finding a Hamiltonian path with

minimum cost. This cost is referred to as the tour length. Since it is the length of

the tour a salesman would make when visiting the cities in the order specified by

the permutation, returning at the end to the initial city.

Definition 5.1 A graph G is a composite of a set of vertices and another set

 of edges, where an edge is a set of two distinct vertices. For example we may

have = {1, 2, 3, 4} with = {{1, 2}, {1, 3}, {2, 3}, {2, 4}}.

Definition 5.2 Let G = (V,E) be an undirected graph. A Hamiltonian cycle of G

is a cycle that visits every vertex v V exactly once. Instead of Hamiltonian

cycle, we sometimes also use the term tour.

Suppose a salesman is given a set of cities associated with traveling distances (or

costs) from any city to any other city.

The salesman must visit every city only once and then return to the starting city

with minimum distances (or costs). Given a starting city, it has choices

for the second city, choices for the third city, etc. Multiplying these

together one gets for one city and for the V cities. Another

solution is to try all the permutations (ordered combinations) and see which one

is cheapest. At the end, the order is also factorial of the number of cities. Briefly,

the solutions which appear in the literature are quite similar. The TSP is therefore

to determine a Hamiltonian tour with minimum cost that is one of the discrete

optimization problems which is classified as NP-hard combinatorial optimization

problem.

Definition 5.3 Let G = (V,E) be a graph. V is a set of m cities, V = { , …, }

and E is a set of arcs or edges, { }.

Remember that to formulate an optimization model, we need to define a search

space and search space contains the set of feasible solutions of an optimization

problem. Furthermore, a search space can define relationships (for example

distances) between solutions.

48

Very generally, a search space can be defined as a topological space.A topological

space is a generalization of metric search spaces (as well as other types of search

spaces)

Definition 5.4 A topological space is an ordered pair where is a set of

solutions (points) and is a collection of subsets of called open sets. A set is in

X (denoted) if every element Y is also in X (x Y x X).

A topological space has the following properties:

1. the empty set and whole space are in ,

2. the intersection of two elements of T is again in , and

3. the union of an arbitrary number of elements of is again in .

Metric search spaces are a specialized form of topological spaces where the

similarities between solutions are measured by a distance. Therefore, in metric search

spaces, we have a set X of solutions and a real-valued distance function also called a

metric: that assigns a real-valued distance to any combination of

two elements x, y X. In metric search spaces, the following properties must hold:

1.

2.

3.

4.

 example of a metric that can be defined on is the Euclidean

metric. In Euclidean spaces, a solution x = (is a vector of continuous

values (). The Euclidean distance between two solutions and is defined

2

1

(,) ()
n

i i

i

d x y x y


  (5.1)

For n = 2, we have a standard 2-dimensional search space and the distance between

two elements . Many optimization models use metric search spaces. A

metric search space is a topological space where a metric between the elements of

the set X is defined. Therefore, we can define similarities between solutions based on

the distance d.

49

Definition 5.5 (Metric TSP) Let G be a complete undirected graph G with a weights

 that satisfy the triangle inequality      , , , d u w d u v d v w  for

all . E is normally associated with a distance (or cost) matrix, which

is defined as the problem is a symmetric TSP (STSP). Otherwise, it

becomes an asymmetric TSP (ATSP).

Figure 5.2 : Triangularity in a road network. The distance from A to B is

determined by the shortest route for

every X (Hetland, 2009).

Example 5.2: Sabrina has the following list of errands:

 Pet store (the black cat needs a new litterbox) (P)

 Greenhouse (replenish supply of deadly nightshade) (G)

 Pick up black dress from cleaners (C)

 Drugstore (eye of newt, wing of bat, toothpaste) (D)

 Target (weekly special on cauldrons) (T)

In witch which order should Sabrina do these errands in order to minimize the time

spent?

50

Figure 5.3 : The Hamiltonian path minimize the time spent.

51

5.2 Proximity Queries in Metric Spaces

Let D be a set, d a distance function defined on , and a metric space.

Given a set , structure the elements of so that similarity queries can be

answered basically three types of queries in metric spaces:

1. Find objects whose feature values fall within a given range or where the distance,

using a suitably defined distance metric, from some query object falls into a

certain range (range queries).

2. Find objects whose features have values similar to those of a given query object

or set of query objects (nearest neighbor queries). In order to reduce the

complexity of the search process, the precision of the required similarity can be

an approximation (approximate nearest neighbor queries).

3. Find pairs of objects from the same set or different sets which are sufficiently

similar to each other (closest pairs queries).

5.2.1 Range query

This is the most common type of query that is meaningful almost in every

application. The query is specified by the query object and the query radius

 and retrieves all objects which are within the distance of r from q, shown in

Figure5.4:

 = { | } (5.2)

Figure 5.4 : retrieves all objects which are within the distance of to the

query object .

52

5.2.2 Nearest neigbor query (NN(q))

This query finds one nearest neighbor, that is, the object closest to the given query

object. In general case where for k nearest neighbors that is, k-NN(q) query retrieves

k nearest neighbors to the object q:

 { | }

 { | | }

In case of we are satisfied with any set of k elements satisfying the

condition. Here we select the q as a pivot element sometimes called centers.

5.3 Neighbourhood Strategies

Definition 5.4 A neighbourhood is a function

that assigns to every and N(s) called the

neigbourhood of s, S is the search space containing all possible solutions.

A neighborhood definition can be viewed as a mapping that assigns to each solution

s¸ S a set of solutions y that are neighbors of s.

There are several exchange neighbourhood strategies and local search algorithms in

the literature. Among simple local search algorithms, the most famous are 2-Opt and

3-Opt and insert ect. that swap operators are considered as exchange neighbourhood

strategies (Aarts and Lenstra, 1997). They simply change the position of a randomly

selected city to create an altered path. By contrast, 2-Opt and 3-Opt are simple local

search algorithms that delete two or three edges, thus breaking the tour into two paths

and then reconnecting those paths later.

These approaches can be roughly divided into local (heuristic) search and global

search approaches. Some of the local search approaches are such as 2-opt, 3-opt (Lin,

1965). The global search approaches, such as simulated annealing (KirkkPatrick,

1983), Hopfield neural networks, and evolutionary algorithms (Nagata, 1997) ,

(Freisleben, 1996), (Dorigo, 1997), (Tao, 1998), (Mulhem, 1998) ,(Zhenya, 1999)

have been proposed to reduce the ill effect of these local search methods, but they

often converge more slowly compare to local search approaches (Tsai, 2002).

53

2-Opt algorithm deletes two edges, thus breaking the tour into two paths, and then

reconnects those paths in the other possible way. See Figure 5.2.

Figure 5.5 : A 2-Opt move: original tour on the left and resulting tour on the right

(Johnson, 1997).

3-Opt algorithm deletes three edges, thus breaking the tour into three paths, and then

reconnects those paths in the other possible way. See Figure 5.4.

Figure 5.6 : A 3-Opt move: original tour and resulting tour (Johnson, 1997).

We don’t necessarilly have to stop at 3-opt, we can continue with 4-opt and so on,

but each of these will take more and more time and will only yield a small

improvement on the 2- and 3-opt operator.

Figure 5.7 : The double bridge move 4-opt move is called “the crossing bridges”

(Davendra, 2010).

54

55

6. VANTAGE POINT NEIGHBOURHOOD SEARCH IN THE BA

6.1 Preliminaries

The Nearest Neighbor field includes the study of decision making and learning based

on neighborhoods, the underlying metrics and spaces, and the matter of

computing/searching for the neighborhood about a point (Yianilos,1993). Searching

includes several forms of vantage point tree (vp-tree). It is the data structure

introduced in several forms, together with associated algorithms, as an improved

method for these difficult search problems.

Each element of metric space distances to every other element formed a perspective

on the entire space. Vantage points sometimes called pivot element cuts/ divide the

entire space and it formed a vantage point tree.

Figure 6.1 : Vantage point decomposition (Yialinos, 1993).

56

Vantage Point Trees (vp-tree) formed by simplest algorithm. Its distinguished

vantage point then splits the space into left and right space. This is building a binary

tree recursively, taking any element p as the root (vantage point) and taking the

median of the set of all distances, M = { | }. The left space or left

subtree contains the elements u, which satisfied and right subtree

contains the elements u, which satisfied . The algorithm construct this

subtrees with selecting a vantage point element ramdomly.

The VPT takes O(n) space and is built in O(nlogn) worst case time, since it is

balanced. We first measure If enter the element to the left

space, if enter it to the right. Notice that this selecting algorithm can be

used both for discrete distance functions and continuous distance functions.

Figure 6.2 : Example VPT with root

 6.2 The Bees Algorithm with Vantage Point Neihbourhood Search

The simplest vp-tree construction begins with selecting a pivot element, vantage

point randomly. Given a set S of metric space elements (i.e combinatorial search

space elements), the algorithm returns pointer to the root of an optimized vp-tree that

satisfied the local optimum value (for example in TSP returns the optimal tour for

each iteration of recruit phase).

The algorithm of making vantage point neighbourhood searh for the Bees Algorithm

recruitment phase is given below:

57

1. Recurse the following steps until all sites are chosen.

2. Select a vantage point (pivot site) randomly from the all sites.

 Add vantage point to the solution list; // i.e hist list

3. Calculate median of the set of all distances, M = { | }.

 // return a list hist of the distances from the item to each vantage point

4. Splits site list into two list L and R. Take only left site list (L) for optimal

solution.

 for (site=1; site < allSites; site ++)

 if (median) add site to L,

5. Select new vantage point from the L randomly. Add pivot site to the solution

list and delete selected site from all sites.

6. Go to step 3, and repeat until convergence or termination conditions are met.

7. Return solution site list for evaluating fitness.

Figure 6.3 : Proposed pseudo-code of the Vantage Point Bees Algorithm

recruitment phase

This algorithm presents a modification of the neighbourhood search procedure in the

Bess Algorithm for combinatorial domains. We proposed vantage point neighbourhood

search procedure for the Bees Algorithm local search in the recruitment selection.

Like the original Bess Algorithm, this new algorithm required the same six parameters

(n, m, e, nsp, nep, ngh). Initially, a number of bees (n) were sent randomly to the search

space. Each bee was associated with one solution. The solutions representing the fitness

of individual bees were then ranked in descending order. The top m solutions were

regarded as selected sites. Of m sites, a number of top e site(s) were considered as elite

one(s). Each of non-elite (m-e) and elite (e) sites respectively received nsp and nep

forager bee(s) to exploit the discovered food source. All this steps are the same with the

original Bees Algorithm.

To develop a new local search in the recruitment phase we use the vantage point tree

algorithm with median calculations. The Bees Algorithm with vantage point

neihbourhood procedure is suggested as an addition to the Bees Algorithm to deal

58

with combinatorial domains. The algorithm is applied to the Travelling Salesman

Problem (TSP) to show that the algorithm is both robust and efficient.

1. Initial population with n random solution.

2. Evaluate fitness of the population.

3. While (stopping criterion not met)

4. Select sites (m) for neighbourhood search.

5. Recruit bees for selected sites (more bees for best e sites), evaluate fitnesses, select

the fittest bee from each site and shrink patches

 for (k=l ; k=e ; k++) // Elite Sites

 for (Bee=l ; Bee= nep ; Bee++) // More Bees for Elite Sites

 BeesPositionlnNghO = GenerateVantagePointTree (Bee(i), all sites),

 Evaluate Fitness = Bee(i); //Evalute the fitnees of recruited Bee(i)

 If (Bee(i) is better then Bee(i-l)) RepresentativeBee = Bee(i);

 for (k=e ; k=m ; k++) // Other selected sites (m-e)

 for (Bee=l ; Bee= nsp ; Bee++) // Less Bees for Other Selected Sites (m-e)

 BeesPositionlnNghO = GenerateVantagePointSolution (Bee(i) ,all sites),

 Evaluate Fitness = Bee(i); //Evalute the fitnees o f recruited Bee(i)

 If (Bee(i) is better then Bee(i-l))

 RepresentativeBee = Bee(i);

6. If (Iteration > sat)

 If (no improvement on the site)

 Save the Best Fitness;

 Abandon the Site;

 Bee(m) = GenerateRandomValue(All Search Space);

7. Assign remaining bees to search randomly and evaluate their fitnesses.

 // (n-m) assigned to search randomly into whole solution space

8. End While

Figure 6.4 : Proposed Pseudo-code of the Vantage Point Bees Algorithm.

59

6.3 A Proposed VPBA for TSP and Experimental Results

The performance of the VPBA is investigated by appliying the algorithm to

benchmark problem taken from TSPLIB. As an instance we choose Eil51, that is a

51-city TSP problem and we compare the test result with the performance of the

Bees Algorithm with several local search operators including simple (2 point) swap,

double (4 point) swap, insert, 3 point swap, 2-Opt and 3-Opt.

The experiments were performed using the Vantage Point Bees Algorithm to evolve its

own parameter values. It was run 50 times for each parameter setting on eil51

benchmark problem.

The computing platform used to perform the experiments was a 2.50GHz Intel(R)

Core(TM) i5-2450M CPU PC with 4 GB of RAM. The experimental programs were

coded in the Java language and compiled with Eclipse IDE. Each problem instance was

run across 50 random seeds. The parameters of Vantage Point Bees Algorithm for

eil51 TSP shown in Table 6.1:

Table 6.1 : Parameters for VPBA of eil51 TSP.

Parameter Symbols

Number of scout bees in the selected patches n = 80

Number of best patches in the selected patches m = 20

Number of elite patches in the selected best

patches

e = 5

Number of recruited bees in the elite patches

nep = 80

Number of recruited bees in the non-elite best

patches

 nsp = 40

 Number of iterations 50

Table 6.2 summarizes the results of the Bees Algorithm with (2 point) swap, double

(4 point) swap, insert, 3 point swap, 2-Opt and 3-Opt operator on eil51 TSP.

(Koç,2010).

60

Table 6.2 : Performance of the Bees Algorithm with different local search methods.

The eil51 problem was tested 50 independent runs. From the experimental result we

select the best tour length, average tour length, and calculate standard deviation of

trails are used to measure the performance of comparative methods. where solution is

the experimental value and optimum is the optimum of a TSP problem. For each

problem the proposed algorithm can find the best tour in almost each trial and the

error rate is only 0.02% away from the optimal.

The average for the 50 runs was computed as follows:

 (∑

) ⁄ (6.1)

Where is the fitnees value generated by the VPBA in each run , is te

reference fitness value from eil51 TSP in TSPLIB and R=50 is the total number of

runs,respectively. denotes the standard deviation over the R runs.

Table 6.3 : Benchmark results for 51 city TSP with VPBA.

R=number of

runs

50 2,42723

1,14358

The Bees Algorithm and local search methods for a 51 city TSP problem

400

500

600

700

800

900

1 21 41 61 81 101 121

iteration

f(
x
)

Simple Swap

Double Swap

Insert

3 point Swap

2-opt

3-opt

61

To investigate the performance of vantage point Bees Algorithm (VPBA) on these

50 independent runs, we compare the for the best case tour (best_tour) and average

case tour (average_tour) and the worst case tour (worst_tour) is chosen see the

following graph:

Figure 6.5 : Performance of the Vantage Point Bees Algorithm.

6.4 Conclusions

The performance of the VPBA was significantly fast in finding the optimal optimum

of tested benchmark function.

The performance of the Vantage Point Bees Algorithm was evaluated using 51-city

TSP and the results were compared to original Bees Algorithm with several local

search operators including simple (2 point) swap, double (4 point) swap, insert, 3

point swap, 2-Opt and 3.

The results can be improved and the VPBA performs well against one that uses

standard/fixed parameter values. This is attributed to the fact that parameter values

suitable for a particular problem instance can be automatically derived and varied

throughout the search process.

0

200

400

600

800

1000

1200

1400

1600

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

Best_tour

Avarage_tour

Worst_tour

62

Figure 6.6 : Distribution graph of eil51 TSP problem with the VPBA.

Figure 6.7 : This graph compare the performance of the BA with several local

search operators including simple (2 point) swap, double (4

point) swap, insert, 3 point swap, 2-Opt and 3-Opt (Koç, 2010)

with the performance of Vantage Point .

0

5

10

429 432 434 436 438 440 443 447

Optimal Way

The Bees Algorithm and local search methods for 51 city TSP problem

63

REFERENCES

Aarts, E. and Lenstra, J. K. (1997). Local search in combinatorial optimization Joh

Wiley & Sons Ltd, England.

Alizadeh, F., Karp, R.M., Newberg, L.A., and Weisser, D.K., (1993). Physical

mapping of chromosomes: a combinatorial problem in molecular

biology.” In Proc. 4th ACM-SIAM Symposium on Discrete

Algorithms (SODA). pp. 371-381.

Blackwell, T. and Branke, J., (2004). Multi-swarm optimization in dynamic

environments, Applications of Evolutionary Computing, in Lecture

Notes in Computer Science, Raid,l G.R., Editor, Springer-Verlag:

Berlin, Germany.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm intelligence: from

natural to artificial systems. New York: Oxford University Press.

Bozkaya T. and Ozsoyoglu. M. (1997) Distance-based Indexing for High-

Dimensional Metric Spaces. In ACM SIGMOD Record, volume 26,

pp. 357–368,

Camazine, S. and Sneyd, J. (1991). A model of collective nectar source selection

by honey bees: self-organization through simple rules. Journal of

Theoretical Biology, pp. 547-571.

Camazine, S., Deneubourg, J., Franks, N. R., Sneyd, J., Theraula, G. And

Bonabeau, E. (2003). Self-organization in biological systems.

Princeton: Princeton University Press.

Chávez, E. E., Marroqu´ın, M., J, and Yates. R., B., (1999) An array based

algorithm for similarity queries in metric spaces. In Proceedings of the

String Processing and Information Retrieval Symposium

&International Workshop on Groupware (SPIRE), pages 38–46. IEEE

Computer Society.

Chávez, E., Navarro, G., Baeza-Yates, R., and Marroquín, J. L. (2001).

Searching in metric spaces. ACM computing surveys (CSUR), 33(3),

pp. 273-321.

Eberhart, R., Shi, Y. and Kennedy, J. (2001). Swarm intelligence. San Francisco:

Morgan Kaufmann Publishers.

Engelbrecht, A. P. (2005). Fundamentals of computational swarm intelligence.

Hoboken, N.J. Wiley.

David S J. and Lyle A Mcgeoch, The Traveling Salesman Problem : A Case Study

in Local Optimization, pp. 1–103.

64

Davendra, D., Zelinka, I., Senkerik, R., & Bialic-Davendra, M. (2010). Chaos

driven evolutionary algorithm for the traveling salesman problem.

Traveling salesman problem, theory and applications. InTech

Publishing, Croatia, pp. 55-70.

De Castro, L., N., D., Zuben, F., J., V., (1999). Artificial Immune Systems,

Technical Report.

De Castro, L. N., and Timmis, J. (2002). Artificial immune systems: a new

computational intelligence approach. Springer.

Dorigo, M., Maniezzo, V. and Colomi, A. (1991). Positive feedback as a search

strategy. Technical Report 91-016, Dipartimento di Elettronica,

Politecnico di Milano, Milan, Italy.

Dorigo, M., Maniezzo V. and Colorni, A. (1996). Ant system: optimization by a

colony of cooperating agents. IEEE Transactions on Systems, Man,

and Cybernetics, Part B 26(1): pp. 29-41.

Dorigo, M., and Gambardella, L. M., (1997). Ant colony system: A cooperative

learning approach to the traveling salesman problem. IEEE.

Transaction on Evolutionary Computation, vol.1, no.1, pp. 53-66.

Dorigo, M., and Di Caro, G. (1999). The ant colony optimization metaheuristic.

New Ideas in Optimization, pp. 11-32.

Dorigo, M., Di Caro, G., Gambardella, L.M., (1999), Ant Algorithms for Discrete

Optimization, Journal of Artificial Intelligence Research, 5(2), 137-

172.

Dorigo, M. and Stützle, T., (2004). Ant colony optimization, Cambridge: MIT

Press.

Fogel, L.J., Owens, A.J., and Walsh, M.J. (1966). Artificial intelligence through

simulated evolution, J. Wiley, New York.

Fogel, D.B. (2000). Evolutionary computation: toward a new philosophy of machine

intelligence, 2nd edition, New York: IEEE Press.

Freisleben, B. and Merz, P., (1996). New genetic local search operators for the

traveling salesman problem. In Proc. PPSN IV- 4th Int. Conf Parallel

Problem Solving from Nature. Berlin, Germany: Springer-Verlag, pp.

890-899.

Frisch, K. (1967). The Dance Language and Orientation of Bees. Cambridge, Mass.:

The Belknap Press of Harvard University Press.

Ghanbarzadeh, A. (2007). The Bees algorithm. A novel optimisation tool. PhD.

Cardiff University.

Greco, F., (2008) Travelling Salesman Problem, Traveling Salesman Problem, ed.

by InTech.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine

learning. Addison Wesley, MA.

65

Johnson, D. S., and McGeoch, L. A. (1997). The traveling salesman problem: A

case study in local optimization. Local search in combinatorial

optimization, pp. 215-310.

Haddad, O.B., Afshar, A. and Marino, M.A., (2006). Honeybees mating

optimization (HBMO) algorithm: A new heuristic approach for water

resources optimization, Water Resources Management, (20), pp. 661–

680.

Hazem A., Janice G. and Canada K., (2012). Swarm Intelligence : Concepts ,

Models and Applications Technical Report.

Hetland, M. L. (2009). The Basic Principles of Metric Indexing, pp. 22–29.

Holland, J.H. (1975). Adaptation in natural and artificial systems, University of

Michigan Press, Ann Arbor.

Hopfield, J. J. and Tank, D. W., (1985). Neural computation of decisions in

optimization problems. Biological Cybernetics, vol. 52, pp. 141-152.

Hosny, M., I., (2010). Investigating Heuristic and Meta-Heuristic Algorithms for

Solving Pickup and Delivery Problems Manar Ibrahim Hosny School

of Computer Science & Informatics.

Hunt, J. E., and Cooke, D. E. (1996). Learning using an artificial immune system.

Journal of network and computer applications, 19(2), pp. 189-212.

Karaboga, D. (2005). An idea based on honey bee swarm for numerical

optimization. Technical Report TR06, Erciyes University,

Engineering Faculty, Computer Engineering Department.

Karaboga, D. and Akay, B., (2007). Artificial bee colony (ABC) algorithm on

training artificial neural networks. Proc IEEE 15th Signal Processing

and Communications, Applications, pp. 1-4.

Karaboga, D. and Basturk, B. (2008). On the performance of artificial bee colony

(ABC) algorithm. Applied Soft Computing 8(1), pp. 687-697.

Karaboga, D. and Akay, B. (2009). A comparative study of artificial bee colony

algorithm, Appl. Math. Comput.

Karaboga, D. and Gorkemli B. (2011) “A Combinatorial Artificial Bee Colony

Algorithm for Traveling Salesman Problem,” 2011 International

Symposium on Innovations in Intelligent Systems and Applications,

pp. 50–53.

Kennedy, J. and Eberhart, R. (1995) Particle swarm optimization. In Proceedings

of the 1995 IEEE International Conference on Neural networks, Perth,

Australia, 1995, vol. 4, pp. 1942–1948.

Kennedy, J. and Ebemhart, R. C. (2001). Swarm Intelligence. Morgan Kaufmann

Publishers, San Francisco.

Kirkpatrick, S., Gelatt C. D., and Vecchi M. P., (1983), Optimization by

simulated annealing.“ Sci, vol. 200, pp. 671-680.

Koç, E., (2010). The Bees Algorithm Theory , Improvements and Applications, PhD.

Manufacturing Engineering Centre School of Engineering University

of Wales, Cardiff, United Kingdom.

66

Korostensky, C. and Gonnet, G. H., (2000). Using traveling salesman problem

algorithms for evolutionary tree construction. Bioinformatics Vol. 16

no. 7, pp. 619-627.

Krishnanand, K. N. and Ghose, D., (2009). Glowworm swarm optimization for

simultaneous capture of multiple local optima of multimodal functions.

Swarm Intelligence 3(2), pp. 87-124.

Lin, S., (1965). Computer solutions of the traveling salesman problem. Bell Syst., J.,

vol. 23, pp. 2245-2269.

Lee, J. Y. (2010). Multi-Objective Optimisation using the Bees Algorithm. Cardiff

University.

Madureira A., Sousa N., Pereira, I. (2005). Swarm Intelligence for Scheduling: a

Review, pp. 1–8.

Mathur, M., Karale, S. B., Priye, S., Jayaraman, V. K. and Kulkarni, B. D.,
(2000). Ant colony approach to continuous function optimization. Ind.

Eng. Chem. Res. 39(10), pp. 3814-3822.

Mulhem, M., and Maghrabi, T., (1998). Efficient convex-elastic net algorithm to

solve the Euclidean traveling salesman problem. Systems, Man and

Cybernetics, Part B, IEEE Transactions, Vol.284, pp. 618 –620.

Xiong, N., Yang, J. He, Y. , Kim, Y. He, T. and Lin, C. (2010) A Survey on

Decentralized Flocking Schemes for a Set of Autonomous Mobile

Robots (Invited Paper). Journal of Communications, Vol. 5, No. 1, pp.

31-38.

Passino, K., M., (2002). Biomimicry of bacterial foraging for distrubuted

optimization and control.Dept. of Electr. Eng., Ohio State Univ.,

Columbus, OH, USA.

Passino, K.M., Seeley, T.D., and Visscher, P.K., (2008). Swarm cognition in

honeybees, Behavioral Ecology Sociobiology, 62(3), pp. 401-414.

Panigrahi, B., K., Shi, Y., Lim, M. Handbook of Swarm Intelligence:

Concepts,Principles and Applications. Springer.

Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S. and Zaidi, M.
(2005). The Bees Algorithm Technical Report, Cardiff, Manufacturing

Engineering Centre, Cardiff University.

Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S. and Zaidi, M.
(2006a).The Bees Algorithm - A Novel Tool for Complex Optimisation

Problems.

Pham, D. T. and Ghanbarzadeh, A. (2007), Multi-Objective Optimisation using the

Bees Algorithm. Proceedings 3rd International virtual conference on

Innovative Production Machines and Systems (IPROMS). 2-13 July

2007. pp. 529-533.

Pham, D. T., Afify, A. and Koç, E. (2007a). Manufacturing Cell Formation using the

Bees Algorithm. Proceedings 3rd International Virtual Conference on

Innovative Production Machines and Systems (IPROMS 2007), Scotland,

pp. 523-528.

67

Pham, D. T., Koç, E., Lee, J. Y., and Phrueksanant, J. (2007b). Using the bees

algorithm to schedule jobs for a machine. In Proceedings of eighth

international conference on laser metrology, CMM and machine tool

performance, pp. 430-439.

Pham DT, Otri S, Afify A, Mahmuddin M, and Al-Jabbouli H., (2007). Data

clustering using the Bees Algorithm, Proc 40th CIRP Int.

Manufacturing Systems Seminar, Liverpool.

Pham, D.T. and Sholedolu, M. (2008). Using a hybrid PSO-Bees Algorithm to train

Neural Networks for Wood Defect Classification. In: 4th International

Virtual Conference on Intelligent Production Machines and Systems,

IPROMS.

Pham, D. T. and Castellani, M. (2009). The bees algorithm: Modelling foraging

behaviour to solve continuous optimization problems. Proceedings of

the Institution of Mechanical Engineers, Part C: Journal of Mechanical

Engineering Science 223(12), pp. 2919-2938.

Pham, D. T. and Haj Darwish, A. (2010). Using the bees algorithm with Kalman

filtering to train an artificial neural network for pattern classification.

Proceedings of the Institution of Mechanical Engineers. Part I: Journal

of Systems and Control Engineering 224(7), pp. 885-892.

Otri S., (2011). Improving the Bees Algorithm for Complex Optimization Problems.

A Thesis Submitted to the Cardiff University In Candidature for the

Degree of Doctor of Philosophy.

Read, M., Andrews, P. S., & Timmis, J. (2012). An Introduction to Artificial

Immune Systems. In Handbook of Natural Computing (pp. 1575-

1597). Springer Berlin Heidelberg.

Rechenberg, I. (1965). Cybernetic solution path of an experimental problem,

Library Translation no. 1122. Ministry of Aviation, Royal Aircraft

Establishment, Farnborough, Hants UK.

Resnick, M., (1994). Turtles, Termites, and Traffic Jams: Explorations in Massively

Parallel Microworlds. MIT Press.

Sadik, S., Ali, A., Ahmad, F. and Suguri, H. (2006). Using Honey Bee Teamwork

Strategy in Software Agents, Computer Supported Cooperative Work

in Design. CSCWD. 10th International Conference on, pp.1-6.

Salem Z. Ades N and Hilali E., (2009). Algorithm Enhancement by Using Bees

Algorithm, Res. J. of Aleppo Univ. Engineering Science Series No.66.

Sankoff D. and Blanchette. M., (1997). The median problem for breakpoints in

comparative genomics.” Computing and Combinatorics, Proceedings

of COCOON `97. Lecture Notes in Computer Science 1276, Springer

Verlag, New York, pp. 251-263.

Seeley, T.D. (1996). The wisdom of the hive: The social physiology of honey bee

colonies, Cambridge, Massachusetts: Harvard University Press.

Seeley, T. D. and Buhrman, S. C. (2001). Nest-site selection in honey bees: How

well do swarms implement the "best-of-N" decision rule? Behavioral

Ecology and Sociobiology 49(5), pp. 416-427.

68

Seeley, T. D. (2002). When is self-organization used in biological systems?

Biological Bulletin 202(3), pp. 314-318.

Seeley, T. D. and Visscher, Passino. K., (2003). Choosing a home: how the scouts

in a honey bee swarm perceive the completion of their group decision

making. Behav Ecol Sociobiol, (54) pp. 511–520.

Seeley, T. D., Visscher. and Passino K. M. (2006). Group decision making in

honey bee swarms. American Scientist 94(3), pp. 220-229.

Socha, K., (2007). Ant Colony Optimization for Continuous and Mixed-Variable

Domains. PhD.

Socha, K. and Dorigo, M., (2008). Ant colony optimization for continuous domains.

European Journal of Operational Research 185(3), pp. 1155-1173.

Sung, H. J., (2003). Queen-Bee Evolution for Genetic Algorithms. Electronic

Letters, 39(6), 575- 576.

Sholedolu, M. O., (2009). Nature Inspired Optimisation: Improvements to the

Particle Swarm Optimisation Algorithm and the Bees Algorithm.

Cardiff University.

Tao, G., and Michalewicz, Z., (1998). Inver-over Operator for the TSP.

Proceedings of the 5th Parallel Problem Solving from Nature,

September 27-30, 1998, Lecture Notes in Computer Science, pp. 803-

812.]

Teodorović, D., (2008). Swarm intelligence systems for transportation engineering:

Principles and applications. Transportation Research Part C: Emerging

Technologies 16(6), pp. 651-667.

Tsai, H., Yang J., and Kao, C., (2002) Solving Traveling Salesman Problems by

Combining Global and Local Search Mechanisms. Proceedings of the

2002 Congress on Evolutionary Computation. CEC’02 .

Uhlmann, J, (1991). Satisfying General Proximity/Similarity Queries with Metric

Trees. Information Processing Letters 40, pp. 175–179

Yang X. (2005). Engineering optimization via Nature-Inspired Virtual Bee

Algorithms. IWINAC 2005. LNCS 3562, pp. 317-323.

Yang, X., S., (2010) Engineering Optimization: An Introduction with Metaheuristic

Applications. Wiley, Chichester .

Yianilos. P. N. (1993) Data structures and algorithms for nearest neighbor search in

general metric spaces. In Proceedings of the fourth annual ACM-

SIAM Symposium on Discrete algorithms, pages 311–321,

Philadelphia, PA, USA, Society for Industrial and Applied

Mathematics.

Liu Y., and Passino, K., M., (2000). Swarm Intelligence: Literature Overview,

Dept. of Electrical Engineering, The Ohio State University.

Zelinka, R., Singh, S. P. and Mittal, M. L. (2010). Traveling Salesman Problem:

An Overview of Applications, Formulations, and Solution

Approaches, readings on the Traveling Salesman Problem, Theory and

Applications, Edited by Donald Davendra.

69

Zhenya, H., Chengjian, W., Bingyao, J., Wenjiang, P., and Luxi. Y., (1999). A

new population-based incremental learning method for the traveling

salesman problem. Proceedings of the 1999 Congress on Evolutionary

Computation-CEC 99, pp. 1150-1156.

Winston, M., L. (1987). The Biology of the Honey Bee; Harvard University Press:

Cambridge, MA, USA.

Wong, L., P., Low M. L., Chong, C., S., Bee Colony Optimization with Local

Search for Traveling Salesman Problem.

Wolpert D.H. and Macready, W.G. (1997). No Free Lunch Theorems for

Optimization, IEEE Transactions on Evolutionary Computation, 1

(1997), pp. 67–82.

Url- http://en.wikipedia.org/wiki/Travelling_salesman_problem.

http://en.wikipedia.org/wiki/Travelling_salesman_problem

70

71

CURRICULUM VITAE

Name Surname: Sultan ZEYBEK

Place and Date of Birth: Konya / 04.10.1989

Address: FSMVU Halic Campus Beyoğlu / İSTANBUL

E-Mail: szeybek@fsm.edu.tr

B.Sc.: YTU Mathematics Depertmant

72

