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FOREWORD 
 

In todays’ communication systems, the channel separations and the channel 

bandwidths are restricting tasks. In order to use the frequency spectrum efficiently, 

standards have been developed for different communication systems. To use the 

communication channel efficiently, without drawback from the information capacity, 

new modulation schemes have been developed and used. GMSK modulation is one 

of these and used commonly on cellular land mobile channels as well as in satellite 

communication systems. 

 

This thesis consists of design and realization of a GMSK MODEM on a DSP chip. 

First of all, I explained what the bandwidth means for a wireless radio channel and 

importance of constant envelope scheme modulation. Then I defined the GMSK 

modulation with respect to its counterparts. I have stated the reasons why GMSK is 

popularly used by taking into interest the bandwidth considerations. I gave the 

modulator and the demodulator structures in the GMSK  and I modelled and realized 

the GMSK modulator and the demodulator on MATLAB. Using one bit differential 

detection in the demodulator, I made symbol synchronizations in order to 

compensate for timing errors, for the extraction of the clock. I simulated the 

modulator and the demodulator for noisy channel by using an appropriate model for 

AWGN. I made simulations to observe the multipath fading effects and the co-

channel interference effects on the performance of the MODEM.  

 

I would like to thank to Prof. Dr. Osman Palamutçuoğulları and my family for their 

support. 

 

 

May, 2006 Arif Kürşad KAVAS
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GMSK MODEM TASARIMI VE GERÇEKLENMESİ 
 

ÖZET 

 

Geride bıraktığımız yüzyıl, telsiz haberleşme açısından birçok yeniliklere sahne 

olmuştur. Yaşandığı dönemde devrim niteliğinde olan telsiz olarak basit bir verinin 

havadan iletiminden günümüze çok fazla yol kat edilmiş ve bugün karmaşık 

modülasyon sistemleri kullanılarak, çok miktarda bilginin verimli bir şekilde iletimi 

olanaklı hale gelmiştir.Sesin ve daha sonra da görüntünün  analog modülasyon türleri 

kullanılarak iletimi yerini daha kompleks fakat daha verimli olan sayısal modülasyon 

çeşitlerine bırakmıştır. 

  

Sayısal modülasyon, birçok yönden analog modülasyon çeşitlerine üstünlük 

sağlamıştır. Bu üstünlükteki en önemli kıyaslama kriterleri veri kapasitesi ve bant 

genişliği kavramlarıdır.Aslında veri kapasitesi ve bant genişliği kavramları birbiri ile 

yakından alakalıdır. Bir iletişim kanalında, iletilen verinin miktarının artması, birim 

zamanda iletilen verinin miktarının da artmasına ve dolayısıyla iletimin daha geniş 

bantta yapılmasına sebep olur. Malesef sonsuz bir banda sahip değiliz. İletmek 

istediğimiz bilgi ise sürekli olarak artmaktadır. 

 

Bugün çok yüksek hızda gerçek zamanlı çalışan, sayısal işaret işleyen işlemciler 

sayesinde işaret işleme tekniklerinin uygulamaları artmıştır. Bu işlemcilerin sayısal 

haberleşme sistemlerinde de kullanımı yaygınlaşmıştır. Birçok sayısal modulasyon 

türleri bu işlemcilerle gerçekleştirilmektedir.Cep telefonlarının da dahil olduğu 

hücresel mobil kanallardan, uydu haberleşmesine birçok sistem yüksek performanslı 

işaret işleyici işlemciler kullanarak, haberleşme sistemindeki analog kısımların 

yükünü hafifletip, sayısal olarak iletişime olanak sağlamaktadrılar. 

 

 



 

x 

 

Bu çalışmada, son zamanlarda popüler olarak kullanılan GMSK modulasyonu, 

modülator ve demodülatörünün tasarımı ile anlatılmıştır. İlk olarak günümüzde 

kullanılan bazı sayısal modulasyon türleri tanıtılmıştır. Ardından GMSK 

modulasyonu detaylı bir şekilde ele alınmıştır. Modulator ve demodulator 

tasarlanmasının ardından, gürültü, kanallara arası girişim ve çok yollu sönme için 

performans simulasyonları yapılmıştır.Sonuç olarak bit-hata oranları çıkartılmıştır. 

Sembol senkronizasyonu sağlanarak, demodule edilen işaretin zamanlama hataları 

düzeltilmiştir. Son olarak, tasarlanan MODEM,  TMS320C5509A sayısal işaret 

işlemcisinde gerçeklenmiştir.  



 

xi 

 

 

 

 
 

DESIGN AND REALIZATION OF GMSK MODEM 
 

SUMMARY 

 

The past century has witnessed lots of innovations in the field of wireless 

communication. From the times, where it was a revolution to transmit simple 

information by means of wireless techniques, till today, many steps have been taken, 

and today by the use of complex modulation techniques, it has become possible to 

transmit large amounts of information, in an efficient way. Transmission of audio 

and then the video by using analog modulation techniques are replaced with digital 

modulation techniques which are much more complex but more efficient. 

 

Digital modulation gained superiority with respect to analog modulation in a number 

of ways. The most important comparison criterions in this superiority are the band 

efficiency and transmitted information capacity. Actually the band efficiency and the 

transmitted information capacity concepts are closely related. In a communication 

channel, increase in the amount of information transmitted, increases the amount of 

information transmitted in unit time and therefore causes the communication to be 

made in a wider band. Unfortunately we do not have infinite bandwidths. Though, 

the information that we want to transmit goes on increasing. 

 

Today by the use of digital signal processors, which work at high speeds and in real 

time, applications of digital signal processing techniques have been increased. Usage 

of these processors in digital communication systems has spread as well. Most of the 

digital modulation schemes are realized using these processors. Most of the systems 

varying from cellular mobile channels, including mobile phones, to satellite 

communication systems use high performance digital signal processors and decrease 

the burden on analog side, allowing digital communication. 

 



 

xii 

 

In this work, GMSK modulation, which is popularly used lately is described, by 

design of the modulator and the demodulator. First of all, some digital modulation 

methods, which are used today are described. Then the GMSK modulation is 

described in detail. After design of the modulator and the demodulator simulations 

are made to test the performance of the overall system, with respect to noise, co-

channel interference and multipath fading. As a result, bit-error rates are obtained.  

By symbol synchronization, timing errors of the demodulated signal are corrected. 

Finally, designed MODEM is realized on the TMS320C5509A digital signal 

processor. 
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1. INTRODUCTION 
 

The increasing demand in the amounts of data to be transferred through the wireless 

media arise the need for different modulation methods, capable of handling high data 

rates using lower bandwidths, in the digital communication systems. On the other 

hand standards have been developed in order to partition the available spectrum to 

variety of communication systems. The necessity for higher data rates in a wireless 

system with a predetermined bandwidth is a challenging task. The modulation 

schemes utilized in today’s wireless communication systems focus on the problem of 

transmission of data rates with taking into consideration the usage of the spectrum 

and the problem of ISI. 

 

The major purpose of the wireless digital communication system is the transmission 

of the information in digital form, from one location to another. Evolution of the 

digital media devices increased the importance of wireless transmission of data. For 

example, through the development of the cellular systems, the first generation 

cellular devices were limited to transmission of speech, the second generation 

allowed the speech and the limited data and the third generation came up with higher 

supported data rates. The satellite communication systems where massive amount of 

data is transferred use more complex methods in order to compress and transfer the 

data in a limited bandwidth. 

 

There are a number of factors that determine the choice of the modulation scheme. 

Gaussian Minimum Shift Keying (GMSK) is a digital modulation scheme, which is a 

linear and constant envelope scheme, crucial in the second and the third generation 

cellular systems achieving high capacity. GMSK is vastly popular in Europe’s GSM 

cellular standard. Its’ narrow bandwidth and ability to use coherent detection, 

characterizes the GMSK as a constant envelope modulation technique. 
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GMSK is a member of the Minimum Shift Keying (MSK) modulation family. It 

differs from the MSK in the aspect of the usage of the filter. GMSK is a result of the 

attempts to improve the MSK power spectrum. However, the advantage of MSK 

which is that it does not produce  ISI  (Intersymbol Interference) is not seen in 

GMSK. The transmitted pulse in the MSK is confined within its bit duration 

resulting in no adjacent channel interference. But the GMSK possesses a more 

compact spectrum, with the application of the low pass filter, helping to reduce its 

spectral side lobes. 

 

In the GMSK, the phase of the carrier signal is continuously varied by the antipodal 

signal, which has been shaped by a Gaussian filter. Since it is a type of MSK, it has a 

modulation index of 0.5 and may be demodulated using differential detection. The 

Gaussian filter concentrates the energy, allowing for the lower out of band power. 

The constant envelope allows GMSK to be less susceptible to a fading environment. 

 

The development of real time digital signal processor chips made the realization of 

complex modulation schemes possible on a single chip rather than employing 

discrete realizations, where sensitivity of the system to the environmental effects is a 

stringent task. Today the DSP chips reach the clock speeds of 1 GHz and the 

processing speeds up to 8000 MIPS. This is important because in order for a system 

to work in real time, meaning that giving fast responses to incoming inputs, it has to 

implement the necessary tasks in a fast manner as the delays are critical and not 

accepted. The DSP chips fulfill complex digital processes in real time, which makes 

them a candidate for realization of complex modulation methods. 

 

GMSK modulation and demodulation consists of a number of both simple and 

complex mathematical operations, such as integration and convolution. In the digital 

domain, these operations have to be carried out using numerical methods. These 

methods consist of lots of calculation steps to obtain the solution. Due to the 

reasonable number of steps for realization of the mathematical procedures, the 

modulation and demodulation processes take time. But the system must respond to 

the incoming signal in no time. This is the point where it is get to known why the 
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DSP is widely used in the realization of digital communication schemes. Its superior 

performance allows the designers to realize complex communication algorithms as 

well as simple communication functions. In addition to the computing power, the 

designer eliminates the tolerances and sensitivities that come with discrete 

realization. The DSP also offers built in functions, which fasten the coding 

procedure. The reasons stated above, make the DSP chipsets of considerable interest 

in the realization of variety of wireless infrastructure. 
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2. DIGITAL CARRIER SYSTEMS 
 

Modulation means to vary or change. The information bearing signals modulate a 

signal called carrier in a manner that we call modulation, in order to transmit the 

information through a media either wireless or wired. The modulation process can be 

done according to any reliable detectable change in signal characteristics. It can be 

either amplitude or frequency or the phase of the carrier signal that changes 

according to the information signal. At the receiver, demodulation occurs by 

detection of changes in the carrier signal. 

 

 

fc
 

Figure 2.1: Basic Transmitter 

 

In digital communication systems, the baseband signals have sizable power at low 

frequencies and they are suitable for transmission over a pair of wires or coaxial 

cables. Local telephone communications as well as short-haul PCM are examples of 

this. Baseband signals cannot be transmitted over a radio link because this would 

necessitate impracticably large antennas to efficiently radiate the low-frequency 

spectrum of the signal. In order to reach this aim, the signal spectrum must be shifted 

to a high-frequency range. A spectrum shift is also required to transmit several 

messages simultaneously by sharing the large bandwidth of the transmission 

medium. The spectrum of a signal can be shifted to a higher frequency by 
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modulating a high-frequency sinusoid by the baseband signal.  

 

Throughout years analog modulation techniques were used and are still being used to 

transmit voice, image and other kinds of information signals. The development of 

digital techniques, the need for efficiency and demand for higher data rates, made the 

digital modulation much more popular. 

 

One of the main advantages in the digital communications when compared to analog 

is the ease of regeneration of the digital signals. The digital circuitry is less 

susceptible to distortion and interference. The digital circuits operate on two distinct 

states and therefore there must be a large amount of disturbance to change the 

operation state from one to another.  

 

The move to digital modulation provides more information capacity, compatibility 

with digital data services, higher data security, and better quality in communication. 

The main constraints in the communication systems are the available bandwidth, 

permissible power and the inherent noise level of the system. The RF spectrum must 

be shared, yet every day there are more users for that spectrum, as demand for 

communication systems increases. Digital modulation schemes have greater capacity 

to convey large amounts of information than analog modulation schemes. 

 
2.1 Modulation Schemes 

 

2.1.1 Amplitude Shift Keying (ASK) 

 

An ASK signal can be defined by; 

 

( ) ( ) cos 2 cs t A m t f tπ= ⋅ ⋅     0 t T≤ ≤                       (2.1) 

 

where A is a constant, m(t) = 1 or 0 , fc  is the carrier frequency, and T is the bit 

duration. Taking Vc(t) as the carrier signal and Vd(t) as the data signal yields the 

mathematical notation for the ASK signal as below. 
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( ) cosc cV t tω=                   (2.2) 

 

0 0 0
1 2 1 1( ) cos cos cos ...
2 3 5dV t t t tω ω ω

π
⎛ ⎞= + − + −⎜ ⎟
⎝ ⎠

             (2.3) 

 

( ) ( ) ( )c dASKV t V t V t= ⋅                           (2.4) 

 

0 0
1 2 1( ) cos cos cos cos cos ...
2 3ASK c c cV t t t t t tω ω ω ω ω

π
⎧ ⎫= + ⋅ − ⋅ +⎨ ⎬
⎩ ⎭

           (2.5) 

 

[ ]

[ ]

0 0

0 0

0 0

1 1( ) cos cos( ) cos( )
2
1 cos( 3 ) cos( 3 )

3
1 cos( 5 ) cos( 5 ) ..

5

ASK c c c

c c

c c

V t t t t

t t

t t

ω ω ω ω ω
π

ω ω ω ω
π

ω ω ω ω
π

= + − + +

− − + +

+ − + + −

                                 (2.6) 

 

In the ASK modulation, according to the incident bit on a serial signal path, the 

carrier is either transmitted, that is the case when the bit is 1, or no transmission 

occurs, the case when the bit is 0. It is also referred as On-Off Keying(OOK).  

 

Figure 2.2 shows the ASK signal according to the occurring bits. The bit sequence is 

shown in the first signal. The second signal is the modulating carrier signal. 

According to the incident ones and zeros, the output OOK signal is formed as in the 

third signal. 
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Figure 2.2: Generation of the ASK Signal 

 

2.1.2 Frequency Shift Keying(FSK) 

 

In the Frequency Shift Keying, frequency of the carrier is switched between two 

distinct frequencies such as, 

 
1 1( ) sint A tφ ω=                 (2.7) 

 
2 2( ) sint A tφ ω=                 (2.8) 

 
As we see that the magnitude of the transmitted signal remains unchanged while the 

frequency of the signal changes. Each carrier can be assigned to an occurring 

symbol, as, if a 1 occurs first signal is transmitted, and if a zero occurs the second 

signal is transmitted. The vice-versa is valid too. The FSK signal can be written as 

below, taking Vd(t) as the data signal. 

 
1 2( ) cos ( ) cos ( )FSK d dcV t t V t t V tω ω= ⋅ + ⋅                                                                    (2.9) 

 
The two carriers are ω1 and ω2 ,  

 
(t) = 1 - (t)dc dV V               (2.10) 

 

1 0 0

2 0 0

1 2 1( ) cos cos cos ...
2 3

1 2 1cos cos cos ...
2 3

FSKV t t t t

t t t

ω ω ω
π

ω ω ω
π

⎧ ⎫⎛ ⎞= + − +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

⎧ ⎫⎛ ⎞+ − − +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

           (2.11) 
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( ) ( ){ }

( ) ( ){ }

( ) ( ){ }

( ) ( ){ }

1 1 0 1 0

1 0 1 0

2 2 0 2 0

2 0 2 0

1 1cos cos cos
2
1 cos 3 cos 3 ...

3
1 1cos cos cos
2
1 cos 3 cos 3 ...

3

FSKV t t t

t t

t t t

t t

ω ω ω ω ω
π

ω ω ω ω
π

ω ω ω ω ω
π

ω ω ω ω
π

= + − + +

− − + + +

+ + − + +

− − + + +

          (2.12) 

 
 
In Figure 2.3, generation of the FSK signal is shown. The first signal is the binary 

information, the second and the third are the two distinct carrier frequencies. The 

fourth signal is the FSK signal obtained by switching between the two carrier signals 

according to the bit sequence, in a predetermined carrier allocation for the symbols. 

 

 
Figure 2.3: Generation of the FSK Signal 

 
 
2.1.3 Phase Shift Keying (PSK) 
 
 
Phase Shift Keying technique buries the information in the phase of the carrier 

signal. In PSK, the phase of a single carrier signal is varied between two different 

phases, for binary signals. For the binary values 0 and 1, the following carrier with 
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two different phase angles can be chosen. 

 
 

( )1 1( ) sint A tφ ω ϕ= +                        (2.13) 
 

( )2 2( ) sint A tφ ω ϕ= +                            (2.14) 
 
The carrier and the bipolar data signal are given to generate PSK signal. 

 
( ) cosc cV t tω=                            (2.15) 

 

0 0 0
4 1 1cos cos3 cos5 ...

3 5dV t t tω ω ω
π
⎧ ⎫= − + −⎨ ⎬
⎩ ⎭

           (2.16) 

 
( ) ( )PSK c dV V t V t= ⋅                           (2.17)  

 

       0 0
4 1cos cos cos cos3 ...

3c ct t t tω ω ω ω
π
⎧ ⎫= ⋅ − ⋅ +⎨ ⎬
⎩ ⎭

                      (2.18) 

 

{ } { }30 0 0 0
1 1cos( ) cos( ) cos( 3 ) cos( ) ..

3PSK c c c cV t t t tω ω ω ω ω ω ω ω
π π

+ += − + − − + + (2.19) 

 
The binary signal, alternate the phase of the carrier signal between two different 

phases. This is called binary PSK or BPSK. The symbols and the BPSK signal are 

shown in Figure 2.4. 

 

 
 

Figure 2.4: BPSK Signal 
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In the BPSK, bandwidth efficiency is 1bps/Hz. This means that the amount of bits 

sent per second per Hertz is one. The Quadrature Phase Shift Keying QPSK, is a type 

of Phase Shift Keying, with an improved bandwidth efficiency of 2bps/Hz. In QPSK 

the symbols consist of two bits. This makes a total of four different symbols and four 

different signals with same carrier frequency but with different phase (e.g. 0o, 90o, 

180o, 270o). This way, the amount of information transmitted per second increases by 

two, when compared to BPSK. Typical QPSK waveform is given in Figure 2.5. 

 

 
Figure 2.5: QPSK Waveform 

 
 
2.2 Spectral Density 

 

Spectral density of a signal is the characterization of the signals power or energy 

distribution on the frequency domain. It is important in communication systems due 

to distinction between channels. The filtering operations are done using this fact. 

Evaluation of signal and noise at the filter output uses the energy spectral density 

(ESD) and power spectral density (PSD). 

 

2.2.1 Energy Spectral Density 

 

For a real signal g(t) the energy Eg is defined as 

 

2 ( )gE g t dt
∞

−∞

= ∫                   (2.20) 

 

Parseval’s relation states that the total energy in the signal may be determined either 

by computing the energy per unit time (|g(t)|2) and integrating over all time or by 
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computing the energy per unit frequency (|G(w)|2/2π) and integrating over all 

frequencies. 

 

2 21( ) | ( ) |
2gE g t dt G dω ω
π

∞ ∞

−∞ −∞

= =∫ ∫              (2.21) 

 

|G(w)|2 is referred to as energy spectrum density of the signal g(t), taking into 

account that g(t) is a finite energy signal.  

2| ( ) |gE G f df
∞

−∞

= ∫                           (2.22) 

 

Energy spectral density describes the signal energy per unit bandwith measured in 

joules/Hertz. Since g(t) is a real signal, G(f) is an even function of frequency and 

there are equal energy contributions from both the positive and the negative 

frequency components. Therefore the total signal energy of g(t) can be written as 

 

2

0

2 | ( ) |gE G f df
∞

= ∫                    (2.23) 

 

2.2.2 Power Spectral Density 

 

If a signal g(t) exists over the entire interval (-∞,∞), the power  Pg of a real signal g(t) 

can be defined as the average power dissipated in a 1 ohm resistor when a voltage 

g(t) is applied across it. Pg can be written as 

 
/ 2

2

/ 2

1lim ( )
T

g T
T

P g t dt
T→∞

−

= ∫               (2.24) 

 

If the energy of g(t), Eg, is finite, then the signals power is zero and if Pg  is finite 

then Eg is infinite. Signals for which Eg is finite are said to be energy signals and the 

signals with nonzero and finite Pg are known as power signals. 
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There are some signals that cannot be classified as either energy or power signals 

because  both Eg and Pg are infinite, such as, 

 

( ) atg t e−=    -∞  <  t <   ∞                                  (2.25)

     

In order to find the frequency-domain expression for the power Pg , it is  observed 

that power signals have infinite energy and therefore may not have Fourier 

transforms. In this case we can consider the truncated signal gT(t) and define it as 

( )           | |
2( )

0                | |
2

T

Tg t t
g t

Tt

⎧ ⎫≤⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪>
⎪ ⎪⎩ ⎭

                         (2.26) 

 

As T is finite, gT(t) has finite energy, and its Fourier transform can be taken. Letting 

 

( ) ( )T Tg t G ω↔                (2.27) 

 

The energy ET of gT(t) is given by  

 

2 21( ) | ( ) |
2T T TE g t dt G dω ω
π

∞ ∞

−∞ −∞

= =∫ ∫                                    (2.28) 

 

Hence the power Pg is given by  

 

21 1lim lim | ( ) |
2

T
g TT T

EP G d
T T

ω ω
π

∞

→∞ →∞
−∞

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
∫                        (2.29) 

 

As T increases, ET the energy of gT(t) also increases. Thus |GT(ω)|2 increases with T, 

and as T→∞, |GT(ω)|2 also approaches infinity. However, |GT(ω)|2  must approach the 

infinity at the same rate as T, because for a power signal, the integral on the right 

hand side of the equation (2.29) must converge. This convergence lets us to 

interchange the order of the limiting process and integration, yielding 
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2| ( ) |1 lim
2

T
g T

GP d
T
ω ω

π

∞

→∞
−∞

= ∫                 (2.30) 

 

Then the power spectral density is defined as  
2| ( ) |( ) lim T

g T

GS
T
ωω

→∞
=                                                                                            (2.31) 

 

Power of the signal can be re-written as 

 

1 ( )
2g gP S dω ω
π

∞

−∞

= ∫                                                                                               (2.32)

  

Power spectral density (PSD) is a positive, even and real function of ω. The unit of 

power spectral density is watt/Hz. It describes the amount of power per unit of 

frequency. 

 

2.3 Eye Diagram 

 

The eye diagram is an oscilloscope display of the signal, repetitively sampled to get a 

good representation of its behavior. It is a useful tool for the qualitative analysis of 

signal used in digital transmission. It provides evaluation of the system performance 

and can offer insight into the nature of channel imperfections. The analysis of eye 

diagram can give approximations of signal to noise, clock timing jitter and skew. 

 

In the radio communications, digital data consists of train of logical ones and zeros 

either referenced to zero volts return-to-zero (RZ), or with no voltage reference non-

return-to-zero (NRZ). In either case these pulses contain considerable amount of 

energy in their harmonics. In order to reduce interference in the radio channels, the 

bandwidth is limited. Otherwise the harmonic energy in the data signal would create 

corresponding modulation sidebands that extend well beyond the intended bandwidth 

of the allocated communication channel. In order to reduce the unwanted sidebands, 

the data signal must be filtered in a manner that reduces harmonic energy while 
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maintaining the integrity of the transmitted data. The eye diagram can be used after 

filtering to assure that the filter is behaving properly. General use of the eye diagram 

is at the receiver side to evaluate the received signal quality. Impairments to the 

signal can occur in the transmitter, through the frequency conversion and amplifier 

chain, propagation path, receiver front end, IF circuits and baseband signal 

processing. The timing errors on the receiver or the transmitter can be isolated with 

tests taken on each equipment. 

The basic information contained in the eye diagrams is the size of the eye openings, 

which give information about the, the magnitude of the amplitude and timing errors. 

 

 
Figure 2.6: Eye Diagram 

 

The eye diagram of a non-filtered signal is nearly square. The filtered signal has an 

eye diagram, which has smooth transitions. After the addition of timing errors and 

noise in the transmitter and receiver, as well as the channel imperfections, the eye 

diagram takes the form as in the Figure 2.7. 
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Figure 2.7: Eye Pattern After Filtering and at the Receiver Output 

 

2.4 Performance Degrading Factors in Digital Communications 

 

2.4.1 Noise  

 

Noise is the unwanted electrical signals that are always present in an electrical 

system. The noise on a signal tends to mask the original signal. In mobile 

communications, the receiver part of the system is highly related with the noise 

concept, as it limits the ability of the receivers correct symbol decisions. This causes 

the limitation on the rate of information transmission. The noise can be either man 

made or caused by natural facts. 

 

Filtering, shielding and the choice of the type of modulation can eliminate reasonable 

amount of noise. However there is natural source of noise called thermal noise that 

cannot be eliminated. Thermal noise is caused by the thermal motion of the electrons 

in dissipative components such as resistors, wires.  

 

Thermal noise can be modeled as zero mean Gaussian random process. A Gaussian 

process n(t) is a random function whose value n at any arbitrary time t is 

characterized by the Gaussian probability density function 
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2

221( )
2

n

p n e σ

σ π

−
=                                                                                                (2.33) 

 

where σ2 is the variance of n. The normalized Gaussian density function is obtained 

by assuming that σ =1. 

 

Gaussian distribution is often used as the system noise model, as the central limit 

theorem states that under general conditions, the probability distribution of the sum 

of i statistically dependent random variables approach the Gaussian distribution as     

i→∞. Therefore, even though the individual noise mechanisms might have 

distributions other than Gaussian distribution, the aggregate of many mechanisms 

will tend toward the Gaussian distribution. 

 

2.4.1.1 Additive White Gaussian Noise (AWGN) 

 

The primary spectral characteristic of thermal noise is that the power spectral density 

is same for all frequencies. Thermal noise sources contribute equal amount of noise 

power per unit bandwidth for all frequencies. A simple model for thermal noise can 

be represented as  

  

0( ) / 2                (Watts/Hertz)nG f N=             (2.34) 

 

The power spectral density is constant for all frequencies. As the noise power has 

such a uniform spectral density, it is called “White Noise” in the same sense as the 

white light, which contains equal amounts of all frequencies that are present in the 

visible region of the electromagnetic spectrum. 

 

The average power Pn of white noise is infinite as it has infinite bandwidth. 

 

0  
2n

NP df
∞

−∞

= = ∞∫                     (2.35) 
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Although white noise is a useful abstraction, the noise process cannot be truly white. 

However the noise encountered in many systems can be assumed to be 

approximately white. If the noise is observed on a real system, it can be seen that 

bandwidth of the noise is larger than that of the system. Therefore the noise can be 

considered to have infinite bandwidth. 

 

The equation (2.35) states that two different samples of a white noise process are 

uncorrelated. Since thermal noise is a Gaussian process and the samples are 

uncorrelated, the noise samples are also independent. Thus the effects on detection 

process of a channel with additive white Gaussian noise (AWGN) are independent. 

This means that the channel is a memoryless channel. The term additive stands for, 

noise is simply added to the signal and there are no multiple mechanisms of noise. 

 

2.4.4.2 AWGN Channel & Channel Capacity 
 
 
The AWGN channel is a random channel, whose output is a real random process 

 

( ) ( ) ( )Y t X t N t= +                                                            (2.36) 

 

where X(t) is the input waveform, regarded as a real random process, and N(t) is a 

real white Gaussian noise process with single-sided noise power density N0 which is 

independent of X(t). 

Modulator
xk

N(t)

X(t) Y(t)

 
 

Figure 2.8: Noise Addition 

 

The input X(t) is assumed to be both power-limited and band-limited. The average 

input power of the input waveform X(t) is limited to some constant P. The channel 

band B is a positive frequency interval with bandwidth W Hertz. The channel is said 



 

18 

 

to be baseband if B=[0,W], and passband otherwise. The Fourier transform of any 

sample function x(t) of the input process X(t) is limited to B. 

 

The signal to noise ratio, SNR, of the channel is then 

 

0

PSNR
N W

=
⋅

                                                                                                        (2.37) 

 

where N0W is the total noise power in the band B. The parameter N0 is the noise 

power per positive frequency Hz. Therefore the double sided power spectral density 

of N(t) is Snn(f)=N0/2 at least over the bands ±B. 

 

The two parameters W and SNR turn out to characterize the channel completely for 

digital communication purposes. The capacity of any such channel in bits per second 

is 

 

2log (1 )C W SNR= ⋅ +            b/s              (2.38) 

 

If a particular digital communication scheme transmits a continuous bit stream over 

such a channel at a rate R b/s, then the spectral efficiency of the scheme is said to be 

ρ= R/W (b/s)/Hz .The Shannon limit on spectral efficiency is therefore 

 

2log (1 )C SNR= +  (b/s)/Hz                     (2.39) 

 

Therefore a reliable transmission is possible when ρ<C[(b/s)/Hz] , but not when 

ρ>C[(b/s)/Hz]. 
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Figure 2.9: Original and AWGN Channel Output Signals at SNR = 10dB 

 

2.4.2 Multipath Fading 

 

The transmitted signal follows many paths before arriving at the receiving antenna, 

and it is the aggregate of these paths that constitutes the multipath radio propagation 

channel. The resulting signal strength will undergo large fluctuations, which, when 

the signal is small, results in a fade. This situation is referred as multipath fading. 

The multipath fading can be of two different categories. 

 

1.The multipath signal paths are made up of a relatively small and identifiable 

number of components reflected by small hills, houses and other structures. This 

results in a channel model with a finite number of multipath components. This kind 

of channel is referred to as discrete multipath channel. 

 

2.The multipath signal paths are generated by a large number of unresolvable 

reflections as might occur in mountainous areas or dense urban environment. This  

signal is composed of a continuum of unresolvable multipath components. This 

channel model is referred to as a diffuse multipath channel. 
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The real measured channels may contain both discrete and diffuse components. For 

modeling, these channels can be separated into the discrete and diffuse components. 

 

A model for discrete multipath channels has the form  

 

( ) ( ) ( ( ))n n
n

y t a t s t tτ= ⋅ −∑                (2.40) 

 

where s(t) is the bandpass input signal, an(t) is the attenuation factor for the signal 

received from the nth path, and τn(t) is the corresponding propagation delay. If we 

express s(t) as  

 

{ }2( ) Re ( ) cj f ts t s t e π= ⋅                  (2.41) 

 

then we can express the channel output as  

 

2 ( ) 2( ) Re ( ) ( ( ))c n cj f t j f t
n n

n
y t a t e s t t eπ τ πτ−⎧ ⎫⎡ ⎤

= ⋅ −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∑                            (2.42) 

 

and the complex envelope of the output is  

 

2 ( )( ) ( ) ( ( ))

( , ) ( ( ))

c nj f t
n n

n

n n n
n

y t a t e s t t

a t s t t

π τ τ

τ τ

−= ⋅ −

= ⋅ −

∑

∑
                    (2.43) 

 

From equation (2.43) we can define the multipath channel by a time varying, 

complex, low-pass equivalent impulse response  

 

( ( ), ) ( ( ), ) ( ( ))n n n n
n

c t t a t t tτ τ δ τ τ= ⋅ −∑                (2.44) 
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Figure 2.10: Multipath Fading Channel Model 

 

2.4.3 Co-Channel Interference 

 

In general the source of noise is a source, which primarily does not intend to produce 

electromagnetic disturbance patterns, for example microwave ovens or other 

electrical or electronic equipment. Another source of noise is given by the thermal 

effects existing for example in any electric circuit as in amplifiers. 

 

Besides these sources of signal distortion, other communication systems might be 

active in the environment. Such sources, which have the primary goal to produce 

electromagnetic radiation for communication purposes are not represented by noise, 

instead they are referred to as interference. Like noise, the interference has an 

additive distorting impact on the signal. Interference occur in the radio systems due 

to the fact that bandwidth is limited and system users have to reuse certain spectra of 

the overall bandwidth. 

 

If the two transmission devices operating within the same radio frequency band are 

active and a receiver, originally trying to receive the signal from one of the 

transmitters, also receives a weak signal from the second transmitter, this situation is 

referred to as Co-Channel Interference. If more than two or three interference sources 

are active, interference may be modeled as a white Gaussian process. 
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Figure 2.11: Co-Channel Interference Model 

 

2.4.4 Intersymbol Interference 

 

Intersymbol Interference (ISI) is a situation in which the energy from one symbol 

slot is spread out over neighbouring symbol slots. ISI may be introduced either by 

the channel, when the RMS delay spread becomes an appreciable fraction of the bit 

period, or by the filtering of the data pulses, in order to reduce the out of band power, 

before the modulation process. 

 

Any practical channel has the inevitable filtering effect, which causes spreading of 

individual data symbols passing through the channel. 

 

 
Figure 2.12: Filtering Effect of the Channel 

 

When a sequence of signals spread, parts of the symbol energy overlap with 

neighbouring symbols causing intersymbol interference (ISI). 
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Figure 2.13: Filtered Pulses Interfering Neighboring Symbols 

 

In some modulation techniques, data pulses are filtered, in order to suppress 

harmonic energy of the pulse and decrease bandwidth occupancy. This filtering 

process causes the symbols to spread out of the normal bit duration. 
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Figure 2.14: Filtered NRZ Data 

 

 

ISI can significantly degrade the ability of the receiver to differentiate a current 
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symbol from the diffused energy of the adjacent channels, therefore decreases the 

bit-error rate (BER) performance. 
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3. GMSK Modulation 
 
 
3.1 Continuous Phase Modulation 

 

Continuous phase modulation (CPM) is a form of digital phase modulation where the 

phase is constrained to remain continuous; that is, the phase cannot jump 

discontinuously between symbols, as it can in QPSK. A general CPM signal is given 

by 

 

0( ) cos[ ( ) ]cY t A t tω φ φ= + +                                                     (3.1) 

 

0( ) exp[ ( ) ]Y t A j t jφ φ= +                 (3.2)

  

 

where φ(t) is given as 

 

( ) 2 ( )

2 ( )          nT t (n+1)T

t n

k k
k

n

k k
k

t d h g kT d

d h q t kT

φ π τ τ

π

=−∞−∞

=−∞

= −

= − ≤ ≤

∑∫

∑
             (3.3) 

  

and g(t) is the frequency pulse, where as  

 

0

( ) ( )
t

q t g t dt= ∫                              (3.4)

    

The constraint imposed on (3.3) establishes the continuity of the phase. The 

parameter T is the symbol duration; {dk} is the data sequence where dk ∈{±1, ±3, 

……, (M-1)}; and hk is called the modulation index. Usually hk is constant but in 
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some instances hk  varies with k in a cyclic manner  where this situation is referred to 

as multi-h CPM.  

In practice, g(t) is finite in extent, 

 

( ) 0,            0,            g t t t LT= < >                           (3.5) 

 

and the normalization  

 

0

1( )
2

LT

g dτ τ =∫                   (3.6) 

 

is used. 

 

When L=1, it is referred to as full response CPM and when L≥2 it is called partial 

response CPM.  

 

Table 3.1: The Frequency Pulse Defined for Some CPM Schemes 

LRC 
1 21 cos ,      0

( ) 2
0,                                     

t t LT
g t LT LT

otherwise

π⎧ ⎡ ⎤⎛ ⎞− ≤ ≤⎪ ⎜ ⎟⎢ ⎥= ⎝ ⎠⎨ ⎣ ⎦
⎪
⎩

 

TFM 
[ ]0 0 0

2 2 2

0 3 2

1( ) ( ) ( ) ( ) ;      1,  2
8

1 2 (2 / ) cot( / ) /( ) sin
24 /

g t ag t T bg t ag t T a b

t t T t T t Tg t
T t t T
π π π π

π π

= − + + + = =

⎡ ⎤− −⎛ ⎞≈ −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

 

LSRC 2

1 sin(2 / ) cos( 2 / )( ) ;     0 1
(2 / )(1 [(4 / ) ] )

t LT t LTg t
LT t LT LT t

π β π β
π β

⋅
= ≤ ≤

−
 

GMSK 
2

1 / 2 / 2( ) 2 2 ;    0
2 ln 2 ln 2

1( ) exp( / 2)
2

b b b

t

t T t Tg t Q B Q B B T
T

Q t d

π π

τ τ
π

∞

⎡ ⎤− +⎛ ⎞ ⎛ ⎞= − ≤ ≤ ∞⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

= −∫

LREC 
1/(2 ),    0

( )
0,                

LT t LT
g t

otherwise
≤ ≤⎧

= ⎨
⎩
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3.2 Continuous – Phase Frequency-Shift-Keying 
 
 
When the instantaneous frequency in each signalling interval is fixed and chosen 

from a set of M values, the method is called continuous-phase frequency-shift-

keying, or CPFSK. In order to obtain a fixed instantaneous frequency in each 

signaling interval g(t) is set as 

 

1( ) ( )
2 Tg t p t
T

=                   (3.7) 

 

and φ(t) is obtained as 

 
11( ) ( ) ,           ( 1)

n

n k
k

t hd t nT h d nT t n T
T

φ π π
−

=−∞

= − + ≤ ≤ +∑             (3.8) 

 

Generally hk=h, a fixed value for modulation index is used, but it is not necessary in 

order to create a FSK signal. 

 

The expression for the instantaneous frequency in CPFSK is given by 

 

1 ( )( ) ,            ( 1)
2 2

n
i

hdd tf t nT t n T
dt T
φ

π
= = ≤ ≤ +              (3.9) 

 

3.3 Minimum-Shift-Keying 

 

Minimum-Shift-Keying (MSK) is a form of CPFSK, for which M=2 and h= 

0.5.Using this specifications the phase function is obtained as 

 
1

( ) ( ) ,            ( 1)
2 2

n

n k
k

t d t nT d nT t n T
T
π πφ

−

=−∞

= − + ≤ ≤ +∑                            (3.10) 

 

 

MSK can be thought of as a special case of OQPSK with sinusoidal pulse weighting. 
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The MSK signal can be defined as 

 

( ) ( )cos cos 2 ( )sin sin 2
2 2I c Q c

t ts t a t f t a t f t
T T
π ππ π⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
                                  (3.11) 

 

Figure 3.1 shows the various components of the MSK signal. 

 

 
Figure 3.1: MSK Signal Formation 
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3.4 Gaussian Minimum Shift Keying 

 

In mobile radio communications, the out of band radiation power in the adjacent 

channel should generally be suppressed about 70~80 dB than that of the concerning 

channel. In order to compact the bandwidth, manipulation is needed in the spectrum 

of the output signal. Smoothness of the signal is proportional with the amount of 

harmonics and their impact on the signal. Continuous phase change in a signal is  

related with the smoothness of the signal. 

 

Gaussian minimum shift keying is a standard modulation used in global system for 

mobile (GSM) communication. It is a type of minimum shift keying which differs in 

usage of a premodulation filter, that is a low-pass filter, which has a Gaussian shaped 

impuls response. 

 

In GMSK, data signals are passed through a low-pass filter before entering the phase 

modulation. The integral of the impulse response of a Gaussian filter output is quite 

smooth which causes the phase of the modulated signal to vary in a continuous 

manner. 

 

GMSK has a low out of band power characteristic and a constant envelope which 

makes it a desirable choice for usage in the wireless mobile communications. The 

effect of the filter brings out the suppression of the out of band power by its sharp 

cut-off property. 

 

GMSK finds a wide range of usage due to its spectral efficiency. As GMSK is a type 

of MSK scheme, it has a modulation index of 0.5. The Gaussian filter concentrates 

the energy on a desired band allowing for low out of band power characteristic. 

Widely known advantages of GMSK, that are narrow bandwidth and constant 

envelope modulation, make the GMSK suitable for both coherent and incoherent 

detection. Due to the constant envelope scheme, that is a property of GMSK, makes 

it less susceptible to fading environments than amplitude modulation and it requires 

inexpensive class-C amplifiers to be utilized for this scheme. 
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Figure 3.2: Comparison of Power Spectral Densities 

 

 

Table 3.2: Occupied Bandwidth for Specified Percentage Power 

      Power% 

BbT 90 99 99.9 99.99 

0.2 0.52 0.79 0.99 1.22 

0.25 0.57 0.86 1.09 1.37 

0.5 0.69 1.04 1.33 2.08 

MSK 0.78 1.20 2.76 6 

TFM 0.52 0.79 1.02 1.37 
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3.4.1 Modulation 

 

3.4.1.1 FM Modulator 

 

GMSK can be considered as an FM modulation. Block diagram representation of 

GMSK modulation, using an FM modulator is given in Figure 3.3. 

 

NRZ
Mapping

Gaussian
Lowpass

Filter
FM

binary data d(t) ( )tφ x(t)

 
Figure 3.3: GMSK FM Modulator 

 
 

The output of the FM modulator can be written as  

 

0( ) cos( ( ))cx t A t tω φ= +                  (3.12) 

 

where A0 is the signal amplitude, wc is the carrier frequency in radians per second 

and φ(t) is the transmit filtered data phase. 

 

Binary data usually is in the unipolar form. Data may be represented as a voltage 

value for symbol “1” and zero voltage for the symbol “0”. In this case the data has a 

DC value. In order to remove this DC before modulation, NRZ mapping technique is 

used. It is a simple technique, which removes the DC offset from the binary data and 

converts the data in the bipolar form. It simply assigns a voltage for the symbol “1” 

and the negative of that voltage for the symbol “0”. The sequence is then spread into 

pulses and passed through the low-pass Gaussian filter. In case of two bit differential 

detection, which is used to reconstruct the symbols at the receiver side, the symbols 

must be encoded before modulation. However in one bit differential detection, no 

encoding is necessary. At the output of the Gaussian filter the phase function is 

obtained which modulates a carrier in the FM modulator block. 
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3.4.1.2 I/Q Modulator 
 
 
In digital communications, modulation is often expressed in terms of I and Q. This is 

a rectangular representation of the polar diagram. On a polar diagram, the I axis lies 

on the zero degree phase reference and the Q axis is rotated by 90 degrees. The 

signal vector projection onto the I axis is its “I” component and the projection onto 

the Q axis is its “Q” component. I stands for the “In-phase” and Q for the 

“Quadrature” component of the signal. 

 

 
Figure 3.4: I/Q Representation of a Signal 

 
 

I/Q diagrams are particularly useful because they mirror the way most digital 

communication signals are created using I/Q modulator. In the transmitter, I and Q 

signals are mixed with the same local oscillator. A 90 degree phase shifter is placed 

in one of the local oscillator paths. Signals that are separated with a 90 degree phase 

are also known as being orthogonal or quadrature to each other. Orthogonal signals 

do not interfere with each other. They are two independent components of the signal. 

When recombined, they are summed to form a composite output signal.  

 

The two independent signals can be sent and received with simple circuits. This 

simplifies the design of a digital radio. The main advantage of the I/Q modulation is 
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the symmetric ease of combining independent signal components into a single 

composite signal and later splitting such a composite signal into its independent 

component parts. 

 

 
 
 
 Figure 3.5: I and Q Forming Composite Output 

 

GMSK modulator can also be implemented as an I/Q modulator. A block diagram of 

the modulator is given in Figure 3.6. 

 

 
Figure 3.6: GMSK I/Q Modulator 

 
 

The binary signals, which are in unipolar form arrive in the NRZ mapping block in 

order to be converted into bipolar form. The unipolar to bipolar conversion is shown 

in Figure 3.7. 
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 Figure 3.7: NRZ Mapping 

 

NRZ process can be implemented in either discrete circuitry or in the processor.  

 

The NRZ mapped zero DC valued signal is passed through the low-pass filter, which 

has a Gaussian shape impulse response. The impulse response of the filter function 

realizing the Gaussian pulse shape is given as 

 

( )
2

22

1( ) exp
22
xg x
σπσ

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

                                                                    (3.13) 

ln(2)
2 BT

σ
π

=                                       (3.14) 

 

BT is the bandwidth-time product related to the specified bandwidth of the designed 

low-pass filter and the time duration for a unit bit interval. BT product has a great 

influence on the ISI on the modulator. As the filtering process spreads the signal in 
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time domain, the choice of BT is of importance due to the fact that it also influences 

the detection performance of the receiver. The truncated and scaled impulse response 

of the Gaussian filter is given in Figure 3.8. 

 

 
Figure 3.8: Gaussian Impulse Response 

 

The output of the Gaussian filter is summed in order to obtain the accumulated 

phase. The summing process is utilized by the use of an integrator. 

 

( )
n L

i
i

t hφ π α
−

=−∞

= ∑                                                                                   (3.15) 

 

In this expression h stands for the modulation index and αI stands for the symbols 

obtained from filtering. Time domain expression of the accumulated phase can be 

given as 

 

[ ]( ) ( )* ( )
2

T

b

t d t h t dt
T
πφ

−∞

= ∫               (3.16) 

 

where * denotes convolution of two functions. The π/2 factor in the equation (3.16) 

scales the phase such that the modulation scheme is minimum shift keying. In other 

words the modulation index is 0.5, which indicates that the maximum frequency 
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deviation about the carrier frequency is half of the signaling rate. 

The accumulated phase function φ(t) is used  to obtain the inphase and quadrature 

components of the complex baseband signal. This is accomplished by passing the 

accumulated phase as arguments, to the sine and cosine functions. 

 

( ) cos( ( ))I t wt tφ= +                (3.17) 

( ) sin( ( ))Q t wt tφ= +                            (3.18) 

 
 
In order to obtain a complex baseband signal, I and Q components are mixed with 

the same oscillator, with a 90 degree phase shift between the mixing oscillator 

signals. This can be represented as, 

 

( ) ( )cos( ) ( )sin( )c cx t I t t Q t tω ω= −              (3.19) 

 

3.4.2 Demodulation 

 

In GMSK modulation, each symbol brings a change in the transmission signal phase. 

In order to obtain the transmitted symbols, the change in the phase of the 

transmission signals have to be found over each bit period. The phase difference can 

be written as 

 

[ ]( ) ( ) ( ) ( ) ( )
2

b

t

b b t
b t T

t t t T d t h t dt
T
πφ φ φ

−

∆ = − − = ∗∫                          (3.20) 

 

It can be noted that the value of ∫[d(t)*ht(t)]dt does not exceed Tb. This means that 

the maximum possible change in the phase is one bit period. The direction of the 

phase change either negative or positive corresponds with the symbols transmitted. 

 

φ(t)  has to be obtained in order to determine the transmitted symbols. Received RF 

signal is multiplied with the same carrier frequency that was used to upconvert the 

complex baseband signal. This downconversion yields the complex baseband signal. 
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In order to obtain the I and Q components of the composite signal, the signal is 

multiplied with the local oscillator with two components differing 90 degree in 

phase. 

 

( ) cos(2 t) RcI t fπ= ×                (3.21) 

( ) sin(2 t) RcQ t fπ= ×                                         (3.22) 

 

The fc stands for the oscillator frequency and R for the received composite signal. 

Demodulation of the signal can be accomplished by one-bit differential detection. In 

order to utilize one bit differential detection, it is not necessary to obtain the inphase 

and quadrature components of the signal. Detection can either be done using 

composite signal or the I/Q components of the signal. 

 

3.4.2.1 Detection Using Composite Signal 

 

Demodulation of the baseband composite GMSK signal can be accomplished by one 

bit differential detection technique as illustrated in the Figure 3.9. 

 

)(tx 1or  0

 
 

Figure 3.9: One Bit Differential Detector 
 

 
 

The input x(t) is the arrived signal that can be represented as  

 

0( ) 2 cos[ ( )]x t S t tω θ= +                           (3.23) 
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where S is the signal power, ω0 = 2πƒ0 is the center IF filter radian  frequency, and 

θ(t) is the transmit-filtered data phase after modulation. 

 

( ) [ ( )* ( )]
2 tt d t h t dt
T
πθ = ∫                              (3.24) 

 

The IF filter in the detector is used to bandlimit the noise in the original signal x(t) to 

obtain xIF(t).s 

 

0( ) 2 ( ) cos[ ( )]IFx t Sa t t tω φ= +                               (3.25) 

 

where [(2S)1/2a(t)] is the time varying envelope and φ(t) is the distorted signal phase. 

xIF(t) can be rewritten in the polar form such as 

 

0( ) ( )cos[ ( )]IFx t R t t tω φ= +                                (3.26) 

 

In the delay block, a time delay is introduced at a period of one symbol duration, T.  

The phase shifter brings a 90 degree phase difference and xIF(t) is multiplied with its’ 

delayed and phase shifted version, which results in 

 

0
( ) ( )( ) sin[ ( )]

2
R t R t Ty t T Tω−

= + ∆Φ                                    (3.27) 

 

The phase difference is denoted as ∆Φ(t), which is 

 

( ) ( ) ( )t t t Tφ φ∆Φ = − −                                  (3.28) 

 

and represents the change over a single symbol time.  

 

It can be assumed that the carrier frequency be chosen as a multiple of 2π, this 

simplifies (3.27) to 
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( ) ( )( ) sin ( )
2

R t R t Ty t T−
= ∆Φ                            (3.29) 

 

The receiver decides that a “1” was sent if y(t) > 0 and a “0” otherwise. Since the 

envelope R(t) is always positive, denoting the magnitude of the polar form, the 

decision rule is based on the sign of the sin[∆Φ(t)] such that, if sin[∆Φ(t)] > 0 , the 

decision is that a “1” is sent, and if sin[∆Φ(t)] < 0, the decision is that “0” is sent. 

 

3.4.2.2 Detection Using Decomposed I/Q Signals 
 

In general, digital modulation schemes utilize decompositioning of the composite 

information bearing signals into their quadrature components before demodulation. 

The arriving composite signal is mixed with the local oscillator signal at the carrier 

frequency in two forms. One is at an arbitrary zero phase, and the other has a 90 

degree phase shift. Thus the composite signal is broken into its two parts the in-phase 

and the quadrature part. These two components of the signal are independent and 

orthogonal. One can be changed without affecting the other. The Figure 3.10 

illustrates the basic decomposition procedure. 

 

 
Figure 3.10: I/ Q Decomposition 

 

In modulator, the time varying phase function φ(t) is used to generate the inphase and 

the quadrature components of the GMSK signal. The decomposed I/Q components in 

the demodulator is the same components that were generated in the modulator. The 
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components can be written as 

 

cos[ ( )]I tφ=                   (3.30)  

sin[ ( )]Q tφ=                  (3.31) 

 

The phase deviation over a single bit period gives the information of the sent symbol. 

Thus the the phase difference can be written as 

 

( ) ( ) ( )T t t Tφ φ φ∆ = − −                          (3.32) 

 

The decision is made through the sign of the phase difference which is obtained from 

 

sin ( ) sin[ ( ) ( )]T t t Tφ φ φ∆ = − −                 (3.33) 

 

The trigonometric identity of sine of the difference states that 

 

sin( ) sin cos cos sina b a b a b− = −              (3.34) 

 

Using this identity, we can rewrite the (3.33) as 

 

sin[ ( ) ( )] sin[ ( )]cos[ ( )] cos[ ( )]sin[ ( )]t t T t t T t t Tφ φ φ φ φ φ− − = − − −                    (3.35) 

 

The sine and cosine terms in the above expression can be replaced by the I/Q 

components of the signal such as 

 

( ) sin[ ( )]Q t tφ=                (3.36) 

( ) cos[ ( )]I t T t Tφ− = −               (3.37) 

 

I and Q signals and their delayed versions by a bit duration are used to estimate the 

phase difference in one bit interval. Then the phase difference is used to obtain 

sin[∆Φ(t)], for the decision of the bit sent. 
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Figure 3.11: I/Q Detector 
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4. SYNCHRONIZATION 
 

Symbol synchronization or timing recovery is a crucial part in detection of GMSK 

signals. Most of the problems rise due to the timing error between the transmitter and 

the receiver. The radio performance is usually degraded. Especially when the data is 

transmitted in burst mode, it is important to find fast and robust algorithms to 

estimate the timing offset and compensate for it. 

 

In order to handle the timing recovery, a duration of bits called the preamble bits are 

sent by the transmitter, which degrade the transmission efficiency. This duration is 

used in order to synchronize for the incoming symbols and obtain the received data 

correctly. The symbol synchronization has to be accomplished in this duration. The 

data bits are obtained correctly if a successful synchronization of time is 

accomplished during the preamble bits. 

 

4.1 Squaring Algorithm 

 

The incoming sequence {rk} represents the signal obtained by sampling the complex 

envelope of a linear modulation at rate 1/Ts = N/T where T is the symbol 

transmission duration and N is the oversampling ratio. The symbol timing delay ε 

can be estimated by computing the complex Fourier coefficients at the symbol rate 

for every segment of LoN samples of |rk|2.The estimate εm is then given by 

 

0

0

( 1) 1
2 2 /1 arg | |

2

m L N
i k N

m k
k mL N

r e πε
π

+ −
−

=

⎛ ⎞
= × ⎜ ⎟

⎝ ⎠
∑               (4.1) 

 

where arg(x) ∈ {-π, π} denotes the phase of x and  εm ∈ {-0.5, 0.5}. 

 

If the original symbol timing delay ε is not within the range {-0.5, 0.5}, it actually 
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corresponds to the case when the signal is shifted more than one symbol time. The 

estimate εm will then be given by the original timing delay ε added or subtracted by 

an integer such that the result falls in to the range {-0.5, 0.5}. 

 

The squaring operation is equivalent to self convolution of the signal spectrum in the 

frequency domain. The spectrum at the output of the squaring operation contains 

spectral lines at ƒ = ± 1/T, which give the timing information. The strength of these 

spectral lines depends on the degree of spectral overlap when the signal spectrums 

are 1/T apart. 

 

This symbol timing estimation is not necessarily effective for GMSK signals since 

GMSK is a nonlinear modulation. However the complex envelope of the GMSK 

signal can be approximated by a linear modulation with a pulse shape Co(t). That is, 

the GMSK signal s(t) can be approximated by 

 

0
0 0

2 1 0 2 0
0 0

( ) exp ( )

( 2 (2 )) ( 2 (2 ))

N

n
N n

k k
k k

s t j h a C t NT T

b C t kT T T j b C t kT T

π ε

ε ε

∞

= =

∞ ∞

+
= =

⎡ ⎤≈ − −⎢ ⎥⎣ ⎦

′ ′= − − − + − −

∑ ∑

∑ ∑
                       (4.2) 

 

where 

 
3

0
0

sin[ ( )]( )
sin( )n

t nTC t
hπ=

Ψ +
=∏                                 (4.3) 

 

with 

( ) ,                  t < LT
( )

( ) ,        t  LT

t

t LT

g d
t

h g d

π τ τ

π π τ τ

−∞

−

−∞

⎧ ⎫
⎪ ⎪
⎪ ⎪Ψ = ⎨ ⎬
⎪ ⎪− ≥⎪ ⎪⎩ ⎭

∫

∫
                               (4.4) 

 

and b2k = a2kb2k – 1,  b2k+1 = -a2k+1b2k and b-1 = 1. In these expressions, an is the 
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transmitted data of the GMSK signal, g(t) is the convolution between a Gaussian 

pulse and the rectangular pulse, and ε is the symbol timing delay of the GMSK signal 

with ε = 2ε`. Despite the linear approximation indicates the possibility of symbol 

timing estimation based on the squaring method, the squaring method may not work 

for GMSK signals. This is due to the small spectral density of Co(ƒ) for |ƒ| > 0.5/T. 

When the signal spectrums are 1/T apart, the spectral overlapping is not large enough 

to generate a stable estimate. 

 

As the squaring method is commonly used in linear modulation with raised cosine 

pulse, one method to enhance frequency components of Co(ƒ) for |ƒ| > 0.5/T is to 

design a matched filter such that 

 

2 0( ) ( ) / ( )MF TH f RC f C f=                                                                                      (4.5) 

 

where HMF(ƒ) is the frequency response of the matched filter and RC2T(ƒ) is the 

spectrum of the raised cosine pulse with 3-dB cut-off frequency ƒc = 1/2T.  

 

For the case of GMSK with 0.3 BT product, the maximum value of the excess 

bandwidth of the raised cosine pulse is 0.2 due to the fact that if bandwidth is greater 

that 0.2, there are some frequencies in which RC2T(ƒ) is finite but Co(ƒ) is zero, 

making HMF(ƒ) infinite at these frequencies. The match filter makes it possible to 

directly apply the squaring algorithm, but the performance is not satisfactory. In 

order to achieve the aim, a different form of this timing estimator can be defined. 

 

The timing information can also be obtained by viewing a GMSK signal as a 

combination of two orthogonal linear modulations each with a symbol rate 1/2T and 

staggered with a time T. Timing delays can be estimated separately in inphase and 

quadrature channels and the two estimates can be subsequently combined to give the 

timing delay estimate for the GMSK signal, ε. The timing estimates from the inphase 

and quadrature components denoted as εI and εQ are 
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0.5Iε ε ′= +                              (4.6) 

Qε ε ′=                    (4.7) 

 

In order to maintain generality ε` ∈ {-0.5, 0.5} is assumed. If 0.5 ≥  ε` > 0, εI will be 

greater than 0.5, the estimate will be given by 0.5+ε` subtracted by 1 such that the 

result is in the range {-0.5, 0.5} as 

 

0.5 1 0.5Iε ε ε′ ′= + − = −                  (4.8) 

Qε ε ′=                    (4.9) 

 

and it follows that  

 

| | | | | 0.5 | | | 0.5 0.5I Qε ε ε ε ε ε′ ′ ′ ′+ = − + = − + =                        (4.10) 

 

If –0.5 ≤  ε`≤  0, both 0.5 + ε` and ε` will be in the range of {-0.5, 0.5}, and  

 

| | | | | 0.5 | | | 0.5 0.5I Qε ε ε ε ε ε′ ′ ′ ′+ = + + = + − =                     (4.11) 

 

It can be said that |εI|+ |εQ| = 0.5. This means that when the value of |εI| increases |εQ| 

decreases and vice versa. 

 

The proposed timing recovery can be given as 

 

2 ,            if | | 0.25
=

2 ,            if | | 0.25
I I

Q Q

ε ε
ε

ε ε
≤⎧

⎨ <⎩
                                   (4.12) 

 

There are some cases when both |εI| and |εQ| are very close to 0.25 such as |εI| = 0.24 

and |εQ| = 0.26, due to the varience of the estimation. In this case either |εI| or |εQ| can 

be chosen to give the estimation of the GMSK signal as they both give a value close 

to 0.5 or –0.5.  
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4.2 Joint Symbol Timing Error and Frequency Offset Estimation 

 

The method achieves both timing error correction and frequency offset 

compensation. The converted baseband complex signal is first frequency 

discriminated and passed through a digital filter which performs FFT. The frequency 

offset can be  estimated from the DC component of the FFT and the symbol timing 

error can be estimated from the phase angle of the FFT at a specified frequency, 

which is equal to an integral multiple of half of the bit rate. The two estimates are 

then used in frequency offset compensation and symbol timing recovery during the 

preamble period.  

 

 

 

  Figure 4.1: Block Diagram of the Synchronization Method 

 

The RF signal is downconverted to baseband and decomposed into its real and 

imaginary parts I(t) and Q(t). These two signals are oversampled, digitally frequency 

discriminated and low-pass filtered in order to obtain the raw digital data. This data 

goes through a FFT for synchronization preamble bits detection. If the preamble is 

detected, both frequncy offset and sampling time error are estimated from the FFT 

results. Symbol timing synchronization is done in a feedforward manner and the 

frequency offset compensation is done in a  hybrid manner. Frequency offset 

estimation is fed back to the VCO during the preamble period. This estimation can be 

used to change the decision threshold in a noncoherent detection mode or rotate the 

signal constellation in a coherent detection mode. 

 

The received signal is assumed to be undistorted by the channel imperfections and 

predetection filter. 
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0
2( ) cos(2 ( ) ) ( )b

c s s
b

Er t f t t T n t
T

π φ ε φ= + − + +                       (4.13) 

 

where n(t) is an additive bandpass Gaussian noise with one sided power spectral 

density N0,  Eb and Tb are bit energy and bit period, φ0 is an arbitrary phase, φs(t) is 

the frequency modulated phase of the transmitted carrier, and εTs is the time delay 

caused by channel filtering and corresponds to a time delay at which the signal 

should be sampled. ε is rounded off to an integer for implementing the 

synchronization algorithm digitally. 

 

The noise term n(t) can be expressed as 

 

( ) ( ) cos(2 ) ( )sin(2 )c c s cn t n t f t n t f tπ π= −                    (4.14) 

 

and nc(t)+jns(t) is an equivalent base-band representation of n(t). 

The term εTs is limited to the interval [-(Tb/2), Tb/2 ]. Ignoring the noise, the inphase 

and quadrature components of demodulated complex baseband signal are, 

 

( ) cos(2 ( ) )
2

b
s s

b

EI t ft t T
T

π φ ε θ= ∆ + − +             (4.15) 

( ) sin(2 ( ) )
2

b
s s

b

EQ t ft t T
T

π φ ε θ= ∆ + − +                          (4.16) 

 

where ∆f = fc - fc
’ and θ are the frequency and the phase offsets produced by the 

receiver VCO at the centre frequency fc. The inphase and quadrature  signals are sent 

to the frequency discriminator and the discriminator output signal is  

 

2 2

( ) ( ) ( ) ( )( ) 2 ( )
( ) ( ) s s

I t Q t Q t I tt f t T
I t Q t

ψ π φ ε−
= = ∆ + −

+
                      (4.17) 

 

When a training sequence 1010101010.... is received, the discriminator  output signal 

will be periodic with a period of 2Tb.  
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Figure 4.2: Discriminator Output Periodic Signal 

 

This waveform consists of a DC term 2π∆f and a periodic component given as, 

 

( ) ( 2 )s s T s b
l

t T g t T l Tφ ε ε
∞

=−∞

− = − − ⋅∑                                   (4.18) 

 

with a period of 2Tb, where gT(t) is a DC free waveform of duration T=2Tb . If ψ(t) is 

observed for L periods,  it can be expressed as, 

 
1

0
( ) 2 ( 2 )

L

T s b
l

t f g t T l Tψ π ε
−

=

= ∆ + − − ⋅∑                                    (4.19) 

 

ψ(t) is sampled every Ts seconds and samples are denoted by ψ[n], 
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22
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π ε
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∑

                                  (4.20) 

 

where gT[n] denotes the sample of gT(t) at t = nTs . It is noted that ψ[n] has a period 

of M = 2Tb/Ts.  
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N = LM is chosen, such that N-point discrete Fourier transform Ψ[k] of ψ[n] is 

obtained as,  

 
1

0

2[ ] [ ]exp ,                   0 1
N

n

kk n j k N
N
πψ

−

=

⎧ ⎫Ψ ≡ − ≤ ≤ −⎨ ⎬
⎩ ⎭

∑                   (4.21) 

 

If gT[n] is even and real with zero DC, then the frequency offset ∆f and the sampling 

time error ε can be estimated by 

   
1

0

1 [ ]
2

N

n

f n
N

ψ
π

−

=

∆ = ∑                (4.22) 

/ arg( [ ])b sT T Lε ψ
π

= −                             (4.23) 

 

The magnitude of Ψ[L] can be compared with a signal detection threshold to 

determine whether a training signal has arrived or not. 
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5. SIMULATION RESULTS AND PERFORMANCE EVALUATION  
 
The proposed modem is simulated using MATLAB. The modulator is tested for two  

BT values, 0.3 and 0.5, the receiver performance is evaluated. 

 

5.1 Modulator 
 
 
Binary data is generated randomly and kept in a vector in order to calculate the BER 

at the receiver side. The generated data is spread over to samples by oversampling so 

that each symbol can be convolved by the filter. 
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Figure 5.1: Oversampling Binary Data 

 

The resulting waveform is NRZ mapped. This is done in order to remove the DC 

component from the signal. NRZ mapped data is convolved with the impulse 

response of the Gaussian low-pass filter. 
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Figure 5.2: Unipolar to Bipolar Data Conversion 

-1.5 -1 -0.5 0 0.5 1 1.5

x 10-4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gaussian Filter Impulse Response

V 

t 

 
Figure 5.3: Impulse Response of the Gaussian Low-Pass Filter 
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Figure 5.4: Smoothed Data 

 

The filtered waveform is smoother as the harmonics of the square shaped signals are 

suppressed. This smooth waveform is then integrated in order to obtain the 

continuous phase function. 
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Figure 5.5: Accumulated Continuous Phase 

 



 

53 

 

Continuous phase is used to vary the phase of two identical oscillators, with 90 

degree phase difference, in order to obtain the inphase and quadrature baseband 

signals, which make up the complex baseband GMSK signal. 
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Figure 5.6: I/Q Signals 
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Figure 5.7: GMSK Signal 
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5.2 Demodulator 
 
 
The complex baseband GMSK signal is delayed a bit period Tb, and 90 degree phase 

shifted. The obtained signal is multiplied with the original GMSK signal, in order to 

obtain the modulating symbols. 
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Figure 5.8: Demodulator Output 

 

The resulting signals are sampled at a rate, which was used to oversample the binary 

data. Hard decision is made according to the sign of the sample taken. Obtained 

samples are the binary data that was sent by the modulator. 
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Figure 5.9: Hard Decision Output Received Data 

 
5.3 AWGN Channel Performance 
 
 
Random noise is generated and added to the original GMSK signal. The detection 

performance of the demodulator  is tested for different levels of SNR. 
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Figure 5.10: Performance in the Presence of Noise 
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5.4 Multipath Fading Performance 

 

Three different channel models are used in order to simulate the system in the 

multipath fading environment. The simulations are made for BT=0.3 and BT=0.5. 
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Figure 5.11: Performance at BT=0.3 for Multipath Fading Channel 
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Figure 5.12: Performance at BT=0.5 for Multipath Fading Channel 
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5.5 Co-Channel Interference Performance 

 
Different levels of interfering signals are added to the reception signal to obtain the 

demodulators detection performance. 
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Figure 5.13: Performance at BT=0.3 for Co-Channel Interference 
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Figure 5.14: Performance at BT=0.5 for Co-Channel Interference 
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6. CONCLUSION 
 
 
In this work, a GMSK modulator and demodulator are designed. The modulator and 

the demodulator are first modeled by MATLAB. Environmental facts such as noise 

multipath fading and co-channel interference is mathematically expressed and 

simulations are made in order to evaluate the overall system performance. Due to the 

asynchronous manner of the transmission, synchronization is done in order to 

compensate for the timing errors and frequency offsets. Finally, the system is coded 

on digital signal processor. 
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APPENDIX A: MATLAB CODE  
 
 
%*****************************************************************% 
%         Implementation of the GMSK Modem                                  %  
%*****************************************************************% 
clear all; 
BR = 9600;  
TB = 1/BR;  
BT = 0.5; 
N = 10; 
SNR = 0:20; 
BA = 256; 
err_limit = 100; 
packet_limit=1000; 
err = zeros(1, length(SNR));  
packet_error = err; 
packet_counter =err; 
 
for sn=1:length(SNR) 
      packet_no=0;  
      while (packet_error(sn)<err_limit) & (packet_no<packet_limit) 
        
        packet_no=packet_no+1; 
        En =10^(SNR(sn)/10); 
        X = 2*round(rand(1,BA))-1; 
        TXSEQ = X; 
        X = kron(TXSEQ,ones(1,N)); 
         
 %***********************Gaussian    Filter ***************************** 
        t = -TB:TB/N:TB; 
        sig = sqrt(log(2)) / (2*pi*BT); 
        g = (1 / (sqrt(2*pi)*sig*TB)) * exp(-1*t.^2 / (2*sig^2*TB^2)); 
        g = g / (max(g)); 
   
%*************************Filtering Process *************************** 
        filtered = conv(X,g);  
        %figure 
        %subplot(211),stairs(X); 
        %subplot(212),plot(filtered),grid; 
        %filtered(length(filtered))  
                 
 %*****************Extraction of the Phase Function*********************** 
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        intfilt(1) = filtered(1); 
        for k = 2:length(filtered) 
            intfilt(k) = intfilt(k-1) + filtered(k); 
        end 
        intfilt = (pi/(2*N*N)) * intfilt; 
 
%************** Computing I and Q components ************************* 
        I   = cos(intfilt);  
       Q  = sin(intfilt); 
         
%******************Generating GMSK Signal*************************** 
       fc = 8000; 
       T = 1 / (10*fc); 
       z  = 0:T:T*(length(I)-1); 
       Z = cos(2*pi*fc*z).*I - sin(2*pi*fc*z).*Q; 
 
%**********************Decomposing I and Q*************************** 
    
       I = cos(2*pi*fc*t).*Z; 
      Q = -(sin(2*pi*fc*t)).*Z; 
 
%**********************Demodulation********************************* 
        demod(1:length(I)) = Q .* [zeros(1,N), I(1:length(I)-N)] - I .* [zeros(1,N), 
Q(1:length(Q)-N)]; 
        decision1=sign(demod); 
        decision2=decision1(2*N:N:end-N); 
 
%********************BER Calculation********************************* 
          bit_error=length(find(TXSEQ(1:length(TXSEQ)-1) 
        ~=  decision2(1:length(TXSEQ)-1))); 
        
        if bit_error~=0 
            packet_error(sn)=packet_error(sn)+1; 
        end 
 
        err(sn) =err(sn)+bit_error;    
 
    end 
    packet_counter(sn)=packet_no; 
    [err' packet_counter' packet_error'] 
    save arif.mat err packet_counter; 
end 
ber=err./((BA-1)*packet_counter); 
fer=packet_error./packet_counter; 
figure; 
semilogy(SNR, ber, '-x'); hold;grid; 
semilogy(SNR, fer, '-r'); 
 
%****************************************************************** 
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APPENDIX B:  MODEM SCHEMATIC 
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APPENDIX C: PCB LAYOUT TOP VIEW   
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APPENDIX D: PCB LAYOUT BOTTOM VIEW 
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