<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ</u>

ÖNGERİLME KİRİŞLİ BİR KÖPRÜ TASARIMI VE PERFORMANSININ DEĞERLENDİRİLMESİ

YÜKSEK LİSANS TEZİ Emrah AKTAŞ

Anabilim Dalı : İnşaat Mühendisliği

Programı: Yapı Anabilimdalı

Tez Danışmanı: Doç. Dr. Kutlu DARILMAZ

OCAK 2010

<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ</u>

ÖNGERİLME KİRİŞLİ BİR KÖPRÜ TASARIMI VE PERFORMANSININ DEĞERLENDİRİLMESİ

YÜKSEK LİSANS TEZİ Emrah AKTAŞ 501051039

Tezin Enstitüye Verildiği Tarih :25 Aralık 2009Tezin Savunulduğu Tarih :27 Ocak 2010

Tez Danışmanı :Doç. Dr. Kutlu DARILMAZ (İTÜ)Diğer Jüri Üyeleri :Doç. Dr. Turgut ÖZTÜRK (İTÜ)Yrd. Doç. Dr. Canan GİRGİN (YTÜ)

OCAK 2010

Eşime ve aileme,

iv

ÖNSÖZ

Öngerilme kirişli bir köprü tasarımı ve performansının değerlendirilmesi adı verilen bu yüksek lisans tez çalışması altı bölümden oluşmaktadır. AASHTO–2002 yönetmeliğine göre tasarımı yapılan köprünün deprem performansının değerlendirilmesi ise CALTRANS yönetmeliğine göre yapılmıştır.

Bu tez çalışması süresince, bana değerli vaktini ayıran ve her konuda desteğini aldğım değerli tez danışmanım Sayın Doç. Dr. Kutlu DARILMAZ'a teşekkürlerimi sunarım.

Öğrenim hayatım boyunca desteğini hiçbir zaman esirgemeyen aileme, tez çalışmam boyunca bilgilerinden faydalandığım Sayın İnş. Yük. Müh. Volkan SÜLLÜ'ye ve son olarak desteğini sürekli üzerimde hissettiğim sevgili eşime şükranlarımı sunarım.

Aralık 2009

Emrah AKTAŞ İnşaat Mühendisi

vi

İÇİNDEKİLER

<u>Sayfa</u>

ÖNSÖZ	v
ICINDEKILER	vii
KISALTMALAR	xi
CIZELGE LISTESI	xiii
SEKIL LISTESI	XV
SEMBOL LİSTESİ	xvii
ÖZET	xxi
SUMMARY	xxiii
1. GİRİŞ	
2. YÖNÉTMELİĞİN İRDELENMESİ VE TASARIM ESASLARI	3
2.1 Yükler	
2.1.1 Zati yükler	
2.1.2 Hareketli yükler	4
2.1.2.1 Hareketli yüklerin azaltılması	5
2.1.2.2 Hareketli yüklerin kirişlere dağılımı	5
2.1.2.3 Dinamik etki	6
2.1.3 Yaya yükleri	6
2.1.4 Boyuna kuvvetler	7
2.1.5 Merkezkaç kuvveti	7
2.1.6 Rüzgar yükleri	7
2.1.6.1 Üst yapıya etkiyen rüzgar yükleri	7
2.1.6.2 Alt yapıya etkiyen rüzgar yükleri	7
2.1.7 Sıcaklık etkileri	8
2.1.8 Su akıntısının etkisi	
2.2 Yükleme Kombinasyonları	8
2.3 Köprü Üstyapısının Tasarım Esasları	10
2.3.1 Kiriş enkesit özelliklerinin belirlenmesi	11
2.3.2 Kirişte oluşan kesit tesirlerinin hesaplanması	11
2.3.3 Kirişte yapılacak gerilme kontrolleri	11
2.3.4 Emniyet gerilmeleri	13
2.3.4.1 Öngerilme çeliği	13
2.3.4.2 Öngerilme kayıplarından önceki beton emniyet gerilmeleri	13
2.3.4.3 Öngerilme kayıplarından sonraki beton emniyet gerilmeleri	14
2.3.5 Öngerilme kayıplarının hesaplanması	14
2.3.5.1 Büzülme kaybı	14
2.3.5.2 Elastik kısalma kaybı	15
2.3.5.3 Sünme kaybı	15
2.3.5.4 Ongerilme donatisi gevşeme kaybı	15
2.3.6 Eğilme taşıma gücü kontrolü	16
2.3.6.1 Dikdörtgen kesitlerin taşıma gücü hesap esasları	16

2.3.6.2 Tablalı kesitlerin taşıma gücü hesap esasları	17
2.3.6.3 Çelik gerilmesi	19
2.3.7 Süneklik sınırları	. 19
2.3.7.1 Maksimum öngerilme donatısı	19
2.3.7.2 Minimum öngerilme donatısı	20
2.3.8 Kesme taşıma gücü kontrolü	.20
2.3.8.1 Betonun sağladığı kesme dayanımı	20
2.3.8.2 Kesme donatısının sağladığı kesme dayanımı	21
2.3.9 Taşıma gücü dayanım azaltma katsayıları	.22
2.3.10 Sehim sınırları	.22
2.4 Köprü Altyapısının Tasarım Esasları	.22
2.4.1 Basınç elemanları	.22
2.4.1.1 Narinlik etkisi	23
2.5 Sismik Tasarım	.25
2.5.1 Hesap verileri	.25
2.5.1.1 Tasarım depremi	25
2.5.1.2 Köprü önem sınıflaması	25
2.5.1.3 Deprem davranış kategorisi (DDK)	25
2.5.1.4 Zemin etkisi	26
2.5.2 Deprem analiz vöntemi ve secimi	.26
2.5.3 Deprem elastik tepki katsayısı	.27
2.5.3.1 Tek modlu hesaplamada elastik deprem tepki katsayısı	28
2.5.3.2 Cok modlu hesaplamada elastik deprem tepki katsayısı	28
2.5.4 Tasiyici sistem davranıs katsayıları	.28
2.5.5 Elastik tesirler ve ver degistirmeler	.29
2.5.6 Enine ve boyuna deprem etkilerinin birlestirilmesi	.30
2.5.7 Minimum oturma boyları	.30
2.5.8 DDK C ve D köprüleri için tasarım kuvvetleri	.31
2.5.8.1 Arttırılmış proje kuvvetleri	31
2.5.8.2 Kolon veya orta ayaklarda plastik mafsallaşmadan doğan kuvvetler	: 32
3. KÖPRÜLERİN DEPREM PERFORMANSLARININ DOĞRÜSAL	
OLMAYAN ANALİZ YÖNTEMLER İLE BELİRLENMESİ	.35
3.1 Deprem Etkisi Altında Performans Değerlendirmesi	.35
3.1.1 Dayanıma göre performans değerlendirmesi	.35
3.1.2 Sekildeğiştirmeye göre performans değerlendirmesi	.36
3.1.3 Sekildeğiştirmeye göre değerlendirmede hedeflenen performans ve	
deprem düzeyleri	.36
3.2 Nonlineer Davranışın Modellenmesi	.37
3.2.1 Plastik mafsal hipotezi	.37
3.2.2 Plastik mafsal boyu	.37
3.2.3 Plastik mafsal kesitinde moment-eğrilik ve moment-plastik dönme	
iliskileri	.38
3.2.4 Åkma vüzevleri	. 39
3.3 Doğrusal Olmayan Deprem Analizi Yöntemleri	. 39
3.3.1 Zaman tanım alanında doğrusal olmayan analiz	.40
3.3.2 Doğrusal olmayan itme analizi	.40
3.4 Köprü Elemanlarında Şekildeğiştirme Hedeflerinin Belirlenmesi	.41
3.4.1 Plastik eğrilik ve toplam eğrilik hedeflerinin belirlenmesi	.41
3.4.2 Beton ve donatı çeliğinde birim şekildeğiştirme hedeflerinin belirlenme	si
, . , . ,	.41

3.4.3 Elastomer mesnetlerin şekildeğiştirme hedeflerinin belirlenmesi	42
3.5 Şekildeğiştirme ve iç kuvvet kapasiteleri	42
3.5.1 Beton ve donatı çeliği birim şekildeğiştirme kapasiteleri	42
3.5.2 Kesme kuvveti kapasitesi	43
3.5.3 Mesnet elemanların şekildeğiştirme kapasitesi	44
4. İKİ AÇIKLIKLI ÖNGERİLME KİRİŞLİ BETONARME KÖPRÜ	
HESABI	45
4.1 Genel Yerleşim ve Sistem Kesitleri	45
4.2 Malzeme Özellikleri	46
4.2.1 Beton	46
4.2.2 Çelik	47
4.3 Üstyapı (Öngerilmeli Kiriş) Hesapları	48
4.3.1 Kiriş geometrik özellikleri	48
4.3.2 Yük analizi	48
4.3.2.1 Zati yükler	49
4.3.2.2 Hareketli yükler	49
4.3.3 Emniyet gerilmeleri	51
4.3.3.1 Rötre ve sünmeden önce geçici emniyet gerilmeleri (Öngerilme	
uygulama anında)	51
4.3.3.2 Kayıplardan sonra emniyet gerilmeleri (Servis yükleri altında)	51
4.3.4 Kesit tesirlerinin hesaplanması	52
4.3.5 Öngerilme kablosu sayısının belirlenmesi	53
4.3.6 Öngerilme kayıplarının hesaplanması	54
4.3.6.1 Rötreden oluşan öngerilme kayıplarının hesaplanması	54
4.3.6.2 Elastik kısalmadan oluşan öngerilme kayıplarının hesaplanması	54
4.3.6.3 Sünme kaybının hesaplanması	55
4.3.6.4 Öngerilme donatısı gevşeme kayıplarının hesaplanması	56
4.3.6.5 Toplam öngerilme kayıpları	56
4.3.7 Kesit gerilmelerin kontrolü	56
4.3.7.1 0.5L için kesit gerilme kontrolleri	57
4.3.7.2 0.4L için kesit gerilme kontrolleri	57
4.3.7.3 0.3L için kesit gerilme kontrolleri	58
4.3.7.4 0.2L için kesit gerilme kontrolleri	58
4.3.7.5 0.1L için kesit gerilme kontrolleri	58
4.3.7.6 H için kesit gerilme kontrolleri	59
4.3.7.7 0.0L için kesit gerilme kontrolleri	59
4.3.8 Taşıma kapasitesi kontrolü	59
4.3.8.1 0.5L için taşıma gücü kontrolü	60
4.3.8.2 Diğer kesitler için taşıma gücü kontrolleri	61
4.3.9 Düktilite kontrolleri	61
4.3.9.1 Minimum öngerilme donatısı kontrolü	61
4.3.9.2 Maksimum öngerilme donatısı kontrolü	62
4.3.10 Kesme hesabı	62
4.3.11 Sehim kontrolleri	63
4.3.11.1 Öngerilme uygulama anındaki sehim kontrolü	65
4.3.11.2 Servis yükleri anındaki sehim kontrolü	66
4.4 Altyapı Hesapları	66
4.4.1 Yük analizi	66
4.4.1.1 Zati yükler	66
4.4.1.2 Hareketli yükler	66

4.4.1.3 Dinamik yükler	69
4.4.2 Yükleme kombinasyonları	. 70
4.4.3 Matematik model.	.71
4.4.4 Modal analiz	. 72
4.4.5 Köprü kolonlarının tasarımı	.75
4.4.5.1 Kesit tesirleri	76
4.4.5.2 Narinlik hesabı	76
4.4.5.3 Kolon eğilme donatısı hesabı	78
4.4.5.4 Kolon kesme donatisi hesabi	80
4.4.6 Köprü başlık kirişi tasarımı	. 81
4.4.6.1 Kesit tesirleri	81
4.4.6.2 Başlık kirişi eğilme donatısı hesabı	82
4.4.6.3 Başlık kirişi kesme donatısı hesabı	83
4.4.7 Köprü orta ayak temelinin tasarımı	. 84
4.4.7.1 Kesit tesirleri	84
4.4.7.2 Temel eğilme donatısı hesabı	84
4.4.7.3 Temel kesme donatisi hesabi	90
4.4.8 Köprü orta ayak kazıklarının tasarımı	. 90
4.4.8.1 Kesit tesirleri	91
4.4.8.2 Kazık eğilme donatısı hesabı	91
4.4.8.3 Kazık kesme donatısı hesabı	93
4.4.8.4 Köprü orta ayak kazıkları taşıma gücü hesabı	93
4.4.9 Köprü kenar ayaklarının tasarımı	. 96
4.4.9.1 Mononobe Okobe analizi ile zemin itkilerinin hesabı	97
4.4.9.2 Kenarayak perdesi kesit tesirleri	98
4.4.9.3 Kenarayak perdesi eğilme donatısı hesabı	99
4.4.9.4 Kenarayak perdesi kesme donatisi hesabi	104
4.4.10 Köprü kenar ayak temelinin tasarımı	105
4.4.10.1 Kenarayak temeli kesit tesirleri	105
4.4.10.2 Kenarayak temeli eğilme donatısı hesabı	105
4.4.10.3 Kenarayak temeli kesme donatisi hesabi	111
4.4.11 Köprü kenar ayak kazıklarının tasarımı	111
4.4.11.1 Kesit tesirleri	112
4.4.11.2 Kazık eğilme donatısı hesabı	112
4.4.11.3 Kazık kesme donatısı hesabı	114
5. İKİ AÇIKLIKLI ÖNGERİLME KİRİŞLİ BETONARME KÖPRÜNÜN	
PERFORMANSININ DEGERLENDIRILMESI	115
5.1 Bilgisayar Modelinin Detayları	116
5.1.1 Çatlamış kesit özelliklerinin tanımlanması	116
5.1.2 Plastik mafsal özelliklerinin tanımlanması	117
5.1.2.1 Plastik mafsal boylarının belirlenmesi	117
5.1.2.2 Mafsal boylarının modele tanıtılması	117
5.2 Deprem Spektrumları	119
5.3 Performans Noktasının Belirlenmesi	120
5.4 Kapasite Eğrilerinin Belirlenmesi	123
5.5 Performansın değerlendirilmesi	126
6. SONUÇLAR	127
KAYNAKLAR	129
EKLER	131

KISALTMALAR

AASHTO	: American Associations of State Highway and Transportation
	Officials
DBYBHY	: Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik
DDK	: Deprem Davranış Kategorisi
DLH	: Kıyı ve Liman Yapıları, Demiryolları, Havameydanları
EDK	: Enine Davranış Katsayısı
EQM	: Deprem Kuvveti
KGM	: Karayolları Genel Müdürlüğü
LRFD	: Load and Resistance Factor Design
OS	: Önem Sınıflandırması
PCI	: Prestressed Concrete Institute
SAP 2000	: Integrated Software for Structural Analysis and Design
TS-500	: Betonarme Yapıların Tasarım ve Yapım Kuralları
TS-3233	: Öngerilmeli Beton Yapıların Hesap ve Yapım Kuralları
XTRACT	: Cross-sectional X Structural Analysis of Components

xii

ÇİZELGE LİSTESİ

<u>Sayfa</u>

Cizelge 2.1 : Ceşitli malzemelerin birim hacim ağırlıkları	3
Cizelge 2.2 : Yol genişliğine bağlı olarak trafik seridi sayıları	4
Cizelge 2.3 : Trafik seridine göre hareketli vük azaltma katsavıları	5
Cizelge 2.4 : K katsavıları	6
Cizelge 2.5 : İklim tipine bağlı olarak ısı değisimleri	8
Cizelge 2.6 : γ ve β katsavıları	. 9
Cizelge 2.7 : Köprü önem sınıflaması (OS)	25
Cizelge 2.8 : Deprem davranıs kategorisi (DDK)	26
Cizelge 2.9 : Zemin etki katsavısı (S).	26
Cizelge 2.10 : Zemin profil tipleri	26
Cizelge 2.11 : Hesap vönteminin secimi	27
Cizelge 2.12 : Düzenli köprü sartları	27
Cizelge 2.13 : Tasıvıcı sistem davranıs katsavıları (R)	29
Cizelge 2.14 : Minimum oturma boyları	31
Cizelge 3.1 : Betonarme kesitler için birim şekildeğiştirme sınırları	42
Cizelge 3.2 : Mesnetler icin sekildeğistirme sınırları	44
Cizelge 4.1 : Prekast ve kompozit kirislere ait geometrik özellikler	48
Cizelge 4.2 : Zati yüklerden meydana gelen kesit tesirleri	52
Cizelge 4.3 : Hareketli yüklerden meydana gelen kesit tesirleri	53
Cizelge 4.4 : Elastik kısalmadan kaynaklanan öngerilme kayıpları	55
Cizelge 4.5 : Sünmeden kaynaklanan öngerilme kayıpları	56
Çizelge 4.6 : Toplam öngerilme kayıpları	56
Çizelge 4.7 : Prekast ve kompozit kirişlere ait geometrik özellikler	57
Cizelge 4.8 : Gerilme kontrolleri için hesap verileri	57
Cizelge 4.9 : 0.5L için gerilme sonuçları.	57
Cizelge 4.10 : 0.4L için gerilme sonuçları	58
Cizelge 4.11 : 0.3L için gerilme sonuçları	58
Çizelge 4.12 : 0.2L için gerilme sonuçları	58
Çizelge 4.13 : 0.1L için gerilme sonuçları	59
Çizelge 4.14 : H için gerilme sonuçları	59
Çizelge 4.15 : 0.0L için gerilme sonuçları	59
Çizelge 4.16 : Taşıma gücü sonuçları	61
Çizelge 4.17 : Minimum donatı sonuçları	62
Çizelge 4.18 : Üstyapıdan aktarılan hareketli yükler	67
Çizelge 4.19 : Üstyapıdan aktarılan yaya yükleri	68
Çizelge 4.20 : Rötre, sünme ve sıcaklık yükleri	68
Çizelge 4.21 : Rüzgar Yükleri	69
Çizelge 4.22 : Elastomer mesnet özellikleri	72
Çizelge 4.23 : Kütle katılım oranları	73
Çizelge 4.24 : Kolon kesit tesirleri	76
Çizelge 4.25 : Başlık kirişi kesit tesirleri	81
Çizelge 4.26 : Temel kesit tesirleri	84

Çizelge 4.27 : Kazık kesit tesirleri	91
Çizelge 4.28 : Kenarayak perdesi kesit tesirleri	99
Çizelge 4.29 : Kenarayak temeli kesit tesirleri	105
Çizelge 4.30 : Kazık kesit tesirleri	112
Çizelge 5.1 : Çatlamış kesit atalet katsayıları	117
Çizelge 5.2 : Plastik mafsal boyları	117
Çizelge 5.3 : Plastik mafsal tanımlamasında kullanılan katsayılar	119
Çizelge 5.4 : Tepe ve spektral yerdeğiştirmeler (boyuna yön)	123
Çizelge 5.5 : S2 depremi köprü boyuna yönü plastik mafsal dönme değerleri	124
Çizelge 5.6 : Tepe ve spektral yerdeğiştirmeler (enine yön)	125
Çizelge 5.7 : S2 depremi köprü enine yönü plastik mafsal dönme değerleri	125

ŞEKİL LİSTESİ

<u>Sayfa</u>

Sekil 2.1 : Standart kamyon yükünün basit kiriş üzerinde elverişsiz yerleşimi	4
Sekil 2.2 : Eşdeğer şerit yükünün basit kiriş üzerinde elverişsiz yerleşimi	5
Şekil 3.1 : İki doğrulu moment-eğrilik diyagramı	. 38
Sekil 3.2 : Moment-plastik dönme diyagramı	. 39
Sekil 3.3 : Toplam eğrilik hedefinin elde edilmesi	. 41
Sekil 3.4 : Kolon eksenel kuvvetinin kesme kuvveti kapasitesine katkısı	. 44
Şekil 4.1 : Köprü genel yerleşim planı	. 45
Şekil 4.2 : Köprü boykesiti	. 46
Şekil 4.3 : Köprü en kesiti	. 46
Şekil 4.4 : Prekast ve kompozit kiriş kesitleri	. 48
Şekil 4.5 : Hesapta kullanılan standart kamyon yükünün kiriş üzerinde (a) eğilme	
etkisi için (b) kesme etkisi için elverişsiz yerleşimi	. 50
Şekil 4.6 : Hesapta kullanılan eşdeğer şerit yüklemesinin kiriş üzerinde (a) eğilme	
etkisi için (b) kesme etkisi için elverişsiz yerleşimi	. 50
Şekil 4.7 : Açıklık ortasındaki öngerilme kablo düzeni	. 54
Şekil 4.8 : Altyapı hesabında kullanılan standart kamyon yüklemesi	. 66
Şekil 4.9 : Altyapı hesabında kullanılan şerit yüklemesi	. 67
Şekil 4.10 : Tasarım spektrum eğrisi	. 70
Şekil 4.11 : Ortaayak için matematik model detayı	. 71
Şekil 4.12 : Matematik model	. 74
Şekil 4.13 : Mod1- $T_1 = 0.78 \text{ sn}$. 74
Şekil 4.14 : $Mod_2-T_2 = 0.70 \text{ sn}$. 75
Şekil 4.15 : $Mod3-T_3 = 0.52 \text{ sn}$. 75
Şekil 4.16 : 1 Aksı normal kuvvet altında etkileşim diyagramı	. 79
Şekil 4.17 : Enine yönde depremli durum M-N etkileşim diyagramı	. 79
Şekil 4.18 : Boyuna yönde depremli durum M-N etkileşim diyagramı	. 80
Şekil 4.19 : Başlık kirişi şematik donatı yerleşimi	. 82
Şekil 4.20 : Üst donatı için moment eğrilik diyagramı	. 82
Şekil 4.21 : Alt donatı için moment eğrilik diyagramı	. 83
Şekil 4.22 : 1 Aksı kazıkları normal kuvvet altında etkileşim diyagramı	. 92
Şekil 4.23 : Orta ayak kazıkları M-N etkileşim diyagramı	. 92
Şekil 4.24 : Orta ayak kazıkları zemin profili	. 94
Şekil 4.25 : Kenar ayak matematik modeli	. 97
Şekil 4.26 : Kenar ayak üzerine etkiyen zemin itkileri	. 98
Şekil 4.27 : Kenar ayak kazıkları normal kuvvet altında etkileşim diyagramı	113
Şekil 4.28 : Kenar ayak kazıkları M-N etkileşim diyagramı	113
Şekil 5.1 : DLH yönetmeliği deprem tasarım spektrumu	115
Şekil 5.2 : Idealize edilmiş moment-eğrilik ilişkisi	118
Şekil 5.3 : Idealize edilmiş plastik bölge moment-eğrilik ilişkisi	118
Şekil 5.4 : Plastik mafsal yerleşimi	119

Şekil 5.5 : S2 depremi düzeyi spektral ivme periyot grafiği	120
Şekil 5.6 : S2 depremi düzeyi spektral ivme sprektal deplasman grafiği	120
Şekil 5.7 : Örnek kapasite talep spektrumu kesişimi	122
Şekil 5.8 : S2 depremi köprü boyuna doğrultuda talep-davranış spektrumu	123
Şekil 5.9 : S2 depremi köprü enine doğrultuda talep-davranış spektrumu	125

SEMBOL LÍSTESÍ

- A : İvme katsayısı
- *a* : Dikdörtgen kesitler için eşdeğer basınç bloğu derinliği
- A_g : Prefabrik kesit alanı
- A_s^{*} : Öngerilme donatısı alanı
- A_{sf} : Flanşlı kesitin basınç dayanımını sağlamak için flanşına konulan donatı alanı
- A_{sr} : Flanşlı kesitin basınç dayanımını sağlamak için gövdesine konulan donatı alanı
- Ast :Kesitteki toplam donatı alanı
- A_v : Kesme donatisi alani
- **B** : Suyun kaldırma kuvveti
- **b** : Flanşlı elemanın flanş genişliği yada dikdörtgen elemanın kesit genişliği
- *b'* : Flanşlı elemanın gövde genişliği
- *C* : Merkezkaç kuvveti
- C_m : Spektral ivme katsayısı
- C_s : Elastik deprem tepki katsayısı
- CR_c : Betondaki sünmeden kaynaklanan kayıpları
- *CR*_s : Öngerilme donatisinin gevşemesinden kaynaklanan kayıpları
- **D** : Kurb açısını
- DL : Zati yükleri
- *d* : En uçtaki basınç bölgesinden öngerme kuvvetinin ağırlık merkezine olan mesafe
- d_b : Donatı çapı
- d_t : En uçtaki basınç bölgesinden çekme donatısı ağırlık merkezine olan mesafe
- e : Prefabrik kesitte öngerilme donatısının kesitin ağırlık merkezine olan mesafesi
- E_{ci} : Betonun aktarma anındaki elastisite modülü
- *E*_s : Öngerilme çeliğinin elastisite modülü
- EI1 : Çatlamamış kesit eğilme rijitliği
- EI2 : Çatlamış kesit eğilme rijitliği
- ES : Betonun elastik kısalmasından kaynaklanan kayıplarını
- f_c' : 28 günlük beton basınç dayanımı
- f_{cds} : Öngerilme kuvveti uygulandığı andaki diğer zati yüklerden dolayı öngerilme donatılarının ağırlık merkezinde oluşan beton gerilmesi
- f_{cir} : Aktarma anından hemen sonra zati yük ve öngerilme kuvvetinden dolayı öngerilme donatılarının ağırlık merkezinde meydana gelen beton gerilmesi
- f_d : Sabit yükler nedeniyle kesit alt ucunda oluşan çekme gerilmesini göstermektedir
- f_{pe} : Kompozit kesit ağırlık merkezinde tüm kayıplardan sonra dış yükler nedeniyle oluşan beton basınç gerilmesini
- f_r : Beton kopma modülü
- f_s' : Öngerilme çeliğinin karakteristik kopma dayanımı
- f_{su} : Donatı çeliğinin kopma dayanımı
- f_{su}^* : Nihai yükte öngerilmeli donatıdaki ortalama gerilme
- f_{sy} : Betonarme çeliği karakteristik akma dayanımı
- f_y^* : Öngermeli çeliğin akma gerilmesi
- f_{yw} : Enine donatının akma dayanımı

- g_1 : Kiriş zati ağırlığı
- g_2 : Döşeme zati ağırlığı
- g_3 : Döşeme üzerindeki diğer zati yükleri
- *H* : Konsol ayak boyunu
- *I* : Dinamik etki katsayısı
- l_u : Basınç elemanının uzunluğu
- *L* : Boylama kirişlerin hesap boyunu
- L_p : Plastik mafsal boyu
- \hat{N}_L : Trafik şerit sayısı
- *M_b* : Dengeli moment dayanımı
- M_{cr}^{*} : Kesitin çatlama momenti
- M_{g1} : Kirişin zati ağırlığından dolayı kesitte oluşan moment
- M_{g2} : Döşeme ağırlığından kaynaklanan moment
- M_{g3} : İlave ağırlıklarından kaynaklanan moment
- M_h : Hareketli yükten kaynaklanan moment
- M_n : Kesitin moment dayanımı
- M_{y} ; Kesitteki eşdeğer akma momenti (plastik momenti)
- *P*: Öngerilme kuvveti
- **P**_a: Statik aktif basınç kuvveti
- *P*_b : Dikdörtgen kesit için dengeli yük dayanımı
- **P**_c : Kritik burkulma yükü
- *P*_e: Euler burkulma yükü
- *P_u* : Faktörlü eksenel kuvvet
- **R** : Taşıyıcı sistem düzeltme katsayısı
- *r* : atalet yarıçapı
- RH : Yıllık ortalama bağıl nem oranı
- S: Boylama kirişlerin aks ara mesafesini-Zemin etki katsayısı
- SF : Akıntı yükü
- SH : Betondaki büzülmeden dolayı oluşan kayıplarını
- T: Periyot
- *t* : Ortalama flanş kalınlığı
- V_{avg} : Ortalama su akış hızı
- V_c : Betonun kesme dayanımı
- V_d : Zati yüklerden ve katsayısız olarak oluşan kesme kuvvetini göstermektedir
- *V_p* : Öngerilme kuvvetinin düşey bileşeni
- $\vec{V_s}$: Çeliğin kesme dayanımı
- V_{u} : Tasarım kesme kuvveti
- Y_t : Kompozit kesit ağırlık merkezinin kesit alt ucuna olan mesafesini
- W: Prefabrik kesitin mukavemet momenti-Köprü genişliği
- *W*_{cb}: Kompozit kesit mukavemet momenti
- W_{ct}: Kompozit kesit mukavemet momenti
- α : Minimum kayıp oranı
- $\boldsymbol{\beta}$: Maksimum kayıp oranı
- β_1 : Beton dayanımı için tanımlanmış katsayı
- β_d : Maksimum zati yük momentinin, maksimum toplam yük momentine oranı
- Δ_m : Mesnedin üstü ve altı arasındaki yerdeğiştirme farkı
- ϵ_{cg} : Sargılı bölgenin en dış lifindeki beton basınç birim şekildeğiştirmesi
- ε_s : Donatı çeliği birim şekildeğiştirmesi
- ε_c : Beton basınç birim şekildeğiştirmesi
- ε_{cu} : Sargılı betondaki maksimum basınç birim şekildeğiştirmesi

- ε_{sy} : Donatı çeliğinin akma birim şekildeğiştirmesi
- ε_{su} : Donatı çeliğinin kopma birim şekildeğiştirmesi
- $\boldsymbol{\Phi}$: Taşıma gücü azaltma katsayısı
- $\boldsymbol{\Phi}_{y}$: Eşdeğer akma eğriliği
- Φ_p : Plastik eğrilik
- Φ_t : Toplam eğrilik
- γ_m : Mesnedin kayma şekildeğiştirmesi açısı
- γ^* : Öngerilme çeliğinin türüne bağlı katsayı
- ρ^* : Öngerilmeli donatı oranı
- σ_b : Kesitin alt lifinde oluşan gerilme
- σ_t : Kesitin üst lifinde oluşan gerilme

ÖNGERİLME KİRİŞLİ BİR KÖPRÜ TASARIMI ve PERFORMANSININ DEĞERLENDİRİLMESİ

ÖZET

Dünyada ve ülkemizde yer hareketlerinden meydana gelen hasarların neden olduğu ekonomik kayıplar tasarımcıları yeni arayışlara yöneltmiştir. Bugüne kadar tercih edilen kuvvete dayalı tasarımın yerini yavaş yavaş şekil değiştirme bazlı tasarım almaya başlamıştır. Ülkemizde karayolu yapılarının tasarımı için herhangi bir yönetmelik bulunmamaktadır. Bu nedenle bu çalışmada kuvvet bazlı tasarım için AASHTO–2002, performans bazlı tasarım için ise CALTRANS–2001 yönetmelikleri kullanılmıştır.

Çalışmanın birinci bölümünde, konu hakkında genel bilgiler verilmeye çalışılmıştır.

İkinci bölümde, kuvvet bazlı tasarım için kullanılan AASHTO–2002 yönetmeliğinin ilgili maddeleri incelenmiştir.

Üçüncü bölümde, performans bazlı tasarımın genel ilkeleri anlatılmıştır.

Dördüncü bölümde, örnek bir köprünün AASHTO–2002 yönetmeliğine göre tasarımı SAP 2000 ve XTRACT programları kullanılarak yapılmıştır.

Beşinci bölümde, köprünün taşıyıcı sistemi CALTRANS Seismic Design Criteria kullanılarak doğusal olmayan analiz yapılmıştır. Kolonların moment-eğrilik diyagramlarını elde edebilmek için XTRACT programından yararlanılmıştır. Yapı analizinde SAP2000 kullanarak kolonlarda oluşan plastik dönmeler elde edilmiş, oluşan plastik dönmelere bağlı olarak köprünün performans seviyesi belirlenmeye çalışılmıştır. Analiz sonucunda malzeme şekil değiştirmeleri S1 ve S2 deprem seviyesinde istenen sınırları aşıp aşmadığı araştırılmıştır.

Altıncı ve son bölümde ise elde edilen sonuçlar anlatılmış ve yorumlanmıştır.

STRUCTURAL DESIGN of BRIDGE WITH PRESTRESSED GIRDER and SEISMIC PERFORMANCE ASSESSMENT

SUMMARY

Economic losses caused by damages resulted from the ground motions in the world and in our country seek the designers to new searchs. Strain-based design gradually began to take the place of force-based design which preferred until now. For the design of highway structures in our country does not have any regulations. Therefore, in this study, for the force-based design the AASHTO 2002, fort he performance-based design the CALTRANS-2001 regulations are used.

The first part of the study, subjects were attempting to give an overview.

In the second part, the relevant articles of the AASHTO-2002 regulations used for the force-based design were investigated.

In the third section, the general principles of performence-based design is described.

In the fourth chapter, design of a sample bridge according to the 2002 regulations, has been carried out using SAP 2000 and XTRACT programs.

In the fifth section, the structural system of the bridge is solved with nonlinear analysis using CALTRANS Seismic Design Criteria. To obtain the momentcurvature diagrams of the columns XTRACT program has been exploited. Using the SAP2000 in structural analysis plastic rotations in the columns are obtained. Depending on the plastic rotation the level of performance of the bridge was to determine. At the end of the analysis strain of material was investigated whether it does exceed the requested limits at the level of earthquake S2 or not.

The sixth and last section describes the results and interpretations are made.

1. GİRİŞ

Karayolu yapılarını boyutlandırmak için dünyada çeşitli yönetmelikler kullanılmaktadır. 2007 yılında yürürlüğe giren AASHTO-LRFD, 2002 yılında yayınlanan AASHTO Standart Specifications for Highway Bridges, 2001 yılında güncellenen CALTRANS Seismic Design Criteria 2001, 1998 yılında yayınlanan EUROCODE-8 Design Provisions for Earthquake Resistance of Structure Part 2-Bridge ve Japan Road Association Specifications for Highway Bridges bunlarin en yaygın olarak kullanılanlarıdır. Karayolları Genel Müdürlüğü ise karayolu yapıları için şartname olarak AASHTO Standart Specifications for Highway Bridges 2002'yi kullanmaktadır. En son KGM tarafından çıkarılan Yol Boyu Mühendislik Yapıları için Deprem Yönetmeliği ve DLH tarafından yayınlanan Kıyı ve Liman Yapıları, Demiryolları, Havameydanları İnşaatları Deprem Teknik Yönetmeliği yukarıda yazılan yönetmeliklerin adeta bir çevirisi gibidir.

Hesaplarda sonlu elemanlar ile çözüm yapan SAP 2000 genel yapısal analiz programı, kesitlerin M-N etkileşim diyagramları ve moment-eğrilik diyagramlarını elde etmek için XTRACT programı kullanılmıştır. İncelenen köprünün çözüm aşamaları çizelge ve şekiller ile detaylı şekilde anlatılmaya çalışılmıştır.

Köprünün performansının değerlendirilmesi aşamasında 2007 yılında DLH tarafından yayınlanan Kıyı ve Liman Yapıları, Demiryolları Hava Meydanları İnşaatları Deprem Teknik Yönetmeliğinde verilen deprem tasarım spektrumları (50 yılda aşılma olasılığı %50, %10 ve %2 olan) kullanılmıştır.

Projelendirilecek köprünün genişliği 18m.'si taşıt yolu olmak üzere toplam 22.5m.'dir. Köprü tabliyesi bitişik düzende yerleştirilen 120cm'lik 23 adet prefabrik I kiriş, 25cm. betonarme döşeme ve 6cm.'lik asfaltdan meydana gelmiştir. Köprü iki açıklıklı olup toplam boyu 65.16cm'dir. Köprü üstyapısı 4 adet 1.00x2.00m'lik eliptik orta ayak, Ø100'lük kazıklar ve 1.75m yüksekliğinde kazık başlığı tarafından taşınacaktır.

2. YÖNETMELİĞİN İRDELENMESİ VE TASARIM ESASLARI

Bu bölümde çalışma kapsamında seçilen yönetmelik koşulları ve seçilen köprüye ait tasarım esasları açıklanacaktır. Ülkemizde köprü tasarımına ait kapsamlı bir yönetmelik bulunmamaktır. Bu nedenle ülkemizde karayolları köprülerinin tasarımında, "American Association of State Highway and Transportation Officials" tarafından yayınlanmış, "Standard Specifications for Highway Bridges" adlı yönetmelik yaygın olarak kullanılmaktadır.

2.1 Yükler

Yapıya etkiyen yükler hareketli yükler ve zati yükler olmak üzere iki sınıfta toplanabilir. Yapı taşıyıcı sistemini oluşturan elemanların öz ağırlıkları ile yapının amacına yönelik kullanılan elamanların öz ağırlıkları zati yükler sınıfında değerlendirilebilir. Yapıya dışardan etkiyen yükler, rüzgar yükü, kar yükü, su akıntısının etkisi, buz etkisi, zemin itkisi, sıcaklık değişiminin etkisi, rötre ve sünme etkisi, taşıt yükleri, yaya yükleri, deprem yükleri, hareketli yükler sınıfına dahil edilebilir.

2.1.1 Zati yükler

Yapının taşıyıcı sistemini oluşturan elemanların öz ağırlıkları ile üstyapıyı oluşturan, asfalt, korkuluk, bariyer, tesisat boruları, kablolar ve diğer bileşenlerin kendi ağırlıkları zati yük olarak değerlendirilir. AASHTO 3.3.6' da verilen bazı malzemelere ait birim hacim ağırlıkları Çizelge2.1' de verilmiştir.

Malzeme	Birim Hacim Ağırlığı (kN/m3)
Çelik veya dökme çelik	78.50
Beton (donatılı veya donatısız)	24.00
Sıkıştırılmış kum, toprak, çakıl veya balast	19.20
Gevşek kum, toprak ve çakıl	16.00
Demiryolu rayları ve korkuluklar	32.00
Taş duvar	27.20
1cm. kalınlıkta asfalt tabaka	0.20

Çizelge 2.1 : Çeşitli malzemelerin birim hacim ağırlıkları

2.1.2 Hareketli yükler

Hareketli yükler, yapının üzerinden geçen standart kamyonlardan veya standart kamyon katarına eşdeğer şerit yüklerinden meydana gelmektedir. Çizelge 2.2'de çeşitli yükleme sınıflarına göre standart kamyon ve şerit yüklemesi için dikkate alınması gereken yük değerleri verilmiştir. Bu çizelgede, yük sınıfını belirten sembollerden H iki dingilli bir kamyona, S ise ona bağlı bir yarım treylere karşı gelmektedir. H harfinden sonra gelen rakam kamyonun iki dingilinden akrarılan W ağırlığını, S harfinden sonra gelen rakam ise yarım treylerin tek dingilinden intikal eden ağırlığı göstermektedir.

Standart kamyon yükü veya şerit yükleri 3.00m'lik bir genişliği kapladığı kabul edilir. Yol genişliğine bağlı olarak kullanılacak trafik şeritlerinin adeti Çizelge 2.2'de verilmiştir.

Malzeme	Birim Hacim Ağırlığı (kN/m3)
Çelik veya dökme çelik	78.50
Beton (donatili veya donatisiz)	24.00
Sıkıştırılmış kum, toprak, çakıl veya balast	19.20

Çizelge 2.2 : Yol genişliğine bağlı olarak trafik şeridi sayıları

Şekil 2.1'de H_{30} - S_{24} standart kamyon yükünün ve Şekil 2.2'de H_{30} - S_{24} şerit yüklemesinin basit mesnetli kiriş üzerinde maksimum moment ve maksimum kesme kuvveti değerlerini verecek şekilde yerleştirilmiş hali gösterilmektedir.

Şekil 2.1 : Standart kamyon yükünün basit kiriş üzerinde elverişsiz yerleşimi

Şekil 2.2 : Eşdeğer şerit yükünün basit kiriş üzerinde elverişsiz yerleşimi

Yapı boyutlandırılırken, hareketli yük etkisi, Şekil 2.1 ve Şekil 2.2 de verilen yüklemelerden elde edilen en büyük değerler, kesitte meydana gelen iç tesir olarak kabul edilecektir.

2.1.2.1 Hareketli yüklerin azaltılması

AASHTO 3.12'ye göre maksimum etkiler, birçok trafik şeridinin aynı anda yüklenmesi ile elde edildiği hallerde, tam yük ihtimalinin çok zayıf olduğu göz önünde bulundurularak, hareketli yükten doğan etkiler Çizelge 2.3 'de verildiği şekilde azaltılabilir.

Çizelge 2.3 : Trafik şeridine göre hareketli yük azaltma katsayıları

Trafik Şeridi Sayısı	Azaltma Katsayıları
Bir veya iki şerit için	%100
Üç şerit için	%90
Dört veya daha fazla şerit için	%75

2.1.2.2 Hareketli yüklerin kirişlere dağılımı

Boylama kirişlerin hesabında hareketli yüklerin boyuna yönde dağılmadığı kabul edilecektir. Her bir iç ve dış boylama kirişine hareketli yüklerin eşit olarak dağıldığı kabul edilerek, her bir boylama kirişin payına düşen hareketli yük miktarı, AASHTO 3.23.4.3' de

Enine dağılım katsayısı =
$$\frac{S}{D}$$
 (2.1)

bağıntısı ile verilmiştir. Bu ifade de S boylama kirişlerin aks ara mesafesini, D ise bitişik düzende yerleştirilen I tipi kirişlerde AASHTO 3.23.4.3' de mm cinsinden

$$D = (1750 - 152N_L) + 213N_L(1 - 0.2C)^2$$
(2.2)

bağıntısı ile verilmiştir. Burada N_L trafik şeridi sayısını göstermektedir. C ise AASHTO 3.23.4.3'de aşağıdaki bağıntı ile ifade edilmiştir.

$$C = K(W/L)$$
, $W/L < 1$
 $C = K$, $W/L \ge 1$
(2.3)

Bu bağıntıda W köprü toplam genişliğini, L köprü boylama kirişlerinin hesap boyunu, K ise köprü ve kiriş tipine bağlı olarak AASHTO 3.23.4.3'e göre Çizelge 2.4' de verilmiştir.

Çizelge 2.4 : K katsayıları

Köprü Tipi	Kiriş Tipi	K
	Boşluksuz dikdörtgen kirişler	0.7
Bitisik düzen kirisli	Dairesel boşluklu dikdörtgen kirişler	0.8
Ditişik düzen kirişir	Kutu kesit kirişler	1.0
	U veya tek yada çok kollu T kirişler	2.2

2.1.2.3 Dinamik etki

Köprüden geçen taşıtların dinamik etkisini hesaba katmak amacı ile, standart kamyon veya şerit yüklerinden elde edilen gerilmeler, dinamik etki katsayısı ile çarpılırlar. AASHTO 3.8.2.1'de dinamik etki katsayısı aşağıdaki bağıntı ile hesaplanması önerilmiştir.

$$I = 1 + \frac{15}{L + 37} \tag{2.4}$$

Burada hesaplanan dinamik etki katsayısı I, 1.30'a eşit ya da küçük olmalıdır.

2.1.3 Yaya yükleri

Yaya köprülerinde, hareketli yük olarak, 4.00 kN/m² düzgün yayılı yük alınmalıdır. Taşıt köprülerinin yaya kaldırımlarında, hareketli yük olarak 3.00 kN/m² düzgün yayılı bir yük alınmalı ve yapının yalnız bir tarafındaki yaya kaldırımının yüklü olması hali de incelenmelidir. Genişliği 0.60 m. veya daha az olan emniyet bordürü ve bordürlerinde yaya yükü alınmaz. Şehir içinde veya insan kalabalığının fazla olduğu yerlerde, gerekiyorsa yaya yükü artırılabilir.

Köprülerin korkuluklarının üst küpeştesine 1.50 kN/m düşey bir yük ile birlikte 2.25 kN/m yatay bir yükün etkidiği kabul edilmelidir.

2.1.4 Boyuna kuvvetler

AASHTO 3.9' a göre köprü üzerindeki tüm şeritlerin aynı yönde hareket ettiği düşünülerek, hareketli yükün %5' i yatay olarak, yol yüzeyinden 1.80 m. yükseklikte köprüye etkitilmelidir.

2.1.5 Merkezkaç kuvveti

AASHTO 3.10'a göre kurbda bulunan köprülerde, hareketli yükün geçişinden ileri gelen merkezkaç kuvvetin etkisi göz önünde bulundurulmalıdır. Bu kuvvet,

$$C = 0.00117S^2 D = \frac{0.79S^2}{R}$$
(2.5)

formülü ile hesaplanabilir. Bu ifadede C hareketli yükün yüzdesi olarak merkezkaç kuvvetini, S m/saat olarak proje hızını, D kurb açısını, R ise m olarak kurb yarıçapını göstermektedir. Merkezkaç kuvveti yol yüzeyinden 1.80m yükseklikte uygulanır.

2.1.6 Rüzgar yükleri

AASHTO 3.15'e göre rüzgar yükünün yatay ve köprü eksenine dik doğrultuda ve sabit şiddetle etkidiği kabul edilir. Rüzgarın etkidiği alan hesaplanırken köprü döşeme sistemi ve korkulukları da dikkate alınmalıdır. Rüzgar hızının 160 km/saat olduğu kabul edilir.

2.1.6.1 Üst yapıya etkiyen rüzgar yükleri

Köprü üst yapısına etkiyen rüzgar yükü, köprü üzerinde trafik olup olmamasına göre iki farklı durumda incelenir. Köprünün boş olduğu durumda, AASHTO 3.15.1'e göre, kirişli köprülerde 2.44 kN/m², köprünün dolu olduğu durumda ise boş durum için hesaplanan kuvvetin %70'i alınmalı ve buna ilaveten araç için 1.50 kN/m' lik kuvvet 1.80m yükseklikten etkitilerek hesaplanmalıdır.

2.1.6.2 Alt yapıya etkiyen rüzgar yükleri

AASHTO 3.15.2.2'ye 160 km/saat hızında esen rüzgar için, alt yapıya etkiyen rüzgar yükü 1.95 kN/m² dir.

2.1.7 Sıcaklık etkileri

Sıcaklık etkileri sonucu olarak ortaya çıkan gerilme ve deformasyonlar hesaplarda dikkate alınmalıdır. Sıcaklıklığın yükselme ve azalma miktarları, yapım sırasında kabul edilen bir sıcaklık derecesine bağlı olarak ve yapının bulunduğu bölgeye göre saptanacaktır. Isı değişim alanı genellikle AASHTO 3.16' ya göre beton yapılarda Çizelge 2.5'de gösterildiği gibi alınmalıdır.

Çizelge 2.5 : İklim tipine bağlı olarak ısı değişimleri

İklim Tipi	Sıcaklık Yükselmsie	Sıcaklık Azalması
Ilıman iklim	-1.1 °C	4.4 °C
Soğuk iklim	1.7 °C	7.2 °C

2.1.8 Su akıntısının etkisi

Su akıntısından dolayı orta ayaklara gelen itki, AASHTO 3.18.1.1'e göre

$$P_{avg} = K(V_{avg})^2$$
(2.6)

ifadesiyle hesaplanır. Burada K orta ayağın şekline bağlı olup, dikdörtgen kesitli ayaklar için 1.4, dairesel kesitli ayaklar için 0.7, diğer kesitler için 0.5 alınan bir sabittir. V_{avg} ise ortalama su akış hızını göstermektedir.

2.2 Yükleme Kombinasyonları

AASHTO 3.22.1'e göre karayolu köprülerinin maruz kalabileceği yük ve kombinasyonları aşağıdaki ifade ile tanımlanır. Yapının her bileşeni bu kuvvetlerin özel bölge ve tiplere uygulanabilecek kombinasyonlara dayanacak şekilde boyutlandırılmalıdır

$$Grup(N) = \gamma \left[\beta_D D + \beta_L (L+I) + \beta_C CF + \beta_E E + \beta_B B + \beta_S SF + \beta_W W + \beta_{WL} WL + \beta_L LF + \beta_R (R+S+T) + \beta_{EQ} EQ + \beta_{ICE} ICE \right]$$
(2.7)

AASHTO 3.22.1'deki hükümleri ifadede yerine konulursa aşağıdaki çizelge elde edilir.

Kol	. No	1	2	3	3A	4	5	6	7	8	9	10	11	12	13	14
GRUP		γ	β Faktörü												0/	
			D	(L+I) _n	(L+I) _p	CF	Е	В	SF	W	WL	LF	RST	EQ	ICE	%
Emniyet Gerilmesi Yöntemi	Ι	1.00	1	1	0	1	β_{E}	1	1	0	0	0	0	0	0	100
	IA	1.00	1	2	0	0	0	0	0	0	0	0	0	0	0	150
	IB	1.00	1	0	1	1	β_{E}	1	1	0	0	0	0	0	0	**
	2	1.00	1	0	0	0	1	1	1	1	0	0	0	0	0	125
	3	1.00	1	1	0	1	$\beta_{\rm E}$	1	1	0.3	1	1	0	0	0	125
	4	1.00	1	1	0	1	$\beta_{\rm E}$	1	1	0	0	0	1	0	0	125
	5	1.00	1	0	0	0	1	1	1	1	0	0	1	0	0	140
	6	1.00	1	1	0	1	$\beta_{\rm E}$	1	1	0.3	1	1	1	0	0	140
	7	1.00	1	0	0	0	1	1	1	0	0	0	0	1	0	133
	8	1.00	1	1	0	1	1	1	1	0	0	0	0	0	1	140
	9	1.00	1	0	0	0	1	1	1	1	0	0	0	0	1	150
	10	1.00	1	1	0	0	$\beta_{\rm E}$	0	0	0	0	0	0	0	0	100
Taşıma Gücü Yöntemi	Ι	1.30	β_D	1.67	0	1	$\beta_{\rm E}$	1	1	0	0	0	0	0	0	Uygulanmaz
	IA	1.30	β_D	2.20	0	0	0	0	0	0	0	0	0	0	0	
	IB	1.30	β_D	0	1	1	β_{E}	1	1	0	0	0	0	0	0	
	2	1.30	β_D	0	0	0	$\beta_{\rm E}$	1	1	1	0	0	0	0	0	
	3	1.30	β_D	1	0	1	β_{E}	1	1	0.3	1	1	0	0	0	
	4	1.30	β_D	1	0	1	β_{E}	1	1	0	0	0	1	0	0	
	5	1.25	β_D	0	0	0	β_{E}	1	1	1	0	0	1	0	0	
	6	1.25	β_D	1	0	1	$\beta_{\rm E}$	1	1	0.3	1	1	1	1	0	
	7	1.30	β_D	0	0	0	$\beta_{\rm E}$	1	1	0	0	0	0	0	0	
	8	1.30	β_D	1	0	1	β_{E}	1	1	0	0	0	0	0	1	
	9	1.20	β_D	0	0	0	β_{E}	1	1	1	0	0	0	0	1	
	10	1.30	1	1.67	0	0	β_{E}	0	0	0	0	0	0	0	0	

Çizelge 2.6 : γ ve β katsayıları

(L+I)_n: Dinamik etkili hareketli yük durumunda AASHTO standardına göre H veya HS yüklemelerinde (L+I)_p: Dinamik etkili aşırı hareketli yük durumu bölgenin şartlarına göre tespit edilir

Yukarıdaki çizelgede çeşitli yapı türleri için β_D ve β_E katsayıları aşağıda verilen değerleri almaktadır.

 β_D : 1.00 Eğilme ve çekme tahkiki yapılan elemanlarda

β_D: 1.00 Maksimum eksenel kolon yükü ve minimum moment durumunda

 β_D : 0.75 Minimum eksenel yük ve maksimum moment veya maksimum dışmerkezlik durumunda

β_E: 1.00 Düşey ve yatay yüklere maruz bütün yapı elemanlarında

β_E: 1.00 Düşey toprak basıncı durumunda

 β_E : 0.50 Yatay basınç etkisi durumunda pozitif momentin kontrol edildiği çubuk elemanlarda

 β_E : 1.15 Rijit menfezler harici rijit çubuk elemanlarda

 β_E : 1.30 Yatay etkiye maruz istinat duvarlarında

 β_E : 1.00 Elastik menfezlerde

 β_E : 1.50 Rijit menfezlerde

2.3 Köprü Üstyapısının Tasarım Esasları

Köprü üstyapısı, çalışma konusu olan köprü için öngerilmeli kirişlerden ve döşemeden oluşmaktadır. Öngerilmeli kirişlerin hesap ve tasarım esasları için ülkemizde mevcut olan TS 3233 (1979) ve AASHTO (2002) yönetmelikleri kullanılmaktadır. Öngerilmeli kirişlere sahip köprü üstyapısının hesabı birkaç adımı içermektedir.

Öngerilmeli elemanlarda oluşan gerilmeler, öngerilme anından başlamak üzere tüm kullanım süresi içerisinde etkisi altında kalabileceği bütün elverişsiz durumlarda emniyet sınırları içerisinde kalacak, çatlak ve deformasyon yönünden kullanılabilir olacak ve taşıma güçleri de kırılmaya karşı yeterli emniyeti sağlayacak biçimde projelendirilmesi gerekmektedir. Tasarımda, elemanların yüksekliği boyunca şekil değiştirmenin doğrusal olduğu, kesit çatlamadan önce gerilmenin şekil değiştirmeyle lineer orantılı olduğu, kesit çatladıktan sonra betondaki çekme gerilmelerinin ihmal edildiği kabulleri yapılacaktır (AASHTO, 2002)
2.3.1 Kiriş enkesit özelliklerinin belirlenmesi

Öngerilmeli beton kirişlerin boyutlandırılması için birçok aşamada kiriş mukavemet momenti, atalet momenti, enkesit alanı, öngerilme donatısı dışmerkezliği gibi bazı kesit özelliklerinin önceden hesaplanması gerekmektedir. Bu çalışmada dikkate alınan köprü üstyapısının ana elemanları, öngerilmeli beton kirişler ve tabliyedir. Yükleme aşamalarına göre bu yükleri öngerilmeli kiriş bazen tek başına bazen de tabliye ile birlikte taşımaktadır. Öngerilmeli kirişin tek başına çalıştığı kesite bundan böyle prefabrike kesit, tabliye betonu ile birlikte çalıştığı kesite ise kompozit kesit olarak adlandırılacaktır. Dolayısıyla kirişlerin boyutlandırılmasına geçilmeden önce prefabrike kesit ve kompozit kesit özelliklerinin ayrı ayrı hesaplanması gerekmektedir.

2.3.2 Kirişte oluşan kesit tesirlerinin hesaplanması

İncelenen köprüde öngerilmeli kirişlerin basit mesnet olarak çalıştığı kabul edilmiştir. Buna göre köprü üstyapısına etkiyen tabliye ağırlığı, kaplama ve korkuluk ağırlıkları, kiriş zati ağırlığı düzgün yayılı yük olarak etkitilmiştir, hareketli yükler ise Şekil 2.1 ve Şekil 2.2'de gösterildiği gibi etkitilmiş ve kesit tesirleri hesaplanmıştır.

2.3.3 Kirişte yapılacak gerilme kontrolleri

Öngerilmeli kirişlerin gerilme kontrolleri kirişin yüklenme aşamalarına göre dört aşamada kontrol edilecektir. Dört aşamada da kesitin alt ve üst lifinde oluşacak gerilmeler aşağıda detaylı bir şekilde gösterilmiştir.

1. Kontrol: Birinci aşama öngerilme kuvvetinin verildiği andır. Bu durumda sadece kiriş zati ağırlığı ve öngerilme kuvveti mevcuttur. Öngerilme kayıplarının minimum ve maksimum olması durumlarına göre prefabrike kesitin alt ve üst lifinde oluşacak gerilmeler sırasıyla aşağıda verilmiştir.

$$\sigma_b = \frac{\alpha \cdot P}{A} + \frac{\alpha \cdot P \cdot e}{W_b} - \frac{M_{g1}}{W_b} \qquad , \qquad \sigma_b = \frac{\beta \cdot P}{A} + \frac{\beta \cdot P \cdot e}{W_b} - \frac{M_{g1}}{W_b}$$
(2.8)

$$\sigma_t = \frac{\alpha \cdot P}{A} - \frac{\alpha \cdot P \cdot e}{W_t} + \frac{M_{g1}}{W_t} \qquad , \qquad \sigma_t = \frac{\beta \cdot P}{A} - \frac{\beta \cdot P \cdot e}{W_b} + \frac{M_{g1}}{W_b}$$
(2.9)

Bu bağıntıda σ_b kesitin alt lifinde oluşan gerilmeyi, σ_t kesitin üst lifinde oluşan gerilmeyi, α minimum kayıp oranını, β maksimum kayıp oranını, P öngerilme kuvvetini, e prefabrike kesitte öngerilme donatılarının kesitin ağırlık merkezine olan mesafesini, M_{g1} kirişin zati ağırlığından dolayı kesitte oluşan momenti, A prefabrike kesitin alanını, W ise prefabrike kesitin mukavemet momentini ifade etmektedir.

2. Kontrol: İkinci aşama öngerilmeli kirişin yerine konduğu ve döşeme betonunun döküldüğü andır. Bu durumda kiriş zati ağırlığı ve döşeme betonu ağırlığının prefabrike kesit tarafından taşındığı düşünülmektedir. Öngerilme kayıplarının minimum ve maksimum olması durumlarına göre prefabrike kesitin alt ve üst lifinde oluşacak gerilmeler sırasıyla aşağıda verilmiştir.

$$\sigma_b = \frac{\alpha \cdot P}{A} + \frac{\alpha \cdot P \cdot e}{W_b} - \frac{M_{g1} + M_{g2}}{W_b}, \sigma_b = \frac{\beta \cdot P}{A} + \frac{\beta \cdot P \cdot e}{W_b} - \frac{M_{g1} + M_{g2}}{W_b}$$
(2.10)

$$\sigma_t = \frac{\alpha \cdot P}{A} - \frac{\alpha \cdot P \cdot e}{W_t} + \frac{M_{g1} + M_{g2}}{W_t}, \sigma_t = \frac{\beta \cdot P}{A} - \frac{\beta \cdot P \cdot e}{W_b} + \frac{M_{g1} + M_{g2}}{W_b}$$
(2.11)

Bu ifadede Mg2 döşeme ağırlığından kaynaklanan momenti simgelemiştir.

S. Kontrol: Üçüncü aşama araç yükü dışındaki tüm yüklerin mevcut olduğu, kiriş ve döşeme ağırlıklarının prefabrike kesit, kaplama, korkuluk ve bordür ağırlıklarının kompozit kesit tarafından taşındığı kabul edilmiştir. Bu kontrolde öngerilme kayıpları maksimum düzeyde olup prefabrike kesit alt ve üst ucunda oluşan gerilmeler ile kompozit kesit üst ucunda oluşan gerilme sırasıyla aşağıda verilmiştir.

$$\sigma_{b} = \frac{\beta \cdot P}{A} + \frac{\beta \cdot P \cdot e}{W_{b}} - \frac{M_{g1} + M_{g2}}{W_{b}} - \frac{M_{g3}}{W_{cb}}$$
(2.12)

$$\sigma_t = \frac{\beta \cdot P}{A} - \frac{\beta \cdot P \cdot e}{W_t} + \frac{M_{g1} + M_{g2}}{W_t} + \frac{M_{g3}}{W_{ct}}$$
(2.13)

$$\sigma_s = \frac{M_{g3}}{W_{ct}}$$
(2.14)

Burada W_{cb} ve W_{ct} kompozit kesit mukavemet momentini, M_{g3} korkuluk, bordür, kaplama vs. ağırlıklarından kaynaklanan momenti göstermektedir.

4. Kontrol: Dördüncü ve son aşamada araç yükü de dahil olmak üzere tüm yüklerin mevcut olduğu, kiriş ve döşeme ağırlıklarının prefabrike kesit, kaplama, korkuluk ve bordür ağırlıklarının ile hareketli yüklerin kompozit kesit tarafından taşındığı kabul edilmiştir. Bu kontrolde öngerilme kayıpları maksimum düzeyde olup prefabrike kesit alt ve üst ucunda oluşan gerilmeler ile kompozit kesit üst ucunda oluşan gerilme sırasıyla aşağıda verilmiştir.

$$\sigma_{b} = \frac{\beta \cdot P}{A} + \frac{\beta \cdot P \cdot e}{W_{b}} - \frac{M_{g1} + M_{g2}}{W_{b}} - \frac{M_{g3} + M_{h}}{W_{cb}}$$
(2.15)

$$\sigma_{t} = \frac{\beta \cdot P}{A} - \frac{\beta \cdot P \cdot e}{W_{t}} + \frac{M_{g1} + M_{g2}}{W_{t}} + \frac{M_{g3} + M_{h}}{W_{ct}}$$
(2.16)

$$\sigma_s = \frac{M_{g3} + M_h}{W_{ct}} \tag{2.17}$$

Bu ifadede M_h hareketli yükten kaynaklanan maksimum momenti, σ_s ise döşeme seviyesindeki gerilmeyi simgelemektedir.

2.3.4 Emniyet gerilmeleri

Genellikle prekast öngerilmeli elemanlarda betonun basınç dayanımı fc' =35-45 MPa arasında değişir. Bu değer özel durumlarda daha yüksek değer alabilir.

2.3.4.1 Öngerilme çeliği

AASHTO 9.15.1'e göre öngerilme çeliği için emniyet gerilmeleri, öngerilmeden dolayı meydana gelecek çekme gerilmesi için, fs' öngerilme çeliğinin karakteristik kopma dayanımını göstermek üzere 0.80 fs' olarak alınabilir. Aktarmadan hemen sonra meydana gelebilecek çekme gerilmesi ise düşük gevşemeli çelikler için 0.75 fs' ve gerilme azaltılmış çelikler için ise 0.70 fs' olarak alınmalıdır.

2.3.4.2 Öngerilme kayıplarından önceki beton emniyet gerilmeleri

Aktarma sırasında emniyet gerilmeleri öngerilme kuvvetinin betona aktarıldığı andaki emniyet gerilmeleridir. Zamana bağlı öngerilme kayıpları henüz oluşmamıştır. AASHTO 9.15.2.1'e göre öngerilmeli elemanlar için MPa biriminden olmak üzere beton basınç emniyet gerilmesi 0.60 fc', çekme emniyet gerilmesi, kesite

yumuşak donatı konulduğu durumda $0.25\sqrt{f_c'}$ veya 1.4 MPa, yumuşak donatı konulmadığı durumda ise $0.62\sqrt{f_c'}$ değerini aşmamalıdır.

2.3.4.3 Öngerilme kayıplarından sonraki beton emniyet gerilmeleri

Bu durumda sistemde tüm yükler mevcut ve öngerilme kayıplarının oluştuğu kabul edilmiştir. AASHTO 9.15.2.2'ye göre kullanım yükleri altında köprü elemanları için betonda basınç emniyet gerilmesi MPa biriminden olmak üzere 0.40 f_c', çekme emniyet gerilmesi, kesite yumuşak donatı konulduğu durumda $0.5\sqrt{f_c'}$ veya yapı kıyı alanı gibi aşınmaya maruz ise $0.25\sqrt{f_c'}$ değerini aşmamalıdır.

2.3.5 Öngerilme kayıplarının hesaplanması

Sürtünme dışındaki tüm sebeplerden dolayı oluşan öngerilme kayıpları AASHTO 9.16.2.1 de verilen ifade ile hesaplanabilir.

$$\Delta f_s = SH + ES + CR_c + CR_s \tag{2.18}$$

Burada, Δf_s toplam öngerilme kayıplarını, SH betondaki büzülmeden dolayı oluşan öngerilme kayıplarını, ES betonun elastik kısalmasından kaynaklanan öngerilme kayıplarını, CR_c betondaki sünmeden kaynaklanan öngerilme kayıplarını ve son olarak CR_s ise öngerilme donatısının gevşemesinden kaynaklanan öngerilme kayıplarını ifade etmektedir.

2.3.5.1 Büzülme kaybı

Kimyasal değişiklikler ve kuruma nedeniyle betonda zamana bağlı olarak oluşan şekil değiştirmeler büzülme olarak adlandırılmaktadır. Betondaki büzülmeden dolayı oluşan kayıp AASHTO 9.16.2.1.1 de MPa biriminden aşağıdaki ifade ile tanımlanmıştır.

$$SH = 117.21 - 1.03RH \tag{2.19}$$

Burada RH yıllık ortalama bağıl nem oranını göstermektedir.

2.3.5.2 Elastik kısalma kaybı

Öngerilme kuvvetinden dolayı beton elemanların boylarının kısalmasına elastik kısalma denilmektedir. Elastik kısalmadan dolayı oluşan öngerilme kaybı AASHTO 9.16.2.1.2' ye göre aşağıdaki bağıntı ile verilmiştir.

$$ES = \frac{E_s}{E_{ci}} f_{cir}$$
(2.20)

Bu ifadede ES elastik kısalma kaybını, E_s öngerilme çeliğinin elastisite modülünü, E_{ci} betonun aktarma anındaki elastisite modülünü, f_{cir} ise aktarma anından hemen sonra zati yük ve öngerilme kuvvetinden dolayı öngerilme donatılarının ağırlık merkezinde meydana gelen beton gerilmesini göstermektedir.

2.3.5.3 Sünme kaybı

. - .

Kalıcı yüklerden dolayı betonda zamana bağlı olarak oluşan şekil değiştirmeye sünme denilmektedir. Sünmeden dolayı oluşan öngerilme kaybı AASHTO 9.16.2.1.2 de verilen ifade ile hesaplanabilir.

$$CR_c = 12f_{cir} - 7f_{cds}$$
 (2.21)

Bu bağıntıda CR_c sünme kaybını, f_{cds} öngerilme kuvveti uygulandığı andaki kiriş zati ağırlığı dışındaki diğer zati yüklerden dolayı öngerilme donatılarının ağırlık merkezinde oluşan beton gerilmesini ifade etmektedir.

2.3.5.4 Öngerilme donatısı gevşeme kaybı

Zamana bağlı olarak öngerilme donatısındaki gerilmede oluşan azalma donatının gevşemesi olarak adlandırılmaktadır. Öngerilme donatısındaki gevşeme genel olarak üretici firma tarafından belirlenmektedir. Bu değerin bilinmediği durumlarda öngerilme donatısındaki gevşeme kaybı düşük gevşemeli donatı için MPa biriminden AASHTO 9.16.2.1.4 de aşağıdaki şekilde verilmiştir.

$$CR_s = 34 - 0.1ES - 0.05(SH + CR_c)$$
(2.22)

Burada CR_s öngerilme donatısındaki gevşeme kaybını, ES elastik kısalma kaybını SH büzülme kaybını, CR_c ise sünme kaybını ifade etmektedir.

2.3.6 Eğilme taşıma gücü kontrolü

Bir kesit için gerekli görülen taşıma gücü, bütün yükleme kombinasyonlarına karşı koyabilen taşıma gücü olarak tanımlanabilir. Yapının tüm kesitleri bu yüklemelerden oluşabilecek kesit tesirlerini karşılayabilecek taşıma gücüne sahip olmalıdır. Bir kesit için hesaplanan eğilme taşıma gücü, AASHTO 9.14'de belirtilen dayanım azaltma katsayılarıyla çarpılarak elde edilir. Öngerilmeli prefabrik köprü kirişlerinde eğilme taşıma gücü, kompozit kesit ve prefabrik kesit olmak üzere iki durum için hesaplanmalıdır.

2.3.6.1 Dikdörtgen kesitlerin taşıma gücü hesap esasları

AASHTO 9.17.2'ye göre sadece öngerilmeli donatısı içeren dikdörtgen kesitler için eşdeğer basınç bloğu derinliği aşağıdaki bağıntı ile hesaplanmaktadır.

$$a = \frac{A_s^* \cdot f_{su}^*}{0.85 \cdot f_c^{'} \cdot b}$$
(2.23)

Buna göre a < t ve AASHTO 9.18.1'de verilen aşağıdaki şartı sağlayan kesitler dikdörtgen kesit olarak adlandırılır.

$$\frac{\rho^* f_{su}^*}{f_c} < 0.36\beta_1$$
 (2.24)

Buna göre dikdörtgen kesitler için, AASHTO 9.17.2'de verilen, aşağıdaki taşıma gücü formülü kullanılmaktadır.

$$\phi M_{n} = \phi \left[A_{s}^{*} f_{su}^{*} d \left(1 - 0.6 \frac{\rho^{*} f_{su}^{*}}{f_{c}} \right) \right]$$
(2.25)

Eğer denklem (2.24) ile verilen ifade sağlanmıyor ise AASHTO 9.18.1'de verilen formül ile kesitin taşıma gücü hesaplanabilir.

$$\phi M_n = \phi \left[\left(0.36\beta_1 - 0.08\beta_1^2 \right) f_c' b d^2 \right]$$
(2.26)

Kesitte öngerilme donatılarına ilave olarak yumuşak donatı da kullanılmış ise eşdeğer basınç bloğu derinliği AASHTO 9.17.2'de aşağıdaki şekilde verilmiştir.

$$a = \frac{A_s^* f_{su}^* + A_s f_{sy}}{0.85 f_c b}$$
(2.27)

Kesitte a < t ve (2.28) ile verilen şart sağlanmış ise kesit dikdörtgen kesit olarak tasarlanabilir.

$$\left(\frac{\rho f_{sy}}{f_c'}\right) \frac{d_t}{d} + \left(\frac{\rho^* f_{su}^{*}}{f_c'}\right) - \left(\frac{\rho' f_{y}'}{f_c'}\right) \le 0.36\beta_1$$
(2.28)

Buna göre öngerilme donatısı ile beraber betonarme donatısı konulan dikdörtgen kesitlerin taşıma gücü AASHTO 9.17.2'de aşağıdaki gibi ifade edilmiştir.

$$\varphi M_{n} = \varphi \left\{ A_{s}^{*} f_{su}^{*} d \left[1 - 0.6 \left(\frac{\rho^{*} f_{su}^{*}}{f_{c}^{'}} + \frac{d_{t}}{d} \frac{\rho f_{sy}}{f_{c}^{'}} \right) \right] + A_{s} f_{sy} d_{t} \left[1 - 0.6 \left(\frac{d}{d_{t}} \frac{\rho^{*} f_{su}^{*}}{f_{c}^{'}} + \frac{\rho f_{sy}}{f_{c}^{'}} \right) \right] \right\}$$
(2.29)

Eğer denklem (2.28) ile verilen ifade sağlanmıyor ise AASHTO 9.18.1'de verilen formül (2.26) ile kesitin taşıma gücü hesaplanabilir.

2.3.6.2 Tablalı kesitlerin taşıma gücü hesap esasları

Sadece öngerilmeli donatı içeren tablalı kesitler için eşdeğer basınç bloğu derinliği aşağıdaki bağıntı ile hesaplanmaktadır. AASHTO 9.17.3'e göre eşdeğer basınç bloğu

$$a = \frac{A_{sr} \cdot f_{su}^{*}}{0.85 \cdot f_{c}^{'} \cdot b^{'}}$$
(2.30)

ifadesiyle verilmiştir. Buna göre t > a ve AASHTO 9.18.1'de verilen aşağıdaki şartı sağlayan kesitler tablalı kesit olarak adlandırılır.

$$\frac{A_{sr} \cdot f_{su}^*}{b' \cdot d \cdot f_c} < 0.36\beta_1$$
(2.31)

Buna göre tablalı kesitler için, AASHTO 9.17.3'de verilen, aşağıdaki taşıma gücü formülü kullanılmaktadır.

$$\phi M_n = \phi \left\{ A_{sr} \cdot f_{su}^* \cdot d \left[1 - 0.6 \left(\frac{A_{sr} \cdot f_{su}^*}{b' \cdot d \cdot f_c'} \right) \right] + 0.85 f_c'(b - b')(t)(d - 0.5t) \right\}$$
(2.32)

Eğer denklem (2.30) ile verilen ifade sağlanmıyor ise AASHTO 9.18.1'de verilen formül ile kesitin taşıma gücü hesaplanabilir.

$$\phi M_n = \phi \left[\left(0.36\beta_1 - 0.08\beta_1^2 \right) f_c' b' d^2 + 0.85 f_c' \left(b - b' \right) t \left(d - 0.5t \right) \right]$$
(2.33)

Kesitte öngerilme donatılarına ilave olarak betonarme donatı da kullanılmış ise eşdeğer basınç bloğu derinliği t > a ve AASHTO 9.19'da verilen aşağıdaki şartı sağlayan kesitler tablalı kesit olarak tasarlanır.

$$\frac{A_{s}f_{sy}}{b'df_{c}'} + \frac{A_{sr}f_{su}^{*}}{b'df_{c}'} - \frac{A_{s}'f_{y}'}{b'df_{c}'} \le 0.36\beta_{1}$$
(2.34)

Buna göre öngerilme donatısı ile beraber betonarme donatı konulan dikdörtgen kesitlerin taşıma gücü AASHTO 9.17.2'de aşağıdaki gibi ifade edilmiştir.

$$\phi M_{n} = \phi \left\{ A_{sr} \cdot f_{su}^{*} \cdot d \left[1 - 0.6 \left(\frac{A_{sr} \cdot f_{su}^{*}}{b' \cdot d \cdot f_{c}} \right) \right] + A_{s} f_{sy} (d_{t} - d) + 0.85 f_{c}^{'} (b - b') (t) (d - 0.5t) \right\}$$
(2.35)

Eğer denklem (2.34) ile verilen ifade sağlanmıyor ise AASHTO 9.18.1'de verilen formül (2.33) ile kesitin taşıma gücü hesaplanabilir. Sadece öngerilmeli donatı kullanılmış tablalı kesitlerde

$$A_{sr} = A_s^* - A_{sf} \tag{2.36}$$

hem öngerilmeli donatı hem de yumuşak donatı kullanılmış tablalı kesitlerde,

$$A_{sr} = A_s^* + \left(\frac{A_s f_{sy}}{f_{su}^*}\right) - A_{sf}$$
(2.37)

şeklinde verilmiştir. Bu bağıntıda A_{sf} kesit başlığının gövde bölümü dışında kalan kesimlerindeki, öngerilmeli donatı miktarının alanını ifade etmektedir.

$$A_{sf} = \frac{0.85f_c'(b-b')t}{f_{su}^*}$$
(2.38)

2.3.6.3 Çelik gerilmesi

Öngerilme donatısı için verilen f_{su}^* değeri, detaylı analiz yaparak belirlenmemişse sadece öngerilmeli donatsı kullanılmış kesitlerde

$$f_{su}^* = f_s' \left[1 - \left(\frac{\gamma^*}{\beta}\right) \left(\frac{\rho \cdot f_s'}{f_c'}\right) \right]$$
(2.39)

bağıntısı ile, öngerilmeli donatıya ilaveten betonarme donatısı da kullanılan kesitlerde ise

$$f_{su}^{*} = f_{s}^{'} \left\{ 1 - \frac{\gamma^{*}}{\beta} \left[\frac{\rho^{*} f_{s}^{'}}{f_{c}^{'}} + \frac{d_{t}}{d} \left(\frac{\rho f_{sy}}{f_{c}^{'}} \right) \right] \right\}$$
(2.40)

şeklinde hesaplanabilir. Yukarıdaki bağıntılarla hesaplanan değerler hiçbir zaman öngerilme çeliği akma dayanımından, f_y^* , büyük olamaz. Bu bağıntıda verilen γ^* , öngerilme çeliğinin türüne bağlı bir katsayı olup AASHTO 9.1.2'de düşük gevşemeli çelikler için $\gamma^*=0.28$, gerilmesi azaltılmış çelikler için $\gamma^*=0.40$, donatı için $\gamma^*=0.55$ olarak alınmalıdır. β_1 ise beton kalitesine bağlı bir katsayı olup AASHTO 8.16.2.7'de

$$\beta_1 = 0.85$$
 , $f'_c \le 28MPa$
 $\beta_1 = 0.85 - (0.05(f'_c - 28)/7)$, $f'_c \ge 28MPa$ (2.41)

verilmiştir ve bu değer 0.65 den küçük olamaz.

2.3.7 Süneklik sınırları

2.3.7.1 Maksimum öngerilme donatısı

Öngerilmeli beton elemanlar, donatı akma gerilmesine ulaştığı zaman maksimum kapasitede olacak şekilde tasarlanmalıdır. Genel olarak, donatı oranı kesitin dikdörtgen ya da tablalı olması için sırayla aşağıdaki şartları sağlamalıdır.

$$\frac{\rho^* f_{su}^*}{f_c'} < 0.36\beta_1$$
 (2.42)

$$\frac{A_{sr} \cdot f_{su}^*}{b' \cdot d \cdot f_c'} < 0.36\beta_1$$
(2.43)

2.3.7.2 Minimum öngerilme donatısı

Kesitteki öngerilmeli ve betonarme donatı miktarı, kritik kesitin çatlama momenti değerinin 1.2 kat daha fazlasını sağlayacak şekilde olmalıdır. Kesit çatlama momenti değeri ise kompozit kesit için;

$$M_{cr}^{*} = S_{c} \left(f_{r} + f_{pe} \right) - M_{d/nc} \left(S_{c} / S_{b} - 1 \right)$$
(2.44)

bağıntısı ile prefabrik kesitler için ise yukarıda verilen ifadede S_c yerine S_b yazılarak elde edilen ifadeyle hesaplanabilir.

2.3.8 Kesme taşıma gücü kontrolü

Öngerilmeli elemanların kesme taşıma gücü, denklem (2.45) de verilen ifade ile hesaplanır. Burada V_u kesme kuvvetini, V_c betonun katkısını, V_s ise donatının taşıdığı kesme kuvvetini göstermektedir.

$$V_u \le \phi (V_c + V_s) \tag{2.45}$$

2.3.8.1 Betonun sağladığı kesme dayanımı

AASHTO 9.20.2.1'e göre betonun sağladığı kesme dayanımı V_c , hesaplanan V_{ci} ve V_{cw} değerlerinden küçük olanı seçilerek elde edilir.

$$V_{ci} = 0.05\sqrt{f_c'}b'd + V_d + \frac{V_i M_{cr}}{M_{max}}$$
(2.46)

bağıntısı ile hesaplanır. Burada V_d zati yüklerden ve katsayısız olarak oluşan kesme kuvvetini göstermektedir. Bu bağıntı ile hesaplanan değer $0.142\sqrt{f_c}b'd$ değerinden küçük olmamalıdır. Burada d değeri kompozit kesit yüksekliğinin (h) 0.8 katından küçük olmayacak şekilde alınacaktır. Kesitte dış yükler nedeniyle oluşan çatlama momenti M_{cr},

$$M_{cr} = \frac{I}{Y_t} \left(0.5 \sqrt{f_c'} + f_{pe} - f_d \right)$$
(2.47)

bağıntısı ile hesaplanabilir. Y_t kompozit kesit ağırlık merkezinin kesit alt ucuna olan mesafesini, f_d ise sabit yükler nedeniyle kesit alt ucunda oluşan çekme gerilmesini göstermektedir. M_{max} ve V_i katsayılı kombinasyonlardan elde edilen maksimum hesap momenti ve kesme kuvveti değerleridir.

$$V_{cw} = \left(0.292\sqrt{f_c'} + 0.3f_{pc}\right)b'd + V_p$$
(2.48)

eşitliği ile ifade edilir. Burada da d, 0.8h değerinden küçük alınmamalıdır. V_p öngerilme kuvvetinin düşey bileşenini, f_{pe} ise kompozit kesit ağırlık merkezinde, tüm kayıplardan sonra, dış yükler nedeniyle oluşan beton basınç gerilmesini ifade etmektedir. Yapılan bu çalışmada öngerilme donatıları düz çekildiğinden düşey bileşen oluşmamaktadır.

2.3.8.2 Kesme donatısının sağladığı kesme dayanımı

Kesme donatısının sağladığı kesme dayanımı,

$$V_s = \frac{A_v f_{sy} d}{s}$$
(2.49)

AASHTO 9.20.3.1 de yukarıdaki gibi ifade edilmiştir. Bu ifadede A_v belli bir s aralığındaki kesme donatısı alanını ve f_{sy} ise kesme donatısı karakteristik akma dayanımını göstermektedir. V_s değeri $0.66\sqrt{f_c}b'd$ ile hesaplanan değerden, d değeri ise 0.8h değerinden küçük olmalıdır.

Kesite konulacak minimum kesme donatısı alanı

$$A_{v} = \frac{0.34b's}{f_{sy}}$$
(2.50)

ifadesi ile mm² cinsinden hesaplanabilir.

2.3.9 Taşıma gücü dayanım azaltma katsayıları

Bir kesit için hesaplanan moment, kesme kuvveti ve normal kuvvete dair taşıma gücü aşağıda belirtilmiş azaltma katsayıları ile çarpılarak boyutlandırmaya esas taşıma gücü elde edilir. Taşıma gücü azaltma katsayısı Φ ,

Öngerilmeli elemanların eğilme taşıma gücü hesabında $\Phi = 1.00$ Öngerilmeli elemanların kesme taşıma gücü hesabında $\Phi = 0.90$

olarak alınabilir.

2.3.10 Sehim sınırları

Sehim hesapları, yapıdaki zati yükler, hareketli yükler, öngerilme kuvveti ve öngerilme kayıpları dikkate alınarak hesaplanmalıdır. AASHTO 9.11.3.1'e göre, hareketli yükler ve bu yüklerin neden olduğu dinamik etki altında, köprü üstyapısında oluşan maksimum sehim, açıklığın 1/800 den küçük olmalıdır. Ayrıca şehir merkezinde bulunan kısmen yayalar tarafından kullanılan köprüler için ise sehim değeri açıklığın 1/1000 den küçük olmalıdır. AASHTO 9.11.3.2'e göre, hareketli yükler ve bu yüklerin neden olduğu dinamik etki altında konsollarda meydana gelen sehim değeri açıklığın 1/300 den küçük olmalıdır. Ayrıca yaya kullanımında olan köprülerde ise bu değer 1/375 olarak genişletilebilir.

2.4 Köprü Altyapısının Tasarım Esasları

Çalışma konusu olan köprü için altyapı, kazıklı temel sistemi üzerine inşa edilen eliptik orta ayaklar ve onun üzerinde tabliyenin oturduğu başlık kirişi şeklinde tarif edilebilir. Altyapıyı oluşturan elemanların hesap ve tasarım esasları için AASHTO (2002) yönetmeliği kullanılmaktadır.

2.4.1 Basınç elemanları

Eğilme momenti ile birlikte basınç kuvvetine maruz kalan elemanların taşıma kapasitesi üzerine etkiyen normal kuvvetin etkisi dikkate alınarak hesaplanmalıdır. Yük katsayıları kullanılarak bulunan eksenel kuvvet P_u , tasarım eksenel yükü dayanımı $\Phi P_{n(max)}$ değerinden küçük olmalıdır. Buna göre spiral donatılı elemanlarda $\Phi = 0.75$ ve etriyeli elemanlarda $\Phi = 0.70$ olmak üzere sırayla P_u aşağıdaki şekilde hesaplanır.

$$P_{n(maz)} = 0.85 \left[0.85 f_c' (A_g - A_{st}) + f_y A_{st} \right]$$
(2.51)

$$P_{n(maz)} = 0.80 \left[0.85 f_c' \left(A_g - A_{st} \right) + f_y A_{st} \right]$$
(2.52)

Burada P_u , tasarım normal kuvvetini, A_g brüt kesit alanını, A_{st} kesitteki toplam donatı alanını, f_c' betonun basınç dayanımını ve f_y ise donatı çekme dayanımını ifade etmektedir. Bir tarafında ya da eğilme ekseninden aynı mesafede olan iki yüzde yerleştirilmiş donatılı dikdörtgen kesit için dengeli yük dayanımı ΦP_b ve dengeli moment dayanımı ΦM_b aşağıda verilen formüllerle hesaplanabilir.

$$\Phi P_b = \Phi \Big[0.85 f'_c b a_b + A'_s f'_s - A_s - f_y \Big]$$
(2.53)

$$\Phi M_{b} = \Phi \Big[0.85 f_{c}^{'} b a_{b} \Big(d - d^{"} - a_{b} / 2 \Big) + A_{s}^{'} f_{s}^{'} \Big(d - d^{"} - d^{"} \Big) + A_{s} f_{y} d^{"} \Big]$$
(2.54)

Burada,

$$a_{b} = \left(\frac{600 + f_{y}}{600}\right)\beta_{1}d \text{ ve } f_{s}' = 600\left[1 - \left(\frac{d'}{d}\right)\left(\frac{600 + f_{y}}{600}\right)\right] \le f_{y}$$
(2.55)

ifadeleriyle hesaplanabilir. Buna göre P_u ' nun P_b ' den büyük olması durumunda basınç kırılması aksi halde ise kesitte çekme kırılması meydana gelmektedir.

2.4.1.1 Narinlik etkisi

Basınç elemanının uzunluğu l_u, kiriş, döşeme ya da diğer yanal mesnet sağlayan eleman arasında kalan kısmın uzunluğu olarak tanımlanır. Yanal yer değiştirmesi önlenmiş basınç elemanlarında k, detaylı hesap yapılmayan durumlarda 1.0 alınabilir. Yanal yer değiştirmesi önlenmemiş elemanlarda ise k hesap yapılarak 1.0 den büyük değer elde edilir. Atalet yarıçapı detaylı hesap yapılamayan durumlarda, dikdörtgen kesitli elemanlarda kenar uzunluğunun 0.30 katı, dairesel elemanlarda ise çapın 0.25 katı olarak alınabilir.

Yanal yer değiştirmesi önlenmiş elemanlarda,

$$\frac{kl_{u}}{r} \le \left(34 - 12\frac{M_{1b}}{M_{2b}}\right)$$
(2.56)

yanal yer değiştirmesi önlenmemiş elemanlarda ise,

$$\frac{kl_u}{r} \le 22 \tag{2.57}$$

olması durumunda narinlik etkisi ihmal edilebilir. Bütün basınç elemanları için $kl_u/r > 100$ ise, açıklanan hesap yöntemi kullanılamaz. Basınç elemanları, katsayılı normal kuvvet P_u ve elastik analizden elde edilen katsayılı momente M_c 'ye göre boyutlandırılır. Buna göre,

$$M_c = \delta_b M_{2b} + \delta_s M_{2s} \tag{2.58}$$

ile hesaplanır. Burada,

$$\delta_b = \frac{C_m}{1 - \frac{P_u}{\Phi P_c}} \text{ ve } \delta_c = \frac{1}{1 - \frac{\sum P_u}{\Phi \sum P_c}}$$
(2.59)

şeklinde kritik burkulma yükü Pc ise,

$$P_{c} = \frac{\pi^{2} EI}{(kl_{u})^{2}}$$
(2.60)

ifadesiyle hesaplanır. AASHTO 8.16.5.2.7'ye göre yanal ötelenmesi önlenmiş elemanlarda $\delta_s = 1$ alınabilir. Yanal ötelenmesi önlenmemiş elemanlarda, δ_b yanal ötelenmesi önlenmiş eleman gibi δ_s ise yanal ötelenmesi önlenmiş eleman gibi hesaplanır. Daha doğru bir hesaplama için,

$$EI = \frac{\frac{E_c I_g}{5} + E_s I_s}{1 + \beta_d} \text{ ya da } EI = \frac{\frac{E_c I_g}{2.5}}{1 + \beta_d}$$
(2.61)

denklemleriyle hesaplanabilir. Burada β_d maksimum zati yük momentinin, maksimum toplam yük momentine oranı olup daima pozitiftir. Yanal ötelenmesi önlenmiş elemanlarda,

$$C_m = 0.6 + 0.4 \left(M_{1b} / M_{2b} \right) \tag{2.62}$$

ile hesaplanır fakat $C_m = 0.4$ 'den küçük olamaz. Diğer tüm durumlar için $C_m = 1$ alınır.

2.5 Sismik Tasarım

2.5.1 Hesap verileri

Açıklığı 150m.' ye kadar olan çelik ve betonarme köprülerin sismik tasarımı AASHTO IA da verilen dizayn şartlarına göre yapılmalıdır. Asma köprüler, kablolu köprüler, kemer tipi köprüler, zemine gömülü tipte köprüler ile hareketli mesnetli köprüler bu yönetmelik kapsamı dışındadır.

Tek açıklıklı köprüler ile deprem davranış kategorisi (DDK) A olan köprülerde kapsamlı bir deprem hesabına gerek duyulmaz.

2.5.1.1 Tasarım depremi

Tasarıma esas alınacak yerel ivme katsayıları deprem bölgesi haritalarından alınacaktır. Yerel ivme katsayıları 50 yıllık köprü ömrü içinde bir kere gerçekleşme olasılığı %10'u geçmeyen 475 yıl dönüş periyotlu deprem büyüklüğü için hazırlanmıstır.[19]

2.5.1.2 Köprü önem sınıflaması

Önem sınıflandırılması (OS) yer ivme katsayısı 0.29'dan büyük olan bütün köprülerde deprem davranış kategorisini (DDK) belirlemek amacıyla AASHTO IA 3.3 de aşağıdaki gibi verilmiştir.

Köprü Grubu	Önem Sınıfı
Önemli köprüler	Ι
Diğer köprüler	II

Çizelge 2.7 : Köprü önem sınıflaması (OS)

Köprülerin sınıflandırılmasında toplumsal fayda, sosyal güvenlik ve savunma gibi faktörler önemli rol oynar.

2.5.1.3 Deprem davranış kategorisi (DDK)

Her köprü Çizelge 2.8'de gösterildiği gibi, ivme katsayısı (A) ve önem sınıflandırılmasına (OS) bağlı olarak A ile D arasında değişen bir deprem davranış

kategorisine dahil edilecektir. Minimum analiz ve boyutlandırma şartları DDK' ya bağlı olarak belirlenecektir.

gineige neer behrein		-)
İvme Katsayısı	Önem	Sınıfı
(A)	Ι	II
A ≤ 0.09	А	А
$0.09 < A \le 0.19$	В	В
$0.19 < A \le 0.29$	С	С
0.29 < A	D	С

Çizelge 2.8 : Deprem davranış kategorisi (DDK)

2.5.1.4 Zemin etkisi

Zemin şartlarının köprü davranışına etkisini yansıtacak olan zemin etki katsayisi S, Çizelge 2.9 da verilmiştir.

Çizelge 2.9 : Zemin etki katsayısı (S)

Zemin Profil Tipi	S
Ι	1.0
II	1.2
III	1.5
IV	2.0

Zemin profillerinin fiziki özelliklerine bağlı zemin sınıflandırılması AASHTO IA 3.5 de aşağıdaki şekilde verilmiştir.

Çizelge	2.10	:	Zemin	profil	tipleri
---------	------	---	-------	--------	---------

Zemin Profil Tipi	Fiziki Özellikleri
Ι	Doğada şist veya kristal halinde bulunan herhangi özellikteki kayaç (böyle bir malzeme 760 m/s' den büyük bir makaslama dalga hızıyla veya başka uygun sınıflandırma yoluyla karakterize edilebilir; yada zemin derinliği 60 m den az olan ve baskın kayanın kararlı kum, çakıl veya sıkı kil tabakalı bir profildir.
II	Zemin derinliği 60 m yi aşan, zemin tipi baskın kayası kararlı kum, çakıl, sıkı kil tabakaları olan sıkı killi veya derin kohezyonsuz koşullara sahip bir profildir.
III	Kum karışmamış veya diğer kohezyonsuz zemin tabakalarına sahip olan veya olmayan, 9 m veya daha fazla, yumuşak orta sıkı killere kadar olan killerle karakterize edilen yumuşak orta sıkı killere ve kumlara sahip bir profildir.
IV	Yumuşak killi veya 12 m.den daha büyük derinlikte siltlere sahip bir profildir.Bu malzemeler 150 m/s den az bir makaslama dalga hızı ile karakterize edilebilir ve gevşek doğal tabakaları veya sentetik, işlenmemiş dolgu malzemesini içerebilir.

2.5.2 Deprem analiz yöntemi ve seçimi

Tek açıklıklı köprüler için detaylı bir deprem hesabı gerekli değildir. Ancak köprü üst yapısı ile kenar ayakların bağlantıları, her iki doğrultuda (enine ve boyuna) kenar ayak üzerindeki düşey mesnet reaksiyonlarının ivme katsayısı ile çarpılmasıyla bulunan kuvvetleri taşıyacak biçimde projelendirilecektir.(TCK) Ayrıca üst yapının mesnetlere oturma mesafelerinde de gerekli şartlar sağlanmalıdır.

Açıklık sayısı birden fazla olan köprüler için dört ayrı hesap yöntemi vardır. Çizelge 2.11 de DDK, köprü açıklık sayısı ve köprünün düzenli olup olmamasına bağlı olarak belirlenecek hesap yöntemleri verilmiştir.

Deprem Davranış Kategorisi	Düzenli Köprüler (2-6 Açıklıklı)	Düzenli Olmayan Köprüler (2 veya daha çok Açıklıklı)
А	Hesap gerekmez	Hesap gerekmez
B, C, D	Yöntem 1 veya Yöntem 2	Yöntem 3 veya Yöntem 4

Çizelge 2.11 : Hesap yönteminin seçimi

Tasarımcı isterse daha farklı bir yöntem uygulayabilir. Tasarım yöntemleri basitten karmaşığa doğru şu şekilde sıralanabilir.

- Eşdeğer statik deprem yöntemi (Yöntem 1)
- Tek modlu spektral yöntemi (Yöntem 2)
- Çok modlu spektral yöntemi (Yöntem 3)
- Zaman tanım alanı yöntemi (Yöntem 4)

Düzenli köprüler, açıklık boyunca kütle, rijitlik ve geometrisinde ani ve anormal değişiklikler olmayan (kenar ayaklar hariç) ve Çizelge 2.12' de verilen şartları sağlayan köprüler olarak tanımlanır ve bunun dışında kalan tüm köprüler düzenli olmayan köprü olarak adlandırılır.

Parametre		Düzenli Kö	prüler (2-6	Açıklıklı)	
Açıklık sayısı	2	3	4	5	6
Maksimum merkez açı (kurpdaki köprüler)	90	90	90	90	90
Açıklıktan açıklığa maks. açıklık boyu oranı	3	2	2	1.5	1.5
Açıklıktan açıklığa maksimum orta ayak rijitliği oranı	-	4	4	3	2

Çizelge 2.12 : Düzenli köprü şartları

2.5.3 Deprem elastik tepki katsayısı

Deprem etkilerinin elastik hesabında kullanılan deprem yükünü tanımlayan katsayıdır. Tepki spektrumu hem yerel depremi hem de bölge zemin koşullarını içerir. Elastik deprem kuvvetlerinin hesabında, köprünün düzenli olup olmaması (açıklık sayısına, geometrik karmaşıklığa) ve DDK'ya bağlı olarak elastik deprem tepki katsayısı C_s üç farklı hesap yöntemi için hesaplanabilir.

2.5.3.1 Tek modlu hesaplamada elastik deprem tepki katsayısı

Deprem etkisini hesaplamak için kullanılan elastik deprem tepki katsayısı

$$C_s = \frac{1.2A \cdot S}{T^{2/3}}$$
(2.63)

boyutsuz formülü ile hesaplanır. Burada A etkin yer ivme katsayısını, S Çizelge 2.9' da verilen bölge zemin katsayısını, T ise köprünün ilgili doğrultusundaki birinci doğal titreşim periyodunu ifade etmektedir.

2.5.3.2 Çok modlu hesaplamada elastik deprem tepki katsayısı

Köprünün m' ninci modu için elastik deprem tepki katsayısı

$$C_{sm} = \frac{1.2A \cdot S}{T_m^{2/3}}$$
(2.64)

ifadesiyle hesaplanabilir.

 C_s veya C_{sm} değerinin 2.5A' dan büyük alınmasına gerek yoktur. Zemin profil tipi 3 veya 4 için A \geq 0.3 olan bölgelerde ise C_s veya C_{sm} değerinin 2.0A' yı aşmasına gerek yoktur.

Zemin profil tipi 3 veya 4 olan bölgelerde çok modlu analizlerde hakim periyottan başka ve 0.3 saniyeden küçük diğer periyodlar için C_{sm} değeri

$$C_{sm} = A(0.8 + 4.0T_m) \tag{2.65}$$

formülü ile hesaplanabilir.

 $T_m > 4.0$ saniye olan köprüler için ise bu periyoda karşılık gelen C_{sm} değeri

$$C_{sm} = \frac{3A \cdot S}{T_m^{4/3}}$$
(2.66)

ifadesiyle hesaplanabilir.

2.5.4 Taşıyıcı sistem davranış katsayıları

Deprem davranış kategorisi B, C ve D sınıfına giren köprülerin, köprü elemanları ve bağlantılarının tasarımında kullanılacak deprem yükleri, elastik tesirlerin uygun

taşıyıcı sistem davranış katsayılarına (R) bölünmesi ile hesaplanacaktır. Çizelge 2.13' de çeşitli köprü elemanları için R değerleri verilmiştir.[19]

Altyapı ⁽¹⁾	R
Duvar tipi orta ayak ⁽²⁾	2.0
Betonarme kazıklı ayaklar	
a)Yalnız düşey kazık	3.0
b)Birkaç eğik kazık	2.0
Tek kolonlu ayaklar	3.0
Çelik veya beton-çelik bileşik kazıklı ayaklar	
a)Yalnız düşey kazıklar	5.0
b)Bir yada birden fazla eğik kazık	3.0
Çok kolonlu ayaklar	5.0
Bağlantılar ⁽⁴⁾	R
Üst yapı ile kenarayak arasında	0.8
Üstyapının bir açıklığındaki genleşme derzi	0.8
Kolonlar, kitle ayaklar veya kazık ayaklar ile başlık kirişi veya üstyapı arasında ⁽³⁾	1.0
Kolonlar veya kitle ayak ile temeller arasında (3)	1.0

Çizelge 2.13 : Taşıyıcı sistem davranış katsayıları (R)

(1) R faktörü altyapının iki dik ekseni için de kullanılacaktır.

- (2) Serbest yüksekliğin plandaki büyük boyuta oranı 2.5'den küçük olan elemanlar duvar tipi ortaayak olarak tanımlanır. Bu tip elemanlar, zayıf yönde, kolonlar için verilen koşullar göz önüne alınarak bir kolon gibi hesaplanabilir.
- (3) DDK C ve D sınıfına giren köprülerin bağlantılarının, kolonlarda veya kolonlu ayaklarda plastik mafsal oluşturan pekleşmeli moment tesirlerine göre hesaplanması önerilir. Bu kuvvetler çoğunlukla R faktörünün R=1 olarak kullanılması durumundaki kuvvetlerden önemli oranda küçüktürler.
- (4) Bağlantılar, bir yapısal bileşenden diğerine kesme ve eksenel aktaran mekanik bağlantılardır. Genellikle moment içermezler (mesnetler ve deprem takozlar gibi). Bu çizelgedeki R katsayıları sadece tutulmuş doğrultudaki elastik kuvvetlere uygulanır.

2.5.5 Elastik tesirler ve yer değiştirmeler

DDK B, C veya D sınıfına giren köprülerde, elastik tesirler ve yer değiştirmeler, Çizelge 2.11' de tanımlanan hesap yöntemi kullanılarak ve birbirine dik iki eksen boyunca birbirinden bağımsız olarak belirlenecektir. Tipik dik eksenler, köprünün boyuna ve enine eksenleri olmakla beraber, eksenlerin seçimi serbesttir. Kurbdaki köprülerde boyuna eksen, kenar ayak ortalarını birleştiren doğrultu olarak alınabilir. Ancak daha kritik doğrultuların olabileceği durum araştırılmalıdır.[19]

2.5.6 Enine ve boyuna deprem etkilerinin birleştirilmesi

Deprem hareketi, yönünün belirsizliği nedeniyle birbirinden bağımsız olarak hesaplanan boyuna ve enine deprem kuvvetlerinin birleştirilmesi gereklidir. Birbirine dik iki yöndeki elastik deprem kuvvetleri için hesaplanan tesirler, iki yükleme durumunu oluşturmak üzere aşağıdaki gibi birleştirilecektir.

- Yükleme Durumu 1: Ele alınan köprü elemanı için, eksenlerden biri doğrultusundaki elastik deprem kuvvetleri ve momentlerin mutlak değerinin %100' üne, aynı elemana ait olmak üzere diğer eksen doğrultusundaki elastik deprem kuvveti ve momentlerin mutlak değerlerinin %30'u eklenerek hesaplanacaktır.
- Yükleme Durumu 2: Yük durumu 1'deki esaslar, doğrultular değiştirilerek aynen uygulanacaktır.

Tasarıma esas elastik tesirlerin hesaplanmasında taşıyıcı sistem davranış katsayısı (R), sadece depremden kaynaklanan eğilme momenti tesirlerine uygulanacak, eksenel kuvvetlere, kesme kuvvetlerine ve diğer zati yüklerden kaynaklanan eğilme momentlerine uygulanmayacaktır. Kolon ve perdelerden temellere geçen eğilme momentleri hesabında elastik yöntem kullanıldığında, DDK B olan köprülerde, R değeri Çizelge 2.13' de verilen değerin yarısı (R/2), C ve D kategorisi köprülerde R=1 alınacaktır. Ancak istenildiğinde, kolon ve perde alt uçlarının pekleşmeli moment kapasiteleri ve buna karşılık gelen kesme, moment ve eksenel kuvvet tesirleri temel ve kazık tasarımlarında kullanılabilir.

2.5.7 Minimum oturma boyları

Köprülerde, depremde köprü üst yapısınının aşağıya düşmesini önlemek için kiriş oturma boyu Çizelge 2.14' de belirtilen bağıntılar ile hesaplanacak değerden az olmayacaktır. Kiriş oturma boyu, mesnetlenmenin en kısa mesafesi göz önüne alınarak belirlenecek olup, sadece üst yapının süreksiz olduğu kenar ve orta ayaklarda bu koşullar aranacaktır. Üst yapının sürekliliği, açıklıklar arasında sürekliliği sağlayan döşeme elemanının tasarım ilkelerine göre belirlenecektir.

DDK	Minimum Gerekli Kiriş Oturma Boyu
A ve B	$(203+1.67L+6.66H)(1+0.000125\phi^2)$ (mm)
C ve D	$(305 + 2.50L + 10H)(1 + 0.000125\phi^2)$ (mm)

Cizelge 2.14 : Minimum oturma boyları

Burada L, genleşme derzleri sadece kenar ayaklarda olan köprülerde, köprü toplam boyu (m); diğer köprülerde genleşme derzleri arasındaki tabliye boyu (genleşme derzli orta ayaklarda söz konusu tabliye boylarının ortalaması alınmalıdır), H metre cinsinden, genleşme derzleri arasındaki ayakların ortalama yüksekliği; (temel üst seviyesi ile mesnet kotu arasındaki kot farkı), Φ ise köprünün verevlik açısını (köprü eksenine dik doğrultuya göre derece cinsinden) ifade etmektedir.

Köprü ayaklarının üzerine deprem takozları yapılarak kirişlerin enine ve boyuna yönde büyük yerdeğiştirmeler yapmasına engel olunacaktır. Özellikle C ve D kategorisine giren köprülerde genleşme derzlerinde ayrıca düşmeyi önleyici ek önlemler alınacaktır.

2.5.8 DDK C ve D köprüleri için tasarım kuvvetleri

2.5.8.1 Arttırılmış proje kuvvetleri

a) Yapısal elemanlar ve bağlantılar için arttırılmış tasarım kuvvetleri

Taşıyıcı eleman ve bağlantılar için kullanılacak tasarım kuvvetleri aşağıda sıralanan durumlar için geçerlidir.

- Üst yapı dilatasyon derzleri ve üst yapı ile taşıyıcı alt yapı arasındaki bağlantılar.
- Kolonlarının veya orta ayakların alt noktalarına kadar olan kısımları (temel, kazık başlıkları ve kazıklar hariç olmak üzere).
- Üstyapıyı kenar ayaklara bağlayan bağlantılar.

Yukarıda sıralanan taşıyıcı elemanlar için kullanılacak deprem tasarım kuvvetleri, yükleme durumu 1 veya yükleme durumu 2 de hesaplanan elastik deprem kuvvetlerinin, uygun olarak seçilmiş R katsayısına bölünmesi ile elde edilir. Bu şekilde bulunan deprem kuvvetleri aşağıda gösterildiği gibi diğer kuvvetlerle birleştirilir. Deprem kuvvetlerinin tersinir (pozitif ve negatif) olduğuna ve her bir bileşen için maksimum yüklemenin aşağıdaki gibi hesaplandığına dikkat edilmelidir.

$$GrupY\ddot{u}k = 1.0(D + B + SF + E + EQM)$$
(2.67)

Bu ifadede D zati yükleri, B suyun kaldırma kuvvetini, SF akıntı yükünü, E toprak yükünü, EQM ise yukarıda açıklandığı gibi hesaplanan deprem kuvvetleridir.

Yapının her bir bileşeni, Bölüm 2.2'de verilen yükleme kombinasyonları ile bu bölümde verilen ek yüklemeleri taşıyacak şekilde boyutlandırılacaktır. Servis yüklerine göre hesap yapılması halinde emniyet gerilmeleri çelik için %50, betonarme için %33 oranında arttırılabilir.

b) Temeller için arttırılmış tasarım kuvvetleri

Temeller, kazık başlıkları ve kazık grupları için deprem tasarım kuvvetleri, yükleme durumu 1 ve yükleme durumu 2'den elde edilen kuvvetlerin, Çizelge 2.13' de verilen R katsayısına bölünmesi ile elde edilecektir. Bu artırılmış kuvvetler aşağıda gösterildiği gibi diğer kuvvetlerle birleştirilir.

$$Grup Y \ddot{u}k = 1.0(D + B + SF + E + EQM)$$
 (2.68)

Bu ifadede D zati yükleri, B suyun kaldırma kuvvetini, SF akıntı yükünü, E toprak yükünü, EQM ise yükleme durumu 1 ve yükleme durumu 2'den elde edilen, 1.0 eşit R katsayısına bölünerek artırılmış elastik deprem kuvvetidir.

2.5.8.2 Kolon veya orta ayaklarda plastik mafsallaşmadan doğan kuvvetler

Kolonun ön tasarımı tamamlandıktan sonra, kolonların alt ve üst uçlarında meydana gelecek mafsallaşmaların doğurduğu kuvvetler hesaplanmalıdır.

a) Tekil kolon veya orta ayaklar için tasarım kuvvetleri

Kuvvetler kolonun her iki esas ekseni boyunca, orta ayak ve başlık kirişi için zayıf doğrultuda aşağıdaki gibi hesaplanmalıdır.

Adım 1: Kolonun plastik moment taşıma kapasitesi belirlenir. Betonarme kolonlar için dayanım azaltma katsayısı (φ) 1.3'e eşit alınır. Her iki malzeme için yükleme durumu 1 ve yükleme durumu 2'den elde edilen maksimum elastik kolon eksenel yüküne kolonun kendi yükü ilave edilir. Adım 2: Kolon plastikleşme momentleri kullanılarak kolonlarda meydana gelecek kesme kuvvetleri hesaplanır. Kolonun temel seviyesi yer altı seviyesinin belirgin olarak altındaysa, temelin üst tarafında plastik mafsal oluşması ihtimaline dikkat edilmelidir. Eğer bu durum gözlenirse kolon kesme kuvvetini hesaplamak için mafsallar arasındaki kolon boyu kullanılmalıdır.

Kolonların boyutlandırılmasında kullanılacak kesit tesirleri, normal kuvvet; yükleme durumu 1 ve 2'den elde edilen azaltılmamış maksimum ve minimum sismik normal kuvvete zati yükler eklenerek, moment; adım 1' de hesaplandığı gibi, kesme kuvveti ise adım 2'de hesaplandığı gibi elde edilebilir.

İki veya daha fazla kolondan meydana gelen orta ayaklar

- b) İki veya daha fazla kolona sahip gruplar için kuvvetler, çerçeve düzlemine dik ve çerçeve düzleminde hesaplanmalıdır. Çerçeve düzlemine dik kuvvetler Bölüm 2.5.8.2a'ye uygun olarak tekil kolonlar gibi hesaplanabilir. Çerçeve düzleminde ise kuvvetler aşağıdaki gibi hesaplanır.
 - Adım 1: Kolonun plastik moment taşıma kapasitesi belirlenir. Betonarme kolonlar için dayanım azaltma faktörü (φ) 1.3'e eşit alınır ve çelik kolonlar için akma dayanımının 1.25 katı kullanılır. Her iki malzeme için yükleme durumu 1 ve yükleme durumu 2'den elde edilen maksimum elastik kolon eksenel yüküne kolonun kendi yükü ilave edilir.
 - Adım 2: Kolon plastikleşme momentleri kullanılarak kolonlarda meydana gelecek kesme kuvvetleri hesaplanır. Gruba gelen maksimum kesme kuvveti kolonlardaki kesme kuvvetleri toplanarak elde edilir.
 - Adım 3: Grup kesme kuvvetini, grubun üst noktasına (üstyapı kütlesinin toplandığı yer) uygulanarak kolon plastik momentleri oluştuğunda, kolonlarda devrilmeden ötürü eksenel kuvvetler belirlenir.
 - Adım 4: Bu kolon eksenel kuvvetlerini, zati yükler ile birleştirerek yeniden kolon plastik momentleri belirlenir. Bu yeni plastik momentle kolon kesme kuvvetleri, ve grup için maksimum kesme kuvveti

hesaplanır. Grup için bulunan yeni değer öncekinin %10'u dahilinde değilse, yeni değerler kullanılarak adım 3'e geri dönülür ve hesaplamaya devam edilir.

Kolonların tasarımında kullanılacak kesit tesirleri, normal kuvvet; adım 3'den elde edilen maksimum ve minimum kuvvete zati yükler eklenerek, moment; maksimum normal kuvvet kullanılarak elde edilen plastikleşme momentinin betonarme elemanlar için 1.3 değerinde dayanım azaltma faktörüne bölünmesi ile elde edilir, kesme kuvveti ise plastikleşme momentine karşı gelen kuvvet, olarak belirlenebilir.

c) Kolon ve kazık grubu tasarım kuvvetleri

Kolon ve kazık grupları için tasarım kuvvetleri, eksenel kuvvet; maksimum veya minimum tasarım kuvveti Bölüm 2.5.6 'da belirtilen elastik tasarım değerlerine zati yük eklenerek, veya Bölüm 2.5.8.2b'de belirtilen ve kolon plastikleşme momentine denk değerlerdir. Genellikle, plastikleşme momentine denk değerler daha küçüktür, moment; Bölüm 2.5.8.1'de tanımlanan artırılmış tasarım momentleri, kesme kuvveti; kolon için 1 değerinde bir R çarpanı kullanılarak Bölüm 2.5.8.1'den bulunan elastik tasarım değeri veya Bölüm 2.5.8.2'de belirtildiği gibi kolonun plastikleşme momentine denk değerdir. Genellikle, kolonun plastikleşmesine denk gelen değer daha küçüktür.

d) Orta ayak tasarım kuvvetleri

Orta ayağın zayıf doğrultusunda kolon olarak tasarlanması durumu dışında, tasarım kuvvetleri Bölüm 2.5.8.1'de belirtilenlere uygun olmalıdır. Orta ayak kolon olarak tasarlanmışsa, zayıf doğrultudaki tasarım kuvvetleri Bölüm 2.5.8.2c'de anlatıldığı gibi hesaplanacaktır ve AASHTO I-A 7.6' daki tüm kolon şartlarına uygun olmalıdır.

3. KÖPRÜLERİN DEPREM PERFORMANSLARININ DOĞRUSAL OLMAYAN ANALİZ YÖNTEMLER İLE BELİRLENMESİ

Yapı sistemlerinin deprem etkisi altında davranışının ve hasar performansının gerçekçi bir biçimde değerlendirilebilmesi için, yönetmeliklerde standart olarak kullanılan "dayanıma göre değerlendirme ve tasarım" ilkesinin yerine "şekildeğiştirmeye göre değerlendirme ve tasarım" ilkesi kullanılmaya başlanmıştır. Geleneksel doğrusal analiz yöntemleri yerine doğrusal olmayan analiz yöntemlerinin kullanıldığı bu yaklaşım, mevcut veya güçlendirilen yapıların deprem performanslarının belirlenmesi için de bu yöntem kullanılmaktadır [2].

3.1 Deprem Etkisi Altında Performans Değerlendirmesi

Mevcut ve/veya güçlendirilen köprü ve viyadüklerin deprem etkisi altındaki performanslarının değerlendirilmesi için başlıca iki temel yöntem olan, dayanıma göre performans değerlendirmesi ve şekildeğiştirmeye göre performans değerlendirmesinden söz edilebilir.

3.1.1 Dayanıma göre performans değerlendirmesi

Dayanıma göre performans değerlendirmesi, prensip olarak yeni köprü ve viyadükler için kullanılan AASHTO benzeri yönetmeliklerdeki "dayanıma göre tasarım" yaklaşımını esas almaktadır. Hedeflenen performansa göre tanımlanan deprem etkisi altında taşıyıcı sistemin lineer elastik analizi sonucunda elde edilen iç kuvvetlerin bu "değişim katsayıları"na bölünmesi ile, depremin ilgili eleman veya kesitteki "dayanım istemi"nin tanımlanabileceği öngörülür. Daha sonra bu istem büyüklüğü, ilgili eleman veya kesitteki "dayanım kapasitesi" ile karşılaştırılması sonucunda "dayanıma göre performans değerlendirmesi" gerçekleştirilmiş olur. Dayanıma göre performans değerlendirmesi yaklaşımının, proje kapsamındaki standart alt ve üst geçit köprüleri ile seçilecek diğer bazı köprülere de uygulanabileceği öngörülmektedir. Bu uygulamalarda AASHTO'ya göre 475 yıllık dönüş periyodlu (50 yılda aşılma olasılığı %10 olan) deprem düzeyinin esas alınması ve yine AASHTO'da verilen eleman bazlı R katsayılarının kullanılması uygun olacaktır [2].

3.1.2 Şekildeğiştirmeye göre performans değerlendirmesi

Şekildeğiştirmeye göre performans değerlendirmesi, deprem etkisi altında meydana gelebilecek olası hasarın doğrudan tahmin edilebilmesini sağlaması bakımından "doğru ve gerçekçi" olan değerlendirme yaklaşımıdır. Bu yaklaşımın ilk aşamasında, hedeflenen performansa göre tanımlanmış bulunan belirli bir "deprem düzeyi" için doğrusal olmayan analiz yapılarak, taşıyıcı sistemde meydana gelen "plastik şekildeğiştirme (deformasyon) istemleri" ile bunlarla uyumlu "yerdeğiştirme ve iç kuvvet istemleri" belirlenir. Daha sonra plastik şekildeğiştirme istemleri, hedeflenen performans düzeyleri için tanımlanmış bulunan "plastik şekildeğiştirme kapasiteleri" ile karşılaştırılır. Buna ek olarak gevrek davranış modlarına ilişkin olarak elde edilen "iç kuvvet istemleri"nin (örneğin kesme kuvveti istemlerinin), hedeflenen performans düzeyleri için tanımlanmış bulunan "iç kuvvet kapasiteleri" ile karşılaştırması yapılarak taşıyıcı sistem elemanlarının deprem etkisi altındaki gerçek performansı belirlenmiş olur [2].

3.1.3 Şekildeğiştirmeye göre değerlendirmede hedeflenen performans ve deprem düzeyleri

Şekildeğiştirmeye göre performans değerlendirmesi kapsamında, köprü ve viyadükler için iki farklı deprem düzeyi altında aşağıda tanımlanan performans düzeylerinin gerçekleşmesi öngörülmektedir:

Minimum hasar performans düzeyi:

Bu performans düzeyi, 50 yılda %50 aşılma olasılıklı veya ortalama deterministik deprem etkisi altında köprü veya viyadükten beklenen deprem performansını ifade etmektedir. Öngörülen deprem, ilgili köprü ve viyadüğün servis ömrü boyunca görmesi olasılığı çok yüksek olan bir deprem düzeyini temsil etmektedir. S1 deprem düzeyi olarak tanımlanan bu düzeyde, köprü ve viyadüklerin, nerede ise ihmal edilebilecek düzeyde, minimum hasar görmelerine izin verilmektedir. Köprü veya viyadük, depremden hemen sonra tüm performansı ile hizmet verebilecek durumdadır.

Kontrollu hasar performans düzeyi:

Bu performans düzeyi, 50 yılda %2 aşılma olasılıklı deprem etkisi altında köprü veya viyadükten beklenen deprem performansını ifade etmektedir. Öngörülen deprem, ilgili köprü ve viyadüğün servis ömrü boyunca aşılma olasılığı çok az olan, seyrek ve çok şiddetli bir deprem düzeyini temsil etmektedir. S2 deprem düzeyi olarak tanımlanan bu düzeyde, köprü ve viyadüklerin belirli elemanlarında önemli derecede doğrusal olmayan deformasyona izin verilmekte, ancak meydana gelebilecek hasarın, köprü ve viyadüğün genel stabilitesini etkilemeyecek düzeyde ve makul bir süre içinde onarılabilir düzeyde olması öngörülmektedir [2].

3.2 Nonlineer Davranışın Modellenmesi

3.2.1 Plastik mafsal hipotezi

Köprü ve viyadüklerin doğrusal olmayan davranışlarının modellenmesinde, geleneksel plastik mafsal hipotezinden yararlanılması öngörülmektedir. Bu hipotez plastik şekildeğiştirmelerin yapı elemanlarının belirli bölgelerinde "yığılı (konsantre)" biçimde oluşacağı ve bu bölge boyunca sabit olarak alınabileceği varsayımına dayanır. Plastik mafsal olarak adlandırılan noktasal eleman ise bu bölgenin tam ortasına yerleştirilir. Plastik mafsal hipotezi, gerek binalarda, gerekse köprü ve viyadüklerde deprem etkisi altında yapılan nonlineer analiz ile şekildeğiştirmeye göre performans değerlendirmesi uygulamalarında yaygın olarak kullanılmaktadır [2].

3.2.2 Plastik mafsal boyu

Plastik mafsal hipotezi uyarınca plastik şekildeğiştirmelerin yığılı ve sabit olarak oluşacağı varsayılan bölgenin uzunluğu, diğer deyişle plastik mafsal boyunun tanımlanması için literatürde pek çok amprik bağıntı mevcuttur. Köprü ve viyadük ayakları için yaygın olarak kullanılan ve köprü deprem yönetmeliklerinde yer alan bağıntı aşağıda verilmiştir.

$$L_p = 0.08H + 0.022f_y d_b \ge 0.044f_y d_b$$
(3.69)

Burada Lp plastik mafsal boyunu (mm), H konsol ayak boyunu veya ayak tabani ile moment sıfır noktası arasındaki uzunluğu (mm), f_y ayak kesitindeki tipik donatının karakteristik akma dayanımını (MPa), d_b ise çapını (mm) göstermektedir [2].

3.2.3 Plastik mafsal kesitinde moment-eğrilik ve moment-plastik dönme ilişkileri

Her bir plastik mafsal kesitinde, "Mander sargılı/sargısız beton modeli" ve pekleşmeyi de içeren donatı çeliği gerilme-birim şekildeğiştirme ilişkisinden yararlanılarak eksenel kuvvete bağlı moment-eğrilik diyagramları çizilecek ve bu diyagramlar uygun biçimde "iki doğrulu (bilineer)" moment-eğrilik diyagramlarına dönüştürülecektir (Şekil 3.1). İki doğrulu diyagramdaki ilk doğrunun eğimi (EI)₁ = M_y / κ_y , doğrusal olmayan analizin ilk aşamasında yapılacak olan doğrusal analizde "eşdeğer kesit rijitliği (çatlamış kesit rijitliği)" olarak gözönüne alınacaktır. Burada M_y , ilgili kesitteki eşdeğer akma momentini (plastik momenti) göstermektedir [2].

Şekil 3.1 : İki doğrulu moment-eğrilik diyagramı

İki doğrulu moment-eğrilik diyagramının ikinci doğrusunun eğimi $(EI)_2$ ise plastik mafsal boyu L_p 'ye bölünerek, plastik mafsalı temsil eden "moment-plastik dönme" diyagramının eğimi olarak tanımlanır (Şekil 3.2).

Şekil 3.2 : Moment-plastik dönme diyagramı

3.2.4 Akma yüzeyleri

Köprü veya viyadükte düşey konsol ayakların bulunması ve üstyapının neopren veya benzeri mesnetlerle altyapıya oturması durumunda, ayakların eksenel kuvvetleri pratik olarak deprem etkisinden bağımsız olarak sadece düşey yüklerden oluşacağından her ayak için tek bir moment-eğrilik veya moment-plastik dönme diyagramının çizimi yeterli olacaktır. Ancak ayakların birer çerçeve olarak düzenlenmesi durumunda, eksenel kuvvetlerin analiz adımları sırasında M_v momentini sürekli olarak etkileyecek olması nedeni ile akma durumundaki momenteksenel kuvvet ilişkisini simgeleyen kesit "akma yüzeyleri" nin çizilmesi gerekli olacaktır. Bu yüzeyler, tek doğrultulu deprem davranışı durumunda akma eğrilerine (moment-eksenel kuvvet karşılıklı etki diyagramları) indirgenirler. Betonarme kesitler için akma yüzeylerinin elde edilmesinde, maksimum beton basınç birim sekildeğiştirmesi 0.0035, donatı çeliğinin ulaşabileceği maksimum birim şekildeğiştirme ise 0.015 alınabilir [2].

3.3 Doğrusal Olmayan Deprem Analizi Yöntemleri

Şekildeğiştirmeye göre değerlendirmede taşıyıcı sistemin doğrusal olmayan analizi esastır. Bu analiz zaman tanım alanında veya yaklaşık olarak itme analizi şeklinde gerçekleştirilir [2].

3.3.1 Zaman tanım alanında doğrusal olmayan analiz

Bu analiz türü, köprü veya viyadüğün deprem yer hareketi altındaki hareket denkleminin, doğrusal olmayan iç kuvvet-şekildeğiştirme bağıntıları kullanılarak zaman tanım alanında doğrudan entegrasyonuna karşı gelir. Bu bağlamda yukarıda tanımlanan doğrusal olmayan davranış modelleri zaman tanım alanındaki analiz için de aynen geçerlidir, ancak her bir kesit için histeresis ilişkilerinin de ayrıca tanımlanmış olması gereklidir [2].

Zaman tanım alanında analiz için köprünün bulunduğu yerin deprem ve zemin özelliklerini temsil eden gerçek veya benzeştirilmiş deprem kayıtlarının elde olması veya türetilmiş olması gereklidir. Çözümler kullanılan kaydın özelliklerine göre değişim göstereceğinden, bu tür analiz yaklaşımında birden fazla (en az üç veya yedi) kaydın kullanılması ve elde edilen sonuçların bir istatistik süreçten geçirilmesi öngörülmektedir. Pratik olarak gerçekleştirilmesi güç olan bu gereksinimler nedeni ile, zaman tanım alanında doğrusal olmayan analiz uygulamada yaygın olarak kullanılmamakta, ancak aşağıda tanımlanan doğrusal olmayan itme analizinin mümkün olamadığı özel durumlarda kullanılma yoluna gidilmektedir [2].

3.3.2 Doğrusal olmayan itme analizi

Doğrusal olmayan itme analizi (pushover analizi), son on yılda mevcut binaların ve köprülerin şekildeğiştirmeye göre performans değerlendirmesi için yaygın olarak kullanılan yaklaşık, ancak pratik bir doğrusal olmayan analiz yöntemidir. Bu analiz yaklaşımında genellikle zaman tanım alanındaki analizde de kullanılmakta olan doğrusal olmayan idealleştirme yöntemleri uygulanmakta, ancak zaman tanım alanındaki analizden farklı olarak, deprem etkisi basit biçimde "deprem spektrumu" ile tanımlanabilmektedir [2].

Doğrusal olmayan itme analizi, binalar için yenilenen 2007 Deprem Yönetmeliği'nin 7. Bölümünde de yer almaktadır. "Artımsal Eşdeğer Deprem Yükü Yöntemi" olarak adlandırılan itme analizi yönteminin en önemli sakıncası, taşıyıcı sistemin davranışının tek bir doğal titreşim modu tarafından temsil edilmesidir. Bu nedenle yöntem, enine deprem davranışı simetrik veya simetriğe yakın olan köprü ve viyadükler dışında ihtiyatla kullanılmalıdır. Köprünün boyuna doğrultusunda ise (kurbdaki köprüler dışında) genellikle iyi sonuç verir. SAP 2000 yazılımında yer alan doğrultuya bağımlı Ritz vektörlerinden türetilen eşdeğer mod şeklinin köprülerin enine doğrultudaki davranışı bakımından standart mod şekline oranla daha iyi sonuç verdiği görülmüştür [2].

3.4 Köprü Elemanlarında Şekildeğiştirme Hedeflerinin Belirlenmesi

3.4.1 Plastik eğrilik ve toplam eğrilik hedeflerinin belirlenmesi

Herhangi bir kesitte kesitte elde edilen θp plastik mafsal dönmesine bağlı olarak plastik eğrilik hedefi, aşağıdaki bağıntı ile hesaplanacaktır.

$$\kappa_p = \theta_p / L_p \tag{3.2}$$

Mander beton modeli (sargılı veya sargısız) ile pekleşmeyi de gözönüne alan donatı çeliği modeli kullanılarak elde edilen iki doğrulu (bi-lineer) moment eğrilik ilişkisi ile tanımlanan κ_y eşdeğer akma eğriliği, denklem (3.2) ile tanımlanan κ_p plastik eğrilik istemine eklenerek, kesitteki κ_t toplam eğrilik hedefi elde edilecektir [2].

$$\kappa_t = \kappa_y + \kappa_p \tag{3.3}$$

Şekil 3.3 : Toplam eğrilik hedefinin elde edilmesi

3.4.2 Beton ve donatı çeliğinde birim şekildeğiştirme hedeflerinin belirlenmesi

Betonarme sistemlerde betonun basınç birim şekildeğiştirmesi hedefi ile donatı çeliğindeki birim şekildeğiştirme hedefi, denklem (3.3) ile tanımlanan toplam eğrilik hedefine göre, ilgili kesit için Mander beton modeli (sargılı veya sargısız) ile

pekleşmeyi de gözönüne alan donatı çeliği modeli kullanılarak elde edilen momenteğrilik ilişkisinden hesaplanacaktır [2].

3.4.3 Elastomer mesnetlerin şekildeğiştirme hedeflerinin belirlenmesi

Elastomer köprü mesnetlerinin şekildeğiştirme hedefleri aşağıdaki tanıma göre hesaplanacaktır.

$$\tan \gamma_m = \Delta_m / h_m \tag{3.4}$$

Burada γ_m mesnedin kayma şekildeğiştirmesi açısını, Δ_m mesnedin üstü ve altı arasındaki yerdeğiştirme farkını, h_m ise net elastomer (kauçuk) kalınlığını göstermektedir [2].

3.5 Şekildeğiştirme ve iç kuvvet kapasiteleri

3.5.1 Beton ve donatı çeliği birim şekildeğiştirme kapasiteleri

Yukarıda 3.1.3' de tanımlanan performans düzeyleri ile bunlara karşı gelen deprem düzeylerinde sünek davranış için yapılacak performans değerlendirmesinde kullanılmak üzere, betonarme kesitlerde izin verilen birim şekildeğiştirme sınırları Çizelge 3.1'de tanımlanmıştır. Bu değerler, literatürde köprüler için yapılan teorik ve deneysel çalışmaların sonuçları esas alınarak tanımlanmıştır [2].

Performans Düzeyi / Deprem Düzeyi	Sargısız Betonaı İçin Birim Şeki Sınırla	rme Kesitler ldeğiştirme arı	Sargılı Betonarme Kesitler İçin Birim Şekildeğiştirme Sınırları	
r v	Beton (basınç)	Çelik	Beton (basınç)	Çelik
Minimum Hasar / S1 depremi	0.004	0.015	0.004	0.015
Kontrollü Hasar / S2 depremi	0.004	0.060	0.018	0.060

Çizelge 3.1 : Betonarme kesitler için birim şekildeğiştirme sınırları

Çizelgeden görüleceği üzere beton basınç birim şekildeğiştirmesi sargısız betonarme kesit için her iki performans / deprem düzeyinde de 0.004 olarak tanımlanmakta, sargılı durumda ise (Minimum Hasar/S₁ Depremi) durumu için yine 0.004 olarak alınmakta, ancak (Kontrollu Hasar/S₂ Depremi) durumunda bu değerin 0.018'e kadar çıkmasına izin verilmektedir. Sargılı kesit, ilgili köprü tasarım yönetmeliğindeki sargı koşulunu sağlayan kesit olarak tanımlanmaktadır. Donatı çeliğindeki birim şekildeğiştirme ise sargılamadan bağımsız olarak, (Minimum Hasar/S₁ Depremi)

durumu için 0.015, (Kontrollu Hasar/S₂ Depremi) durumu için 0.06 olarak verilmiştir. [2].

3.5.2 Kesme kuvveti kapasitesi

Her iki performans/deprem düzeyinde de gevrek kesme kırılmasına göre performans değerlendirmesi yapılacaktır. Kesme kuvveti istemi ile karşılaştırmada esas alınacak kesit kesme kuvveti kapasitesi V_e aşağıdaki şekilde hesaplanacaktır [2].

$$V_e = V_c + V_s + V_p \tag{3.5}$$

Burada V_c , V_s ve V_p sırası ile betonun, çeliğin ve kesite etkiyen eksenel kuvvetin kesme kuvveti kapasitesine katkılarını göstermektedir. Çeliğin katkısı, karakteristik dayanım esas alınarak TS-500' e göre belirlenecektir. Betonun katkısı ise aşağıdaki bağıntı ile hesaplanacaktır.

$$V_{c} = 0.80A_{g}k_{c}\sqrt{f_{ck}}$$
(3.6)

Burada A_g kesitin brüt alanını (mm²), f_{ck} karakteristik beton basınç dayanımını (MPa), k_c ise eğrilik sünekliği istemine bağlı olarak aşağıda tanımlanan katsayıyı göstermektedir. Bu bağıntı ile hesaplanan V_c'nin birimi (N)'dır.

$$k_c = 0.288$$
 , $(\mu_{\varphi} \le 3)$ (3.7)

$$k_c = 0.432 - 0.048\mu_{\varphi}$$
 , $(3 < \mu_{\varphi} \le 7)$ (3.8)

$$k_c = 0.137 - 0.0059\mu_{\varphi}$$
 , $(7 < \mu_{\varphi} \le 15)$ (3.9)

$$k_c = 0.0485$$
 , $(15 < \mu_{\phi})$ (3.10)

Yukarıdaki bağıntılarda μ_{ϕ} kesitin eğrilik sünekliği hedefini göstermektedir.

$$\mu_{\varphi} = \kappa_t / \kappa_y \tag{3.11}$$

Şekil 3.3' den yukarıdaki ifade elde edilir. Denklem (3.5)' de yer alan üçüncü terim V_p aşağıda tanımlanmıştır (Şekil 3.4).

Burada P, elemanın ortalama eksenel kuvvetini (basınç pozitif), c_o ve c_u ise üst ve alt kesitlerdeki eşdeğer beton basınç blokunun derinliğini göstermektedir (Kesin hesap yapılmaması durumunda bu değerler kesit yüksekliğinin yaklaşık olarak %20'sine eşit alınabilir [2].

Şekil 3.4 : Kolon eksenel kuvvetinin kesme kuvveti kapasitesine katkısı

3.5.3 Mesnet elemanların şekildeğiştirme kapasitesi

Elastomer mesnetler için tanımlanan kayma şekildeğiştirme açılarına ilişkin kapasite değerleri tan γ_e , bölüm 3.1.3'te tanımlanan performans düzeyleri ile bunlara karşı gelen deprem düzeyleri için aşağıda tanımlanmıştır [2].

Performans Düzeyi / Deprem Düzeyi	tan γ _e
Minimum Hasar / S ₁ depremi	1
Kontrollü Hasar / S2 depremi	2.5

4. İKİ AÇIKLIKLI ÖNGERİLME KİRİŞLİ BETONARME KÖPRÜ HESABI

Bu bölümde çalışma kapsamında seçilen köprüye ait statik ve dinamik hesaplar açıklanacaktır. İlk olarak sistemin üstyapısı, daha sonra ise altyapı için kurulan modele üstyapıdan aktarılan yükler etki ettirilerek altyapısı boyutlandırılacaktır.

4.1 Genel Yerleşim ve Sistem Kesitleri

Statik ve betonarme hesaplar Şekil 4.1 ve Şekil 4.2'de genel yerleşim planı ve boykesiti görülen köprü için incelenecektir. Projelendirilecek köprünün genişliği 18m.'si taşıt yolu olmak üzere toplam 22.5 m.'dir. Köprü tabliyesi bitişik düzende yerleştirilen 120 cm.'lik 23 adet prefabrik I kiriş, 25 cm. betonarme döşeme ve 6 cm.'lik asfaltdan meydana gelmiştir. Köprü iki açıklıklı olup toplam boyu 65.16 cm.'dir.

Şekil 4.1 : Köprü genel yerleşim planı

Köprü üstyapısı 4 adet 1.00 x 2.00 m.'lik eliptik orta ayak, Ø100' lük kazıklar ve 1.75 m. kazık başlığı tarafından taşınacaktır.

Şekil 4.2 : Köprü boykesiti

Şekil 4.3 : Köprü en kesiti

4.2 Malzeme Özellikleri

4.2.1 Beton

Döşeme, başlık kirişi, kolon, kazık ve temel için C30, öngerilme kirişleri için C45 olmak üzere 2 tip beton tercih edilmiştir.

Döşeme, başlık kirişi, kolon, kazık ve temellerde kullanılan betonun (C30) karakteristikleri;

Karakteristik silindir basınç dayanım	$f_c = 30 \text{ MPa}$
Elastisite modülü	:E _c = 31800 MPa
Öngerilmeli kirişlerde kullanılan betonun (C45) karakteristikleri;

Karakteristik silindir basınç dayanım	ม:	f_c' = 45 MPa
Elastisite modülü	·	E _c = 34500 MPa
Betonların elastisite modülleri TS32	33'den alınmıştır.	

4.2.2 Çelik

Köprünün bütün elemanlarında S420 betonarme çeliği, prefabrik kirişlerde betonarme çeliğine ilaveten öngerilmeli çelik kullanılmıştır.

Betonarme çeliği olarak (S420) kullanılan yumuşak donatının karakteristikleri;

Çelik akma gerilmesi	: $f_{sy} = 420 \text{ MPa}$
Elastisite modülü	:E _s = 200000 MPa
Öngerilmeli prefabrike kirişlerde ku	llanılan çeliğin karakteristikleri;
Sınıfı	:0.6 ["] 270K
Elastisite modülü	:E _s = 200000 MPa
Karakteristik çelik kopma dayanımı	: $f_s' = 1862 \text{ MPa}$
Kablo kesit alanı	: $A^* = 140 \text{ mm}^2$

4.3 Üstyapı (Öngerilmeli Kiriş) Hesapları

4.3.1 Kiriş geometrik özellikleri

Şekil 4.4 : Prekast ve kompozit kiriş kesitleri

Kompozit kirişin etkili tabla genişliği; döşeme betonu ile öngerilmeli kiriş betonunun elastisite modülleri arasındaki oranın kiriş aks aralığı ile çarpılması ile hesaplanır. İki kesit arasındaki diğer geometrik özellikler Çizelge 4.1'de gösterilmiştir.

Kiriş Tipi	Kesit Alanı (cm²)	Tarafsız Eksen (cm)		Atalet Momenti (cm ⁴)	Mukavement Momenti (cm ³)	
	А	y _{alt}	Y _{üst}	I _x	W _{alt}	W _{üst}
Prekast Kiriş	4650	60.05	59.95	8745848	145639	145890
Kompozit Kiriş	6782	82.83	37.17	16529047	199565	444633

Çizelge 4.1 : Prekast ve kompozit kirişlere ait geometrik özellikler

4.3.2 Yük analizi

Hesaplarda kullanılacak olan malzemelere ait birim hacim ağırlıkları Çizelge 2.1' de ayrıntılı olarak gösterilmiştir. Köprüye üstyapısına etkiyen zati yükler ayrıntılı olarak aşağıda verilmiştir. Hareketli yük olarak; yaya yükü, KGM Şartnamesi'nden alınan H₃₀-S₂₄ standart kamyon yükü ve muadili şerit yüklemesi gösterilmiştir.

4.3.2.1 Zati yükler

Kiriş zati ağırlığı	$\dots g_1 = 0.47x25.00x23 = 267.38kN / m$
Döşeme zati ağırlığı	$\dots g_2 = 0.25x22.50x25.00 = 140.63kN / m$
Asfalt ağırlığı	$\dots g_{3a} = 18.00x0.06x23.00 = 24.84kN / m$
Tretuar ağırlığı	$\dots g_{3b} = 5.50 \times 0.27 \times 25.00 = 37.13 \text{ kN} / \text{m}$
Cephe elemanı ağırlığı	$\dots g_{3c} = 0.10x1.00x25.00x2 = 5.00kN / m$
Korkuluk ağırlığı	$\dots g_{3d} = 1.50x6 = 9.00kN / m$
1 prekast kirişe gelen zati yük	: $g_1 + g_2 = 17.64 kN / m$
1 kompozit kirişe gelen zati yük	$\dots g_1 + g_2 + g_3 = 20.94 kN / m$

4.3.2.2 Hareketli yükler

a) Standart kamyon yükü (H₃₀-S₂₄)

Şekil 2.1' de H_{30} - S_{24} standart kamyon yükü ve muadili eşdeğer şerit yükü gösterilmiştir. Bu bölümde ise dinamik etki katsayısı, enine dağılım katsayısı etkitilmiş, hesaplarda kullanılan kamyon yükü ve muadili şerit yüklemesi verilmiştir.

Dinamik etki katsayısı:

AASHTO 3.8.2'de verildiği üzere araçların dinamik etkisi $I = 1 + \frac{15}{L+37} = 1 + \frac{15}{31.59+37} = 1.219$ olarak hesaplanmıştır.

Enine dağılım katsayısı:

AASHTO 3.23.4.3' de verildiği üzere araç yükleri enine dağılım katsayısı ile kirişlere dağıtılır.

 $D = (1750 - 152N_L) + 213N_L(1 - 0.2C)^2$

 $N_L = 4$ trafik şeridi sayısı,

W = 22.50m. köprü genişliği,

L = 32.25m. köprü uzunluğu,

K = 2.2 AASHTO 3.23.4.3 Çizelge 2.5,

$$C = K(W/L) = 2.2(22.50/32.25) = 1.54$$

$$D = (1750 - 152x4) + 213x4(1 - 0.2x1.54)^2 = 1550mm$$

S = 960mm, kiriş aks aralığı

 $EDK = \frac{S}{D} = \frac{960}{1550} = 0.619$ olarak hesaplanmıştır.

Şekil 4.5 : Hesapta kullanılan standart kamyon yükünün kiriş üzerinde (a) eğilme etkisi için (b) kesme etkisi için elverişsiz yerleşimi

b) Standart kamyon yükü (H₃₀-S₂₄)

Şekil 2.2'de eşdeğer şerit yüklemesi verilmiştir. Dinamik etki katsayısı ile enine dağılım katsayısı etkitilerek Şekil 4.6'de hesaplarda kullanılan eşdeğer şerit yükü elde edilmiştir.

Şekil 4.6 : Hesapta kullanılan eşdeğer şerit yüklemesinin kiriş üzerinde (a) eğilme etkisi için (b) kesme etkisi için elverişsiz yerleşimi

c) Yaya yükü

Yaya yükünün, etkisinin az olması nedeniyle, tüm kirişlere dağıldığı varsayımı yapılarak hesap kolaylığı sağlanmıştır.

Yaya yükü	$\dots g_y = 3.50x3.00 = 10.50kN / m$
1 kompozit kirişe gelen yaya yükü	i : $g_y = 0.46 kN / m$

4.3.3 Emniyet gerilmeleri

Emniyet gerilmeleri, yapının korozyonlu bölgede yada kesitte betonarme çeliğinin olup olmaması gibi farklı durumlar için AASHTO 9.15.2' ye göre verilmiştir.

4.3.3.1 Rötre ve sünmeden önce geçici emniyet gerilmeleri (Öngerilme uygulama anında)

a) Basınç gerilmeleri:

*	Basınc gerilmesi :	$0.6 f_{c}$	$_{i} = 18.9 M pa$
•		•	

b) Çekme gerilmeleri:

Öngerilme uygulanan bölgede çekme gerilmesine müsade edilmemiştir. Diğer bölgedeki durum aşağıda verilmiştir.

- Betonarme çeliği kullanılması durumunda $\dots 0.623\sqrt{f_{ci}} = 3.50Mpa$
- ✤ Betonarme çeliği kullanılmaması durumunda :.... $0.249\sqrt{f_{ci}} = 1.41Mpa$

4.3.3.2 Kayıplardan sonra emniyet gerilmeleri (Servis yükleri altında)

a) Basınç gerilmeleri:

*	Basınç gerilmesi	:	0.4 <i>f</i>	$c_{ci} = 18.0 M pa$
---	------------------	---	--------------	----------------------

b) Çekme gerilmeleri:

Öngerilme uygulanan bölgedeki çekme gerilmeleri

- Betonarme çeliği kullanılması durumunda :...... $0.498\sqrt{f_{ci}} = 3.34Mpa$
- Korozyonlu bölgelerde :...... $0.249\sqrt{f_{ci}} = 1.67Mpa$

- c) Diğer bölgedeki çekme gerilmeleri
 - Betonarme çeliği kullanılması durumunda :...... $0.623\sqrt{f_{ci}} = 4.18Mpa$
 - ♦ Betonarme çeliği kullanılmaması durumunda :.. 0.249 $\sqrt{f_{ci}}$ = 1.67*Mpa*

4.3.4 Kesit tesirlerinin hesaplanması

Köprü üstyapısına etkiyen zati yüklerin oluşturduğu kesit tesirleri aşağıdaki Çizelge 4.2' de verilmiştir.

м			Mesnet	Ekseninden	Mesafesi		
(kNm)	0.0L (0.00m)	H (1.20m)	0.1L (3.16m.)	0.2L (6.32m.)	0.3L (9.48m.)	0.4L (12.64m.)	0.5L (15.80m.)
M _{g1}	0.00	211.97	522.04	928.07	1218.10	1392.11	1450.11
M_{g2}	0.00	109.40	269.44	479.01	628.69	718.51	748.45
M _{g3}	0.00	55.17	135.87	241.55	317.04	362.33	377.42
V			Mesnet	Ekseninden	Mesafesi		
(kN)	0.0L	Н	0.1L	0.2L	0.3L	0.4L	0.5L
(111)	(0.00m)	(1.20m)	(3.16m.)	(6.32m.)	(9.48m.)	(12.64m.)	(15.80m.)
V _{g1}	183.62	169.67	146.89	110.17	73.45	36.72	0.00
V_{g2}	94.77	87.57	75.82	56.86	37.91	18.95	0.00
V_{g3}	47.79	44.16	38.23	28.67	19.12	9.56	0.00

Çizelge 4.2 : Zati yüklerden meydana gelen kesit tesirleri

Çizelge 4.2' de g_1 ; kiriş zati ağırlığını, g_2 ; döşeme zati ağırlığını, g_3 ise döşeme üzerindeki diğer zati yükleri ifade etmektedir.

Köprüye etkiyen hareketli yüklerin meydana getirdiği kesit tesirleri Çizelge 4.3' de verilmiştir. Burada M_h momenti maks $(M_k;M_s)+M_y$ ifadesiyle, maks $(V_k;V_s)+V_y$ ifadesiyle hesaplanmıştır.

М	Mesnet Ekseninden Mesafesi							
(kNm)	0.0L (0.00m)	H (1.20m)	0.1L (3.16m.)	0.2L (6.32m.)	0.3L (9.48m.)	0.4L (12.64m.)	0.5L (15.80m.)	
M_k	0.00	213.92	523.11	917.11	1181.99	1317.76	1364.61	
Ms	0.00	167.44	412.37	733.11	962.21	1099.66	1145.48	
M_y	0.00	8.32	20.50	36.45	47.84	54.67	56.95	
M _h	0.00	222.24	543.61	953.55	1229.83	1372.43	1421.55	
	Mesnet Ekseninden Mesafesi							
V			Mesnet	Ekseninden I	Mesafesi			
V (kN)	0.0L (0.00m)	H (1.20m)	Mesnet 2 0.1L (3.16m.)	Ekseninden 1 0.2L (6.32m.)	<u>Mesafesi</u> 0.3L (9.48m.)	0.4L (12.64m.)	0.5L (15.80m.)	
V (kN) V _k	0.0L (0.00m) 186.03	H (1.20m) 178.27	Mesnet 2 0.1L (3.16m.) 165.59	Ekseninden 1 0.2L (6.32m.) 145.16	Mesafesi 0.3L (9.48m.) 124.72	0.4L (12.64m.) 104.29	0.5L (15.80m.) 83.85	
V (kN) V _k V _s	0.0L (0.00m) 186.03 145.04	H (1.20m) 178.27 136.02	Mesnet 2 0.1L (3.16m.) 165.59 121.30	Ekseninden 1 0.2L (6.32m.) 145.16 97.56	Mesafesi 0.3L (9.48m.) 124.72 73.81	0.4L (12.64m.) 104.29 50.07	0.5L (15.80m.) 83.85 26.32	
V (kN) V _k V _s V _y	0.0L (0.00m) 186.03 145.04 7.21	H (1.20m) 178.27 136.02 6.66	Mesnet 1 0.1L (3.16m.) 165.59 121.30 5.77	Ekseninden 0.2L (6.32m.) 145.16 97.56 4.33	Mesafesi 0.3L (9.48m.) 124.72 73.81 2.88	0.4L (12.64m.) 104.29 50.07 1.44	0.5L (15.80m.) 83.85 26.32 0.00	

Cizelge 4.3 : Hareketli yüklerden meydana gelen kesit tesirleri

Çizelge 4.3' de k; standart kamyon yükünü, s; şerit yükünü, y; yaya yükünü, h ise hesaplarda kullanılacak hareketli yükü ifade etmektedir.

4.3.5 Öngerilme kablosu sayısının belirlenmesi

Kirişe konulacak öngerilme kablo miktarı, servis yüklemesi altında, kirişin açıklık ortasında ve alt lifindeki gerilme dikkate alınarak yapılacaktır. Buna göre açıklık ortasındaki çekme gerilmesi Bölüm 4.3.3.2b' de 3.34 Mpa ile sınırlandırılmıştır.

$$\frac{M_{g1} + M_{g2}}{W_{alt}} + \frac{M_{g3} + M_{h}}{W_{kalt}} - \frac{P_{e}}{A} - \frac{P_{e}xe}{W_{alt}} \le 3.34Mpa$$
(4.1)

İfadede dış merkezliği 50cm kabul ederek değerler yerine konulursa $P_e = 3717kN$ olarak hesaplanır. Bir öngerilme kablosuna 1862x140x0.75 = 195.51kN 'luk öngerilme kuvveti verilebilir. Servis durumundaki kayıp oranını 0.25 alırsak bir öngerilme kablosunun alacağı kuvvet 195.51x(1-0.25) = 146.63kN olarak elde edilir. Buna göre gerekli öngerilme kablosunun sayısı $3717/146.63 \approx 26$ adet olarak hesaplanır. Bu hesaba göre öngerilme kablolarının eksantirisitesi hesaplanmalı ve hesap yenilenmelidir.

Şekil 4.7 : Açıklık ortasındaki öngerilme kablo düzeni

4.3.6 Öngerilme kayıplarının hesaplanması

Öngerilme kayıpları AASHTO 9.16.2.1'e göre hesaplanmalıdır. Bölüm 2.3.5'de öngerilme kayıplarının nasıl hesaplanacağı ayrıntılı olarak gösterilmiştir. Burada incelenen köprü için sayısal uygulaması anlatılacaktır.

4.3.6.1 Rötreden oluşan öngerilme kayıplarının hesaplanması

$$SH = 117.21 - 1.03RH$$
 ve RH = % 70 olarak seçilmiştir.

SH = 117.21 – 1.03*x*70 = 44.83*Mpa*

 $KayipOrani = SH / 0.75xf'_{s} = \%3.21$ olarak elde edilir.

4.3.6.2 Elastik kısalmadan oluşan öngerilme kayıplarının hesaplanması

Bölüm 2.3.5.2' de bu kaybın nasıl hesaplanacağı ayrıntılı olarak gösterilmişti. Burada 0.5L için örnek hesap gösterilmiş diğer kesitlerin sonuçları ise Çizelge 4.4' de verilmiştir.

$$ES = \frac{E_s}{E_{ci}} \times f_{cir}$$
(4.2)

$$f_{cir} = \frac{P}{A} + \frac{P \times e^2}{I_x} - \frac{M_{g1} \times e}{I_x}$$
(4.3)

$$f_{cir} = \frac{5083000}{465000} + \frac{5083000 \times 496.7^2}{87458476000} - \frac{1450110000 \times 496.7}{87458476000} = 17.03 MPa$$

$$ES = \frac{193000}{30167} \times 17.03 = 108.98$$

 $KayipOrani = ES / 0.75xf'_{s} = \%7.80$ olarak elde edilir.

Kesit	Aktif Kablo	M _{g1} kN	A cm ²	I cm ⁴	e cm	P kN	f _{cir} Mpa	ES Mpa	Kayıp Oranı
0.0L	16	0.00	4650	8745848	48.80	3125	15.23	97.43	6.98
Н	16	211.97	4650	8745848	48.80	3125	14.05	89.86	6.44
0.1L	21	522.04	4650	8745848	48.62	4101	17.00	108.79	7.80
0.2L	23	928.07	4650	8745848	49.10	4492	16.83	107.67	7.72
0.3L	26	1218.10	4650	8745848	49.67	5078	18.32	117.24	8.40
0.4L	26	1392.11	4650	8745848	49.67	5078	17.34	110.91	7.95
0.5L	26	1450.11	4650	8745848	49.67	5078	17.01	108.81	7.80

Çizelge 4.4 : Elastik kısalmadan kaynaklanan öngerilme kayıpları

4.3.6.3 Sünme kaybının hesaplanması

Bölüm 2.3.5.3' de bu kaybın nasıl hesaplanacağı ayrıntılı olarak gösterilmişti. Burada 0.5L için örnek hesap gösterilmiş diğer kesitlerin sonuçları ise Çizelge 4.5' de verilmiştir.

$$CR_c = 12 \times f_{cir} - 7 \times f_{cds}$$
(4.4)

$$f_{cds} = \frac{M_{g2} \times (y_{alt} - y_{alth})}{I_x} + \frac{M_{g3} \times (y_{kalt} - y_{alth})}{I_{kx}}$$
(4.5)

$$f_{cds} = \frac{748450000 \times 496.7}{87458476000} + \frac{377420000 \times 724.5}{165290470000} = 5.90 MPa$$

 $CR_c = 12 \times 17.03 - 7 \times 5.90 = 163.08 MPa$

 $KayipOrani = CR_c / 0.75xf'_s = \%11.67$ olarak elde edilir.

Kesit	M _{g2} kN	M _{g3} kN	I _x cm ⁴	I _{kx} cm	Yalt⁻Yalth cm	Ykalt⁻Yalth cm	f _{cds} Mpa	CR _c Mpa	Kayıp Oranı
0.0L	0.00	0.00	8745848	16529047	49.05	71.83	0.00	182.75	13.10
Н	109.40	55.17	8745848	16529047	49.05	71.83	0.85	162.61	11.66
0.1L	269.44	135.87	8745848	16529047	48.87	71.65	2.08	189.46	13.58
0.2L	479.01	241.55	8745848	16529047	49.30	72.08	3.74	175.78	12.60
0.3L	628.69	317.04	8745848	16529047	49.67	72.45	4.96	185.18	13.27
0.4L	718.51	362.33	8745848	16529047	49.67	72.45	5.67	168.36	12.07
0.5L	748.45	377.42	8745848	16529047	49.67	72.45	5.90	162.75	11.67

Çizelge 4.5 : Sünmeden kaynaklanan öngerilme kayıpları

4.3.6.4 Öngerilme donatısı gevşeme kayıplarının hesaplanması

Öngerilme donatısının gevşeme kaybını hesaplarken AASHTO' da verilen formül yerine donatıyı üreten firmadan bu kaybı almak daha sağlıklı olacaktır. Bölüm 2.3.5.4' de bu kaybın nasıl hesaplanacağı ayrıntılı olarak gösterilmiştir. Burada 0.5L için örnek hesap gösterilmiş hesaplarda ise üretici firmanın değeri olan %2.50 değeri esas alınmıştır.

$$CR_s = 34 - 0.1ES - 0.05(SH + CR_c)$$
(4.6)

 $CR_s = 34 - 0.1 \times 108.81 - 0.05(44.83 + 163.08) = 33.50$

 $KayipOrani = CR_s / 0.75xf'_s = \%2.40$ olarak elde edilir.

4.3.6.5 Toplam öngerilme kayıpları

Servis durumunda öngerilme donatısında meydana gelen kayıpların toplamı Çizelge 4.6' da gösterilmiştir.

Kesit	Rötre Kaybı	Elastik Kısalma Kaybı	Sünme Kaybı	Çelik Gevşeme Kaybı	Toplam Kayıp
0.0L	3.21	6.98	13.10	2.50	25.80
Н	3.21	6.44	11.66	2.50	23.81
0.1L	3.21	7.80	13.58	2.50	27.09
0.2L	3.21	7.72	12.60	2.50	26.03
0.3L	3.21	8.40	13.27	2.50	27.39
0.4L	3.21	7.95	12.07	2.50	25.73
0.5L	3.21	7.80	11.67	2.50	25.18

Cizelge 4.6 : Toplam öngerilme kayıpları

4.3.7 Kesit gerilmelerin kontrolü

Çizelge 4.7 ve 4.8' de gerilme hesabında kullanılacak değerler verilmiştir. Gerilme kontrolleri kirişin herbir 0.1L mesafesi için yapılacak ve sınır değer ile kontrol

edilecektir. Kesitteki aktif öngerilmeli donatı sayısı bu kontrollerden sonra elde edilecektir.

Kiriş Tipi	Kesit Alanı (cm²)	Tarafs ((z Eksen em)	Atalet Momenti (cm ⁴)	Mukaveme (ci	nt Momenti n ³)
	А	y_{alt}	y _{üst}	I _x	W _{alt}	W _{üst}
Prekast Kiriş	4650	60.05	59.95	8745848	145639	145890
Kompozit Kiriş	6782	82.83	37.17	16529047	199565	444633

Çizelge 4.7 : Prekast ve kompozit kirişlere ait geometrik özellikler

Kesit	Aktif Halat Sayısı	P kN	y _{alth} cm	e cm	a %	β %
0.0L	16	3125	11.25	48.80	93.02	74.20
Н	16	3125	11.25	48.80	93.56	76.19
0.1L	21	4101	11.43	48.62	92.20	72.91
0.2L	23	4492	10.96	49.10	92.28	73.97
0.3L	26	5078	10.38	49.67	91.60	72.61
0.4L	26	5078	10.38	49.67	92.05	74.27
0.5L	26	5078	10.38	49.67	92.20	74.82

Cizelge 4.8 : Gerilme kontrolleri için hesap verileri

4.3.7.1 0.5L için kesit gerilme kontrolleri

Kesit gerilme kontrollerinin nasıl yapılacağı Bölüm 2.3.3' de ve sınır şartları da Bölüm 4.3.3'de ayrıntılı olarak anlatılmıştı. Burada ise yukarıda anlatılan bağıntılar kullanılarak elde edilen sonuçlar Çizelge 4.9' da gösterilmiştir.

Yükleme	σ _{alt} (Mpa)		σ _{üst} (Mpa)
Durumu	Kayıplar minumum	Kayıplar maksimum	Kayıplar minumum	Kayıplar maksimum
1.Kontrol	16.08	11.17	4.07	5.18
2.Kontrol	10.94	6.03	9.20	10.31
3.Kontrol	-	4.14	-	11.16
4.Kontrol	-	2.98	-	14.35

Çizelge 4.9 : 0.5L için gerilme sonuçları

4.3.7.2 0.4L için kesit gerilme kontrolleri

Kesit gerilme kontrollerinin nasıl yapılacağı Bölüm 2.3.3' de ve sınır şartları da Bölüm 4.3.3'de ayrıntılı olarak anlatılmıştı. Burada ise yukarıda anlatılan bağıntılar kullanılarak elde edilen sonuçlar Çizelge 4.10' da gösterilmiştir.

Yükleme	e $\sigma_{\rm alt}({\rm Mpa})$		σ _{üst} (Mpa)
Durumu	Kayıplar minumum	Kayıplar maksimum	Kayıplar minumum	Kayıplar maksimum
1.Kontrol	16.43	11.41	3.68	4.81
2.Kontrol	11.50	6.48	8.61	9.74
3.Kontrol	-	4.66	-	10.55
4.Kontrol	-	2.21	-	13.64

Çizelge 4.10 : 0.4L için gerilme sonuçları

4.3.7.3 0.3L için kesit gerilme kontrolleri

Kesit gerilme kontrollerinin nasıl yapılacağı Bölüm 2.3.3' de ve sınır şartları da Bölüm 4.3.3'de ayrıntılı olarak anlatılmıştı. Burada ise yukarıda anlatılan bağıntılar kullanılarak elde edilen sonuçlar Çizelge 4.11' de gösterilmiştir.

Yükleme σ_{alt} (Mpa) **σ**_{üst} (Mpa) Durumu Kayıplar minumum Kayıplar minumum Kayıplar maksimum Kayıplar maksimum 12.14 2.52 1.Kontrol 17.50 3.73 2.Kontrol 13.18 7.82 6.83 8.04 6.23 3.Kontrol 8.75 _ 4.Kontrol 0.07 11.51

Çizelge 4.11 : 0.3L için gerilme sonuçları

4.3.7.4 0.2L için kesit gerilme kontrolleri

Kesit gerilme kontrollerinin nasıl yapılacağı Bölüm 2.3.3' de ve sınır şartları da Bölüm 4.3.3'de ayrıntılı olarak anlatılmıştı. Burada ise yukarıda anlatılan bağıntılar kullanılarak elde edilen sonuçlar Çizelge 4.12' de gösterilmiştir.

Yükleme	σ _{alt} (Mpa)		σ _{üst} ((Mpa)
Durumu	Kayıplar minumum	Kayıplar maksimum	Kayıplar minumum	Kayıplar maksimum
1.Kontrol	16.52	11.97	1.33	2.33
2.Kontrol	13.23	8.68	4.61	5.61
3.Kontrol	-	7.47	-	6.15
4.Kontrol	-	2.70	-	8.30

Çizelge 4.12 : 0.2L için gerilme sonuçları

4.3.7.5 0.1L için kesit gerilme kontrolleri

Kesit gerilme kontrollerinin nasıl yapılacağı Bölüm 2.3.3' de ve sınır şartları da Bölüm 4.3.3'de ayrıntılı olarak anlatılmıştı. Burada ise yukarıda anlatılan bağıntılar kullanılarak elde edilen sonuçlar Çizelge 4.13' de gösterilmiştir.

Yükleme	σ _{alt} (Mpa)		σ _{üst} (Mpa)	
Durumu	Kayıplar minumum	Kayıplar maksimum	Kayıplar minumum	Kayıplar maksimum
1.Kontrol	17.17	12.83	0.89	0.04
2.Kontrol	15.32	10.98	0.95	1.89
3.Kontrol	-	10.30	-	2.20
4.Kontrol	-	7.57	-	3.42

Çizelge 4.13 : 0.1L için gerilme sonuçları

4.3.7.6 H için kesit gerilme kontrolleri

Kesit gerilme kontrollerinin nasıl yapılacağı Bölüm 2.3.3' de ve sınır şartları da Bölüm 4.3.3'de ayrıntılı olarak anlatılmıştı. Burada ise yukarıda anlatılan bağıntılar kullanılarak elde edilen sonuçlar Çizelge 4.14' de gösterilmiştir.

Yükleme	σ _{alt} (Mpa)	σ _{üst} (Mpa)
Durumu	Kayıplar minumum	Kayıplar maksimum	Kayıplar minumum	Kayıplar maksimum
1.Kontrol	14.63	11.64	2.04	1.39
2.Kontrol	13.88	10.89	1.29	0.64
3.Kontrol	-	10.61	-	0.52
4.Kontrol	-	9.50	-	0.02

Çizelge 4.14 : H için gerilme sonuçları

4.3.7.7 0.0L için kesit gerilme kontrolleri

Kesit gerilme kontrollerinin nasıl yapılacağı Bölüm 2.3.3' de ve sınır şartları da Bölüm 4.3.3'de ayrıntılı olarak anlatılmıştı. Burada ise yukarıda anlatılan bağıntılar kullanılarak elde edilen sonuçlar Çizelge 4.15' de gösterilmiştir.

Yükleme	$\sigma_{\rm alt}$ (Mpa)	σ _{üst} (Mpa)	
Durumu	Kayıplar minumum	Kayıplar maksimum	Kayıplar minumum	Kayıplar maksimum
1.Kontrol	15.99	12.76	3.47	2.77
2.Kontrol	15.99	12.76	3.47	2.77
3.Kontrol	-	12.76	-	2.77
4.Kontrol	-	12.76	-	2.77

Çizelge 4.15 : 0.0L için gerilme sonuçları

4.3.8 Taşıma kapasitesi kontrolü

Kirişin taşıma kapasitesi kompozit kesit için, mesnet ekseninden 0.5L mesafede ayrıntılı olarak hesaplanmıştır. Prefabrik kesitin yeterli olduğu düşünülerek hesap yapılmamıştır.

Taşıma kapasitesi hesapları, kesitin dikdörtgen veya tablalı olmasına göre Bölüm 2.3.6.1 ve 2.3.6.2' de ayrıntılı olarak verilmiştir.

4.3.8.1 0.5L için taşıma gücü kontrolü

Taşıma gücü azaltma katsayısı	$\vdots \dots \varphi = 1$
Aktif halat sayısı	: <i>n</i> = 26
Düşük gevşemeli öngerilme çeliği tip faktörü	$\vdots \dots \gamma = 0.28$
C45 betonu dayanım faktörü	:
Öngerilme donatısı faydalı yüksekliği	d = 134.62cm
Betonarme donatısı faydalı yüksekliği	: $d_t = 139.50 cm$
Etkili tabla genişliği	: <i>b</i> = 85.27 <i>cm</i>
Öngerilme donatısı alanı	$\dots A_s^* = 36.40 cm^2$
Betonarme donatisi alani	:
Öngerilme donatısı oranı	: $\rho^* = 0.00317$
Betonarme donatisi orani	:

* Kompozit kesit için taşıma kapasitesi kontrolü

Yukarıdaki veriler denklemde yerine konulduğunda

$$a = \frac{A_s^* f_{su}^* + A_s f_{sy}}{0.85 f_c^{'} b} = 22.13 cm < t = 25 cm$$
 olduğundan taşıma gücü hesabı dikdörtgen

kesite göre yapılacaktır.

$$\left(\frac{\rho f_{sy}}{f_c}\right) \frac{d_t}{d} + \left(\frac{\rho^* f_{su}}{f_c}\right) - \left(\frac{\rho' f_y'}{f_c}\right) = 0.129 \le 0.36\beta_1 = 0.260$$

olduğundan kesitin taşıma kapasitesi AASHTO 9.17.2' de verilen aşağıdaki denklem ile hesaplanacaktır.

$$\varphi M_{n} = \varphi \left\{ A_{s}^{*} f_{su}^{*} d \left[1 - 0.6 \left(\frac{\rho^{*} f_{su}^{*}}{f_{c}^{'}} + \frac{d_{t}}{d} \frac{\rho f_{sy}}{f_{c}^{'}} \right) \right] + A_{s} f_{sy} d_{t} \left[1 - 0.6 \left(\frac{d}{d_{t}} \frac{\rho^{*} f_{su}^{*}}{f_{c}^{'}} + \frac{\rho f_{sy}}{f_{c}^{'}} \right) \right] \right\}$$

 $\varphi M_n = 8027.84 kNm$ olarak hesaplanır.

Kesitte zati ve hareketli yüklerin kombinasyonundan oluşan faktörlü moment;

$$M_u = 1.3 \times (M_{g1} + M_{g2} + M_{g3} + 1.67M_h) = 6434.97kNm$$
 olarak bulunur.

Kompozit kiriş kesitinin taşıma kapasitesi, kesite etkiyen faktörlü moment ile kıyaslandığında kesitin güvenli olduğu görülmektedir.

4.3.8.2 Diğer kesitler için taşıma gücü kontrolleri

Çizelge 4.16 kirişe ait bütün kesitlerde yapılan taşıma gücü kontrolleri gösterilmiştir.

Kesit	M _u kNm	φM _n kNm
0.0L	0.00	5194.61
Н	972.00	5194.61
0.1L	2385.74	6608.21
0.2L	4213.38	7186.52
0.3L	5482.93	8027.84
0.4L	6194.37	8027.84
0.5L	6434.97	8027.84

Çizelge 4.16 : Taşıma gücü sonuçları

4.3.9 Düktilite kontrolleri

4.3.9.1 Minimum öngerilme donatısı kontrolü

AASHTO 9.18.2.1'e göre kesitteki öngerilmeli ve yumuşak donatı miktarı, kritik kesitin çatlama momenti değerinin 1.2 kat daha fazlasını sağlayacak şekilde olmalıdır. Kesit çatlama momenti değeri ise kompozit kesit için;

$$M_{cr}^{*} = W_{kalt} \left(f_{r} + f_{pe} \right) - \left(M_{g1} + M_{g2} \right) \left(W_{kalt} / W_{alt} - 1 \right)$$
(4.7)

bağıntısı ile prefabrik kesitler için ise yukarıda verilen ifadede W_{kalt} yerine W_{alt} yazılarak elde edilen ifade kullanılır.

✤ 0.5L için kompozit kesitde taşıma kapasitesi kontrolü

Çatlama gerilmesi :...... $f_r = 0.62\sqrt{f_c} = 4.16MPa$

Öngerilmeden kaynaklanan beton gerilmesi $\dots f_{pe} = 21.13Mpa$

 $1.2M_{cr}^* = W_{kalt} \left(f_r + f_{pe} \right) - \left(M_{g1} + M_{g2} \right) \left(W_{kalt} / W_{alt} - 1 \right) = 5078.49 kNm < \varphi M_n = 8027.84 kNm$ olduğundan kesit minimum donatı açısından yeterlidir.

Diğer kesitlere ait hesaplar Çizelge 4.16'da verilmiştir.

Kesit	1.2M _{cr} kNm	φM _n kNm
0.0L	3907.95	5194.61
Н	3989.72	5194.61
0.1L	4574.92	6608.21
0.2L	4764.15	7186.52
0.3L	5085.23	8027.84
0.4L	5080.18	8027.84
0.5L	5078.49	8027.84

Çizelge 4.17 : Minimum donatı sonuçları

4.3.9.2 Maksimum öngerilme donatısı kontrolü

Öngerilmeli beton elemanlar, donatı akma gerilmesine ulaştığı zaman maksimum kapasitede olacak şekilde tasarlanmalıdır. Maksimum öngerilme donatısı 0.36β₁ değerini aştığı zaman taşıma kapasitesi hesabı değiştirilmelidir.

4.3.10 Kesme hesabı

Kirişte kesme hesabı mesnet yüzünden H m. kadar mesafede incelenmiştir. Bölüm 2.3.8' de kesme hesabı detaylı olarak gösterilmiştir.

Prefabrike kiriş gövde genişliği	: $b' = 20.00 cm$
Zati yükten kaynaklanan kesme kuvveti	: $V_d = 301.40kN$
Zati yükten kaynaklanan moment	: $M_d = 376.54 k Nm$
Faktörlü kesme kuvveti	: $V_u = 793.30kN$
Faktörlü moment	: $M_u = 972.00 k Nm$
Faydalı yükseklik	: $d = 301.40kN$
Zati yükten kaynaklanan kesme kuvveti	: $V_d = 301.40 kN$

Kayıplardan sonra öngerilme kuvvetinden

Dolayı betonda oluşan basınç gerilmesi

:.....
$$f_{pe} = \frac{P_e}{A} + \frac{P_e \times e}{W_{alt}} = 13.10 Mpa$$

Zati yüklerden kaynaklanan kesitin alt

bölgesindeki çekme gerilmesi

$$\dots f_{d} = \frac{M_{g1} + M_{g2}}{W_{alt}} + \frac{M_{g3}}{W_{kalt}} = 2.48Mpa$$

Kesitte dış yüklerden kaynaklanan

çatlama momenti :..... $M_{cr} = W_{kalt} \left(0.5 \times \sqrt{f_c'} + f_e - f_d \right) = 2787.58 k Nm$

Öngerilmeli betonun taşıma gücü, V_{ci} ve V_{cw} değerlerinden küçük olanıdır Buna göre

$$V_{ci} = 0.05\sqrt{f_c}b'd + V_d + \frac{V_iM_{cr}}{M_{max}} = 2693.91kN$$

$$f_{pc} = \frac{P_e}{A} - \frac{P_e \times e \times (y_{kalt} - y_{alt})}{I} + \frac{(M_{g1} + M_{g2}) \times (y_{kalt} - y_{alt})}{I} = 2.93MPa$$

Öngerilme halatı yatay olarak konulduğundan $V_p = 0.00kN$ 'dır.

$$V_{cw} = \left(0.292\sqrt{f_c'} + 0.3f_{pc}\right)b'd + V_p = 759.22kN$$

Beton tarafından karşılanan kesme kuvveti $V_c = \min(V_{ci} : V_{cw}) = 759.22kN$ olarak bulunur

 $V_u = 793.30 kN > \varphi V_c = 645.33 kN$ olduğundan etriye hesabı gereklidir.

Kayma donatisinin taşıması gereken kesme kuvveti $V_u = \varphi(V_c + V_s)$ bağıntısıyla hesaplanabilir. Buna göre donatı tarafından karşılanacak kesme kuvveti $V_s = 174.08kN$ olarak hesaplanmıştır. AASHTO 9.20.3.1' e göre donatı alanı

 $V_s = \frac{A_v f_y d}{s}$ yardımıyla hesaplanabilir.

Etriye $\Phi 10/15$ cm seçilirse $V_s = 191.73 kN > 174.08 kN$ şartı sağlandığından seçilen etriye yeterlidir.

4.3.11 Sehim kontrolleri

Sehim hesapları maksimum sehimin oluşacağı 0.5L mesafe için yapılacaktır.

Öngerilme anında kirişin kendi ağırlığından dolayı oluşan sehim

Kiriş zati ağırlığı	: $g_1 = 11.63 kN / m$
Kiriş mesnet boyu	: $L = 31.59m$
Öngerilme anında betonun elastisite modülü	: $E_c = 32241MPa$
Prefabrik kesit atalet momenti	: $I = 8745848cm^4$

Kirişin kendi ağırlığından oluşacak sehim :..... $\delta_1 = \frac{5 \times g_1 \times L^4}{384 \times E_c \times I} = 54mm \downarrow$

 Öngerilme anında öngerilme kuvveti 	nden dolayı oluşan sehim
Öngerilme anında etkili öngerilme kuvveti	: $P = 4682kN$
Öngerilme donatısının eksantrisitesi	: $e = 49.67 cm$
Kiriş mesnet boyu	: <i>L</i> = 31.59 <i>m</i>
Öngerilme anında betonun elastisite modülü	: $E_c = 32241MPa$
Prefabrik kesit atalet momenti	: $I = 8745848cm^4$
Öngerilme kuvvetinden oluşacak sehim	$\dots \delta_p = \frac{P \times e \times L^2}{8 \times E_c \times I} = 103 mm \uparrow$

Döşeme zati ağırlığı	: $g_2 = 6.00 kN / m$
Betonun elastisite modülü	: $E_c = 35800MPa$
Kiriş mesnet boyu	: <i>L</i> = 31.59 <i>m</i>
Prefabrik kesit atalet momenti	:
Döşeme ağırlığından oluşacak sehim	$\dots \delta_2 = \frac{5 \times g_2 \times L^4}{384 \times E_c \times I} = 25mm \downarrow$

* Kompozit kesite etkiyen ilave yüklerden dolayı oluşan sehim

İlave yükler $(g_{3a}+g_{3b}+g_{3c}+g_{3d})$: $g_3 = 3.30 kN / m$
Betonun elastisite modülü	: $E_c = 35800MPa$
Kiriş mesnet boyu	: <i>L</i> = 31.59 <i>m</i>
Kompozit kesit atalet momenti	: $I_k = 16529047 cm^4$
İlave yüklerden dolayı oluşacak sehim	$\dots \delta_3 = \frac{5 \times g_2 \times L^4}{384 \times E_c \times I} = 7mm \downarrow$

✤ H₃₀-S₂₄ kamyon yükünden dolayı oluşan sehim

Betonun elastisite modülü	: $E_c = 35800MPa$
---------------------------	--------------------

Kiriş mesnet boyu

Kompozit kesit atalet momenti

:..... $I_k = 16529047 cm^4$

Standart kamyon yükünden dolayı oluşacak sehim:

$$\delta_{k} = \frac{P_{2} \times (850 + L_{1})}{192 \times E_{c} \times I_{k}} + \left[3L^{2} - 4 \times (850 + L_{1})\right] + \frac{P_{2} \times L^{3} + P_{k} \times \left[3L^{2} - 4 \times (850 + L_{1})^{2}\right]}{48 \times E_{c} \times I_{c}}$$

 $\delta_{k} = 22mm \downarrow$

Şerit yükünden dolayı oluşan sehim

Betonun elastisite modülü :..... $E_c = 35800MPa$ Kiriş mesnet boyu :.....L = 31.59m:..... $I_k = 16529047 cm^4$

Serit yükünden dolayı oluşacak sehim:

$$\delta_{k} = \frac{P \times L^{3}}{48 \times E_{c} \times I_{c}} + \frac{5 \times q}{384 \times E_{c} \times I_{c}} = 19mm \downarrow$$

4.3.11.1 Öngerilme uygulama anındaki sehim kontrolü

Öngerilme uygulama anında prefabrik kiriş, zati ağırlığı ve öngerilme kuvveti etkisinde sehim yapmaktadır. Buna göre hesaplanan sehim değeri;

$$\Sigma \delta = \delta_1 + \delta_p = 54 - 103 = -49mm \uparrow < L/480 = 66mm$$

4.3.11.2 Servis yükleri anındaki sehim kontrolü

Servis durumunda köprü, zati ve hareketli yüklerin etkisi altında sehim yapmaktadır. Buna göre hesaplanan sehim değeri;

 $\Sigma \delta = \delta_1 + \delta_2 + \delta_3 + \delta_h + \delta_p$ $\Sigma \delta = 54 + 25 + 7 + 22 - 103 = 5mm < L/480 = 66mm$

4.4 Altyapı Hesapları

4.4.1 Yük analizi

4.4.1.1 Zati yükler

Zati yükler ayrıntılı olarak Bölüm 4.3.2.1' de ayrıntılı olarak gösterilmiştir.

4.4.1.2 Hareketli yükler

a) Standart kamyon yükü (H₃₀-S₂₄)

Bu bölümde dinamik etki katsayısı, hareketli yük azaltma katsayısı etkitilmiş, hesaplarda kullanılan kamyon yükü ve muadili şerit yüklemesi verilmiştir.

Dinamik etki katsayısı:

AASHTO 3.8.2'de verildiği üzere araçların dinamik etkisi $I = 1 + \frac{15}{L+37} = 1 + \frac{15}{31.59+37} = 1.219$ olarak hesaplanmıştır.

Hareketli yük azaltma katsayısı:

AASHTO 3.12.1' de verildiği üzere köprünün tam yüklü olma olasılığının düşük olması nedeniyle hareketli yükler bir katsayı ile azaltılırlar. Çizelge 2.4'e göre köprü 4 şerit olduğu için azaltma katsayısı 0.75 olarak alınacaktır.

Şekil 4.8 : Altyapı hesabında kullanılan standart kamyon yüklemesi

$$\Sigma P = 4serit \times 240kN \times \varphi \times 0.75 = 720 \times \varphi \text{ kN}$$

$$\Sigma V_{h1} = [P \times L + P \times (L - 4.25) + P \times (L - 8.5)/4]/L \text{ kN}$$

 $V_{h1} = \Sigma V_{h1} / (mesnet sayısı) kN/mesnet$

b) Şerit yükü

Şekil 4.9 : Altyapı hesabında kullanılan şerit yüklemesi

 $\Sigma P = 4serit \times 195kN \times \varphi \times 0.75 = 585 \times \varphi kN$

 $\Sigma q = 4 serit \times 15 kN / m \times \varphi \times 0.75 = 45 \times \varphi kN/m$

 $\Sigma V_{h1} = \left[\Sigma P \times L + \Sigma q \times L^2 / 2\right] / L \text{ kN}$

 $V_{h1} = \Sigma V_{h1} / (mesnet sayısı) kN/mesnet$

Çizelge 4.18' de hesap sonuçları özetlenmiştir.

Çizelge 4.18 :	Üsty	vapıdan	aktarılan	hareketli	yükler
-----------------------	------	---------	-----------	-----------	--------

Hareketli Yükler								Fren Yükleri	
Aks	Aks Açıklık Titreşim Mesnet Aralığı (m) Katsayısı Sayışı		ΣVh1 (kN)		Vh1 (kN)		Vh1 (kN)	Vhb (kN)	
Araligi	(111)	(φ)	SayISI	${ m H}_{30} { m -} { m S}_{24}$	Şerit	${ m H}_{30} { m -} { m S}_{24}$	Şerit	Hesap	Hesap
A-1~1-B	31.59	1.22	23	1797.20	1579.15	78.14	68.66	78.14	3.91

c) Yaya yükü

Yaya yükünün, etkisinin az olması nedeniyle, tüm kirişlere dağıldığı varsayımı yapılarak hesap kolaylığı sağlanmıştır.

 $A = KaldirimUzunlugu \times KirisBoyu$

$$P = A(m^2) \times 3.0(kN/m^2)$$

 $V_h = P(kN) / (2 \text{ x mesnet say1s1})$

Yaya Yükleri									
Aks		Kaldırım	Mesnet	ΣΡ	ΣΡ	Р	Р		
Aralığı Açıklık (m) Alanı	Alanı	Savisi	(kN)	(kN)	(kN/mesnet)	(kN/mesnet)			
ritungi		1 Hum	Sujisi	Sol	Sağ	Sol	Sağ		
A-1~1-B	31.59	110.56	46	165.84	165.84	3.61	3.61		

Çizelge 4.19 : Üstyapıdan aktarılan yaya yükleri

d) Fren yükü

Hareketli yükün 1/20' sinin yatay olarak, yol yüzeyinden 1.80 m. yükseklikte etkidiği kabul edilmiştir. (AASHTO 3.9). Çizelge 4.18' de köprüye etkiyen fren kuvveti gösterilmiştir.

e) Rötre, sünme ve sıcaklık değişiminden kaynaklanan kuvvetler

Sıcaklık değişiminden oluşan etkilerin hesabında Köprüler Teknik Şartnamesi gereği sıcaklık değişimi -30 °C ile +50 °C arasında alınmıştır ($\Delta T = \pm 40$ °C). Rötre ve sünme uzama katsayısı 0.0002 alınmıştır (AASHTO 8.5.4). Betonun ısıl genleşme katsayısı $\alpha_T = 1.08E-5/°C$ olarak alınmıştır (AASHTO 8.5.3). Sıcaklık değişimi;

 $\Delta L = \alpha_t \times L \times \Delta T = (1.08 \times 10^{-5}) \times L \times 40 = 4.32 \times 10^{-4} L \text{ m. if a desiyle, rötre ve sünme}$ değişimi ise; $\Delta L = 0.0002 \times L$ if a desi yardımıyla hesaplanmıştır.

Elastomer ebatları: 300 mm x 400 mm x 52 mm (Net kauçuk kalınlığı h_{rt} = 37 mm) Elastomer kayma modülü: G = 1000 kN/m² (AASHTO 14.3.1)

$$F_{y} = \frac{GxA}{h_{rt}} x\Delta L = \frac{1000kN/m^{2} \times 0.3m \times 0.4m}{0.037m} \times 0.000632L = 2.05 \times L$$

 $V_h = F_y / 2 \text{ kN} / \text{mesnet}$

Çizelge 4.20 : Rötre, sünme ve sıcaklık yükleri

	RST Kuvvetleri							
Aks Aralığı	Açıklık (m)	Sıcaklık Değişimi (m)	Rötre+Sünme (m)	Toplam ΔL (m)	ΣFy (kN)	Fy kN / mesnet		
A-1~1-B	31.59	0.01024	0.00632	0.01655	53.686	26.843		

f) Rüzgar yükleri

* Köprünün boş olması durumunda rüzgar yüklemesi

Köprüye etkiyen birim yük (AASHTO 3.15.1.1) :.....2.44 kN/m²

 $H_w = 3.00m \times L \times 2.44 kN / m^2 = 7.32 \times L kN / açıklık$

 $V_w = H_w / 2$ xmesnet sayısı kN/mesnet ifadesiyle köprünün araçsız olması durumundaki rüzgar yükü hesaplanır.

 Köprünün boş olması durumunda rüzgar yüklen 	nesi
Rüzgara maruz köprü üstyapı yüksekliği	:3.00m.
Köprüye etkiyen birim yük (AASHTO 3.15.1.2)	:1.70 kN/m ²
$H_w = 3.00m \times L \times 1.70 kN / m^2 = 5.13 \times L kN / açıklık$	
Araca etkiyen birim yük (AASHTO 3.15.1.2)	:1.49 kN/m
Rüzgara maruz köprü arac yüksekliği (AASHTO 3.15.1.2)	:1.83m.
$H_w = 1.49m \times L = 1.49 \times L \text{ kN} / \text{açıklık}$	

 $V_w = (5.13 + 1.49) \times L/2 \times$ mesnet sayısı kN/mesnet ifadesiyle köprünün araçlı olması durumundaki rüzgar yükü hesaplanır.

Çizelge 4.21 : Rüzgar Yükleri

Rüzgar Kuvvetleri								
Aks	Acıklık	Mesnet	Köj	prü Boş		Köprü Dolı	ı	
Aralığı	(m)	Savisi	ΣΡ	Р	ΣΡ	Р	М	
i iiwiigi	(111)	Sujisi	(kN)	(kN/mesnet)	(kN)	(kN/mesnet)	(kNm/mesnet)	
A-1~1-B	31.59	46	231.33	5.03	208.97	4.54	1.87	

4.4.1.3 Dinamik yükler

Deprem etkisi AASHTO Bölüm IA "Sismik Tasarım" doğrultusunda köprüye etkiye deprem kuvvetleri belirlenmiştir. Deprem yüklerinin belirlenmesinde, köprünün yapıldığı bölgenin zemin sınıfı Tip II olarak kabul edilmiştir (AASHTO I A 3.5). Köprünün bulunduğu 2. derece deprem bölgesi için etkin yer ivmesi katsayısı $A_0 = 0.30g'$ dir. TIP II yerel zemin sınıfı için spektral ivme-periyot eğrisi aşağıda verilmiştir.

İvme katsayısı	:A = 0.30g
Zemin profil tipi	:
Zemin etki katsayısı	:

Şekil 4.10 : Tasarım spektrum eğrisi

4.4.2 Yükleme kombinasyonları

Yükleme lombinasyonları yukarıda açıklanan yükler ve etkiler gözetilerek AASHTO 2002 Çizelge 3.22 1A'da verilen katsayılar kullanılarak yapılmıştır.

*	Kullanım	yüküne	göre	yükleme	kombinasyonl	arı
---	----------	--------	------	---------	--------------	-----

1.0 DL + 1.0 LL + 1.0 E	(COMB 1)
1.0 DL + 1.0 E + 1.0 W	(COMB 2)
1.0 DL + 1.0 LL + 1.0 E + 0.3 W + 1.0 WL + 1.0 LF	(COMB 3)
1.0 DL + 1.0 LL + 1.0 E + 1.0 RST	(COMB 4)
1.0 DL + 1.0 E + 1.0 W + 1.0 RST	(COMB 5)
1.0 DL + 1.0 LL + 1.0 E +0.3 W + 1.0 WL + 1.0 LF + 1.0 RST	(COMB 6)

1.0 DL + 1.0 E + 1.0 EQX + 0.3 EQY	(COMB 7)
1.0 DL + 1.0 E + 0.3 EQX + 1.0 EQY	(COMB 8)

Katsayılı yüke göre yükleme kombinasyonları

1.3 (1.0 DL + 1.67 LL + 1.0 E)	(COMB 9)
1.3 (1.0 DL + 1.0 E + 1.0 W)	(COMB 10)
1.3 (1.0 DL + 1.0 LL + 1.0 E + 0.3 W + 1.0 WL + 1.0 LF)	(COMB 11)
1.3 (1.0 DL + 1.0 LL + 1.0 E + 1.0 RST)	(COMB 12)
1.25 (1.0 DL + 1.0 E + 1.0 W + 1.0 RST)	(COMB 13)
1.25 (1.0 DL + 1.0 LL + 1.0 E +0.3 W + 1.0 WL + 1.0 LF + 1.0 RST).	(COMB 14)

4.4.3 Matematik model

Köprü, taşıyıcı tüm elemanların rijitlikleri ve atalet etkileri dikkate alınarak 3 boyutlu olarak tasarlanmıştır. Elemanlar 3 deplasman ve 3 dönme olmak üzere toplam 6 serbestlik dereceli olmak üzere Şekil 4.11 ve 4.12' de gösterildiği gibi modellenmiştir.

Şekil 4.11 : Ortaayak için matematik model detayı

Modelde, tabliye prefabrik kiriş ile döşemenin ağırlık merkezinden geçen bir düzlemin içinde bulunduğu kabul edilmiştir. Bilgisayar modeli için tabliye en az 4 parçaya bölünerek AASHTO tarafından istenen şart sağlanmıştır. Tabliye elemanına ait karakteristik değerler aşağıda verilmiştir.

Elemanın alanı	:A = 16.32 m^2
Elemanın 3-3 ekseni etrafındaki atalet momenti	: $I_{33} = 4.00 \text{ m}^4$
Elemanın 2-2 ekseni etrafındaki atalet momenti	: $I_{22} = 671.36 \text{ m}^4$
Elemanın birim hacim ağırlığı	: $g = 29.45 \text{ kN/m}^3$
Elemanın kütlesi	$\dots m = 3.00 \text{ kNs}^2/\text{m}^4$

Köprünün kenarayakları modele katılmamış ve kenarayak elastomerleri alt uçlarından ankastre olarak tanımlanmıştır. Eliptik kesitli ortaayakların alt ucu shell elemanlarla modellenen temele, üstucu ise frame eleman ile temsil edilen başlık kirişine bağlanmaktadır. Kolonların üst ucunda yer alan ters T şeklindeki başlık kirişi ile tabliyenin bağlantısını sağlayan elastomer mesnetler Sap2000 programında NLLINK elemanları olarak tanımlanmıştır. Elastomer mesnetler sadece kesme kuvveti aktaran elemanlar oldukları için kayma rijitlikleri her iki doğrultuda K=G.A/t_r formülü ile hesaplanmış ve Çizelge 4.22' de verilmiştir. Mesnetlerin dönme rijitlikleri sıfır kabul edilmiştir. Elastomer mesnetlerin tabliyeyle ve başlık kirişiyle olan bağlantıları düşeyde ve yatayda fiktif elemanlar ile sağlanmıştır. Köprü temel sistemi ile beraber modellenmiştir. Köprü kazıkları frame elemalar ile zemin ise yaylar ile temsil edilmiştir.

Çizelge 4.22 : Elastomer mesnet özellikleri

Mesnet Rijitlikleri							
Aks	Eni (mm)	Boyu (mm)	Kalınlığı (mm)	Kayma Modülü kN/m ²	Rijitlik (U ₁) kN/m	Rijitlik (U ₂) kN/m	Rijitlik (U ₃) kN/m
A-1~1-B	300	400	52	1000	3759553	3243	3243

4.4.4 Modal analiz

Köprü üstyapı modeli Bölüm 3.4.3' de anlatıldığı gibi kurulmuş ve hesap yöntemi olarak Çok Modlu Dinamik Analiz seçilmiştir. Hesaba katılacak mod sayısını bulmak için AASHTO Bölüm IA 4.5.4' den yararlanılmıştır. Burada açıklık sayısının 3 katı, maksimum 25 modun alınması ve aynı zamanda da kütle katılımlarının %90'nın üzerinde olması gerektiği belirtilmiştir.

Kütle Katılım Oranları									
Output Case	Step Type	Step Num.	Period (sn)	Ux	Uy	Uz	SumUx	SumUy	SumUz
Modal	Mode	1	0.77733	0.10840	0.68685	0.00000	0.10840	0.68685	0.00000
Modal	Mode	2	0.69527	0.65350	0.10606	0.00001	0.76190	0.79291	0.00001
Modal	Mode	3	0.51567	0.00000	0.00000	0.00244	0.76190	0.79291	0.00245
Modal	Mode	4	0.39951	0.00002	0.00230	0.00002	0.76192	0.79522	0.00247
Modal	Mode	5	0.33616	0.00000	0.00000	0.76159	0.76192	0.79522	0.76406
Modal	Mode	6	0.24711	0.00909	0.09168	0.00000	0.77102	0.88689	0.76406
Modal	Mode	7	0.20935	0.13753	0.01552	0.00000	0.90855	0.90241	0.76407
Modal	Mode	8	0.20898	0.00041	0.00000	0.00002	0.90896	0.90241	0.76408
Modal	Mode	9	0.18002	0.00033	0.00002	0.12691	0.90929	0.90243	0.89100
Modal	Mode	10	0.15028	0.04458	0.00086	0.00080	0.95387	0.90329	0.89179
Modal	Mode	11	0.13486	0.00101	0.00256	0.00001	0.95488	0.90585	0.89180
Modal	Mode	12	0.12509	0.00067	0.01134	0.00000	0.95554	0.91719	0.89180
Modal	Mode	13	0.11240	0.00001	0.00015	0.00006	0.95555	0.91733	0.89186
Modal	Mode	14	0.10758	0.00205	0.03989	0.00001	0.95760	0.95722	0.89187
Modal	Mode	15	0.09828	0.00000	0.00000	0.05570	0.95760	0.95723	0.94756
Modal	Mode	16	0.09208	0.00000	0.00000	0.00005	0.95760	0.95723	0.94761
Modal	Mode	17	0.07828	0.00000	0.00002	0.00000	0.95761	0.95725	0.94761
Modal	Mode	18	0.06764	0.00163	0.02041	0.00000	0.95924	0.97766	0.94761
Modal	Mode	19	0.06615	0.00000	0.00020	0.00000	0.95924	0.97785	0.94761
Modal	Mode	20	0.06184	0.00069	0.00658	0.00000	0.95993	0.98443	0.94761
Modal	Mode	21	0.06124	0.00002	0.00016	0.00000	0.95995	0.98459	0.94761
Modal	Mode	22	0.06039	0.00121	0.00010	0.00001	0.96115	0.98468	0.94762
Modal	Mode	23	0.06024	0.00076	0.00005	0.00001	0.96191	0.98474	0.94763
Modal	Mode	24	0.06009	0.00000	0.00001	0.00000	0.96191	0.98475	0.94763
Modal	Mode	25	0.06000	0.00000	0.00000	0.00000	0.96191	0.98475	0.94763

Çizelge 4.23 : Kütle katılım oranları

Sap 2000'de oluşturulan matematik model Şekil 4.12' da görülmektedir. Şekil 4.13, 4.14 ve 4.15' de ise mevcut köprü 1, 2 ve 3 modları görülmektedir. Mevcut köprü birinci modu görüldüğü üzere köprü boyuna doğrultuda ikinci modu enine yönünde üçüncü modu ise burulma çıkmıştır.

Şekil 4.12 : Matematik model

Şekil 4.13 : Mod1- $T_1 = 0.78$ sn

Şekil 4.14 : $Mod2-T_2 = 0.70 sn$

Şekil 4.15 : Mod $3-T_3 = 0.52$ sn

4.4.5 Köprü kolonlarının tasarımı

Yapılan analiz sonucu, köprü ayaklarında (kolonlarda) oluşan elverişsiz kesit tesirleri okunmuştur. Kolon kesitlerinde oluşan momentler, Çizelge 2.13' de verilen davranış düzeltme katsayısı (R) ile azaltılarak hesaplanmıştır. Köprü boyuna ve enine yönde

aynı azaltma katsayısı tercih edilmiş ve R = 3 alınmıştır (AASHTO Bölüm IA 3.7). Normal kuvvet ve kesme kuvveti değerleri için R = 1' alınmıştır. Ayrıca davranış düzeltme katsayısısı ile azaltılan kesit tesirleri AASHTO 8.16.5.2' ye göre hesaplanan narinlik faktörleri ile arttırılmıştır. Tasarım moment değerinin plastikleşme moment değeri aşıp aşmadığı kontrol edilmiş ve eğer aşmamışsa kesitin bu değeri taşıdığı kabul edilmiştir. Ayrıca moment etkileşim diyagramları çizilmiş ve elverişsiz kesit tesirlerinin diyagram içerisinde kalıp kalmadığı kontrol edilmiştir.

Dayanım azaltma faktörü (Φ), normal kuvvetin ($0.2A_gf_c$) den büyük olması durumu için 0.5, 0 ile ($0.2A_gf_c$) değerleri arasında olması durumu için 0.5 ile 0.9 arasında lineer değişecektir.

4.4.5.1 Kesit tesirleri

Genel amaçlı bir statik programı olan Sap 2000 yardımıyla hesaplanan köprü ortaayaklarında elde edilen elverişsiz kesit tesirleri çizelge 4.24' de verilmiştir. Kesit tesirleri, dayanım azaltma faktörüne bölünerek büyütülmüştür. Bütün kolonlara ait statik sonuçları EK-A' da ayrıntılı olarak verilmiştir.

Kesit Tesirleri (Kolon Alt Ucu)								
Kombinasyon	N (kN)	Q ₂₂ (kN)	Q ₃₃ (kN)	M ₂₂ (kNm)	M ₃₃ (kNm)	M ₂₂ /Φ (kNm)	M ₃₃ / Φ (kNm)	M _d (kNm)
Comb7-R=3	6767.64	354.00	791.73	2085.56	839.44	3224.21	1297.74	3475.58
Comb8-R=3	6529.31	591.56	460.7	1255.27	1415.63	1914.23	2158.77	2885.23
Comb9	10780.56	17.75	37.34	109.28	36.78	218.56	73.55	230.60
		ŀ	Kesit Tesirl	leri (Kolon	Üst Ucu)			
Kombinasyon	Ν	Q ₂₂	Q ₃₃	M ₂₂	M ₃₃	M_{22}/Φ	M_{33}/Φ	M_d
Comb7-R=3	6557.84	345.87	781.19	1773.10	808.16	2708.29	1234.41	2976.34
Comb8-R=3	6320.51	577.57	454.67	1044.29	1353.40	1573.75	2039.57	2576.15
Comb9	10510.81	17.75	37.34	68.03	47.50	134.23	93.72	163.71

Çizelge 4.24 : Kolon kesit tesirleri

4.4.5.2 Narinlik hesabı

Kolon narinlik hesapları AASHTO 8.16.5.2' ye göre yapılmıştır. Köprü boyuna ve enine yönünde kolonların konsol olarak çalıştığı kabul edilmiştir.

Köprü boyuna yönde narinlik hesapları

Kolon net beton alanı	: $A_g = 1.78 \text{ m}^2$
Atalet momenti	: $I_{33} = 0.13 \text{ m}^4$

Atalet yarıçapı	: $r_{33} = 0.27 \text{ m}^4$
Kolon boyu	:l _u = 4.90 m
Etkili uzunluk faktörü (AASHTO Ek C)	:k=2
Moment faktörü (AASHTO 8.16.5.2.7)	:C _m = 1
Dayanım azaltma faktörü (AASHTO IA 7.6.2.5)	: $\Phi = 0.5$
Normal kuvvet	: $P_u = 6768 \text{ kN}$
Ölü yük momenti	:M = 0 kNm
Maksimum moment	:M = 3224 kNm
Betonun elastisite modülü	: $E_c = 31800000 \text{ kN/m}^2$

 $\frac{k \times l_u}{r} = \frac{2 \times 4.90}{0.27} = 36 \ge 22$ olduğundan narinlik etkisi dikkate alınmalıdır.

$$E \times I = \frac{E_c \times I_g}{2.5(1+\beta_d)} = \frac{31800000 \times 0.13}{2.5(1+0)^2} = 1653600 \text{ kNm}^2$$

 $P_c = \frac{\pi^2 \times E \times I}{(k \times l_u)^2} = \frac{\pi^2 \times 1653600}{(2 \times 4.90)^2} = 169933 \text{ kN olarak kritik burkulma yükü}$

hesaplanır.

Moment büyütme faktörü
$$\delta = \frac{C_m}{1 - \frac{P_u}{\phi \times P_c}} = \frac{1}{1 - \frac{6768}{0.5 \times 169933}} = 1.08$$

Kesit tesirleri boyuna doğrultuda 1.08 ile büyütülmelidir. Kesitin taşıma kapasitesi kritik olmadığından narinlik etkisi ihmal edilecektir.

* Köprü enine yönde narinlik hesapları

Kolon net beton alanı	: $A_g = 1.78 m^2$
Atalet momenti	$I_{22} = 0.49 \text{ m}^4$
Atalet yarıçapı	$r_{22} = 0.53 m^4$
Kolon boyu	:l _u = 4.90 m
Etkili uzunluk faktörü (AASHTO Ek C)	:k=2
Moment faktörü (AASHTO 8.16.5.2.7)	:C _m = 1

Dayanım azaltma faktörü (AASHTO IA 7.6.2.5)	:Φ = 0.5
Normal kuvvet	: $P_u = 6529 \text{ kN}$
Ölü yük momenti	$\dots M = 0 \text{ kNm}$
Maksimum moment	:M = 2159kNm
Betonun elastisite modülü	:E _c = 31800000 kN/m^2

 $\frac{k \times l_u}{r} = \frac{2 \times 4.90}{0.53} = 19 \le 22$ olduğundan narinlik etkisini dikkate almaya gerek

yoktur.

4.4.5.3 Kolon eğilme donatısı hesabı

Köprü orta ayak kolonları için XTRACT programı yardımıyla, analizler neticesinde köprünün her iki asal ekseni doğrultusunda hesaplanan elverişsiz kesit tesirleri için moment-normal kuvvet etkileşim eğrileri hazırlanmış ve kesit kontrol edilmiştir. Buna göre 2.00x1.00m. boyutunda eliptik ortaayak kolonlarına $36\Phi 26$ donatı konulmuştur. Şekil 4.16' de N = 0 kN durumu için hazırlanan moment kapasite eğrisinde elde edilen maksimum değerler Çizelge 4.24' de verilen değerler ile karşılaştırılmıştır. Aynı zamanda Şekil 4.17 ve 4.18' de verilen moment - normal kuvvet etkileşim diyagramları ile gerekli dayanımın eğri içerisinde kaldığı gösterilmiştir.

Şekil 4.16 : 1 Aksı normal kuvvet altında etkileşim diyagramı

M-N ETKİLEŞİM DİYAGRAMI 36Ф26 Donatı Oram = %1.07

Şekil 4.17 : Enine yönde depremli durum M-N etkileşim diyagramı

4.4.5.4 Kolon kesme donatisi hesabi

 Köprü enine yönde kesme donatısı hesabı 	
Kapasite azaltma faktörü (AASHTO, 8.16.1.2.2.a)	: $\phi = 0.85$
Faydalı yükseklik	:d = 1925 mm
Hesap genişliği	:b _w = 1000 mm
Karakteristik beton basınç dayanımı	:f_c' = 30 N/mm ²
Karakteristik çelik akma dayanımı	: $f_y = 420 \text{ N/mm}^2$
Kesme kuvveti	: $V_u = 791.73 \text{ kN}$

Betonun kesme dayanımı $V_c = 0.17 \sqrt{f_c} \times b_w \times d$ ifadesiyle hesaplanır.

$$V_c = 0.17 \sqrt{f_c} \times b_w \times d = 0.17 \sqrt{30} \times 1000 \times 1925 = 1792.42$$
 kN

 $\phi V_c = 1523.41 kN \ge V_u = 791.73 kN$ olduğundan kesme hesabına gerek yoktur.

Köprü boyuna yönde kesme donatısı hesabı

Kapasite azaltma faktörü (AASHTO, 8.16.1.2.2.a)	:φ = 0.85
Faydalı yükseklik	:d = 925 mm
Hesap genişliği	:b _w = 2000 mm
Karakteristik beton basınç dayanımı	:f _c ' = 30 N/mm ²
Karakteristik çelik akma dayanımı	: $f_y = 420 \text{ N/mm}^2$
Kesme kuvveti	: $V_{\mu} = 591.56 \text{ kN}$

Betonun kesme dayanımı $V_c = 0.17 \sqrt{f_c} \times b_w \times d$ ifadesiyle hesaplanır.

$$V_c = 0.17 \sqrt{f_c} \times b_w \times d = 0.17 \sqrt{30} \times 2000 \times 925 = 1722.59 \text{ kN}$$

 $\phi V_c = 1464.20 kN \ge V_u = 591.56 kN$ olduğundan kesme hesabına gerek yoktur.

4.4.6 Köprü başlık kirişi tasarımı

Yapılan analiz sonucu, köprü başlık kirişinde oluşan elverişsiz kesit tesirleri okunmuştur. Başlık kirişi basit eğilme etkisindeki eleman gibi hesaplanmıştır. XTRACT programında moment-eğrilik diyagramları çizilerek kesit kontrol edilmiştir.

4.4.6.1 Kesit tesirleri

Genel amaçlı bir statik programı olan Sap 2000 yardımıyla hesaplanan köprü başlık kirişinde elde edilen elverişsiz kesit tesirleri Çizelge 4.25' de verilmiştir. Kesit tesirleri, dayanım azaltma faktörüne bölünerek büyütülmüştür. Bütün başlık kirişine ait statik sonuçları EK-A' da ayrıntılı olarak verilmiştir.

Kesit Tesirleri									
Kombinasyon	N (kN)	Q ₂₂ (kN)	Q ₃₃ (kN)	M ₂₂ (kNm)	M ₃₃ (kNm)	M ₂₂ /Φ (kNm)	M ₃₃ / Φ (kNm)	M _d (kNm)	
Comb7	-1033.41	-3425.20	-367.94	-218.54	-3462.92	-242.83	-3847.68	-3855.33	
Comb7	992.15	2733.84	289.44	110.30	1351.73	122.56	1501.93	1506.92	
Comb7	-909.48	-3675.10	-425.09	-294.70	-2929.46	-327.44	-3254.95	-3271.38	
Comb9	4.85	3280.30	7.10	6.28	-1982.03	6.98	-2202.25	-2202.26	

Çizelge 4.25 : Başlık kirişi kesit tesirleri

4.4.6.2 Başlık kirişi eğilme donatısı hesabı

Köprü başlık kirişi için XTRACT programı yardımıyla, analizler neticesinde köprünün her iki asal ekseni doğrultusunda hesaplanan elverişsiz kesit tesirleri için moment-eğrilik diyagramları hazırlanmış ve kesit kontrol edilmiştir. Buna göre Şekil 4.19' da verilen başlık kirişine 51Φ26 donatı konulmuştur. Şekil 4.20' de başlık kirişinin üst tarafı için ve Şekil 4.21' de kirişin alt tarafı için hazırlanan moment eğrisinde elde edilen değerler Çizelge 4.25' de verilen eğilme momentleri ile karşılaştırılmıştır.

Şekil 4.19 : Başlık kirişi şematik donatı yerleşimi

M-K DİYAGRAMI 51@26 Donatı Oranı = %1 24

Şekil 4.20 : Üst donatı için moment eğrilik diyagramı
XTRACT programı analiz sonucu başlık kirişi üst tarafında moment değeri M = 4513 kNm hesaplanmıştır (şekil 4.20). SAP 2000 da elverişsiz yükleme sonucu oluşan eğilme momenti (çizelge 4.25) ile karşılaştırılmıştır.

 $\phi M_c = 4513 k Nm \ge M_u = 3855 k Nm$ olduğundan üst bölgeye konan donatı yeterlidir.

M-K DİYAGRAMI 51Ф26 Donatı Oranı = %1.25

Şekil 4.21 : Alt donatı için moment eğrilik diyagramı

XTRACT programı analiz sonucu başlık kirişi alt tarafında moment değeri $M_c = 7347$ kNm hesaplanmıştır (şekil 4.21). SAP 2000' de elverişsiz yükleme sonucu oluşan eğilme momenti (çizelge 4.25) ile karşılaştırılmıştır.

 $\phi M_c = 7347 kNm \ge M_u = 1506 kNm$ olduğundan alt bölgeye konan donatı yeterlidir.

4.4.6.3 Başlık kirişi kesme donatısı hesabı

Kapasite azaltma faktörü (AASHTO, 8.16.1.2.2.a)	:φ = 0.85
Faydalı yükseklik	:d = 1725 mm
Hesap genişliği	: $b_{w} = 600 \text{ mm}$
Karakteristik beton basınç dayanımı	: $f_{c} = 30 \text{ N/mm}^{2}$
Karakteristik çelik akma dayanımı	: $f_y = 420 \text{ N/mm}^2$

Kesme kuvveti

Betonun kesme dayanımı $V_c = 0.17 \sqrt{f_c'} \times b_w \times d$ ifadesiyle hesaplanır.

$$V_c = 0.17 \sqrt{f_c^{'}} \times b_w \times d = 0.17 \sqrt{30} \times 1725 \times 600 = 963.72$$
 kN

Çeliğin kesme dayanımı $V_s = \frac{A_v \times f_v \times d}{s}$ ifadesiyle hesaplanır.

Kesite 4 kollu Φ 16/15cm donatı konulursa;

$$V_{s} = \frac{A_{v} \times f_{y} \times d}{s} = \frac{4 \times 200 \times 420 \times 1725}{150} = 3864kN$$

 $\phi(V_c + V_s) = 4104kN \ge V_u = 3675.kN$ olduğundan kesme donatısı yeterlidir.

4.4.7 Köprü orta ayak temelinin tasarımı

Yapılan analiz sonucu, köprü temelinde oluşan elverişsiz kesit tesirleri okunmuştur. Temeldeki donatı miktarı birim genişlik için hesaplanmıştır.

4.4.7.1 Kesit tesirleri

Genel amaçlı bir statik programı olan Sap 2000 yardımıyla hesaplanan köprü temelinde elde edilen elverişsiz kesit tesirleri Çizelge 4.26' da verilmiştir. Kesit tesirleri, dayanım azaltma faktörüne bölünerek büyütülmüştür.

Kesit Tesirleri				
Kombinasyon	V ₁₃ (kN)	V ₂₃ (kN)	M ₁₁ (kNm)	M ₂₂ (kNm)
Comb7	1064.58	1032.10	1463.94	1584.90
Comb8	1004.53	900.78	1426.15	1281.06
Comb9	987.21	971.03	1451.78	1444.75

Çizelge 4.26 : Temel kesit tesirleri

4.4.7.2 Temel eğilme donatısı hesabı

Köprü boyuna yönde alt donatı hesabı

Kesitteki faktörlü moment	: $M_u = 1585 kNm$
Taşıma gücü azaltma katsayısı	:φ = 0.90
Kesit genişliği	:b = 1000 mm

Faydalı yükseklik	:d = 1425 mm
Karakteristik beton basınç dayanımı	:f_c' = 30 N/mm ²
Karakteristik çelik akma dayanımı	: $f_y = 420 \text{ N/mm}^2$
Paspayı	:d = 75 mm

a) Gereken egilme donatısının alanı

Eğilme taşıma gücü $\phi M_n = \phi \left[A_s \times f_y \times \left(d - \frac{a}{2} \right) \right]$ ifadesiyle, eşdeğer basınç bloğu derinliği ise $a = \frac{A_s \times f_y}{0.85 \times f_s' \times b}$ ifadesiyle hesaplanabilir.

Yukarıdaki ifadelerden gerekli donatı alanı $A_s = 2994mm^2$ olarak elde edilir.

b) Minimum donatı oranı

Sağlanan donatı kopma modülüne göre hesaplanan çatlama momentinin (M_{cr}) en az 1.2 katı kadar taşıma gücü sağlanmalıdır (AASHTO 8.17.1.1.1).

Kopma modülü	: $f_r = 3.11 \text{ MPa}$
Kesitin atalet momenti	:I = 0.281 m^4
Kesitin ağırlık merkezi	$y_t = 750 \text{ mm}$

Çatlama momenti $M_{cr} = \frac{f_r \times I}{y_t} = 117 kNm$ olarak hesaplanır (AASHTO 8.13.3). Minimum donatı ise $A_{s,\min} = 2638mm^2$ 1.2M_{cr} değerinin yukardaki ifadede yerine konulması ile elde edilir.

Kesitteki donatı alanı analiz sonucunda gereken donatı alanının 1.33 katından fazla ise minumum donatı şartı aranmaz (AASHTO 8.17.1.2)

c) Dengeli donatı oranı

Kesitteki donatı oranı, dengeli donatı oranının %75' inden az olmalıdır (AASHTO 8.16.3.1.1).

$$\rho_b = \frac{0.85\beta_1 \times f_c}{f_y} \left(\frac{599.843}{599.843 + f_y} \right) = 0.030354 \text{ olarak hesaplanır.}$$

Eğilme donatısı

.....Φ26 / 15 cm

Donati alani :..... $A_s = 3538 \text{ mm}^2$ $A_s = 3538 \text{ mm}^2 > A_{s,gereken} = 2994 \text{ mm}^2$ $A_s = 3538 \text{ mm}^2 > A_{s,min} = 2638 \text{ mm}^2$

 ρ = 0.002483 < 0.75 ρ_b = 0.022765 oldugundan kesite konulan donatı yeterlidir.

Köprü boyuna yönde üst donatı hesabı

Kesitteki faktörlü moment	: $M_u = 1150 \text{kNm}$
Taşıma gücü azaltma katsayısı	: $\phi = 0.90$
Kesit genişliği	:b = 1000 mm
Faydalı yükseklik	:d = 1425 mm
Karakteristik beton basınç dayanımı	:f_c' = 30 N/mm ²
Karakteristik çelik akma dayanımı	: $f_y = 420 \text{ N/mm}^2$
Paspayı	:d = 75 mm

a) Gereken egilme donatisinin alanı

Eğilme taşıma gücü $\phi M_n = \phi \left[A_s \times f_y \times \left(d - \frac{a}{2} \right) \right]$ ifadesiyle, eşdeğer basınç bloğu

derinliği ise $a = \frac{A_s \times f_y}{0.85 \times f_c \times b}$ ifadesiyle hesaplanabilir.

Yukarıdaki ifadelerden gerekli donatı alanı $A_s = 2167 mm^2$ olarak elde edilir.

b) Minimum donatı oranı

Sağlanan donatı kopma modülüne göre hesaplanan çatlama momentinin (M_{cr}) en az 1.2 katı kadar taşıma gücü sağlanmalıdır (AASHTO 8.17.1.1.1).

Kopma modülü	:f _r = 3.11 MPa
Kesitin atalet momenti	:I = 0.281 m ⁴
Kesitin ağırlık merkezi	:y _t = 750 mm

Çatlama momenti $M_{cr} = \frac{f_r \times I}{y_t} = 117 kNm$ olarak hesaplanır (AASHTO 8.13.3). Minimum donatı ise $A_{s,\min} = 2638mm^2$ 1.2M_{cr} değerinin yukardaki ifadede yerine konulması ile elde edilir.

Kesitteki donatı alanı analiz sonucunda gereken donatı alanının 1.33 katından fazla ise minumum donatı şartı aranmaz (AASHTO 8.17.1.2)

c) Dengeli donatı oranı

Kesitteki donatı oranı, dengeli donatı oranının %75' inden az olmalıdır (AASHTO 8.16.3.1.1).

$$\rho_b = \frac{0.85\beta_1 \times f_c'}{f_y} \left(\frac{599.843}{599.843 + f_y} \right) = 0.030354 \text{ olarak hesaplanır.}$$

Eğilme donatısı	:
Donatı alanı	:
$A_s = 3014 \text{ mm}^2 >$	$A_{s,gereken} = 2167 \text{ mm}^2$
$A_{\rm s} = 3014 \ {\rm mm}^2$ >	$A_{s,min} = 2638 \text{ mm}^2$

 $\rho = 0.002115 < 0.75 \rho_b = 0.022765$ oldugundan kesite konulan donatı yeterlidir.

* Köprü enine yönde alt donatı hesabı

Kesitteki faktörlü moment	: $M_u = 1430 k Nm$
Taşıma gücü azaltma katsayısı	: $\phi = 0.90$
Kesit genişliği	:b = 1000 mm
Faydalı yükseklik	:d = 1425 mm
Karakteristik beton basınç dayanımı	:f _c ' = 30 N/mm ²
Karakteristik çelik akma dayanımı	: $f_y = 420 \text{ N/mm}^2$
Paspayı	:d = 75 mm

a) Gereken egilme donatisinin alanı

Eğilme taşıma gücü $\phi M_n = \phi \left[A_s \times f_y \times \left(d - \frac{a}{2} \right) \right]$ ifadesiyle, eşdeğer basınç bloğu $A \times f$

derinliği ise $a = \frac{A_s \times f_y}{0.85 \times f_c \times b}$ ifadesiyle hesaplanabilir.

Yukarıdaki ifadelerden gerekli donatı alanı $A_s = 2689mm^2$ olarak elde edilir.

b) Minimum donatı oranı

Sağlanan donatı kopma modülüne göre hesaplanan çatlama momentinin (M_{cr}) en az 1.2 katı kadar taşıma gücü sağlanmalıdır (AASHTO 8.17.1.1.1).

Kopma modülü	: $f_r = 3.11 \text{ MPa}$
Kesitin atalet momenti	:I = 0.281 m ⁴
Kesitin ağırlık merkezi	:

Çatlama momenti $M_{cr} = \frac{f_r \times I}{y_t} = 117 kNm$ olarak hesaplanır (AASHTO 8.13.3). Minimum donatı ise $A_{s,\min} = 2638mm^2$ 1.2M_{cr} değerinin yukardaki ifadede yerine konulması ile elde edilir.

Kesitteki donatı alanı analiz sonucunda gereken donatı alanının 1.33 katından fazla ise minumum donatı şartı aranmaz (AASHTO 8.17.1.2)

c) Dengeli donatı oranı

Kesitteki donatı oranı, dengeli donatı oranının %75' inden az olmalıdır (AASHTO 8.16.3.1.1).

.....Φ24 / 15 cm

:..... $A_s = 3014 \text{ mm}^2$

$$\rho_b = \frac{0.85\beta_1 \times f_c'}{f_y} \left(\frac{599.843}{599.843 + f_y} \right) = 0.030354 \text{ olarak hesaplanır.}$$

Eğilme donatısı

Donatı alanı

 $A_s=3014\ mm^2 \quad > \quad A_{s,gereken}=2689\ mm^2$

 $A_s = 3014 \text{ mm}^2 > A_{s,min} = 2638 \text{ mm}^2$

 $\rho = 0.002115 < 0.75 \rho_b = 0.022765$ oldugundan kesite konulan donatı yeterlidir.

Köprü enine yönde ust donatı hesabı

Kesitteki faktörlü moment	: $M_u = 730 k Nm$
Taşıma gücü azaltma katsayısı	: $\phi = 0.90$
Kesit genişliği	:b = 1000 mm
Faydalı yükseklik	:d = 1425 mm
Karakteristik beton basınç dayanımı	:f _c ' = 30 N/mm ²
Karakteristik çelik akma dayanımı	: $f_y = 420 \text{ N/mm}^2$
Paspayı	:d = 75 mm

a) Gereken egilme donatısının alanı

Eğilme taşıma gücü $\phi M_n = \phi \left[A_s \times f_y \times \left(d - \frac{a}{2} \right) \right]$ ifadesiyle, eşdeğer basınç bloğu derinliği ise $a = \frac{A_s \times f_y}{0.85 \times f_c^{'} \times b}$ ifadesiyle hesaplanabilir.

Yukarıdaki ifadelerden gerekli donatı alanı $A_s = 1366mm^2$ olarak elde edilir.

b) Minimum donatı oranı

Sağlanan donatı kopma modülüne göre hesaplanan çatlama momentinin (M_{cr}) en az 1.2 katı kadar taşıma gücü sağlanmalıdır (AASHTO 8.17.1.1.1).

Kopma modülü	: $f_r = 3.11 \text{ MPa}$
Kesitin atalet momenti	:I = 0.281 m^4
Kesitin ağırlık merkezi	$y_t = 750 \text{ mm}$

Çatlama momenti $M_{cr} = \frac{f_r \times I}{y_t} = 117 kNm$ olarak hesaplanır (AASHTO 8.13.3). Minimum donatı ise $A_{s,\min} = 2638mm^2$ 1.2M_{cr} değerinin yukardaki ifadede yerine konulması ile elde edilir.

Kesitteki donatı alanı analiz sonucunda gereken donatı alanının 1.33 katından fazla ise minumum donatı şartı aranmaz (AASHTO 8.17.1.2)

c) Dengeli donatı oranı

Kesitteki donatı oranı, dengeli donatı oranının %75' inden az olmalıdır (AASHTO 8.16.3.1.1).

·....Φ24 / 15 cm

:..... $A_s = 3014 \text{ mm}^2$

$$\rho_b = \frac{0.85\beta_1 \times f'_c}{f_y} \left(\frac{599.843}{599.843 + f_y}\right) = 0.030354 \text{ olarak hesaplanır.}$$

Eğilme donatısı

Donatı alanı

 $A_s = 3014 \text{ mm}^2 > A_{s,gereken} = 1366 \text{ mm}^2$ $A_s = 3014 \text{ mm}^2 > A_{s,min} = 2638 \text{ mm}^2$

 $\rho = 0.002115 < 0.75 \rho_b = 0.022765$ oldugundan kesite konulan donatı yeterlidir.

4.4.7.3 Temel kesme donatisi hesabi

Kapasite azaltma faktörü (AASHTO, 8.16.1.2.2.a)	: $\phi = 0.85$
Faydalı yükseklik	:d = 1425 mm
Hesap genişliği	:b _w = 1000 mm
Karakteristik beton basınç dayanımı	: $f_{c} = 30 \text{ N/mm}^{2}$
Karakteristik çelik akma dayanımı	: $f_y = 420 \text{ N/mm}^2$
Kesme kuvveti	: $V_u = 1060 \text{ kN}$

Betonun kesme dayanımı $V_c = 0.17 \sqrt{f'_c} \times b_w \times d$ ifadesiyle hesaplanır.

$$V_c = 0.17 \sqrt{f_c} \times b_w \times d = 0.17 \sqrt{30} \times 1425 \times 1000 = 1327$$
 kN

 $\phi V_c = 1128kN \ge V_u = 1060kN$ olduğundan kesme hesabına gerek yoktur.

4.4.8 Köprü orta ayak kazıklarının tasarımı

Yapılan analiz sonucu, köprü kazıklarında oluşan elverişsiz kesit tesirleri okunmuştur. Moment etkileşim diyagramları çizilmiş ve elverişsiz kesit tesirlerinin diyagram içerisinde kalıp kalmadığı kontrol edilmiştir.

Dayanım azaltma faktörü (Φ), normal kuvvetin ($0.2A_gf_c$) den büyük olması durumu için 0.5, 0 ile ($0.2A_gf_c$) değerleri arasında olması durumu için 0.5 ile 0.9 arasında lineer değişecektir.

4.4.8.1 Kesit tesirleri

Genel amaçlı bir statik programı olan Sap 2000 yardımıyla hesaplanan köprü kazıklarında elde edilen elverişsiz kesit tesirleri Çizelge 4.27' de verilmiştir. Kesit tesirleri, dayanım azaltma faktörüne bölünerek büyütülmüştür.

Kesit Tesirleri								
Kombinasyon	N (kN)	Q ₂₂ (kN)	Q ₃₃ (kN)	M ₂₂ (kNm)	M ₃₃ (kNm)	M ₂₂ /Φ (kNm)	M ₃₃ / Φ (kNm)	M _d (kNm)
Comb7	2618.80	496.73	280.63	453.04	937.32	668.49	1383.07	1536.72
Comb8	2568.29	80.11	57.03	766.56	232.36	1123.99	340.71	1174.49
Comb9	2417.23	6.69	22.98	81.57	60.69	117.41	87.35	146.34

Çizelge 4.27 : Kazık kesit tesirleri

4.4.8.2 Kazık eğilme donatısı hesabı

Köprü orta ayak kazıkları için XTRACT programı yardımıyla, analizler neticesinde köprünün her iki asal ekseni doğrultusunda hesaplanan elverişsiz kesit tesirleri için moment-normal kuvvet etkileşim eğrileri hazırlanmış ve kesit kontrol edilmiştir. Buna göre Ø100 çapındaki ortaayak kazıklarına $20\Phi26$ donatı konulmuştur. Şekil 4.22' de N = 0 kN durumu için hazırlanan moment kapasite eğrisinde elde edilen maksimum değerler Çizelge 4.27' de verilen değerler ile karşılaştırılmıştır. Aynı zamanda Şekil 4.23' de verilen moment - normal kuvvet etkileşim diyagramları ile gerekli dayanımın eğri içerisinde kaldığı gösterilmiştir.

Şekil 4.22 : 1 Aksı kazıkları normal kuvvet altında etkileşim diyagramı

M-N ETKİLEŞİM DİYAGRAMI 20Φ26 Donatı Oranı = %1.36

Şekil 4.23 : Orta ayak kazıkları M-N etkileşim diyagramı

4.4.8.3 Kazık kesme donatısı hesabı

Kapasite azaltma faktörü (AASHTO, 8.16.1.2.2.a)	:φ = 0.85
Faydalı yükseklik	:d = 925 mm
Hesap genişliği	:b _w = 1000 mm
Karakteristik beton basınç dayanımı	:f_c' = 30 N/mm ²
Karakteristik çelik akma dayanımı	: $f_y = 420 \text{ N/mm}^2$
Kesme kuvveti	$V_{u} = 496.73 \text{ kN}$

Betonun kesme dayanımı $V_c = 0.17 \sqrt{f_c} \times b_w \times d$ ifadesiyle hesaplanır.

$$V_c = 0.17 \sqrt{f_c} \times b_w \times d = 0.17 \sqrt{30} \times 1000 \times 925 = 861.29 \text{ kN}$$

 $\phi V_c = 732.10 kN \ge V_u = 496.73 kN$ olduğundan kesme hesabına gerek yoktur.

4.4.8.4 Köprü orta ayak kazıkları taşıma gücü hesabı

Kazık boyu	:L = 15.0 m .
Kazık çapı	:Φ100 cm
Yer altı suyu durumu	:Suya doygun
Kazık uç alanı	:A = 0.78 m^2
Şekil faktörü (dairesel kazıklar için)	:K = 0.3
İçsel sürtünme açısı	$\ldots \Phi = 30^{\circ}$
Terzaghi taşıma gücü katsayısı	: $N_q = 22.5$
Terzaghi taşıma gücü katsayısı	:N _c = 22.5
Terzaghi taşıma gücü katsayısı	: $N_{\gamma} = 22.5$
Kazık ucunda oluşan düşey basınç	$\dots p_0 = p_v = \gamma \times D_f$
Yatay toprak basıncı katsayısı (sıkı zeminler için)	:K = 2
Yatay toprak basıncı katsayısı (gevşek zeminler içir	n) :K = 1.2

Şekil 4.24 : Orta ayak kazıkları zemin profili

✤ Kazık uç taşıma gücü

$$q_{d} = (1.3 \times c \times N_{c} + p_{0} \times N_{q} + K \times N_{\gamma} \times B) + 9c \text{ ifadesiyle hesaplanır.}$$

$$q_{d} = (1.3 \times c \times N_{c} + p_{0} \times N_{q} + K \times N_{\gamma} \times B) + 9c$$

$$q_{d} = (1.3 \times 50 \times 37.2 + (20 - 10) \times 15 \times 22.5 + 0.3 \times (20 - 10) \times 19.7 \times 1.2 + 9 \times 50$$

$$q_{d} = 6313.92 \text{ kN/m}^{2}$$

Kazık ucunun taşıyabileceği yük $Q_d = q_d \times A$ ile hesaplanır.

$$Q_d = 6313.92 \times 0.78 = 4924.86 \text{ kN}$$

Kazık çevre sürtünmesi taşıma gücü

q_s çevre sürtünmesi olmak üzere, kazığın çevre sürtünmesiyle taşıyabileceği yük;

 $q_s = K \times p_v \times \tan(0.75 \times \phi)$ ile hesaplanır. Kazığın çevre sürtünmesi taşıma gücü ise $Q_s = (c_a + q_s) \times A_s$ dır. Burada $c_a = \alpha \times c$ olmak üzere $\alpha = 0.5 \sim 1$ alınabilir. Buna göre sırayla zemin tabakalarında taşıma gücü hesabı yapılırsa

Kil Tabakası İçin;

$$q_s = 1.2 \times ((18 - 10) \times 8) \times \tan(0.75 \times 22) = 22.75 \text{ kN/m}^2$$

$$A_s = \pi \times 1.2 \times 8 = 30.14 \text{ m}^2$$

 $c_a = 0.5 \times 22 = 11.0 \text{ kN/m}^2$

 $Q_s = (22.75 + 11.00) \times 30.14 = 1017.23 \text{ kN}$

Şeyl Tabakası İçin;

$$q_s = 1.2 \times ((19 - 10) \times 5) \times \tan(0.75 \times 30) = 22.37 \text{ kN/m}^2$$

$$A_s = \pi \times 1.0 \times 5 = 15.70 \text{ m}^2$$

$$c_a = 0.5 \times 50 = 17.0 \text{ kN/m}^2$$

 $Q_s = (22.37 + 17.00) \times 15.70 = 618.30$ kN

Kazık ağırlığı

W kazık ağırlığı olmak üzere değeri

 $W = A \times \gamma_{beton} \times L$ ile hesaplanır. Buna göre,

 $W = 0.78 \times 15 \times 25 = 292.50$ kN olur.

✤ Grup etkisinin hesaplanması

Grup etki katsayısı değeri ise aşağıdaki formül ile hesaplanır.

$$\eta = 1 - \theta \frac{(n-1)m + (m-1)n}{90mn}$$
(4.8)

n kazık gurubundaki kazık sıra adetini, m bir sıradaki kazık adetini, θ açı cinsinden tan $\theta = D/t$, t ise kazık ara mesafesini göstermektedir. Buna göre

$$\eta = 1 - 18.43 \frac{(2 - 1)x10 + (10 - 1)x2}{90x10x2} = 0.71 \text{ olarak almabilir.}$$

Kazık taşıma gücünün hesaplanması

Q_{net} kazığın emniyetli olarak taşıyabileceği yük ise değeri $Q_{net} = [(Q_d + Q_s)/GS] \times \eta - W$ olarak hesaplanır. Eşitlikte Q_f kazığın çevre sürtünmesiyle taşıyabileceği yükü, Q_u kazığın uç direnci ile taşıyabileceği yükü, W kazık ağırlığını, η grup etkisi katsayısını, GS güven katsayısını göstemektedir. GS sayısı ise zati durumda 3, depremli durumda 1.5 olarak alınabilir.

Zati durumda kazık taşıma gücü

 $Q_{net} = [(4924.86 + 1635.53)/3] \times 0.71 - 292.50 = 1260.13$ kN > N = 1753.09 kN olduğundan kazık güvenlidir.

Depremli durumda kazık taşıma gücü

 $Q_{net} = [(4924.86 + 1635.53)/1.5] \times 0.71 - 292.50 = 2812.75$ kN > N = 2618.90 kN olduğundan kazık güvenlidir.

4.4.9 Köprü kenar ayaklarının tasarımı

Kenar ayak için ayrı bir model kurulmuştur. Üstyapıdan aktarılan yükler ile deprem modelinden alınan yükler modele etkitilerek boyutlandırmaya esas statik sonuçlar elde edilmiştir. Ayrıca toprak yükleri ve bunun deprem etkisi Mononobe Okobe yöntemi ile hesaplanmış ve kenar ayak perdelerine etkitilmiştir. Yapılan analiz sonucu, köprü kenar ayaklarında oluşan elverişsiz kesit tesirleri okunmuştur. Kenar ayak boyutlandırılırken deprem yüklerinde herhangi bir azaltma yapılmamıştır.

Kenar ayaklar için perde kalınlığı 1.10m., kanat duvarlar 0.80m., temel kalınlığı 1.75m. ve kazıklar ise 1.0m. olarak alınmıştır. Şekil 4.25'de kenar ayak matematik modeli verilmiştir.

Şekil 4.25 : Kenar ayak matematik modeli

4.4.9.1 Mononobe Okobe analizi ile zemin itkilerinin hesabı

Zeminin içsel sürtünme açısı	:Φ= 30°
Zeminle duvar arasındaki sürtünme açısı	$\ldots \delta = 0^{\circ}$
Zemin yüzeyinin yatayla yaptığı açı	$\ldots \alpha = 0^{\circ}$
Zemin Duvar ara kesitinin düşeyle yaptığı açı	$\vdots \dots \beta = 0^{\circ}$
Zeminin birim hacim ağırlığı	$\ldots \gamma = 19.5 \text{ kN/m}^3$
Yapı önem katsayısı	:I = 1
Etkin yer ivmesi katsayısı	: $A_0 = 0.3$
Yatay eşdeğer deprem katsayısı	$\dots k_{h} = \frac{A_{0}}{2} = 0.15$
Düşey eşdeğer deprem katsayısı	: k _v = 0

 $\theta = \operatorname{Arctan}\left(\frac{k_{h}}{1-k_{v}}\right) = 8.53^{\circ}$ olarak hesaplanır. Statik basınç katsayısı K_{as} denklem

(4.9) ile dinamik basınç katsayısı ise (4.10)' da verilen denklem ile hesaplanır.

$$K_{AS} = \frac{\cos(\phi - \theta - \beta) \cdot \cos(\phi - \theta - \beta)}{\psi \cdot \cos(\theta) \cdot \cos^{2}(\beta) \cdot \cos(\delta + \beta + \theta)}$$
(4.9)

$$\mathbf{K}_{AD} = \left[\left(1 - \mathbf{k}_{v} \right) \cdot \mathbf{K}_{AE} \right] - \mathbf{K}_{AS}$$
(4.10)

Yukarıda verilen formüller yardımıyla,

Statik aktif basınç katsayısı	·	$.K_{as} = 0.333$
Dinamik aktif basıç katsayısı	:	$K_{ad} = 0.103$

elde edilir. Yukarıda hesaplanan katsayılar yardımıyla kenar ayak üzerine etkiyen zemin etkileri Şekil 4.25'de verilmiştir.

Şekil 4.26 : Kenar ayak üzerine etkiyen zemin itkileri

Ζ

Aktif toprak yükü	$\vdots \dots P_a = K_{as} x \gamma x H$
Sürşarj toprak yükü	$\therefore P_s = K_{as} x q_s$
Ek deprem yükü	$\therefore P_d = K_{ad} x \gamma x H$

4.4.9.2 Kenarayak perdesi kesit tesirleri

Genel amaçlı bir statik programı olan Sap 2000 yardımıyla hesaplanan kenar ayak perdesinde elde edilen elverişsiz kesit tesirleri Çizelge 4.28' de verilmiştir.

Kesit Tesirleri				
Kombinasyon	V ₁₃	V ₂₃	M ₁₁	M ₂₂
	(kN/m)	(kN/m)	(kNm/m)	(kNm/m)
Comb7	-18.84	-103.63	-189.30	-515.04
	98.97	43.67	60.36	96.47
Comb8	-150.25	-78.38	-158.95	-82.37
	175.16	141.88	91.58	425.99
Comb9	-39.18	-478.03	-303.55	-1489.11
	198.74	5.51	140.22	78.15

Cizelge 4.28 : Kenarayak perdesi kesit tesirleri

4.4.9.3 Kenarayak perdesi eğilme donatısı hesabı

Perde boyuna yönde iç donatı hesabı

Kesitteki faktörlü moment	: $M_u = 1489.11 \text{ kNm}$
Taşıma gücü azaltma katsayısı	:φ = 0.90
Kesit genişliği	:b = 1000 mm
Faydalı yükseklik	:d = 1025 mm
Karakteristik beton basınç dayanımı	: $f_{c}' = 30 \text{ N/mm}^{2}$
Karakteristik çelik akma dayanımı	: $f_y = 420 \text{ N/mm}^2$
Paspayı	:d = 75 mm

a) Gereken egilme donatısının alanı

Eğilme taşıma gücü $\phi M_n = \phi \left[A_s \times f_y \times \left(d - \frac{a}{2} \right) \right]$ ifadesiyle, eşdeğer basınç bloğu derinliği ise $a = \frac{A_s \times f_y}{0.85 \times f_c^{'} \times b}$ ifadesiyle hesaplanabilir.

Yukarıdaki ifadelerden gerekli donatı alanı $A_s = 3948 mm^2$ olarak elde edilir.

b) Minimum donatı oranı

Sağlanan donatı kopma modülüne göre hesaplanan çatlama momentinin (M_{cr}) en az 1.2 katı kadar taşıma gücü sağlanmalıdır (AASHTO 8.17.1.1.1).

Kopma modülü	: $f_r = 3.11 \text{ MPa}$
Kesitin atalet momenti	:I = 111 m ⁴
Kesitin ağırlık merkezi	$y_t = 550 \text{ mm}$

Çatlama momenti $M_{cr} = \frac{f_r \times I}{y_t} = 64000 kNm$ olarak hesaplanır (AASHTO 8.13.3). Minimum donatı ise $A_{s,\min} = 1974 mm^2$ 1.2M_{cr} değerinin yukardaki ifadede yerine konulması ile elde edilir.

Kesitteki donatı alanı analiz sonucunda gereken donatı alanının 1.33 katından fazla ise minumum donatı şartı aranmaz (AASHTO 8.17.1.2)

c) Dengeli donatı oranı

Kesitteki donatı oranı, dengeli donatı oranının %75' inden az olmalıdır (AASHTO 8.16.3.1.1).

$$\rho_b = \frac{0.85\beta_1 \times f'_c}{f_y} \left(\frac{599.843}{599.843 + f_y} \right) = 0.030354 \text{ olarak hesaplanır.}$$

$$A_s = 4051 \text{ mm}^2 > A_{s,gereken} = 3948 \text{ mm}^2$$

 $A_s = 4051 \text{ mm}^2 > A_{s,min} = 1974 \text{ mm}^2$

 $\rho = 0.003952 < 0.75~\rho_b = 0.02277$ oldugundan kesite konulan donatı yeterlidir.

Perde boyuna yönde dış donatı hesabı

Kesitteki faktörlü moment	: $M_u = 425.99 \text{ kNm}$
Taşıma gücü azaltma katsayısı	: $\phi = 0.90$
Kesit genişliği	:b = 1000 mm
Faydalı yükseklik	:d = 1025 mm
Karakteristik beton basınç dayanımı	: $f_{c} = 30 \text{ N/mm}^{2}$
Karakteristik çelik akma dayanımı	: $f_y = 420 \text{ N/mm}^2$
Paspayı	:d = 75 mm

a) Gereken egilme donatısının alanı

Eğilme taşıma gücü $\phi M_n = \phi \left[A_s \times f_y \times \left(d - \frac{a}{2} \right) \right]$ ifadesiyle, eşdeğer basınç bloğu

derinliği ise
$$a = \frac{A_s \times f_y}{0.85 \times f_c' \times b}$$
 ifadesiyle hesaplanabilir.

Yukarıdaki ifadelerden gerekli donatı alanı $A_s = 1109mm^2$ olarak elde edilir.

b) Minimum donatı oranı

Sağlanan donatı kopma modülüne göre hesaplanan çatlama momentinin (M_{cr}) en az 1.2 katı kadar taşıma gücü sağlanmalıdır (AASHTO 8.17.1.1.1).

Kopma modülü	: $f_r = 3.11 \text{ MPa}$
Kesitin atalet momenti	:I = 111 m ⁴
Kesitin ağırlık merkezi	: $y_t = 550 \text{ mm}$

Çatlama momenti $M_{cr} = \frac{f_r \times I}{y_t} = 64000 kNm$ olarak hesaplanır (AASHTO 8.13.3). Minimum donatı ise $A_{s,\min} = 1974mm^2$ 1.2M_{cr} değerinin yukardaki ifadede yerine

konulması ile elde edilir.

Kesitteki donatı alanı analiz sonucunda gereken donatı alanının 1.33 katından fazla ise minumum donatı şartı aranmaz (AASHTO 8.17.1.2)

c) Dengeli donatı oranı

Kesitteki donatı oranı, dengeli donatı oranının %75' inden az olmalıdır (AASHTO 8.16.3.1.1).

$$\rho_b = \frac{0.85\beta_1 \times f_c'}{f_y} \left(\frac{599.843}{599.843 + f_y} \right) = 0.030354 \text{ olarak hesaplanır.}$$

 $\rho = 0.001654 < 0.75 \rho_b = 0.02277$ oldugundan kesite konulan donatı yeterlidir.

Perde enine yönde iç donatı hesabı

Kesitteki faktörlü moment	: $M_u = 303.55 \text{ kNm}$
Taşıma gücü azaltma katsayısı	: $\phi = 0.90$
Kesit genişliği	:b = 1000 mm
Faydalı yükseklik	:d = 1025 mm
Karakteristik beton basınç dayanımı	:f _c ' = 30 N/mm ²
Karakteristik çelik akma dayanımı	: $f_y = 420 \text{ N/mm}^2$
Paspayı	:d = 75 mm

a) Gereken egilme donatısının alanı

Eğilme taşıma gücü $\phi M_n = \phi \left[A_s \times f_y \times \left(d - \frac{a}{2} \right) \right]$ ifadesiyle, eşdeğer basınç bloğu

derinliği ise $a = \frac{A_s \times f_y}{0.85 \times f_c \times b}$ ifadesiyle hesaplanabilir.

Yukarıdaki ifadelerden gerekli donatı alanı $A_s = 788mm^2$ olarak elde edilir.

b) Minimum donatı oranı

Sağlanan donatı kopma modülüne göre hesaplanan çatlama momentinin (M_{cr}) en az 1.2 katı kadar taşıma gücü sağlanmalıdır (AASHTO 8.17.1.1.1).

Kopma modülü	: $f_r = 3.11 \text{ MPa}$
Kesitin atalet momenti	:
Kesitin ağırlık merkezi	: $y_t = 550 \text{ mm}$

Çatlama momenti $M_{cr} = \frac{f_r \times I}{y_t} = 64000 kNm$ olarak hesaplanır (AASHTO 8.13.3).

Minimum donatı ise $A_{s,\min} = 1974mm^2 \ 1.2M_{cr}$ değerinin yukardaki ifadede yerine konulması ile elde edilir.

Kesitteki donatı alanı analiz sonucunda gereken donatı alanının 1.33 katından fazla ise minumum donatı şartı aranmaz (AASHTO 8.17.1.2)

c) Dengeli donatı oranı

Kesitteki donatı oranı, dengeli donatı oranının %75' inden az olmalıdır (AASHTO 8.16.3.1.1).

$$\rho_b = \frac{0.85\beta_1 \times f_c}{f_y} \left(\frac{599.843}{599.843 + f_y} \right) = 0.030354 \text{ olarak hesaplanır.}$$

 $\rho = 0.001654 < 0.75 \rho_b = 0.02277$ oldugundan kesite konulan donatı yeterlidir.

Perde enine vönde dış donatı hesabı

Kesitteki faktörlü moment	: $M_u = 140.22 \text{ kNm}$
Taşıma gücü azaltma katsayısı	:φ = 0.90
Kesit genişliği	:b = 1000 mm
Faydalı yükseklik	:d = 1025 mm
Karakteristik beton basınç dayanımı	:f _c ' = 30 N/mm ²
Karakteristik çelik akma dayanımı	: $f_y = 420 \text{ N/mm}^2$
Paspayı	:d = 75 mm

a) Gereken egilme donatısının alanı

Eğilme taşıma gücü $\phi M_n = \phi \left[A_s \times f_y \times \left(d - \frac{a}{2} \right) \right]$ ifadesiyle, eşdeğer basınç bloğu

derinliği ise $a = \frac{A_s \times f_y}{0.85 \times f_c \times b}$ ifadesiyle hesaplanabilir.

Yukarıdaki ifadelerden gerekli donatı alanı $A_s = 363mm^2$ olarak elde edilir.

b) Minimum donatı oranı

Sağlanan donatı kopma modülüne göre hesaplanan çatlama momentinin (M_{cr}) en az 1.2 katı kadar taşıma gücü sağlanmalıdır (AASHTO 8.17.1.1.1).

Kopma modülü	: $f_r = 3.11 \text{ MPa}$
Kesitin atalet momenti	:
Kesitin ağırlık merkezi	: $y_t = 550 \text{ mm}$

Çatlama momenti $M_{cr} = \frac{f_r \times I}{y_t} = 64000 kNm$ olarak hesaplanır (AASHTO 8.13.3).

Minimum donatı ise $A_{s,\min} = 1974mm^2 \ 1.2M_{cr}$ değerinin yukardaki ifadede yerine konulması ile elde edilir.

Kesitteki donatı alanı analiz sonucunda gereken donatı alanının 1.33 katından fazla ise minumum donatı şartı aranmaz (AASHTO 8.17.1.2)

c) Dengeli donatı oranı

Kesitteki donatı oranı, dengeli donatı oranının %75' inden az olmalıdır (AASHTO 8.16.3.1.1).

$$\rho_b = \frac{0.85\beta_1 \times f_c'}{f_y} \left(\frac{599.843}{599.843 + f_y} \right) = 0.030354 \text{ olarak hesaplanır.}$$

 $A_s = 1696 \text{ mm}^2 > A_{s,gereken} = 363 \text{ mm}^2$ $A_s = 1696 \text{ mm}^2 > A_{s,min} = 483 \text{ mm}^2$

 $\rho = 0.001654 < 0.75~\rho_b = 0.02277$ oldugundan kesite konulan donatı yeterlidir.

4.4.9.4 Kenarayak perdesi kesme donatisi hesabi

Kapasite azaltma faktörü (AASHTO, 8.16.1.2.2.a)	: $\phi = 0.85$
Faydalı yükseklik	:d = 1025 mm
Hesap genişliği	:b _w = 1000 mm
Karakteristik beton basınç dayanımı	: $f_c = 30 \text{ N/mm}^2$
Karakteristik çelik akma dayanımı	: $f_y = 420 \text{ N/mm}^2$
Kesme kuvveti	: $V_u = 478.01 \text{ kN}$

Betonun kesme dayanımı $V_c = 0.17 \sqrt{f'_c} \times b_w \times d$ ifadesiyle hesaplanır.

$$V_c = 0.17 \sqrt{f_c'} \times b_w \times d = 0.17 \sqrt{30} \times 1025 \times 1000 = 954.41 \text{ kN}$$

 $\phi V_c = 811.25 kN \ge V_u = 478.01 kN$ olduğundan kesme hesabına gerek yoktur.

4.4.10 Köprü kenar ayak temelinin tasarımı

Yapılan analiz sonucu, köprü temelinde oluşan elverişsiz kesit tesirleri okunmuştur. Temeldeki donatı miktarı birim genişlik için hesaplanmıştır.

4.4.10.1 Kenarayak temeli kesit tesirleri

Genel amaçlı bir statik programı olan Sap 2000 yardımıyla hesaplanan kenar ayak perdesinde elde edilen elverişsiz kesit tesirleri Çizelge 4.29' de verilmiştir.

Kesit Tesirleri				
Kombinasyon	V ₁₃	V ₂₃	M ₁₁	M ₂₂
	(kN/m)	(kN/m)	(kNm/m)	(kNm/m)
Comb7	-1536.73	-1611.17	-666.16	-530.62
	1643.56	1799.59	412.09	733.45
Comb8	-1817.47	-1852.23	-741.79	-644.33
	1873.24	1594.21	716.18	612.51
Comb9	-3177.55	-2757.50	-882.24	-1026.31
	3453.37	3695.52	905.98	2171.85

Cizelge 4.29 :	Kenarayak temeli	kesit tesirleri
· · · · · · ·		

4.4.10.2 Kenarayak temeli eğilme donatısı hesabı

* Köprü boyuna yönde alt donatı hesabı

Kesitteki faktörlü moment	: $M_u = 2171.85 \text{ kNm}$
Taşıma gücü azaltma katsayısı	: $\phi = 0.90$
Kesit genişliği	:b = 1000 mm
Faydalı yükseklik	:d = 1675 mm
Karakteristik beton basınç dayanımı	:
Karakteristik çelik akma dayanımı	: $f_y = 420 \text{ N/mm}^2$
Paspayı	:d = 75 mm

a) Gereken egilme donatisinin alanı

Eğilme taşıma gücü $\phi M_n = \phi \left[A_s \times f_y \times \left(d - \frac{a}{2} \right) \right]$ ifadesiyle, eşdeğer basınç bloğu $A_s \times f_y$

derinliği ise
$$a = \frac{A_s \times f_y}{0.85 \times f_c' \times b}$$
 ifadesiyle hesaplanabilir.

Yukarıdaki ifadelerden gerekli donatı alanı $A_s = 3490 mm^2$ olarak elde edilir.

b) Minimum donatı oranı

Sağlanan donatı kopma modülüne göre hesaplanan çatlama momentinin (M_{cr}) en az 1.2 katı kadar taşıma gücü sağlanmalıdır (AASHTO 8.17.1.1.1).

Kopma modülü	: $f_r = 3.11 \text{ MPa}$
Kesitin atalet momenti	:
Kesitin ağırlık merkezi	:y _t = 875 mm

Çatlama momenti $M_{cr} = \frac{f_r \times I}{y_t} = 1620000 kNm$ olarak hesaplanır (AASHTO 8.13.3). Minimum donatı ise $A_{s,min} = 3054mm^2 \ 1.2M_{cr}$ değerinin yukardaki ifadede

yerine konulması ile elde edilir.

Kesitteki donatı alanı analiz sonucunda gereken donatı alanının 1.33 katından fazla ise minumum donatı şartı aranmaz (AASHTO 8.17.1.2)

c) Dengeli donatı oranı

Kesitteki donati orani, dengeli donati oraninin %75' inden az olmalıdır (AASHTO 8.16.3.1.1).

.....Φ26 / 15 cm

:..... $A_s = 3538 \text{ mm}^2$

$$\rho_b = \frac{0.85\beta_1 \times f_c'}{f_y} \left(\frac{599.843}{599.843 + f_y} \right) = 0.030354 \text{ olarak hesaplanır.}$$

Eğilme donatısı

Donatı alanı

 $A_s = 3538 \text{ mm}^2 \quad > \quad A_{s,gereken} = 3490 \text{ mm}^2$

 $A_s = 3538 \text{ mm}^2 > A_{s,min} = 3054 \text{ mm}^2$

 $\rho = 0.002112 < 0.75 \rho_b = 0.02277$ oldugundan kesite konulan donatı yeterlidir.

Köprü boyuna yönde üst donatı hesabı

Kesitteki faktörlü moment	: $M_u = 1026.31 \text{ kNm}$
Taşıma gücü azaltma katsayısı	: $\phi = 0.90$
Kesit genişliği	:b = 1000 mm
Faydalı yükseklik	:d = 1675 mm
Karakteristik beton basınç dayanımı	: $f_{c}' = 30 \text{ N/mm}^{2}$
Karakteristik çelik akma dayanımı	: $f_y = 420 \text{ N/mm}^2$
Paspayı	:d = 75 mm

a) Gereken egilme donatısının alanı

Eğilme taşıma gücü $\phi M_n = \phi \left[A_s \times f_y \times \left(d - \frac{a}{2} \right) \right]$ ifadesiyle, eşdeğer basınç bloğu derinliği ise $a = \frac{A_s \times f_y}{0.85 \times f_c^{'} \times b}$ ifadesiyle hesaplanabilir.

Yukarıdaki ifadelerden gerekli donatı alanı $A_s = 1634mm^2$ olarak elde edilir.

b) Minimum donatı oranı

Sağlanan donatı kopma modülüne göre hesaplanan çatlama momentinin (M_{cr}) en az 1.2 katı kadar taşıma gücü sağlanmalıdır (AASHTO 8.17.1.1.1).

Kopma modülü	: $f_r = 3.11 \text{ MPa}$
Kesitin atalet momenti	:I = 447 m ⁴
Kesitin ağırlık merkezi	:y _t = 875 mm

Çatlama momenti $M_{cr} = \frac{f_r \times I}{y_t} = 1620000 kNm$ olarak hesaplanır (AASHTO 8.13.3). Minimum donatı ise $A_{s,\min} = 3054mm^2 \ 1.2M_{cr}$ değerinin yukardaki ifadede yerine konulması ile elde edilir.

Kesitteki donatı alanı analiz sonucunda gereken donatı alanının 1.33 katından fazla ise minumum donatı şartı aranmaz (AASHTO 8.17.1.2)

c) Dengeli donatı oranı

Kesitteki donatı oranı, dengeli donatı oranının %75' inden az olmalıdır (AASHTO 8.16.3.1.1).

.....Φ22 / 15 cm

:..... $A_s = 2533 \text{ mm}^2$

$$\rho_b = \frac{0.85\beta_1 \times f'_c}{f_y} \left(\frac{599.843}{599.843 + f_y}\right) = 0.030354 \text{ olarak hesaplanır.}$$

Eğilme donatısı

Donatı alanı

$$A_s = 2533 \text{ mm}^2 > A_{s,gereken} = 1634 \text{ mm}^2$$

 $A_s = 2533 \text{ mm}^2 > A_{s,min} = 2173 \text{ mm}^2$

 $\rho = 0.001512 < 0.75 \rho_b = 0.02277$ oldugundan kesite konulan donati yeterlidir.

Köprü enine yönde alt donatı hesabı

Kesitteki faktörlü moment	: $M_u = 905.98 \text{ kNm}$
Taşıma gücü azaltma katsayısı	: $\phi = 0.90$
Kesit genişliği	:b = 1000 mm
Faydalı yükseklik	:d = 1675 mm
Karakteristik beton basınç dayanımı	:f_c' = 30 N/mm ²
Karakteristik çelik akma dayanımı	: $f_y = 420 \text{ N/mm}^2$
Paspayı	:d = 75 mm

a) Gereken egilme donatısının alanı

Eğilme taşıma gücü $\phi M_n = \phi \left[A_s \times f_y \times \left(d - \frac{a}{2} \right) \right]$ ifadesiyle, eşdeğer basınç bloğu

derinliği ise $a = \frac{A_s \times f_y}{0.85 \times f_c \times b}$ ifadesiyle hesaplanabilir.

Yukarıdaki ifadelerden gerekli donatı alanı $A_s = 1441mm^2$ olarak elde edilir.

b) Minimum donatı oranı

Sağlanan donatı kopma modülüne göre hesaplanan çatlama momentinin (M_{cr}) en az 1.2 katı kadar taşıma gücü sağlanmalıdır (AASHTO 8.17.1.1.1).

Kopma modülü	:f _r = 3.11 MPa
Kesitin atalet momenti	:
Kesitin ağırlık merkezi	:y _t = 875 mm

Çatlama momenti $M_{cr} = \frac{f_r \times I}{y_t} = 1620000 kNm$ olarak hesaplanır (AASHTO 8.13.3). Minimum donatı ise $A_{s,\min} = 3054mm^2 \ 1.2M_{cr}$ değerinin yukardaki ifadede

yerine konulması ile elde edilir.

Kesitteki donatı alanı analiz sonucunda gereken donatı alanının 1.33 katından fazla ise minumum donatı şartı aranmaz (AASHTO 8.17.1.2)

c) Dengeli donatı oranı

Kesitteki donatı oranı, dengeli donatı oranının %75' inden az olmalıdır (AASHTO 8.16.3.1.1).

$$\rho_b = \frac{0.85\beta_1 \times f_c'}{f_y} \left(\frac{599.843}{599.843 + f_y} \right) = 0.030354 \text{ olarak hesaplanır.}$$

Eğilme donatısı		Φ22 / 15 cm
Donatı alanı		:
$A_{s} = 2533 \text{ mm}^{2}$	>	$A_{s,gereken} = 1441 \text{ mm}^2$
$A_{s} = 2533 \text{ mm}^{2}$	>	$A_{s,min} = 1917 \text{ mm}^2$

 $\rho = 0.001512 < 0.75~\rho_b = 0.02277$ oldugundan kesite konulan donatı yeterlidir.

✤ Köprü enine yönde üst donatı hesabı

Kesitteki faktörlü moment	:Mu = 882.24 kNm
Taşıma gücü azaltma katsayısı	: $\phi = 0.90$
Kesit genişliği	:b = 1000 mm
Faydalı yükseklik	:d = 1675 mm
Karakteristik beton basınç dayanımı	:f_c' = 30 N/mm ²
Karakteristik çelik akma dayanımı	: $f_y = 420 \text{ N/mm}^2$
Paspayı	:d = 75 mm

a) Gereken egilme donatisinin alanı

Eğilme taşıma gücü $\phi M_n = \phi \left[A_s \times f_y \times \left(d - \frac{a}{2} \right) \right]$ ifadesiyle, eşdeğer basınç bloğu $A_s \times f_y$

derinliği ise
$$a = \frac{A_s \times f_y}{0.85 \times f_c' \times b}$$
 ifadesiyle hesaplanabilir.

Yukarıdaki ifadelerden gerekli donatı alanı $A_s = 1403mm^2$ olarak elde edilir.

b) Minimum donatı oranı

Sağlanan donatı kopma modülüne göre hesaplanan çatlama momentinin (M_{cr}) en az 1.2 katı kadar taşıma gücü sağlanmalıdır (AASHTO 8.17.1.1.1).

Kopma modülü	: $f_r = 3.11 \text{ MPa}$
Kesitin atalet momenti	:
Kesitin ağırlık merkezi	:y _t = 875 mm

Çatlama momenti $M_{cr} = \frac{f_r \times I}{y_t} = 1620000 kNm$ olarak hesaplanır (AASHTO 8.13.3). Minimum donatı ise $A_{s,min} = 3054mm^2 \ 1.2M_{cr}$ değerinin yukardaki ifadede

yerine konulması ile elde edilir.

Kesitteki donatı alanı analiz sonucunda gereken donatı alanının 1.33 katından fazla ise minumum donatı şartı aranmaz (AASHTO 8.17.1.2)

c) Dengeli donatı oranı

Kesitteki donati orani, dengeli donati oraninin %75' inden az olmalıdır (AASHTO 8.16.3.1.1).

.....Φ22 / 15 cm

:..... $A_s = 2533 \text{ mm}^2$

$$\rho_b = \frac{0.85\beta_1 \times f_c'}{f_y} \left(\frac{599.843}{599.843 + f_y} \right) = 0.030354 \text{ olarak hesaplanır.}$$

Eğilme donatısı

Donatı alanı

 $A_s = 2533 \text{ mm}^2 \quad > \quad A_{s,gereken} = 1403 \text{ mm}^2$

 $A_s = 2533 \text{ mm}^2 > A_{s,min} = 1866 \text{ mm}^2$

 $\rho = 0.001512 < 0.75 \rho_b = 0.02277$ oldugundan kesite konulan donatı yeterlidir.

4.4.10.3 Kenarayak temeli kesme donatısı hesabı

Kapasite azaltma faktörü (AASHTO, 8.16.1.2.2.a)	:φ = 0.85
Faydalı yükseklik	:d = 1675 mm
Hesap genişliği	:b _w = 1000 mm
Karakteristik beton basınç dayanımı	: $f_{c} = 30 \text{ N/mm}^{2}$
Karakteristik çelik akma dayanımı	: $f_y = 420 \text{ N/mm}^2$
Kesme kuvveti	$V_{\rm u} = 3655.92 \rm kN$

Betonun kesme dayanımı $V_c = 0.17 \sqrt{f_c} \times b_w \times d$ ifadesiyle hesaplanır.

$$V_c = 0.17\sqrt{f'_c} \times b_w \times d = 0.17\sqrt{30} \times 1675 \times 1000 = 1559.64$$
 kN

 $\phi V_c = 1325.69 kN \le V_u = 3655.92 kN$ olduğundan kesme hesabı yapılmalıdır.

Kesite konulan kesme donatisi $\dots \Phi 26 / 4$ adet m²Donati alani $\dots A_s = 4247 \text{ mm}^2$

Çeliğin kesme taşıma gücü $V_s = \frac{A_v \times f_y \times d}{s}$ ifadesiyle hesaplanır.

$$V_s = \frac{A_v \times f_y \times d}{s} = \frac{4247x420x1675}{1000} = 2987.77 \text{ kN}$$

Kesitin taşıyabileceği kesme kuvveti $V_n = V_s + V_c$ ile hesaplanır.

 $V_n = V_s + V_c = 2987.77 + 1559.64 = 4547.41 \,\mathrm{kN}$

 $\phi V_n = 3865.30 kN \ge V_u = 3655.92 kN$ olduğundan kesite konulan kesme donatısı ($\Phi 26 \text{ m}^2$ 'ye 4 adet sehpa) yeterlidir.

4.4.11 Köprü kenar ayak kazıklarının tasarımı

Yapılan analiz sonucu, köprü kazıklarında oluşan elverişsiz kesit tesirleri okunmuştur. Moment etkileşim diyagramları çizilmiş ve elverişsiz kesit tesirlerinin diyagram içerisinde kalıp kalmadığı kontrol edilmiştir.

Dayanım azaltma faktörü (Φ), normal kuvvetin ($0.2A_gf_c$) den büyük olması durumu için 0.5, 0 ile ($0.2A_gf_c$) değerleri arasında olması durumu için 0.5 ile 0.9 arasında lineer değişecektir.

4.4.11.1 Kesit tesirleri

Genel amaçlı bir statik programı olan Sap 2000 yardımıyla hesaplanan köprü kazıklarında elde edilen elverişsiz kesit tesirleri Çizelge 4.30' da verilmiştir. Kesit tesirleri, dayanım azaltma faktörüne bölünerek büyütülmüştür.

Kesit Tesirleri								
Kombinasyon	N (kN)	Q ₂₂ (kN)	Q ₃₃ (kN)	M ₂₂ (kNm)	M ₃₃ (kNm)	M ₂₂ /Φ (kNm)	M ₃₃ / Φ (kNm)	M _d (kNm)
Comb7	2531.53	368.32	24.74	84.99	873.83	124.05	1275.45	1281.47
Comb8	2717.51	202.46	120.79	88.84	635.49	132.73	949.43	958.66
Comb9	2176.30	54.72	147.39	1526.17	435.87	2133.69	609.38	2134.82

Çizelge 4.30 : Kazık kesit tesirleri

4.4.11.2 Kazık eğilme donatısı hesabı

Köprü orta ayak kazıkları için XTRACT programı yardımıyla, analizler neticesinde köprünün her iki asal ekseni doğrultusunda hesaplanan elverişsiz kesit tesirleri için moment-normal kuvvet etkileşim eğrileri hazırlanmış ve kesit kontrol edilmiştir. Buna göre Ø100 çapındaki kenar ayak kazıklarına 20 Φ 26 donatı konulmuştur. Şekil 4.27' de N = 0 kN durumu için hazırlanan moment kapasite eğrisinde elde edilen maksimum değerler Çizelge 4.30' da verilen değerler ile karşılaştırılmıştır. Aynı zamanda Şekil 4.28' de verilen moment - normal kuvvet etkileşim diyagramları ile gerekli dayanımın eğri içerisinde kaldığı gösterilmiştir.

Şekil 4.27 : Kenar ayak kazıkları normal kuvvet altında etkileşim diyagramı

Şekil 4.28 : Kenar ayak kazıkları M-N etkileşim diyagramı

4.4.11.3 Kazık kesme donatısı hesabı

Kapasite azaltma faktörü (AASHTO, 8.16.1.2.2.a)	:φ = 0.85
Faydalı yükseklik	:d = 925 mm
Hesap genişliği	:b _w = 1000 mm
Karakteristik beton basınç dayanımı	: $f_{c} = 30 \text{ N/mm}^{2}$
Karakteristik çelik akma dayanımı	: $f_y = 420 \text{ N/mm}^2$
Kesme kuvveti	: $V_u = 368.32 \text{ kN}$

Betonun kesme dayanımı $V_c = 0.17 \sqrt{f_c} \times b_w \times d$ ifadesiyle hesaplanır.

$$V_c = 0.17 \sqrt{f_c} \times b_w \times d = 0.17 \sqrt{30} \times 1000 \times 925 = 861.29 \text{ kN}$$

 $\phi V_c = 732.10 kN \ge V_u = 368.32 kN$ olduğundan kesme hesabına gerek yoktur.

5. İKİ AÇIKLIKLI ÖNGERİLME KİRİŞLİ BETONARME KÖPRÜNÜN PERFORMANSININ DEĞERLENDİRİLMESİ

Bu aşamada köprünün durumu DHL yönetmeliğinde tanımlanan D3 deprem (50 yılda oluşma olasılığı %2, buna karşı gelen dönüş periyodu ise 2475 yıldır.) senaryosu ile köprünün her iki doğrultusu doğrusal olmayan statik itme analizi ile tahkik edilmiştir. Köprünün doğrusal olmayan itme analizi için SAP2000 ve XTRACT programları kullanılmıştır. Yönetmelikte tanımlanan deprem tasarım spektrumu Şekil 5.1'de gösterilmiştir.

Şekil 5.1 : DLH yönetmeliği deprem tasarım spektrumu

Deprem düzeyleri için kısa doğal titreşim periyodu (0.2 saniye) ve 1.0 saniyelik doğal titreşim periyoduna karşı gelen spektral ivme değerleri S_{MS} ve S_{M1} aşağıda verilen denklemler kullanılarak hesaplanabilir.

$$S_{MS} = F_a \times S_s \tag{5.1}$$

$$S_{M1} = F_{\nu} \times S_1 \tag{5.2}$$

 F_a ve F_v parametreleri, sırası ile, DHL yönetmeliği bölüm 1.2.2.2'de tanımlanmıştır. Deprem spektrumları ise denklem (5.3), (5.4), (5.5) ve (5.6) ile tanımlanmıştır.

$$S_{\rm ae}(T) = 0.4 S_{\rm MS} + 0.6 \frac{S_{\rm MS}}{T_{\rm o}} T$$
 $(T_{\rm o} \le T)$ (5.3)

$$S_{\rm ae}(T) = S_{\rm MS} \qquad (T_{\rm o} \le T \le T_{\rm S})$$
(5.4)

$$S_{\rm ae}(T) = \frac{S_{\rm M1}}{T} \qquad (T_{\rm S} \le T \le T_{\rm L})$$
(5.5)

$$S_{\rm ae}(T) = \frac{S_{\rm M1} T_{\rm L}}{T^2}$$
 (T_L \le T) (5.6)

Uzun periyod bölgesine geçiş periyodu $T_L=12s$ alınmaktadır. Spektrum köşe periyotları T_o ve T_S ise aşağıdaki gibi tanımlanmaktadır.

$$T_{\rm S} = \frac{S_{\rm M1}}{S_{\rm MS}}$$
; $T_{\rm o} = 0.2T_{\rm S}$ (5.7)

5.1 Bilgisayar Modelinin Detayları

Köprü modeli (Şekil 5.2) olarak 4. bölümde yapılan açıklamalar bu hesap modelinde de genel olarak geçerlidir. Doğrusal analiz modelinden farklı olarak, düşey elemanlarda malzemelerin doğrusal ve elastik olmayan özelliklerinden faydalanmayı hedeflendiğinden analiz sırasında ayaklar için çatlamış kesit atalet momentleri kullanılmıştır. Diğer bir farklılık ise kolonlarda plastik mafsal oluşmasını beklediğimiz kesitlere plastik mafsallar yerleştirilmiştir. Köprü boyuna yönünde konsol davranış gösterdiği için kolon alt uçlarında, enine yönde ise çerçeve davranış gösterdiği için kolon alt ve üst uçlarında plastik mafsallar (Şekil 5.4) tanımlanmıştır.

5.1.1 Çatlamış kesit özelliklerinin tanımlanması

XTRACT programında zati yük altında analiz yapılmıştır ve moment-eğrilik diyagramı çizilmiştir. Analiz sonucu her kolon için enine ve boyuna yönde Elefektif değerleri elde edilmiştir. Enine yönde çatlamış kesit atalet katsayısı denklem (5.8) ile boyuna yöndeki katsayı ise denklem (5.9) ile hesaplanmıştır.

Enine yön çatlamış kesit atalet katsayısı =
$$\frac{I_{eff}}{I_{xx}}$$
 (5.8)

Boyuna yön çatlamış kesit atalet katsayısı = $\frac{I_{eff}}{I_{yy}}$ (5.9)

Atalet Katsayıları					
Kesit Yönü	Kesit Yüksekliği (m)	EI _{eff} (10 ⁹ kNm ²)	$I_{\rm eff}$ (m ⁴)	I _g (m ⁴)	I_{eff} / I_{g}
Köprü Boyuna Yön	6.32	1.21	0.038	0.132	0.29
Köprü Enine Yön	6.32	4.36	0.136	0.493	0.28

Çizelge 5.1 : Çatlamış kesit atalet katsayıları

5.1.2 Plastik mafsal özelliklerinin tanımlanması

5.1.2.1 Plastik mafsal boylarının belirlenmesi

Plastik mafsal boylarının hesabı Caltrans Seismic Design Criteria madde 7.6.2' ye göre hesaplanmıştır.

$$L_{p} = 0.08 L + 0.022 f_{y} \times d_{b1} > 0.044 f_{y} \times d_{b1},$$
(5.10)

Burada, L(mm) kolon yüksekliğini, f_y (MPa) donatının karakteristik akma dayanımını, d_{bl} (mm) boyuna donatı çapını, L_p (mm) ise analitik plastik mafsal boyunu göstermektedir. Denklem (5.7)'ye göre hesaplanan plastik mafsal boyu çizelge 5.2' de gösterilmiştir.

Mafsal boyu						
Mafsal No	L (mm)	f _y (MPa)	d _{b1} (mm)	L _p (mm)		
1	6320	420	26	745.84		

Cizelge 5.2 : Plastik mafsal boyları

5.1.2.2 Mafsal boylarının modele tanıtılması

Betonarme ayakların akma öncesi başlangıç rijitlikleri olarak, çatlamış kesite ait eğilme rijitlikleri kullanılmıştır. Bu eğilme rijitlikleri, denklem 5.11'de verildiği gibi hesaplanabilir.

$$(EI)_{\rm e} = \frac{M_{\rm y}}{\phi_{\rm y}} \tag{5.11}$$

Pekleşme momentini dikkate alarak idealize edilmiş bir moment eğrilik ilişkisi Şekil 5.2 'de gösterilmiştir.

Şekil 5.2 : İdealize edilmiş moment-eğrilik ilişkisi

Plastik bölgedeki kısmı bilgisayar programına girebilmek için şekil 5.3' deki gibi idealleştirme yapılır.

Şekil 5.3 : İdealize edilmiş plastik bölge moment-eğrilik ilişkisi

Şekil 5.3' de verilen A, B ve C değerleri aşağıdaki denklemler ile hesaplanabilir.

$$A = (\kappa_u - \kappa_e)L_p \tag{5.12}$$

$$B = \frac{(10M_u - M_e)}{\frac{(M_u - M_e)}{B}}$$
(5.13)
$$C = \frac{(20M_u - M_e)}{\frac{(M_u - M_e)}{B}}$$
(5.14)

Burada, L_p plastik mafsal boyu (Caltrans 7.6.2'ye göre), Mu: taşıyabileceği en büyük moment, Me: efektif moment ,cu: nihai eğrilik, ce: efektif eğriliği göstermektedir. Bu değerler XTRACT programı analiz sonucunda bulunmuştur. Yukarıdaki denklemler kullanılarak elde edilen değerler Çizelge 5.3'de verilmiştir. Özellikleri hesaplanan plastik mafsalı temsil eden değerler Sap2000 modelindeki plastik mafsal boyunun ortasına atanmıştır.

Cizelge 5.3 : Plastik mafsal tanımlamasında kullanılan katsayılar

Katsayılar										
Mafsal	M _e (kNm)	M _u (kNm)	10M _u (kNm)	20M _u (kNm)	A (1/m)	B (1/m)	C (1/m)			
G-ALT	9150	9649	96490	192980	0.0055	0.9542	2.0084			
G-UST	8965	9485	94850	189700	0.0056	0.9274	1.9516			
Z-ALT	5099	5238	52380	104760	0.0122	4.1333	8.7123			

Şekil 5.4 : Plastik mafsal yerleşimi

5.2 Deprem Spektrumları

Köprü İstanbul ili Büyükçekmece ilçesi civarında yapılacaği için köprü yerine ait S1 ve S2 spektrumları için DLH tarafından hazırlanmış kayıtlar kullanılmıştır. S1 olarak tanımlanan deprem seviyesi 50 yılda aşılma olasılığı %50 olan ve tekerrür süresi 72 yıl olan deprem hareketine karşılık gelmektedir. S2 olarak tanımlanan deprem seviyesi ise 50 yılda aşılma olasılığı %2 olan ve tekerrür süresi 2475 yıl olan deprem hareketini göstermektedir. Köprü elastik hesaba göre yeni boyutlandırıldığı için sadece S2 depremi altındaki performansı incelenmiştir.

Şekil 5.6 : S2 depremi düzeyi spektral ivme sprektal deplasman grafiği

5.3 Performans Noktasının Belirlenmesi

Köprünün performans noktasını belirlemek için Sap2000 ve XTRACT programlarından faydalanılmıştır. Öncelikle Şekil 5.6' da verilen talep spektrumu denklem 5.15 kullanılarak elde edilmiştir.

$$T_i = 2\pi \sqrt{\frac{S_d}{S_a}}$$
(5.15)

Köprüye ati her iki yön için kapasite diyagramları elde edilmiştir. Köprünün istenilen yöndeki kapasite diyagramını elde edebilmek için istenilen yöndeki mod şekli birim yükleme olarak yapıya etkitilmiş ve sürekli olarak arttılarak kapasite diyagramı elde edilmiştir. Elde edilen kapasite diyagramları denklem (5.16), (5.17) ve (5.18) yardımıyla kapasite spektrumuna çevrilmiştir.

$$S_{ai} = \frac{V_i}{W\alpha_i}, \ S_{di} = \frac{\Delta_{tepe}}{(PF_1 \times \phi_{1,tepe})}$$
(5.16)

$$PF_{1} = \begin{bmatrix} \sum_{i=1}^{N} \frac{w_{i} \times \Phi_{i1}}{g} \\ \sum_{i=1}^{N} \frac{w_{i} \times \Phi_{i1}}{g} \end{bmatrix}$$
(5.17)

$$\alpha_{1} = \frac{\left[\sum_{i=1}^{N} \frac{w_{i} \times \Phi_{i1}}{g}\right]}{\left[\sum_{i=1}^{N} \frac{w_{i}}{g}\right]\left[\sum_{i=1}^{N} \frac{w_{i} \times \Phi_{i1}}{g}\right]}$$
(5.18)

Kapasite spektrumunun doğrusal kısmı talep spektrumunu kesecek şekilde uzaltılmış ve kestiği nokta köprünün istenilen yöndeki performans noktası olarak belirlenmiştir. Yapılan işlem örnek olarak Şekil 5.7 'de gösterilmiştir.

Şekil 5.7 : Örnek kapasite talep spektrumu kesişimi

Elde edilen deplasmana göre Sap2000 programında köprü o noktaya kadar itilmiş ve alınan dönme değerleri her eleman için plastik mafsal boyuna (L_p) bölünerek elemanın plastik eğriliği (κ_p) bulunmuştur. Bu plastik eğrilik değerine elastik eğrilik değeri (κ_e) eklenerek toplam eğrilik değeri bulunur. Bu toplam eğriliğe karşı gelen betondaki ve donatıdaki birim şekil değiştirme değerleri XTRACT programı kullanılarak moment-eğrilik diyagramından okunmuştur. Bu değer her bir deprem seviyesi için Çizelge 3.1'de verilen birim deformasyon sınır değerleriyle karşılaştırılmıştır.

Eğer Te<Ts durumu gerçekleşirse bulunan hedef deplasman (δt) değeri C1 değeri ile

arttırılır. Burada R elastik dayanım talep oranını, Te yapının etkin periyodunu, Ts cevap spektrumunun karakteristik periyodunu, C1 ise maksimum inelastik deplasmanla hesaplanan lineer elastik deplasmanlar arasındaki düzeltme faktörünü göstermektedir.

$$T_e \ge T_s \text{ ise } C_1 = 1 \tag{5.19}$$

$$T_e \le T_s \text{ ise } C_1 = \left[1 + (R-1)\frac{T_s}{T_e} \right] / R$$
 (5.20)

5.4 Kapasite Eğrilerinin Belirlenmesi

Viyadük öncelikle her iki yönde 2m'lik deplasmana kadar itilmiş ve analiz sonucunda elde edilen boyuna ve enine yön kapasite eğrileri S2 deprem spektrumu ile aynı grafik üzerinde çizdirilerek Şekil 5.7'de gösterilen şekilde eşit deplasman yöntemine göre bulunmuştur. Kapasite eğrisinin doğrusal olan ilk kısmı uzatılarak ivme-deplasman spektrum eğrisi ile çakıştırılmıştır. Bu kesim noktasına karşılık gelen, performans noktasındaki spektral deplasmandır (dmax). Spektral deplasman modal katılım faktörü ile çarpılarak Δ_{tepe} performans noktasındaki deplasman elde edilmiştir. Son olarak köprü boyuna ve enine doğrultusu için bulunan performans noktasındaki deplasmana kadar itilmiştir.

Şekil 5.8'den okunan aşağıdaki çizelgede özetlenmiştir.

Cizeige 3.4 . Tepe ve spektial verdegiştirineler (boyuna yo	Cizelge 5.4 :	Tepe v	e spektral	yerdeğiştirmel	er (boyuna	yör
--	---------------	--------	------------	----------------	------------	-----

Yerdeğiştirmeler								
Deprem Spektrumu / Yönü	$\Delta_{ ext{tepe}}$	S _d						
S2 / Köprü Boyuna Yön	0.05	0.15						

	Plastik Mafsal Dönme Değerleri											
Eleman No	Yön	Analiz Tipi	Mafsal Adı	Rölatif Mesafe	Mafsal Yeri (m)	R2 Plastik Dönme (rad)	R3 Plastik Dönme (rad)					
1688	KOPRU-Y	NonStatic	G-UST	0.3538	0.74581	0	0					
1688	KOPRU-Y	NonStatic	Z-UST	0.3538	0.74581	0	0					
1688	KOPRU-Y	NonStatic	G-UST	0.3538	0.74581	0	0					
1688	KOPRU-Y	NonStatic	Z-UST	0.3538	0.74581	0	0					
1690	KOPRU-Y	NonStatic	G-ALT	0.6462	1.36219	0	0					
1690	KOPRU-Y	NonStatic	Z-ALT	0.6462	1.36219	0	0.010171					
1690	KOPRU-Y	NonStatic	G-ALT	0.6462	1.36219	0	0					
1690	KOPRU-Y	NonStatic	Z-ALT	0.6462	1.36219	0	0					
1691	KOPRU-Y	NonStatic	G-UST	0.3538	0.74581	0	0					
1691	KOPRU-Y	NonStatic	Z-UST	0.3538	0.74581	0	0					
1691	KOPRU-Y	NonStatic	G-UST	0.3538	0.74581	0	0					
1691	KOPRU-Y	NonStatic	Z-UST	0.3538	0.74581	0	0					
1693	KOPRU-Y	NonStatic	G-ALT	0.6462	1.36219	0	0					
1693	KOPRU-Y	NonStatic	Z-ALT	0.6462	1.36219	0	0.008466					
1693	KOPRU-Y	NonStatic	G-ALT	0.6462	1.36219	0	0					
1693	KOPRU-Y	NonStatic	Z-ALT	0.6462	1.36219	0	0					
1694	KOPRU-Y	NonStatic	G-UST	0.3538	0.74581	0	0					
1694	KOPRU-Y	NonStatic	Z-UST	0.3538	0.74581	0	0					
1694	KOPRU-Y	NonStatic	G-UST	0.3538	0.74581	0	0					
1694	KOPRU-Y	NonStatic	Z-UST	0.3538	0.74581	0	0					
1696	KOPRU-Y	NonStatic	G-ALT	0.6462	1.36219	0	0					
1696	KOPRU-Y	NonStatic	Z-ALT	0.6462	1.36219	0	0.004286					
1696	KOPRU-Y	NonStatic	G-ALT	0.6462	1.36219	0	0					
1696	KOPRU-Y	NonStatic	Z-ALT	0.6462	1.36219	0	0					
1697	KOPRU-Y	NonStatic	G-UST	0.3538	0.74581	0	0					
1697	KOPRU-Y	NonStatic	Z-UST	0.3538	0.74581	0	0					
1697	KOPRU-Y	NonStatic	G-UST	0.3538	0.74581	0	0					
1697	KOPRU-Y	NonStatic	Z-UST	0.3538	0.74581	0	0					
1699	KOPRU-Y	NonStatic	G-ALT	0.6462	1.36219	0	0					
1699	KOPRU-Y	NonStatic	Z-ALT	0.6462	1.36219	0	0.006424					
1699	KOPRU-Y	NonStatic	G-ALT	0.6462	1.36219	0	0					
1699	KOPRU-Y	NonStatic	Z-ALT	0.6462	1.36219	0	0					

Çizelge 5.5 : S2 depremi köprü boyuna yönü plastik mafsal dönme değerleri

Köprü boyuna yönde kolonların sadece alt bölgerinde plastik mafsal oluşumu gözlenmiştir. Üst bölgeler elastik sınırlar içinde kalmıştır.

Şekil 5.9 : S2 depremi köprü enine doğrultuda talep-davranış spektrumu

Şekil 5.9'den okunan aşağıdaki çizelgede özetlenmiştir..

C! 1 = (T	1, 1	1 1	· · · · ·
1 '170 GO 5 6	• 1 0no Vo	cnalztral	vardadictirmalar	Loning Von
UIZCISC 3.0	. I UDU VU	SUCKUAL	VUIUUEISIIIIIUUUI	
3			J	()

Yerdeğiştirmeler								
Deprem Spektrumu / Yönü	$\Delta_{ ext{tepe}}$	S _d						
S2 / Köprü Enine Yön	0.07	0.11						

Çizelge 5.7 : S2 depremi köprü enine yönü plastik mafsal dönme değerleri

Plastik Mafsal Dönme Değerleri											
Eleman No	Yön	Analiz Tipi	Mafsal Adı	Rölatif Mesafe	Mafsal Yeri (m)	R2 Plastik Dönme (rad)	R3 Plastik Dönme (rad)				
1688	KOPRU-X	NonStatic	G-UST	0.3538	0.74581	0	0				
1688	KOPRU-X	NonStatic	Z-UST	0.3538	0.74581	0	0				
1688	KOPRU-X	NonStatic	G-UST	0.3538	0.74581	0	0				
1688	KOPRU-X	NonStatic	Z-UST	0.3538	0.74581	0	0				
1690	KOPRU-X	NonStatic	G-ALT	0.6462	1.36219	0.000161	0				
1690	KOPRU-X	NonStatic	Z-ALT	0.6462	1.36219	0	0				
1690	KOPRU-X	NonStatic	G-ALT	0.6462	1.36219	0	0				
1690	KOPRU-X	NonStatic	Z-ALT	0.6462	1.36219	0	0				
1691	KOPRU-X	NonStatic	G-UST	0.3538	0.74581	0	0				
1691	KOPRU-X	NonStatic	Z-UST	0.3538	0.74581	0	0				
1691	KOPRU-X	NonStatic	G-UST	0.3538	0.74581	0	0				

	Plastik Mafsal Dönme Değerleri (devamı)												
Eleman No	Yön	Analiz Tipi	Mafsal Adı	Rölatif Mesafe	Mafsal Yeri (m)	R2 Plastik Dönme (rad)	R3 Plastik Dönme (rad)						
1691	KOPRU-X	NonStatic	Z-UST	0.3538	0.74581	0	0						
1693	KOPRU-X	NonStatic	G-ALT	0.6462	1.36219	0.000161	0						
1693	KOPRU-X	NonStatic	Z-ALT	0.6462	1.36219	0	0						
1693	KOPRU-X	NonStatic	G-ALT	0.6462	1.36219	0	0						
1693	KOPRU-X	NonStatic	Z-ALT	0.6462	1.36219	0	0						
1694	KOPRU-X	NonStatic	G-UST	0.3538	0.74581	0	0						
1694	KOPRU-X	NonStatic	Z-UST	0.3538	0.74581	0	0						
1694	KOPRU-X	NonStatic	G-UST	0.3538	0.74581	0	0						
1694	KOPRU-X	NonStatic	Z-UST	0.3538	0.74581	0	0						
1696	KOPRU-X	NonStatic	G-ALT	0.6462	1.36219	0.000103	0						
1696	KOPRU-X	NonStatic	Z-ALT	0.6462	1.36219	0	0						
1696	KOPRU-X	NonStatic	G-ALT	0.6462	1.36219	0	0						
1696	KOPRU-X	NonStatic	Z-ALT	0.6462	1.36219	0	0						
1697	KOPRU-X	NonStatic	G-UST	0.3538	0.74581	0	0						
1697	KOPRU-X	NonStatic	Z-UST	0.3538	0.74581	0	0						
1697	KOPRU-X	NonStatic	G-UST	0.3538	0.74581	0	0						
1697	KOPRU-X	NonStatic	Z-UST	0.3538	0.74581	0	0						
1699	KOPRU-X	NonStatic	G-ALT	0.6462	1.36219	0.00016	0						
1699	KOPRU-X	NonStatic	Z-ALT	0.6462	1.36219	0	0						
1699	KOPRU-X	NonStatic	G-ALT	0.6462	1.36219	0	0						
1699	KOPRU-X	NonStatic	Z-ALT	0.6462	1.36219	0	0						

Çizelge 5.7'nin devamı: S2 depremi köprü enine yönü plastik mafsal dönme değerleri

5.5 Performansın değerlendirilmesi

Hedeflenen deplasmana ait dönme değerleri her eleman için plastik mafsal boyuna (L_p) bölünmüş ve elemanın plastik eğrilik değeri (κ_p) bulunmuştur. Bu plastik eğrilik değeri değerine elastik eğrilik değeri (κ_e) eklenerek de toplam eğrilik değeri hesaplanır. Toplam eğriliğe karşı gelen betondaki ve çelikteki birim deformasyon değerleri XTRACT programı kullanılarak moment-eğrilik diyagramından okunmuştur. Bu değer her bir deprem seviyesi için Çizelge 3.1'de verilen limit birim deformasyon değerleriyle karşılaştırılmıştır.

	Sonuçlar									
Yön	κ _e	$\Phi_{\rm p}$	L _p	κ _p	κ _t	ε _c	ε _s	Sonuc		
1011	1/m	radyan	m	1/m	1/m	m	m	- bonuç		
Boyuna Yön	0.004217	0.010171	0.7458	0.013637	0.01785	0.01290	0.01243	\checkmark		
Enine Yön	0.0021	0.000161	0.7458	0.000215	0.002315	0.00318	0.00305	\checkmark		

Köprü boyuna ve enine yöndeki oluşan plastik mafsallar Çizelge 3.1' de verilen limit birim deformasyon sınırları içinde kalmıştır.

6. SONUÇLAR

Bu tez çalışmasında İstanbul ili Büyükçekmece ilçesi civarında yeni yapılacak olan bir köprü, AASHTO yönetmeliğine göre boyutlandırılmış ve köprünün, DLH ve CALTRANS yönetmeliklerine göre deprem performansı değerlendirilmiştir. Köprünün tasarımı ve performansının değerlendirilmesinde SAP2000 programı; kesitlerin tasarımında, karşılıklı etki ve moment eğrilik diyagramlarının elde edilmesinde XTRACT programından faydalanılmıştır.

AASHTO yönetmeliğine göre tasarımda kuvvet esaslı bir yöntem olan çok modlu spektral analiz yapılarak köprü taşıyıcı sistem elemanları boyutlandırılmışdır. Mevcut köprü doğrusal elastik olmayan artımsal eşdeğer deprem yükü metodu ile deprem performansı CALTRANS yönetmeliğine uygun olarak değerlendirilmiş ve elde edilen sonuçlar aşağıda açıklanmıştır.

- AASHTO' ya göre tasarlanan köprüde, öngerilmeli kirişlerinde 26 adet öngerilme halatı kullanılmıştır. 1.00m x 2.00m. boyutunda 4 adet olan köprü ayaklarında 36Φ26 donatı kullanılmıştır. 100cm çapındaki orta ayak kazıklarında 20Φ26 donatı kullanılmıştır.
- 2. DLH yönetmeliğinde tanımlanan 50 yılda aşılma olasılığı %2 olan deprem esas alınarak yapılan doğrusal olmayan artımsal eşdeğer deprem yükü ile itme analizi sonucunda kolonların kontrollü hasar performans düzeyinde olduğu görülmüşür. Kolonların hasar performans düzeyi, yönetmelikte S2 deprem seviyesinde normal köprüler için hedeflenen performans düzeyini sağlamaktadır.
- 3. S2 deprem seviyesi için yapılan doğrusal olmayan statik itme analizi sonucunda orta ayaklarda enine ve boyuna yönde plastik mafsal oluşumu meydana gelmiştir. Boyuna ve enine yönde kolonların alt bölgesinde plastik mafsal oluşumu gözlenmiş fakat enine yönde kolon üst bölgesinde plastik mafsal oluşumu gözlenmemiştir.
- 4. Köprü ayaklarında oluşan plastik mafsal dönme değerlerinin limit birim şekil değiştirme değerlerini aşmadığı gözlenmiştir.

KAYNAKLAR

- [1] **AASHTO**, 2002. Standart Specifications for Highway Bridges, *American Association of State Highway and Transportation Officials*, Washington D.C..
- [2] Aydınoğlu, M. N., 2005. Mevcut veya Güçlendirilen Köprü ve Viyadüklerinin Deprem Performanslarının Nonlineer Analiz Yöntemleri ile Değerlendirilmesi, TC Bayındırlık ve İskan Bakanlığı Karayolları Genel Müdürlüğü Raporu, İstanbul.
- [3] CALTRANS Ver.1.2, 2001. Seismic Design Criteria Version 1.2, *California Transportation*, California.
- [4] Celep, Z., 2007. Betonarme Taşıyıcı Sistemlerde Doğrusal Olmayan Davranış ve Çözümleme, *Beta Dağıtım*, İstanbul.
- [5] Chen, W.F, Duan, L., 2003. Bridge Engineering Substructure Design, *CRC Press*, Washington D.C.
- [6] Chen, W.F, Duan, L., 2003. Bridge Engineering Seismic Design, *CRC Press*, Washington D.C.
- [7] **DBYBHY**, 2007. Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, *Bayındırlık ve İskan Bakanlığı*, Ankara.
- [8] **DLH**, 2007. Kıyı ve Liman Yapıları, Demiryolları, Havameydanları İnşaatları Deprem Teknik Yönetmeliği, *Ulaştırma Bakanlğı*, Ankara.
- [9] Keyder, E., 2005. Öngerilmeli Beton, Seçkin Yayıncılık, Ankara.
- [10] **PCI**, 2004. Precast and Prestressed Concrete Design Handbook, Prestressed Concrete Institute, Chicago.
- [11] Priestley, M.J.N., Seible, F. And Calvi G.M., 1996. Seismic Design and Retrofit of Bridges, *John Willey & Sons Inc.*, Newyork
- [12] **SAP 2000**, Structural Analysis Program, Computers and Structures Inc., Berkeley, California.
- [13] **Toğrol, E. ve Sivrikaya, O.,** 2009. Arazi Deneyleri ve Geoteknik Tasarımda Kullanımları, *Birsen Yayınevi*, İstanbul.
- [14] Toğrol, E. ve Tan, O., 2003. Kazıklı Temeller, Birsen Yayınevi, İstanbul.
- [15] **TS 500,** 2000. Betonarme Yapıların Hesap ve Yapım Kuralları, *Türk Standartları Enstitüsü,* Ankara.
- [16] **TS 3233,** 1979. Öngerilmeli Beton Yapıların Hesap ve Yapım Kuralları, *Türk Standartları Enstitüsü,* Ankara.
- [17] **XTRACT 2001**, Cross Sectional Analysis Program for Structural Engineers, *Imbsen and Assocciates Inc.*, California.

- [18] Yayın No: 207, 1973. Yol Köprüleri için Teknik Şartname, Karayolları Genel Müdürlüğü, Ankara.
- [19] Yayın No: 26369, 2006. Karayolu Yolboyu Mühendislik Yapıları için Afet Yönetmeliği, *Karayolları Genel Müdürlüğü*, Ankara.

EKLER

EK A.1 : Sap 2000 analiz sonuçları

	Kesit Tesirleri (Kolon Alt Ucu)									
Kombinasyon	N (kN)	Q ₂₂ (kN)	Q ₃₃ (kN)	M ₂₂ (kNm)	M ₃₃ (kNm)	Φ	M ₂₂ /Φ (kNm)	M ₃₃ / Φ (kNm)		
COMB9	-4478.38	412.05	197.76	450.36	333.09	0.73	614.85	454.74		
COMB9	-5053.18	-513.57	-538.06	-1110.20	-1285.70	0.71	-1561.51	-1808.36		
COMB9	-5083.94	-513.57	-538.06	-732.08	-936.24	0.71	-1031.35	-1318.98		
Comb7(R=3)	-5114.70	-513.57	-538.06	-354.81	-603.61	0.71	-500.67	-851.75		
Comb7(R=3)	-8447.86	-66.75	-290.31	94.86	-160.86	0.58	162.43	-275.45		
Comb7(R=3)	-8507.73	-66.75	-290.31	400.85	-90.51	0.58	689.03	-155.58		
Comb7(R=3)	-8567.60	-66.75	-290.31	706.83	-20.15	0.580	1219.71	-34.77		
Comb7(R=3)	-4425.64	226.64	451.18	707.73	139.32	0.734	963.62	189.70		
Comb7(R=3)	-4471.69	226.64	451.18	274.90	84.61	0.733	375.17	115.48		
Comb8(R=3)	-4517.75	226.64	451.18	1060.26	361.19	0.731	1450.42	494.11		
Comb8(R=3)	-5167.44	-328.16	-791.47	-612.18	-409.84	0.707	-866.25	-579.94		
Comb8(R=3)	-5213.49	-328.16	-791.47	179.32	-248.13	0.705	254.37	-351.97		
Comb8(R=3)	-5259.54	-328.16	-791.47	-247.37	-417.71	0.703	-351.75	-593.97		
Comb8(R=3)	-4476.87	420.99	200.35	450.36	333.09	0.733	614.80	454.71		
Comb8(R=3)	-4522.92	420.99	200.35	274.31	164.08	0.731	375.35	224.51		
COMB9	-4568.98	420.99	200.35	791.27	601.60	0.729	1085.29	825.13		
COMB9	-5116.20	-522.51	-540.64	-354.81	-603.61	0.709	-500.71	-851.82		
COMB9	-5162.26	-522.51	-540.64	179.91	-327.60	0.707	254.50	-463.43		
Comb7(R=3)	-5208.31	-522.51	-540.64	21.62	-658.12	0.705	30.66	-933.27		
Comb7(R=3)	-8567.60	-66.75	-290.31	706.83	-20.15	0.580	1219.71	-34.77		
Comb7(R=3)	-8602.62	-66.75	-290.31	885.81	21.00	0.578	1532.01	36.32		
Comb7(R=3)	-8637.64	-66.75	-290.31	1064.79	62.15	0.577	1845.73	107.74		
Comb7(R=3)	-4513.46	230.19	455.56	1060.26	361.19	0.731	1450.10	494.00		
Comb7(R=3)	-4540.39	230.19	455.56	1549.61	554.64	0.730	2122.30	759.62		
Comb8(R=3)	-4567.33	230.19	455.56	2039.67	753.24	0.729	2797.32	1033.04		
Comb8(R=3)	-5263.83	-331.71	-795.86	-247.37	-417.71	0.703	-351.83	-594.11		
Comb8(R=3)	-5290.76	-331.71	-795.86	-526.93	-548.57	0.702	-750.52	-781.34		
Comb8(R=3)	-5317.70	-331.71	-795.86	-807.19	-684.59	0.701	-1151.36	-976.48		
Comb8(R=3)	-4478.38	412.05	197.76	450.36	333.09	0.73	614.85	454.74		
Comb8(R=3)	-5053.18	-513.57	-538.06	-1110.20	-1285.70	0.71	-1561.51	-1808.36		
COMB9	-5083.94	-513.57	-538.06	-732.08	-936.24	0.71	-1031.35	-1318.98		
COMB9	-5114.70	-513.57	-538.06	-354.81	-603.61	0.71	-500.67	-851.75		
COMB9	-8447.86	-66.75	-290.31	94.86	-160.86	0.58	162.43	-275.45		
Comb7(R=3)	-8507.73	-66.75	-290.31	400.85	-90.51	0.58	689.03	-155.58		
Comb7(R=3)	-8567.60	-66.75	-290.31	706.83	-20.15	0.580	1219.71	-34.77		
Comb7(R=3)	-4425.64	226.64	451.18	707.73	139.32	0.734	963.62	189.70		
Comb7(R=3)	-4471.69	226.64	451.18	274.90	84.61	0.733	375.17	115.48		
Comb7(R=3)	-4517.75	226.64	451.18	1060.26	361.19	0.731	1450.42	494.11		
Comb7(R=3)	-5167.44	-328.16	-791.47	-612.18	-409.84	0.707	-866.25	-579.94		

Çizelge A.1 : Köprü kolonları kesit tesirleri

	Kesit Tesirleri (Kolon Alt Ucu)									
Kombinasyon	N (kN)	Q ₂₂ (kN)	Q ₃₃ (kN)	M ₂₂ (kNm)	M ₃₃ (kNm)	Φ	M ₂₂ /Φ (kNm)	M ₃₃ / Φ (kNm)		
Comb8(R=3)	-4567.31	427.08	202.88	791.27	601.60	0.729	1085.20	825.06		
Comb8(R=3)	-4594.24	427.08	202.88	1124.60	911.01	0.728	1544.48	1251.14		
Comb8(R=3)	-4621.18	427.08	202.88	1458.77	1228.33	0.727	2006.18	1689.28		
Comb8(R=3)	-5209.98	-528.60	-543.17	21.62	-658.12	0.705	30.66	-933.35		
Comb8(R=3)	-5236.92	-528.60	-543.17	-101.92	-904.94	0.704	-144.75	-1285.24		
Comb8(R=3)	-5263.85	-528.60	-543.17	-226.29	-1159.68	0.703	-321.85	-1649.39		
COMB9	-10510.81	-17.75	37.34	68.03	-47.50	0.507	134.23	-93.72		
COMB9	-10550.80	-17.75	37.34	41.74	-35.00	0.505	82.61	-69.27		
COMB9	-10590.79	-17.75	37.34	15.46	-22.51	0.50	30.68	-44.68		
Comb7(R=3)	-5370.35	316.48	823.07	1848.18	710.30	0.70	2643.62	1016.00		
Comb7(R=3)	-5401.11	316.48	823.07	1269.01	495.32	0.70	1818.17	709.67		
Comb7(R=3)	-5431.87	316.48	823.07	690.27	291.79	0.70	990.61	418.76		
Comb7(R=3)	-6557.85	-345.87	-781.19	-1773.10	-808.16	0.65	-2708.29	-1234.41		
Comb7(R=3)	-6588.61	-345.87	-781.19	-1223.41	-572.49	0.65	-1871.97	-875.99		
Comb7(R=3)	-6619.37	-345.87	-781.19	-674.15	-348.27	0.65	-1033.35	-533.84		
Comb8(R=3)	-5607.68	548.19	496.55	1119.38	1255.54	0.69	1621.74	1819.00		
Comb8(R=3)	-5638.44	548.19	496.55	770.47	880.17	0.69	1118.10	1277.30		
Comb8(R=3)	-5669.20	548.19	496.55	422.59	520.07	0.69	614.29	755.99		
Comb8(R=3)	-6320.51	-577.57	-454.67	-1044.29	-1353.40	0.66	-1573.75	-2039.57		
Comb8(R=3)	-6351.27	-577.57	-454.67	-724.86	-957.34	0.66	-1094.27	-1445.21		
Comb8(R=3)	-6382.03	-577.57	-454.67	-406.47	-576.55	0.66	-614.68	-871.89		
COMB9	-10590.79	-17.75	37.34	15.46	-22.51	0.50	30.68	-44.68		
COMB9	-10650.66	-17.75	37.34	-23.89	-3.81	0.50	-47.63	-7.59		
COMB9	-10710.53	-17.75	37.34	-63.24	14.90	0.50	-126.49	29.79		
Comb7(R=3)	-5430.72	321.33	828.49	690.27	291.79	0.70	990.55	418.73		
Comb7(R=3)	-5476.78	321.33	828.49	161.49	159.80	0.70	232.32	229.89		
Comb7(R=3)	-5522.83	321.33	828.49	986.19	459.57	0.69	1422.23	662.77		
Comb7(R=3)	-6620.51	-350.72	-786.61	-674.15	-348.27	0.65	-1033.41	-533.88		
Comb7(R=3)	-6666.56	-350.72	-786.61	-189.51	-185.31	0.65	-291.28	-284.82		
Comb7(R=3)	-6712.62	-350.72	-786.61	-1058.35	-454.10	0.65	-1630.98	-699.80		
Comb8(R=3)	-5668.55	556.59	499.66	422.59	520.07	0.69	614.27	755.97		
Comb8(R=3)	-5714.61	556.59	499.66	95.19	245.31	0.69	138.71	357.47		
Comb8(R=3)	-5760.66	556.59	499.66	564.83	749.98	0.68	825.16	1095.64		
Comb8(R=3)	-6382.68	-585.98	-457.78	-406.47	-576.55	0.66	-614.71	-871.92		
Comb8(R=3)	-6428.73	-585.98	-457.78	-123.21	-270.81	0.66	-186.81	-410.62		
Comb8(R=3)	-6474.79	-585.98	-457.78	-636.99	-744.51	0.66	-968.37	-1131.82		
COMB9	-10710.53	-17.75	37.34	-63.24	14.90	0.50	-126.49	29.79		
COMB9	-10745.54	-17.75	37.34	-86.26	25.84	0.50	-172.53	51.67		
COMB9	-10780.56	-17.75	37.34	-109.28	36.78	0.50	-218.56	73.55		

Köprü kolonları kesit tesirleri (devamı)

Kesit Tesirleri (Kolon Alt Ucu)									
Kombinasyon	N (kN)	Q ₂₂ (kN)	Q ₃₃ (kN)	M ₂₂ (kNm)	M ₃₃ (kNm)	M ₂₂ /Φ (kNm)	M ₃₃ / Φ (kNm)	M _d (kNm)	
Comb7(R=3)	-5521.68	324.61	833.60	986.19	459.57	0.69	1422.15	662.73	
Comb7(R=3)	-5548.61	324.61	833.60	1473.87	668.03	0.69	2128.51	964.75	
Comb7(R=3)	-5575.55	324.61	833.60	1961.76	881.14	0.69	2837.23	1274.36	
Comb7(R=3)	-6713.77	-354.00	-791.73	-1058.35	-454.10	0.65	-1631.09	-699.85	
Comb7(R=3)	-6740.70	-354.00	-791.73	-1571.85	-644.45	0.65	-2426.25	-994.75	
Comb7(R=3)	-6767.64	-354.00	-791.73	-2085.56	-839.44	0.65	-3224.21	-1297.74	
Comb8(R=3)	-5760.01	562.18	502.58	564.83	749.98	0.68	825.13	1095.60	
Comb8(R=3)	-5786.95	562.18	502.58	847.92	1100.12	0.68	1240.51	1609.48	
Comb8(R=3)	-5813.88	562.18	502.58	1131.48	1457.34	0.68	1657.79	2135.23	
Comb8(R=3)	-6475.44	-591.56	-460.70	-636.99	-744.51	0.66	-968.41	-1131.86	
Comb8(R=3)	-6502.37	-591.56	-460.70	-945.90	-1076.54	0.66	-1440.24	-1639.15	
Comb8(R=3)	-6529.31	-591.56	-460.70	-1255.27	-1415.63	0.66	-1914.23	-2158.77	
COMB9	-8044.86	71.84	128.90	29.59	349.02	0.60	49.40	582.60	
COMB9	-8084.85	71.84	128.90	-61.15	298.44	0.60	-102.34	499.42	
COMB9	-8124.84	71.84	128.90	-151.90	247.86	0.60	-254.83	415.83	
Comb7(R=3)	-4078.84	319.65	691.26	1532.64	862.12	0.75	2050.57	1153.45	
Comb7(R=3)	-4109.60	319.65	691.26	1046.74	646.32	0.75	1402.63	866.07	
Comb7(R=3)	-4140.36	319.65	691.26	561.84	443.93	0.75	754.03	595.78	
Comb7(R=3)	-5027.82	-212.97	-535.17	-1471.59	-342.14	0.71	-2067.06	-480.58	
Comb7(R=3)	-5058.58	-212.97	-535.17	-1095.59	-201.45	0.71	-1541.40	-283.42	
Comb7(R=3)	-5089.34	-212.97	-535.17	-720.58	-74.16	0.71	-1015.44	-104.50	
Comb8(R=3)	-4176.31	506.19	443.15	934.84	1296.89	0.74	1256.88	1743.65	
Comb8(R=3)	-4207.07	506.19	443.15	623.83	952.63	0.74	840.03	1282.79	
Comb8(R=3)	-4237.83	506.19	443.15	314.06	625.90	0.74	423.56	844.13	
Comb8(R=3)	-4930.35	-399.51	-287.05	-873.79	-776.91	0.72	-1221.11	-1085.72	
Comb8(R=3)	-4961.11	-399.51	-287.05	-672.67	-507.76	0.71	-941.56	-710.73	
Comb8(R=3)	-4991.87	-399.51	-287.05	-472.79	-256.13	0.71	-662.85	-359.09	
COMB9	-8124.84	71.84	128.90	-151.90	247.86	0.60	-254.83	415.83	
COMB9	-8184.70	71.84	128.90	-287.76	172.14	0.59	-484.58	289.88	
COMB9	-8244.57	71.84	128.90	-423.63	96.42	0.59	-716.07	162.99	
Comb7(R=3)	-4136.69	324.70	695.65	561.84	443.93	0.75	753.89	595.67	
Comb7(R=3)	-4182.75	324.70	695.65	-105.14	295.09	0.74	-141.41	396.87	
Comb7(R=3)	-4228.80	324.70	695.65	422.33	463.17	0.74	569.32	624.37	
Comb7(R=3)	-5093.01	-218.02	-539.56	-720.58	-74.16	0.71	-1015.63	-104.52	
Comb7(R=3)	-5139.06	-218.02	-539.56	-218.12	-37.76	0.71	-308.18	-53.35	
Comb7(R=3)	-5185.11	-218.02	-539.56	-910.11	-318.28	0.71	-1289.03	-450.80	
Comb8(R=3)	-4236.34	515.03	445.70	314.06	625.90	0.74	423.53	844.06	
Comb8(R=3)	-4282.39	515.03	445.70	-104.82	374.69	0.74	-141.69	506.46	
Comb8(R=3)	-4328.44	515.03	445.70	147.42	705.64	0.74	199.73	956.04	

Köprü kolonları kesit tesirleri (devamı)

Kesit Tesirleri (Kolon Alt Ucu)										
Kombinasyon	N (kN)	Q ₂₂ (kN)	Q ₃₃ (kN)	M ₂₂ (kNm)	M ₃₃ (kNm)	M ₂₂ /Φ (kNm)	M ₃₃ / Φ (kNm)	M _d (kNm)		
Comb8(R=3)	-4993.37	-408.35	-289.61	-472.79	-256.13	0.71	-662.90	-359.12		
Comb8(R=3)	-5039.42	-408.35	-289.61	-218.44	-117.36	0.71	-307.01	-164.95		
Comb8(R=3)	-5085.47	-408.35	-289.61	-635.20	-560.75	0.71	-894.94	-790.05		
COMB9	-8244.57	71.84	128.90	-423.63	96.42	0.59	-716.07	162.99		
COMB9	-8279.59	71.84	128.90	-503.09	52.13	0.59	-852.29	88.32		
COMB9	-8314.61	71.84	128.90	-582.56	7.84	0.59	-989.11	13.31		
Comb7(R=3)	-4224.80	328.18	699.97	422.33	463.17	0.74	569.20	624.25		
Comb7(R=3)	-4251.73	328.18	699.97	756.06	589.47	0.74	1020.38	795.56		
Comb7(R=3)	-4278.67	328.18	699.97	1090.63	720.49	0.74	1473.93	973.71		
Comb7(R=3)	-5189.11	-221.50	-543.88	-910.11	-318.28	0.71	-1289.30	-450.89		
Comb7(R=3)	-5216.05	-221.50	-543.88	-1340.07	-510.35	0.70	-1901.12	-724.02		
Comb7(R=3)	-5242.99	-221.50	-543.88	-1770.87	-707.14	0.70	-2515.89	-1004.64		
Comb8(R=3)	-4326.82	521.02	448.21	147.42	705.64	0.74	199.72	955.96		
Comb8(R=3)	-4353.76	521.02	448.21	325.36	945.85	0.74	441.39	1283.14		
Comb8(R=3)	-4380.69	521.02	448.21	504.46	1193.28	0.74	685.29	1621.02		
Comb8(R=3)	-5087.09	-414.34	-292.11	-635.20	-560.75	0.71	-895.02	-790.11		
Comb8(R=3)	-5114.03	-414.34	-292.11	-909.38	-866.73	0.71	-1283.16	-1222.99		
Comb8(R=3)	-5140.96	-414.34	-292.11	-1184.71	-1179.93	0.71	-1674.04	-1667.29		
COMB9	-9997.54	27.57	42.54	19.82	151.08	0.53	37.69	287.22		
COMB9	-10037.53	27.57	42.54	-10.12	131.67	0.52	-19.30	251.03		
COMB9	-10077.51	27.57	42.54	-40.07	112.27	0.52	-76.61	214.64		
Comb7(R=3)	-5205.66	338.12	834.14	1833.43	816.47	0.71	2599.60	1157.66		
Comb7(R=3)	-5236.42	338.12	834.14	1246.42	586.64	0.70	1770.18	833.15		
Comb7(R=3)	-5267.18	338.12	834.14	659.78	369.58	0.70	938.56	525.73		
Comb7(R=3)	-6136.86	-296.67	-784.90	-1808.68	-597.94	0.67	-2697.76	-891.87		
Comb7(R=3)	-6167.62	-296.67	-784.90	-1256.34	-397.30	0.67	-1877.13	-593.62		
Comb7(R=3)	-6198.38	-296.67	-784.90	-704.36	-209.41	0.67	-1054.22	-313.43		
Comb8(R=3)	-5392.50	559.69	503.98	1097.54	1324.28	0.70	1571.76	1896.48		
Comb8(R=3)	-5423.26	559.69	503.98	743.27	941.39	0.70	1066.19	1350.37		
Comb8(R=3)	-5454.02	559.69	503.98	389.87	575.60	0.70	560.17	827.04		
Comb8(R=3)	-5950.03	-518.24	-454.74	-1072.79	-1105.76	0.68	-1583.63	-1632.29		
Comb8(R=3)	-5980.79	-518.24	-454.74	-753.19	-752.05	0.68	-1113.73	-1112.04		
Comb8(R=3)	-6011.54	-518.24	-454.74	-434.45	-415.44	0.68	-643.52	-615.35		
COMB9	-10077.51	27.57	42.54	-40.07	112.27	0.52	-76.61	214.64		
COMB9	-10137.38	27.57	42.54	-84.90	83.21	0.52	-163.03	159.77		
COMB9	-10197.25	27.57	42.54	-129.74	54.15	0.52	-250.19	104.42		
Comb7(R=3)	-5266.21	342.89	839.56	659.78	369.58	0.70	938.51	525.71		
Comb7(R=3)	-5312.26	342.89	839.56	133.75	235.50	0.70	190.72	335.81		
Comb7(R=3)	-5358.32	342.89	839.56	963.36	494.97	0.70	1377.09	707.54		

Köprü kolonları kesit tesirleri (devamı)

Kesit Tesirleri (Kolon Alt Ucu)										
Kombinasyon	N (kN)	Q ₂₂ (kN)	Q ₃₃ (kN)	M ₂₂ (kNm)	M ₃₃ (kNm)	M ₂₂ /Φ (kNm)	M ₃₃ / Φ (kNm)	M _d (kNm)		
Comb7(R=3)	-6199.35	-301.44	-790.32	-704.36	-209.41	0.67	-1054.28	-313.45		
Comb7(R=3)	-6245.41	-301.44	-790.32	-230.23	-119.03	0.67	-345.49	-178.62		
Comb7(R=3)	-6291.46	-301.44	-790.32	-1111.74	-422.19	0.66	-1672.65	-635.20		
Comb8(R=3)	-5453.47	567.96	507.09	389.87	575.60	0.70	560.16	827.01		
Comb8(R=3)	-5499.52	567.96	507.09	63.05	325.29	0.69	90.81	468.52		
Comb8(R=3)	-5545.57	567.96	507.09	535.73	786.79	0.69	773.55	1136.06		
Comb8(R=3)	-6012.10	-526.50	-457.85	-434.45	-415.44	0.68	-643.53	-615.37		
Comb8(R=3)	-6058.15	-526.50	-457.85	-159.53	-208.82	0.67	-236.91	-310.10		
Comb8(R=3)	-6104.20	-526.50	-457.85	-684.10	-714.00	0.67	-1018.53	-1063.04		
COMB9	-10197.25	27.57	42.54	-129.74	54.15	0.52	-250.19	104.42		
COMB9	-10232.27	27.57	42.54	-155.96	37.15	0.52	-301.52	71.83		
COMB9	-10267.28	27.57	42.54	-182.18	20.16	0.52	-353.12	39.07		
Comb7(R=3)	-5357.33	346.11	844.68	963.36	494.97	0.70	1377.02	707.51		
Comb7(R=3)	-5384.26	346.11	844.68	1453.40	673.83	0.70	2080.47	964.55		
Comb7(R=3)	-5411.20	346.11	844.68	1943.61	856.84	0.70	2786.21	1228.30		
Comb7(R=3)	-6292.45	-304.65	-795.44	-1111.74	-422.19	0.66	-1672.75	-635.23		
Comb7(R=3)	-6319.38	-304.65	-795.44	-1632.13	-626.60	0.66	-2459.47	-944.23		
Comb7(R=3)	-6346.32	-304.65	-795.44	-2152.70	-835.17	0.66	-3248.85	-1260.44		
Comb8(R=3)	-5545.02	573.42	510.01	535.73	786.79	0.69	773.53	1136.02		
Comb8(R=3)	-5571.96	573.42	510.01	819.05	1101.27	0.69	1184.33	1592.42		
Comb8(R=3)	-5598.89	573.42	510.01	1102.74	1422.14	0.69	1596.87	2059.39		
Comb8(R=3)	-6104.75	-531.97	-460.77	-684.10	-714.00	0.67	-1018.56	-1063.08		
Comb8(R=3)	-6131.69	-531.97	-460.77	-997.78	-1054.04	0.67	-1487.82	-1571.71		
Comb8(R=3)	-6158.63	-531.97	-460.77	-1311.83	-1400.46	0.67	-1959.05	-2091.42		

Köprü kolonları kesit tesirleri (devamı)

Çizelge A.2 : Köprü başlık kirişi kesit tesirleri

Kesit Tesirleri (Kolon Alt Ucu)										
Kombinasyon	N (kN)	Q ₂₂ (kN)	Q ₃₃ (kN)	M ₂₂ (kNm)	M ₃₃ (kNm)	Φ	M ₂₂ /Φ (kNm)	M ₃₃ / Φ (kNm)		
COMB7	30.15	24.62	22.22	0.00	0.00	0.90	0.00	0.00		
COMB7	30.15	53.44	22.22	10.00	4.60	0.90	11.11	5.11		
COMB7	30.15	82.25	22.22	20.00	-3.77	0.90	22.23	-4.19		
COMB7	30.15	111.07	22.22	30.01	-25.12	0.90	33.34	-27.91		
COMB7	-30.15	-24.62	-22.22	0.00	0.00	0.90	0.00	0.00		
COMB7	-30.15	4.19	-22.22	-10.00	-17.57	0.90	-11.11	-19.52		
COMB7	-30.15	33.01	-22.22	-20.00	-48.11	0.90	-22.23	-53.45		
COMB7	-30.15	61.82	-22.22	-30.01	-91.61	0.90	-33.34	-101.79		
COMB8	17.25	12.38	39.19	0.00	0.00	0.90	0.00	0.00		
COMB8	17.25	41.20	39.19	17.64	-0.91	0.90	19.60	-1.01		

Kesit Tesirleri (Kolon Alt Ucu)										
Kombinasyon	N (kN)	Q ₂₂ (kN)	Q ₃₃ (kN)	M ₂₂ (kNm)	M ₃₃ (kNm)	M ₂₂ /Φ (kNm)	M ₃₃ / Φ (kNm)	M _d (kNm)		
COMB8	17.25	70.01	39.19	35.27	-14.80	0.90	39.19	-16.44		
COMB8	17.25	98.83	39.19	52.91	-41.65	0.90	58.79	-46.27		
COMB8	-17.25	-12.38	-39.19	0.00	0.00	0.90	0.00	0.00		
COMB8	-17.25	16.44	-39.19	-17.64	-12.06	0.90	-19.60	-13.40		
COMB8	-17.25	45.25	-39.19	-35.27	-37.08	0.90	-39.19	-41.20		
COMB8	-17.25	74.07	-39.19	-52.91	-75.08	0.90	-58.79	-83.42		
COMB9	0.00	0.00	0.00	0.00	0.00	0.90	0.00	0.00		
COMB9	0.00	37.46	0.00	0.00	-8.43	0.90	0.00	-9.37		
COMB9	0.00	74.92	0.00	0.00	-33.72	0.90	0.00	-37.47		
COMB9	0.00	112.38	0.00	0.00	-75.87	0.90	0.00	-84.30		
COMB7	375.15	1574.85	174.84	27.41	236.61	0.90	30.46	262.90		
COMB7	375.15	1600.85	174.84	79.03	-31.98	0.90	87.81	-35.53		
COMB7	375.15	1626.85	174.84	139.56	-99.16	0.90	155.07	-110.18		
COMB7	375.15	1652.85	174.84	201.14	-132.03	0.90	223.49	-146.70		
COMB7	-379.24	-106.80	-153.29	-32.43	-382.47	0.90	-36.03	-424.97		
COMB7	-379.24	-80.79	-153.29	-92.80	-720.72	0.90	-103.11	-800.80		
COMB7	-379.24	-54.79	-153.29	-162.08	-1281.49	0.90	-180.09	-1423.87		
COMB7	-379.24	-28.79	-153.29	-232.42	-1897.69	0.90	-258.25	-2108.55		
COMB8	222.04	1347.23	289.42	50.30	433.00	0.90	55.89	481.11		
COMB8	222.04	1373.24	289.42	140.17	33.62	0.90	155.75	37.36		
COMB8	222.04	1399.24	289.42	245.80	-267.12	0.90	273.11	-296.80		
COMB8	222.04	1425.24	289.42	353.34	-485.74	0.90	392.61	-539.71		
COMB8	-226.13	120.81	-267.87	-55.32	-578.86	0.90	-61.46	-643.18		
COMB8	-226.13	146.82	-267.87	-153.94	-786.31	0.90	-171.04	-873.68		
COMB8	-226.13	172.82	-267.87	-268.32	-1113.53	0.90	-298.13	-1237.25		
COMB8	-226.13	198.82	-267.87	-384.62	-1543.98	0.90	-427.36	-1715.53		
COMB9	-3.57	1333.88	14.27	-3.21	-73.36	0.90	-3.57	-81.51		
COMB9	-3.57	1367.69	14.27	-9.01	-622.00	0.90	-10.01	-691.11		
COMB9	-3.57	1401.49	14.27	-14.81	-1184.36	0.90	-16.45	-1315.96		
COMB9	-3.57	1435.29	14.27	-20.60	-1760.46	0.90	-22.89	-1956.07		
COMB7	1065.73	406.67	321.39	158.23	1076.69	0.90	175.81	1196.32		
COMB7	1065.73	427.37	321.39	65.28	953.18	0.90	72.53	1059.09		
COMB7	1065.73	448.08	321.39	54.40	842.05	0.90	60.45	935.61		
COMB7	-1033.41	-3425.20	-367.94	-218.54	-3462.92	0.90	-242.83	-3847.68		
COMB7	-1033.41	-3404.49	-367.94	-110.53	-2369.78	0.90	-122.81	-2633.09		
COMB7	-1033.41	-3383.78	-367.94	-84.60	-1302.41	0.90	-94.00	-1447.13		
COMB8	641.18	-83.12	561.88	292.99	244.66	0.90	325.55	271.84		
COMB8	641.18	-62.41	561.88	132.15	298.76	0.90	146.84	331.96		
COMB8	641.18	-41.71	561.88	107.96	401.73	0.90	119.96	446.37		

Köprü başlık kirişi kesit tesirleri (devamı)

_

Kombinasyon N Q22 Q33 M22 M33 M22/4 M34/4 M34/4 M44/4 COMB8 -608.86 -2935.41 -608.43 -353.30 -263.08 0.90 -192.52 -292.52 COMB8 -608.86 -2894.00 -608.43 -173.41 -862.09 0.90 -153.51 -957.88 COMB9 22.26 -2636.71 -30.57 -38.18 -2086.53 0.90 -31.43 -137.61 COMB9 22.26 -2635.76 176.99 51.67 932.61 0.90 51.47 103.02 103.74 860.92 COMB7 694.88 383.29 176.99 125.77 774.83 0.90 131.43 816.26 COMB7 694.88 410.81 176.99 210.81 607.37 0.90 234.23 674.85 COMB7 694.88 438.34 176.99 219.41 -346.44 0.90 -314.35 1705.73 COMB7 666.49 -1360.42 207.95	Kesit Tesirleri (Kolon Alt Ucu)											
COMB8-608.86-2935.41-608.43-753.30-263.0890.90-197.12-1905.96COMB8-608.86-294.40-608.43-171.41-171.5.360.90-153.51-957.88COMB922.26-2636.71-30.57-78.18-862.090.90-13.43-1375.61COMB922.26-260.79-30.57-78.29-123.8050.90-20.44-442.53COMB922.26-268.2770.57-78.40-398.280.90-20.44-442.53COMB7694.88335.76176.9951.67932.610.9057.411036.24COMB7694.88418.34176.99218.17774.830.90234.23674.85COMB7-666.49-1387.95-207.95-147.68933.610.90-164.091037.34COMB7-666.49-136.02-207.95-293.52193.120.90-326.14214.58COMB7-666.49-1332.90-207.95-293.52193.120.90-326.14214.58COMB7-666.49-1332.90-207.95-293.52193.120.90-326.14214.58COMB8419.93217.60311.41230.40536.100.90247.82595.67COMB8419.93247.12311.41230.40536.100.90-21.4449.33COMB8419.93247.25311.41361.00122.410.90-155.88239.32COMB8<	Kombinasyon	N (kN)	Q ₂₂ (kN)	Q ₃₃ (kN)	M ₂₂ (kNm)	M ₃₃ (kNm)	M ₂₂ /Φ (kNm)	M ₃₃ /Φ (kNm)	M _d (kNm)			
COMB8 -608.86 -2914.70 -608.43 -177.41 -1715.36 0.90 -197.12 -1905.96 COMB8 -608.86 -2894.00 -608.43 -138.16 -862.09 0.90 -153.51 -957.88 COMB9 22.26 -2630.71 -30.57 -28.29 -123.805 0.90 -31.43 -1375.61 COMB7 694.88 355.76 176.99 51.67 932.61 0.90 53.74 1036.24 COMB7 694.88 353.29 176.99 125.77 774.83 0.90 139.74 86092 COMB7 694.88 438.34 176.99 298.24 464.64 0.90 31.38 516.26 COMB7 -666.49 -1415.47 -207.95 -86.89 -153.51 0.90 -615.7 717.34 COMB7 -666.49 -133.79 -207.95 -293.52 193.12 0.90 -326.14 214.58 COMB8 419.93 217.60 311.41 250.71 21.46	COMB8	-608.86	-2935.41	-608.43	-353.30	-2630.89	0.90	-392.56	-2923.21			
COMBB-608.86-2894.00-608.43-138.16-862.090.90-153.51-957.88COMB922.26-2636.71-30.57-38.18-2086.530.90-42.42-2318.36COMB922.26-2582.87-30.57-18.40-398.280.90-20.44-442.53COMB7694.88355.76176.9951.67932.610.9057.411032.42COMB7694.88333.29176.99125.77774.830.90234.23674.85COMB7694.88438.34176.99298.24464.640.90331.38516.26COMB7-666.49-1415.47-207.95-86.89-1535.160.90-96.55-1705.73COMB7-666.49-1387.95-207.95-147.68-933.610.90-164.09-033.44COMB7-666.49-1387.95-207.95-293.52193.120.90-243.79-384.49COMB8419.93190.08311.41105.07621.460.90116.75690.51COMB8419.93217.60311.41250.10442.370.90247.82595.67COMB8419.93217.22314.238-140.30-1224.100.90-165.88-130.01COMB8-391.54-1222.26342.38-244.95-694.880.90-272.17-772.08COMB8-391.54-1222.26342.38-500.29215.380.90-555.88239.32	COMB8	-608.86	-2914.70	-608.43	-177.41	-1715.36	0.90	-197.12	-1905.96			
COMB9 22.26 -2636.71 -30.57 -38.18 -2086.53 0.90 -42.42 -2318.36 COMB9 22.26 -2609.79 -30.57 -28.29 -1238.05 0.90 -31.43 -1375.61 COMB7 694.88 355.76 176.99 51.67 932.61 0.90 57.41 1036.24 COMB7 694.88 410.81 176.99 210.81 607.37 0.90 234.23 674.85 COMB7 694.88 410.81 176.99 298.24 464.64 0.90 313.38 516.26 COMB7 -666.49 -1415.47 -207.95 -86.89 -1535.16 0.90 -164.09 -1037.34 COMB7 -666.49 -1387.95 -207.95 -293.52 193.12 0.90 -326.14 214.58 COMB8 419.93 217.65 311.41 105.07 621.46 0.90 116.75 690.51 COMB8 419.93 272.65 311.41 105.07 621.46	COMB8	-608.86	-2894.00	-608.43	-138.16	-862.09	0.90	-153.51	-957.88			
COMB922.26-2609.79-30.57-28.29-1238.050.90-31.43-1375.61COMB7694.88355.76176.9951.67932.610.9057.411036.24COMB7694.88355.76176.99210.81607.370.90234.23674.85COMB7694.88410.81176.99210.81607.370.90234.23674.85COMB7694.88438.34176.99298.24464.640.90331.38516.26COMB7-666.49-1415.47-207.95-86.89-1535.160.90-65.5-1705.73COMB7-666.49-1387.95-207.95-219.41-346.040.90-243.79-384.49COMB7-666.49-1332.90-207.95-293.52193.120.90-326.14214.58COMB8419.93190.08311.41105.07621.460.90116.75690.51COMB8419.93217.60311.41305.01442.370.90-61.12491.33COMB8419.93272.65311.41505.01442.370.90-55.88-1360.01COMB8-391.54-1249.78-342.38-140.30-1224.010.90-55.88-1360.01COMB8-391.54-116.71-342.38-500.29215.380.90-55.88-1360.01COMB8-391.54-116.72-342.38-500.29215.370.90-411.44-203.03COMB9 <td>COMB9</td> <td>22.26</td> <td>-2636.71</td> <td>-30.57</td> <td>-38.18</td> <td>-2086.53</td> <td>0.90</td> <td>-42.42</td> <td>-2318.36</td>	COMB9	22.26	-2636.71	-30.57	-38.18	-2086.53	0.90	-42.42	-2318.36			
COMB922.26-2582.87-30.57-18.40-398.280.90-20.44-442.53COMB7694.88355.76176.9951.67932.610.9057.411036.24COMB7694.88383.29176.99125.77774.830.90139.74860.92COMB7694.88410.81176.99298.24464.640.90331.38516.26COMB7-666.49-1415.47-207.95-86.89-1535.160.90-96.55-1705.73COMB7-666.49-1387.95-207.95-219.41-346.040.90-243.79-384.49COMB7-666.49-136.04.2207.95-293.52193.120.90-326.14214.58COMB8419.93190.08311.41105.07621.460.90116.75690.51COMB8419.93217.60311.41230.04536.100.90247.82595.67COMB8419.93222.65311.41505.01442.370.90561.12491.53COMB8419.93272.65311.41505.01442.370.90-155.88-1360.01COMB8-391.54-1249.78-342.38-140.30-1224.010.90-155.88239.22COMB8-391.54-1194.73-342.38-500.29215.380.90-272.17-772.08COMB8-391.54-1194.73-342.38-500.29215.380.90-46.4263.42COMB9	COMB9	22.26	-2609.79	-30.57	-28.29	-1238.05	0.90	-31.43	-1375.61			
COMB7694.88355.76176.9951.67932.610.9057.411036.24COMB7694.88383.29176.99125.77774.830.90139.74860.92COMB7694.88410.81176.99219.81607.370.90234.23674.85COMB7694.88438.34176.99298.24464.640.90331.38516.26COMB7-666.49-1415.47-207.95-86.89-1535.160.90-164.09-1037.34COMB7-666.49-1332.90-207.95-219.41-346.040.90-243.79-384.49COMB7-666.49-1332.90-207.95-293.52193.120.90-326.14214.58COMB8419.93190.08311.41105.07621.460.90116.75690.51COMB8419.93217.60311.41205.01442.370.90247.82595.67COMB8419.93272.65311.41505.01442.370.90561.12491.53COMB8-391.54-1242.78-342.38-500.29215.380.90-255.88239.32COMB8-391.54-1242.76342.38-370.30-182.730.90-411.44-203.32COMB8-391.54-1167.21-342.38-500.29215.380.90-555.88239.32COMB918.82-899.98-20.29-21.62-506.010.90-24.02-562.23COMB9 <td< td=""><td>COMB9</td><td>22.26</td><td>-2582.87</td><td>-30.57</td><td>-18.40</td><td>-398.28</td><td>0.90</td><td>-20.44</td><td>-442.53</td></td<>	COMB9	22.26	-2582.87	-30.57	-18.40	-398.28	0.90	-20.44	-442.53			
COMB7694.88383.29176.99125.77774.830.90139.74860.92COMB7694.88410.81176.99210.81607.370.90234.23674.85COMB7694.88438.34176.99298.24464.640.90331.38516.26COMB7-666.49-1415.47-207.95-86.89-1535.160.90-96.55-1705.73COMB7-666.49-1387.95-207.95-219.41-346.040.90-243.79-384.49COMB7-666.49-130.02277.95-293.52193.120.90-243.79-384.49COMB8419.93190.08311.41105.07621.460.90116.75690.51COMB8419.93217.60311.41203.04536.100.90247.82595.67COMB8419.93272.65311.41505.01442.370.90561.12491.53COMB8-391.54-122.26-342.38-140.30-122.010.90-272.17-772.08COMB8-391.54-1249.78-342.38-500.29215.380.90-241.2-562.23COMB8-391.54-1167.21-342.38-500.29215.380.90-411.44-203.03COMB8-391.54-1167.21-342.38-500.29215.380.90-414.3-140.86COMB918.82-899.98-20.29-21.62-506.010.90-24.02-562.23COMB9 </td <td>COMB7</td> <td>694.88</td> <td>355.76</td> <td>176.99</td> <td>51.67</td> <td>932.61</td> <td>0.90</td> <td>57.41</td> <td>1036.24</td>	COMB7	694.88	355.76	176.99	51.67	932.61	0.90	57.41	1036.24			
COMB7694.88410.81176.99210.81607.370.90234.23674.85COMB7694.88438.34176.99298.24464.640.90331.38516.26COMB7-666.49-1415.47-207.95-86.89-1535.160.90-96.55-1705.73COMB7-666.49-1387.95-207.95-219.41-346.040.90-243.79-384.49COMB7-666.49-1332.90-207.95-293.52193.120.90-326.14214.58COMB8419.93190.08311.41105.07621.460.90116.75690.51COMB8419.93217.60311.41223.04536.100.90247.82595.67COMB8419.93272.65311.41505.01442.370.9061.12491.53COMB8419.93272.65311.41505.01442.370.90-515.88-136.01COMB8-391.54-1222.26-342.38-244.95-694.880.90-272.17-772.08COMB8-391.54-1167.21-342.38-510.29215.380.90-555.88239.32COMB918.82-899.98-20.29-21.62-506.010.90-24.02-562.23COMB918.82-899.98-20.29-12.670.90-14.33-140.86COMB918.82-899.88-20.29-12.670.90-14.33-140.86COMB918.82-892.41-	COMB7	694.88	383.29	176.99	125.77	774.83	0.90	139.74	860.92			
COMB7694.88438.34176.99298.24464.640.90331.38516.26COMB7-666.49-1415.47-207.95-86.89-1535.160.90-96.55-1705.73COMB7-666.49-1360.42-207.95-219.41-346.040.90-243.79-384.49COMB7-666.49-1332.90-207.95-293.52193.120.90-326.14214.58COMB8419.93190.08311.41105.07621.460.90116.75690.51COMB8419.93217.60311.4123.04536.100.90247.82595.67COMB8419.93245.12311.41361.70444.050.90401.89493.39COMB8419.93272.65311.41505.01442.370.90-515.88-1360.01COMB8-391.54-1222.26-342.38-703.00-182.730.90-211.7-772.08COMB8-391.54-1194.73-342.38-500.29215.380.90-255.88239.32COMB918.82-899.98-20.29-21.62-506.010.90-46.4263.42COMB918.82-864.19-20.29-12.670.9050.55650.61COMB7324.12263.3332.06358.5260.2850.90388.66642.56COMB7324.12263.3332.06358.52602.850.90388.66669.83COMB7324.12318.38 </td <td>COMB7</td> <td>694.88</td> <td>410.81</td> <td>176.99</td> <td>210.81</td> <td>607.37</td> <td>0.90</td> <td>234.23</td> <td>674.85</td>	COMB7	694.88	410.81	176.99	210.81	607.37	0.90	234.23	674.85			
COMB7-666.49-1415.47-207.95-86.89-1535.160.90-96.55-1705.73COMB7-666.49-1387.95-207.95-219.41-346.040.90-243.79-384.49COMB7-666.49-1332.90-207.95-293.52193.120.90-326.14214.58COMB8419.93190.08311.41105.07621.460.90116.75690.51COMB8419.93217.60311.41230.4536.100.90247.82595.67COMB8419.93245.12311.41361.70444.050.90401.89493.39COMB8419.93272.65311.41505.01442.370.90561.12491.53COMB8-391.54-1249.78-342.38-140.30-1224.010.90-155.88-1360.01COMB8-391.54-1147.73-342.38-500.29215.380.90-272.17-772.08COMB8-391.54-1147.21-342.38-500.29215.380.90-24.02-562.23COMB8-391.54-1167.21-342.38-500.29215.380.90-24.02-562.23COMB918.82-899.98-20.29-21.62-506.010.90-24.02-562.23COMB918.82-792.63-20.294.18237.080.90-4.64263.42COMB918.82-792.63-20.294.55585.540.9050.5650.61COMB7<	COMB7	694.88	438.34	176.99	298.24	464.64	0.90	331.38	516.26			
COMB7-666.49-1387.95-207.95-147.68-933.610.90-164.09-1037.34COMB7-666.49-1360.42-207.95-219.41-346.040.90-243.79-384.49COMB7-666.49-1332.90-207.95-293.52193.120.90-326.14214.58COMB8419.93190.08311.41105.07621.460.90116.75690.51COMB8419.93245.12311.41361.70444.050.90401.89493.39COMB8419.93272.65311.41505.01442.370.90561.12491.53COMB8-391.54-1249.78-342.38-140.30-1224.010.90-155.88-1360.01COMB8-391.54-1194.73-342.38-370.30-182.730.90-411.44-203.03COMB8-391.54-1167.21-342.38-500.29215.380.90-24.02-562.23COMB8-391.54-1167.21-342.38-500.29215.380.90-24.02-562.23COMB918.82-899.98-20.29-21.62-506.010.90-24.02-562.23COMB918.82-792.63-20.294.18237.080.90-4.64263.42COMB918.82-792.63-20.294.55585.540.90351.66510.55COMB7324.12290.8532.06376.49459.490.90351.66510.55COMB7 </td <td>COMB7</td> <td>-666.49</td> <td>-1415.47</td> <td>-207.95</td> <td>-86.89</td> <td>-1535.16</td> <td>0.90</td> <td>-96.55</td> <td>-1705.73</td>	COMB7	-666.49	-1415.47	-207.95	-86.89	-1535.16	0.90	-96.55	-1705.73			
COMB7-666.49-1360.42-207.95-219.41-346.040.90-243.79-384.49COMB7-666.49-1332.90-207.95-293.52193.120.90-326.14214.58COMB8419.93190.08311.41105.07621.460.90116.75690.51COMB8419.93217.60311.41223.04536.100.90247.82595.67COMB8419.93272.65311.41505.01442.370.90561.12491.53COMB8-391.54-122.26-342.38-140.30-1224.010.90-155.88-1360.01COMB8-391.54-122.26-342.38-244.95-694.880.90-272.17-772.08COMB8-391.54-1167.21-342.38-500.29215.380.90-24.02-562.23COMB918.82-899.98-20.29-21.62-506.010.90-24.02-562.23COMB918.82-864.19-20.29-12.90-126.770.90-14.33-140.86COMB7324.12263.3332.06295.53578.310.90328.36642.56COMB7324.12263.3332.06337.49409.620.90374.99455.13COMB7324.12318.3832.06337.49409.620.90374.99455.13COMB7324.12318.3832.06358.52602.850.90374.69223.14COMB7-299.6	COMB7	-666.49	-1387.95	-207.95	-147.68	-933.61	0.90	-164.09	-1037.34			
COMB7-666.49-1332.90-207.95-293.52193.120.90-326.14214.58COMB8419.93190.08311.41105.07621.460.90116.75690.51COMB8419.93217.60311.41223.04536.100.90247.82595.67COMB8419.93272.65311.41505.01442.370.90561.12491.53COMB8-391.54-122.96-342.38-140.30-1224.010.90-155.88-1360.01COMB8-391.54-122.26-342.38-244.95-694.880.90-272.17-772.08COMB8-391.54-1194.73-342.38-500.29215.380.90-411.44-203.03COMB8-391.54-1167.21-342.38-500.29215.380.90-24.02-562.23COMB918.82-864.19-20.29-21.62-506.010.90-24.02-562.23COMB918.82-864.19-20.29-4.18237.080.90-4.64263.42COMB7324.12263.3332.06295.53578.310.90328.36642.56COMB7324.12290.8532.06316.49459.490.90351.66510.55COMB7324.12318.3832.06337.49409.620.90374.99455.13COMB7324.12318.3832.06358.52602.850.90374.99455.13COMB7-299.67 <td>COMB7</td> <td>-666.49</td> <td>-1360.42</td> <td>-207.95</td> <td>-219.41</td> <td>-346.04</td> <td>0.90</td> <td>-243.79</td> <td>-384.49</td>	COMB7	-666.49	-1360.42	-207.95	-219.41	-346.04	0.90	-243.79	-384.49			
COMB8419.93190.08311.41105.07621.460.90116.75690.51COMB8419.93217.60311.41223.04536.100.90247.82595.67COMB8419.93245.12311.41361.70444.050.90401.89493.39COMB8419.93272.65311.41505.01442.370.90561.12491.53COMB8-391.54-1249.78-342.38-140.30-1224.010.90-155.88-1360.01COMB8-391.54-1122.26-342.38-244.95-694.880.90-272.17-772.08COMB8-391.54-1167.21-342.38-500.29215.380.90-555.88239.32COMB918.82-864.19-20.29-21.62-506.010.90-24.02-562.23COMB918.82-864.19-20.29-12.90-126.770.90-14.33-140.86COMB918.82-792.63-20.294.55585.540.905.05650.61COMB7324.12263.3332.06295.53578.310.90351.66510.55COMB7324.12290.8532.06316.49459.490.90351.66510.55COMB7324.12318.3832.06337.49409.620.90374.99455.13COMB7324.12345.9032.06358.52602.850.90398.36669.83COMB7-299.67-521.5	COMB7	-666.49	-1332.90	-207.95	-293.52	193.12	0.90	-326.14	214.58			
COMB8419.93217.60311.41223.04536.100.90247.82595.67COMB8419.93245.12311.41361.70444.050.90401.89493.39COMB8419.93272.65311.41505.01442.370.90561.12491.53COMB8-391.54-1222.26-342.38-140.30-1224.010.90-155.88-1360.01COMB8-391.54-1122.26-342.38-244.95-694.880.90-272.17-772.08COMB8-391.54-1167.21-342.38-500.29215.380.90-555.88239.32COMB918.82-899.98-20.29-21.62-506.010.90-24.02-562.23COMB918.82-864.19-20.29-12.90-126.770.90-14.33-140.86COMB918.82-792.63-20.294.18237.080.90-4.64263.42COMB7324.12263.3332.06295.53578.310.90351.66510.55COMB7324.12290.8532.06316.49459.490.90351.66510.55COMB7324.12345.9032.06358.52602.850.90398.36669.83COMB7-299.67-51.54-49.49-295.84-17.160.90-328.72-19.07COMB7-299.67-46.4949.49-322.83326.220.90-358.70362.46COMB7-299.67 <td< td=""><td>COMB8</td><td>419.93</td><td>190.08</td><td>311.41</td><td>105.07</td><td>621.46</td><td>0.90</td><td>116.75</td><td>690.51</td></td<>	COMB8	419.93	190.08	311.41	105.07	621.46	0.90	116.75	690.51			
COMB8419.93245.12311.41361.70444.050.90401.89493.39COMB8419.93272.65311.41505.01442.370.90561.12491.53COMB8-391.54-1249.78-342.38-140.30-1224.010.90-155.88-1360.01COMB8-391.54-1222.26-342.38-244.95-694.880.90-272.17-772.08COMB8-391.54-1194.73-342.38-370.30-182.730.90-411.44-203.03COMB8-391.54-1167.21-342.38-500.29215.380.90-555.88239.32COMB918.82-889.98-20.29-21.62-506.010.90-24.02-562.23COMB918.82-864.19-20.29-12.90-126.770.90-14.33-140.86COMB918.82-792.63-20.29-4.18237.080.90-4.64263.42COMB7324.12263.3332.06295.53578.310.90328.36642.56COMB7324.12290.8532.06316.49459.490.90351.66510.55COMB7324.12318.3832.06337.49409.620.90374.99455.13COMB7-299.67-521.54-49.49-295.84-17.160.90-328.72-19.07COMB7-299.67-446.49-49.49-309.32200.830.90-343.69223.14COMB7-29	COMB8	419.93	217.60	311.41	223.04	536.10	0.90	247.82	595.67			
COMB8419.93272.65311.41505.01442.370.90561.12491.53COMB8-391.54-1249.78-342.38-140.30-1224.010.90-155.88-1360.01COMB8-391.54-11222.26-342.38-244.95-694.880.90-272.17-772.08COMB8-391.54-1194.73-342.38-370.30-182.730.90-411.44-203.03COMB8-391.54-1167.21-342.38-500.29215.380.90-555.88239.32COMB918.82-899.98-20.29-21.62-506.010.90-24.02-562.23COMB918.82-864.19-20.29-12.90-126.770.90-14.33-140.86COMB918.82-828.41-20.29-4.18237.080.90-4.64263.42COMB7324.12263.3332.06295.53578.310.90328.36642.56COMB7324.12290.8532.06316.49459.490.90351.66510.55COMB7324.12318.3832.06337.49409.620.90374.99455.13COMB7-299.67-521.54-49.49-295.84-17.160.90-328.72-19.07COMB7-299.67-464.99-49.49-309.32200.830.90-343.69223.14COMB7-299.67-521.54-49.49-309.32200.830.90-343.69223.14COMB7 <t< td=""><td>COMB8</td><td>419.93</td><td>245.12</td><td>311.41</td><td>361.70</td><td>444.05</td><td>0.90</td><td>401.89</td><td>493.39</td></t<>	COMB8	419.93	245.12	311.41	361.70	444.05	0.90	401.89	493.39			
COMB8-391.54-1249.78-342.38-140.30-1224.010.90-155.88-1360.01COMB8-391.54-1222.26-342.38-244.95-694.880.90-272.17-772.08COMB8-391.54-1194.73-342.38-370.30-182.730.90-411.44-203.03COMB918.82-899.98-20.29-21.62-506.010.90-24.02-562.23COMB918.82-899.98-20.29-12.90-126.770.90-14.33-140.86COMB918.82-864.19-20.29-4.18237.080.90-4.64263.42COMB918.82-828.41-20.294.18237.080.90-4.64263.42COMB7324.12263.3332.06295.53578.310.90351.66510.55COMB7324.12290.8532.06316.49459.490.90351.66510.55COMB7324.12318.3832.06337.49409.620.90374.99455.13COMB7324.12345.9032.06358.52602.850.90398.36669.83COMB7-299.67-521.54-49.49-295.84-17.160.90-328.72-19.07COMB7-299.67-438.97-49.49-336.36184.830.90-373.74205.37COMB7-299.67-438.97-49.49-322.83326.220.90-358.70362.46COMB7-299.67 </td <td>COMB8</td> <td>419.93</td> <td>272.65</td> <td>311.41</td> <td>505.01</td> <td>442.37</td> <td>0.90</td> <td>561.12</td> <td>491.53</td>	COMB8	419.93	272.65	311.41	505.01	442.37	0.90	561.12	491.53			
COMB8-391.54-1222.26-342.38-244.95-694.880.90-272.17-772.08COMB8-391.54-1194.73-342.38-370.30-182.730.90-411.44-203.03COMB918.82-899.98-20.29-21.62-506.010.90-24.02-562.23COMB918.82-864.19-20.29-12.90-126.770.90-14.33-140.86COMB918.82-828.41-20.29-4.18237.080.90-4.64263.42COMB918.82-792.63-20.294.55585.540.905.05650.61COMB7324.12263.3332.06295.53578.310.90351.66510.55COMB7324.12290.8532.06316.49459.490.90351.66510.55COMB7324.12318.3832.06337.49409.620.90374.99455.13COMB7324.12345.9032.06358.52602.850.90398.36669.83COMB7-299.67-521.54-49.49-295.84-17.160.90-328.72-19.07COMB7-299.67-466.49-49.49-309.32200.830.90-343.69223.14COMB7-299.67-466.49-49.49-322.83326.220.90-373.74205.37COMB7-299.67-466.49-49.49-322.83326.220.90557.94630.57COMB7-299.67-	COMB8	-391.54	-1249.78	-342.38	-140.30	-1224.01	0.90	-155.88	-1360.01			
COMB8-391.54-1194.73-342.38-370.30-182.730.90-411.44-203.03COMB8-391.54-1167.21-342.38-500.29215.380.90-555.88239.32COMB918.82-899.98-20.29-21.62-506.010.90-24.02-562.23COMB918.82-864.19-20.29-12.90-126.770.90-14.33-140.86COMB918.82-828.41-20.29-4.18237.080.90-4.64263.42COMB918.82-792.63-20.294.55585.540.905.05650.61COMB7324.12263.3332.06295.53578.310.90328.36642.56COMB7324.12290.8532.06316.49459.490.90351.66510.55COMB7324.12318.3832.06337.49409.620.90374.99455.13COMB7-299.67-521.54-49.49-295.84-17.160.90-328.72-19.07COMB7-299.67-466.49-49.49-309.32200.830.90-343.69223.14COMB7-299.67-466.49-49.49-322.83326.220.90-373.74205.37COMB7-299.67-466.49-49.49-336.36184.830.90-373.74205.37COMB7-299.67-488.97-49.49-336.36184.830.90-373.74205.37COMB8198.79 <t< td=""><td>COMB8</td><td>-391.54</td><td>-1222.26</td><td>-342.38</td><td>-244.95</td><td>-694.88</td><td>0.90</td><td>-272.17</td><td>-772.08</td></t<>	COMB8	-391.54	-1222.26	-342.38	-244.95	-694.88	0.90	-272.17	-772.08			
COMB8-391.54-1167.21-342.38-500.29215.380.90-555.88239.32COMB918.82-899.98-20.29-21.62-506.010.90-24.02-562.23COMB918.82-864.19-20.29-12.90-126.770.90-14.33-140.86COMB918.82-828.41-20.29-4.18237.080.90-4.64263.42COMB918.82-792.63-20.294.55585.540.905.05650.61COMB7324.12263.3332.06295.53578.310.90328.36642.56COMB7324.12290.8532.06316.49459.490.90351.66510.55COMB7324.12318.3832.06337.49409.620.90374.99455.13COMB7324.12345.9032.06358.52602.850.90398.36669.83COMB7-299.67-521.54-49.49-295.84-17.160.90-328.72-19.07COMB7-299.67-466.49-49.49-309.32200.830.90-343.69223.14COMB7-299.67-466.49-49.49-322.83326.220.90-358.70362.46COMB7-299.67-466.49-49.49-322.83326.220.90-57.94630.57COMB7-299.67-488.97-49.49-336.36184.830.90-373.74205.37COMB8198.79257.59 </td <td>COMB8</td> <td>-391.54</td> <td>-1194.73</td> <td>-342.38</td> <td>-370.30</td> <td>-182.73</td> <td>0.90</td> <td>-411.44</td> <td>-203.03</td>	COMB8	-391.54	-1194.73	-342.38	-370.30	-182.73	0.90	-411.44	-203.03			
COMB918.82-899.98-20.29-21.62-506.010.90-24.02-562.23COMB918.82-864.19-20.29-12.90-126.770.90-14.33-140.86COMB918.82-828.41-20.29-4.18237.080.90-4.64263.42COMB918.82-792.63-20.294.55585.540.905.05650.61COMB7324.12263.3332.06295.53578.310.90328.36642.56COMB7324.12290.8532.06316.49459.490.90351.66510.55COMB7324.12318.3832.06337.49409.620.90374.99455.13COMB7324.12345.9032.06358.52602.850.90398.36669.83COMB7-299.67-521.54-49.49-295.84-17.160.90-328.72-19.07COMB7-299.67-494.02-49.49-309.32200.830.90-343.69223.14COMB7-299.67-494.02-49.49-322.83326.220.90-378.70362.46COMB7-299.67-438.97-49.49-336.36184.830.90-373.74205.37COMB7-299.67-438.97-49.49-336.36184.830.90-373.74205.37COMB7-299.67-49.49-302.15567.520.90557.94630.57COMB8198.79257.5960.75<	COMB8	-391.54	-1167.21	-342.38	-500.29	215.38	0.90	-555.88	239.32			
COMB918.82-864.19-20.29-12.90-126.770.90-14.33-140.86COMB918.82-828.41-20.29-4.18237.080.90-4.64263.42COMB918.82-792.63-20.294.55585.540.905.05650.61COMB7324.12263.3332.06295.53578.310.90328.36642.56COMB7324.12290.8532.06316.49459.490.90351.66510.55COMB7324.12318.3832.06337.49409.620.90374.99455.13COMB7324.12345.9032.06358.52602.850.90398.36669.83COMB7-299.67-521.54-49.49-295.84-17.160.90-328.72-19.07COMB7-299.67-466.49-49.49-309.32200.830.90-343.69223.14COMB7-299.67-466.49-49.49-322.83326.220.90-373.74205.37COMB7-299.67-438.97-49.49-336.36184.830.90-373.74205.37COMB8198.79257.5960.75502.15567.520.90557.94630.57COMB8198.79312.6460.75568.23415.530.90631.36461.70COMB8198.79340.1660.75568.23415.530.90631.36461.70COMB8-174.33-515.80-78.1	COMB9	18.82	-899.98	-20.29	-21.62	-506.01	0.90	-24.02	-562.23			
COMB918.82-828.41-20.29-4.18237.080.90-4.64263.42COMB918.82-792.63-20.294.55585.540.905.05650.61COMB7324.12263.3332.06295.53578.310.90328.36642.56COMB7324.12290.8532.06316.49459.490.90351.66510.55COMB7324.12318.3832.06337.49409.620.90374.99455.13COMB7324.12345.9032.06358.52602.850.90398.36669.83COMB7-299.67-521.54-49.49-295.84-17.160.90-328.72-19.07COMB7-299.67-494.02-49.49-309.32200.830.90-343.69223.14COMB7-299.67-466.49-49.49-322.83326.220.90-373.74205.37COMB7-299.67-438.97-49.49-336.36184.830.90-373.74205.37COMB8198.79257.5960.75502.15567.520.90557.94630.57COMB8198.79312.6460.75568.23415.530.90631.36461.70COMB8198.79340.1660.75601.35606.330.90668.17673.70COMB8-174.33-515.80-78.17-502.46-6.370.90-558.29-7.08	COMB9	18.82	-864.19	-20.29	-12.90	-126.77	0.90	-14.33	-140.86			
COMB918.82-792.63-20.294.55585.540.905.05650.61COMB7324.12263.3332.06295.53578.310.90328.36642.56COMB7324.12290.8532.06316.49459.490.90351.66510.55COMB7324.12318.3832.06337.49409.620.90374.99455.13COMB7324.12345.9032.06358.52602.850.90398.36669.83COMB7-299.67-521.54-49.49-295.84-17.160.90-328.72-19.07COMB7-299.67-494.02-49.49-309.32200.830.90-343.69223.14COMB7-299.67-466.49-49.49-322.83326.220.90-358.70362.46COMB7-299.67-438.97-49.49-336.36184.830.90-373.74205.37COMB8198.79257.5960.75502.15567.520.90557.94630.57COMB8198.79285.1160.75535.16451.250.90594.62501.39COMB8198.79312.6460.75568.23415.530.90631.36461.70COMB8198.79340.1660.75601.35606.330.90668.17673.70COMB8198.79340.1660.75601.35606.330.90-558.29-7.08	COMB9	18.82	-828.41	-20.29	-4.18	237.08	0.90	-4.64	263.42			
COMB7324.12263.3332.06295.53578.310.90328.36642.56COMB7324.12290.8532.06316.49459.490.90351.66510.55COMB7324.12318.3832.06337.49409.620.90374.99455.13COMB7324.12345.9032.06358.52602.850.90398.36669.83COMB7-299.67-521.54-49.49-295.84-17.160.90-328.72-19.07COMB7-299.67-494.02-49.49-309.32200.830.90-343.69223.14COMB7-299.67-466.49-49.49-322.83326.220.90-358.70362.46COMB7-299.67-468.97-49.49-336.36184.830.90-373.74205.37COMB8198.79257.5960.75502.15567.520.90557.94630.57COMB8198.79285.1160.75535.16451.250.90594.62501.39COMB8198.79312.6460.75568.23415.530.90631.36461.70COMB8198.79340.1660.75601.35606.330.90668.17673.70COMB8-174.33-515.80-78.17-502.46-6.370.90-558.29-7.08	COMB9	18.82	-792.63	-20.29	4.55	585.54	0.90	5.05	650.61			
COMB7324.12290.8532.06316.49459.490.90351.66510.55COMB7324.12318.3832.06337.49409.620.90374.99455.13COMB7324.12345.9032.06358.52602.850.90398.36669.83COMB7-299.67-521.54-49.49-295.84-17.160.90-328.72-19.07COMB7-299.67-494.02-49.49-309.32200.830.90-343.69223.14COMB7-299.67-466.49-49.49-322.83326.220.90-358.70362.46COMB7-299.67-438.97-49.49-336.36184.830.90-373.74205.37COMB8198.79257.5960.75502.15567.520.90557.94630.57COMB8198.79285.1160.75535.16451.250.90594.62501.39COMB8198.79312.6460.75568.23415.530.90631.36461.70COMB8198.79340.1660.75601.35606.330.90668.17673.70COMB8-174.33-515.80-78.17-502.46-6.370.90-558.29-7.08	COMB7	324.12	263.33	32.06	295.53	578.31	0.90	328.36	642.56			
COMB7324.12318.3832.06337.49409.620.90374.99455.13COMB7324.12345.9032.06358.52602.850.90398.36669.83COMB7-299.67-521.54-49.49-295.84-17.160.90-328.72-19.07COMB7-299.67-494.02-49.49-309.32200.830.90-343.69223.14COMB7-299.67-466.49-49.49-322.83326.220.90-358.70362.46COMB7-299.67-438.97-49.49-336.36184.830.90-373.74205.37COMB8198.79257.5960.75502.15567.520.90557.94630.57COMB8198.79285.1160.75535.16451.250.90631.36461.70COMB8198.79340.1660.75601.35606.330.90668.17673.70COMB8-174.33-515.80-78.17-502.46-6.370.90-558.29-7.08	COMB7	324.12	290.85	32.06	316.49	459.49	0.90	351.66	510.55			
COMB7324.12345.9032.06358.52602.850.90398.36669.83COMB7-299.67-521.54-49.49-295.84-17.160.90-328.72-19.07COMB7-299.67-494.02-49.49-309.32200.830.90-343.69223.14COMB7-299.67-466.49-49.49-322.83326.220.90-358.70362.46COMB7-299.67-466.49-49.49-336.36184.830.90-373.74205.37COMB7-299.67-438.97-49.49-336.36184.830.90-373.74205.37COMB8198.79257.5960.75502.15567.520.90557.94630.57COMB8198.79285.1160.75535.16451.250.90594.62501.39COMB8198.79312.6460.75568.23415.530.90631.36461.70COMB8198.79340.1660.75601.35606.330.90668.17673.70COMB8-174.33-515.80-78.17-502.46-6.370.90-558.29-7.08	COMB7	324.12	318.38	32.06	337.49	409.62	0.90	374.99	455.13			
COMB7-299.67-521.54-49.49-295.84-17.160.90-328.72-19.07COMB7-299.67-494.02-49.49-309.32200.830.90-343.69223.14COMB7-299.67-466.49-49.49-322.83326.220.90-358.70362.46COMB7-299.67-438.97-49.49-336.36184.830.90-373.74205.37COMB8198.79257.5960.75502.15567.520.90557.94630.57COMB8198.79285.1160.75535.16451.250.90594.62501.39COMB8198.79312.6460.75568.23415.530.90631.36461.70COMB8198.79340.1660.75601.35606.330.90668.17673.70COMB8-174.33-515.80-78.17-502.46-6.370.90-558.29-7.08	COMB7	324.12	345.90	32.06	358.52	602.85	0.90	398.36	669.83			
COMB7-299.67-494.02-49.49-309.32200.830.90-343.69223.14COMB7-299.67-466.49-49.49-322.83326.220.90-358.70362.46COMB7-299.67-438.97-49.49-336.36184.830.90-373.74205.37COMB8198.79257.5960.75502.15567.520.90557.94630.57COMB8198.79285.1160.75535.16451.250.90594.62501.39COMB8198.79312.6460.75568.23415.530.90631.36461.70COMB8198.79340.1660.75601.35606.330.90668.17673.70COMB8-174.33-515.80-78.17-502.46-6.370.90-558.29-7.08	COMB7	-299.67	-521.54	-49.49	-295.84	-17.16	0.90	-328.72	-19.07			
COMB7-299.67-466.49-49.49-322.83326.220.90-358.70362.46COMB7-299.67-438.97-49.49-336.36184.830.90-373.74205.37COMB8198.79257.5960.75502.15567.520.90557.94630.57COMB8198.79285.1160.75535.16451.250.90594.62501.39COMB8198.79312.6460.75568.23415.530.90631.36461.70COMB8198.79340.1660.75601.35606.330.90668.17673.70COMB8-174.33-515.80-78.17-502.46-6.370.90-558.29-7.08	COMB7	-299.67	-494.02	-49.49	-309.32	200.83	0.90	-343.69	223.14			
COMB7-299.67-438.97-49.49-336.36184.830.90-373.74205.37COMB8198.79257.5960.75502.15567.520.90557.94630.57COMB8198.79285.1160.75535.16451.250.90594.62501.39COMB8198.79312.6460.75568.23415.530.90631.36461.70COMB8198.79340.1660.75601.35606.330.90668.17673.70COMB8-174.33-515.80-78.17-502.46-6.370.90-558.29-7.08	COMB7	-299.67	-466.49	-49.49	-322.83	326.22	0.90	-358.70	362.46			
COMB8198.79257.5960.75502.15567.520.90557.94630.57COMB8198.79285.1160.75535.16451.250.90594.62501.39COMB8198.79312.6460.75568.23415.530.90631.36461.70COMB8198.79340.1660.75601.35606.330.90668.17673.70COMB8-174.33-515.80-78.17-502.46-6.370.90-558.29-7.08	COMB7	-299.67	-438.97	-49.49	-336.36	184.83	0.90	-373.74	205.37			
COMB8198.79285.1160.75535.16451.250.90594.62501.39COMB8198.79312.6460.75568.23415.530.90631.36461.70COMB8198.79340.1660.75601.35606.330.90668.17673.70COMB8-174.33-515.80-78.17-502.46-6.370.90-558.29-7.08	COMB8	198.79	257.59	60.75	502.15	567.52	0.90	557.94	630.57			
COMB8198.79312.6460.75568.23415.530.90631.36461.70COMB8198.79340.1660.75601.35606.330.90668.17673.70COMB8-174.33-515.80-78.17-502.46-6.370.90-558.29-7.08	COMB8	198.79	285.11	60.75	535.16	451.25	0.90	594.62	501.39			
COMB8198.79340.1660.75601.35606.330.90668.17673.70COMB8-174.33-515.80-78.17-502.46-6.370.90-558.29-7.08	COMB8	198.79	312.64	60.75	568.23	415.53	0.90	631.36	461.70			
COMB8 -174.33 -515.80 -78.17 -502.46 -6.37 0.90 -558.29 -7.08	COMB8	198.79	340.16	60.75	601.35	606.33	0.90	668.17	673.70			
	COMB8	-174.33	-515.80	-78.17	-502.46	-6.37	0.90	-558.29	-7.08			

Köprü başlık kirişi kesit tesirleri (devamı)

Kesit Tesirleri (Kolon Alt Ucu)										
Kombinasyon	N (kN)	Q ₂₂ (kN)	Q ₃₃ (kN)	M ₂₂ (kNm)	M ₃₃ (kNm)	M ₂₂ /Φ (kNm)	M ₃₃ / Φ (kNm)	M _d (kNm)		
COMB8	-174.33	-488.27	-78.17	-527.98	209.07	0.90	-586.64	232.30		
COMB8	-174.33	-460.75	-78.17	-553.56	320.31	0.90	-615.07	355.90		
COMB8	-174.33	-433.23	-78.17	-579.19	181.36	0.90	-643.55	201.51		
COMB9	15.38	-200.34	-11.37	1.32	508.49	0.90	1.47	564.99		
COMB9	15.38	-164.55	-11.37	6.21	586.93	0.90	6.90	652.15		
COMB9	15.38	-128.77	-11.37	11.10	649.99	0.90	12.34	722.21		
COMB9	15.38	-92.99	-11.37	15.99	697.66	0.90	17.77	775.18		
COMB7	68.42	486.31	107.79	355.92	463.93	0.90	395.46	515.48		
COMB7	68.42	513.83	107.79	310.29	535.13	0.90	344.77	594.59		
COMB7	68.42	541.36	107.79	264.93	637.23	0.90	294.37	708.03		
COMB7	68.42	568.88	107.79	220.01	729.85	0.90	244.46	810.94		
COMB7	-47.95	-286.85	-113.74	-338.79	320.30	0.90	-376.43	355.88		
COMB7	-47.95	-259.33	-113.74	-290.60	151.51	0.90	-322.89	168.34		
COMB7	-47.95	-231.81	-113.74	-242.68	-71.84	0.90	-269.64	-79.82		
COMB7	-47.95	-204.28	-113.74	-195.21	-309.38	0.90	-216.90	-343.75		
COMB8	44.56	486.97	184.72	598.67	474.24	0.90	665.19	526.94		
COMB8	44.56	514.49	184.72	520.64	474.56	0.90	578.49	527.28		
COMB8	44.56	542.02	184.72	443.13	574.51	0.90	492.37	638.34		
COMB8	44.56	569.54	184.72	366.48	667.05	0.90	407.20	741.16		
COMB8	-24.10	-287.51	-190.68	-581.54	309.99	0.90	-646.15	344.43		
COMB8	-24.10	-259.99	-190.68	-500.95	212.08	0.90	-556.61	235.65		
COMB8	-24.10	-232.46	-190.68	-420.88	-9.12	0.90	-467.65	-10.13		
COMB8	-24.10	-204.94	-190.68	-341.67	-246.58	0.90	-379.64	-273.98		
COMB9	11.90	200.50	-3.85	12.77	699.24	0.90	14.19	776.93		
COMB9	11.90	236.29	-3.85	14.42	605.35	0.90	16.03	672.61		
COMB9	11.90	272.07	-3.85	16.08	496.07	0.90	17.87	551.19		
COMB9	11.90	307.85	-3.85	17.73	371.41	0.90	19.71	412.67		
COMB7	434.35	1370.73	263.77	217.49	593.47	0.90	241.65	659.41		
COMB7	434.35	1398.26	263.77	112.51	627.70	0.90	125.01	697.44		
COMB7	434.35	1425.78	263.77	68.81	669.15	0.90	76.45	743.50		
COMB7	434.35	1453.31	263.77	156.06	701.92	0.90	173.41	779.91		
COMB7	-417.92	-150.58	-260.30	-197.70	-101.37	0.90	-219.67	-112.63		
COMB7	-417.92	-123.05	-260.30	-94.22	-672.01	0.90	-104.69	-746.68		
COMB7	-417.92	-95.53	-260.30	-52.00	-1273.54	0.90	-57.78	-1415.04		
COMB7	-417.92	-68.00	-260.30	-140.75	-1890.07	0.90	-156.39	-2100.07		
COMB8	260.64	1252.81	446.16	363.94	454.19	0.90	404.37	504.66		
COMB8	260.64	1280.33	446.16	188.37	395.79	0.90	209.30	439.76		
COMB8	260.64	1307.85	446.16	117.51	379.30	0.90	130.56	421.44		
COMB8	260.64	1335.38	446.16	262.09	358.77	0.90	291.21	398.63		

Köprü başlık kirişi kesit tesirleri (devamı)

_

Kesit Tesirleri (Kolon Alt Ucu)										
Kombinasyon	N (kN)	Q ₂₂ (kN)	Q ₃₃ (kN)	M ₂₂ (kNm)	M ₃₃ (kNm)	M ₂₂ /Φ (kNm)	M ₃₃ /Φ (kNm)	M _d (kNm)		
COMB8	-244.21	-32.65	-442.70	-344.15	37.92	0.90	-382.39	42.13		
COMB8	-244.21	-5.12	-442.70	-170.07	-440.10	0.90	-188.97	-489.00		
COMB8	-244.21	22.40	-442.70	-100.70	-983.69	0.90	-111.89	-1092.99		
COMB8	-244.21	49.92	-442.70	-246.77	-1546.91	0.90	-274.19	-1718.79		
COMB9	8.36	1102.20	2.30	14.52	438.94	0.90	16.13	487.71		
COMB9	8.36	1137.98	2.30	13.53	-42.62	0.90	15.03	-47.35		
COMB9	8.36	1173.76	2.30	12.54	-539.56	0.90	13.94	-599.51		
COMB9	8.36	1209.54	2.30	11.55	-1051.89	0.90	12.84	-1168.77		
COMB7	801.11	3143.16	418.68	153.54	615.95	0.90	170.60	684.39		
COMB7	801.11	3161.71	418.68	266.93	411.20	0.90	296.59	456.89		
COMB7	-788.69	513.39	-407.81	-143.24	-1793.07	0.90	-159.16	-1992.30		
COMB7	-788.69	531.95	-407.81	-259.78	-2653.33	0.90	-288.64	-2948.14		
COMB8	477.83	2850.91	706.51	259.57	172.93	0.90	288.41	192.14		
COMB8	477.83	2869.46	706.51	451.84	-216.54	0.90	502.05	-240.60		
COMB8	-465.41	805.64	-695.64	-249.27	-1350.04	0.90	-276.96	-1500.05		
COMB8	-465.41	824.20	-695.64	-444.69	-2025.59	0.90	-494.10	-2250.65		
COMB9	4.85	3256.18	7.10	8.34	-1034.92	0.90	9.27	-1149.91		
COMB9	4.85	3280.30	7.10	6.28	-1982.02	0.90	6.98	-2202.25		
COMB7	941.76	-36.16	410.29	269.52	713.26	0.90	299.46	792.51		
COMB7	941.76	-17.74	410.29	154.66	772.46	0.90	171.84	858.29		
COMB7	-909.48	-3675.08	-425.09	-294.70	-2929.46	0.90	-327.44	-3254.95		
COMB7	-909.48	-3656.67	-425.09	-175.58	-1926.44	0.90	-195.09	-2140.48		
COMB8	566.90	-495.18	702.39	467.55	-37.68	0.90	519.50	-41.86		
COMB8	566.90	-476.76	702.39	271.66	250.81	0.90	301.85	278.68		
COMB8	-534.62	-3216.06	-717.19	-492.73	-2178.52	0.90	-547.48	-2420.58		
COMB8	-534.62	-3197.65	-717.19	-292.59	-1404.78	0.90	-325.10	-1560.87		
COMB9	21.12	-3283.29	-8.57	-14.06	-1958.93	0.90	-15.62	-2176.59		
COMB9	21.12	-3259.35	-8.57	-11.60	-1017.95	0.90	-12.89	-1131.06		
COMB7	570.99	238.18	260.96	152.19	854.41	0.90	169.10	949.34		
COMB7	570.99	265.71	260.96	54.47	748.11	0.90	60.52	831.23		
COMB7	570.99	293.23	260.96	78.33	633.17	0.90	87.03	703.52		
COMB7	570.99	320.75	260.96	186.72	533.55	0.90	207.46	592.83		
COMB7	-542.64	-1632.62	-272.35	-178.13	-2058.42	0.90	-197.92	-2287.13		
COMB7	-542.64	-1605.10	-272.35	-75.52	-1364.44	0.90	-83.91	-1516.04		
COMB7	-542.64	-1577.57	-272.35	-94.48	-685.49	0.90	-104.97	-761.65		
COMB7	-542.64	-1550.05	-272.35	-197.97	-45.53	0.90	-219.97	-50.58		
COMB8	345.68	63.09	447.72	269.22	456.20	0.90	299.13	506.89		
COMB8	345.68	90.61	447.72	104.16	427.59	0.90	115.73	475.10		
COMB8	345.68	118.14	447.72	142.54	395.21	0.90	158.38	439.12		

Köprü başlık kirişi kesit tesirleri (devamı)

Kesit Tesirleri (Kolon Alt Ucu)										
Kombinasyon	N (kN)	Q ₂₂ (kN)	Q ₃₃ (kN)	M ₂₂ (kNm)	M ₃₃ (kNm)	M ₂₂ /Φ (kNm)	M ₃₃ / Φ (kNm)	M _d (kNm)		
COMB8	345.68	145.66	447.72	323.35	428.73	0.90	359.27	476.36		
COMB8	-317.33	-1457.53	-459.11	-295.16	-1660.21	0.90	-327.96	-1844.68		
COMB8	-317.33	-1430.01	-459.11	-125.21	-1043.92	0.90	-139.12	-1159.91		
COMB8	-317.33	-1402.48	-459.11	-158.69	-447.53	0.90	-176.32	-497.25		
COMB8	-317.33	-1374.96	-459.11	-334.60	59.30	0.90	-371.78	65.89		
COMB9	17.68	-1209.20	-6.43	-14.81	-1055.46	0.90	-16.46	-1172.73		
COMB9	17.68	-1173.42	-6.43	-12.05	-543.28	0.90	-13.39	-603.65		
COMB9	17.68	-1137.64	-6.43	-9.29	-46.48	0.90	-10.32	-51.65		
COMB9	17.68	-1101.86	-6.43	-6.52	434.93	0.90	-7.25	483.26		
COMB7	200.23	234.03	110.73	184.17	664.06	0.90	204.63	737.85		
COMB7	200.23	261.56	110.73	234.68	558.17	0.90	260.75	620.19		
COMB7	200.23	289.08	110.73	285.66	443.20	0.90	317.40	492.45		
COMB7	200.23	316.60	110.73	336.91	467.49	0.90	374.35	519.44		
COMB7	-175.80	-603.25	-120.73	-200.45	-264.49	0.90	-222.72	-293.88		
COMB7	-175.80	-575.72	-120.73	-246.66	-11.69	0.90	-274.06	-12.99		
COMB7	-175.80	-548.20	-120.73	-293.34	226.51	0.90	-325.94	251.68		
COMB7	-175.80	-520.67	-120.73	-340.30	301.79	0.90	-378.11	335.32		
COMB8	124.50	228.68	192.19	320.76	617.87	0.90	356.40	686.53		
COMB8	124.50	256.20	192.19	404.95	514.50	0.90	449.95	571.67		
COMB8	124.50	283.72	192.19	490.07	404.80	0.90	544.52	449.78		
COMB8	124.50	311.25	192.19	575.71	505.06	0.90	639.68	561.18		
COMB8	-100.06	-597.89	-202.18	-337.04	-218.30	0.90	-374.49	-242.56		
COMB8	-100.06	-570.37	-202.18	-416.93	31.98	0.90	-463.26	35.53		
COMB8	-100.06	-542.84	-202.18	-497.75	264.91	0.90	-553.06	294.35		
COMB8	-100.06	-515.32	-202.18	-579.10	264.22	0.90	-643.44	293.58		
COMB9	14.26	-305.77	-5.63	-9.74	359.14	0.90	-10.82	399.04		
COMB9	14.26	-269.99	-5.63	-7.32	482.91	0.90	-8.13	536.56		
COMB9	14.26	-234.21	-5.63	-4.90	591.29	0.90	-5.44	656.99		
COMB9	14.26	-198.42	-5.63	-2.48	684.29	0.90	-2.75	760.32		
COMB7	191.12	393.61	30.26	334.44	498.21	0.90	371.60	553.56		
COMB7	191.12	421.13	30.26	321.62	401.70	0.90	357.36	446.34		
COMB7	191.12	448.66	30.26	308.83	511.68	0.90	343.14	568.54		
COMB7	191.12	476.18	30.26	296.05	616.59	0.90	328.95	685.10		
COMB7	-170.64	-314.04	-40.91	-342.85	262.18	0.90	-380.95	291.32		
COMB7	-170.64	-286.51	-40.91	-325.45	312.64	0.90	-361.62	347.38		
COMB7	-170.64	-258.99	-40.91	-308.08	132.95	0.90	-342.31	147.72		
COMB7	-170.64	-231.46	-40.91	-290.72	-65.34	0.90	-323.02	-72.60		
COMB8	117.35	409.03	54.09	573.26	530.65	0.90	636.96	589.61		
COMB8	117.35	436.56	54.09	550.13	384.35	0.90	611.26	427.06		

Köprü başlık kirişi kesit tesirleri (devamı)

Kesit Tesirleri (Kolon Alt Ucu)									
Kombinasyon	Ν	Q ₂₂	Q ₃₃	M ₂₂	M ₃₃	M_{22}/Φ	M_{33}/Φ	M _d	
	(kN)	(kN)	(kN)	(kNm)	(kNm)	(kNm)	(kNm)	(kNm)	
COMB8	117.35	464.08	54.09	527.01	491.97	0.90	585.57	546.64	
COMB8	117.35	491.61	54.09	503.90	603.46	0.90	559.89	670.51	
COMB8	-96.87	-329.46	-64.75	-581.68	229.74	0.90	-646.31	255.26	
COMB8	-96.87	-301.94	-64.75	-553.96	329.99	0.90	-615.51	366.66	
COMB8	-96.87	-274.41	-64.75	-526.26	152.66	0.90	-584.73	169.62	
COMB8	-96.87	-246.89	-64.75	-498.57	-52.20	0.90	-553.97	-58.00	
COMB9	10.79	88.53	-6.21	-5.70	676.52	0.90	-6.33	751.69	
COMB9	10.79	124.31	-6.21	-3.03	630.76	0.90	-3.36	700.85	
COMB9	10.79	160.10	-6.21	-0.36	569.62	0.90	-0.40	632.92	
COMB9	10.79	195.88	-6.21	2.31	493.10	0.90	2.57	547.89	
COMB7	557.92	1143.16	179.76	293.67	489.29	0.90	326.30	543.65	
COMB7	557.92	1170.69	179.76	217.61	582.77	0.90	241.79	647.53	
COMB7	557.92	1198.21	179.76	142.99	693.16	0.90	158.88	770.17	
COMB7	557.92	1225.74	179.76	75.06	794.15	0.90	83.40	882.39	
COMB7	-541.44	-306.98	-193.14	-293.37	138.83	0.90	-325.97	154.26	
COMB7	-541.44	-279.46	-193.14	-211.56	-325.99	0.90	-235.07	-362.21	
COMB7	-541.44	-251.93	-193.14	-131.19	-831.37	0.90	-145.77	-923.74	
COMB7	-541.44	-224.41	-193.14	-57.51	-1351.04	0.90	-63.90	-1501.15	
COMB8	334.57	1034.98	309.03	501.62	437.25	0.90	557.35	485.84	
COMB8	334.57	1062.51	309.03	370.56	426.94	0.90	411.74	474.38	
COMB8	334.57	1090.03	309.03	241.58	486.09	0.90	268.43	540.10	
COMB8	334.57	1117.56	309.03	122.18	539.20	0.90	135.76	599.11	
COMB8	-318.10	-198.80	-322.40	-501.32	190.87	0.90	-557.02	212.08	
COMB8	-318.10	-171.28	-322.40	-364.51	-170.16	0.90	-405.01	-189.06	
COMB8	-318.10	-143.75	-322.40	-229.78	-624.31	0.90	-255.31	-693.67	
COMB8	-318.10	-116.23	-322.40	-104.63	-1096.08	0.90	-116.26	-1217.86	
COMB9	7.28	754.51	-8.17	-0.91	558.93	0.90	-1.01	621.03	
COMB9	7.28	790.29	-8.17	2.60	226.85	0.90	2.89	252.06	
COMB9	7.28	826.08	-8.17	6.12	-120.61	0.90	6.80	-134.02	
COMB9	7.28	861.86	-8.17	9.63	-483.46	0.90	10.70	-537.18	
COMB7	924.76	2874.53	328.69	72.72	699.46	0.90	80.79	777.17	
COMB7	924.76	2895.37	328.69	83.44	689.61	0.90	92.71	766.23	
COMB7	924.76	2916.22	328.69	187.68	699.03	0.90	208.54	776.70	
COMB7	-912.29	-114.75	-346.82	-60.19	-1154.41	0.90	-66.88	-1282.68	
COMB7	-912.29	-93.90	-346.82	-65.01	-2049.93	0.90	-72.23	-2277.69	
COMB7	-912.29	-73.06	-346.82	-163.35	-2978.28	0.90	-181.50	-3309.20	
COMB8	551.84	2511.36	563.55	119.96	339.55	0.90	133.29	377.28	
COMB8	551.84	2532.21	563.55	129.03	129.38	0.90	143.37	143.76	
COMB8	551.84	2553.05	563.55	304.27	-10.78	0.90	338.07	-11.98	

Köprü başlık kirişi kesit tesirleri (devamı)

Kesit Tesirleri (Kolon Alt Ucu)										
Kombinasyon	N (kN)	Q ₂₂ (kN)	Q ₃₃ (kN)	M ₂₂ (kNm)	M ₃₃ (kNm)	M ₂₂ /Φ (kNm)	M ₃₃ / Φ (kNm)	M _d (kNm)		
COMB8	-539.38	248.42	-581.68	-107.43	-794.51	0.90	-119.37	-882.79		
COMB8	-539.38	269.26	-581.68	-110.60	-1489.70	0.90	-122.89	-1655.22		
COMB8	-539.38	290.11	-581.68	-279.94	-2268.47	0.90	-311.04	-2520.52		
COMB9	3.77	2450.99	-11.49	6.41	-399.43	0.90	7.12	-443.82		
COMB9	3.77	2478.09	-11.49	10.15	-1201.88	0.90	11.28	-1335.42		
COMB9	3.77	2505.19	-11.49	13.89	-2013.15	0.90	15.44	-2236.83		
COMB7	462.18	55.94	305.98	107.80	716.04	0.90	119.78	795.60		
COMB7	462.18	81.86	305.98	39.45	693.46	0.90	43.83	770.52		
COMB7	462.18	107.77	305.98	132.77	667.11	0.90	147.52	741.23		
COMB7	462.18	133.68	305.98	248.61	656.47	0.90	276.24	729.41		
COMB7	-476.17	-1850.87	-295.17	-124.03	-2526.60	0.90	-137.82	-2807.34		
COMB7	-476.17	-1824.96	-295.17	-60.06	-1788.05	0.90	-66.73	-1986.73		
COMB7	-476.17	-1799.05	-295.17	-157.75	-1066.69	0.90	-175.28	-1185.21		
COMB7	-476.17	-1773.14	-295.17	-277.97	-382.03	0.90	-308.86	-424.48		
COMB8	269.85	-167.56	515.04	183.04	154.49	0.90	203.38	171.65		
COMB8	269.85	-141.65	515.04	72.12	230.67	0.90	80.13	256.30		
COMB8	269.85	-115.74	515.04	236.75	315.31	0.90	263.06	350.35		
COMB8	269.85	-89.83	515.04	435.36	466.23	0.90	483.74	518.04		
COMB8	-283.85	-1627.37	-504.23	-199.28	-1965.05	0.90	-221.42	-2183.39		
COMB8	-283.85	-1601.46	-504.23	-92.73	-1325.26	0.90	-103.03	-1472.51		
COMB8	-283.85	-1575.55	-504.23	-261.73	-714.90	0.90	-290.82	-794.33		
COMB8	-283.85	-1549.64	-504.23	-464.72	-191.79	0.90	-516.36	-213.10		
COMB9	-19.34	-1575.16	7.73	-11.90	-1603.70	0.90	-13.22	-1781.89		
COMB9	-19.34	-1541.48	7.73	-15.02	-973.00	0.90	-16.69	-1081.11		
COMB9	-19.34	-1507.79	7.73	-18.15	-355.93	0.90	-20.17	-395.48		
COMB9	-19.34	-1474.11	7.73	-21.28	247.50	0.90	-23.64	275.00		
COMB7	92.68	206.95	148.38	246.29	778.01	0.90	273.66	864.45		
COMB7	92.68	234.47	148.38	309.19	684.40	0.90	343.55	760.44		
COMB7	92.68	262.00	148.38	372.38	581.31	0.90	413.75	645.90		
COMB7	92.68	289.52	148.38	435.73	495.16	0.90	484.15	550.18		
COMB7	-110.57	-720.35	-148.36	-280.68	-572.45	0.90	-311.87	-636.06		
COMB7	-110.57	-692.82	-148.36	-343.59	-269.95	0.90	-381.77	-299.95		
COMB7	-110.57	-665.30	-148.36	-406.79	18.36	0.90	-451.99	20.40		
COMB7	-110.57	-637.78	-148.36	-470.15	266.07	0.90	-522.39	295.64		
COMB8	51.70	165.43	251.15	433.18	641.28	0.90	481.31	712.54		
COMB8	51.70	192.95	251.15	539.86	566.47	0.90	599.84	629.41		
COMB8	51.70	220.48	251.15	646.96	485.02	0.90	718.84	538.91		
COMB8	51.70	248.00	251.15	754.30	471.72	0.90	838.11	524.13		
COMB8	-69.59	-678.83	-251.12	-467.57	-435.73	0.90	-519.52	-484.14		

Köprü başlık kirişi kesit tesirleri (devamı)

Kesit Tesirleri (Kolon Alt Ucu)										
Kombinasyon	N (kN)	Q ₂₂ (kN)	Q ₃₃ (kN)	M ₂₂ (kNm)	M ₃₃ (kNm)	M_{22}/Φ (kNm)	M ₃₃ /Φ (kNm)	M _d (kNm)		
COMB8	-69.59	-651 31	-251 12	-574 26	-152.02	0.90	-638.07	-168 91		
COMB8	-69.59	-623 78	-251 12	-681 37	114 65	0.90	-757.08	127 39		
COMB8	-69.59	-596.26	-251 12	-788 72	289.52	0.90	-876 36	321.69		
COMB9	-22.75	-439.54	0 39	-24 50	181.06	0.90	-27.23	201.17		
COMB9	-22.75	-403.76	0.39	-24.67	362.34	0.90	-27.41	402.60		
COMB9	-22.75	-367.98	0.39	-24.84	528.23	0.90	-27.60	586.93		
COMB9	-22.75	-332.20	0.39	-25.01	678.75	0.90	-27.79	754.16		
COMB7	258.69	334.27	-0.32	433.51	643.18	0.90	481.68	714.64		
COMB7	258.69	361.79	-0.32	434.38	493.92	0.90	482.65	548.80		
COMB7	258.69	389.32	-0.32	435.26	399.83	0.90	483.63	444.25		
COMB7	258.69	416.84	-0.32	436.15	526.63	0.90	484.61	585.15		
COMB7	-280.51	-368.34	-12.51	-472.98	104.09	0.90	-525.53	115.66		
COMB7	-280.51	-340.81	-12.51	-468.33	256.16	0.90	-520.37	284.62		
COMB7	-280.51	-313.29	-12.51	-463.70	329.40	0.90	-515.22	366.00		
COMB7	-280.51	-285.77	-12.51	-459.07	158.08	0.90	-510.08	175.64		
COMB8	153.04	336.44	3.10	752.29	634.05	0.90	835.87	704.50		
COMB8	153.04	363.97	3.10	751.57	483.92	0.90	835.07	537.69		
COMB8	153.04	391.49	3.10	750.85	410.33	0.90	834.28	455.92		
COMB8	153.04	419.02	3.10	750.14	538.58	0.90	833.49	598.42		
COMB8	-174.86	-370.52	-15.92	-791.75	113.22	0.90	-879.72	125.80		
COMB8	-174.86	-342.99	-15.92	-785.52	266.16	0.90	-872.80	295.73		
COMB8	-174.86	-315.47	-15.92	-779.29	318.90	0.90	-865.88	354.34		
COMB8	-174.86	-287.94	-15.92	-773.07	146.13	0.90	-858.96	162.37		
COMB9	-26.20	-18.66	-8.34	-28.24	661.67	0.90	-31.38	735.18		
COMB9	-26.20	17.12	-8.34	-24.66	662.00	0.90	-27.40	735.55		
COMB9	-26.20	52.90	-8.34	-21.07	646.94	0.90	-23.41	718.83		
COMB9	-26.20	88.69	-8.34	-17.49	616.51	0.90	-19.43	685.01		
COMB7	625.28	973.92	143.84	434.06	445.29	0.90	482.29	494.76		
COMB7	625.28	1001.44	143.84	372.66	555.03	0.90	414.07	616.70		
COMB7	625.28	1028.97	143.84	311.45	728.28	0.90	346.05	809.20		
COMB7	625.28	1056.49	143.84	250.57	892.34	0.90	278.41	991.49		
COMB7	-651.11	-452.65	-171.60	-462.04	315.10	0.90	-513.38	350.11		
COMB7	-651.11	-425.13	-171.60	-388.70	-30.58	0.90	-431.89	-33.98		
COMB7	-651.11	-397.60	-171.60	-315.54	-463.45	0.90	-350.60	-514.94		
COMB7	-651.11	-370.08	-171.60	-242.73	-910.78	0.90	-269.70	-1011.98		
COMB8	369.61	854.52	254.72	748.37	487.47	0.90	831.52	541.63		
COMB8	369.61	882.05	254.72	639.66	450.50	0.90	710.73	500.56		
COMB8	369.61	909.57	254.72	531.29	567.75	0.90	590.32	630.84		
COMB8	369.61	937.10	254.72	423.55	679.50	0.90	470.61	755.00		

Köprü başlık kirişi kesit tesirleri (devamı)

Kesit Tesirleri (Kolon Alt Ucu)										
Kombinasyon	N (kN)	Q ₂₂ (kN)	Q ₃₃ (kN)	M ₂₂ (kNm)	M ₃₃ (kNm)	M ₂₂ /Φ (kNm)	M ₃₃ / Φ (kNm)	M _d (kNm)		
COMB8	-395.43	-333.26	-282.49	-776.35	272.92	0.90	-862.61	303.24		
COMB8	-395.43	-305.73	-282.49	-655.69	73.94	0.90	-728.55	82.16		
COMB8	-395.43	-278.21	-282.49	-535.39	-302.92	0.90	-594.88	-336.58		
COMB8	-395.43	-250.69	-282.49	-415.71	-697.94	0.90	-461.90	-775.48		
COMB9	-29.71	464.26	-18.47	-20.73	675.99	0.90	-23.03	751.10		
COMB9	-29.71	500.04	-18.47	-12.79	468.70	0.90	-14.21	520.78		
COMB9	-29.71	535.83	-18.47	-4.85	246.02	0.90	-5.39	273.36		
COMB9	-29.71	571.61	-18.47	3.09	7.96	0.90	3.44	8.85		
COMB7	992.15	2669.03	289.44	248.59	793.98	0.90	276.21	882.20		
COMB7	992.15	2690.63	289.44	154.10	972.27	0.90	171.22	1080.30		
COMB7	992.15	2712.24	289.44	72.87	1163.29	0.90	80.97	1292.54		
COMB7	992.15	2733.84	289.44	110.30	1351.73	0.90	122.56	1501.93		
COMB7	-1022.01	-624.47	-334.24	-245.81	-650.95	0.90	-273.12	-723.27		
COMB7	-1022.01	-602.87	-334.24	-136.20	-1526.49	0.90	-151.33	-1696.10		
COMB7	-1022.01	-581.27	-334.24	-39.84	-2429.35	0.90	-44.27	-2699.27		
COMB7	-1022.01	-559.66	-334.24	-62.16	-3344.21	0.90	-69.06	-3715.79		
COMB8	586.74	2241.99	508.01	421.95	501.44	0.90	468.84	557.16		
COMB8	586.74	2263.60	508.01	256.36	482.60	0.90	284.85	536.23		
COMB8	586.74	2285.20	508.01	114.63	514.79	0.90	127.37	571.99		
COMB8	586.74	2306.81	508.01	172.81	552.77	0.90	192.01	614.19		
COMB8	-616.60	-197.44	-552.81	-419.17	-358.41	0.90	-465.74	-398.24		
COMB8	-616.60	-175.83	-552.81	-238.46	-1036.83	0.90	-264.95	-1152.03		
COMB8	-616.60	-154.23	-552.81	-81.61	-1780.85	0.90	-90.67	-1978.72		
COMB8	-616.60	-132.63	-552.81	-124.67	-2545.25	0.90	-138.52	-2828.06		
COMB9	-33.26	1797.31	-30.01	-0.15	135.53	0.90	-0.17	150.59		
COMB9	-33.26	1825.40	-30.01	9.98	-475.73	0.90	11.08	-528.59		
COMB9	-33.26	1853.48	-30.01	20.10	-1096.48	0.90	22.34	-1218.31		
COMB9	-33.26	1881.57	-30.01	30.23	-1726.70	0.90	33.59	-1918.55		
COMB7	379.23	-137.68	178.51	172.24	-258.56	0.90	191.38	-287.28		
COMB7	379.23	-110.32	178.51	97.64	-94.99	0.90	108.49	-105.54		
COMB7	379.23	-82.95	178.51	32.53	269.66	0.90	36.15	299.62		
COMB7	-375.31	-1947.81	-155.34	-147.39	-1687.36	0.90	-163.77	-1874.85		
COMB7	-375.31	-1920.45	-155.34	-82.69	-971.19	0.90	-91.88	-1079.10		
COMB7	-375.31	-1893.08	-155.34	-27.49	-479.49	0.90	-30.54	-532.77		
COMB8	226.09	-389.21	295.76	285.81	-429.99	0.90	317.57	-477.77		
COMB8	226.09	-361.85	295.76	162.49	-0.89	0.90	180.55	-0.99		
COMB8	226.09	-334.48	295.76	55.73	523.74	0.90	61.93	581.93		
COMB8	-222.17	-1696.28	-272.60	-260.96	-1515.93	0.90	-289.96	-1684.36		
COMB8	-222.17	-1668.92	-272.60	-147.54	-1065.29	0.90	-163.94	-1183.65		

Köprü başlık kirişi kesit tesirleri (devamı)

Kesit Tesirleri (Kolon Alt Ucu)												
Kombinasyon	N (kN)	Q ₂₂ (kN)	Q ₃₃ (kN)	M ₂₂ (kNm)	M ₃₃ (kNm)	M ₂₂ /Φ (kNm)	M ₃₃ /Φ (kNm)	M _d (kNm)				
COMB8	-222.17	-1641.55	-272.60	-50.69	-733.57	0.90	-56.32	-815.08				
COMB9	3.45	-1854.23	15.64	16.61	-1679.65	0.90	18.46	-1866.28				
COMB9	3.45	-1818.66	15.64	9.92	-894.67	0.90	11.03	-994.07				
COMB9	3.45	-1783.08	15.64	3.24	-124.89	0.90	3.60	-138.77				
COMB7	30.15	-62.61	22.23	30.02	-26.18	0.90	33.36	-29.09				
COMB7	30.15	-33.80	22.23	20.01	-4.49	0.90	22.24	-4.98				
COMB7	30.15	-4.98	22.23	10.01	4.24	0.90	11.12	4.71				
COMB7	30.15	23.83	22.23	0.00	0.00	0.90	0.00	0.00				
COMB7	-30.15	-110.28	-22.23	-30.02	-90.55	0.90	-33.36	-100.61				
COMB7	-30.15	-81.46	-22.23	-20.01	-47.39	0.90	-22.24	-52.66				
COMB7	-30.15	-52.65	-22.23	-10.01	-17.21	0.90	-11.12	-19.12				
COMB7	-30.15	-23.83	-22.23	0.00	0.00	0.90	0.00	0.00				
COMB8	17.25	-74.55	39.34	53.12	-42.29	0.90	59.02	-46.99				
COMB8	17.25	-45.73	39.34	35.41	-15.23	0.90	39.35	-16.92				
COMB8	17.25	-16.92	39.34	17.71	-1.13	0.90	19.67	-1.25				
COMB8	17.25	11.90	39.34	0.00	0.00	0.90	0.00	0.00				
COMB8	-17.25	-98.35	-39.34	-53.12	-74.43	0.90	-59.02	-82.70				
COMB8	-17.25	-69.53	-39.34	-35.41	-36.65	0.90	-39.35	-40.73				
COMB8	-17.25	-40.72	-39.34	-17.71	-11.84	0.90	-19.67	-13.16				
COMB8	-17.25	-11.90	-39.34	0.00	0.00	0.90	0.00	0.00				
COMB9	0.00	-112.38	0.00	0.00	-75.87	0.90	0.00	-84.30				
COMB9	0.00	-74.92	0.00	0.00	-33.72	0.90	0.00	-37.47				
COMB9	0.00	-37.46	0.00	0.00	-8.43	0.90	0.00	-9.37				
COMB9	0.00	0.00	0.00	0.00	0.00	0.90	0.00	0.00				

Köprü başlık kirişi kesit tesirleri (devamı)

EK B.1 : Xtract Programı Malzeme Modelleri

Şekil B.1 : C25 Sargısız Betonun Gerilme-Birim Şekildeğiştirme Eğrisi

Şekil B.2 : S420 Donatı Çeliği Gerilme-Birim Şekildeğiştirme Eğrisi

Şekil B.3 : C30 Sargılı Beton Gerilme-Birim Şekildeğiştirme Eğrisi (Kolon)

EK C.1 : Uygulama çizimleri

	GDEL NOTLAR : 1 HESMANNALADA 60 mm. LAMASTELS (± 40 mm.) GDELDNE 2 HESMANNALADA 60 mm. LAMASTELS (± 40 mm.) GDELDNE 3 HESMANNALADA 60 mm. LAMASTELS (± 40 mm.) GDELDNE 4 HESMANNALADA (1027EE) C.G.AMAK FROLEDORTLUHTTR. - 5 HESMANNALANDA USENEK (1000000000000000000000000000000000000									
	REVIZYON NO:									
	AÇIKLAMA:									
	MÜTEAHHIT	•		•	ONTROL					
			HAR.MÜ	н. 1.						
	BUYÜKÇEKMECE ILÇESI U-100 KARAYOLU ÜZERI MIMAR SINAN KAVSAGI YOL ve KAVSAK INSAATI									
$\langle \rangle$	ALTYAPI KOOR TASDIK OLI	D. MD. YRD. NUR.		ALT	TYAPI KOOR. TASDIK OLUNU	MÜDÜRÜ R.				
	PAFTA ADI		ı A Kolu Köprüsü Kiris Yerlesim Planı							
· \	PROJE				_					

REVIZYON	I NO:							
AÇIKLAMA	A:							
			1					
N	IUTEAHH	1?T			KON	TROL		
			HAR.M	Эн.				
			INS.MÜ	н.				
					-			
		BUTU)KCEK	MECE IL	CES	Si		
PROJE	D-10	YOL V	JKÇEK OLU (ve KA	MECE IL JZERI MIN VSAK IN	ÇE: IAR SA	Si \$ Sin/ Ati	AN KAV	SAGI
ur o e a ALT	D-10	YOL N RD. MD. YRD.	JKÇEK OLU (/e KA	MECE IL JZERI MIN VSAK IN	CES MAR SA	Si SiN/ ATI 1 KOOR. SDIK OLUN	MÜDÜRÜ	SAGI
ALT	D-10	BUTC DO KARAY YOL V YOL NO. WRD.	JKÇEK OLU (//e KA	(MECE IL DZERI MIN VSAK IN		Si SiN/ ATI KOOR.	AN KAV	SAGI
ALT PAFTA	D-10	GARGUY		KOLU KÖ YAPI DE		Si SiN/ ATI N KOOR. SDIK OLUM SDIK OLUM	AN KAV	
ALT PAFTA PROJE	D-10	GARGUY		KOLU KÖ YAPI DE		SI SIN/ ATI KOOR. SDK OWK DSÜ LARI RZI DI	AN KAV	SAGI
PAFTA	D-10	GARGUY		MECE IL IZERI MIN VSAK IN AL KOLU KÖ YAPI DE ENLESME		Si SiN/A ATI I KOOR. SERK OLLIN SERK OLLIN SERK OLLIN SERK OLLIN		SAGI
PAFTA	D-10	GARGUY		KOLU KÖ YAPI DE		Si SiN/ATI KOOR. SISU LARI RZI D	AN KAV	

IOTLAR : I – MALZEME I. o- BETON : TEMELDE V DEM?RS?Z D- TECH?ZAT BETONARM 2. – PASPAY 3. – KAZIKLAR, 4. – DEM?R B?N IZYON NO: CLAMA:	: E PERDEDE. BETONLAR. E DONATISI. KAZIK BA?I ID?RME BOY	LI?! ?LE E	33A?LANM 60 \$ KA	St IIIa (1 ADAN KAZIKLAI DARDIR.	C 25 C 1 5 420 7.5 RIN ÖI	5 4) 5 NÜ AÇILMAY/	ACAKTIR.	
мÜТЕАН	H?T				KON	TROL		
			IAR.M)н.				
		11	NS.MÜ	н.	-			
D-1	е 00 ка Ү(BÜYÜH RAYO DL ve	KÇEK LU Ü ≥ KA	MECE IL ZERI MIN VSAK IN	ÇE: IAF SA	SI SINAN ATI	I KAV	SAGI
ALTYAPI KO TASDIK	ORD. MD. OLUNUR.	YRD.		AL	.TYAF TA	91 KOOR. N SDIK OLUNUR	IÜDÜRÜ	
			A		PR)50		
FTA ADI	ø10	O LÜK	A-1 < FOF	-B AKSL REKAZIK [ARI	için Iati det		<u></u>
E		YAPA	۹N				ÖLÇEK	TAR?H
		ÇiZE	N				PAF. NO	
		ONA	Y				FRN-MS-A-K	L-KPR-S-01

NOT 1 - 1 g-	LAR : MALZEME : RETON :							
	PREFABR?K TUM BETONA DEM?RS?Z B	k?r??ler Rme elemanla etonlar	R		C 45 C 30 C 14			
b-	TEÇH?ZAT : Betonarme	DEM?RLER?			St IIIa	(S 42	:0)	
2 -	PASPAYI : TEMELDE KOLON VE BA	A?LIK K?R???ND	E		7.5 cm. 5.0 cm			
3 -	HAREKETL? Y	ük sinifi			H30-S2	•		
REVIZYO	N NO:							
AÇIKLAN	1A:							
-								
	мÜтеанні	г			KONTRO	L		
	мÜтеанні	т	HAR.M)н.		L		
	мÜТЕАННІ	T	HAR.MÜ)H. H.		L		
	MÜTEAHHI	T	HAR.MÜ	Эн. Н.		L		
PROJE ADI	мÜтеанні D—100	BUY(D KARAY YOL v	HAR.MÜ INS.MÜ JKÇEK OLU Ü Ve KA)H. H. MECE IL ZERI MIN VSAK IN	ÇESI MAR S	inar	N KAV	SAGI
- G F W O T WO T WO	MÜTEAHHI D-100	T BÜYÜ D KARAY YOL v	HAR.MÜ INS.MÜ JKÇEK OLU Ü ve KA)h. h. MECE il IZERI MIN VSAK IN	ÇESI MAR S SAATI		N KAV	SAGI
PROJE AD	MÜTEAHHI' D-100 LTYAPI KOOR TASDIK OLI	BÜYÜ D KARAY YOL v D. MD. YRD.	HAR.MÜ INS.MÜ JKÇEK OLU Ü ve KA	IH. H. MECE IL IZERI MIN VSAK IN	CESI MAR S ISAATI		N KAV	SAGI
	MÜTEAHHI D-100	BUY(D KARAY YOL v	HAR.MÜ INS.MÜ JKÇEK OLU Ü ve KA	JH. H. MECE IL ZERI MIN VSAK IN	ÇESI MAR S ISAATI		N KAV	SAGI
PAFTA		T BÜYL D KARAY YOL v D. MD. YRD. MINUR.	HAR.MÜ INS.MÜ JKÇEK OLU Ü ve KA	IH. H. MECE IL IZERI MIN VSAK IN VSAK IN KOLU KÖ AKSI ORT	ÇESI MAR S SAATI TYAPI KC PRÜSÜ		4000RU	SAGI
a a a a a a a a a a a a a a a a a a a	D-100	T BÜYÜ D KARAY YOL v D. MD. YRD. J. MD. YRD. TEMEL v	A A A A A A A A A A A A A A	MECE IL VSAK IN AL KOLU KÖ AKSI ORT N DONAT			AUDURU RUDURU R AUDURU	SAGI
A PAFTA PROJE		T BUY(D KARAY YOL v D. MD. YRD. INNUR. TEMEL v YAF	HAR.MU INS.MU JKÇEK OLU (J ve KA ■ A 1 b t OL ve KA ■	H. H. MECE IL IZERI MIN VSAK IN VSAK IN KOLU KÖ AKSI ORT NI DONAT			4 DETA 4000r0 4000r0 4000r0	SAGI
PAFTA		T BÜY(D KARAY YOL v D. MD. YRD. MINUR. TEMEL V YAF ÇIZ	A A A A A A A A A A A A A A A A A A A	IH. H. IZERI MIN VSAK IN AKSI ORT NI DONAT			ALDETA ALDURU T. OLÇEK VAĐ PAF. NO	SAGI

NOT	LAR :									
1. a-	- BETON :	K K9P	991 FR				c	45		
	TUM BETOM DEM?RS?Z	NARME BETO	ELEMAN	AR			C 3 C	14 14		
b-	TECH?ZAT	:	9DI ED9				64	IIIa /s 4	20)	
2 -	PASPAYI :	LULM	• NLEK?				ət	111U (34	20)	
7	KOLON VE	BA?LI	(K?R???	NDE			5.0 5.0	um.) cm. _\$24		
5 -	HAREKE IL?	TUK	5INIF1				HJU	-524		
REVIZYC	ON NO:									
REVIZYC AÇIKLAN	DN NO: MA:									
REVIZYC AÇIKLAN	DN NO: MA:									
REVIZYC AÇIKLAN	DN NO: MA:									
	DN NO: MA:									
REVIZYC	DN NO: MA:									
REVIZYC AÇIKLAN	DN NO: MA: MÜTEAHH	HIT					KONT	ROL		
	N NO: /A: MÜTEAHH	łiT		HAR		H.	KON1	[ROL		
	N NO: IA: MÜTEAHH	HIT		HAR		Н.		FROL		
	IN NO: MA: MÜTEAHH	łłT		HAR	MÜ	H. 4.		IROL		
		HIT		HAR iNS.		H. 4.		TROL		
	N NO: MA: MUTEAHH D-10	HIT DOO	BU	HAR INS.I		H. H. MECE iL ZERi Mik			N KAV	SAGI
	DN NO: MA: MÜTEAHH D-10		BU`	HAR INS.I YÜKÇI YOLÜ Ve k		H. I. MECE IL ZERI MIN VSAK IN	ÇES MAR SAA	IROL Si SiNA NTI	N KAV	SAGI
	и NO:	HIT DRD.	BÜ [\] KARA YOL	/UKÇI YUKÇI YOLU ve k		H. H. ZERI MIN VSAK IN	ÇES JAR SAA	TROL Sin Sin A	N KAV	SAGI
	N NO:		BÚ [\] KARA YOL	HAR iNS.I YOLU ve k		H. I. MECE iL ZERI MIN VSAK IN		IROL Si SiNA ATI KOOR.	N KAV	SAGI
	N NO:	HIT DRD.	BÜ` KARA YOL	HAR INS.I IVKÇI YOLÜ Ve k		MECE iL ZERI MIN VSAK IN		TROL Si SiNA ATI KOOR. OLINE	N KAV	SAGI
	N NO: MA: MUTEAHH D-10 LTYAPI КОС ТАЗЭК С		BÜ [\] KARA YOL	HAR INS.I YOLU Ve k		IH. 4. MECE iL ZERi MiN VSAK IN		TROL Si SiNA ATI KOOR.	N KAV	SAGI
	N NO:		BU'\ KARA YOL	HAR INS.I YOLU YOLU		MECE iL ZERI MIN VSAK IN		TROL Sin SinA JTI KOOR. CLIME	N KAV	SAGI
	DN NO: MA: MUTEAHH D-10 LTYAPI KOC TASDIK C		BU'' KARA YOL MD. YRE BASLI	/ÜKÇ VOLÜ VOLÜ VOLÜ VE k		MECE IL 4. ZERI MIN VSAK IN AL KOLU KÖ KKOLU KÖ KKOLU KÖ		IROL SINA SINA ATI KOOR. DK OUNK SÜ AK LESIM	N KAV	SAGI
	N NO: MA: 		BU'\ KARA YOL MD. YRL BASLI	/UKÇI YOLU ve k		MECE il A. ZERI MIN VSAK IN AL KOLU KÖ KOLU KÖ KOLU KÖ		TROL SINA SINA ATI KOOR. CLINI SÜ SÜ SÜ AK LESIM		SAGI
	DN NO: MA: MUTEAHH D-10 LTYAPI KOO TASDIK C	4iT DOO	BU' KARA YOL BASLI	HAR INS.I INS.I VOLU Ve k VOLU Ve k		IH. II. MECE IL ZERI MIN VSAK IN AL KOLU KÖ KOLU KÖ KOLU KÖ KOLU KÖ		IROL SINA SINA ATI KOOR. DK OUNN SÜ AK LESIM	DETAY	SAGI
REVIZYC AÇIKLAN	N NO: MA: 		BU'\ KARA YOL BASLI	HAR INS.I YOLU YOLU Ve k NAPAN ZEN		H. 4. MECE iL ZERI MIN VSAK IN VSAK IN AL KOLU KÖ KOLU KÖ KOLU KÖ		IROL SINA SINA ATI KOOR. DIK GUMU	N KAV MUDURU JETAYI ÖLÇEK 1/20 PAF. NO	SAGI

ÖZGEÇMİŞ

Emrah AKTAŞ, 1981 yılında Aydın'da doğmuştur. İlk ve orta öğrenimini, Aydın Yedieylül İlkokulu ve Aydın Gazipaşa Ortaokulu' nda; lise öğrenimini ise Aydın Lisesi' nde tamamlamıştır. 1999 yılında Ege Üniversitesi İnşaat Mühendisliği Bölümüne girmeye hak kazanmıştır. 2005 yılında lisans öğrenimini tamamladıktan sonra, aynı yıl İ.T.Ü. Fen Bilimleri Enstitüsüne bağlı İnşaat Mühendisliği Anabilim Dalı Yapı Mühendisliği Programında yüksek lisans öğrenimine başlamıştır. Evli olan Emrah AKTAŞ, sırayla EPRO Mühendislik, PRİZMA Mühendislik ve BOĞAZİÇİ Proje Mühendislik ofislerinde, çeşitli yurtiçi ve yurtdışı projelerinde köprü mühendisi olarak çalışmıştır. Halen Doğuş İnşaat'da Marmaray Projesi kapsamında yapılacak olan köprülerin tasarımında proje mühendisi olarak görev yapmaktadır. İyi derecede İngilizce bilen yazar, SAP2000, XTRACT, AUTOCAD ve VBA gibi programları kullanmaktadır.

İletişim

e-mail: emrahaktas@hotmail.com