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R-LZMF:  
ROBUST LOCAL ZERNIKE MOMENT BASED FEATURES 

SUMMARY 

Feature extraction techniques are widely used in computer vision in order to 
transform image data represented as a set of pixels, which mostly consists of 
redundant information, into a set of features, which has meaningful information for 
specific problem, for further processing. In this sense, feature extraction can be 
considered as a dimensionality reduction approach.  
Extracted features from the image should be meaningful and relevant to the domain 
where they are used. They should also have discriminative characteristic in order to 
specify special structures in the image such as corners, edges and blobs. These kind 
of structures are used in computer vision to detect the objects in interest, recognize 
the faces or match the corresponding regions between images.  

In computer vision, image matching is one of the fundamental problems where 
feature extraction comes into play. This problem, which is also named as 
correspondence problem, requires matching corresponding regions in the images that 
are taken from same scene with different points of view. Correspondence matching is 
very crucial when the depth of the object is evaluated in a stereo system, 3D structure 
of the scene is constructed from the images taken from same scene or motion of the 
object needs to be tracked in temporal domain. One of the optimum solutions for 
these kind of problems is to extract interest points/keypoints as features from the 
images and use them for further processing.  
An interest point is an image point that represents distinctive characteristic in that 
location and its local neighborhood. It should also be detected repeatedly in the 
images that are geometrically and photometrically transformed forms of each other. 
In other words, an interest point detected in one image taken from a scene should 
also exist in another image taken from same scene with a different point of view. In 
general, corner or blob detectors with some other mechanisms comprise the interest 
point detection algorithm so that an interest point detector can be characterized as 
corner or blob based. A robust interest point detector should be invariant to 
geometric transformations such as scale, rotation, translation and photometric 
transformations such as illumination. It shouldn't also be affected from background 
clutter and occlusion in the images.  

Designing an interest point detection algorithm is an active topic in computer vision. 
There are so many studies on corner or blob based interest point detectors. SIFT and 
SURF are maybe the best-known and used interest point detectors in the literature. 
Both detectors provide blob based interest point detection mechanism and are very 
successful in terms of repeatability and distinctiveness. One other successful detector 
is Harris-Laplace detector and it's based on Harris corner detector. All these detectors 
are widely used in the literature for feature extraction and performance comparison.  



xx 
 

In this thesis, a novel rotation and translation invariant local Zernike moment based 
interest point detection algorithm is presented and named as Local Zernike Moment 
based Features (LZMF). LZMF is then extended to have scale-invariant 
characteristic by constructing image pyramid in scale-space. Final detector is scale, 
rotation and translation invariant, and also robust to background clutter and 
occlusion. This final detector is named as Robust Local Zernike Moment based 
Features or R-LZMF shortly. R-LZMF is a corner based interest point detector and 
uses local Zernike moments as convolutional operators in order to detect corners in 
spatial-space. In this way, descriptive power of Zernike moments is utilized in local 
sense by applying them to the image pixels and thus structure of corners can be 
successfully exposed. Here, the critical decision is about which order of Zernike 
moment should be used for corner detection and it’s also investigated in this study.  
Performance of proposed interest point detection algorithms, LZMF and R-LZMF, 
are evaluated on the Inria Dataset by using repeatability score, which is the main 
criterion for detector accuracy, and the performance of proposed algorithms is 
compared to well known interest point detectors such as Harris, SIFT, SURF, 
CenSurE, BRISK for LZMF and SIFT, SURF, CenSurE, ORB, BRISK for R-LZMF. 
Evaluation results on "Rotation", “Zoom” and "Zoom&Rotation" sequences of the 
Inria Dataset show that LZMF and R-LZMF outperform almost all interest point 
detectors to be compared in terms of repeatability score. Distinctiveness performance 
of LZMF and R-LZMF are also presented by applying the detectors on to the 
synthetic and real images that contain corner points. 
R-LZMF interest point detection algorithm is expected to be partly invariant to affine 
transformations because it's invariant to scale, rotation and translation and an affine 
transformation may be considered as a combination of these transformations. 
However this should be verified as a future work. LZMF and R-LZMF can also be 
extended to have a descriptor. This makes them a complete schema, which includes 
both detector and descriptor, as in SIFT and SURF.  
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G-YZMÖ: 
GÜRBÜZ YEREL ZERNİKE MOMENT TABANLI ÖZELLİKLER 

ÖZET 

Öznitelik çıkarma teknikleri bilgisayarla görmede yaygın bir şekilde 
kullanılmaktadır. Bu teknikler ile hedeflenen çoğunlukla artıklı bilgi içeren ve piksel 
kümesi şeklinde ifade edilen imge verisini üzerinde çalışılan problem için anlamlı 
hale getirecek öznitelik kümesine dönüştürmektir. Böylece, gerçekleştirilen dönüşüm 
neticesinde elde edilen bu öznitelik kümesi daha ileri işlemler için kullanılabilir, 
anlamlı ve daha düşük boyutta bir biçime dönüşmüş olur. Bu anlamda, öznitelik 
çıkarma işlemini bir boyut indirgeme yaklaşımı olarak görmek mümkündür.  
İmgeden çıkarılan öznitelikler, kullanılacakları alan için anlamlı ve alakalı olmalıdır. 
Ayrıca, imgedeki özel yapıları niteleyebilen ayırt edici bir karakteristiğe de sahip 
olmalıdır. İmgedeki bu özel yapılara köşe, kenar ve nokta bulutu örnek olarak 
verilebilir. Bu tip özel yapılar bilgisayarla görmede ilgilenilen nesneleri saptarken, 
yüzleri tanırken ya da resimler arasında karşılıklı bölgeleri eşleştirirken sıklıkla 
kullanılmaktadır.  
Bilgisayarla görmede; imge eşleştirme, öznitelik çıkarmanın işin içine girdiği temel 
problemlerden biridir. Aynı zamanda, karşılık problemi olarak isimlendirilen bu 
problemde aynı sahneden değişen bakış açılarıyla alınmış olan imgelerin karşılık 
gelen bölgelerinin doğru ve tam bir şekilde eşleştirilmesi beklenir. Karşılık 
eşleştirme; bir stereo sistemde ilgilenilen nesnenin derinliği ölçülürken, aynı 
sahneden elde edilen imgeler ile sahnenin 3D yapısı çıkartılırken ya da bir nesnenin 
hareketi zamansal alanda takip edilirken oldukça kritiktir. Bu tip problemlere 
getirilen en uygun çözümlerden biri ele alınan imgelerden öznitelik olarak ilgi 
noktaları/anahtar noktalar çıkartmak ve bu noktaları ileri işlemler için kullanmaktır.  

İlgi noktası, imgede belirli bir bölgede ayırt edici bir karakteristik gösteren bir imge 
noktadır. Bu ilgi noktasının, birbirinin geometrik ve fotometrik dönüşümü olan 
resimlerin hepsinde tekrar ederek saptanabilmesi gerekmektedir. Bir başka deyişle, 
belli bir sahneden elde edilen bir imgede saptanmış bir ilgi noktasının aynı sahneden 
değişik bir bakış açısıyla elde edilmiş başka bir imgede de saptanabilmesi 
beklenmektedir. Genellikle, köşe veya nokta bulutu saptayıcılar bazı diğer 
mekanizmalar ile birleştirilerek ilgi noktası saptayıcı şemasını oluşturmaktadır. 
Dolayısıyla, bir ilgi noktası saptayıcı köşe veya bulut noktası tabanlı olarak 
karakterize edilebilmektedir. Gürbüz bir ilgi noktası saptayıcıdan beklenen ise ölçek, 
döndürme, öteleme gibi geometrik dönüşümlere ve ışıklandırma gibi fotometrik 
dönüşümlere karşı değişimsiz olmasıdır. Ayrıca, gürbüz bir ilgi noktası saptayıcının 
arkaplan karışıklığına ve engellere karşı da dayanıklı olması beklenmektedir.  
İlgi noktası saptayıcı algoritmaların tasarımı bilgisayarla görmede aktif bir konu 
olarak araştırılmaya devam etmektedir ve bu konuda çok sayıda köşe ve bulut 
noktası tabanlı ilgi noktası saptayıcı sunulmuştur. SIFT ve SURF belki de en iyi 
bilinen ve en çok kullanılan ilgi noktası saptayıcılar olarak gösterilebilir. Her iki ilgi 
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noktası saptayıcı da nokta bulutu tabanlı bir saptama gerçekleştirmekte, 
yinelenebilirlik ve ayırt edicilik bakımından oldukça başarılı sonuçlar vermektedir. 
Bir başka başarılı ilgi noktası saptayıcı ise Harris köşe saptayıcısından yararlanan 
Harris-Laplace ilgi noktası saptayıcıdır. Bütün bu ilgi noktası saptayıcılar, 
literatürde, öznitelik çıkarma ve performans karşılaştırması için sıklıkla 
kullanılmaktadır.  
Bilgisayarla görmede; resim momentleri, sıklıkla kullanılan bir başka yaklaşımdır. 
Bir resim momenti, imgeyi bir fonksiyon gibi ele alan ve imgedeki pikselleri sayıl bir 
nicele dönüştüren bir izdüşümdür. Bu izdüşüm, bir imge fonksiyonunun polinomsal 
tabana dönüşümünü sağlayarak imgedeki yapılardan anlamlı öznitelikler 
çıkartılabilmesine imkan verir. İkili bir imgede alan hesaplaması veya imgenin 
merkez koordinatlarının bulunması resim momentlerine verilebilecek bazı 
örneklerdir. Geometrik, karmaşık ve dikgen olarak sınıflandırılan imge momentleri; 
karakter tanıma, imge geri çatılma ve yüz tanıma gibi problemlere başarılı bir şekilde 
uygulanabilmektedir.  

Son yıllarda ivme kazanan imge momentlerinden biri de Zernike momentleridir. 
Zernike polinomlarını polinomsal taban olarak kullanan bu dikgen momentler global 
ve yerel olarak imgeye uygulanabilmekte ve uygulandığı imge bölgesinin bir birim 
çember üzerinde tanımlanmış Zernike polinomları üzerine izdüşümlerini 
çıkartabilmektedir. Zernike momentleri, tüm imgeye uygulandığında imgenin 
kendisini, yerel olarak bir piksel etrafında uygulandığında ise o piksel ve çembersel 
komşuluğundaki bölgeyi sayıl bir niceliğe dönüştürür. Bu nicelik, Zernike 
polinomlarının doğası gereği, döndürmeye karşı değişmezdir.  

Bu tez çalışmasında, özgün bir döndürme ve ötelemeye değişimsiz Yerel Zernike 
Moment (YZM) tabanlı ilgi noktası saptama algoritması sunulmaktadır. Sunulan bu 
algoritma Yerel Zernike Moment tabanlı Özellikler (YZMÖ) olarak 
isimlendirilmiştir. Aynı çalışmada, YZMÖ, ölçek değişimsiz karakteristiğe sahip 
olması için ölçek-uzayında imge piramidi oluşturmak suretiyle genişletilmiştir. 
Sonuçta elde edilen ilgi noktası saptayıcı ölçek, döndürme ve ötelemeye değişimsiz 
olmakla birlikte arkaplan karışıklığına ve engellere karşı sağlam bir karakteristik 
göstermektedir. Elde edilen bu ilgi noktası saptayıcı Gürbüz Yerel Zernike Moment 
tabanlı Özellikler (G-YZMÖ) olarak isimlendirilmiştir. G-YZMÖ, köşe tabanlı bir 
ilgi noktası saptayıcıdır ve uzamsal-uzayda köşeleri saptamak için YZM'leri 
evrişimsel işleçler şeklinde kullanır. Bu sayede, köşe noktalarının yapılarını başarılı 
bir şekilde ortaya çıkarmak için Zernike momentleri imge piksellerine yerel olarak 
uygulanarak bu momentlerin betimlemesel gücünden faydalanılmış olunur. Burada, 
kritik olan köşe saptama için kaçıncı dereceden Zernike momentleriyle çalışılacağıdır 
ve bu tez çalışmasında uygun moment derecesi de araştırılmıştır. Önerilen 
algoritmalarla, uzamsal-uzayda ilgi noktası saptama işlemi, temel olarak şu adımlarla 
gerçekleştirilir: Giriş imge, gri tonlu imgeye dönüştürüldükten sonra ışık 
değişimlerinin etkisini minimuma indirgemek için önce tüm imgede sonra da 
YZM'lerin evrişimsel işleçler olarak uygulanacağı çember şeklindeki yerel imge 
bölgesinde normalizasyona tabi tutulur. Daha sonra, uygun evrişimsel işleçler 
vasıtasıyla her bir piksel için Zernike tepki haritaları çıkartılır ve bu harita önceden 
belirlenmiş eşik değerleri ile eşiklendirilerek aday ilgi noktaları belirlenir. Belirlenen 
her bir aday ilgi noktası için bu ilgi noktasının merkezde olacağı kare bir pencere 
açılır. Bu ilgi noktasının Zernike tepki değeri pencere içine düşen diğer aday ilgi 
noktalarına ait Zernike tepki değerleri ile karşılaştırılır. Eğer, merkezdeki aday ilgi 
noktası en yüksek Zernike tepki değerine sahipse gerçek bir ilgi noktası olarak 
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işaretlenir, değilse dikkate alınmaz. Bu saptama şeması, giriş resminden elde edilen 
imge piramidindeki tüm imgelere uygulanarak saptanan ilgi noktaları birleştirilir ve 
çıktı olarak verilir. 

Önerilen ilgi noktası saptama algoritmaları olan YZMÖ ve G-YZMÖ için 
performans ölçümü Inria veri kümesi üzerinde yinelenebilirlik skoru kullanılarak 
gerçekleştirilmiştir. Yinelenebilirlik skoru, ilgi noktası saptayıcısının başarımını 
ölçmek için kullanılan temel kriterdir. Sunulan ilgi noktası saptama algoritmalarının 
Inria veri kümesinde elde edilen yinelenebilirlik skorları iyi bilinen ilgi noktası 
saptayıcılar ile karşılaştırılmıştır. Bu kapsamda; YZMÖ için Harris, SIFT, SURF, 
CenSurE, BRISK ve G-YZMÖ için SIFT, SURF, CenSurE, ORB, BRISK ilgi 
noktası saptayıcıları ile performans karşılaştırması amacıyla çalışılmıştır. Inria veri 
kümesindeki "Rotation", “Zoom” ve "Zoom&Rotation" imge dizileri ile elde edilen 
sonuçlar, YZMÖ ve G-YZMÖ ilgi noktası saptayıcılarının karşılaştırıldıkları 
neredeyse bütün ilgi noktası saptayıcılara yinelenebilirlik skoru bakımından üstünlük 
sağladığını göstermektedir. Sunulan algoritmaların ayırt edicilikleri bakımından 
performansları ise üretilen sentetik ve gerçek test resimlerindeki köşe noktalarının 
saptanmasındaki başarım ile gösterilmektedir.  

G-YZMÖ ilgi noktası saptama algoritmasının kısmi olarak ilgin dönüşümlere 
değişimsiz olduğu düşünülmektedir. Çünkü; bir ilgin dönüşümü aslında ölçek, 
döndürme, öteleme dönüşümlerinin bir kombinasyonu şeklinde düşünülebilir ve de 
G-YZMÖ bu dönüşümlerin hepsine değişimsiz olduğu için dolaylı olarak ilgin 
dönüşümü karşı da değişimsiz olmalıdır. Bu durumun ileride doğrulanması 
planlanmaktadır. Ayrıca, YZMÖ ve G-YZMÖ ilgi noktası saptayıcıları, bir 
betimleyiciyi de içerecek şekilde genişletilecek ve böylece SIFT ve SURF'te olduğu 
gibi ilgi noktası saptayıcı ve betimleyiciden oluşan tam bir şema sunulmuş olacaktır.  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 



xxiv 
 

 



1 
 

1.  INTRODUCTION 

In computer vision, image matching, or correspondence problem, is a fundamental 

research area in order to tackle some important problems such as object recognition, 

stereo vision, image registration and motion tracking.  

Correspondence problem is about matching same regions from different images, 

which are taken from same scene, under varying viewing conditions. These kinds of 

images are geometrically or photometrically transformed versions of each other and 

searching for corresponding regions between such images is a hard problem. Scale 

change because of zoom in/out by camera lens, rotation and translation in the camera 

cause geometric transformations whereas change in lighting condition is an example 

of photometric transformations. Under these transformations, corresponding regions 

still need to be detected and matched with high repeatability.  

General approach to correspondence problem is to consider it in three steps. First, 

interesting points, which represent distinctive regions in the image, are detected. 

Corners and blobs are good candidates for such regions. These points also need to be 

repeatedly detected across the images in interest. Next, the region around each 

detected interesting point is described as a feature vector. Finally, feature vectors are 

compared to each other by some distance criteria such as Euclidean or Mahalanobis 

in order to match the most similar regions whose feature vectors have the least 

distance/most similar.  

Image matching is widely considered in computer vision. For instance, in a stereo 

system where two images belonging to same scene exist, same regions in both 

images need to be detected and matched in order to evaluate the depth of the object. 

For image stitching problem, corresponding regions, which are detected and matched 

in the low-resolution images of same scene, are used for concatenation in order to 

build a high-resolution panorama image. In object recognition framework, detected 

distinctive regions are described as feature vectors and then stored in a database in 

order to match them with feature vectors of objects in given query image. Thus, the 

matched objects in query image can be recognized.  
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The first phase in corresponding problem is to detect distinctive regions in the 

images. This is very critical phase and designates the performance of subsequent 

phases such as description and matching. As mentioned before, a distinctive region is 

represented well by an interesting point in the image. An interest(ing) point, or 

keypoint, is a local image feature that is extracted from regions where high 

information or distinctiveness exists. Corners and blobs are such structures that show 

interesting characteristics whereas flat regions such as walls and surfaces don't 

contain any information and they don't exhibit interesting characteristics. Hence, in 

general, interest point detection algorithms are designed with corner or blob 

detection mechanisms. Locality of interest points makes interest point detection 

algorithms robust to background clutter and occlusion. Locality also provides 

translation-invariant characteristic to interest point detection algorithms because 

local regions move together in case of image translation and thus information in local 

regions is preserved.  

Interest point detection is a feature extraction approach and it's important in order to 

represent the image in more compact way. By representing the image with a set of 

feature vectors extracted from detected interest points, all redundant information may 

be discarded and meaningful information is preserved only. This helps search space 

to be reduced dramatically for subsequent phases of the problem in interest.  

A robust interest point detection algorithm is expected to be invariant to geometric 

and photometric transformations as well as robust to background clutter and 

occlusion. Translation invariance problem and robustness to background 

clutter/occlusion are solved by locality characteristic of interest points. Rotation 

invariance requires special characteristics inherent to corner detection algorithm. For 

scale invariance problem, a general approach is to build an image pyramid in scale-

space in order to sample the input image in various scale levels and apply interest 

point detection algorithm for each image in the pyramid. This approach is named as 

multi-scale or scale-space representation. Invariance to photometric transformations 

such as illumination changes can be overcome by applying some normalization 

procedures on the image.  

Image moments are widely used transformations in computer vision and applied to 

many problems such as character recognition, image reconstruction and face 

recognition. An image moment basically projects the image function on to some 
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polynomial basis in order to transform the image to the scalar quantities and extract 

meaningful features from the image. For instance, area of the surfaces in a binary 

image or central coordinates of a given image can be evaluated by image moments. 

Image moments can be classified as geometric, complex or orthogonal. One of the 

well-known orthogonal image moments is Zernike moment that uses Zernike 

polynomials as polynomial basis and projects the image on to these polynomials 

defined in a unit circle. Zernike moments can be applied on to the whole image 

globally or image pixels locally. Scalar quantities evaluated by applying Zernike 

moments on to the images aren't affected from image rotations and this is a reason of 

Zernike moments to be rotation-invariant.  

In this thesis; two novel interest point detection algorithms are proposed. First one is 

named as Local Zernike Moment based Features (LZMF). LZMF is invariant to 

rotation, translation and illumination changes as well as robust to background clutter 

and occlusion but suffers from scale changes. To tackle scale invariance problem, a 

second algorithm is introduced and named as Robust Local Zernike Moment Based 

Features (R-LZMF). R-LZMF builds an image pyramid in scale-space in order to be 

invariant against scale changes. In both algorithms, local Zernike moments are used 

as convolutional operators for corner detection with some other mechanisms. Final 

detectors, LZMF and R-LZMF, are tested on the Inria Dataset with well-known 

interest point detectors such as Scale Invariant Feature Transform (SIFT) and 

Speeded-Up Robust Features (SURF) and they outperform in almost all cases in 

terms of repeatability score that is the main evaluation criterion for interest point 

detection performance.  

1.1 Literature Review 

In this section, well-known interest point detection algorithms are examined with 

their advantages and drawbacks. Studies about application of Zernike moments to 

some computer vision and pattern recognition problems in global and local manner 

are also covered.  

1.1.1 Interest point detection 

One of the earliest interest point detectors was developed by Harris et al. and named 

as Harris corner detector [1]. This detector searches for large intensity changes in a 
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shifted window by using Sum of Squared Distance (SSD) and considers such 

locations as corner. Harris detector is rotation-invariant but not scale-invariant.  

Andrew Witkin introduced scale-space concept in his seminal work [2] by exposing 

signals in different scale levels in order to show how signal behavior changes from 

fine scales to coarse scales. He also showed that smoothing the image with Gaussian 

filters of increasing standard deviation (𝜎) has ability to suppress fine details and 

expose coarse structures. Koenderink, in [3], showed that Gaussian filter is the 

unique filter for building scale space. Lindeberg verified this uniqueness and 

proposed an automatic scale selection mechanism in order to find the characteristic 

scales of interest points in the image [4]. Lindeberg showed that scale-normalized 

Laplacian-of-Gaussian (LoG) operator, 𝜎!∇!𝐺, should be used to provide true scale 

invariance and he used this operator to detect blob-like structures in the image. One 

drawback of using LoG operator is that it’s not a fast operator to apply on the image 

although it's very good at exposing blobs.  

Lowe, in his study [5], proposed Scale Invariant Feature Transform (SIFT) that 

consists of an interest point detector and descriptor. For interest point detection, he 

used scale-normalized LoG as in the study of Lindeberg to detect blobs in the image. 

However, by considering slowness of LoG operator, he suggested using Difference-

of-Gaussian (DoG) to approximate LoG operator. DoG is the difference of two 

images convolved with Gaussian filters of consecutive scales and it's a fast 

alternative of LoG operator. In SIFT, an image pyramid is built in scale-space by 

convolving the input image with Gaussian filters of scales differing by a constant 

factor and difference of two Gaussian images with consecutive scales in the pyramid 

is taken to apply LoG operator. Thus, scale-space representation and application of 

LoG operator are both realized in a very efficient way. This is one of the key factors 

to make SIFT very fast during interest point detection. One drawback of using 

LoG/DoG is that they also yield high responses in the neighborhood of contours or 

straight edges, which don't exhibit interest point characteristic. For accurate keypoint 

localization, SIFT applies some other mechanisms such as interpolation with 

quadratic Taylor expansion.  

Mikolajczyk et al. combined Harris corner detector with scale-normalized LoG for 

interest point detection in [6]. This schema was named as Harris-Laplace detector 
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and it extracts complementary features in the image by using Harris detector, which 

responds to corners and textured regions, and LoG, which responds to blobs. Harris-

Laplace detector detects Harris corners in spatial-space because Harris detector is the 

most reliable detector when rotation, illumination change and perspective 

deformation occur in the image [7]. However, as mentioned before, Harris detector is 

not scale-invariant and can't detect corners in images with different resolutions. It 

also fails to determine characteristic scale because it can't reach to maximum 

frequently in scale-space. Hence, when building image pyramid in scale-space, LoG 

operator is applied to the locations where Harris corners are detected and local 

maxima are searched in order to detect interest points. Harris-Laplace detector has a 

performance up to a scale factor of 4 for scaled images according to [6].  

Harris-Laplace detector was extended by Mikolajczyk et al. by determining the 

shape of the elliptical region with the second moment matrix in [25,26] and it was 

named as Harris-Affine detector. A second affine region detector, which was named 

as Hessian-Affine, was also proposed in [25,26]. Hessian-Affine detector utilizes 

Hessian matrix for interest point detection in spatial space and uses Laplacian for 

scale-space. Harris-Affine and Hessian-Affine detectors have significant invariance 

to affine transformations when compared to Harris-Laplace detector.  

Bay et al., in [8], introduced Speeded-Up Robust Features (SURF) as an interest 

point detection and description schema. In SURF, Hessian-based detector is used 

instead of Harris-based counterpart during interest point localization because Hessian 

function is more stable and repeatable. As in SIFT and Harris-Laplace, SURF uses 

LoG operator in scale-space in order to determine characteristic scales of detected 

interest points and this operator is approximated by using determinant of Hessian 

matrix. Scale-space representation of SURF, however, is different than SIFT and 

Harris-Laplace. Here, the pyramid is built for LoG operator instead of input image. 

In other words, the input image is not down-sampled, but rather, LoG filter is up-

sampled in scale-space. Up-scaling the filter instead of down-scaling the image 

prevents aliasing problems occurred in the image when the image pyramid is built. 

SURF is also faster than SIFT because up-scaled filters are used with efficient 

integral image method.  
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Rosten et al. developed a fast interest point detector in [9] and named it as Features 

from Accelerated Segment Test (FAST). FAST tests each image pixel for cornerness 

by looking its 16 pixel-circular neighborhood and if some contiguous pixels in this 

neighborhood are brighter/darker than the pixel in test then this pixel is detected as 

corner. This method also learns from image pixels by applying decision tree to 

increase its accuracy. Interest points detected by FAST are not multi-scale features, 

in other words, FAST is not scale-invariant. Oriented FAST and Rotated Brief 

(ORB), proposed in [10] by Rublee et al., is a combination of FAST keypoint 

detector and BRIEF descriptor [11]. ORB modifies FAST to work with image 

pyramid for scale invariance and it also modifies BRIEF descriptor to make it 

rotation invariant. Center Surround Extrema (CenSurE) is another scale and rotation 

invariant interest point detector proposed by Agrawal et al. in [12]. In CenSurE, a 

center-surround filter is applied to the image at all locations and scales, and Harris 

function is used for eliminating weak corner points. Leutenegger et al. proposed a 

rotation and scale-invariant key point detector named as Binary Robust Invariant 

Scalable Keypoints (BRISK) in [13]. BRISK uses a novel scale-space FAST-based 

detector for scale-invariant interest point detection and considers a saliency criterion 

by using quadratic function fitting in continuous domain.  

1.1.2 Zernike moments 

Khotanzad et al. proposed one of the earliest studies about image recognition by 

global Zernike moments in [14]. The method solves rotation invariance problem by 

using magnitude of Zernike moments; for scale and translation invariance, regular 

moments are used. Tests on a 26-class character set shows the superiority of Zernike 

moments. One other approach using Zernike moments is the study of Ghosal et al. in 

[15]. In this study, Ghosal proposed a unified framework for low-level image feature 

detection by using local Zernike moments. These low-level features are step/roof 

edges, gray-level corners and topological features. For corner detection, 𝐴!! and 𝐴!" 

Zernike filters are convolved with the image and the results are thresholded in order 

to find strong corner responses. In [16], Sariyanidi et al. applied local Zernike 

moments (LZM) for face recognition problem and proposed a novel LZM 

representation that outperforms Gabor and Local Binary Patterns (LBP) methods on 

FERET database. 
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1.2 Organization of the Thesis 

This thesis is organized as follows: Chapter 2 provides an overview of image 

moments including Zernike moments in detail. Chapter 3 contains a detailed 

explanation of proposed interest point detection algorithms, LZMF and R-LZMF. In 

this chapter, decisions on parameter settings of proposed algorithms are also 

justified. Chapter 4 discusses the experimental results with evaluation criterion and 

dataset used throughout the experiments. The performance of both algorithms, 

LZMF and R-LZMF, are demonstrated separately in this chapter. Chapter 5 

concludes the thesis with some future directions.  
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2.  AN OVERVIEW OF IMAGE MOMENTS  

In this chapter, a brief introduction of image moments is given. Image moments are 

examined based on projected polynomial basis as geometric, complex and orthogonal 

with providing some examples for their applications. Zernike moment, which is a 

special orthogonal moment based on Zernike polynomials, are explained and it's 

shown that how Zernike moments are applied on the image in global and local sense. 

Rotational invariance of Zernike moments is also proved in the end of section.  

2.1 Image Moments 

A moment is a scalar quantity that characterizes a function to capture its significant 

features [18]. In mathematical domain, a moment is defined as a projection of a 

function onto a polynomial basis. For instance, Fourier transform is a projection onto 

a basis of harmonic functions.  

Moments are used for digital images in order to tackle some computer vision 

problems such as character recognition, image reconstruction. By considering an 

image as a piece-wise continuous real function, a general moment 𝑀!" for an image 

function, 𝑓(𝑥,𝑦), of order 𝑟 = 𝑝 + 𝑞, where 𝑝 and 𝑞 are non-negative integers, is 

defined as        

 
𝑀!" = 𝑝!" 𝑥,𝑦 𝑓 𝑥,𝑦 𝑑𝑥𝑑𝑦

  

!

 (2.1) 

Where 𝑝!"(𝑥,𝑦) is a polynomial basis function.  

Moments can be classified based on polynomial basis used for projection as 

geometric, complex and orthogonal and they are examined in following subsections 

in a nutshell.  
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2.1.1 Geometric moments 

A geometric moment is defined on a standard power basis 𝑝!"(𝑥,𝑦) = 𝑥!𝑦! as  

 
𝑚!" = 𝑥!𝑦!𝑓 𝑥,𝑦 𝑑𝑥𝑑𝑦

!

!!

!

!!

 (2.2) 

Geometric moment of order 0 = 0+ 0, 𝑚!!, gives mass of the image. The mass is 

area of the object in binary images. A geometric moment of order 0 is defined as  

 
𝑚!! = 𝑓 𝑥,𝑦 𝑑𝑥𝑑𝑦

!

!!

!

!!

 (2.3) 

Geometric moment of order 1 = 1+ 0 = 0+ 1, 𝑚!" and 𝑚!", represents the center 

of mass of the image and is defined as  

 
𝑚!" = 𝑥   𝑓 𝑥,𝑦 𝑑𝑥𝑑𝑦

!

!!

!

!!

 (2.4) 

 
𝑚!" = 𝑦   𝑓 𝑥,𝑦 𝑑𝑥𝑑𝑦

!

!!

!

!!

 (2.5) 

The coordinates of the center of mass, 𝑥 and 𝑦, are  

 𝑥 =
𝑚!"

𝑚!!
,                    𝑦 =

𝑚!"

𝑚!!
 (2.6) 

In practice, the center of mass is used to represent the position of an image in Field 

of View (FoV) [19].  

2.1.2 Complex moments 

A complex moment, which is projected on the polynomial basis 𝑝!" 𝑥,𝑦 =

(𝑥 + 𝑖𝑦)!(𝑥 − 𝑖𝑦)! where 𝑖 is the imaginary unit, is defined as  

 
𝑐!" = 𝑥 + 𝑖𝑦 ! 𝑥 − 𝑖𝑦 !𝑓 𝑥,𝑦 𝑑𝑥𝑑𝑦

!

!!

!

!!

 (2.7) 
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Where 𝑝 and 𝑞 are non-negative integers and 𝑖 = −1. 

A complex moment of order r is a linear combination of geometric moments of the 

same order and it's expressed as  

 
𝑐!" =

𝑝
𝑘

!

!!!

𝑞
𝑗 (−1)!!!𝑖!!!!!!!𝑚!!!,!!!!!!!

!

!!!

 (2.8) 

Complex moments show rotation-invariant characteristic and are preferred for the 

images where rotational transformations occur. However, they suffer from 

information loss, suppression and redundancy, which shouldn’t exist in a good 

moment invariant [19]. Therefore, complex moment invariants are not used as image 

features.  

2.1.3 Orthogonal moments 

An orthogonal moment is defined on the polynomial basis, 𝑝!"(𝑥,𝑦), whose 

elements satisfy the orthogonality condition as  

 
𝑝!" 𝑥,𝑦 𝑝!" 𝑥,𝑦 𝑑𝑥𝑑𝑦 = 0

  

!

 (2.9) 

For any indexes 𝑝 ≠ 𝑚 or 𝑞 ≠ 𝑛.  

Orthogonal moments yield good image features that are non-redundant and require 

low computing precision. Image reconstruction, which can't be performed by 

geometric moments in spatial domain directly, can be achieved by  

 𝑓 𝑥,𝑦 = 𝑀!"𝑝!"(𝑥,𝑦)
!,!

 (2.10) 

This is an optimal reconstruction because the mean-square error is minimized when 

using only a finite set of moments.  

Orthogonality for orthogonal moments can be provided on rectangle or unit disk. 

Legendre, Chebyshev and Zernike moments are some examples of orthogonal 

moments.  
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2.2 Zernike Moments 

In this section, Zernike moments are examined based on how they're applied on the 

images. First, application of Zernike moments to whole image is shown and then 

projection of local intensity profiles onto Zernike polynomials is considered. Finally, 

rotational invariance of Zernike moments is explained with providing proper method 

to apply on the images.  

2.2.1 Global Zernike moments 

Zernike, in [20], introduced a complete and orthogonal set of complex polynomials, 

which are named as Zernike polynomials, on the unit disk where 𝑥! + 𝑦! ≤ 1. 

Zernike polynomials are defined as  

 𝑉!" 𝑥,𝑦 = 𝑉!" 𝑝,𝜃 = 𝑅!"(𝑝)𝑒!"# (2.11) 

Where 𝑅!"(𝑝) is radial polynomial, 𝑛 is order of polynomial, 𝑚 is number of 

iteration, 𝑝 is length of vector from origin to (𝑥,𝑦) and 𝜃 is angle between 𝑝 and 𝑥-

axis in counter-clockwise direction. There are some constraints on 𝑛 and 𝑚 

parameters such as 𝑛 ≥ 0, 𝑛 − 𝑚 = 𝑒𝑣𝑒𝑛 and 𝑚 ≤ 𝑛. 𝑅!"(𝑝) is defined as  

 

𝑅!" 𝑝 =
−1 !𝑝!!!! 𝑛 − 𝑠 !

𝑠! 𝑛 + 𝑚
2 − 𝑠 ! 𝑛 − 𝑚

2 − 𝑠 !

!! !
!

!!!

 (2.12) 

Visual representations of Zernike polynomials can be examined in Figure 2.1. 

Teague used Zernike polynomials as orthogonal image moments in [21] for a two-

dimensional pattern recognition problem. Given an image function of 𝑓(𝑥,𝑦), a 

Zernike moment of order 𝑛 and repetition 𝑚 is defined as  

 
𝐴!" =

𝑛 + 1
𝜋 𝑓 𝑥,𝑦 𝑉!"∗ 𝑝,𝜃 𝑑𝑥𝑑𝑦

  

!!!!!!!

 (2.13) 

Where * in 𝑉!"∗ (𝑝,𝜃) denotes the complex conjugate. The equation in (2.13) is 

discretized in order to work with digital images of size MxN as  
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𝐴!" =

𝑛 + 1
𝜋 𝑓(𝑖, 𝑗)𝑉∗(𝑝!" ,𝜃!")Δ𝑥!Δ𝑦!

!!!

!!!

!!!

!!!

 (2.14) 

Where 𝑥! ,𝑦! ∈ [−1,1], 𝑝!" = 𝑥!! + 𝑦!!, 𝜃!" = tan!! !!
!!

 and Δ𝑥! = Δ𝑦! = 2/𝑁 2.  

 

Figure 2.1 : Visual representations of Zernike polynomials of order 0 to 5 [23]. 

2.2.2 Local Zernike moments 

As seen from (2.14), a Zernike moment, 𝐴!", is a measurement about intensity 

profile of the whole image. It’s also possible to project the local intensity profiles 

onto Zernike polynomials by fitting the unit circle on pixels of the image. The image 

moments using Zernike polynomials in this way are named as Local Zernike 

Moments or LZM shortly. As proposed in [15], LZMs have potential to expose low-

level image features such as gray-level corner points or step edge points.  

A LZM representation is obtained by convolving the image with moment-based 

operator, 𝑉!"! , that is a 2D convolution filter of size kxk and defined as  

 𝑉!"! 𝑖, 𝑗 = 𝑉!"(𝑝!" ,𝜃!") (2.15) 
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Convolution of the image with 𝑉!"! (𝑖, 𝑗) is formulated as  

 

𝐴!"! 𝑖, 𝑗 = 𝑓(𝑖 − 𝑝, 𝑗 − 𝑞)𝑉!"! (𝑝, 𝑞)

!!!
!

!,!!!!!!!

 (2.16) 

Zernike moments are based on complex Zernike polynomials. Therefore, they are 

constructed as real and imaginary convolutional filters. Imaginary filter is not 

considered when there is no repetition (𝑚 = 0). In this case, real Zernike filter, 

𝑅𝑒(𝑉!"! ), is convolved with the image only and real Zernike moment representation, 

𝑅𝑒(𝐴!"), is taken into account.  

Zernike moments show rotation-invariant characteristic. If an image, 𝑓(𝑥,𝑦), is 

rotated by an angle of 𝛼 w.r.t. 𝑥-axis as 𝑓′(𝑥,𝑦) then relationship between Zernike 

moments of the original and rotated images, 𝐴!" and 𝐴′!", is as follows  

 𝐴′!" = 𝑓! 𝑥,𝑦 𝑉!"∗ 𝑝,𝜃 𝑑𝑥𝑑𝑦 = 𝐴!"𝑒!!"# (2.17) 

As seen from (2.17), although there is a phase shift because of image rotation, the 

magnitude of Zernike moment, 𝐴!" , remains same. Thus, the magnitude of Zernike 

moments can be used to be invariant against image rotations. The magnitude of 

Zernike moment is defined as  

 𝐴!" = [𝑅𝑒(𝐴!")]! + [𝐼𝑚(𝐴!")]! (2.18) 
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3.  ROBUST INTEREST POINT DETECTION 

In this chapter, details of proposed interest point algorithms, LZMF and R-LZMF, 

are explained. First, principles about designing a robust interest point detection 

algorithm are given in a nutshell. Then, LZMF and R-LZMF algorithms are 

explained with their major steps. Some detection results on synthetic and real images 

are also provided in order to prove the capabilities of proposed algorithms. 

3.1 Principles of Robust Interest Point Detector Design 

A robust interest point detector should be invariant to geometric and photometric 

transformations occurred in the images that are taken from same scene under 

different conditions. Scale, rotation and translation changes in the images cause 

geometric transformations whereas change in lighting conditions is an example of 

photometric transformations. An interest point detector should also be robust against 

background clutter and occlusion.  

Invariance against scale changes is usually handled by building image pyramid in 

scale-space. All possible scale levels are sampled by convolving the image with a 

scale-space operator such as Gaussian filter. Thus, all structures represented in 

different scales can be exposed. Gaussian filter is known to be the best scale-space 

operator [3,4].  

Rotational invariance is a characteristic of interest point operator in general. Zernike 

moments, for instance, have a property of rotational symmetry that makes them 

invariant against rotations. Harris corner detector is an operator that shows rotational 

invariance.  

Locality is a key characteristic that gives robustness to translational changes, 

background clutter and occlusion. Local features in the image move together in case 

of translation. Hence, information around a local feature never changes and this 

makes local feature based interest point detector translation-invariant. Local features 
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also eliminate the effect of background clutter and occlusion because local regions 

have small sizes in the image [6].  

The change in lighting is encountered frequently in the images. A general approach 

is to normalize the image in order to decrease the effect of lighting changes to the 

minimum. In this way, the range of pixel values is fitted to some intervals so that 

large variations because of changes in lighting may be eliminated. The normalization 

can be local in the image patch or global for the whole image.  

3.2 Proposed Interest Point Detection Algorithms: LZMF and R-LZMF 

In this section, proposed interest point detection algorithms, LZMF and R-LZMF, are 

explained in details. LZMF algorithm steps are briefly as follows. The input image is 

first converted to the gray-scale image if not. Then, the gray-scaled image is globally 

normalized by 𝐿! normalization. Before corner detection, the local image patch, 

where corner detector is applied on, is normalized by fitting to standard normal 

distribution. 𝐴!"  and !!"
!!"

 response maps are obtained by convolving the image 

with 𝑅𝑒(𝑉!"! ) and 𝐼𝑚(𝑉!"! ) and 𝑅𝑒(𝑉!"! ). Both 𝐴!"  and !!"
!!"

 response maps are 

thresholded by different global threshold values and the image pixels, which pass 

thresholding tests, are considered as candidate corner points. Non Maximum 

Suppression (NMS) is applied on candidate corner points in spatial-space as 2D for 

thinning interest point detection density. Resulting interest points are the output of 

LZMF.  

The procedure for R-LZMF algorithm is briefly as follows. An image pyramid is 

built in scale-space by using Gaussian filter. LZMF is applied on each scale layer of 

the image pyramid in order to detect candidate interest points. Each candidate 

interest point is analyzed based on cornerness in scale-space for 3D Non Maximum 

Suppression (3D-NMS). Resulting interest points are the output of R-LZMF.  

3.2.1 Normalization 

The input image must be gray-scale in order to apply normalization procedure, 

therefore, multi-channel images must be converted to single-channel. Working with 

gray-scale image is efficient because single-channel has enough information for 
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interest point detection and search-space for interest points is greatly reduced in this 

way.  

There are two normalization steps for gray-scale input image. One is global and 

applied to the whole image, second is local and applied in the unit circle where 

Zernike filter is operated for convolution. The reason of applying such normalization 

procedures is to make proposed interest point detectors more robust against effect of 

outliers in the image.  

𝐿! normalization is applied to the whole image as first normalization step in order to 

reduce effect of changing lighting conditions in the image. In this normalization, 

each pixel is divided by sum of squared root of pixel intensity values to fit its value 

in range of 0 and 1. This normalization is formulated for image 𝑓(𝑥,𝑦) with size of 

MxN as below  

 
𝑓 𝑥,𝑦 !! =

𝑓 𝑥,𝑦

𝑓 𝑖, 𝑗 !!!!
!!!

!!!
!!!

 (3.1) 

In Figure 3.5 (a) and (b), the result of applying such normalization is shown. As seen 

from Figure 3.5 (b), applying 𝐿! normalization sweeps noisy detections out. The 

number of interest points also reduces from 45 to 26 as seen from Figure 3.5 (a) to 

(b) without missing any true corner points. Similarly, in Figure 3.6 (a) and (b), 

applying 𝐿! normalization reduces the number of keypoints from 77 to 43 with 

discarding noisy interest points. 

Before convolving the image with a Zernike filter, a second normalization step is 

locally applied to the regions where unit circle of the filter is fitted. Pixel intensity 

values falling in unit circle of Zernike filter are subtracted from mean and divided by 

standard deviation. Thus, local intensity profile in unit circle is fitted to standard 

normal distribution with 𝜇 = 0 and 𝜎 = 1. Here, mean and standard deviation are the 

statistics of local intensity profile falling in unit circle. This approach is similar to 

normalization in Normalized Cross-Correlation (NCC) and makes proposed interest 

point detectors more robust to local intensity variations.  
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3.2.2 Corner detection 

Corners and blobs are good structures to be interesting points in the image 

[1,4,5,6,8,9,10,13]. By following this fact, proposed interest point detection 

algorithms were designed to be corner based and local Zernike moments were used 

for corner detection phase.  

Ghosal et al., in [15], used 𝐴!!  to measure cornerness. However, 𝐴!!  is a Zernike 

moment that responds to the edge points closer to the true corner points as well. 

Therefore, these nearby edge points should be suppressed in order to respond to true 

corners only. In [15], this problem was tackled by evaluating !!!
!!"

. According to 

Ghosal, !!!
!!"

 approaches one at nearby edge points whereas it reaches high values for 

true corner points. Briefly, a point in interest is considered as a true corner point if 

both 𝐴!!  and !!!
!!"

 have high responses for that point. The corner detection model 

of Ghosal was first applied for LZMF. However, this model didn't yield expected 

results with test images in terms of repeatability criterion. For test images, it had 

repeatability scores of around 50% at most. Therefore, different orders of Zernike 

moments were investigated for cornerness and suppression of nearby edge points. 

This was concluded with using similar but more complex Zernike moments, 𝐴!"  

and 𝐴!" . These Zernike moments had superior repeatability performance on test 

images as will be discussed in Chapter 4. Visual representations of Zernike moments 

of 𝐴!" (top-left), 𝐴!! (top-right), 𝐴!" (bottom-left) and 𝐴!" (bottom-right) can be 

examined in Figure 3.1. As seen from Figure 3.1, Zernike moment of 𝐴!" looks like 

a corner, which is considered as an intersection of two edges, and using 𝐴!" for 

convolution, which searches for maximum similarity of local region with applied 

filter, exposes regions that are similar to corner. Symmetrical and rotational 

invariance properties of 𝐴!" make it possible to detect every case of edge 

intersections in image plane.  

 

Figure 3.1 : Zernike moments used for corner detection [23]. 
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Theoretical explanation of why 𝐴!" works for corner detection is as follows. Zernike 

polynomial of 𝑉!" in Cartesian coordinate system is defined as  

 𝑉!" 𝑥,𝑦 = 10(4𝑥! − 4𝑦! − 3𝑥! + 3𝑦!) (3.2) 

The equation in (3.2) can be rewritten with ignoring constant factor 10 as  

𝑉!" 𝑥,𝑦 = 4𝑥! − 4𝑦! − 3𝑥! + 3𝑦! 

                                                      = 4 𝑥! − 𝑦! − 3 𝑥! − 𝑦!  

                                                      = 4 𝑥! − 𝑦! 𝑥! + 𝑦! − 3(𝑥! − 𝑦!) 

= (𝑥! − 𝑦!)(4𝑥! + 4𝑦! − 3)                           (3.3) 

By converting Cartesian coordinates, x and y, to polar coordinates with 𝑥 = 𝜌 cos𝜃 

and 𝑦 = 𝜌 sin𝜃, (3.3) is rewritten as  

𝑉!" 𝜌,𝜃 = (𝜌! cos! 𝜃 − 𝜌! sin! 𝜃)(4𝜌! cos! 𝜃 + 4𝜌! sin! 𝜃 − 3) 

                               = 𝜌! cos! 𝜃 − sin! 𝜃 4𝜌! cos! 𝜃 + sin! 𝜃 − 3  

                               = 𝜌! cos 2𝜃 (4𝜌! − 3) 

= (4𝜌! − 3𝜌!) cos 2𝜃                                                              (3.4) 

As in [15], intensity profile of a corner projected onto a unit circle is defined by a 

Zernike moment after the corner profile is rotated by a degree of –𝜙 in order to align 

the bisector of the corner with the x-axis. This operation can be examined in Figure 

3.2 (a) and (b).  

 
(a)                                                               (b) 

Figure 3.2 : Gray-level corner models fitting onto the unit circle [15]. 
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Relationship between original and rotated corner functions, 𝑓(𝑥,𝑦) and 𝑓!(𝑥,𝑦), 

over their projections onto Zernike moments with order of 4 and repetition of 2, 𝐴!" 

and 𝐴!"! , is defined as  

          𝐴!"! = 𝐴!"𝑒!!!"  

 
= 4𝑥! − 4𝑦! − 3𝑥! + 3𝑦! 𝑓! 𝑥,𝑦   𝑑𝑦  𝑑𝑥

  

!!!!!!!

 (3.5) 

The equation (3.5) defined in Cartesian coordinate system is rewritten in polar 

coordinate system by using (3.4) as   

𝐴!"! = 𝑏 (4𝜌! − 3𝜌!) cos 2𝜃 𝜌  𝑑𝜌  𝑑𝜃
!

!!!

+ ℎ (4𝜌! − 3𝜌!) cos 2𝜃 𝜌  𝑑𝜌  𝑑𝜃
!

!!!

!

!!!!

!!

!!!

 

                          = 𝑏 −
1
12
cos 2𝜃  𝑑𝜃 + ℎ −

1
12
cos 2𝜃  𝑑𝜃

!

!!!!

!!

!!!

 

                          = 0 + ℎ
− sin 2Θ + sin−2Θ

24
 

= −ℎ !"# !!
!"

                                                                                                               (3.6) 

Where 𝑏 and ℎ are the intensities of the outside and inside of the corner respectively, 

see Figure 3.2.  

Based on (3.6), the magnitude of 𝐴!"! , 𝐴!"! , has a low response where flat regions 

occur (h is small) and edge points exist (Θ = 90!) in the image as similar to corner 

model of Ghosal et al. [15]. Therefore, 𝐴!"! = 𝐴!"  is suitable for representing 

cornerness.  

Zernike moment with order 4 and repetition 2, 𝐴!", is based on Zernike polynomial 

of 𝑉!"(𝑥,𝑦) defined as  

 𝑉!" 𝑥,𝑦 = 𝑉!" 𝑝,𝜃 = 𝑅!"(𝑝)𝑒!!" (3.7) 
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Where 𝑅!"(𝜌) is derived as  

𝑅!" 𝑝 =
−1 !𝑝!!!! 4− 𝑠 !
𝑠! 3− 𝑠 ! 1− 𝑠 !

!

!!!

  

                            =
−1 !𝑝!4!
0! 3! 1! +

−1 !𝑝!3!
1! 2! 0!   

                            = 4𝑝! − 3𝑝!           (3.8) 

By substituting (3.8) in (3.7), Zernike moment filter, 𝑉!"! (𝑖, 𝑗), can be defined as  

𝑉!"! 𝑖, 𝑗 = 𝑉!" 𝑝!" ,𝜃!"   

                                = 4𝑝! − 3𝑝! 𝑒!!"   

                                = 4𝑝!𝑒!!" − 3𝑝!𝑒!!"    (3.9) 

Zernike moment 𝐴!" is constructed as real and imaginary filters, 𝑅𝑒(𝑉!"! ) and 

𝐼𝑚(𝑉!"! ), because repetition is not zero (𝑚 ≠ 0).  

Zernike polynomial for Zernike moment with order 4 and repetition 0, 𝑉!"(𝑥,𝑦), is 

defined as  

 𝑉!" 𝑥,𝑦 = 𝑉!" 𝑝,𝜃 = 𝑅!"(𝑝) (3.10) 

Where 𝑅!"(𝜌) is formulated as  

𝑅!" 𝑝 =
−1 !𝑝!!!! 4− 𝑠 !
𝑠! 2− 𝑠 ! 2− 𝑠 !

!

!!!

  

                            =
−1 !𝑝!4!
0! 2! 2! +

−1 !𝑝!3!
1! 1! 1! +

−1 !𝑝!2!
2! 0! 0!   

                            = 6𝑝! − 6𝑝! + 1         (3.11) 

Zernike moment filter, 𝑉!"! (𝑖, 𝑗) is then defined by substituting (3.11) in (3.10) as  

𝑉!"! 𝑖, 𝑗 = 𝑉!" 𝑝!" ,𝜃!"   

                              = 6𝑝! − 6𝑝! + 1 𝑒!!"   

                                = 6𝑝! − 6𝑝! + 1       (3.12) 

Repetition of Zernike moment 𝐴!" is zero (𝑚 = 0) and hence real filter, 𝑅𝑒(𝑉!"! ), is 

the only convolution filter to be considered.  

LZMF algorithm uses 𝐴!"  to measure cornerness of each pixel in the image. The 

real and imaginary Zernike filters, 𝑅𝑒(𝑉!"! ) and 𝐼𝑚(𝑉!"! ), are convolved with the 
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image in order to get 𝑅𝑒(𝐴!") and 𝐼𝑚(𝐴!") representations. These representations 

are used to get the magnitude of 𝐴!", 𝐴!" , as follows  

 𝐴!" = [𝑅𝑒(𝐴!")]! + [𝐼𝑚(𝐴!")]! (3.13) 

A global threshold, which is named as "corner threshold", 𝑡!, is applied to 𝐴!"  

response map in order to detect candidate corner points. The pixels whose 𝐴!"  

value is higher than the "corner threshold" are considered as candidate corner points 

and the rest is discarded.  

𝐴!"  response map may have high responses where edge points, which are closer to 

true corner points, exist. These nearby edge points are suppressed by dividing the 

magnitude of 𝐴!"  to 𝐴!"  as !!"
!!"

. The real Zernike filter, 𝑅𝑒(𝑉!"! ), is convolved 

with the image in order to get 𝑅𝑒(𝐴!") representation. As a note, there is no 

imaginary representation for 𝐴!" as 𝐼𝑚(𝐴!") because repetition is zero (𝑚 = 0). The 

magnitude of 𝐴!", 𝐴!" , is obtained by  

 𝐴!" = [𝑅𝑒(𝐴!")]! (3.14) 

!!"
!!"

 response map is thresholded by a second global threshold, which is named as 

"nearby edge threshold", 𝑡!, in order to suppress nearby edge points. The candidate 

corner points whose !!"
!!"

 is higher than the "nearby edge threshold" are retained and 

the rest is eliminated.  

LZMF algorithm was tested with synthetic and real images for corner detection. In 

Figure 3.3 (a) and (b), it's seen that the corners of synthetic corner image and its 

rotated version by a degree of 30 were successfully detected. Detected corner points 

are indicated as red circles.   

 
(a)                 (b) 

Figure 3.3 : Detection results of LZMF with synthetic corner images. 
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In Figure 3.4 (a), (b) and (c), it's shown that corners on the checkerboard and its two 

rotated versions by degrees of 40 and 70 were detected respectively. As seen from 

Figure 3.4, all corner points on the checkerboards are detected by LZMF although 

it’s rotated by degrees of 40 and 70. Detections are indicated as red circles on all 

three checkerboards.  

 
(a)    (b)    (c) 

Figure 3.4 : Detection results of LZMF with checkerboard images. 

Some detection results for LZMF on real images can be examined in Figure 3.5 and 

Figure 3.6. Detection rate for floor image in Figure 3.5 is 12/12=1 (100%) whereas 

wall image in Figure 3.6 has a detection rate of 15/18=0.83 (83%).  

   
(a)          (b)                   (c) 

Figure 3.5 : Detection results of LZMF with real floor images. 

3.2.3 Non maximum suppression 

Candidate corner points detected by Zernike filters, 𝑉!"!  and 𝑉!"! , usually appear at 

true corner points and their neighborhood in the image. The reason of such clustering 
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is that 𝑉!"!  and 𝑉!"!  have high response around corner points. In Figure 3.5 and Figure 

3.6, this effect can be seen by looking at density of detections around true corners.  

Density of detected interest points to be high around true corner points is not an 

expected situation. For a robust interest point detection algorithm, it’s expected that 

interest points representing true corner point should be retained and the rest should 

be discarded. In other words, those detected points having maximum cornerness in a 

local neighborhood should be taken into account only. For proposed interest point 

detection algorithms, the cornerness criterion is the response of 𝑉!"! . This thinning 

procedure is named as Non Maximum Suppression (NMS) and, in this way, more 

accurate interest points are retained and weak ones are discarded.  

Nearby interest points detected in spatial-space by 𝑉!"!  and 𝑉!"!  are swept out with 

NMS as follows for each candidate interest point: i) a 5x5 window is centralized on 

each candidate interest point, ii) the candidate interest point is compared with other 

candidate interest points detected in 5x5 local neighborhood based on cornerness 

value, 𝑉!"! , iii) the candidate interest point is retained if its 𝑉!"!  response is the 

maximum or discarded otherwise.  

The result of applying 5x5 window for NMS is shown in Figure 3.5 (c) and Figure 

3.6 (c). As seen from Figure 3.5 (b) and (c), the number of interest points reduces 

from 26 to 18. Similarly in Figure 3.6 (b) and (c), this number reduces from 43 to 24. 

The keypoint number can also be further reduced to exact number of true corner 

points, 12, by using larger windows such as 7x7 or 9x9. However, this would 

increase the computation time because of more comparison in the window.  

   
(a)         (b)    (c) 

Figure 3.6 : Detection results of LZMF with real wall images. 
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3.2.4 Scale-space 

Scale-space representation exposes a signal in different scale levels in order to show 

how signal behavior changes from fine scales to coarse scales. In image domain, this 

is important when the structures in different scales exist in the image and they still 

need to be detected without considering in which scale they are. For instance, a table 

can be in different sizes in different images taken from same scene with varying 

scales. The corners of this table would not be detected in most of the images by a 

corner detector like Harris because of its lack of invariance against scale. As seen 

from Figure 3.7, the reason of missing corner points for Harris detector is that 

shifting window can’t determine high change in both x and y axes (𝜆!, 𝜆!) for a 

corner point much bigger than it. The solution to this is to sample a given image in 

different scales so that the corner operator have chance to respond the structure well. 

This kind of sampling images in different resolution levels is named as scale-space 

representation.  

 

Figure 3.7 : Shifting window of Harris corner detector on the corners [22]. 
 

In scale-space, the input image is repeatedly convolved with Gaussian filters of 

scales differing by a constant factor for blurring and each blurred image constitutes a 

scale level, 𝐿(𝑥,𝑦). As mentioned earlier, Gaussian filter is the only filter that can be 

used as scale-space operator [3,4]. Here, the blurring effect is to suppress fine details 

and expose coarse details. For instance, in a given image containing a car and a key, 

blurring the image continuously with Gaussian filter would suppress the structures 

related with the key object, which was exposed earlier, and expose the structures of 

the car object. A scale level 𝐿(𝑥,𝑦) for an image 𝑓(𝑥,𝑦) is defined as  

 𝐿 𝑥,𝑦 = 𝐺 𝑥,𝑦,𝜎 ∗ 𝑓(𝑥,𝑦) (3.15) 
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𝐺(𝑥,𝑦,𝜎) is 2D Gaussian function with standard deviation of 𝜎, which refers to scale 

size, and defined as  

 𝐺 𝑥,𝑦,𝜎 =
1

2𝜋𝜎! 𝑒
!(!!!!!) !!! (3.16) 

Scale-space representation for R-LZMF is divided into octaves for efficient 

computation. An octave is a stack of scale levels/layers, 𝐿(𝑥,𝑦), with same 

resolution and 𝜎 for each scale layer is a constant factor of previous scale layer's 𝜎 in 

that octave. An image in one octave is a sub-sampled version of an image in previous 

octave. When 𝜎 in current octave is doubled, the image convolved with Gaussian 

filter of this 𝜎 is halved (sub-sampled) and used as first scale layer of next octave. 

Here, sub-sampling is the key factor for computational gain.  

In R-LZMF, candidate interest points detected in the images (scale layers) of each 

octave are analyzed to eliminate weak ones, which have low cornerness, and to 

figure out characteristic scales of strong ones, which have maximum cornerness. 

Characteristic scale is the scale level where an interest point attains to local 

extremum (minimum or maximum according to the type of interest point operator) in 

scale-space. This is the moment where interest point exhibits the most interesting 

characteristic (cornerness, blobness etc.) in scale-space. A description extracted from 

the interest point with characteristic scale size would be independent of interest 

points detected at same relative location in different scaled images. In other words, 

the information, which the description of one interest point contains, would always 

be same for that interest point detected in images with different resolution.  

Interest points detected in each octave is analyzed in scale-space as follows: Detected 

interest point in one scale layer of the octave is compared with other points in its 2D 

and 3D local neighborhood in terms of distinctiveness such as corner or blob 

response. Here, 2D local neighborhood refers to points around the point in interest in 

current scale layer and 3D local neighborhood refers to points around the point in 

interest relatively in lower and upper scale layers. If its distinctiveness is the 

extremum in both 2D and 3D local neighborhood then it's considered as an 

interesting point, otherwise it's discarded. This is a NMS approach in 3D actually and 

named as 3D Non Maximum Suppression (3D-NMS).  
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3D-NMS is applied to each octave in R-LZMF in a slightly different way. First, 

LZMF is applied on all image layers in the octave in order to detect candidate 

interest points in spatial-space (2D). As a note, extremum check in 2D is already 

realized by LZMF and there is no need to consider it again. For outermost scale 

layers, candidate interest points are directly retained without any scale-space 

analysis. For inner scale layers of the octave, a candidate interest point is compared 

with interest points in lower and upper scale layers based on 𝑉!"! . This comparison 

again falls in 5x5 neighborhood of the point in interest for the adjacent scale layers. 

If 𝑉!"!  response of the interest point is the maximum among all interest points 

detected in local neighborhood of lower and upper scale layers then the candidate 

interest point is retained as real interest point and scale of layer in which the interest 

point resides on is considered as characteristic scale, otherwise the point in interest is 

discarded.  

In Figure 3.8 (a), (b) and (c), the results of applying R-LZMF on checkerboard 

images are shown. As seen from Figure 3.8, all corner points in the original and 

scaled versions of checkerboard images with scale factors of 2 and 4 are successfully 

detected by R-LZMF and indicated as red circles. For the sake of visibility for 

detected corner points, scaled images are enlarged.  

 
(a)     (b)        (c) 

Figure 3.8 : Detection results of R-LZMF with checkerboard images. 

3.2.5 Parameter settings 

R-LZMF can be considered as a combination of LZMF and scale-space 

representation. Therefore, parameter settings of proposed interest point detectors can 

be examined as configurations of LZMF and scale-space separately and these 

settings are used throughout the experiments discussed in Chapter 4.  



28 
 

LZMF uses LZM representations, 𝐴!" and 𝐴!", as convolutional filters, 𝑉!"!  and 𝑉!"! , 

respectively. In the experiments, the optimal results were obtained by using 

convolution filters of size 9 (𝑘) so that Zernike filters of size 9x9, 𝑉!"!  and 𝑉!"! , are 

used during convolution operations. Threshold values for corner detection were 

evaluated empirically by trying a wide range of values and determined as 0.51 for 

"corner threshold" (𝑡!) and 5 for "nearby edge threshold" (𝑡!). Window size for NMS 

in spatial-space (𝑤!!) was determined as 5x5 by considering computation time. 

Here, there is a trade-off between interest point localization accuracy and 

computation efficiency, the window size should be chosen in a balance between 

these factors. A windows size of 5x5 was optimal throughout the experiments.  

Scale-space is built based on four parameters and these are number of scale levels in 

one octave (𝑙), number of octaves in scale-space (𝑜), initial standard deviation for 

first scale level of the first octave (𝑠!) and window size for 3D-NMS (𝑤!!). These 

parameters should be fine-tuned in order to have a full coverage in scale-space. 

Belledonnes image from the Inria Dataset [17] was used to figure out the optimal 

parameters for R-LZMF and repeatability criterion was considered for fine-tuning. 

First, by assuming 𝑜 = 3 and 𝑠! = 1.7, number of scale levels was determined and 

the best result was obtained by using two scale levels as seen in Figure 3.9 (a). In this 

case, however, 3D NMS is not applied because outermost scale layers are the only 

scale layers to be used. Second, by using optimal 𝑙 (𝑙 = 2) and assuming 𝑠! = 1.7, 

optimum number of octaves was searched and, as seen in Figure 3.9 (b), working 

with four octaves had the best performance. As noted in Figure 3.9 (b), using more 

than 4 octaves doesn't increase the performance. Finally, by using optimal 𝑙 (𝑙 = 2) 

and 𝑜 (𝑜 = 4), 𝑠! was determined. Although the best performance was obtained with 

𝑠! of 1.6 as seen in Figure 3.9 (c), 𝑠! of 1.8 had better performance throughout the 

experiments.  

Parameter configuration, which is used throughout the experiments, for both LZMF 

and scale-space is summarized in Table 3.1.  
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(a)       (b) 

 
(c) 

Figure 3.9 : Parameter evaluation for scale-space based on average repeatability. 

 

Table 3.1 : Parameter settings for LZMF and R-LZMF. 

Parameter Value Definition 
𝑘 9 Zernike filter size 
𝑡! 0.51 Corner threshold 
𝑡! 5 Nearby edge threshold 
𝑤!! 5 Window size of 2D-NMS 
𝑤!! 5 Window size of 3D-NMS 
𝑜 4 Number of octave 
𝑙 2 Number of scale level 
𝑠! 1.8 Initial standard deviation 
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4.  EXPERIMENTAL RESULTS 

In this chapter, performance evaluation of proposed interest point detection 

algorithms, LZMF and R-LZMF, is discussed. First, repeatability score, which is the 

main criterion to evaluate the performance of interest point detectors, is explained. 

Then, the Inria Dataset, which is used throughout the experiments, is presented. 

Finally, experimental results in terms of repeatability are explained by comparing 

LZMF and R-LZMF with well-known interest point detectors such as Harris, SIFT 

and SURF and the superiority of the proposed algorithms is highlighted.  

4.1 Evaluation Criteria 

The detector performance is evaluated using the repeatability score proposed in [7]. 

The repeatability is a measurement of the point correspondence between two images 

that are transformed (scaled, rotated or translated) forms of each other. The 

repeatability shows the stability of detector and it's key factor when comparing the 

performance of detectors. A robust interest point detector is expected to detect the 

most of the same structures in images even they are scaled, rotated or translated 

versions of each other. In other words, a robust interest point detector should have 

high repeatability scores in challenging datasets.  

The repeatability score is evaluated by dividing the number of corresponding interest 

points detected in two images, which are taken from same scene under different 

conditions, to the minimum number of detected interest points. This score is 

formulated as  

 
𝑟!" =

𝐶(𝑓!, 𝑓!)
min  (𝑚!,𝑚!)

 (4.1) 

Where 𝑚! and 𝑚! are numbers of interest points detected in images 𝑓! and 𝑓! 

respectively, and 𝐶(𝑓!, 𝑓!) is number of corresponding matches between images 𝑓! 

and 𝑓!.  
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One other criterion for evaluating interest point detector performance is the number 

of detected interest points. Lowe, in [24], emphasizes the importance of number of 

interest points detected in scenes where the objects are occluded, background clutter 

exists or the object in interest is too small. There should be many but distinctive 

interest points detected by interest point detector in order to tackle such problems. If 

an interest point detector generates many distinctive interest points then the chance 

of detecting objects in interest increases.  

4.2 Dataset 

The experiments for evaluating the performance of proposed interest point detection 

algorithms, LZMF and R-LZMF, were conducted on the Inria Dataset [17]. 

"Rotation" sequence of the Inria Dataset was used for testing rotation-invariant 

LZMF whereas "Zoom" and "Zoom&Rotation" sequences of the Inria Dataset were 

used in order to evaluate repeatability of scale, rotation and translation-invariant R-

LZMF. Each sequence contains some image sets and each image set comes with an 

image and its transformed versions. In each image set, there are also homography 

matrices representing the transformations between the original image and its 

transformed forms.  

"Rotation" sequence has four image sets named as Marseil, Monet, NewYork and 

VanGogh. Marseil image set has 18 images with size of 842x842. Monet image set 

has similarly 18 images with size of 842x842. NewYork image set has 35 images and 

size of each one is 512x512. VanGogh image set has 17 images with size of 

512x348. Rotation information in image sets of "Rotation" sequence, however, is not 

provided so that the images are indexed by integer numbers on the x-axis of 

repeatability plots instead of rotation angles. "Rotation" sequence is summarized in 

Table 4.1.  

Table 4.1 : Image sets in “Rotation” sequence. 

Image Set Number of Images Resolution 
Marseil 18 842x842 
Monet 18 842x842 

NewYork 35 512x512 
VanGogh 17 512x348 
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"Zoom" sequence has six image sets named as Belledonnes, Asterix, Crolles, Bip, 

VanGogh and Laptop. Asterix, Crolles and VanGogh were the only image sets used 

from this sequence throughout the experiments. Asterix image set has 17 images with 

size of 512x348. Crolles image set comes with 10 images whose sizes are 760x555. 

VanGogh image set has 17 images and each image has a size of 512x348. This 

sequence is to test scale-invariance but doesn't contain scale information about scaled 

transformations. Table 4.2 can be examined to have information about "Zoom" 

sequence.  

Table 4.2 : Image sets in “Zoom” sequence. 

Image Set Number of Images Resolution 
Asterix 17 512x348 
Crolles 10 760x555 

VanGogh 17 512x348 

"Zoom&Rotation" sequence has nine image sets named as Boat, East_park, 

East_south, Inria, Inria_model, Resid, UBC, Laptop and Ensimag. East_park, Laptop 

and Resid were considered for performance evaluation. East_park image set has 11 

images with size of 850x680. Laptop image set has 13 images with size of 760x574. 

Resid image set contains 11 images whose sizes are 850x680. This sequence is used 

to evaluate detector performance against scale and rotation invariance but doesn't 

contain scale or rotation information about images. Table 4.3 contains information 

about "Zoom&Rotation" sequence.  

Table 4.3 : Image sets in “Zoom&Rotation” sequence. 

Image Set Number of Images Resolution 
East_park 11 850x680 

Laptop 13 760x574 
Resid 11 850x680 

4.3 Results 

LZMF detector was tested on Marseil, Monet, NewYork and VanGogh image sets of 

"Rotation" sequence by comparing its repeatability scores with well-known interest 

point detectors such as Harris, SIFT, SURF, CenSurE (STAR) and BRISK. OpenCV 

v2.4.8 was used to work with these interest point detectors and default parameter 

settings were applied. Detection results for Marseil, Monet, NewYork and VanGogh 

image sets are compared in Figure 4.1 (a), (b), (c) and (d) respectively.  
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(a)       (b) 

 
(c)       (d) 

Figure 4.1 : Performance comparison of LZMF with other detectors. 

LZMF shows the best performance with Marseil image set and outperforms all other 

detectors. It hits 90% of repeatability. In Monet image set, LZMF is passed by Harris 

but outperforms all other detectors. In NewYork image set, LZMF again performs as 

the second best detector and is only passed by Harris. In VanGogh image set, LZMF 

competes with Harris and it still outperforms all other detectors. Here, it never 

decreases below than 80% of repeatability. Average repeatabilities of LZMF and 

other detectors for Marseil, Monet, NewYork and VanGogh image sets can be 

examined in Figure 4.2 (a), (b), (c) and (d) respectively. 
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(a)      (b) 

 
(c)      (d) 

Figure 4.2 : Average repeatabilities of LZMF and other detectors. 

LZMF detects large number of distinctive interest points and thus increases the 

chance of detecting objects in interest. For Marseil image set, it detects about 3000 

keypoints. For Monet image set, this number decreases to about 500 because the 

scene has so much flat regions such as sky and frame. The number of detection for 

NewYork image set is about 1300 and the detection rate is about 1000 for VanGogh 

image set. In Table 4.4, the number of keypoints detected by interest point detectors 

in comparison is shown. Some detection results on images in Monet set can be 

examined in Figure 4.3. As a note, detected interest points are indicated as red circles 

for the images in Figure 4.3. 

Table 4.4 : Numbers of keypoints detected by LZMF and others in Marseil set. 

Detector #kp in Base 
Image 

#kp in Transformed 
image 

Correspondence 

LZMF 2915 2888 2573 
SIFT 6130 5991 4487 
SURF 4635 4446 3644 
Harris 1000 1000 852 

CenSurE 1386 1326 1142 
BRISK 1514 1429 894 

 



36 
 

     
 

     
 

     

Figure 4.3 : Some detection results of LZMF on Monet image set. 
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The performance of R-LZMF detector was evaluated on Asterix, Crolles and 

VanGogh image sets from "Zoom" sequence and East_park, Laptop and Resid image 

sets from "Zoom&Rotation" sequence. R-LZMF was compared to SIFT, SURF, 

CenSurE (STAR), BRISK and ORB by using OpenCV v2.4.8 with default parameter 

settings again. Detection results for Asterix, Crolles, VanGogh, East_park, Laptop 

and Resid are shown in Figure 4.4 (a), (b), (c), (d), (e) and (f) respectively.  

 
(a)       (b) 

 
(c)       (d) 

 
(e)       (f) 

Figure 4.4 : Performance comparison of R-LZMF with other detectors. 
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R-LZMF outperforms all other detectors for all image sets as seen from Figure 4.4. 

This can also be seen from the bar charts in Figure 4.5 (a), (b), (c), (d), (e) and (f) for 

Asterix, Crolles, VanGogh, East_park, Laptop and Resid respectively.  

 
(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

Figure 4.5 : Average repeatabilities of R-LZMF and other detectors. 

The numbers of detected interest points by R-LZMF and other detectors are shown in 

Table 4.5. As seen from Table 4.5, R-LZMF generates enough number of interest 

points for Asterix set and R-LZMF's keypoints are more repeatable although they're 

fewer than the numbers of interest points detected by SIFT and SURF. In Figure 4.6 

and Figure 4.7, some detection results on Crolles and Laptop image sets can be 

examined as red circles.  
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Table 4.5 : Numbers of keypoints detected by R-LZMF and others in Asterix set. 

Detector #kp in Base 
Image 

#kp in Transformed 
image 

Correspondence 

R-LZMF 361 370 322 
SIFT 603 601 457 
SURF 643 650 552 
STAR 251 258 226 
BRISK 259 263 183 
ORB 500 500 451 

 

     
 

     
 

     

Figure 4.6 : Some detection results of R-LZMF on Crolles image set. 
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Figure 4.7 : Some detection results of R-LZMF on Laptop image set. 
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5.  CONCLUSIONS AND FUTURE WORK 

In this chapter, the thesis is concluded by summarizing the research conducted in 

order to design robust interest point detection methods and highlighting experimental 

results of proposed interest point detection algorithms. Future directions are also 

discussed in order to improve and extend proposed algorithms.  

5.1 Conclusions 

In this thesis, two novel interest point detection algorithms, Local Zernike Moment 

based Features (LZMF) and Robust Local Zernike Moment based Features (R-

LZMF), are proposed by focusing on image matching problem that is widely 

considered in computer vision applications such as object recognition, stereo vision 

and motion tracking. Proposed interest point detection algorithms realize corner-

based detections in order to detect interesting structures in images and apply some 

other mechanisms before and after corner detection such as global/local 

normalization and non-maximum suppression. An image pyramid is also constructed 

in order to sample the image in scale-space and expose the structures in different 

scales.  

Robust interest point detection is very important when dealing with image matching 

problem in computer vision. Corresponding points should be detected as much as 

possible with minimum missing rate in order to be successful in further processing. 

In practice, because of geometric and photometric transformations occurred in the 

images taken from same scene under different conditions, detection of such 

corresponding points with high rates is not easy. At this point, robustness of interest 

point detector against these transformations comes into play. An interest point, which 

handles such transformations with special mechanisms, increases the chance of 

detecting interesting points as much as possible and thus contributes to the problem 

in interest significantly.  
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Proposed rotation and translation-invariant interest point detection algorithm, LZMF, 

utilizes from discriminative power of Zernike moments and searches for corners with 

these moments in the image. Proposed scale, rotation and translation-invariant 

interest point detection algorithm, R-LZMF, uses LZMF in order to detect keypoints 

in spatial-space and analyzes these points in scale-space for determining 

characteristic scales. Interest points detected by R-LZMF are local features that can 

be further described in size of characteristic scale. Description of the detected interest 

points, however, is out of scope in this thesis and will be further examined in details. 

LZMF and R-LZMF interest point detection algorithms are the main contributions of 

this thesis.  

The repeatability performance, which is the main criterion for evaluating interest 

point detectors, of proposed algorithms shows their superiority on keypoint 

detection. On the Inria Dataset, LZMF outperforms SIFT, SURF, CenSurE and 

BRISK, and it also competes with Harris whereas R-LZMF outperforms SIFT, 

SURF, CenSurE, BRISK and ORB in every case based on repeatability. The 

numbers of interest points detected by LZMF and R-LZMF are also well enough in 

order to tackle background clutter and occlusion problems.  

5.2 Future Work 

The repeatability performance of R-LZMF interest point detection algorithm should 

be analyzed for affine transformation as well in order to say that it's affine-invariant. 

Theoretically, R-LZMF should be partially affine-invariant because it's invariant to 

scale, rotation and translation, and an affine transformation is combination of these 

transformations. However, this fact should be verified by evaluating repeatability 

performance of R-LZMF with affine specific datasets.  

Proposed interest point detection algorithms, LZMF and R-LZMF, have 

computational load especially during getting Zernike moment representations. As a 

result of this, LZMF and R-LZMF are not as fast as SIFT and SURF. Quantized 

Zernike moments can be applied in local sense to boost the detection performance in 

speed. LZMF and R-LZMF algorithms can also be parallelized in specific Graphics 

Processing Unit (GPU) platforms such as Compute Unified Device Architecture 

(CUDA).  
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LZMF and R-LZMF algorithms can also be extended to have a descriptor so that 

they present a complete schema, which has both detector and descriptor, as in SIFT 

and SURF. For description, the descriptive power of local Zernike moment 

representation can be utilized or some well-known descriptors such as Histogram of 

Oriented Gradients (HoG) can be used. Thus, by combining high repeatability of 

proposed interest point detectors with discriminative description power, a complete 

and robust local feature extraction schema may be proposed.  
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