BETON YOLLARDA YENİ TEKNOLOJİLER
SİLINDİRLE SIĞIŞTIRILAN BETON

YÜKSEK LİSANS TEZİ
Oktay ÇETİN

Anabilim Dah: İnşaat Mühendisliği
Programı: Ulaştırma Mühendisliği

HAZİRAN 2009
BETON YOLLARDA YENİ TEKNOLOJİLER
SİLİNDİRLE SIĞIŞTIRILAN BETON

YÜKSEK LİSANS TEZİ
Oktay ÇETİN
501041413

Tezin Enstitüye Verildiği Tarih : 4 Mayıs 2009
Tezin Savunulduğu Tarih : 2 Haziran 2009

Tez Danışmanı : Doç. Dr. Murat ERGÜN (İTÜ)
Diğer Jüri Üyeleri : Doç. Dr. Osman Nuri ÇELİK (SÜ)
Yrd. Dç. Dr. Şükrü İYİNAM (İTÜ)

HAZİRAN 2009
ÖNSÖZ

Bu çalışmada; rijit üst yapıların, teknik ve ekonomik üstünülükleri üzerinde durulmuş ve geleneksel beton kaplamalarına göre yeni bir beton kaplama türü olan Silindir ile Sıkıştırılan Betonun yol inşaatlarında kullanılma olasılığı araştırılmıştır.

Tez çalışmasının tüm aşamalarında göstermiş olduğu sabırlı yaklaşım ve yardımları sebebiyle sayın Hocam Doç Dr. Murat ERGÜN’e ve her zaman yanında olarak bana güç veren eşim Nihan ÇETİN’e teşekkür ederim.

Bu konu ile ilgili çalışmaların faydalı olmasını dilerim.

Haziran 2009

Oktay Çetin

İnşaat Mühendisi
İÇİNDEKİLER

ÖZNSÖZ .. iii
İÇİNDEKİLER .. v
KISALTMALAR ... vii
ÇIZELGE LİSTEİ ... ix
ŞEKİL LİSTEİ .. xi
ÖZET ... xiii
SUMMARY .. xv
1. GİRİŞ ve ÇALIŞMANIN AMACI .. 1
2. RIJİT ÜSTYAPILARIN TARİHÇESİ .. 3
3. ÜSTYAPI TİPİ SEÇİM ESASLARI .. 7
 3.1 Üstyapı Tipi Seçiminde Teknik Ölçütler .. 7
 3.2 Üstyapı Tipi Seçiminde Ekonomik Ölçütler 11
 3.3 Rijit Üstapı - Esnek Üstapı Karşılaştırması .. 16
4. DüNYADAKİ ve ÜLKMİZDEKİ RIJİT ÜSTYAPI UYGULAMALARI...25
 4.1 Fransa ... 28
 4.2 Avusturya ... 29
 4.3 Almanya .. 30
 4.4 Hollanda ... 32
 4.5 Belçika ... 33
 4.6 Amerika Birleşik Devletleri ... 35
 4.7 Türkiye .. 45
 4.7.1 Adana'da ilk rijit üstyapı uygulamaları 35
 4.7.2 Afyonkarahisar'daki rijit üstyapı uygulamaları 36
5. RIJİT ÜSTYAPILARDA KULLANILAN MALZEMELER 41
 5.1 Çimento Bağlayıcılar .. 41
 5.1.1 Çimentoonun Özellikleri ... 42
 5.1.1.1 Çimentoonun fiziksel özellikleri .. 42
 5.1.1.2 Çimentoonun mukavemet özellikleri 43
 5.1.1.3 Çimentoonun rötre özellikleri .. 45
 5.2 Agregalar ... 47
 5.3 Çelik Donatılar .. 55
 5.4 Karma Suyu .. 56
 5.5 Katkı Maddeleri .. 57
Kısaltmalar

<table>
<thead>
<tr>
<th>Sınav</th>
<th>Açılımı</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Asphalt Concrete</td>
</tr>
<tr>
<td>ATB</td>
<td>Asphalt Treated Base</td>
</tr>
<tr>
<td>CBR</td>
<td>California Bearing Ratio</td>
</tr>
<tr>
<td>CRCP</td>
<td>Continuously Reinforced Concrete Pavements</td>
</tr>
<tr>
<td>CTB</td>
<td>Cement Treated Base</td>
</tr>
<tr>
<td>JPCP</td>
<td>Jointed Plain Concrete Pavements</td>
</tr>
<tr>
<td>JRCP</td>
<td>Jointed Reinforced Concrete Pavements</td>
</tr>
<tr>
<td>KGM</td>
<td>Karayolları Genel Müdürlüğü</td>
</tr>
<tr>
<td>PCA</td>
<td>Portland Cement Association</td>
</tr>
<tr>
<td>PCC</td>
<td>Portland Cement Concrete</td>
</tr>
<tr>
<td>SSB</td>
<td>Silindirle Sıkıştırılan Beton</td>
</tr>
</tbody>
</table>
ÇİZELGE LİSTESİ

<table>
<thead>
<tr>
<th>Çizelge</th>
<th>Açıklama</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Çizelge 3.1</td>
<td>Teknik parametreler göre üstyapı seçimi</td>
<td>11</td>
</tr>
<tr>
<td>Çizelge 3.2</td>
<td>Ekonomik parametrelere göre üstyapı seçimi</td>
<td>16</td>
</tr>
<tr>
<td>Çizelge 3.3</td>
<td>Rijit esnek üstyapı kıyaslaması</td>
<td>23</td>
</tr>
<tr>
<td>Çizelge 4.1</td>
<td>AB ülkeleri ve ülkemizde karayolu varlığına ilişkin bazı göstergeler</td>
<td>26</td>
</tr>
<tr>
<td>Çizelge 4.2</td>
<td>Avusturya karayollarının üstyapı tiplerine göre yol uzunlukları.</td>
<td>29</td>
</tr>
<tr>
<td>Çizelge 5.1</td>
<td>Çimento bileşiklerinin yaydıkları hidratasyon ısıları</td>
<td>44</td>
</tr>
<tr>
<td>Çizelge 5.2</td>
<td>Beton agregalarının özellikleri</td>
<td>49</td>
</tr>
<tr>
<td>Çizelge 5.3</td>
<td>Beton agregasında maksimum yabancı madde miktarı (TS 706)</td>
<td>53</td>
</tr>
<tr>
<td>Çizelge 5.4</td>
<td>Beton çelik çubukları ve çelik hasıraları sınıflandırma ve özellikleri</td>
<td>56</td>
</tr>
<tr>
<td>Çizelge 7.1</td>
<td>SSB ve geleneksel beton kaplaması üretiminde kullanılan malzemelerin karşılaştırılması</td>
<td>69</td>
</tr>
<tr>
<td>Çizelge 7.2</td>
<td>Agrega gradasyon sınırları</td>
<td>70</td>
</tr>
<tr>
<td>ŞEKİL LİSTESİ</td>
<td>SAYFA</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Şekil 2.1 : 1920 ile 1930’lu yıllarda rijit üst yapılarda uygulamaları</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Şekil 2.2 : Kayar kalp sistemi ile rijit üst yapılı uygulaması</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Şekil 3.1 : Esnek ve rijit yol üst yapılırlarda yük dağılımı</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Şekil 4.1 : Berlin yakınılarda 1930’lu yıllarda inşa edilen Alman otobanı rijit üst yapısı</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Şekil 4.2 : Dreve de Lorraine Karayolu, Brussels; 1925 yılında boyuna derz olmadan inşa edilmiş olan derzli rijit üst yapısı</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Şekil 4.3 : Adana Mavi Bulvar (Yapım yılı: 1986, 2x2 şerit)</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Şekil 4.4 : Adana Turgut Özal Bulvarı (Yapım yılı: 19861987, 2x3 şerit)</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Şekil 4.5 : Adana Adnan Menederes Bulvarı (Yapım yılı: 1987, 2x2 şerit)</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Şekil 4.6 : Adana Özdemir Sabancı Bulvarı (Yapım yılı: 1994, 2x2 şerit)</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Şekil 4.7 : Adana İncirlik Hava Üssü çevre güvenlik yolu beton dökümü</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Şekil 6.1 : Derzli donatsız tipteki rijit üst yapılar</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Şekil 6.2 : Derzli donatılı tipteki rijit üst yapılar</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Şekil 6.3 : Sürekli donatılı tipteki rijit üst yapılar</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Şekil 7.1 : Willow Creek Baraşi</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>Şekil 7.2 : Agrega gradasyonu karşılaştırması</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Şekil 7.3 : Kaplama maliyetlerinin karşılaştırılması</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Şekil 7.4 : Beton asfalt ve beton yollarda durma mesafeleri</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Şekil 7.5 : Beton asfalt ve beton kaplamalarda sıcaklığa bağlı olarak yakıt tüketimi</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Şekil 7.6 : Beton asfalt ve beton kaplamalarda gece görüşü</td>
<td>79</td>
<td></td>
</tr>
</tbody>
</table>
ÖZET

Bu çalışmada, geleneksel beton kaplamalara göre yeni bir beton kaplama türü olan Silindir ile Sıkıtırılan Beton kaplama yöntemi ortaya konmuştur.

Sıkıtırılmış beton; hızlı inşa edilebilir, sağlam ve devamlı bir beton olarak kullanıldığı baraj inşaatı teknolojisinden uyarlanmıştır. Yol inşaatlarında, silindirle sıkıtırılmış beton genel olarak temel tabakalarında taşma tabakası olarak kullanılmakla beraber kaplama tabakası veya kaplama tabakasının bir katmanı olarak da kullanabilir.

 Gelişmiş ülkeler dahil hemen her ülkede yolcu ve yük taşımasında karayolu taşımacılığının önde olduğu görülür. Çalışmada, dünyadaki ve ülkemizdeki rijit üstüapı uygulamaları örnekler verilerek ortaya konmuş ve beton yolların Türkiye’de özellikle ağır trafik yükü olan, zayıf zemin özellikleri gösteren, sıcak iklimli bölgelerde tercih edilen bir üstüapı tipi olabileceği öngörülmuştur.

Rijit üstüapı tipleri ve rijit üstüapılarla kullanılan malzemeler hakkında bilgi verilen çalışmada ideal bir beton için mukavemet, işlenebilirlik ve durabilitenin aynı anda sağlanması gerektiğini ortaya konmuştur.

Çalışmanın geri kalan bölümleri geleneksel beton kaplamalara göre yeni bir beton kaplama türü olup, karşılaştırılması, serilmesi ve sıkıtırılması, beton kaplamalarda kullanlana benzer teknikler kullanılarak yapılan silindirle sıkıtırılmış betonun oluşumu, tabaka inşası, mekanik özellikleri ve uygulama alanları hakkında bilgi verecektir. Silindirle sıkıtırılmış betonun geleneksel beton kaplamaya göre düşük çimento, üçücü kül ve su oranına sahiptir, ancak SSB’de ince agrega oranı yüksektir.

Ülkemizde kaçırmaz bir gereklik olan rijit üstüapıların gerek kaynak gerekse mühendislik (uygulama) açısından son derece avangörü olduğu ve yeni bir rijit üstüapı tipi olan Silindir ile Sıkıtırılan Beton kaplamasının havaalanı pist ve taksi yolları, lojistik depolar, konteyner yükleme sahaları, tank park alanları gibi mukavemet, dayanıklılık ve ekonominin çok önemli olduğu düşük hızlı ve ağır taşın trafiğini sahip yollarda uygun bir seçim olacağını sonucuna varılmıştır.
NEW TECHNOLOGIES IN RIGID PAVEMENTS ROLLER COMPACTED CONCRETE

SUMMARY

Roller Compacted Concrete pavement, which is a new pavement technology compared to conventional Rigid pavements are presented in this study.

Roller concrete has been adopted from dam-building technology, where it is used as a rapidly constructed and durable solid concrete. In road construction, roller compacted concrete is predominantly used in foundations, as a supporting layer. For surfacing or as a layer of surfacing.

There are different types of pavements for highways such as rigid pavements bonded by cement concrete, flexible pavements bonded by asphalt and composite pavements includes both type. Rigid pavements and flexible pavements which are completely different from each other are compared by various criterions. These criterions are divided basically as technical and economical measurements and it’s emphasized to take the conditions of the country into consideration while the type of pavement is being chosen.

Even in developed countries highway transportation is the first choice for both passenger transportation and freight business. Rigid pavement applications from our country and from the different sides of world are presented in this study and it has been foreseen that rigid pavements can be a selection in our country specially under heavy traffic loads and at regions with lean base and warm climates.

Rigid pavement types and the materials used for this pavement type are displayed at this study and it has been observed that for an ideal concrete three characteristics; high workability, high strength, and high durability should be provided.

The rest of the study will give information about the composition and the layer construction, as well as about the mechanical properties, execution and application areas of roller compacted concrete pavement, which is a new pavement technology compared to conventional rigid pavements. Roller compacted concrete contains lower cement, water and fly ash content but relatively small grain diameter compared to conventional concrete.

It has been observed that rigid pavements which has unavoidable necessity in our country has advantages both on material sources and on engineering applications and it has been concluded that the new rigid pavement technology Roller Compacted Concrete pavement is an adequate selection for low speed, heavy traffic applications such as airport runway and taxi roads, logistic depots, container loading areas, tank parking areas.
1. GİRİŞ ve ÇALIŞMANIN AMACI

Yol üstyapıları imal edildikleri malzemeye bağlı olarak, esnek yapılar ve rijit yapılar olmak üzere ikiye ayrılır.

Esnek yol üstyapıları, yüzey tabakaları bitümlü malzeme, temeli bitümlü ya da granüllü malzeme olabilen, alttemeli daima granüllü malzeme olan üstyapılardır.

Rijit üstyapılar ise yüzey tabakası Portland çimentosu betonu olan ve bazen granüller bir alttemel tabakası üzerine oturan kaplamalardır.

Ülkemiz karayollarında 1950 yılından bu yana uygulanmaya devam eden bitümlü kaplamaların; dünyada petrol fiyatlarındaki artışın beraberinde getirdiği bitümlü malzeme fiyat artışları ve ülke trafiğinde ağır taşınan toplam trafik içinde %50’nin üzerinde pay olması sebebiyle yola verdikleri yıpranma zararı hesaba katıldığı vakit mevcut yol ağımızı oluşturan esnek yol üstyapılarının yeni teknolojilerle desteklenmesi gereği aşıkardır.

Bu çalışmada; rijit üstyapıların, teknik ve ekonomik üstünlükleri üzerinde durulmuş ve geleneksel beton kaplamalarına göre yeni bir beton kaplama türü olan Silindir ile sıkıştırılan beton (SSB) kaplamaların yol inşaatlarında kullanıma ihtimali araştırılmıştır.
2. RİJİT ÜSTYAPILARIN TARİHÇESİ

1920 ile 1930 yılları arasında rijit ve diğer tip üstapların taşınma, yerleşirme, sıkıştırma ve tamamlama işlemleri elle yapılan iş gücüne dayanmaktaydı.

Şekil 2.1 : 1920 ile 1930’lu yıllarda rijit üstap uygulamaları. [8]
Amerika Birleşik Devletlerinde motorlu taşınmanın artışı ile rüzgâr üstaplar için belirli koşulların belirlenmesi gereği ortaya çıktı. Bundan dolayı, daha iyi yol yapım metotları ile tanıtılmış olundu ve mekanik kaplama doğmuş oldu.

Zamanla yüksek verimlilik ve uygulanabilirlik özelliğinden dolayı kayar-kalıp sistemli ile kaplama işlemi en çok kullanılan metot haline gelmiştir. Kayar-kalıp tipli kaplayıcılar kenar kalıplarına ihtiyaç duymadan hazırlanan alt-temel üzerinde hareket ederek gerekli sıkıştırma ve düzeyleme işlemini aynı anda gerçekleştirebiliyorlar.

Kayar-kalıp sistemi, Iowa Eyaleti Karayolları komisyonunda malzeme mühendisi olarak çalışan J. W. Johnson tarafından geliştirilmiştir. [8]

Günümüzdeki mekanik kaplama arayüzleri eskiye göre daha karmaşık hale gelmiş ve otomatikleştirilmişdir. Bu tip araçlar birde fazla ışırı tek bir geçişte yerleştirilebilmektedirler.
Şekil 2.2 : Kayar kalıp sistemi ile rijit üst yapılı uygulaması [8]
3. ÜSTYAPI TİPİ SEÇİM ESASLARI

3.1 Üstasyapı Tipi Seçiminde Teknik Ölçütler

Diştan gelen yüklerin taban zeminine iletilmesi

Yol üstyapısını, esnek ve rijit olmak üzere iki esas gruba ayırmak olanaklidir. Esnek ve rijit üstyapılar, trafik yükünü taban zeminine iletme ve tahrip olma şekilleri yönünden farklılık göstermektedir (Şekil 3.1).
Şekil 3.1 : Esnek ve rijit yol üstünlüklerinde yük dağılımı [3]

üstapılara nazaran daha iyi sonuç vermektedir. Çek Cumhuriyeti, Avusturya, Hollanda, ABD ve İngiltere gibi birçok ülkenin teorik çalışmalarını ve deneyimlerini de bu hususun doğruluğunu ortaya koymuş bulunmaktadır. [1]

Trafik

Trafik hacmi ve yıllık trafik artış oranı yüksek, ayrıca trafik içindeki ağır taşit miktarı yüksek olan yollar için rijit üstapabı daha uygun olmaktadır. Çelik lif takviyeli beton yollar ve sürekli betonarme yollar, normal beton yola nazaran daha pahalı olmakla birlikte, son yıllarda ABD’de ve çok az sayıda Avrupa ülkesinde (Belçika’dan) yoğun trafik yükleri taşıyan yolların kaplanması ve onarımında kullanılmaktadır. Beton yollar, endüstrileşme düzeyi ne olursa olsun, bütün bölgelerde uygulanabilir bir teknolojiye sahip bulunmaktadır. Düşük trafik artışları halinde ise, kademeli inşaat esnek üstapabı ile gelişen trafiğe cevap vermek mümkün olabilmektedir. [1]

İklim

Malzeme

Bitümlü bağlayıcıların yapısı, kaplamının yapımından birkaç yıl sonra, bağlayıcı içindeki uçucu bileşenlerin ortamdan uzaklaşması ve bağlayıcının okside olması ile bozulmaktadır. Bitümlü bağlayıcıların “yaşalanması” adı verilen bu olay, bağlayıcının sertleşmesi, daha az uzaması, agregaya adezyonun azalması şeklinde kendini göstermektedir.

Rijit üstüapılarla, sıcaklık ve nem farkı ile, trafik yüklerinden ileri gelen gerginlik altında beton plak çatlayabilmekte, bu bakımdan, çatlamayı önlemek ve çatlakların belirli yerlerde oluşmasını sağlamak amacıyla derzler yapılır, kaplamayı serbest hareket eden plaklar halinde görmek gerektirmektedir. Diğer tarafından, ani sıcaklık değişimleri beton plağın altında ve üstünde sıcaklık farkı doğurmakta, plağın kamburlaşmasına, eğilme gerilmelerinin artmasına yol açmaktadır. Nem farkı da benzer etkiler yaratmaktadır. [1]

Onarım ve Bakım Kolaylığı

Konfor ve Güvenlik

Her iki kaplama türü, ilk yapıldığında, güvenli, konforlu ve zevkli bir seyir sağlamaktadır. Beton yollar açık renkleri nedeniyle, gece koşullarında kolay görünebileceğinden, siyah renkli asfalt betonu yollarda ise, durum tam tersi olmaktadır.

Üstüapı seçimini etkileyen teknik parametreler Çizelge 3.1’de özetlenmiştir.

Çizelge 3.1 : Teknik parametreler göre üstüapı seçimi. [3]

<table>
<thead>
<tr>
<th>Teknik Parametre</th>
<th>Üstüapı Tipi (Kaplama tabakası asfalt betonu-BSK)</th>
<th>Rijit Üstüapı (Kaplama tabakası çimento betonu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taban zemini taşma değer (CBR)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>20 > CBR > 6</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>CBR < 6</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Trafik</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Büyük trafik hacmi</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Yüksek yıllık artış oranı</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Düşük yıllık artış oranı</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Yüksek ağır taşıt oranı</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Yüksek sıcaklık (ve farkı)</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Onarımından kaynaklanan gecikme</td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

Çizelgede (+ veya ++) işaret uygun durumunu, (-) işaret ise, elverişiz olma durumunu göstermektedir.

3.2 Üstüapı Tipi Seçiminde Ekonomik Ölçütler

Ekonomik karşılaştırma yapılabilmesi için, farklı zamanlarda yapılan harcamaların aynı yıla dönüştürülmesi, güncellenmesierek mümkündür. Güncellemeye için, faiz ve iskonto hesaplarından faydalanılmaktadır. Üstüapı tiplerinde göz önüne alınacak ekonomik ölçütler dört başlık altında toplanmaktadır:
1- Toplam Ekonomik Maliyet

Üst yapıt tip seçiminin en önemli ölçütı, uzun bir zaman dilimi, proje ömrü için hesaplanan toplam ekonomik maliyetidir. Bir karayoluğun gerçek ekonomik maliyeti, ilk yapım maliyeti, proje ömrü süresindeki bakım maliyeti ve bakım işlemlerini nedeniyle ortaya çıkacak kullanma açısından gecikme maliyetlerinin toplamı olmaktadır. [1]

- **İlk Yapım Maliyeti**

Bir üst yapının ilk yapım maliyeti hesaplanırken, aşağıda belirtilen bazı çalışmaların yapılması gerekmemektedir. Bunlar:

- Kullanılacak malzemelerin cins, miktar ve kaynakta maliyetlerinin tespiti,
- Malzemelerin taşma maliyeti,
- İşçilik giderleri,
- İnşaat makineleri ile ilgili masraflar ve
- Sabit masraflar

olarak sıralanabilir.

Beton yolların ilk yapım maliyeti genellikle asfalt yollardan yüksektir. Ancak, asfalt üretime kullanılan ham petrolün çok büyük bir kısmının ithal edilmesine karşılık, Türkiye bugün çimento üretime bakımdan Dünyanın ve Avrupa’nın önde gelen ülkeler arasında yer almaktadır. Ülkemizde 5 adet rafineriye karşılık, ülkenin bütün bölgelerine dağılmış ve uluslararası standartlara uygun çok sayıda çimento fabrikası ve hazır beton üretim tesisi bulunmaktadır. Bu bakımdan beton yollar asfalt yollara göre, malzeme bakımından, daha avantajlı görülmektedir.

- **Bakım-Onarım Maliyeti**

Trafik ve iklim koşulları yolun bozulmasına neden olan iki önemli etkendir. Bu etkilere karşı koymak, düzenli bakım yapmak suretiyle sağlanabilmektedir. Optimum bir bakım programında en önemli husus, üst yapının durumunun iyi bir şekilde bilinmesi olmaktadır.
Rijit üst yapraklar, 30-40 yıllık hizmet süreleri için projelendirilmektedir. Beton yollarda yüzey yenileme ve takviye işlemlerine gerek duyulmamaktadır. Projelendirme ve yapım işlemlerinin uygun şekilde gerçekleştirilmesi halinde, beton yollar tüm hizmet ömürleri boyunca az miktarda bakım gerektirmektedir. Beton kaplamaların zor ve pahali onarılmasa neden olabilecek projelendirme ve yapım hatalarına esnek üst yapılarından daha duyarlı olması nedeniyle, başlangıçtan itibaren yüksek projelendirme ve yapım standartlarına göre yapılması gerektiği vurgulanması zorunlu bir husus olmaktadır.

Genellikle 20 yıllık bir süre için projelendirilen esnek üst yapraklar, rijit üst yapraklardan oldukça farklı bir bakım ve onarım ömrüne sahiptir. Esnek üst yapılı yollarda görülen yerel bozuklukların her kiş mevsimi sonunda bakımı dışında, ilk 5 yıldan sonra, küçük onarımlar ve yüzey kaplaması gerekebilir, 10. yılda, yol yüzeyinin büyük bir olasılıkla yenilenmesi ve pürüzlendirilmesi gerekmektedir, 15. yılda, büyük bozukluklar ve yüzey bozuklukları olsa da, yollarda genellikle büyük bir olasılıkla yenilenmesi ve pürüzlendirilmesi gerekmektedir. Bu nedenle, esnek üst yapılı yol tasarrufu için restore etmek gerekmektedir. 20 yılın ardından ise, esnek üst yapılı yol tasarım ömrünün sonuna geleceğinden, yapının yeni bir üst yapısı ile takviyesi zorunlu olmaktadır. Bunların dışında, temel ve alttemel tabakaların onarım ve değiştirilmesi gibi çok önemli bakım çalısmaları gerektiği öne sürülmektedir.
Yolu Kullanımlara Maliyet

Normal durumlarda, lastik eskimesi, yağ, yakıt tüketimi gibi işletme masrafları, her iki üstyapı tipinde eșit durumda bulunmaktadır. 20-30 yıllık hizmet ömrü süresinde, yol bakım çalışmalarının yol açtığı gecikmeler esnek üstyapılar da büyük ekonomik zararlara yol açmaktadır. Beton yollarda bu sakinca yok denecek kadar azdır. [1]

2- Ülkede Mevcut Yolların Üstyapı Durumu

Mevcut bir yol üstyapısının takviyesi için beton yollar ekonomik olmamaktadır. Bu nedenle, ülkedeki yolların üstyapısının esnek olması halinde, takviyenin asfalt kaplama ile yapılması uygun olmaktadır. Üstyapının temel ve kaplama tabakalarının değiştirilmesinin gerekli olduğu yenileme çalışmalarında ancak rijit üstyapı seçeneği de dikkate alınabilmektedir.

3- Finansman Kaynakları ve Güncellemeye (İskonto) Oranı

Üstyapı tipinin seçimi, bu yapının işinin finanse edilmeye çeklinde de etkilenebilir. Bu açıdan, yalnızca yapım giderlerinin finanse edildiği durumlarda rijit üstyapılar tercih edilmektedir. Bunun tersine, artan trafiğe cevap verebilmek için art arda tabakaların yapılması gibi bir kademeli inşaat stratejisi gerektiren, sınırlı yatırım kaynakları ve yüksek iskonto oranı gibi durumlarda, esnek üstyapıları kullanmak daha avantajlı olmaktadır. Ancak, bu tip stratejilerde üstyapıyı sürekli olarak yeterli bir hizmet düzeyinde tutmak için yüksek bakım fonları gerekmektedir. [1]

4- Enerji Tüketimi

Fransa’da yol yapım, bakım ve onarım çalışmalarında harcanacak enerji miktarlarının, esnek ve rijit üstyapılar için hesaplanıp karşılaştırılması sırasında, malzemelerin elde edilmesi, taşıınması, yol için gerekli karşimların hazırlanması, yola serilmesi için tüketilen enerji miktarları dikkate alınmıştır.
Karşılaştırmada sonunda bulunan sonuçlar aşağıdaki şekilde özetlenebilir.

- Asfalt enerji veren bir madde olarak alınırsa, günlük ortalama trafiğin 3000’in üstünde olması halinde, rijit üstyapılardan yapımı esnek üstyapılardan daha az enerji gerektirmektedir. [1]

- Asfalt, enerji vermeyen bir malzeme gibi düşünülse, rijit üstyapılarda esnek üstyapıdan fazla enerji kullanıldığı görülmekte, trafiğin düşüğünde bu fark artmaktadır. [1]

- Yüksek trafiğin 25 yıllık bir periyot için, beton yolların bakımında esnek yollardan daha az enerji tüketildiği ortaya çıkmaktadır, düşük trafiğin ise, iki üstyapı tipinin bakım masrafları birbirine yaklaştığı görülmektedir. [1]

- Günlük ortalama trafiğin 750’nin üstünde olması halinde ilk yapım ile 25 yıllık bakım için tüketilen enerji miktarı, beton yollarda esnek tipten daha az bulunmaktadır. [1]

Ülkemiz koşullarına göre yapılan hesaplamalarda da benzer sonuçlar bulunmuştur.

Üstasyı seçiminin etkileyen ekonomik parametreler Çizelge 3.2’de özetlenmiştir.

Teknik ölçütlerde göre seçim yapılması durumunda, taşma gücü zayıf taban zemin, büyük hacimli trafiğin, yüksek yıllık trafiğin artış oranı, yüksek ağır taşım miktarı, yüksek sıcaklık durumlarında rijit üstyapılar, büyük trafiğin, düşük yıllık trafiğin artış oranı durumlarında esnek üstyapılar uygun olmaktadır.

Ekonomik ölçütlerde göre üstasyı seçimi yapıldığını takdirde, ömür boyu toplam maliyet, çimento, cüruf, uçucu külün bol ve kolay bulunması ve enerji azlığı durumlarında rijit üstyapılar, ülkedeki ilk yapım maliyeti ve iskonto oranının yüksek olması halinde ve takviye çalışmalarında esnek üstyapılar uygun olmaktadır.
Çizelge 3.2 : Ekonomik parametrelerle göre üstapı seçimi. [3]

<table>
<thead>
<tr>
<th>Üstapı Tipi</th>
<th>Esnek Üstapı (Kaplama tabakası asfalt betonu-BSK)</th>
<th>Rijit Üstapı (Kaplama tabakası çimento betonu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>İlk yapım maliyeti</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Ömür boyu toplam maliyet (ilk yapım+bakım+gecikmeler)</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Çimento, cüruf, uçucu külün bol ve kolay bulunması</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Mevcut üstapıların esnek olması</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Yüksek iskonto oranı</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Enerji azlığı</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Çizelgede (+) işareti uygun olma durumunu, (-) işareti de elverişiz olma durumunu göstermektedir.

Ancak, üstapı tipi seçiminde, teknik ve ekonomik ölçütlerin birlikte dikkate alınması uygundur. Ölçütlerin tek olarak değerlendirilmesi, en uygun çözüm için yeterli olmamaktadır.

3.3 Rijit Üstapı - Esnek Üstapı Karşılaştırması

Gerek karayolu yapımında, gerekse üstapı yenileme çalışmalarında, üstapı seçimi büyük önem taşımaktadır. Çünkü karayollarında üstapı seçimi, değişik ölçütlerle dayandırılması gereken kapsamlı bir konudur. Bu seçim yapılırken üstapı tiplerini teknik ve ekonomik yönden karşılaştırarak ve ülke koşullarını da dikkate almak gerekir. Günümüzde motorlu taşıt trafiğindeki sürekli artış ve kaynak sağlanmasındaki güçlükler karşısında çaba, yeni karayolu yapmaktan çok mevcut karayolu üstapılarının, gelecekte yoğun ve ağır trafiğe yanıt verebilecek şekilde yenilenmesi üzerinde yoğunlaşmaktadır.

Karayollarında, kaplama tabakası çimento betonundan yapılan rijit üstapı, yarı-rijit üstapı (karışık üstapı) ve kaplama tabakası asfalt betonu olan esnek üstapı olmak üzere değişik tıpte üstapılar kullanılmaktadır. Konuda, ara tipler ihmal edilerek, birbirinden tamamen farklı yapıda olan esnek ve rijit üstapılar, teknik, ekonomik, çevresel ve estetik yönleri dikkate alınarak şöyle karşılaştırılabilir:

3- Rijit üstyapılar demir donatı kabul eden tek üstyapı tipidir. Gerektiği zamanlarda, derzlerde, sürekli donatılı tipteki rijit üstyapılabildir, çatlamalara karşı plak üst yüzeyine yakın yerlerde çelik donatı kullanılmaktadır. Maliyeti artıran bir husus olmakla beraber çelik donatının kullanlabileceğini olması, rijit üstyapı ömrünü daha da arttıran bir avantaj sayılır.

4- Beton asfalt kaplamalı üstyapılabildir, her türlü onarım, kolay bir şekilde hatta trafiğ altında dahari yapılabilimektedir. Nitekim beton asfalt kaplama çok kolay bir şekilde yama tutabilen bir malzemedir. Rijit üstyapılabildir ise bu onarım çok daha zahmetli olup plaga kirılması ve yerine yeni plaga dökülmesi gerekir. Betonun demir donatının bulunması ve bunun da kesilip yeniden yapım zorunluluğu, ayrıca yeni dökülen betonun da belirli bir süre bekletilmesi gereği, bunun yaratacağı gecikme ve yolun o kısmının yine de zayıf kalabileceği olması gibi hususlar...
rijit üst yapının esnek üst yapılara karşı zayıf yönleridir. Fakat rijit üst yapılı, çok daha dayanıklı bir kaplama türü olup, çok az bakım ve onarım gerektirir bu nedenle uzun vadede dikkate alındığında, onarımı çabuk ve kolay olmasına karşılık çok sık periyotlarda onarım gerektirecek olması, esnek üst anların rijit üst yapılara karşı zayıf yönünü ortaya çıkarmaktadır.

5- Gerek esnek üst anılarda, gerekse rijit üst anılarda, yüzeydeki kayma sürünme katsayları hemen hemen aynıdır ve 0.60 ile 0.90 arasında değişmektedir. Fakat her iki üst anının da ıslak koşullar altında olduğu durumlarda, rijit üst yapısı yüzeyindeki kayma sürünme katsayısındaki azalma, esnek üst anına kıyaslalı çok daha azdır. Bu da rijit üst anlarının, güvenlik yönünden çok önemli bir üstünlüğünü ortaya çıkarmaktadır. [1]

8- Petrol üreten veya petrol gereksinmelerinde herhangi bir sorunu bulunmayan ülkelerde esnek üstapılar ekonomik olmakta, buna karşılık çimento üretimi yönünden ileri düzeyde bulunan ülkelerde, rijit üstapıların daha rant abl olduğu görülmektedir.

12- Her iki kaplama türü de iyi bir şekilde uygulanma koşulu ile hemen hemen aynı konfora sahiptir. Fakat açık rengi sebebiyle rijit üst yapılılar, gece karanlığında da görülebilmektedir, esnek üst yapılılar gece karanlığında, herhangi bir çizgileme veya reflektörülü sınır taşları yapılmamasına rağmen, her iki ışığı altında da yeterli görülemektedir. Bu ışığı altında da yeterli görülen esnek üst yapılılar, her iki bildirildiği gibi kaplamada artan ışığa ve konfor eksikliğine de neden olan bu derzler, belirli üst yapılarda yapılmaz ve belirli kaplama olması nedeniyle kendi bünyesi içinde genleşip büzülebilen asfalt yollarda bu durum, belirli bir avantaj sunar.

15- Esnek kaplamaların yapım ve uygulama aşamalarında, ısıtma ve kurutma işlemleri bulunması nedeniyle çevre kirliliğinin ortaya çıktığı görülmuştur. Rijit üstapı yapınının ve uygulamasının hiçbir aşamasında böyle bir soruna karşılaşılmadığı belirtilmiştir.

16- Beton asfalt üretimi, daha pahalı santraller (plentler) gerektirmektedir. Ayrıca esnek üstaplar rijit üstaplara kıyasla daha fazla enerji harcanması sonunda yapılır. Enerji sorunun bulunduğu yerlerde rijit üstapı uygulaması daha uygun ve ekonomik sayılmaktadır.

17- Petrol damıtma rafinerilerinin sayısı az olduğu ülkelerde, esnek üstapların bağlıcısı olan asfaltın, çeşitli plent veya santrallere taşınması ve nakledilmesi, yüksek bir ulaşım maliyetini de beraberinde getirmektedir. Ayrıca sorun çimento üreten fabrika sayısının azlığı durumunda da yaşanır. Çimento fabrika sayısının yüksek ve dağılımının da yaygın olduğu ülkelerde taşıma ve ulaşım maliyeti büyük ölçüde düşmektedir.

19- Malzeme olarak esnek kaplamalar, sıcaklıkla çok yakın ilişki içindekirdir. Plentte veya santralde yapımının belirli bir ısı değerininde üzerinde gerçekleşmesi zorunluluğu, sonra da yüksek ısıda korunup döküm yerine iletilme, dökülme ve ısı kaybı olmadan da sıkıştırma zorunluluğu, aynı
zamanda iyi ve uygun iklim koşullarına gereksinme gösterir. Nitelikte, bir esnek kaplamının yapımı ve uygulanması için hem kuru hem de sıcak bir hava gerekmektedir. Bu koşullar, uygulanması iklime bağlı olan esnek kaplamaların yapım zamanını ve süresini büyük ölçüde kısıtlar. Rijit üstyapılar için böyle bir satınca söz konusu değildir. Aşırı yağışın ve aşırı derecede bir soğuk havanın (5°C'nin altında) olmadığı her zamanda rijit üstkaplamayı uygulamak mümkün ol@Autowired. Bu nedenle rijit üstkapıların, yıl içindeki uygulama süresi toplamı, esnek üstkapılarının kıyaslata çok fazladır.

Yukarıda 20 madde içinde belirtilmiş olan rijit-esnek üstkapı kıyaslaması, Çizelge 3.3’te özetlenmiştir. Bu çizelgeden de anlaşılabileceğini gibi her iki üstkapı türü için de avantajlı ve uygun olan durumların yanı sıra uygun olmayan ve sakıncalı olan durumlar da sıralanmıştır. Tamamen artılarından oluşan tek bir kaplama türünün uygulanması, bu koşullarda olanağdır, çünkü birçok parametre birbiri ile çelişmektedir bu nedenle üstkap seçiminde, o yoldan beklenen performans ve ülkenin çeşitli koşulları (ekonomi, iklim, trafik, teknik olanaklar, kalite tercihi vs.) dikkate alınmak ve optimum sonuçu ulaşmak zorunluluğu doılmaktadır.
Çizelge 3.3: Rijit-Esnek üstüapı kıyaslaması. [2]

<table>
<thead>
<tr>
<th>Parametreler</th>
<th>Esnek Üstüapı</th>
<th>Rijit Üstüapı</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Trafiğe çabuk açılabilme</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>- Demir donatı kullanabilme</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>- Onarım sıklığı</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>- Dayanıklılık</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>- Islak halde kayma sürünme katsayısı</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>- Zayıf taban zemininin bulunması</td>
<td>--</td>
<td>+</td>
</tr>
<tr>
<td>- Yapım sırasında ısı kaybının yol açacağı sorunlar</td>
<td>--</td>
<td>+</td>
</tr>
<tr>
<td>- Kaliteli agrega gereksinimi</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>- Derz yapma zorunluluğu</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>- Seyir konforu</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>- Gece seyrde görüş olanakları</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>- Yaşlanma ve kimyasal maddelerden etkilenme</td>
<td>--</td>
<td>+</td>
</tr>
<tr>
<td>- Yapım sırasında çevre kirliliğini artırıcı etki</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>- Enerji azlığından etkilenme</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>- Taban zeminindeki işlaklık</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>- İklim koşullarına bağlılık</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>- Trafikte yüksek yıllık artış oranı</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>- Trafikte düşük yıllık artış oranı</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>- Trafikte yüksek ağır taşıt oranı</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>- Üstüapı kaplama takviyesi</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>- Üstüapı temel+kaplama değişimi</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>- Yüksek iskonto oranı ve sınırlı yatırım kaynakları</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

++: çok avantajlı, çok uygun; +: avantajlı, uygun; -: sakınca yaratır, uygun değil; --: çok sakınca, hiç uygun değil
4. Dünyadaki ve Ülkemizdekİ RİJİT ÜSTYAPI UYGULAMALARI

Yolcu ulaşımında başlangıç ve varış noktaları, yük taşmacılığında ise üretim ve tüketim noktaları arasında aktarmasız bir ulaşım olanağı vermesi, taşıma kapasitesi ve güzergah seçiminde esneklik sağlaması, parça yüklerin daha kolay ve belli mesafelere kadar daha hızlı taşınabilmesi karayolu taşmacılığının başlıca özellikleriidir. Bu özelliklerin yanında, genelde aktarmalı taşımanın söz konusu olduğu demiryolu, denizyolu ve hava taşımlarında tamamlayıcı bir tür olması sebebi ile tüm dünyada karayolu taşımacılığı diğer taşıma türlerine göre daha hızlı bir gelişme göstermiştir.

Taşıma istatistikleri incelendiğinde, gelişmiş ülkeler dahil hemen her ülkede yolcu ve yük taşımında karayolu taşmacılığının önede olduğu görülür. Nitekim AB ülkelere 2000 yılı itibariyle yolcu taşımında karayolunun payı %79,0, ABD’de ise %89,1’dir. Oran Türkiye’de %95,2’dir. Yük taşmacılığında ise kısa mesafeli kıyı deniz taşması da nazara alınırsa karayolunun payı AB ülkelerinde %45,0, ABD’de %69,4, Türkiye’de ise %76,1’dir. Boru hattı taşıma nazara alınmazsa oran Türkiye’de %92,2’ye varmaktadır. [10]

Karayolu taşımasının belirtilen avantajlarına karşılık petrole dayalı enerjiyi kullanmasından kaynaklanan hava kirliliğine sebep olması, ayrıca hemen her ülkede yaşanan trafiğin kazalarını getirdiği büyük maddi ve manevi kayıplar, kentlerde yaşanan trafiğin tıkanıklıkları, karayolu ulaşımının başta gelen olumsuzluklarıdır. Bugün dünyadaki toplam CO₂ emisyonunun %25’i, CO emisyonunun %80’i, NOₓ bileşenlerinin %50’si karayolu ulaşımından kaynaklanmaktadır. Trafik kazalarında tüm dünyada ölenlerin sayısı yılda 600.000 dolayında olup bir kısmı sakatlıkla sonuçlanan 15 milyon dolayında yaralanma meydana gelen olumsuzluklaridir. OECD ülkelerinde ölüm, yaralanma ve mal hasarı olarak trafik kazalarının maliyeti bu ülkelerin gayri safi milli hasılatlarının %1 ile %2’si arasında değişmektedir. Diğer yandan karayolu taşımasında petrole dayalı enerji kullanımı yanında yolcu-km ve ton-km başına tüketilen enerji diğer türlerle göre önemli miktarda fazladır.

Gerçekte ülkemizdeki karayolu altyapısı; km²’ye düşen yol uzunluğu, ayrıca standartları bakımından gelişmiş ülkelerere ve girmek istediğimiz AB ülkelerine göre oldukça zayıftır (Çizelge 4.1). Ancak, demiryolu ve denizyolu taşımının altyapısı ve işletmecilik olarak karayolundaki gelişmeye göre çok geride kalması, bu durum, yani taşma türleri arasındaki dengesizliği yaratmış, hem yolcu hem de yük taşımında karayolu çok belirgin şekilde öne çıkmıştır.

Çizelge 4.1: AB ülkeleri ve ülkemizde karayolu varlığına ilişkin bazı göstergeler.[10]

<table>
<thead>
<tr>
<th>Ülke</th>
<th>1000 km²’ye düşen karayolu uzunluğu (km)</th>
<th>10000 nüfusa düşen karayolu uzunluğu (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELÇİKA</td>
<td>4.702</td>
<td>141,1</td>
</tr>
<tr>
<td>DANİMARKA</td>
<td>1.654</td>
<td>136,6</td>
</tr>
<tr>
<td>ALMANYA</td>
<td>1.799</td>
<td>79,0</td>
</tr>
<tr>
<td>İSPANYA</td>
<td>676</td>
<td>87,0</td>
</tr>
<tr>
<td>FRANSA</td>
<td>1.763</td>
<td>166,2</td>
</tr>
<tr>
<td>YUNANİSTAN</td>
<td>715</td>
<td>77,6</td>
</tr>
<tr>
<td>İTALYA</td>
<td>1.018</td>
<td>53,5</td>
</tr>
<tr>
<td>İRLANDA</td>
<td>1.313</td>
<td>257,8</td>
</tr>
<tr>
<td>LÜKSEMBURG</td>
<td>1.962</td>
<td>124,4</td>
</tr>
<tr>
<td>HOLLANDA</td>
<td>2.622</td>
<td>70,6</td>
</tr>
<tr>
<td>PORTEKİZ</td>
<td>718</td>
<td>66,6</td>
</tr>
<tr>
<td>İNGİLTERE</td>
<td>1.504</td>
<td>62,9</td>
</tr>
<tr>
<td>AVUSTURYA</td>
<td>1.267</td>
<td>132,2</td>
</tr>
<tr>
<td>FİNLANDİYA</td>
<td>230</td>
<td>151,8</td>
</tr>
<tr>
<td>İSVEÇ</td>
<td>302</td>
<td>153,7</td>
</tr>
<tr>
<td>TÜRKİYE</td>
<td>489</td>
<td>60,9</td>
</tr>
<tr>
<td>AB ORTALAMASI</td>
<td>1.476</td>
<td>117,4</td>
</tr>
</tbody>
</table>

Türkiye Cumhuriyeti, Osmanlı İmparatorluğu’ndan 14.000 km’si bozuk ve bakıma muhtaç durumda olan 18.365 km’lik karayolu ağı devrilmüşdür. Cumhuriyetin ilk yıllarında demiryolu yapımına ağrılık verilmesi ile 1950’li yıllara kadar karayolu ağında kayda değer bir iyileştirme olmamıştır. Bu dönemde çıkarılan Yol Kanunu ile Nafia Vekaleti bünyesindeki Şose ve Köprüler Reisliği’nin çalışmaları olmuşsa da dünya ekonomisindeki durgunluk, ayrıca 2. Dünya Savaşı’nın getirdiği sıkıntıl
sonucu yeterli malı kaynak ayrılamamış olması, bu dönemde karayolu yapımında gelişmeyi önlemiştir.

Temmuz 2003’de yürürlüğe giren Karayolu Taşıma Kanunu’ndan, taşımacılık sektörünü disipline etme ve kurumsallaşmayı hızlandırma yönlerinde olumlu beklenmiştir. Bu arada, uluslararası taşımacılıkta AB ile uyum çerçevesinde yapılması gerekenler olup bu yönde çalışmalar başlatılmış bulunmaktadır.

Aşağıda rijit üstapı uygulamaları açısından gelen ülkelerde ve Türkiye’de rijit üstapılarla ilişkin tasarım, malzeme ve ülkeden ülkeye değişim gösteren inşaat metodları gözlemelen bazı proje bölgeleri de göz önüne serilmiştir.

4.1 Fransa

Rijit üstapının inşaatı, Fransa’dağı ağır trafiğe sahip bazı otolar ve havaalanlarında, 40 yıl önce başlamış ve bugün hala sürmektedir. Fransızlar, uzun yıllardır, rijit üstapların tasarımını inşa etmeleri ve rehabilitasyonunu geliştirmek için çok yoğun çalışmalar yapmaktadır. Yük transfer yöntemleri, sürekli donatılı rijit üstaplar için dikdörtgen donatı, alt drenaj, düşük gürültülü-yüksek sürünme dirençli yüzey, şerit genişletme ve trapezoidal enesit tasarımını gibi birçok yenilikçi fikirler bu yıllar boyunca geliştirilmiştir. Tasarım ve inşaat pratiğine gerçek etkisi olan araştırma programlarıyla elde ettikleri başarının üzerinde; kamu ve özel kuruluşların bir araya getirilerek yapılan, rijit üstapılarındaki olası problemlerin çözümüne yönelik çalışmaların büyük etkisi vardır.

Fransızlar, rijit üstapı tekniklerine ilişkin bakım ve rekabet edebilirlik konularının başarısının, endüstri ile işletme otoriteleri arasındaki ortak çalışmaların sonucunda ortaya çıkan sürekli yeniliklere göre değişim göstereceği belirtmişlerdir. Fransa’nın rijit üstapı teknolojilerini geliştirmek adına yoğun çaba gösterdiği gözlemlemiştir.

Rijit üstapı seçim, 25-30 yıllık bir periyot için yapılan hizmet ömrü boyunca toplam maliyet analizinin bir sonucudur. Rijit üstapı, yerel agregaların
kullanılabilirdiği beton ile inşa edilebildiği zaman; çoğunlukla asfalt betonundan daha ucuzdur.

Standart tasarım kataloglarında verilen üstapılar eşdeğerdir ve aynı hizmet ömrünü sunarlar. Bununla birlikte, yapıda beklenenden önce oluşan çatlamaları önlemek için gerekli bakım miktarı ve memnun edici yüzey özelliklerinin sağlanabilmesi farklılık göstermektedir. Rijit üstapıların bir avantajı da daha az bakıma ihtiyaç duyularıdır. Bu nedenle üstapıların karşılaştırmasına ait genel analizlerde, bakım maliyetlerinin de göz öne alınması gereklidir.

Fransız ücretli otoyollarının mühendislik felsefesi, kullanıcısı sağlayacakleri yüksek kalitedeki hizmet nedeniyle çok etkileyicidir. Mükemmel kalitedeki üstapılar gözle çarpmaktadır.

Nantes LCPC araştırma laboratuarı, iki sebepten dolayı rijit üstapıdan uzun bir ömür (30 yılın fazlası) beklenebileceği belirtilmiştir: trafiğe karşı mekanik direnç (tekerlek izi oluşumu yoktur ve yorulma çatıkları kontrol altındadır) ve çevresel etkenlere direnç gösterebilme yetenekleri vardır.

4.2 Avusturya

Avusturya 1940 yılından beri rijit üstapılar inşa etmektedir ve inşa edilen rijit üstapı tipleri derzli-donatıız ve derzli-donatılı tıpteki rijit üstapılarlardır. Avusturya’dan bugünkü çoğunluğu 30 yaşını ve bazıları 50 yaşını geçmiş birçok üstapı mevcuttur. Çizelge 4.2 Avusturya’nın ana karayollarında rijit üstapıların boyutlarını göstermektedir. [4]

<table>
<thead>
<tr>
<th>Üstapı Tipi</th>
<th>Km</th>
<th>Yüzde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asfalt Betonu</td>
<td>834</td>
<td>54</td>
</tr>
<tr>
<td>Rijit</td>
<td>698</td>
<td>46</td>
</tr>
<tr>
<td>Toplam</td>
<td>1532</td>
<td>100</td>
</tr>
</tbody>
</table>
Bununla birlikte; daha eski üst yapılarda, civili tekerlek lastiklerinin 2-3 mm’lik tekerlek izlerine sebep olmaları nedeniyle, Avusturya çeşitli rehabilitasyonların uygulanmasını gerektiren birçok kesime sahiptir. Çivili tekerlek lastiklerinin rijit üst yapılara verdiği zararın oranlanması amacıyla, birçok eski üstapının kamyon şeritlerinin üzerine ince bir polimerize asfalt tabaka konur. Ancak bu tabakanın ömrü sadece 4-6 yıldır.

Avusturya’da bazı karayollarında gürültü seviyesinin azaltılması çok büyük önem taşımaktadır. Ortaya çıkarılmış agregaat yüzey ile birlikte iki tabakalı (üst tabaka küçük ve sağlam agregaat içermektedir) plakların kullanımı ile gürültü değerinde kayda değer bir azalma ve yüksek sürünme elde edilebilmektedir.

Avusturya Çimento Araştırma Enstitüsünden, Dr. Sammer bir şeyin yürürlüğe konulması için gerekten çabanın, önceki araştırma çabalarından daha büyük olması gerektiğini ifade etmiştir. Araştırmacıların prosedürler geliştirilinceye kadar saha yürütülerek etmelerinin vararlı olacağına inanmaktadır.

4.3 Almanya

Almanya 1920’li yıllardan beri, daha çok otoyol sistemlerinde ve havaalanlarında olmak üzere, birçok rijit üstap inşa etmiştir. Berlin’de otobüs duraklarının rijit üstaplar kullanılarak inşa edildiği gözlemlemiştir. Oldukça bozuk ve büyük rehabilitasyon altında olmalarına rağmen, orijinal rijit üstaplar bugün ağır trafiği
taşıyabilmektedirler. 50 yıl boyunca hiç bakım yapılmaması bu rijit üstapıları kötü koşullarda bırakmıştır ve Almanya; ekonomik gelişimlerinde hayati önem taşıdığını inandığı karayollarını, ülkenin her yerine bağlantı sağlamak için, yeniden inşa etme adına büyük gayret göstermektedir. [4]

Şekil 4.1’de Münih’ten Berlin’e yaklaşıırken, otoyolun bir kesimindeki 50 yaşını geçmiş olan bir derzli rijit üstap görülmektedir.

Rijit üstapıların malzeme, inşaat ve tasarımının geliştirilmesi için “Ulusal Karayolları Araştırma Enstitüsü (Federal Highway Research Institute-BAST)” ve “Münih Teknik Üniversitesi” tarafından kapsamlı bir araştırma ve geliştirme
programı Almanya’da sürdürülmektedir. Birçok mükemmel teknik makale, bu araştırmalarдан elde edilebilmektedir.

Almanya’da, rijit üstü yapılı havaalanlarında da kullanılmaktadır. Örneğin; 1992 yılının mayıs ayında hizmete açılan 2 milyon m²’den daha fazla alana sahip olan Münih II Uluslararası Havaalanı’nın pistleri, taksi yolları ve apronları 36 cm’lik kayma donatılı derzli-donatısız tipteki rijit üstü yapılarla inşa edilmiştir.

Bu olanaküstü iyi performansı ortaya çıkaran etkenler şunlardır:

- Değişken şekilde aralıklarlandırlan kayma donatılı derzler
- Erozyonun, ara yüzdeki pompajın ve bükülmenin azaltılması için; çimento ile işlenmiş veya zayıf beton temel ile beton plak arasında sağlanan aderans.
- Erozyona karşı dirençli yüksek kalitedeki bir temel.
- Özellikle yüzeyde olmak üzere; beton içinde yer alan iyi kalitedeki agregalar
- Taban zemini üzerinde yer alan kalın granüller tabaka
- Yapım sırasında özen gösterilen hava boşluk kontrolünden dolayı, betonun donma-cözülme etkilerine karşı olan direnci
- İki-kanallı yüzey ve yüzey altı drenaj sistemi.

4.4 Hollanda

Gözlemленen en eski rijit yapı 1950 yılında inşa edilmiştir. Hollanda’da, liman şehirlerinden Avrupa’nın geri kalannı kargo taşıyan kamyonların kullandıği önemli
karayollarının bulunması nedeniyle, bu rıjit üstapların çoğu ağır trafıge hizmet etmektedir.

Bu üstapların tamamina yakını derzli-donatılsız tıpteki rıjit üstaplar kullanılarak inşa edilmiştir. Son zamanlarda birkaç kesimde otoyollarda sürekli-donatılı tıpteki rıjit üstapların da kullanılmaktadır. Bunun yanında; Amsterdam yakınılarındaki Schipol Havaalanındaki bazı kesimlerde öngerilmeli rıjit üstaplar da mevcuttur.

 Şu anda Hollanda’da, rıjit üstaplarla ilgili olarak üzerinde durulan başlıca konu; tekerlek/üstap gürültü karakteristikleridir. Düşük gürültülü bir yüzeye birlikte aynı zamanda yerelci sürünme ve hizmet ömrüne sahip yüzeylerin elde edilebilmesi için, büyük saha ve laboratuar çalışmaları sürdürülmektedir.

4.5 Belçika

Belçika uzun yılların rıjit üstaplar inşa etmektedir. Şekil 4.17’de görülebileceği gibi, 1925 yılında Brussels’in güneyinde inşa edilen derzli rıjit üstapı hala iyi durumdadır. Otoyolların yaklaşık olarak %40’ı rıjit üstaplar kullanılarak inşa

Şekil 4.2 : Dreve-de-Lorraine Karayolu, Brussels; 1925 yılında boyuna derz olmadan inşa edilmiş olan derzli rijit üstyapı. [4]

Belçika, 1980’li yıllarda geliştirdiği ve kapsamlı olarak kullandığı, yuvarlanma gürültüsü ve vibrasyon düzeyini azaltıp, bununla birlikte yüksek sürtünmeli bir yüzeye sağlanan; ortaya çıkarılmış agrega tekniğiyle çok iyi bilinmektedir.

Belçika’daki rijit üstyapıların, özellikle sürekli-donatılı tıpteki rijit üstyapıların, performansı sadece olağanüstü iyi olarak tanımlanabilir. Önceki tasarımla elde edilen mükemmel performansa etki eden başlıkta unsurlar:

- Sürekli-donatılı tıpteki rijit plığın üstünden 6 cm derinliğe yerleştirilen % 0.85 oranındaki donatı,
- Aşınmaya karşı direnç amacıyla kullanılan yüksek çimento içeriği,
• Erozyonun azaltılması için, sürekli-donatılı tipteki rjjit plakla zayıf beton tabaka arasında aderans sağlayan 6 cm’lik asfalt betonu ara tabaka,
• Taban zemininin üzerindeki kalın granüler tabaka,
• Yüksek dayanımlı beton ve bunun donma-çözülmeye karşı yüksek direnci.

Dar çatlak aralıkları ve erozyonun olmasını nedeniyle düşük bakım ihtiyaç duyan, 30 yıl veya daha uzun süreli bir hizmet ömrü beklenmektedir.

Son zamanlarda, donatı içeriğinin % 0.67’ye indirilmesini, donatının 9 cm derinliğe yerleştirilmesini ve asfalt betonu ara tabakanın elimine edilmesini içeren tasarımlar ortaya koyulmuştur. Bu üstasyapı tasarımında daha önceki sürekli-donatılı tipteki rjjit üstasyapı tasarımını gibi iyi bir performans göstermemiş; çatlaklar daha geniş bir çatlaması ve plak ile zayıf beton tabaka arasında erozyon oluşumu gözlemlenmiştir. Şu anda asfalt betonu ara tabakanın yeniden kullanılmasına bağlı rapor edilmiştir.

4.6 Amerika Birleşik Devletleri

Rijit üstasyapılar ABD’deki yüksek sınıfaki millerce yolun yalnızca %15’ini (219.487 km) oluşturur. Ancak, rjjit üstasyapılar yol ağının en yüksek hacimli, yüksek hız ve ağır taşınma alanının taşınıp taşımdlığı kısmını olan eyalet içi sistem nedeni ile ulusal yol şebekesinde, %50’nin üzerinde bir değerle, hayati bir rol oynar. Rijit üstasyapılar ayrıca kent kesimini ve havaalanlarında çokça kullanılır.

4.7 Türkiye

KGM 1950 yılında kurulmuştur. Kuruluşundan günümüze dek yeni karayolları ve otoyollar inşa ederek, mevcut yolların bakım ve onarım işlerini kusursuz bir şekilde yaparak hizmet vermektedir. Ancak, nedense 63.000 km. şehirlerarası yolun tamamı

4.7.1 Adana’da ilk rijit üstü yapı uygulamaları

Şekil 4.3 : Adana-Mavi Bulvar (Yapım yılı: 1986, 2x2 şerit) [7]
Şekil 4.4 : Adana-Turgut Özal Bulvarı (Yapım yılı: 1986-1987, 2x3 şerit) [7]

Şekil 4.5 : Adana-Adnan Menderes Bulvarı (Yapım yılı: 1987, 2x2 şerit) [7]

Şekil 4.6 : Adana- Özdemir Sabancı Bulvarı (Yapım yılı: 1994, 2x2 şerit) [7]
Şekil 4.7 : Adana- İncirlik Hava Üssü çevre güvenlik yolu beton dökümü. [7]

4.7.2 Afyonkarahisar’da rijit üstyapı uygulamaları

Protokol’e göre TÇMB deneme amacı olarak iki ayrı güzergahta beton yol yapımı üstlenmiştir. İstanbul’da beton yol Hasdal Kavşaği- Kemerburgaz yolunun 3.5 km lik bir bölümünde, Afyon’da beton yolu ise Afyon-Emirdağ yolunun 2 km’lik bir bölümünde yapılmıştır. Her iki yolda temel tabakalarının yapımı KGM, beton plaklarının yapımı da TÇMB tarafından gerçekleştirilmiştir.

TÇMB rijit üstyapı projelendirme metodu ile rijit kaplama yapımı teknik şartnamesinin hazırlanmasında KGM’ne yardımcı olacak, beton yol konusunda KGM teknik personeline kurs / seminer verilmesini ve yurt dışında inceleme yaptırmışını sağlayacaktır. Afyon’da yolda bakım ve onarımı yapımından sonra 5 yıl süre ile TÇMB’ye ait olacaktır.

Türkiye’deki ilk beton karayolu TÇMB tarafından finanse edilmiş ve bir Türk müteahhit firması tarafından başarılı ile inşa edilmişdir. Beton yolun ilk maliyetinin asfalt yola yakın olması beton yolların yapımının Türkiye için de uygun olduğunu göstermiştir. KGM bölünümlü yolun diğer kısmının asfalt betonu yapacağını
bildirmiştir. Bu sayede çimento betonu ve asfalt betonu yolların aynı şartlar altında karşılaştırılması mümkün olacaktır.

1950 yılındaki kuruluşundan günümüze dek KGM sadece asfalt yollar yapmıştır. KGM personeli ve karayolu müteahhitleri asfalta alıştıkları için, beton yol yapımı gibi yeni bir teknolojiye karşı biraz da çekenlik ve kararsızlık oluşmuş bulunmaktadır. Bu psikolojik etkinin yanı sıra beton yolu asfalttan daha pahalı olduğu yönündeki yanlış düşünce kadar ülkemizde beton yolların yapımını engellemiştir. Afyon’daki beton yol yapıldıktan ve denendikten sonra beton yolların Türkiye’de de özellikle ağır trafik yükü olan, zayıf zemin özellikleri gösteren, sıcak iklimli bölgelerde tercih edileceği umulmaktadır.

5. RİJİT ÜSTYAPILARDA KULLANILAN MALZEMELER

Rijit üstyapı tasarımını sağlıklı olarak gerçekleştirebilmek için üstyapının kaplanmasında kullanacak betonun ve betonu meydana getiren bileşenlerinin özelliklerinin çok iyi bilinmesi gereklidir.

Beton genel olarak hava, agrega ve çimento hamurundan ibarettir. Çimento hamuru, su ve çimentonun belirli bir oranda karıştırılması ile elde edilir. Su ve çimento kimiyasal reaksiyon yaparak sertleşmekte ve agrega danelerini bağlayarak karışımı yapay bir taş haline getirmektedir. [1]

İdeal bir beton için aşağıdaki üç husus aynı anda sağlanmalıdır:

• Mukavemet
• İşlenebilirlik
• Durabilite

Bu temel özellikleri sağlayan en ekonomik üstyapı betonunun üretilmesi esastır.

5.1 Çimento Bağlayıcılar

Çimento, su ile karıştırıldığında, az veya çok akıcı niteliğe kavuşan, sadece suyun etkisiyle priz yapan, katılınan ve nihayet sertleşen ince taneli malzemedir. Çimento hamuru, katılma sırasında agrega danelerini birbirine bağlamak ve zamanla sertleşme yeteneğinden dolayı mukavemet kazanma özelliğine sahiptir. Betonun mukavemeti çimento tarafından sağlandığından çimentoa ait özelliklerin de iyi bilinmesi gerekir.
5.1.1 Çimento Özellikleri

Çimentonun; fiziksel özellikleri, mukavemet ve rötre özellikleri rıjit kaplamalar için büyük önem taşımaktadır.

5.1.1.1 Çimentonun fiziksel özellikleri

Aşağıdaki bölümlerde, genel hatlarıyla çimentolarda aranan fiziksel özellikler verilmştir:

- **İncelik:** Çimentonun bağlayıcılık özelliğini kazanabilmek için klinkerlerin çok ince olarak öğütülmesi gerekik. Çimento ne kadar çok öğütürse;
 - Hidrataşyon hızı artarak özellikle ilk 7 günde mukavemet artışı hızlanır,
 - Hidrataşyon ısısı artarak çatlamalar ve rötre fazlaşır,
 - Aynı ağırlıktaki çimentonun tane sayısı artacağından agregayı sarma miktarı artarak daha güçlü aderans sağılar.

Sonuç olarak klinker çimentonun mukavemeti için yeterince öğütülmeli fakat hidrataşyon ısısını artırılmamak için fazla öğütülmemelidir. Çimentonun inceliği, belirli elekler üzerinde yüzde kalan miktarlar ve özgül yüzey alanlarının bulunması ile tayin edilir.

- **Priz Süresi:** Çimentonun prize başlaması ne çok erken ve prizini tamamlaması da ne çok geç olmalıdır. Aksi halde çimento normal hidrataşyonunu yapamayacaktır. Her ne kadar priz başlangıç süresi klinkere katılan alçı taşı (jibs) ile ayarlanabilirse de priz sonu süresi ise tamamen çimentonun kalitesi ile ilgilidir. Priz başlangıcında, çimento krvaminin değişime başladığı anı ve priz sonu ise plastikliğini yitirdiği anı ifade etmektedir.

Belirli bir çimentonun priz süresine etki eden başlıca faktörler:
Sıcaklık
w/c oranı
çimentonun kullanmadan önce uzun süre bekletilmesi olarak sayılabilir. Ortam ısıısı artıkça kimyasal bir reaksiyon olan hidratasyonun da artmasına neden olduğunundan priz süresi kısalacaktır. Çimentoya katılan su miktarı artıkça priz süresi de uzar. Çimento kullanılmadan önce uzun süre bekletilmişse rutubet kaparak prizin geç başlamasına neden olmaktadır. Genel olarak, priz başlangıcı 1 saatten az ve priz sonu ise 8-10 saatten fazla olmamalıdır.

Özgül Ağırlık ve Yoğunluk: Portland çimentolarının özgül ağırlığı genel olarak 3,15 iken katkılı çimentolarında ise 2,90’un üzerindedir. Yoğunluk ise geçiş halde 830 kg/m3 iken vibrasyon ile konsolide edildiklerinde 1650 kg/m3 olup hesaplamalarda 1800 kg/m3 olarak alınmaktadır.

Çözünmeyen Kalıntı: Çözünmeyen kalıntı çimento hammaddelerinin pişme derecesi, gayri saf maddelerin miktarı, mineral katkıların oranı, vb. konularda bilgi verir. Çözünmeyen kalıntı miktarı standartta belirtilen üst sınırдан fazla olmamalıdır.

5.1.1.2 Çimentonun mukavemet özellikleri
Çimento su katılarak elde edilen plastik kıvamdaki hamur zamanla katılaşır ve daha sonra sertleşmeye yani mukavemet kazanmaya başlar. Çimentonun mukavemet kazanma olayı;

- Hidratasyon (çimentonun suyla yaptığı reaksiyon veya kimyasal olay)
- Katlaştırma (fiziksel olay- priz süresi)
- Sertleşme (mekanik olay-mukavemet artış hızı)

olmak üzere 3 evreden meydana gelir.
Hidratasyon: Kimyasal bir olay olan hidratasyon aşağıdaki özelliklere sahiptir;

- Çimentonun suyla tam olarak hidratasyon yapabilmesi için klinkerin çok ince olarak ögütülmesi gerekir.
- Hidratasyon olayı zamanın bir fonksiyonu olduğundan çimentonun ana bileşiklerinin suyla yaptığı reaksiyonu çok uzun hatta senelerce sürer. Suyla temas eden betonlarda sürekli bir mukavemet artması olmaktadır.
- Silikatlar suyla reaksiyon yaptıktan sonra serbest kireç açığa çıkarırlar daha sonra alüminantlar bu serbest kireçte reaksiyona girerek jelleri meydana getirirler. Özellikle C₃A çok hızlı hidratasyon yaptığından büyük bir ısının açığa çıkması ve prizin çabuklaşmasına neden olur. Bu nedenle, klinkere jibs (alçı taşı) katılarak ani priz (flash) olayı geciktirilir.

Hidratasyon olayına etki eden en önemli faktörler;

- Çimentonun aşırı ince ögütülmesi,
- Çimento ana bileşiklerinden C₃A ve C₂S’i aşırı olması sayılabilir. Çizelge 5.1’de çimentonun yaydığı hidratasyon ısıısı görülmektedir.

<table>
<thead>
<tr>
<th>Ana Bileşik</th>
<th>Hidratasyon Isısı, Kalori/g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48 Saatte</td>
</tr>
<tr>
<td>C₃A</td>
<td>150</td>
</tr>
<tr>
<td>C₂S</td>
<td>100</td>
</tr>
<tr>
<td>C₄AF</td>
<td>40</td>
</tr>
<tr>
<td>C₂S</td>
<td>10</td>
</tr>
</tbody>
</table>

Hidratasyon ısıısı en fazla alüminli çimentolarda ve en azda katkı özellikteki yüksek firın cürfulu çimentolarda rastlanır. PC 42.5 ve 52.5 tipi çimentolar daha çok ögütüldüklerinden PC 32.5’a göre fazla hidratasyon ısıısı yayarlar.

- **Priz (Katlaştırma):** Çimento hamurunun katılasmaya başlaması ile plastikliğini kaybetmesi arasında geçen süreye priz denilir. Beton priz başlangıcından önce kalıbına konup yerleştirilmeli ve priz süresince aşırı su kaybını önlemek için kür (koruma) uygulanmalıdır. Sıcaklık, su miktarı, çimentonun kullanılmadan önce
• bekletilmesi gibi hususlar priz süresi üzerinde önemli rol oynarlar. Alkali agrega reaktivitesine yol açan alkali oksitlerin (Na₂O ve K₂O) çimentoda fazla olması prizin çabuk başlamasına neden olur.

• **Sertleşme (Mukavemet Kazanımı):** Priz olayından sonra meydana gelen hidrate elemanlar çok boşluklu olup sertleşme sırasında meydana silikat hidrate kristalleri zaman içinde büyüyerek kılcal boşlukları doldurması ile çimento mukavemet kazanmaya başlar ve başlangıçta hızlı daha sonra sırası yavaş bir şekilde mukavemet artar. Çimentoların mekanik mukavemeti hidratasyon hızına bağlıdır. Dolayısıyla hidratasyon olayını etkileyen tüm faktörler çimentonun mukavemeti üzerinde de etkin olurlar. Mukavemete etki eden hususlar;

 • Zamana bağlı faktörler,
 • Kür şartlarına bağlı faktörler,
 • Çimento özelliklerine bağlı faktörler

olarak sayılabilir. Bunlardan ilk iki faktör beton konusunda detaylı olarak ele alınacaktır. Çimento özelliklerinin mukavemeti olan etkileri ise aşağıdaki gibi özetlenebilir:

• Çimentonun hidratasyonu ne kadar hızlı ise mukavemet artışını da o kadar hızlıdır.

• Hidratasyon olayı, çimentonun inceliğine ve hızlı hidratasyon yapan bileşiklerin miktarına bağlıdır. Bundan dolayi, farklı cins çimentoların mukavemetleri farklı olabileceği gibi aynı tip çimentoda da farklılıklar olabilir.

• Isı ve rutubet ne kadar fazla ise mukavemet artışını da o kadar fazladır.

5.1.1.3 Çimentonun rötre özellikleri

Rötre hacim buzulmesi olayı olup donatı ile betonun aderansını artması nedeni ile faydalı iken betonda çatlamalara neden olduklarında sakınmalıdır. Rötre;

• Termik
• Plastik (çabuk)
• Hidrolik
olmak üzere ele alınacaktır. Eğer sadece rötre denilirse hidrolık rötre anlaşılmalıdır.

- **Plastik (Çabuk veya Erken) Rötre:** Henüz taze betonun prizi sırasında meydana gelen plastik rötre beton dökümünü takip eden günde üstteki donatılar boyunca oluşan kılcal çatlaklar ile kendini gösterir. Özellikle işlenebilirliği düşük katı betonlar yada işlenebilirliği çok yüksek ama yeterince kohezyonu olmayan betonlar kalıba yerleşirildikten sonra vibrasyon etkisi ile terleme (çimento-serbetinin dışa ve agregaların dibe çıkması olayi) meydana gelir. Kütlein dış kısmında (hava ile temas eden veya kalıpla temas eden yüzeylerde) terleme ile biriken su buharlaştırılmış ve hızlı bir büzülme meydana gelir. Bu da betonda çatlamaları ve donatı ile iri agrega altlarında boşluklar oluşmasına neden olarak adırsın azalması hatta yok olmasına yol açmaktadır. Bu nedenle, işlenebilirlik ne az ne de çok olmalı terlemenin kontrolü için kohezyonu yüksek beton üretilmelidir.

- **Hidrolık Rötre (Kuruma Büzülmesi):** Buna sertleşmiş beton rötresi veya kuruma rötresi adları da verilmektedir. Hidrolık rötre beton üretilmeden hemden sonra başlar ve 5-6 ay hatta 1 yıl devam eder. Hidrolık rötrénin nedeni ile ilgili birçok hipotez öne sürülmüş ise de tam olarak nedeni belirlenememiştir. Ancak çimento hamuru su kaybettikçe büzülmeye çalışacak ve rjit malzeme olan agrega bu büzülmeyi engellemeye çalışacaktır. Beton-harç-hamur'a ait tipik rötre miktarı 1-3-7 olarak alınabilir. Görüldüğü gibi, beton içindeki farklı büzümlerin yaratacağı iç gerilmeler betonun çatlamasına neden olacaktır.

Plastik rötre betondan ve termik rötre ile hidrolık rötre ise çimentodan kaynaklanır. Harç (ince kısımlar ve özellikle agrega hacim daraltmasına karşı koyar. Dolayısıyla agrega daneleri ne kadar sağlam ise çimentonun daraltmasına o kadar karşı koyabilecektir. Dolayısıyla betonda agrega arttırçça çimento miktarı azalacağından dolayı rötrenin de azalması beklenmelidir.
Genel olarak;

- ısı, rüzgar arttıkça ve rutubet azaldıkça yani su kaybı arttıkça
- çimentonun C2S miktarı, inceliği, hidratasyon ısısı ve dozajı arttıkça
- w/c oranı ve karma suyu ihtiyacı arttıkça

rötre miktarı artmaktadır.

5.2 Agregalar

Agrega yol kaplamasının stabilitesinden sorumlu olduğu kadar miktar olarak da önemli bir paya sahiptir. Çünkü bağlayıcısız temel ve altemel tabakalarının tamamı, rjit üst yaplarının ağırliği %70-80’i ve hacimce %60-75’i agrega tarafından sağlanır. Hem kaplanmanın stabilitesine olan büyük katkısı hem de çok büyük miktarda gereksinim duyulmasından dolayı agrega çok önemli bir yol malzemesidir.

Agregalar sınıflandırılarırken göz önünde bulundurulması gereken özellikleri şunlardır;

- Mineralojik yapıları,
- Boyut,
 - Kaba agrega
 - İnce agrega
 - Filler
- Gradasyon
 - Kesikli gradasyon
 - Yoğun-sürekli gradasyon
 - Boşluklu-sürekli gradasyon
 - Tek boyutlu gradasyon
- Biçim
 - Yuvarlak
 - Yarı yuvarlak
 - Yarı açıkl (yarı köşeli)
• Açısal (köşeli)
• Yüzey yapısı
• Çok pürüzlü
• Pürüzlü
• Düzgün
• Cilalı

Beton Agregalarının Özellikleri

Betonda kullanılan agregaların sahip olduğu özellikler, betonun tüm özellikleri üzerinde etkin bir rol oynar. Bunlar;

- Betonun mukavemeti; agrega mukavemeti, dane şekli ve yüzey yapısı, maksimum dane boyutu, gradasyon, kil içeriği.
- Betonun yoğunluğu; agreganın özgül ağırlığı, dane şekli, maksimum dane boyutu, gradasyon, yoğunluk.
- Betonun durabilitesi; agreganın porözitesi, cilalanma direnci, don direnci, aşınma direnci, dane şekli, yüzey yapısı.
- Betonda rötre; agreganın maksimum boyutu, gradasyon, dane şekli, kil içeriği olarak ele alınacaktır. Beton agregalarında aranan temel özellikleri, amaçları ve aranan şartlar Çizelge 5.2’de özetlenmiştir.
Çizelge 5.2 : Beton Agregalarının Özellikleri [1]

<table>
<thead>
<tr>
<th>ÖZELLİKLER</th>
<th>AМАÇ</th>
<th>ARANILAN ŞARTLAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Özgül ve Birim Ağırlık</td>
<td>Miks-Dizayn</td>
<td>Beton mukavemeti için her ikisi de büyük olmalı</td>
</tr>
<tr>
<td>Dane Bİçimi ve Yüzey</td>
<td>İşlenebilirlik ve Aderans</td>
<td>Yassi ve iince kısımlar olmamalı, işlenebilirlik için cilali ve aderans için pürüzü olmalı</td>
</tr>
<tr>
<td>Pürüzülülüğü</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorbsiyon ve Rutubet</td>
<td>Karma suyunun ayarlanması</td>
<td>Absorbsiyon, karma suyunu azaltması bakımından zararlama ama aderans için faydalıdır</td>
</tr>
<tr>
<td>İslatma Suyu</td>
<td>Miks-Dizayn</td>
<td>İslatma suyu ihtiyaçt az olmalı</td>
</tr>
<tr>
<td>Agrega-Çimento Aderansı</td>
<td>Agrega ile çimento hamuru arasındaki bag</td>
<td>Eğilime mukavemeti için aderans yüksek olmalı</td>
</tr>
<tr>
<td>Yabanı Maddeler:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kil ve Silt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organik maddde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yumuşak maddeler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yarı daş maddede</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.200’den geçen kısmın</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dayanıklılık</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Don Dayanıklılığı</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Çevre Etkilerine Dayanıklılık</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porözite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>İslenebilirliği</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dan Şekili ve Yüzey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pürüzülülüğü</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkali-Agrega Reaksiyonun</td>
<td>Hacim Stabilitesi</td>
<td>Olmamalı</td>
</tr>
<tr>
<td>Alkali-Karbonat Reaksiyonu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granülometri</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Özgül Ağırlık ve Birim Ağırlık: Agregaların özgül ağırlığı sahip olduğu minerallere bağlı iken birim ağırlık değeri daha ziyade dane şeklini bağıldır. Normal beton agregalarının özgül ağırlığı 2,50 ile 2,80 genellikle 2,60 ile 2,70 arasında değişir.

Agregalar su ile dolabilen ve dolamayan boşluklar ile boşluksz (kağı) hacimlere sahip olduğundan dolayi zahiri, hacim ve doygun-kuru yüzey olmak üzere üç farklı özgül ağırlık değerine sahiptir. Ancak miks-dizayn (karsım hesapları) için betonlarda doygun-kuru yüzey özgül ağırlık kullanılır.
Doygun-kuru yüzey özgün ağırlık, agrega danelerinin beton karma suyu ile doygun hale geldiği ağırlığı ifade ettğinden beton içindeki boşlaksuz (mutlak) hacminin tanıında kullanılır.

Birim ağırlık, kuru agrega ağırlığının boşluklu hacmine oranı yani yoğunluğudur. Özgül ağırlık ve birim ağırlık ne kadar fazla olursa beton mukavemeti de o denli yüksek olmaktadır. Ayrıca birim ağırlık fazlalaştığa boşluk oranı fazlalaşacagından ince kum ve çimento hamuru ihtiyacını da azalacaktır. Bunlara ilaveten beton agregalarının bir kompazite (C) değeri vardır. Agreganın kompazitesi ne kadar düşük olursa;

- Betonun mukavemeti azalır
- Bosluk miktarı artacağını çimento ihtiyacı artar
- Permabilite artar
- Betonun durabilitesi azalır

• **Absorbsiyon, Porözite ve Rutubet:** Absorbsiyon agreganın suyu emme kabiliyeti iken porözite ise agrega danelerinin suyu emebilecek boşluk miktarıdır. Dolayısıyla agreganın absorbsiyon porözitesinin de bir göstergesidir.

Agreganın porözitesi ile absorbe edilen su beton karma suyunu azaltacağından betonun işlenebilirliği de azalacaktır. Beton karma suyu agrega tarafından absorb edilecek su miktarı kadar artırılmalı ve eğer agrega rutubet (serbest su) ihtiva ediyorsa bu miktar kadar da azaltılmalıdır.

• **Dane Şekli ve Yüzey Pürüzlülüğü:** Yüksek çekme ve basınç mukavemeti gerektiren betonlarda kırınan agrega kullanılmalıdır. Yani rüj kaplamalarda (özellikle hava alanı) kullanılacak beton agregaları mutlaka kırınataş olmalıdır. Agregaların yuvarlak ve pürüzsüz yüzeyli olması halinde işlenebilirlik artmakta ve sıkışma direnci ile içsel sürünme açısının az olması nedeni ile daha kolay sıkışarak boşluk miktari azalmaktadır. Halbuki kırınataş agrega yuvarlak olmadığından dolayı köşeli ve pürüzlü bir yapıya sahiptir. Bu nedenle, daneler arasında kilitlenme ve boşluk miktarında artış olur.

• **Agregaların Su İhtiyacı:** Beton karma suyu ihtiyacı, çimentonun hidratasyonu için yaklaşık çimento ağırlığının %24'ü kadar ve agrega danelerin ıslanması için yaklaşık agrega ağırlığının %3-5'i kadar ve porözite ile buharlaşma için gerekli bir miktar suyun toplamına eşit olacaktır.

Agregaların su ihtiyacı;

- Agreganın porözitesi
- Agreganın dane şekli ve yüzey yapısı
- Maksimum dane çapı
- Boşluk oranı vb.

özelliklere göre değişim gösterir.

Kırınataş agregalar, yuvarlak ve cılla yuzeyli dere malzemesi aggregalara nazaran daha fazla boşluk oranı, daha fazla yüzey alanı ve daha fazla poröz olduklarından dolayı daha fazla ıslatma suyu gerekecektir.
Islatma suyunun bir kısmı çimento ile reaksiyona girmekte ama büyük bir kısmı da beton sertleştiğten sonra buharlaşıp kaybolduğundan dolaylı beton içinde boşluk bırakmaktadır. Bu nedenle, islatma suyu mümkün olduğu kadar az işlenebilirliği sağlayacak kadar da fazla olmalıdır.

- **Çimento Hamuru-Agrega Aderansı:** Çimento hamuru ile agrega arasındaki aderans kuvveti, özellikle çekme ve eğilme mukavemeti için önemlidir. Agrega danelerin yüzey pürüzlülüğü ve porozluğunu arttıkça ve mineralojik homojenliği azaldıkça aderans artmaktadır.

- **Durabilite (Dayanıklık-Aşınma Direnci):** Agregaların durabilitesi beton kaplamaların kalitesi hakkında önemli bir göstergedir. Özellikle yol ve hava alan beton kaplamaları, ağır yüklerle maruz otoparklar, yükleme-boşalta sahalarındaki kaplamalar, vb. yerlerde yapılacak betonlar için kullanılan agregaların aşınma direnci de yüksek olmalıdır. Ayrıca aşınma direnci yüksek olan agregaların basınç mukavemetleri de yüksektir.

- **Don Dayanıklılığı (veya Direnci):** Agregaların don dayanıklılığı;
 - Porözite,
 - Absorbsiyon,
 - Permabilite

özelliklerine bağlıdır. Agrega danelerin bunyesindeki boşluklarına nüfus eden suyun donna-çözülme periyotlarında yaratacağı ilave gerilmeler agreganın yorulma mukavemetini aşarak parçalanmasına neden olacaktır. Zira agrega daneleri içindeki boşluklarda bulunan su donna sonunda genleşerek agrega üzerinde ilave gerilmeler yaratmaktadır. Özellikle beton kaplamalarında donna-çözülme periyotlarında kaplamının altında başlayan çatlaklar zamanla yüzeye çıkmaktadırlar.

Çevre Etkilerine Dayanıklık: Agregaların donna-çözülme periyotlarındaki hacim changesine ilaveten,
 - ısı değişimleri
 - ısınma-kuruma
 - buz çözücü maddeler gibi
olumsuz etkilere de karşı dayanıklı olması gerekir. Aksi takdirde betonda küçük tip kusurlardan (oyulma, soyulma, çatlamalar, yüzeysel aşınma, vb.) tehlikeli parçalanmalara kadar büyük hasarlar meydana gelebilir.

Bünyesinde kir ve sülfat mineralleri içeren agregalar çevre etkilerine dayanıklı değildir. Agrega daneleri içindeki boşlukların boyutu ne kadar küçükse o kadar fazladır.

- **Zararlı Maddeler:** Beton agregalarında bulunacak yabancı madde miktarı, Çizelge 5.4’te belirtilen değerden fazla olmamalıdır.

Çizelge 5.3’te verilen yabancı maddeler adedinde azalması, priz süresine olumsuz etkisi, çimento ile zararlı kimyasal reaksiyonlara yol açması, mukavemeti düşürmesi, vb. nedenlerden ötürü zararlıdır.

Çizelge 5.3: Beton Agregasında Maksimum Yabancı Madde Miktarı (TS 706) [1]

<table>
<thead>
<tr>
<th>Yabancı Madde</th>
<th>Ağırlıkça Maksimum Miktar, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>İNCE AGREGA</td>
</tr>
<tr>
<td>Kil Topakları</td>
<td>1,00</td>
</tr>
<tr>
<td>Yumuşak Daneler</td>
<td>-</td>
</tr>
<tr>
<td>Kömür ve Linyit</td>
<td>1,00</td>
</tr>
<tr>
<td>No.200’den geçen kısımda</td>
<td></td>
</tr>
<tr>
<td>a. Aşınmaya Maruz Betonda</td>
<td>4,00 (1)</td>
</tr>
<tr>
<td>b. Tüm Betonlarda</td>
<td>5,00 (1)</td>
</tr>
</tbody>
</table>

Not: 1. No.200’den geçen kısımda taş tozu (mineral) ise %2 artırılabilir.
2. No.200’den geçen kısımda taş tozu (mineral) ise %0,5 artırılabilir.

• **Granülometri (Dane Dağılımı, Gradasyon, Derecelenme):** Granülometri granüller danelerin boyut dağılımını ifade eder. Diğer bir deyişle dane çaplarının dağılım eğrisi yani granülometrisi agrega içindeki farklı dane çaplarının hangi oranelarda olması gerektiğini ortaya koyar. Eğer agreganın granülometrisi şartname sınırları içindeyse mukavemetli, dayanıklı ve ekonomik bir beton elde edilir. Çünkü ideal agregan granülometrisine bir beton karşısında;

 • optimum w/c oranında yeterli işlenebilirlik

 • çimento dozajında azalma

 • mukavemet ve durabiliitede artış

sorumlanabilmektedir.

Belirli bir w/c oranında hazırlanan bir betonun mukavemeti agreganın granülometrisinden bağımsızdır. Ancak granülometrinin;

• işlenebilirlik
• ekonomi
• segregasyon (ayışma)

üzerindeki etkisi büyürk. Gereklı granülometri için;

• agreganın toplam yüzey alanı

• agreganın toplam hacmi veya daneler arasındaki boşluk

esas alınmalıdır. Çünkü toplam yüzey alanı agreganın ıslatma suyu ihtiyacını belirlerken agreganın toplam hacmi ise işlenebilirlik özelliğini belirlemektedir.

Agreganın maksimum dane boyutu, çimento hamuru miktarı, w/c oranı ve döküm yüksekliği betonun segregasyonunu etkiler. Gereklı çimento hamuru ekonomiyi etkilerken w/c oranı ise mukavemet üzerinde etkin bir rol oynar. Betondaki boşluk (hava) miktarı ise durabiliyte etkiler. Dolayısıyla ideal bir beton için üç temel şart (mukavemet, durabilite, ekonomi) ve ayrıca taze beton için iki temel şart (işlenebilirlik, segregasyon) üzerinde granülometrinin önemli etkisi açıkça görülmektedir.
5.3 Çelik Donatılar

Çizelge 5.4 : Beton Çelik Çubukları ve Çelik Hasırları Sınıflandırma ve Özellikler

<table>
<thead>
<tr>
<th>Ürün</th>
<th>Beton çelik Çubukları</th>
<th>Beton Çelik Hasırları</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipleri</td>
<td>Düz</td>
<td>Nervürlü-Profilli</td>
</tr>
<tr>
<td>Simgeleri</td>
<td>BCIIa</td>
<td>BCIIb</td>
</tr>
<tr>
<td>Anma Çapi φ (mm)</td>
<td>5-28</td>
<td>5-12</td>
</tr>
<tr>
<td>Minimum Akma Sınır kgf/cm² (N/mm²)</td>
<td>2200 (220)</td>
<td>4200 (420)</td>
</tr>
<tr>
<td>Maksimum Akma Sınır kgf/cm² (N/mm²)</td>
<td>3200 (320)</td>
<td>5700 (570)</td>
</tr>
<tr>
<td>Minimum Çekme Direnci kgf/cm² (N/mm²)</td>
<td>3400 (340)</td>
<td>5000 (500)</td>
</tr>
<tr>
<td>Minimum Birim Kopma Uzaması (%)</td>
<td>18</td>
<td>12</td>
</tr>
</tbody>
</table>

5.4 Karma Suyu

İçilebilir nitelikteki her su, beton karma suyu olarak kullanılabilir. Ancak karma suyu için aşağıdaki hususlar göz önünde tutulmalıdır:

- Asidik özellikte olmamalıdır. Yani Ph ≥ 7 olmalıdır.
- % 0,04’den fazla SO₃ ihtiva etmemelidir.
- Madeni tuzlar ihtiva etmemelidir.
- Sodyum karbonat çubuk prize ve bikarbonat (HCO₃) ya prize hızlandırmaya yada prize yavaşlatmaya neden olduklarından dolayı kullanılmamalıdır.
- %2’den fazla yağ içeren sular beton mukavemetini %20’den fazla azalttığından test edilmeden kullanılmamalıdır.
- Deniz suyu yukarıdaki şartları sağlıyorsa ve içme suyu ile yapılan betona göre %90’dan fazla mukavemet veriyorsa kullanabilir.
- Korozyona neden olduğundan dolayı sodyum klorit ihtiva etmemelidir.
- Betonun bozulmasına neden olan sodyum sülfat (SO₄) ve alkali oksitler maksimum %1 olmalıdır.
- Kil, silt, organik madde vb. maksimum %0,2 olmalıdır
- Şeker ve şekeri maddeler ihtiva etmemelidir.
5.5 Katkı Maddeleri

Beton katkı maddesi beton karışımı sırasında farklı amaçlar için uygun miktarlarda katılan kimyasal maddelerdir.

Beton katkı maddeleri;

- Taze beton için:
 - Su miktarını artırmadan işlenebilirliği artırmak
 - İşlenebilirliği azaltmadan su miktarını azaltmak
 - İşlenebilirliğin süreye bağlı kaybını azaltmak
 - Segregasyonu önlemek
 - Terlemeği önlemek ve/veya azaltmak
 - Pompalamayı kolaylaştırmak

- Sertleşmiş beton için:
 - Mukavemeti artırmak
 - Hidrasyon ısısını azaltmak
 - İlk günlerdeki mukavemet artışını hızlandırmak
 - Durabiliteyi artırmak (geçirgenliği azaltmak, tuz-çözücü maddelerin ve zararlı kimyasalların zararlı etkilerini azaltmak, don direnci artırmak, vb.)
 - Genleşmeleri kontrol altında almak
 - Donatıların korozyonunu önlemek
 - Aderansı artırmak
 - Mekanik özelliklerini iyileştirmek (aşınma, çarpma tesirleri, büzülme)
 - Ekonomi sağlamak

gibi amaçları vardır.
5.6 Beton Koruma (Kür) Maddeleri

Gerçekleştirdikleri deney ve gözlemlerden, sertleşme sırasında betonun çok çabuk kurumaktan korunması gerektiğini sonucuna varılmıştır. Betonun priz aşamasında korunmuş olması aşınma ve eğilme direnç değerlerini artırmaktadır. İlk üç gün ıslak tutulan betonun kırılma modülü %20, aşınma direnci %35 oranında artmıştır olur. ıslak tutma süresi 7 günü çıkarıldığımda anılan değerler sırası ile %30 ve %40 mertebesine ulaşlardır. Karşılık olarak ilk 72 saat süresince betonun kurmuş olması direnç değerlerini çok düşürmektedir. O halde dikkat edilecek husus, betonun hidrasyon suyunun ortamdan kaybolmasına engel olunmasıdır. Yüzey perdahlama işlemi tamamlandıklar sonra en iyi beton koruma yöntemleri şunlardır:

- Yüzeyin, devamlı ıslak tutulan branda bezi ile örtülmesi
- Yüzeyin, üzerinde su tabakası oluşturacak şekilde sürekli sullanması,
- Havannın nemini tutucu nitelikteki tuzların (en çok kullanılanı kalsiyum klorürün) karma suya katılması veya yüzey işlemlerinin bitmesinden sonra serpilmesi,
- Bitmiş yüzeye sodyum silikat, ham kauçuk, katbek asfaltlar veya su geçirmez kraft kağıdı dosenmesi.

58
işlemleri biter bitmez uygulanır ve koruma süresi sonuna kadar, zaman zaman ıslatılarak yerinde bırakılır.

5.7 Derz Dolgu Malzemeleri

Beton plaklarda değişik nedenlerden dolayı bırakılan derzler, kaplamının kritik bölgelerini oluşturur. En azından ortamda süreksizlik oluşturdukları için bunların dolgu maddeleri ile doldurulup tıkanmaları gerekir. Bu malzemelerin plak hareketlerine uygun davranışları gereceğinden, betonun genleşme ve büzülmelerine olanak sağlaması, tabanın yumuşamasına, betonun yerinden oynamasına ve don kabarmasına yol açacak suların sızmamasına engel olmalı, derzlerde taş parçalarının girmesine mani olmalı, düzgün bir yüzey sağlamalıdır. Beton plakta tüm tabaka derinliğince oluşturululan derz boşluğunun alt ve üst kısımları farklı dolgu maddeleriyle doldurulur.

I. Alt Dolgu Malzemeleri: Bunlar derz imali için önceden hazırlanmış sıkışabilen malzemeden istenilen kalınlık ve derinlikte yapıp genleşme derzlerinde beton dökülürken yerleştirilir. Üst dolgu maddelerine destek görevi de yüklenen bu maddeler yumuşak tahtadan, su geçirmez preslenmiş plaklar, mantar veya gözenekli lastikten imal edilirler. Alt dolgu malzemelerinin elastik olmaları, taze betonun suyunu almamaları, su etkisiyle bozulmamaları gereklidir.

6. RİJİT ÜSTYAPI TİPLERİ

Beton yollar; çimento betonu ile yapılan ve üzerinden geçen dingil yüklerini tabana ileten bir kaplama türü olup, üstapı tabanı üzerine yerleştirilen alttemel tabakası, zayıf beton tabakası veya bitümlü tabaka üzerine serilmiş beton plaktan oluşmaktadır.

Rijit üstapılar üç farklı şekilde inşa edilebilir:

- Derzli donatısız tipteki rijit üstapılar
- Derzli donatılı tipteki rijit üstapılar
- Sürekli donatılı tipteki rijit üstapılar

6.1 Derzli Donatısız Tipteki Rijit Üstapılar

Derzli donatısız tipteki rijit üstapılar, 3-6 m. uzunluğunda kısa anolarдан oluşur. Bloklar 125-350 mm. kalınlığında olup donatı çeliği içermezler. Derzler zayıflatılmış yüzey kasılan tipe olup geçmeli veya geçmesiz olabilirler. Anolar genel olarak granüller malzeme, çimento veya bitümlü tabakalar üzerine inşa edilir.

Zayıf beton ve sıkıştırılmış kaba agregadan inşa edilen temeller, halen bazı eyaletlerde kullanılmaktadır. Temel tabakası kalınlıkları 100-200 mm. olabilir.

Gerek derzli donatısız tıpteki gerekse derzli donatılı tıpteki rijit üstyapılarında, plak ile alttemel arasındaki sürtünmenin azaltılarak orta açıklıktaçatlamaların engellenebilmesi için bir ayırma membranına ihtiyaç duyulur. (Şekil 6.1)

Şekil 6.1 : Derzli donatısız tıpteki rijit üstyapılar [8]

6.2 Derzli Donatılı Tıpteki Rijit Üstyapılar

Derzli donatısız tıpteki rijit üstyapılar, uzunlukları 8-30 mt.lik anolardan oluşur. Blok kahlılıkları 150-350 mm. olup, ortalarında donatı çeliği geçmektedir. Temel tabakası kalınlığı 100-200 mm. dir.

Daha uzun derz aralığı kullanılması ayrıca daha büyük derz açıklıklarına neden olur. Dolayısı ile derzler arası yük transferini sağlamak için donatı çubukları kullanılır.
Derzli donatısı tıpteki rijit üstaplar, donma ısısındakı bölgelerde ve nemli bölgelerdeki şehirlerarası yollarda yaygın olarak kullanılmaktadır.

Derzli donatılı tıpteki rijit üstaplar, enine derz aralıklarının artırılmasına olanak tanıyan donatılar dışında derzli donatısı tıpteki rijit üstaplar ile benzerdir.

Gerek derzli donatısı tıpteki gerekse derzli donatılı tıpteki rijit üstaplıarda, plak ile alttemel arasındaki sürünmenin azaltılarak orta açıklktaki çatlamaların engellenebilmesi için bir ayırma membrana ihtiyaç duyulur.

Şekil 6.2: Derzli donatılı tıpteki rijit üstaplar [8]

6.3 Sürekli Donatılı Tıpteki Rijit Üstapları

Uzun derz aralıklarının bir sonucu olarak, bu tür kaplamalarda kaplama ömrünün ilk birkaç yıl boyunca 0.6-2.4 mt. lik aralıklarla enine çatlaklar oluşur. Bu çatlaklar plak içindeki donatı çeliği sağlam olduğu süreci sürece sıkıca kapalı kalırlar. Eğer çelik yüksek çekme gerilmelerine karşı koyamayacak durumda ise, enine çatlaklar açılarak bozulabilirler. Uzunlamasına çatlaklarla birleşen bozulmuş çatlık bölgenin, ciddi kaplama bozulmasına işaret eden, yüzeysel oyulmalara (zımbalama etkisi) yol açabilir. Plak desteğini artırarak ve tekerlek yüklerini altındaki ano gerilmelerini azaltmak için bu kaplama ile birlikte genellikle bir stabilize temel kullanılır.

Bu kaplama türünün yaygın olarak kullanılmamasına karşılık toplam beton kaplamaya oranı oldukça düşüktür.

Derzli donatısız ve derzli donatılı tipteki rijit üstyapılarında görülen ayırma membranı, beton temel ile alt-temel arasında daha yüksek bir düzeydeki sürtünmenin elde edilebileceği için sürekli donatılı tipteki rijit üstyapılarında çkarılmıştır. Alt-temel ile sağlanan desteklik üstasyı sonundaki oynamaları azaltmak için ve istenilen çatlama modelini korur. Plaktaki sürekliüzliklerin, kabarıp dökülme riski ile birlikte birbirine yakın aralıkli çatlamaları olanak tanması nedeniyle, mümkün olan her yerde önüne geçilmesi gerekmektedir. Bu sebepten dolayı rögarların ve su yollarının bu tipteki rijit üstasyı plaklarının dışında bulundurulması gerekmektedir.

Şekil 6.3 : Sürekli donatılı tipteki rijit üstyapılar [8]
7. SİLİNDİR İLE SIKIŞTIRILAN BETONLAR (SSB)

Silindirle sıkıştırılmış betonun uygulamasının 2. Dünya Savaşı’nın öncesinde başladığı bilinmektedir. O zamanlarda hava alanları apronları ve otoyolların temelaltı tabakasını kuvvetlendirmek amacıyla kullanılan silindirle sıkıştırılmış beton uygulamasının izine daha sonra 1964 yılında İtalya’da yapılan bir baraj inşaatında
rastlanmıştır. Ancak tamamı SSB tekniği ile inşa edilen ilk baraj ABD’nin Oregan eyaletinde 1982 yılında inşasına başlanan Willow Creek Barajı olmuştur. (Şekil 7.1) [13]

Şekil 7.1 : Willow Creek Barajı. [13]

Silindirle sıkıtırılmış beton tekniği ile inşa edilen bu baraj şantiyesini inşaat sırasında 15 ülkeden 1000’den fazla mühendis inceleme ziyaretleri yapmıştır. Başlangıçta kaya dolgu olarak projelendirilen Willow Creek Barajı’nın, kaya dolgu olarak inşa edilmesi halinde 25,6 milyon dolara mal olacağı hesaplanmıştır. Silindirle sıkıtırılmış beton yöntemi ile inşa edilen barajın maliyeti, 14,2 milyon dolar olmuştur. Planlanması ve tamamlanması 3 yıl alan barajın yapımında SBB kullanılması, inşaat sürelerinde en az 1 yıl tasarruf sağlamıştır. Bunun yanında geleneksel betonun fiyatı m³ başına 85 dolar olarak hesaplanmış olup SSB karışımlı m³ başına 25 dolarası mal olmuştur ve 4 kat daha az malzeme kullanılmıştır. [14]

90’lı yıllarda çoğu ülkenin silindirle sıkıtırılmış betona olan ilgisi takip eden yıllarda düşmüştür. Yol inşaatında kullanılan normal ekipmanın kayak kalıplı finişer olması ve normal betonun yüksek kalitesi bu ilgi azaltmasına yol açmıştır.

Silindirle sıkıtırılmış beton kullanımını sadece İskandinav ülkelerinde tercih edilmiştir. Beton; yüksek kaliteli agrega, yüksek çimento oranı, kimyasal katkı maddeleri etkisiyle oluşturularak yüksek mukavemet ve aşınma dayanımı ve de özellikle iyi donma dayanımı sahip olması sağlanmıştır. Çok yüksek ısı farkları (gündüz-gece) olmayan diğer ülkelerde bu uygulama tercih edilmez (Almanya dışında).
Silindirle sıkıtırılmış beton, otoyollar ve kent içi yollarda iyi bir alt temel alternatifidir ancak güçlü bir temele ve iyi bir beton asfalt üstü Yapıya ihtiyacı vardır.

Kayar kalıp finişer kullanmaya gerek kalmaksızın silindirle sıkıtırılmış betonun uygulanabilmesi avantajlarından bir başkasıdır. Yüksek petrol fiyatları ve artan dingil yükleri sebebiyle asfalt üst yapının tamiri ve yenilenmesinde de daha çok tercih edilen bir metot olmaktadır.

Silindirle sıkıtırılmış betonda genelde yetersiz uygulamalardan ötürü aşınma ve sertleşme tabakasında sorunlar yaşanır. Uygulama sırasında yapılan hataları tamir etmek güç olduğundan kusursuz bir uygulama ve kalite kontrolü gerekliyor. [6]

Bu kadar geniş alanda kullanılması, özel bir ekipmana ihtiyaç duyulmamasından ve beton asfalt kaplamaların yapıldığı makinalarla inşa edilebilmesinden kaynaklanmaktadır. Bununla birlikte; yapım kolaylığı, çalışan eleman sayısını
azaltması ve yüksek üretim hızı ve bunlara bağlı olarak maliyetinin düşmesi de büyük oranda kullanılmasının nedenleri olarak sıralanabilir. Ayrıca, SSB kaplamalar, geleneksel beton kaplamalara göre daha kısa bir sürede trafiğe açılabilmektedir.

7.1 SSB Üretiminde Kullanılan Malzemeler

SSB’de geleneksel betonlarda kullanılan kaba ve ince agregalar, çimento, uçucu kül, katkı maddeleri ve su kullanılmaktadır. Karışmalar su/çimento oranı, 0,20 ile 0,40 arasında olmaktadır. Diğer beton türlerinde olduğu gibi, SSB’nin ekonomikliğini ve kalitesini belirlededeği en önemli faktörlerden biri, uygun agrega kaynağından seçilmesidir. SSB kaplama karışmalarının hacminin %70-80’iini agregalar oluştururaktadır.

Kaba agrega; kırılmış veya kırılmamış çakıl, yeniden kullanılan beton, kırmataş veya karışımından oluşmaktadır. Kırırmataş veya kırılmış çakıltan yapılan SSB’lerin sıkıştırılması, yuvarlak çakıltan yapılan SSB’lerden daha zor olması karşılık, taşıma ve yerleştirme sırasında daha az ayırma ortaya çıkmaktadır. İnce agregalar, doğal kum, kırarak üretilen kum veya her ikisinin karışımdan meydana gelmektedir. Yüksek oranda plastik olmayan silt parçacıkları içeren kumlar, mineral filler olarak görev yaptığı gibi ihtiyaç duyulan çimento gereksinimini de azaltmaktadır. Bunun aksine, yüksek oranda kil içeren ince agregalarla yapılan karışımarda kullanılan su miktarı artmakta, büzülme ve çatlamalar oluşmaktadır, dolayısıyla mukavemet azalmaktadır. Bu yüzden karışımında kullanıacık kumların su emme kabiliyeti ve özgül ağrılııklarının belirlenmesi gerekmektedir.

SSB ve geleneksel betonda kullanılan agregalar arasındaki en önemli farklılıklardan biri agrega gradasyonudur. SSB’de maksimum tane boyutunun 25 mm veya daha az olduğu görülmektedir. Çizelge 7.1’de SSB ve geleneksel beton kaplaması üretiminde kullanılan malzemeler karşılaştırılmıştır. [16]
Çizelge 7.1: SSB ve geleneksel beton kaplaması üretiminde kullanılan malzemelerin karşılaştırılması. [16]

<table>
<thead>
<tr>
<th></th>
<th>Mutlak Hacim</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SSB</td>
</tr>
<tr>
<td>Bağlayıcı</td>
<td>% 9</td>
</tr>
<tr>
<td>Su</td>
<td>% 10</td>
</tr>
<tr>
<td>İnce Agrega</td>
<td>% 34</td>
</tr>
<tr>
<td>İri Agrega</td>
<td>% 44</td>
</tr>
<tr>
<td>Hava</td>
<td>% 3</td>
</tr>
<tr>
<td>Toplam</td>
<td>% 100</td>
</tr>
<tr>
<td>Çimento Hamuru</td>
<td>% 22</td>
</tr>
<tr>
<td>W/C Oranı</td>
<td>0.35</td>
</tr>
<tr>
<td>İnce Agrega Oranı</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Ayrışmalardan sakınmak, karşıtırma işlemini kolaylaştırmak ve yüzey düzgünliğini sağlamak amacıyla tane boyutu yüksek seçilmemektedir. Bazı ülkelerde, ince ve kaba agrega bileşimlerinin gradasyon sınırları belirlenmiştir. Fransa ve İspanya’da kabul edilen gradasyon eğrileri bağlayıcıları da (çimento+uçucu kül) kapsamaktadır.

Silindirle sıkıştırılmış beton yollara ilişkin PCA (Portland Çimento Birliği) tarafından hazırlanmış şartnamede belirtilen agrega gradasyonu Çizelge 7.2’de verilmiştir. [15]
Çizelge 7.2: Agrega gradasyon sınırları. [15]

<table>
<thead>
<tr>
<th>Elek Boyutu, mm</th>
<th>Elekten Geçen, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1” (20 mm)</td>
<td>100</td>
</tr>
<tr>
<td>3/4” (19 mm)</td>
<td>90-100</td>
</tr>
<tr>
<td>1/2” (12,5 mm)</td>
<td>70-90</td>
</tr>
<tr>
<td>3/8” (9,5 mm)</td>
<td>60-85</td>
</tr>
<tr>
<td>No.4 (4,75 mm)</td>
<td>40-60</td>
</tr>
<tr>
<td>No.16 (1,18 mm)</td>
<td>20-40</td>
</tr>
<tr>
<td>No.100 (150 µm)</td>
<td>6-18</td>
</tr>
<tr>
<td>No.200 (75 µm)</td>
<td>2-8</td>
</tr>
</tbody>
</table>

Yeni sıkıştırılan malzeme yeterli stabiliteyi sağlamak için büyük miktarda kırılmış malzeme kullanılmaktadır. Agregalar en azından iki grubun karışımdan oluşmalıdır, örneğin 0/5 mm ve 5/20 mm. Kaplama düzgünliği fazla önemli değilse, kaba ve ince agregalar önceden harmanlanıp tek bir grup olarak depolanabilmektedir. Takviye tabakası çalışmalarında, agrega seçimindeki en önemli faktör, kırışım sıkıştırıldığında and yüksek iç dayanma ulaşabilme yeteneğidir. SSB, fazla gecikme oluşmadan trafiğe açılabilmesi için stabilite, anlık (immediate) taşma gücü testi ile ölçülmektedir. Test, CBR testinde kullanılan aynı ekipmanlarla, yeni sıkıştırılmış numuneler üzerinde uygulanmaktadır. Anlık taşma gücü indeksi 65’in üzerinde çıktığında, SSB’nin yeterli kapasiteye sahip olacağı ileri sürülmektedir. Kırılmış kaba aggrega kullanıldığında, bu sınır belirgin bir şekilde aşılmaktadır.

SSB’de Tip I (normal) ve Tip II (sülfata direnci arttıran) portland çimentosu kullanılmaktadır. Çalışma süresinin kısa olması gereken yerlerde erken priz yapan Tip III çimentolarının kullanılması önerilmektedir. Çimento oranı, kuru kiriş toplam ağırlığının %10 ile %17’si arasında olup m³ de 300±30 kg kullanılmaktadır. Bağlayıcı (çimento+uçucu kül) malzemelerin %25 ile %40’ını C veya F sınıfı uçucu küler meydana getirmekteildir.

Fransa ve İspanya’da birbirine kırıştırılmış çimentolar (blended cement) kullanıldığı gibi, çimento ve uçucu kül karışıımı kullanılmaktadır. Uçucu kül içeren çimentolar geleneksel Portland çimentosundan ucuzdur ve priz işlemi belirgin şekilde geciktirmektedir. Ayrıca uçucu kül SSB’nin işlemelendirilğini artırmakta ve karışıımın çatlama davranışını önemli derece etkilemektedir. Uçucu kül kullanımını, özellikle sıcak havalarda yol yapımı sırasında avantaj sağlamaktadır. İlkmin soğuk olduğu bölgelerde ise uçucu kül ilave edilmesi donma-çözülme dayanıklılığını
azaltmaktadır. Bu yüzden, kiş aylarının sert geçtiği bölgelerde uçucu kül kullanılmamalıdır. Bu gibi bölgelerde, bağlayıcı ağırlığının %10’u üzerinde silis dumanı (silica fume) kullanılması, mukavemet ve dayanıklılığı artırılmaktadır.

Prizi geciktiriciler ve plastikleştirciler (plasticizers) bazı ülkelerde, şartnamelerde belirtilen işlenebilirlik süresini elde etmek için yaygın olarak kullanılmaktadır. Katkı maddesi ile sağlanan gecikme süresinde bağlayıcı prizi başlatmadığı için, karşışım iç yapısı bozulmadan sıkıştırılabilmektedir. Hava sürükleyici katkı maddeleri, SSB kaplama karşışımında sınırlı olarak kullanılmaktadır. Laboratuvar araştırmaları homojen bir şekilde hava dağılımı sağlandığında, don nedeniyle meydana gelecek zararların azaltılabilmesi gerektiğini göstermiştir.

7.2 SSB Karışım Tasarımı

Kıvamlılık testlerini içeren karışım oranlarını belirleme yöntemleriyle; su oranı, bağlayıcı malzeme oranı veya agrega oranı gibi karışım parametreleri belirlenmektedir. Daha sonra da serme ve sıkıştırma için gerekli olan kivamı elde edebilmek için parametrelerden biri değiştirilmektedir. Geleneksel beton ve SSB’nin karışım bileşimin oranlarını saptama işlemlerini aynıdır.

Karışım bileşimin oranlarını saptama işlemlerindeki küçük farklar, taze SSB’nin kivamının yüksek olması, geleneksel gradasyon dışında gradasyon kullanılmasından ve sıkıştırma işlemlerinden kaynaklanmaktadır. SSB’nin, geleneksel betondan farklı özellikleri şunlardır: SSB, hava kabarcıklı beton değildir, SSB, düşük su oranına sahiptir, SSB, düşük çimento, uçucu kül ve su oranına sahiptir, SSB’de ince agrega oranı yüksektir. SSB ile geleneksel beton kaplama arasındaki agrega gradasyonu karşılaştırması Şekil 7.2’de gösterilmiştir. [16]

Sertleşmiş beton üzerinde, mekaniksel dayanmaların belirlenmesinin yanı sıra, kısıtlı sert geçen ülkelerde, donma ve aşınmaya karşı direnç testleri de uygulanmaktadır. Mekaniksel dayanımlarla ilgili; basınç, eğilme ve yarmada çekme testlerinin kullanılabilmesi belirtilmiştir. Fransa ve İspanya’da yarmada çekme dayanımının 3,3 MPa olması gerektiği, düşük hacimli yollar için ise 2,8 MPa’ in yeterli olacağı açıklanmıştır. Almanya’da SSB kaplamalar için önerilen yarmada çekme dayanımı 3,0 MPa, basınç dayanımı 40 MPa olup, SSB ile yapılmış temeller için yarmada çekme dayanımı 2,7 MPa ve basınç dayanımı 30 MPa’dır. Testlerin uygulanma zamanı genellikle 28. gündür. İspanya’da çimentoğra büyük oranda uçucu kül gibi aktif madde katıldığı için 90. gün sonunda testler yapılmaktadır. İsveç’teki SSB için uçucu kül gibi aktif maddeler katılmadığı için, geleneksel betonlarda olduğu gibi sağlanması gerekli olan 28. gün basınç dayanımı 40 MPa’dır. Geleneksel testlerin donma direncini laboratuvara doğru olarak belirleyemediğini düşünen araştırmacılar yeni test yöntemlerinin geliştirilmesi gerektiğini belirtmişlerse de ABD’nin kuzeyi, Kanada, İsviçre ve Norveç gibi soğuk bölgelerdeki kaplamaların iyi performans gösterdiğini görülmüştür. Kısa mevsimlerde çivi lastik kullanılan ülkeler için aşınma direnci çok önemlidir. Norveç’teki yapılan bir çalışma SSB kaplamaların aşınmaya karşı, beton asfalt kaplamalardan daha dirençli olduğunu göstermiştir.

7.3 SSB Kaplamalar İçin Tasarım Yöntemleri

SSB’nin kullanılğı birçok ülkede, SSB ile yapılan kaplamaların tasarımını, geleneksel betonlar için kullanılan yöntemlerle yapılmaktadır. ABD’de, Portland Çimento Birliği ve Mühendisler Kurulunun her ikisi de SSB kaplamaların tasarımını için, geleneksel beton kaplamaların tasarımında kullanılan yöntemleri yeniden

Yapım; karştırma ve taşma, serme, sıkıştırma, derzler ve kür işlemi olmak üzere 5 başlıkta incelenmiştir.

7.3.1 Karştırma ve Taşma

7.3.2 Serme

7.3.3 Sıkıtırma
İlk sıkıtırma titreşimli çelik bandalı silindir ile yapılmaktadır. 10 ton ağrılğa sahip çift tamburlu titreşimli silindir ile en az dört geçiş yapılmaktadır. Titreşimli silindirlerde manevra sırasında kesinlikle titreşim yapılamalıdır. İlk sıkıtırma ardından, 20-30 tonluk lastik tekerlekli silindir ile iki veya daha fazla geçiş yapılmaktadır. Lastik tekerlekli silindir ile yapılan sıkıtırma sayesinde titreşimli sıkıtırma sonrasında ortaya çıkan kusurlar ve küçük boşluklar kapatılmaktadır. Titreşimli ve lastik tekerlekli silindirler sonrasında yolda silindir izleri varsa statik çift tamburlu silindirle bir geçiş yapılmaktadır. Kaplama yüzeyine zarar vermemek

7.3.4 Derzler
Enine derzler, iklim koşullarına ve SSB’nin dayanımına bağlı olarak birkaç saat ile birkaç gün arasında kesilmektedir. Fransa, Almanya ve İspanya’da, kaplama tam olarak kurumadan kesilerek derzler yapılmaktadır.

7.3.5 Kür İşlemi

7.4 Üstünlük Ve Sakıncaları
SSB kaplamalar, geleneksel beton kaplamaların beton asfalta kaplamalar üzerinde sahip olduğu üstünülklere sahip olduğu gibi, geleneksel beton kaplamaların bazı sakıncalarını da yok etmektedir.

7.4.1 Üstünlükleri
Beton kaplamaların, beton asfalt kaplamalarına göre üstünülkleri aşağıda verilmiştir.
• **Daha Yüksek Mukavemet ve Daha Uzun Ömür**

Beton kaplamaların bilinen en önemli üstünlüklerinden biri, yüksek mukavemet ve uzun ömre sahip olmasıdır. Bu yüksek mukavemeti ve uzun ömür sayesinde, bakım masrafları ve bakım çalışmaları nedeniyle meydana gelebilecek gecikmeler azalmaktadır.

![Şekil 7.3: Kaplama maliyetlerinin karşılaştırılması.](image)

77
• **Kısa Duruş Mesafesi**

Beton kaplamının yüzey pürüzlülüğü, kullanıcılar için sürüș güvenliği göz önüne alındığında önemlidir. Tekerlek izi oluşan kaplmalarda, yağışlar sırasında tekerlek izi içinde su birikir ve taban zemine geçebilir. Ayrıca soğuk havalarda tekerlek izi içine yerleştirilen kaplamada, tekerlek izinin sürüș güvenliğine etkisi önemlidir. Illinois Üniversitesi tarafından sunulan “Beton asfalt yol yüzeylerindeki oyulmalar ve tekerlek izinin sürüş güvenliğine etkisi” isimli çalışmadan, beton yüzeyindeki durma mesafesinin, beton asfalt yüzeyindeki durma mesafesinden daha kısa olduğunu (özellikle beton asfalta iplak ve tekerlek izi oluşmuş durumda), gösterilmiştir. Şekil 7.4’de verilen değerlerde taban zeminine su geçmesi hesaba alınmıştır. Taban zeminine su geçme etkisi göz önüne alındığında beton asfalt yüzeyde durma mesafesi daha da azalacaktır. [5]

![Şekil 7.4 : Beton asfalt ve beton yollarda durma mesafeleri.](image)

• **Tekerlek İz Oluşumuna Karşı Direnç**

• **Ağır Taşıtlarda Enerji Tasarrufu**

Ağır taşıtlar, beton asfalt kaplmalarda beton kaplamaları gibi büyük çökmeye sebep olurlar. Kaplamadan oluşan deformasyon nedeniyle taşıt...
hareket ederken enerjisinin bir kısmını kaybeder. Bu yüzden, beton asfalt kaplamalarda taştın hareketinin sağlanması için daha fazla enerjiye ihtiyaç duyulmaktadır. Beton kaplamalarda, yolda deformasyon oluşmadığı için enerji kullanımını azalmaktadır. (Şekil 7.5)

Şekil 7.5 : Beton asfalt ve beton kaplamalarda sıcaklığa bağlı olarak yakıt tüketimi.

[5]

- **Daha İyi Gece Görüşü**

Beton kaplamalar, sürücülerin gece görüşünü artırmaktadır. Beton kaplama daha açık renklidir ve daha koyu olan beton asfalt kaplamaya göre aracın ışığını daha fazla yansıtacaktır. (Şekil 7.6) [5]

Şekil 7.6 : Beton asfalt ve beton kaplamalarda gece görüşü [5]

- **Malzeme Geri Dönüşümü**

Silindirle sıkıştırılmış beton tanelleri molozdan elde edilen kum, parçalanmış zift içermeyen asfalt molozu, parçalanmış taşlar ve beton moloz karışımını, parçalanmış tuğla molozları içerebilir.

Moloz tanelleri içeren silindirle sıkıştırılmış beton minimum 300 kg/m3 çimento içermek zorundadır. 90 gün sonunda ortalama basınç mukavemetinin
30 MPa olmalıdır. Eklenen su muhtevası %4-7 yerine %10-12 mertebesindedir. Su oranının fazla olması doğal malzemeler ile elde edilen betonla karşılaştırıldığında buzülme (rötre çatlakları) miktarının %50-100 oranında fazla olmasına yol açar. Bu durumu önlemek için beton yüzeyin 6-8 cm altına 150*150*10’luk takviyeler konulması ise yararabilir ancak genelde yetersiz kalır. Moloz malzeme oranını %50’ lerde sınırlamak daha iyi bir çözümdür. [6]

7.4.2 Sakıncaları

8. SONUÇLAR

SSB, özel bir yapım ekipmanı gerektirmediği ve geleneksel beton kaplamaya göre maliyeti az olduğu için düşük hızlı trafiğe hizmet verecek kaplamalar için uygun bir teknik olmaktadır. Geleneksel betonda kullanılan malzemelerle daha iyi mühendislik özelliklerine sahip kaplama yapılabilmeaktadır. Beton asfalt ile karşılaştırıldığında birçok üstünlüğe sahiptir. Ön sıkıştırma işlemini daha iyi yapabilecek sericilerin geliştirilmesiyle, silindir geçiş sayısı azaltılacak, sürücü konforu artırılacaktır.

Türkiye petrolde dışa bağımlı bir ülke olmasına karşılık çimento sanayi çok gelişmiştir. Bir petrol ürünü olan asfalt çimentosu kullanılarak yapılan kaplamalar yerine SSB kaplama kullanımına başlanması ile daha ekonomik ve uzun ömürlü yollar inşa edilmeye başlanabilecektir. SSB karışımının gelişmiş ülkelerde olduğu gibi hazır beton üreticilerinden alınmasıyla, kaliteli bir kaplama elde edilebilecektir.
KAYNAKLAR

ÖZGEÇMİŞ

Ad Soyad: Oktay ÇETİN

Doğum Yeri ve Tarihi: Erzincan 1980

Lisans Üniversite: Yıldız Teknik Üniversitesi