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R-LZMF:
ROBUST LOCAL ZERNIKE MOMENT BASED FEATURES

SUMMARY

Feature extraction techniques are widely used in computer vision in order to
transform image data represented as a set of pixels, which mostly consists of
redundant information, into a set of features, which has meaningful information for
specific problem, for further processing. In this sense, feature extraction can be
considered as a dimensionality reduction approach.

Extracted features from the image should be meaningful and relevant to the domain
where they are used. They should also have discriminative characteristic in order to
specify special structures in the image such as corners, edges and blobs. These kind
of structures are used in computer vision to detect the objects in interest, recognize
the faces or match the corresponding regions between images.

In computer vision, image matching is one of the fundamental problems where
feature extraction comes into play. This problem, which is also named as
correspondence problem, requires matching corresponding regions in the images that
are taken from same scene with different points of view. Correspondence matching is
very crucial when the depth of the object is evaluated in a stereo system, 3D structure
of the scene is constructed from the images taken from same scene or motion of the
object needs to be tracked in temporal domain. One of the optimum solutions for
these kind of problems is to extract interest points/keypoints as features from the
images and use them for further processing.

An interest point is an image point that represents distinctive characteristic in that
location and its local neighborhood. It should also be detected repeatedly in the
images that are geometrically and photometrically transformed forms of each other.
In other words, an interest point detected in one image taken from a scene should
also exist in another image taken from same scene with a different point of view. In
general, corner or blob detectors with some other mechanisms comprise the interest
point detection algorithm so that an interest point detector can be characterized as
corner or blob based. A robust interest point detector should be invariant to
geometric transformations such as scale, rotation, translation and photometric
transformations such as illumination. It shouldn't also be affected from background
clutter and occlusion in the images.

Designing an interest point detection algorithm is an active topic in computer vision.
There are so many studies on corner or blob based interest point detectors. SIFT and
SURF are maybe the best-known and used interest point detectors in the literature.
Both detectors provide blob based interest point detection mechanism and are very
successful in terms of repeatability and distinctiveness. One other successful detector
is Harris-Laplace detector and it's based on Harris corner detector. All these detectors
are widely used in the literature for feature extraction and performance comparison.
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In this thesis, a novel rotation and translation invariant local Zernike moment based
interest point detection algorithm is presented and named as Local Zernike Moment
based Features (LZMF). LZMF is then extended to have scale-invariant
characteristic by constructing image pyramid in scale-space. Final detector is scale,
rotation and translation invariant, and also robust to background clutter and
occlusion. This final detector is named as Robust Local Zernike Moment based
Features or R-LZMF shortly. R-LZMF is a corner based interest point detector and
uses local Zernike moments as convolutional operators in order to detect corners in
spatial-space. In this way, descriptive power of Zernike moments is utilized in local
sense by applying them to the image pixels and thus structure of corners can be
successfully exposed. Here, the critical decision is about which order of Zernike
moment should be used for corner detection and it’s also investigated in this study.

Performance of proposed interest point detection algorithms, LZMF and R-LZMF,
are evaluated on the Inria Dataset by using repeatability score, which is the main
criterion for detector accuracy, and the performance of proposed algorithms is
compared to well known interest point detectors such as Harris, SIFT, SURF,
CenSurE, BRISK for LZMF and SIFT, SURF, CenSurE, ORB, BRISK for R-LZMF.
Evaluation results on "Rotation", “Zoom” and "Zoom&Rotation" sequences of the
Inria Dataset show that LZMF and R-LZMF outperform almost all interest point
detectors to be compared in terms of repeatability score. Distinctiveness performance
of LZMF and R-LZMF are also presented by applying the detectors on to the
synthetic and real images that contain corner points.

R-LZMF interest point detection algorithm is expected to be partly invariant to affine
transformations because it's invariant to scale, rotation and translation and an affine
transformation may be considered as a combination of these transformations.
However this should be verified as a future work. LZMF and R-LZMF can also be
extended to have a descriptor. This makes them a complete schema, which includes
both detector and descriptor, as in SIFT and SURF.

XX



G-YZMO:
GURBUZ YEREL ZERNIKE MOMENT TABANLI OZELLIKLER

OZET

Oznitelik ¢ikarma  teknikleri bilgisayarla gormede yaygin bir sekilde
kullanilmaktadir. Bu teknikler ile hedeflenen ¢ogunlukla artikli bilgi igeren ve piksel
kiimesi seklinde ifade edilen imge verisini {izerinde ¢alisilan problem i¢in anlaml
hale getirecek 0znitelik kiimesine doniistiirmektir. Boylece, gerceklestirilen doniisiim
neticesinde elde edilen bu 6znitelik kiimesi daha ileri islemler i¢in kullanilabilir,
anlamli ve daha diisiik boyutta bir bicime donilismiis olur. Bu anlamda, 6znitelik
cikarma islemini bir boyut indirgeme yaklagimi olarak gérmek miimkiindiir.

Imgeden cikarilan dznitelikler, kullanilacaklar1 alan icin anlamli ve alakali olmalidir.
Ayrica, imgedeki 6zel yapilar1 niteleyebilen ayirt edici bir karakteristige de sahip
olmalidir. Imgedeki bu 6zel yapilara kose, kenar ve nokta bulutu 6rnek olarak
verilebilir. Bu tip 6zel yapilar bilgisayarla gérmede ilgilenilen nesneleri saptarken,
yiizleri tanirken ya da resimler arasinda karsilikli bolgeleri eslestirirken siklikla
kullanilmaktadir.

Bilgisayarla gérmede; imge eslestirme, Oznitelik ¢ikarmanin isin igine girdigi temel
problemlerden biridir. Ayn1 zamanda, karsilik problemi olarak isimlendirilen bu
problemde ayni sahneden degisen bakis agilariyla alinmis olan imgelerin karsilik
gelen bolgelerinin dogru ve tam bir sekilde eslestirilmesi beklenir. Karsilik
eslestirme; bir stereo sistemde ilgilenilen nesnenin derinligi OSlgtliirken, aym
sahneden elde edilen imgeler ile sahnenin 3D yapisi ¢ikartilirken ya da bir nesnenin
hareketi zamansal alanda takip edilirken oldukca kritiktir. Bu tip problemlere
getirilen en uygun ¢ozlimlerden biri ele alinan imgelerden oznitelik olarak ilgi
noktalari/anahtar noktalar ¢ikartmak ve bu noktalart ileri islemler i¢in kullanmaktir.

Ilgi noktas1, imgede belirli bir bolgede ayirt edici bir karakteristik gosteren bir imge
noktadir. Bu ilgi noktasinin, birbirinin geometrik ve fotometrik donilisimii olan
resimlerin hepsinde tekrar ederek saptanabilmesi gerekmektedir. Bir baska deyisle,
belli bir sahneden elde edilen bir imgede saptanmis bir ilgi noktasinin ayni sahneden
degisik bir bakis acisiyla elde edilmis baska bir imgede de saptanabilmesi
beklenmektedir. Genellikle, kdse veya nokta bulutu saptayicilar baz1 diger
mekanizmalar ile birlestirilerek ilgi noktasi saptayict semasint olusturmaktadir.
Dolayisiyla, bir ilgi noktasi saptayict kose veya bulut noktast tabanli olarak
karakterize edilebilmektedir. Glirbiiz bir ilgi noktas1 saptayicidan beklenen ise dlgek,
dondiirme, Gteleme gibi geometrik doniigiimlere ve 1siklandirma gibi fotometrik
doniistimlere kars1 degisimsiz olmasidir. Ayrica, giirbiiz bir ilgi noktas1 saptayicinin
arkaplan karisikligina ve engellere kars1 da dayanikli olmas1 beklenmektedir.

Ilgi noktas: saptayici algoritmalarm tasarimi bilgisayarla gdrmede aktif bir konu
olarak arastirllmaya devam etmektedir ve bu konuda ¢ok sayida kose ve bulut
noktasi tabanli ilgi noktasi saptayict sunulmustur. SIFT ve SURF belki de en iyi
bilinen ve en ¢ok kullanilan ilgi noktasi saptayicilar olarak gosterilebilir. Her iki ilgi
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noktast saptayict da nokta bulutu tabanli bir saptama ger¢eklestirmekte,
yinelenebilirlik ve ayirt edicilik bakimindan oldukca basarili sonuglar vermektedir.
Bir baska basarili ilgi noktasi saptayici ise Harris kdse saptayicisindan yararlanan
Harris-Laplace 1ilgi noktasi saptayicidir. Biitlin bu ilgi noktas1 saptayicilar,
literatiirde, Oznitelik ¢ikarma ve performans karsilagtirmasi igin siklikla
kullanilmaktadir.

Bilgisayarla gormede; resim momentleri, siklikla kullanilan bir baska yaklagimdir.
Bir resim momenti, imgeyi bir fonksiyon gibi ele alan ve imgedeki pikselleri say1l bir
nicele doniistliren bir izdlistimdiir. Bu izdiisiim, bir imge fonksiyonunun polinomsal
tabana donilisimiinii  saglayarak imgedeki yapilardan anlamli  6znitelikler
¢ikartilabilmesine imkan verir. Ikili bir imgede alan hesaplamasi veya imgenin
merkez koordinatlarinin  bulunmast resim momentlerine verilebilecek bazi
orneklerdir. Geometrik, karmasik ve dikgen olarak siiflandirilan imge momentleri,
karakter tanima, imge geri ¢atilma ve yliz tanima gibi problemlere basarili bir sekilde
uygulanabilmektedir.

Son yillarda ivme kazanan imge momentlerinden biri de Zernike momentleridir.
Zernike polinomlarii polinomsal taban olarak kullanan bu dikgen momentler global
ve yerel olarak imgeye uygulanabilmekte ve uygulandigi imge bolgesinin bir birim
cember Tlizerinde tanimlanmig Zernike polinomlar1 {iizerine izdislimlerini
cikartabilmektedir. Zernike momentleri, tiim imgeye uygulandiginda imgenin
kendisini, yerel olarak bir piksel etrafinda uygulandiginda ise o piksel ve ¢cembersel
komsulugundaki bolgeyi sayil bir nicelige donistiiriir. Bu nicelik, Zernike
polinomlarmin dogasi geregi, dondiirmeye kars1 degismezdir.

Bu tez caligmasinda, 6zgiin bir dondiirme ve Otelemeye degisimsiz Yerel Zernike
Moment (YZM) tabanl ilgi noktas1 saptama algoritmasi1 sunulmaktadir. Sunulan bu
algoritma Yerel Zernike Moment tabanli Ozellikler (YZMO) olarak
isimlendirilmistir. Aym ¢aligmada, YZMO, o6lcek degisimsiz karakteristige sahip
olmasi icin oOl¢ek-uzayinda imge piramidi olusturmak suretiyle genigletilmistir.
Sonugta elde edilen ilgi noktasi saptayict 6lgek, dondiirme ve dtelemeye degisimsiz
olmakla birlikte arkaplan karigiklifina ve engellere karsi saglam bir karakteristik
gostermektedir. Elde edilen bu ilgi noktas1 saptayici Gilirbiiz Yerel Zernike Moment
tabanl Ozellikler (G-YZMO) olarak isimlendirilmistir. G-YZMO, kése tabanli bir
ilgi noktas1t saptayicidir ve uzamsal-uzayda koseleri saptamak i¢in YZM'leri
evrisimsel iglecler seklinde kullanir. Bu sayede, kdse noktalarinin yapilarint basarili
bir sekilde ortaya ¢ikarmak igin Zernike momentleri imge piksellerine yerel olarak
uygulanarak bu momentlerin betimlemesel giiciinden faydalanilmis olunur. Burada,
kritik olan kdse saptama i¢in kaginci dereceden Zernike momentleriyle ¢alisilacagidir
ve bu tez calismasinda uygun moment derecesi de arastirilmustir. Onerilen
algoritmalarla, uzamsal-uzayda ilgi noktas1 saptama islemi, temel olarak su adimlarla
gerceklestirilir:  Giris imge, gri tonlu imgeye doniistiiriildiikten sonra 151k
degisimlerinin etkisini minimuma indirgemek i¢in Once tiim imgede sonra da
YZM'lerin evrigsimsel islecler olarak uygulanacagi ¢ember seklindeki yerel imge
bolgesinde normalizasyona tabi tutulur. Daha sonra, uygun evrisimsel islecler
vasitasiyla her bir piksel i¢in Zernike tepki haritalar1 ¢ikartilir ve bu harita dnceden
belirlenmis esik degerleri ile esiklendirilerek aday ilgi noktalar1 belirlenir. Belirlenen
her bir aday ilgi noktas1 i¢in bu ilgi noktasinin merkezde olacagi kare bir pencere
acilir. Bu ilgi noktasinin Zernike tepki degeri pencere i¢ine diisen diger aday ilgi
noktalarina ait Zernike tepki degerleri ile karsilastirilir. Eger, merkezdeki aday ilgi
noktas1 en yiiksek Zernike tepki degerine sahipse gercek bir ilgi noktasi olarak
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isaretlenir, degilse dikkate alinmaz. Bu saptama semasi, girig resminden elde edilen
imge piramidindeki tiim imgelere uygulanarak saptanan ilgi noktalar1 birlestirilir ve
¢ikt1 olarak verilir.

Onerilen ilgi noktasi saptama algoritmalar1 olan YZMO ve G-YZMO igin
performans Ol¢iimii Inria veri kiimesi iizerinde yinelenebilirlik skoru kullanilarak
gerceklestirilmistir. Yinelenebilirlik skoru, ilgi noktasi saptayicisinin basarimini
Olgmek i¢in kullanilan temel kriterdir. Sunulan ilgi noktas1 saptama algoritmalarinin
Inria veri kiimesinde elde edilen yinelenebilirlik skorlar1 iyi bilinen ilgi noktasi
saptayicilar ile karsilastirilmistir. Bu kapsamda; YZMO icin Harris, SIFT, SURF,
CenSurE, BRISK ve G-YZMO i¢in SIFT, SURF, CenSurE, ORB, BRISK ilgi
noktasi saptayicilari ile performans karsilastirmasi amaciyla ¢alisilmistir. Inria veri
kiimesindeki "Rotation", “Zoom” ve "Zoom&Rotation" imge dizileri ile elde edilen
sonuclar, YZMO ve G-YZMO ilgi noktasi saptayicilarmin Karsilastirildiklar:
neredeyse biitiin ilgi noktas1 saptayicilara yinelenebilirlik skoru bakimindan iistlinliik
sagladigimi gostermektedir. Sunulan algoritmalarin ayirt edicilikleri bakimindan
performanslari ise iiretilen sentetik ve gercek test resimlerindeki kose noktalarinin
saptanmasindaki basarim ile gosterilmektedir.

G-YZMO ilgi noktas: saptama algoritmasmin kismi olarak ilgin déniisiimlere
degisimsiz oldugu diisiiniilmektedir. Ciinkii; bir ilgin doniisiimii aslinda oSlgek,
dondiirme, 6teleme doniisiimlerinin bir kombinasyonu seklinde diisiiniilebilir ve de
G-YZMO bu doniisiimlerin hepsine degisimsiz oldugu igin dolayli olarak ilgin
doniisimii kars1 da degisimsiz olmalidir. Bu durumun ileride dogrulanmasi
planlanmaktadir. Ayrica, YZMO ve G-YZMO ilgi noktasi saptayicilari, bir
betimleyiciyi de igerecek sekilde genisletilecek ve boylece SIFT ve SURF'te oldugu
gibi ilgi noktasi saptayici ve betimleyiciden olusan tam bir sema sunulmus olacaktir.
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1. INTRODUCTION

In computer vision, image matching, or correspondence problem, is a fundamental
research area in order to tackle some important problems such as object recognition,

stereo vision, image registration and motion tracking.

Correspondence problem is about matching same regions from different images,
which are taken from same scene, under varying viewing conditions. These kinds of
images are geometrically or photometrically transformed versions of each other and
searching for corresponding regions between such images is a hard problem. Scale
change because of zoom in/out by camera lens, rotation and translation in the camera
cause geometric transformations whereas change in lighting condition is an example
of photometric transformations. Under these transformations, corresponding regions

still need to be detected and matched with high repeatability.

General approach to correspondence problem is to consider it in three steps. First,
interesting points, which represent distinctive regions in the image, are detected.
Corners and blobs are good candidates for such regions. These points also need to be
repeatedly detected across the images in interest. Next, the region around each
detected interesting point is described as a feature vector. Finally, feature vectors are
compared to each other by some distance criteria such as Euclidean or Mahalanobis
in order to match the most similar regions whose feature vectors have the least

distance/most similar.

Image matching is widely considered in computer vision. For instance, in a stereo
system where two images belonging to same scene exist, same regions in both
images need to be detected and matched in order to evaluate the depth of the object.
For image stitching problem, corresponding regions, which are detected and matched
in the low-resolution images of same scene, are used for concatenation in order to
build a high-resolution panorama image. In object recognition framework, detected
distinctive regions are described as feature vectors and then stored in a database in
order to match them with feature vectors of objects in given query image. Thus, the

matched objects in query image can be recognized.
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The first phase in corresponding problem is to detect distinctive regions in the
images. This is very critical phase and designates the performance of subsequent
phases such as description and matching. As mentioned before, a distinctive region is
represented well by an interesting point in the image. An interest(ing) point, or
keypoint, is a local image feature that is extracted from regions where high
information or distinctiveness exists. Corners and blobs are such structures that show
interesting characteristics whereas flat regions such as walls and surfaces don't
contain any information and they don't exhibit interesting characteristics. Hence, in
general, interest point detection algorithms are designed with corner or blob
detection mechanisms. Locality of interest points makes interest point detection
algorithms robust to background clutter and occlusion. Locality also provides
translation-invariant characteristic to interest point detection algorithms because
local regions move together in case of image translation and thus information in local

regions is preserved.

Interest point detection is a feature extraction approach and it's important in order to
represent the image in more compact way. By representing the image with a set of
feature vectors extracted from detected interest points, all redundant information may
be discarded and meaningful information is preserved only. This helps search space

to be reduced dramatically for subsequent phases of the problem in interest.

A robust interest point detection algorithm is expected to be invariant to geometric
and photometric transformations as well as robust to background clutter and
occlusion. Translation invariance problem and robustness to background
clutter/occlusion are solved by locality characteristic of interest points. Rotation
invariance requires special characteristics inherent to corner detection algorithm. For
scale invariance problem, a general approach is to build an image pyramid in scale-
space in order to sample the input image in various scale levels and apply interest
point detection algorithm for each image in the pyramid. This approach is named as
multi-scale or scale-space representation. Invariance to photometric transformations
such as illumination changes can be overcome by applying some normalization

procedures on the image.

Image moments are widely used transformations in computer vision and applied to
many problems such as character recognition, image reconstruction and face

recognition. An image moment basically projects the image function on to some
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polynomial basis in order to transform the image to the scalar quantities and extract
meaningful features from the image. For instance, area of the surfaces in a binary
image or central coordinates of a given image can be evaluated by image moments.
Image moments can be classified as geometric, complex or orthogonal. One of the
well-known orthogonal image moments is Zernike moment that uses Zernike
polynomials as polynomial basis and projects the image on to these polynomials
defined in a unit circle. Zernike moments can be applied on to the whole image
globally or image pixels locally. Scalar quantities evaluated by applying Zernike
moments on to the images aren't affected from image rotations and this is a reason of

Zernike moments to be rotation-invariant.

In this thesis; two novel interest point detection algorithms are proposed. First one is
named as Local Zernike Moment based Features (LZMF). LZMF is invariant to
rotation, translation and illumination changes as well as robust to background clutter
and occlusion but suffers from scale changes. To tackle scale invariance problem, a
second algorithm is introduced and named as Robust Local Zernike Moment Based
Features (R-LZMF). R-LZMF builds an image pyramid in scale-space in order to be
invariant against scale changes. In both algorithms, local Zernike moments are used
as convolutional operators for corner detection with some other mechanisms. Final
detectors, LZMF and R-LZMF, are tested on the Inria Dataset with well-known
interest point detectors such as Scale Invariant Feature Transform (SIFT) and
Speeded-Up Robust Features (SURF) and they outperform in almost all cases in
terms of repeatability score that is the main evaluation criterion for interest point

detection performance.

1.1 Literature Review

In this section, well-known interest point detection algorithms are examined with
their advantages and drawbacks. Studies about application of Zernike moments to
some computer vision and pattern recognition problems in global and local manner

are also covered.
1.1.1 Interest point detection

One of the earliest interest point detectors was developed by Harris et al. and named

as Harris corner detector [1]. This detector searches for large intensity changes in a
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shifted window by using Sum of Squared Distance (SSD) and considers such

locations as corner. Harris detector is rotation-invariant but not scale-invariant.

Andrew Witkin introduced scale-space concept in his seminal work [2] by exposing
signals in different scale levels in order to show how signal behavior changes from
fine scales to coarse scales. He also showed that smoothing the image with Gaussian
filters of increasing standard deviation (o) has ability to suppress fine details and
expose coarse structures. Koenderink, in [3], showed that Gaussian filter is the
unique filter for building scale space. Lindeberg verified this uniqueness and
proposed an automatic scale selection mechanism in order to find the characteristic
scales of interest points in the image [4]. Lindeberg showed that scale-normalized
Laplacian-of-Gaussian (LoG) operator, 62V2G, should be used to provide true scale
invariance and he used this operator to detect blob-like structures in the image. One
drawback of using LoG operator is that it’s not a fast operator to apply on the image

although it's very good at exposing blobs.

Lowe, in his study [5], proposed Scale Invariant Feature Transform (SIFT) that
consists of an interest point detector and descriptor. For interest point detection, he
used scale-normalized LoG as in the study of Lindeberg to detect blobs in the image.
However, by considering slowness of LoG operator, he suggested using Difference-
of-Gaussian (DoG) to approximate LoG operator. DoG is the difference of two
images convolved with Gaussian filters of consecutive scales and it's a fast
alternative of LoG operator. In SIFT, an image pyramid is built in scale-space by
convolving the input image with Gaussian filters of scales differing by a constant
factor and difference of two Gaussian images with consecutive scales in the pyramid
is taken to apply LoG operator. Thus, scale-space representation and application of
LoG operator are both realized in a very efficient way. This is one of the key factors
to make SIFT very fast during interest point detection. One drawback of using
LoG/DoG is that they also yield high responses in the neighborhood of contours or
straight edges, which don't exhibit interest point characteristic. For accurate keypoint
localization, SIFT applies some other mechanisms such as interpolation with

quadratic Taylor expansion.

Mikolajczyk et al. combined Harris corner detector with scale-normalized LoG for

interest point detection in [6]. This schema was named as Harris-Laplace detector
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and it extracts complementary features in the image by using Harris detector, which
responds to corners and textured regions, and LoG, which responds to blobs. Harris-
Laplace detector detects Harris corners in spatial-space because Harris detector is the
most reliable detector when rotation, illumination change and perspective
deformation occur in the image [7]. However, as mentioned before, Harris detector is
not scale-invariant and can't detect corners in images with different resolutions. It
also fails to determine characteristic scale because it can't reach to maximum
frequently in scale-space. Hence, when building image pyramid in scale-space, LoG
operator is applied to the locations where Harris corners are detected and local
maxima are searched in order to detect interest points. Harris-Laplace detector has a

performance up to a scale factor of 4 for scaled images according to [6].

Harris-Laplace detector was extended by Mikolajczyk ef al. by determining the
shape of the elliptical region with the second moment matrix in [25,26] and it was
named as Harris-Affine detector. A second affine region detector, which was named
as Hessian-Affine, was also proposed in [25,26]. Hessian-Affine detector utilizes
Hessian matrix for interest point detection in spatial space and uses Laplacian for
scale-space. Harris-Affine and Hessian-Affine detectors have significant invariance

to affine transformations when compared to Harris-Laplace detector.

Bay et al., in [8], introduced Speeded-Up Robust Features (SURF) as an interest
point detection and description schema. In SURF, Hessian-based detector is used
instead of Harris-based counterpart during interest point localization because Hessian
function is more stable and repeatable. As in SIFT and Harris-Laplace, SURF uses
LoG operator in scale-space in order to determine characteristic scales of detected
interest points and this operator is approximated by using determinant of Hessian
matrix. Scale-space representation of SURF, however, is different than SIFT and
Harris-Laplace. Here, the pyramid is built for LoG operator instead of input image.
In other words, the input image is not down-sampled, but rather, LoG filter is up-
sampled in scale-space. Up-scaling the filter instead of down-scaling the image
prevents aliasing problems occurred in the image when the image pyramid is built.
SURF is also faster than SIFT because up-scaled filters are used with efficient

integral image method.



Rosten et al. developed a fast interest point detector in [9] and named it as Features
from Accelerated Segment Test (FAST). FAST tests each image pixel for cornerness
by looking its 16 pixel-circular neighborhood and if some contiguous pixels in this
neighborhood are brighter/darker than the pixel in test then this pixel is detected as
corner. This method also learns from image pixels by applying decision tree to
increase its accuracy. Interest points detected by FAST are not multi-scale features,
in other words, FAST is not scale-invariant. Oriented FAST and Rotated Brief
(ORB), proposed in [10] by Rublee et al, is a combination of FAST keypoint
detector and BRIEF descriptor [11]. ORB modifies FAST to work with image
pyramid for scale invariance and it also modifies BRIEF descriptor to make it
rotation invariant. Center Surround Extrema (CenSurE) is another scale and rotation
invariant interest point detector proposed by Agrawal ef al. in [12]. In CenSurE, a
center-surround filter is applied to the image at all locations and scales, and Harris
function is used for eliminating weak corner points. Leutenegger et al. proposed a
rotation and scale-invariant key point detector named as Binary Robust Invariant
Scalable Keypoints (BRISK) in [13]. BRISK uses a novel scale-space FAST-based
detector for scale-invariant interest point detection and considers a saliency criterion

by using quadratic function fitting in continuous domain.
1.1.2 Zernike moments

Khotanzad et al. proposed one of the earliest studies about image recognition by
global Zernike moments in [14]. The method solves rotation invariance problem by
using magnitude of Zernike moments; for scale and translation invariance, regular
moments are used. Tests on a 26-class character set shows the superiority of Zernike
moments. One other approach using Zernike moments is the study of Ghosal et al. in
[15]. In this study, Ghosal proposed a unified framework for low-level image feature
detection by using local Zernike moments. These low-level features are step/roof
edges, gray-level corners and topological features. For corner detection, 4,, and A,,
Zernike filters are convolved with the image and the results are thresholded in order
to find strong corner responses. In [16], Sariyanidi et al. applied local Zernike
moments (LZM) for face recognition problem and proposed a novel LZM
representation that outperforms Gabor and Local Binary Patterns (LBP) methods on

FERET database.



1.2 Organization of the Thesis

This thesis is organized as follows: Chapter 2 provides an overview of image
moments including Zernike moments in detail. Chapter 3 contains a detailed
explanation of proposed interest point detection algorithms, LZMF and R-LZMF. In
this chapter, decisions on parameter settings of proposed algorithms are also
justified. Chapter 4 discusses the experimental results with evaluation criterion and
dataset used throughout the experiments. The performance of both algorithms,
LZMF and R-LZMF, are demonstrated separately in this chapter. Chapter 5

concludes the thesis with some future directions.






2. AN OVERVIEW OF IMAGE MOMENTS

In this chapter, a brief introduction of image moments is given. Image moments are
examined based on projected polynomial basis as geometric, complex and orthogonal
with providing some examples for their applications. Zernike moment, which is a
special orthogonal moment based on Zernike polynomials, are explained and it's
shown that how Zernike moments are applied on the image in global and local sense.

Rotational invariance of Zernike moments is also proved in the end of section.

2.1 Image Moments

A moment is a scalar quantity that characterizes a function to capture its significant
features [18]. In mathematical domain, a moment is defined as a projection of a
function onto a polynomial basis. For instance, Fourier transform is a projection onto

a basis of harmonic functions.

Moments are used for digital images in order to tackle some computer vision
problems such as character recognition, image reconstruction. By considering an
image as a piece-wise continuous real function, a general moment My, for an image
function, f(x,y), of order r = p + q, where p and g are non-negative integers, is

defined as
M,, = f f Ppq (X, ¥) f (x,y)dxdy (2.1)
D

Where p,q(x,y) is a polynomial basis function.

Moments can be classified based on polynomial basis used for projection as
geometric, complex and orthogonal and they are examined in following subsections

in a nutshell.



2.1.1 Geometric moments

A geometric moment is defined on a standard power basis p,4(x,y) = xPy? as

Mpq = f f xPyif(x,y)dxdy (2.2)

Geometric moment of order 0 = 0 + 0, mq, gives mass of the image. The mass is

area of the object in binary images. A geometric moment of order 0 is defined as
moo= [ [ feydndy @3)

Geometric moment of order 1 =1+ 0 = 0 + 1, m,, and my,, represents the center

of mass of the image and is defined as

my, = f fxf(x,y)dxdy (2.4)
my, = f fyf(x,y)dxdy (2.5)

The coordinates of the center of mass, X and y, are
X=—, y=— (2.6)

In practice, the center of mass is used to represent the position of an image in Field
of View (FoV) [19].
2.1.2 Complex moments

A complex moment, which is projected on the polynomial basis p,,(x,y) =

(x + iy)P(x — iy)? where i is the imaginary unit, is defined as

oo 0o

Cpq = f f (x +iy)P (x — iy)9f (x,y)dxdy (2.7)

—00 —00
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Where p and g are non-negative integers and i = v—1.

A complex moment of order r is a linear combination of geometric moments of the

same order and it's expressed as

p q
P\ (4 —iiptg—k—j
Cpq = ZZ (E) <7> (—1)a-Jgprak TMuctjprq-k-j (2.8)

Complex moments show rotation-invariant characteristic and are preferred for the
images where rotational transformations occur. However, they suffer from
information loss, suppression and redundancy, which shouldn’t exist in a good
moment invariant [19]. Therefore, complex moment invariants are not used as image

features.

2.1.3 Orthogonal moments

An orthogonal moment is defined on the polynomial basis, p,,(x,y), whose

elements satisfy the orthogonality condition as
f f Ppq (%, ¥)Pmn (%, y)dxdy = 0 (2.9)
Q

For any indexes p # m or q # n.

Orthogonal moments yield good image features that are non-redundant and require
low computing precision. Image reconstruction, which can't be performed by

geometric moments in spatial domain directly, can be achieved by

fle,y) = z Myjpr;(x, ) (2.10)
k,j

This is an optimal reconstruction because the mean-square error is minimized when

using only a finite set of moments.

Orthogonality for orthogonal moments can be provided on rectangle or unit disk.
Legendre, Chebyshev and Zernike moments are some examples of orthogonal

moments.
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2.2 Zernike Moments

In this section, Zernike moments are examined based on how they're applied on the
images. First, application of Zernike moments to whole image is shown and then
projection of local intensity profiles onto Zernike polynomials is considered. Finally,
rotational invariance of Zernike moments is explained with providing proper method

to apply on the images.

2.2.1 Global Zernike moments

Zernike, in [20], introduced a complete and orthogonal set of complex polynomials,
which are named as Zernike polynomials, on the unit disk where x? + y? < 1.

Zernike polynomials are defined as

Vnm(x' y) = Vnm(p' 0) = an(p)eij (2.11)

Where R,,,,(p) is radial polynomial, n is order of polynomial, m is number of
iteration, p is length of vector from origin to (x,y) and 6 is angle between p and x-
axis in counter-clockwise direction. There are some constraints on n and m

parameters such asn = 0, n — |m| = even and [m| < n. Ry, (p) is defined as

n—|m|
2

Rum(p) = Z L™ (0 = 5! 2.12)

2 G (),

Visual representations of Zernike polynomials can be examined in Figure 2.1.

Teague used Zernike polynomials as orthogonal image moments in [21] for a two-
dimensional pattern recognition problem. Given an image function of f(x,y), a

Zernike moment of order n and repetition m is defined as

+1
A == - f f f(x, ¥)Vm (p, 6)dxdy (2.13)

x2+y2<1

Where * in 1}, (p,0) denotes the complex conjugate. The equation in (2.13) is

discretized in order to work with digital images of size MxN as
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A
=

-1

Apm = f @V (pij, 0;5)Dx;Ay; (2.14)

...
Il

o
-
1l

o

Where x;,y; € [-1,1], p;; = /xlz +y7.6; = tan‘lgand Ax; = Ay; = 2/NV2.

Figure 2.1 : Visual representations of Zernike polynomials of order 0 to 5 [23].
2.2.2 Local Zernike moments

As seen from (2.14), a Zernike moment, A,,,, is a measurement about intensity
profile of the whole image. It’s also possible to project the local intensity profiles
onto Zernike polynomials by fitting the unit circle on pixels of the image. The image
moments using Zernike polynomials in this way are named as Local Zernike
Moments or LZM shortly. As proposed in [15], LZMs have potential to expose low-

level image features such as gray-level corner points or step edge points.

A LZM representation is obtained by convolving the image with moment-based

operator, VX, | that is a 2D convolution filter of size kxk and defined as
Vit (0, )) = Veun (01, 637) (2.15)
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Convolution of the image with V%, (i, j) is formulated as

k-1

2
A= ) =)= OV 2.16)
k-1

Pa=——5—

Zernike moments are based on complex Zernike polynomials. Therefore, they are
constructed as real and imaginary convolutional filters. Imaginary filter is not
considered when there is no repetition (m = 0). In this case, real Zernike filter,
Re(V;k)), is convolved with the image only and real Zernike moment representation,

Re(A,m), 1s taken into account.

Zernike moments show rotation-invariant characteristic. If an image, f(x,y), is
rotated by an angle of @ w.r.t. x-axis as f'(x,y) then relationship between Zernike

moments of the original and rotated images, A, and A',,,, is as follows

Alrm = ﬂ f' G, YV (p, 0)dxdy = Aype™/™0 (2.17)

As seen from (2.17), although there is a phase shift because of image rotation, the
magnitude of Zernike moment, |A,,,,,|, remains same. Thus, the magnitude of Zernike
moments can be used to be invariant against image rotations. The magnitude of

Zernike moment is defined as

|Anm| = v [Re(Anm)]? + [I(Apm)]? (2.18)
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3. ROBUST INTEREST POINT DETECTION

In this chapter, details of proposed interest point algorithms, LZMF and R-LZMF,
are explained. First, principles about designing a robust interest point detection
algorithm are given in a nutshell. Then, LZMF and R-LZMF algorithms are
explained with their major steps. Some detection results on synthetic and real images

are also provided in order to prove the capabilities of proposed algorithms.

3.1 Principles of Robust Interest Point Detector Design

A robust interest point detector should be invariant to geometric and photometric
transformations occurred in the images that are taken from same scene under
different conditions. Scale, rotation and translation changes in the images cause
geometric transformations whereas change in lighting conditions is an example of
photometric transformations. An interest point detector should also be robust against

background clutter and occlusion.

Invariance against scale changes is usually handled by building image pyramid in
scale-space. All possible scale levels are sampled by convolving the image with a
scale-space operator such as Gaussian filter. Thus, all structures represented in
different scales can be exposed. Gaussian filter is known to be the best scale-space

operator [3,4].

Rotational invariance is a characteristic of interest point operator in general. Zernike
moments, for instance, have a property of rotational symmetry that makes them
invariant against rotations. Harris corner detector is an operator that shows rotational

invariance.

Locality is a key characteristic that gives robustness to translational changes,
background clutter and occlusion. Local features in the image move together in case
of translation. Hence, information around a local feature never changes and this

makes local feature based interest point detector translation-invariant. Local features
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also eliminate the effect of background clutter and occlusion because local regions

have small sizes in the image [6].

The change in lighting is encountered frequently in the images. A general approach
is to normalize the image in order to decrease the effect of lighting changes to the
minimum. In this way, the range of pixel values is fitted to some intervals so that
large variations because of changes in lighting may be eliminated. The normalization

can be local in the image patch or global for the whole image.

3.2 Proposed Interest Point Detection Algorithms: LZMF and R-LZMF

In this section, proposed interest point detection algorithms, LZMF and R-LZMF, are
explained in details. LZMF algorithm steps are briefly as follows. The input image is
first converted to the gray-scale image if not. Then, the gray-scaled image is globally
normalized by L, normalization. Before corner detection, the local image patch,

where corner detector is applied on, is normalized by fitting to standard normal

e A ) . .
distribution. |A4,4,| and :A“: response maps are obtained by convolving the image
40

with Re(V)%) and Im(V}5) and Re(VE). Both |A4,| and :242: response maps are
40

thresholded by different global threshold values and the image pixels, which pass
thresholding tests, are considered as candidate corner points. Non Maximum
Suppression (NMS) is applied on candidate corner points in spatial-space as 2D for
thinning interest point detection density. Resulting interest points are the output of

LZMF.

The procedure for R-LZMF algorithm is briefly as follows. An image pyramid is
built in scale-space by using Gaussian filter. LZMF is applied on each scale layer of
the image pyramid in order to detect candidate interest points. Each candidate
interest point is analyzed based on cornerness in scale-space for 3D Non Maximum

Suppression (3D-NMS). Resulting interest points are the output of R-LZMF.

3.2.1 Normalization

The input image must be gray-scale in order to apply normalization procedure,
therefore, multi-channel images must be converted to single-channel. Working with

gray-scale image is efficient because single-channel has enough information for
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interest point detection and search-space for interest points is greatly reduced in this

way.

There are two normalization steps for gray-scale input image. One is global and
applied to the whole image, second is local and applied in the unit circle where
Zernike filter is operated for convolution. The reason of applying such normalization
procedures is to make proposed interest point detectors more robust against effect of

outliers in the image.

L, normalization is applied to the whole image as first normalization step in order to
reduce effect of changing lighting conditions in the image. In this normalization,
each pixel is divided by sum of squared root of pixel intensity values to fit its value
in range of 0 and 1. This normalization is formulated for image f(x,y) with size of

MxN as below

f(x,y)
\/Z{-”igl SN (0 )?

If G, =

3.1)

In Figure 3.5 (a) and (b), the result of applying such normalization is shown. As seen
from Figure 3.5 (b), applying L, normalization sweeps noisy detections out. The
number of interest points also reduces from 45 to 26 as seen from Figure 3.5 (a) to
(b) without missing any true corner points. Similarly, in Figure 3.6 (a) and (b),
applying L, normalization reduces the number of keypoints from 77 to 43 with

discarding noisy interest points.

Before convolving the image with a Zernike filter, a second normalization step is
locally applied to the regions where unit circle of the filter is fitted. Pixel intensity
values falling in unit circle of Zernike filter are subtracted from mean and divided by
standard deviation. Thus, local intensity profile in unit circle is fitted to standard
normal distribution with y = 0 and o0 = 1. Here, mean and standard deviation are the
statistics of local intensity profile falling in unit circle. This approach is similar to
normalization in Normalized Cross-Correlation (NCC) and makes proposed interest

point detectors more robust to local intensity variations.
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3.2.2 Corner detection

Corners and blobs are good structures to be interesting points in the image
[1,4,5,6,8,9,10,13]. By following this fact, proposed interest point detection
algorithms were designed to be corner based and local Zernike moments were used

for corner detection phase.

Ghosal et al., in [15], used |A,,| to measure cornerness. However, |A,,| is a Zernike
moment that responds to the edge points closer to the true corner points as well.

Therefore, these nearby edge points should be suppressed in order to respond to true

Azz

corners only. In [15], this problem was tackled by evaluating - According to
0

Ghosal, |j£| approaches one at nearby edge points whereas it reaches high values for
20

true corner points. Briefly, a point in interest is considered as a true corner point if

jﬁ have high responses for that point. The corner detection model
20

both |A4,,| and

of Ghosal was first applied for LZMF. However, this model didn't yield expected
results with test images in terms of repeatability criterion. For test images, it had
repeatability scores of around 50% at most. Therefore, different orders of Zernike
moments were investigated for cornerness and suppression of nearby edge points.
This was concluded with using similar but more complex Zernike moments, |4, |
and |A4g|. These Zernike moments had superior repeatability performance on test
images as will be discussed in Chapter 4. Visual representations of Zernike moments
of A, (top-left), A,, (top-right), A4, (bottom-left) and A,, (bottom-right) can be
examined in Figure 3.1. As seen from Figure 3.1, Zernike moment of A,, looks like
a corner, which is considered as an intersection of two edges, and using A4, for
convolution, which searches for maximum similarity of local region with applied
filter, exposes regions that are similar to corner. Symmetrical and rotational
invariance properties of A,, make it possible to detect every case of edge

intersections in image plane.

() |

'~.\- — Z'T;| . Z Z

Figure 3.1 : Zernike moments used for corner detection [23].

18



Theoretical explanation of why A4, works for corner detection is as follows. Zernike

polynomial of V,, in Cartesian coordinate system is defined as
Via(x,y) = V10(4x* — 4y* — 3x2 + 3y?) (3.2)

The equation in (3.2) can be rewritten with ignoring constant factor /10 as
Vip(x,y) = 4x* — 4y* — 3x% + 3y2
=4(x* —y*) —3(x* —y?)
=4(x? —yH(x* +y?) —3(x* —y?)
= (x? —y?)(4x?* + 4y? — 3) (3.3)

By converting Cartesian coordinates, x and y, to polar coordinates with x = p cos 8

and y = psin @, (3.3) is rewritten as
V42 (p,0) = (p? cos? 6 — p? sin? ) (4p? cos? 6 + 4p? sin® 6 — 3)
= p?(cos? O — sin? B)[4p?(cos? O + sin? §) — 3]
= p?cos 20 (4p? — 3)
= (4p* — 3p?) cos 26 (3.4)

As in [15], intensity profile of a corner projected onto a unit circle is defined by a

Zernike moment after the corner profile is rotated by a degree of — ¢ in order to align

the bisector of the corner with the x-axis. This operation can be examined in Figure
3.2 (a) and (b).

e
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(a) (b)

Figure 3.2 : Gray-level corner models fitting onto the unit circle [15].
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Relationship between original and rotated corner functions, f(x,y) and f'(x,y),
over their projections onto Zernike moments with order of 4 and repetition of 2, A,,

and A},, is defined as

r -2j6
Ay = Aype™

- ﬂ (4x* — 4y* — 3x% + 3y?)f'(x,y) dy dx (3.5)

x2+y2<1

The equation (3.5) defined in Cartesian coordinate system is rewritten in polar

coordinate system by using (3.4) as

2 1 e 1
Ay =D J. J. (4p* —3p?)cos20pdpdf + h J. J. (4p* —3p?) cos 20 p dp db
60=0 p=0 6=—-0 p=0
2 (€]
=b J. ! 20d8+h J. ! 260 do
= — 17 08 — 17 08
6=0 6=-0

—sin 20 + sin —20
“owa )
24

sin 20
12

=—h

(3.6)

Where b and h are the intensities of the outside and inside of the corner respectively,

see Figure 3.2.

Based on (3.6), the magnitude of A},, |A4,|, has a low response where flat regions
occur (h is small) and edge points exist (0 = 90°) in the image as similar to corner
model of Ghosal et al. [15]. Therefore, |A,| = |A4,| is suitable for representing

cornerness.

Zernike moment with order 4 and repetition 2, A,4,, is based on Zernike polynomial

of V4, (x,y) defined as

Vi (x,y) = Vi (p,0) = Ry, (P)ezjg (3.7)
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Where R,,(p) is derived as

= (—1)5p* 25 (4 — 5)!
. s!B3=9)(1-y9)!

Ry (p) =

S=
_ (=D°*4r  (-1)'p*3!
o031 + 11210!
= 4p* — 3p? (3.8)

By substituting (3.8) in (3.7), Zernike moment filter, V5 (i, /), can be defined as
sz(i;j) = V42(pij; 9ij)
= (4p* — 3p*)e?/’
= 4p*e?/? — 3p2e?/f (3.9)
Zernike moment A,, is constructed as real and imaginary filters, Re(V/)) and

Im(V}5), because repetition is not zero (m # 0).

Zernike polynomial for Zernike moment with order 4 and repetition 0, V,,(x,y), is

defined as

Vao(x,¥) = Vao(p, 0) = Ryo(p) (3.10)
Where R, (p) is formulated as
2
(—D°p**(4 - s)!
— s!2=9)(2-19)!

_(=D)°p*4!  (=D'p?3! (=1)*p°2!
o212 111! 210!0!
= 6p* —6p? +1 (3.11)

Ryo(p) =

Zernike moment filter, V% (i, j) is then defined by substituting (3.11) in (3.10) as
V4’B(i']') = V40(pij' 9ij)

= (6p* — 6p? + 1)e%*

=6p* —6p?+1 (3.12)
Repetition of Zernike moment A, is zero (m = 0) and hence real filter, Re(V}%), is
the only convolution filter to be considered.
LZMF algorithm uses |A,4,| to measure cornerness of each pixel in the image. The
real and imaginary Zernike filters, Re(V}5) and Im(V}%), are convolved with the
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image in order to get Re(A4,4,) and Im(A,,) representations. These representations

are used to get the magnitude of A,,, |A4,|, as follows

|Asz] = V[Re(A42)]? + [Im(As)]? (3.13)

A global threshold, which is named as "corner threshold", t., is applied to |A,,|
response map in order to detect candidate corner points. The pixels whose |A4,|
value is higher than the "corner threshold" are considered as candidate corner points

and the rest is discarded.

|A4,| response map may have high responses where edge points, which are closer to

true corner points, exist. These nearby edge points are suppressed by dividing the

|442]
[Asol

with the image in order to get Re(A,o) representation. As a note, there is no

magnitude of |A,,| to |A4] as . The real Zernike filter, Re(V,X), is convolved

imaginary representation for A,q as Im(A,q) because repetition is zero (m = 0). The

magnitude of A,q, |A40], is obtained by

|A4o] = v/ [Re(A40)]? (3.14)

[A42]

1,,| fesponse map is thresholded by a second global threshold, which is named as
40

"nearby edge threshold", t,, in order to suppress nearby edge points. The candidate

[Ag]

corner points whose
[Ag0l

is higher than the "nearby edge threshold" are retained and
the rest is eliminated.

LZMF algorithm was tested with synthetic and real images for corner detection. In
Figure 3.3 (a) and (b), it's seen that the corners of synthetic corner image and its

rotated version by a degree of 30 were successfully detected. Detected corner points

LI

(a) (b)

Figure 3.3 : Detection results of LZMF with synthetic corner images.

are indicated as red circles.
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In Figure 3.4 (a), (b) and (c), it's shown that corners on the checkerboard and its two
rotated versions by degrees of 40 and 70 were detected respectively. As seen from
Figure 3.4, all corner points on the checkerboards are detected by LZMF although
it’s rotated by degrees of 40 and 70. Detections are indicated as red circles on all

three checkerboards.

Figure 3.4 : Detection results of LZMF with checkerboard images.

Some detection results for LZMF on real images can be examined in Figure 3.5 and
Figure 3.6. Detection rate for floor image in Figure 3.5 is 12/12=1 (100%) whereas
wall image in Figure 3.6 has a detection rate of 15/18=0.83 (83%).

(b) (©)

Figure 3.5 : Detection results of LZMF with real floor images.

3.2.3 Non maximum suppression

Candidate corner points detected by Zernike filters, V5 and VX, usually appear at

true corner points and their neighborhood in the image. The reason of such clustering
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is that VX% and V% have high response around corner points. In Figure 3.5 and Figure

3.6, this effect can be seen by looking at density of detections around true corners.

Density of detected interest points to be high around true corner points is not an
expected situation. For a robust interest point detection algorithm, it’s expected that
interest points representing true corner point should be retained and the rest should
be discarded. In other words, those detected points having maximum cornerness in a
local neighborhood should be taken into account only. For proposed interest point
detection algorithms, the cornerness criterion is the response of V5. This thinning
procedure is named as Non Maximum Suppression (NMS) and, in this way, more

accurate interest points are retained and weak ones are discarded.

Nearby interest points detected in spatial-space by V) and V5 are swept out with
NMS as follows for each candidate interest point: i) a 5x5 window is centralized on
each candidate interest point, ii) the candidate interest point is compared with other
candidate interest points detected in 5x5 local neighborhood based on cornerness
value, V%, iii) the candidate interest point is retained if its V%, response is the

maximum or discarded otherwise.

The result of applying 5x5 window for NMS is shown in Figure 3.5 (c) and Figure
3.6 (¢). As seen from Figure 3.5 (b) and (c), the number of interest points reduces
from 26 to 18. Similarly in Figure 3.6 (b) and (c), this number reduces from 43 to 24.
The keypoint number can also be further reduced to exact number of true corner
points, 12, by using larger windows such as 7x7 or 9x9. However, this would

increase the computation time because of more comparison in the window.

(@) (b) (©)

Figure 3.6 : Detection results of LZMF with real wall images.
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3.2.4 Scale-space

Scale-space representation exposes a signal in different scale levels in order to show
how signal behavior changes from fine scales to coarse scales. In image domain, this
is important when the structures in different scales exist in the image and they still
need to be detected without considering in which scale they are. For instance, a table
can be in different sizes in different images taken from same scene with varying
scales. The corners of this table would not be detected in most of the images by a
corner detector like Harris because of its lack of invariance against scale. As seen
from Figure 3.7, the reason of missing corner points for Harris detector is that
shifting window can’t determine high change in both x and y axes (44,4,) for a
corner point much bigger than it. The solution to this is to sample a given image in
different scales so that the corner operator have chance to respond the structure well.
This kind of sampling images in different resolution levels is named as scale-space

representation.

Figure 3.7 : Shifting window of Harris corner detector on the corners [22].

In scale-space, the input image is repeatedly convolved with Gaussian filters of
scales differing by a constant factor for blurring and each blurred image constitutes a
scale level, L(x,y). As mentioned earlier, Gaussian filter is the only filter that can be
used as scale-space operator [3,4]. Here, the blurring effect is to suppress fine details
and expose coarse details. For instance, in a given image containing a car and a key,
blurring the image continuously with Gaussian filter would suppress the structures
related with the key object, which was exposed earlier, and expose the structures of

the car object. A scale level L(x,y) for an image f(x, y) is defined as

Lx,y) = G(x,y,0) * f(x,¥) 3.15)
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G(x,y,0) is 2D Gaussian function with standard deviation of o, which refers to scale

size, and defined as

o- (2 +y?)/20? (3.16)

G y,0) = 2ma?

Scale-space representation for R-LZMF is divided into octaves for efficient
computation. An octave is a stack of scale levels/layers, L(x,y), with same
resolution and o for each scale layer is a constant factor of previous scale layer's o in
that octave. An image in one octave is a sub-sampled version of an image in previous
octave. When o in current octave is doubled, the image convolved with Gaussian
filter of this o is halved (sub-sampled) and used as first scale layer of next octave.

Here, sub-sampling is the key factor for computational gain.

In R-LZMF, candidate interest points detected in the images (scale layers) of each
octave are analyzed to eliminate weak ones, which have low cornerness, and to
figure out characteristic scales of strong ones, which have maximum cornerness.
Characteristic scale is the scale level where an interest point attains to local
extremum (minimum or maximum according to the type of interest point operator) in
scale-space. This is the moment where interest point exhibits the most interesting
characteristic (cornerness, blobness etc.) in scale-space. A description extracted from
the interest point with characteristic scale size would be independent of interest
points detected at same relative location in different scaled images. In other words,
the information, which the description of one interest point contains, would always

be same for that interest point detected in images with different resolution.

Interest points detected in each octave is analyzed in scale-space as follows: Detected
interest point in one scale layer of the octave is compared with other points in its 2D
and 3D local neighborhood in terms of distinctiveness such as corner or blob
response. Here, 2D local neighborhood refers to points around the point in interest in
current scale layer and 3D local neighborhood refers to points around the point in
interest relatively in lower and upper scale layers. If its distinctiveness is the
extremum in both 2D and 3D local neighborhood then it's considered as an
interesting point, otherwise it's discarded. This is a NMS approach in 3D actually and

named as 3D Non Maximum Suppression (3D-NMS).
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3D-NMS is applied to each octave in R-LZMF in a slightly different way. First,
LZMF is applied on all image layers in the octave in order to detect candidate
interest points in spatial-space (2D). As a note, extremum check in 2D is already
realized by LZMF and there is no need to consider it again. For outermost scale
layers, candidate interest points are directly retained without any scale-space
analysis. For inner scale layers of the octave, a candidate interest point is compared
with interest points in lower and upper scale layers based on V5. This comparison
again falls in 5x5 neighborhood of the point in interest for the adjacent scale layers.
If VX response of the interest point is the maximum among all interest points
detected in local neighborhood of lower and upper scale layers then the candidate
interest point is retained as real interest point and scale of layer in which the interest

point resides on is considered as characteristic scale, otherwise the point in interest is

discarded.

In Figure 3.8 (a), (b) and (c), the results of applying R-LZMF on checkerboard
images are shown. As seen from Figure 3.8, all corner points in the original and
scaled versions of checkerboard images with scale factors of 2 and 4 are successfully
detected by R-LZMF and indicated as red circles. For the sake of visibility for

detected corner points, scaled images are enlarged.

(a) (b) (c)

Figure 3.8 : Detection results of R-LZMF with checkerboard images.

3.2.5 Parameter settings

R-LZMF can be considered as a combination of LZMF and scale-space
representation. Therefore, parameter settings of proposed interest point detectors can
be examined as configurations of LZMF and scale-space separately and these

settings are used throughout the experiments discussed in Chapter 4.
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LZMF uses LZM representations, A,, and A4, as convolutional filters, V.5 and VX
respectively. In the experiments, the optimal results were obtained by using
convolution filters of size 9 (k) so that Zernike filters of size 9x9, V5 and V,}, are
used during convolution operations. Threshold values for corner detection were
evaluated empirically by trying a wide range of values and determined as 0.51 for
"corner threshold" (t.) and 5 for "nearby edge threshold" (t.). Window size for NMS
in spatial-space (w,p) was determined as 5x5 by considering computation time.
Here, there is a trade-off between interest point localization accuracy and
computation efficiency, the window size should be chosen in a balance between

these factors. A windows size of 5x5 was optimal throughout the experiments.

Scale-space is built based on four parameters and these are number of scale levels in
one octave (1), number of octaves in scale-space (0), initial standard deviation for
first scale level of the first octave (s,) and window size for 3D-NMS (w;p). These
parameters should be fine-tuned in order to have a full coverage in scale-space.
Belledonnes image from the Inria Dataset [17] was used to figure out the optimal
parameters for R-LZMF and repeatability criterion was considered for fine-tuning.
First, by assuming o = 3 and s, = 1.7, number of scale levels was determined and
the best result was obtained by using two scale levels as seen in Figure 3.9 (a). In this
case, however, 3D NMS is not applied because outermost scale layers are the only
scale layers to be used. Second, by using optimal [ ([ = 2) and assuming s, = 1.7,
optimum number of octaves was searched and, as seen in Figure 3.9 (b), working
with four octaves had the best performance. As noted in Figure 3.9 (b), using more
than 4 octaves doesn't increase the performance. Finally, by using optimal [ (I = 2)
and o (0 = 4), s, was determined. Although the best performance was obtained with
sp of 1.6 as seen in Figure 3.9 (c), s, of 1.8 had better performance throughout the

experiments.

Parameter configuration, which is used throughout the experiments, for both LZMF

and scale-space is summarized in Table 3.1.
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Figure 3.9 : Parameter evaluation for scale-space based on average repeatability.

Table 3.1 : Parameter settings for LZMF and R-LZMF.

Parameter Value Definition
k 9 Zernike filter size
t. 0.51 Corner threshold
te 5 Nearby edge threshold
Wsp 5 Window size of 2D-NMS
Wsp 5 Window size of 3D-NMS
0 4 Number of octave
l 2 Number of scale level
So 1.8 Initial standard deviation
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4. EXPERIMENTAL RESULTS

In this chapter, performance evaluation of proposed interest point detection
algorithms, LZMF and R-LZMF, is discussed. First, repeatability score, which is the
main criterion to evaluate the performance of interest point detectors, is explained.
Then, the Inria Dataset, which is used throughout the experiments, is presented.
Finally, experimental results in terms of repeatability are explained by comparing
LZMF and R-LZMF with well-known interest point detectors such as Harris, SIFT
and SURF and the superiority of the proposed algorithms is highlighted.

4.1 Evaluation Criteria

The detector performance is evaluated using the repeatability score proposed in [7].
The repeatability is a measurement of the point correspondence between two images
that are transformed (scaled, rotated or translated) forms of each other. The
repeatability shows the stability of detector and it's key factor when comparing the
performance of detectors. A robust interest point detector is expected to detect the
most of the same structures in images even they are scaled, rotated or translated
versions of each other. In other words, a robust interest point detector should have

high repeatability scores in challenging datasets.

The repeatability score is evaluated by dividing the number of corresponding interest
points detected in two images, which are taken from same scene under different
conditions, to the minimum number of detected interest points. This score is

formulated as

_ C(huf2)
"2 = Hin (my,m,) @D

Where m; and m, are numbers of interest points detected in images f; and f,
respectively, and C(f3, f>) is number of corresponding matches between images f;

and f.
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One other criterion for evaluating interest point detector performance is the number
of detected interest points. Lowe, in [24], emphasizes the importance of number of
interest points detected in scenes where the objects are occluded, background clutter
exists or the object in interest is too small. There should be many but distinctive
interest points detected by interest point detector in order to tackle such problems. If
an interest point detector generates many distinctive interest points then the chance

of detecting objects in interest increases.

4.2 Dataset

The experiments for evaluating the performance of proposed interest point detection
algorithms, LZMF and R-LZMF, were conducted on the Inria Dataset [17].
"Rotation" sequence of the Inria Dataset was used for testing rotation-invariant
LZMF whereas "Zoom" and "Zoomé&Rotation" sequences of the Inria Dataset were
used in order to evaluate repeatability of scale, rotation and translation-invariant R-
LZMF. Each sequence contains some image sets and each image set comes with an
image and its transformed versions. In each image set, there are also homography
matrices representing the transformations between the original image and its

transformed forms.

"Rotation" sequence has four image sets named as Marseil, Monet, NewYork and
VanGogh. Marseil image set has 18 images with size of 842x842. Monet image set
has similarly 18 images with size of 842x842. NewYork image set has 35 images and
size of each one is 512x512. VanGogh image set has 17 images with size of
512x348. Rotation information in image sets of "Rotation" sequence, however, is not
provided so that the images are indexed by integer numbers on the x-axis of
repeatability plots instead of rotation angles. "Rotation" sequence is summarized in

Table 4.1.

Table 4.1 : Image sets in “Rotation” sequence.

Image Set  Number of Images  Resolution

Marseil 18 842x842
Monet 18 842x842
NewYork 35 512x512
VanGogh 17 512x348
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"Zoom" sequence has six image sets named as Belledonnes, Asterix, Crolles, Bip,
VanGogh and Laptop. Asterix, Crolles and VanGogh were the only image sets used
from this sequence throughout the experiments. Asterix image set has 17 images with
size of 512x348. Crolles image set comes with 10 images whose sizes are 760x555.
VanGogh image set has 17 images and each image has a size of 512x348. This
sequence is to test scale-invariance but doesn't contain scale information about scaled
transformations. Table 4.2 can be examined to have information about "Zoom"

sequence.

Table 4.2 : Image sets in “Zoom” sequence.

Image Set  Number of Images  Resolution

Asterix 17 512x348
Crolles 10 760x555
VanGogh 17 512x348

"Zoom&Rotation" sequence has nine image sets named as Boat, East park,
East south, Inria, Inria_model, Resid, UBC, Laptop and Ensimag. East park, Laptop
and Resid were considered for performance evaluation. East park image set has 11
images with size of 850x680. Laptop image set has 13 images with size of 760x574.
Resid image set contains 11 images whose sizes are 850x680. This sequence is used
to evaluate detector performance against scale and rotation invariance but doesn't
contain scale or rotation information about images. Table 4.3 contains information

about "Zoomé&Rotation" sequence.

Table 4.3 : Image sets in “Zoomé&Rotation” sequence.

Image Set  Number of Images  Resolution

East park 11 850x680
Laptop 13 760x574
Resid 11 850x680

4.3 Results

LZMF detector was tested on Marseil, Monet, NewYork and VanGogh image sets of
"Rotation" sequence by comparing its repeatability scores with well-known interest
point detectors such as Harris, SIFT, SURF, CenSurE (STAR) and BRISK. OpenCV
v2.4.8 was used to work with these interest point detectors and default parameter
settings were applied. Detection results for Marseil, Monet, NewYork and VanGogh

image sets are compared in Figure 4.1 (a), (b), (c) and (d) respectively.
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Figure 4.1 : Performance comparison of LZMF with other detectors.

LZMF shows the best performance with Marseil image set and outperforms all other
detectors. It hits 90% of repeatability. In Monet image set, LZMF is passed by Harris
but outperforms all other detectors. In NewYork image set, LZMF again performs as
the second best detector and is only passed by Harris. In VanGogh image set, LZMF
competes with Harris and it still outperforms all other detectors. Here, it never
decreases below than 80% of repeatability. Average repeatabilities of LZMF and
other detectors for Marseil, Monet, NewYork and VanGogh image sets can be

examined in Figure 4.2 (a), (b), (c) and (d) respectively.
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Figure 4.2 : Average repeatabilities of LZMF and other detectors.

LZMF detects large number of distinctive interest points and thus increases the
chance of detecting objects in interest. For Marseil image set, it detects about 3000
keypoints. For Monet image set, this number decreases to about 500 because the
scene has so much flat regions such as sky and frame. The number of detection for
NewYork image set is about 1300 and the detection rate is about 1000 for VanGogh
image set. In Table 4.4, the number of keypoints detected by interest point detectors
in comparison is shown. Some detection results on images in Monet set can be
examined in Figure 4.3. As a note, detected interest points are indicated as red circles

for the images in Figure 4.3.

Table 4.4 : Numbers of keypoints detected by LZMF and others in Marseil set.

Detector  #kp in Base  #kp in Transformed Correspondence

Image image
LZMF 2915 2888 2573
SIFT 6130 5991 4487
SURF 4635 4446 3644
Harris 1000 1000 852
CenSurE 1386 1326 1142
BRISK 1514 1429 894

35



Figure 4.3 : Some detection results of LZMF on Monet image set.
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The performance of R-LZMF detector was evaluated on Asterix, Crolles and
VanGogh image sets from "Zoom" sequence and East park, Laptop and Resid image
sets from "Zoomé&Rotation" sequence. R-LZMF was compared to SIFT, SURF,
CenSurE (STAR), BRISK and ORB by using OpenCV v2.4.8 with default parameter
settings again. Detection results for Asterix, Crolles, VanGogh, East park, Laptop
and Resid are shown in Figure 4.4 (a), (b), (c), (d), (e) and (f) respectively.
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Figure 4.4 : Performance comparison of R-LZMF with other detectors.
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R-LZMF outperforms all other detectors for all image sets as seen from Figure 4.4.
This can also be seen from the bar charts in Figure 4.5 (a), (b), (¢), (d), (e) and (f) for
Asterix, Crolles, VanGogh, East park, Laptop and Resid respectively.
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Figure 4.5 : Average repeatabilities of R-LZMF and other detectors.

The numbers of detected interest points by R-LZMF and other detectors are shown in
Table 4.5. As seen from Table 4.5, R-LZMF generates enough number of interest
points for Asterix set and R-LZMF's keypoints are more repeatable although they're
fewer than the numbers of interest points detected by SIFT and SURF. In Figure 4.6
and Figure 4.7, some detection results on Crolles and Laptop image sets can be

examined as red circles.
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Table 4.5 : Numbers of keypoints detected by R-LZMF and others in Asterix set.

Detector  #kp in Base  #kp in Transformed Correspondence

Image image
R-LZMF 361 370 322
SIFT 603 601 457
SURF 643 650 552
STAR 251 258 226
BRISK 259 263 183
ORB 500 500 451

Figure 4.6 : Some detection results of R-LZMF on Crolles image set.
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Figure 4.7 : Some detection results of R-LZMF on Laptop image set.
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5. CONCLUSIONS AND FUTURE WORK

In this chapter, the thesis is concluded by summarizing the research conducted in
order to design robust interest point detection methods and highlighting experimental
results of proposed interest point detection algorithms. Future directions are also

discussed in order to improve and extend proposed algorithms.

5.1 Conclusions

In this thesis, two novel interest point detection algorithms, Local Zernike Moment
based Features (LZMF) and Robust Local Zernike Moment based Features (R-
LZMF), are proposed by focusing on image matching problem that is widely
considered in computer vision applications such as object recognition, stereo vision
and motion tracking. Proposed interest point detection algorithms realize corner-
based detections in order to detect interesting structures in images and apply some
other mechanisms before and after corner detection such as global/local
normalization and non-maximum suppression. An image pyramid is also constructed
in order to sample the image in scale-space and expose the structures in different

scales.

Robust interest point detection is very important when dealing with image matching
problem in computer vision. Corresponding points should be detected as much as
possible with minimum missing rate in order to be successful in further processing.
In practice, because of geometric and photometric transformations occurred in the
images taken from same scene under different conditions, detection of such
corresponding points with high rates is not easy. At this point, robustness of interest
point detector against these transformations comes into play. An interest point, which
handles such transformations with special mechanisms, increases the chance of
detecting interesting points as much as possible and thus contributes to the problem

in interest significantly.
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Proposed rotation and translation-invariant interest point detection algorithm, LZMF,
utilizes from discriminative power of Zernike moments and searches for corners with
these moments in the image. Proposed scale, rotation and translation-invariant
interest point detection algorithm, R-LZMF, uses LZMF in order to detect keypoints
in spatial-space and analyzes these points in scale-space for determining
characteristic scales. Interest points detected by R-LZMF are local features that can
be further described in size of characteristic scale. Description of the detected interest
points, however, is out of scope in this thesis and will be further examined in details.
LZMF and R-LZMF interest point detection algorithms are the main contributions of
this thesis.

The repeatability performance, which is the main criterion for evaluating interest
point detectors, of proposed algorithms shows their superiority on keypoint
detection. On the Inria Dataset, LZMF outperforms SIFT, SURF, CenSurE and
BRISK, and it also competes with Harris whereas R-LZMF outperforms SIFT,
SURF, CenSurE, BRISK and ORB in every case based on repeatability. The
numbers of interest points detected by LZMF and R-LZMF are also well enough in

order to tackle background clutter and occlusion problems.

5.2 Future Work

The repeatability performance of R-LZMF interest point detection algorithm should
be analyzed for affine transformation as well in order to say that it's affine-invariant.
Theoretically, R-LZMF should be partially affine-invariant because it's invariant to
scale, rotation and translation, and an affine transformation is combination of these
transformations. However, this fact should be verified by evaluating repeatability

performance of R-LZMF with affine specific datasets.

Proposed interest point detection algorithms, LZMF and R-LZMF, have
computational load especially during getting Zernike moment representations. As a
result of this, LZMF and R-LZMF are not as fast as SIFT and SURF. Quantized
Zernike moments can be applied in local sense to boost the detection performance in
speed. LZMF and R-LZMF algorithms can also be parallelized in specific Graphics
Processing Unit (GPU) platforms such as Compute Unified Device Architecture
(CUDA).
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LZMF and R-LZMF algorithms can also be extended to have a descriptor so that
they present a complete schema, which has both detector and descriptor, as in SIFT
and SURF. For description, the descriptive power of local Zernike moment
representation can be utilized or some well-known descriptors such as Histogram of
Oriented Gradients (HoG) can be used. Thus, by combining high repeatability of
proposed interest point detectors with discriminative description power, a complete

and robust local feature extraction schema may be proposed.
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