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İÇİN GELİŞTİRMEK
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Tez Danışmanı: Prof. Dr. Dursun Zafer ŞEKER
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EXTENDING OPENSTREETMAP USAGE FOR
ADVANCED ROUTING SERVICES

SUMMARY

The last two decades have evidently witnessed a sudden boom in Information and
Communication Technologies (ICT), which include any communication device or
application like cellular phones, computer hardware, satellite systems and so on.
This has resulted into a massive flooding of geo-tagged information, efficiently being
handled by specialized Information Systems, aka Geographic Information System
(GIS). This massive or big data has contemporaneously led to the opportunities of
various geo-services, targeted for specific use-cases. However, because of primarily
being collected, managed, stored and distributed by Governmental and National
Mapping Agencies, there has always been a data access check for general users
and other low/mid class service-providers, except for those who can afford data’s
lofty pricing. The advent of Web2.0 technology, in this sense, has proven to be a
game changer, by allowing any end-user to generate, upload and disseminate his/her
own geo-data. Systems designed for these kind of data management are termed as
Volunteered Geographic Information (VGI) (introduced by Michael F. Goodchild).
One such famous, if not the famous, VGI project is OpenStreetMap (OSM), founded in
2004 by Steve Coast. Since genesis, this open-geo-data project has gone too far with
worldwide 9 billion mapped locations (nodes), 0.4 billion traced lines (ways), and
4.5 million sketched polygons (relations), generated by 3.1 million registered users,
approximately (November 2016 stats). It has clearly generated huge opportunities for
researchers to test their hypotheses on real-data, developers to structure meaningful
geo-services, analysts to study factual trends, and so on.

Primarily, OSM services can be classified into two categories, namely, Thematic
Mapping Service (TMS) and Vehicle Routing Service (VRS). One popular and
currently active VRS is Open Source Routing Machine (OSRM), which runs on top
of the OSM data to provide shortest routes between destinations, along with many
other small-scaled services targeted for specific users. Generally, these providers fail
to assimilate the state-of-the-art scientific findings into their services and lag more
advanced routing options. This substantial gap between developers and researchers
has conceptualized this presented thesis. It has been understood that a more structured
study of OSM’s suitability for VRS will bring forth better routing-services in future.
An attempt has been done to understand the current trend in OSM evolution and
where the project is heading towards. Few existing lags in its road data are identified,
which are supposed to tamper its usage applicability. Furthermore, one advanced
routing query is attempted to solve from an spatial perspective, backed by scientific
evidences in order to structure more featured services. The following four chapters
are documented in this fashion, with corresponding gist provided in the following
paragraphs.
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The 2nd chapter of this thesis, entitled Analysing the growth and governing factors
of Turkey OpenStreetMap dataset, has tried to understand how good OSM data-set
is for any plausible routing-service’s formulation. Because of having a no single
criteria to measure it, it has always been a topic of revision. Nevertheless, it has
been tried to picture this hypothesis by scrutinizing its spatial evolution with time
for the political region of Turkey, as backed by other researchers too (Pengxiang
Zhao for Beijing city, China) as one solid proxy. Although, the initial attempt was to
provide a global commentary, Turkey region is studied as one missing link in on-line
literature. Likewise conducted researches are quite discrete so far, leaving a room for
global study for more generalized commentary. Yet, conducted analysis has sufficed
data’s usability at regional level. Furthermore, an attempt has been done to relate this
evolution as a function of human-based parameters of the region, namely, literacy level,
population density, tourism activity, internet usage, and human development index, as
recommended by Neis Pascal as possible governing factors. The time-series statistical
analysis of a region helps to answer many questions which govern shaping that OSM’s
ecosystem. An attempt to answer many relevant questions could be find in the final
sections of the next chapter.

The key parameter to improve a routing-service is its underlying road length’s
precision. In chapter 3, entitled Improving OpenStreetMap derived road length on
a global scale using Curve Fitting approach, an attempt has been done to improve
the existing methodology to estimate curved-road length by adopting piecewise cubic
parametric polynomial curve fitting approach, which is proven to be a good way
to enhance best fit to series of data-points. Existing OSM data handling tools
estimate euclidean length between nodes, constituting a curved-road section, and
thereby, avoid road curvature factor altogether. Things get severe at places like
round-abouts. Practically, it is unattainable to trace down these kind of sections
with tolerable precision as it requires extensive mapping efforts by mappers, and will
remain unmanageable for OSM servers too. Unfortunately, no conducive work to
tackle this problem is done by other researchers in any peer-reviewed journal, may
be because of its simplicity to grasp and fix, nevertheless, it has been perceived to be
one valid gap which is necessary to be filled with scientific proofing. Key findings
and proposed methodology’s limitations are discussed comprehensively in the final
sections of 3rd chapter. Additionally, a web-GUI is developed as one handy data
visualization platform.

Once the OSM’s usage possibility understood and road’s data quality improved, a
detailed study has been done to answer a more advanced routing query called the
Equality-Generalized Traveling Salesman Problem (E-GTSP), which is an extension of
the world famous Traveling Salesman Problem (TSP), by testing over real-city’s OSM
data. It is one NP-hard combinatorial optimization problem, with plethora of literature
already available on-line with sub-optimal to optimal solutions. A more recommended
dynamic programming approach to solve the E-GTSP is by transforming it to
corresponding TSP, as there already exists a range of TSP solvers. However, all
existing E-GTSP to TSP transformation algorithms are mathematical by origin, leaving
applicability difficult for untrained users for routing models. A new approach to
achieve this transformation for near-optimal solution involves considering the spatial
spread of vertices within a given city’s road-network’s graphs, as explained thoroughly
in 4th chapter, entitled A new spatial approach for Efficient Transformation of
E-GTSP to TSP. 5 different search algorithms are developed for possible tests on
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real-data of 15 cities worldwide, with 5 instances each, where each instance represents
the total number of groups withing that routing model.

The 5th chapter, entitled An attempt to reduce an E-GTSP instance size for GLKH
solution, is all about improving the model presented in 4th chapter. A new custom cost
of vertex, Cost Product, is coined to reduce the dimension of instance before solving it
a given GLKH solution. The shrinked matrices generated using this cost are compared
with tested matrices that were obtained from GTSPLIB, for cost error, time, and space.
It is observed that for time and space measurements, shrinked matrices are better of
the order of 2nd degree polynomial than original ones. It is observed that percentage
cost error is a function of average number of vertex per cluster and is bounded within
specific range for different scenarios. The Cost Product is observed to be one custom
cost that could be used to reduce the size of a given E-GTSP instance before solving it
using GLKH. Key findings and general commentary are provided in the final section.

Findings of the subsequent four chapters have helped us to partially answer the
following questions: How good OSM data-set is for an advanced E-GTSP-solver
routing-service, and how underlying route length’s precision can be improved for
better results?. This study is expected to open future research possibilities for scientists
and researchers in the field of VGI, OSM, VRS, and open geo-data, and assist
developers to adopt good practices for improved services, as stated in each chapter’s
conclusion section. Nevertheless, a general conclusion is provided in the last chapter.
Future work might involve the identification of better socio-economic proxies for OSM
node density evolution, along with the identification of street network of different
kind. The developed R-Search methodology could be improved by the use of machine
learning and heuristic concepts. Statistical analysis to identify overshot nodes would
be useful to check out road sections not suitable for curve fitting. A general possibility
of future work is provided in the conclusion chapter.
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OPENSTREETMAP KULLANIMINI İLERİ YÖNLENDİRME HİZMETLERİ
İÇİN GELİŞTİRMEK

ÖZET

Son yirmi yıldır, cep telefonu, bilgisayar donanımı, uydu sistemleri gibi her türlü
iletişim cihazını veya uygulamaları içeren Bilgi ve İletişim Teknolojilerinde (BIT)
hızlı bir artış yaşanmıştır. Bu durum, Coğrafi Bilgi Sistemi (CBS) gibi özel bilgi
sistemleri tarafından coğrafi etiketli verilerin büyük bir yoğunlukla etkin bir şekilde
ele alınmasına neden olmuştur. Bu devasa ya da büyük veri eşzamanlı olarak,
belirli kullanım durumları için hedeflenen çeşitli coğrafi hizmetlerin ortaya çıkmasını
sağlamıştır. Ancak, bu tür verilerin genel olarak devlet ve ulusal harita kurumları
tarafından öncelikli olarak toplanması, yönetilmesi, depolanması ve dağıtılması
gerçekleştirildiği için bu verileri satın alma gücüne sahip olamayan genel kullanıcılar
ve diğer düşük ya da orta sınıf hizmet sağlayıcılar için her zaman bir erişim kontrolü
olmuştur. Bu anlamda, Web2.0 teknolojisinin ortaya çıkması, herhangi bir son
kullanıcının kendi coğrafi verilerini oluşturmasına, yüklemesine ve yaymasına izin
vererek mevcut sistemi değiştirebileceğini kanıtlamıştır. Bu tür veri yönetimi için
tasarlanan sistemler Gönüllü Coğrafi Bilgi (GCB) (Michael F. Goodchild tarafından
tanıtılmıştır) olarak adlandırılmaktadır. Çok bilinen bir GCB projesi Steve Coast
tarafından 2004 yılında kurulan OpenStreetMap (OSM) dir. Bu açık konum verisi
projesi, Kasım 2016 istatistiklerine göre dünya genelinde 9 milyar lokasyon (nokta),
0,4 milyar çizgi (yol) ve 3.1 milyon kayıtlı kullanıcı tarafından oluşturulan 4.5 milyon
poligon (ilişkiler) verisi ile çok fazla gelişme göstermiştir. Böylece, araştırmacıların
gerçek veriler hakkındaki hipotezlerini test etmek, geliştiricilerin anlamlı coğrafi
hizmetlerini yapılandırabilmeleri ve analistlerin fiili eğilimleri incelemek gibi bir çok
alanda oldukça büyük fırsatlar geliştirilmiştir.

OSM hizmetleri öncelikle, Tematik Harita Servisi (THS) ve Araç Yönlendirme Servisi
(AYS) olmak üzere iki sınıfa ayrılabilir. Günümüzde aktif ve oldukça yaygın AYS,
belirli kullanıcılar için hedeflenen bazı küçük ölçekli servislerin yanı sıra, hedefler
arasında en kısa rotaları sağlamak için OSM verileriyle çalışan Açık Kaynak Kodlu
Yönlendirme Aracıdır (AKYA). Genel olarak, bu sağlayıcılar son teknoloji ürünü
bilimsel bulguları kendi hizmetlerine ve daha gelişmiş yönlendirme seçeneklerine
sağlamakta başarısız olmaktadırlar. Geliştiricilerle araştırmacılar arasındaki bu önemli
farklılık, sunulan bu tez çalışmasında kavramsallaştırılmıştır. OSM’nin AYS’ye
uygunluğunun daha yapılandırılmış bir çalışma ile ele alınmasının gelecekte daha
iyi yönlendirme hizmetleri sağlayacağı anlaşılmıştır. OSM evrimindeki mevcut
eğilimi anlamak ve OSM projesinin nereye doğru gittiğini anlamak için bir girişimde
bulunulmuştur. Kullanım olanaklarını etkilemesi beklenen yol verilerindeki az sayıda
eksiklik tanımlanmıştır. Dahası, daha gelişmiş hizmetlerin yapılandırılması için
bilimsel kanıtlarla desteklenen, bir mekânsal perspektiften, bir gelişmiş yönlendirme
sorgusu çözülmeye çalışılmıştır. Tezde yer alan sonraki dört bölüm, bu bakış açısıyla
hazırlanmıştır.
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Türkiye OpenStreetMap veri setinin büyüme ve yönetim faktörleri başlıklı bu tezin
2. bölümünde herhangi bir makul yönlendirme hizmetinin formülasyonu için ne
kadar iyi bir OSM veri setinin olduğu anlaşılmaya çalışılmıştır. Ölçmek için tek
bir ölçüt olmamasından dolayı, her zaman bir revizyon konusu olmuştur. Yine
de, bu hipotezi, diğer araştırmacılar tarafından da (Pekin şehri, Çin için Pengxiang
Zhao) tek bir örnekle desteklendiği gibi, Türkiye’nin siyasi bölgesi için zamanla
mekansal evrimini inceleyerek açıklamaya çalışılmıştır. İlk girişim küresel bir yorum
sağlamak olsa da, Türkiye bölgesi çevrimiçi literatürde eksik bir bağlantı olarak
ele alınmıştır. Benzer şekilde, araştırmalar şu ana kadar oldukça ayrıktır ve daha
genelleştirilmiş yorumlar için küresel çalışma için bir alan bırakmaktadır. Ancak,
yapılan analizler, verilerin bölgesel düzeyde kullanılabilirliğini göstermiştir. Dahası,
bu gelişmeyi, Neis Pascal’ın olası bir yönetim olarak önerdiği gibi, bölgenin insan
temelli parametrelerinin, yani okur-yazarlık seviyesinin, nüfus yoğunluğunun, turizm
faaliyetinin, internet kullanımının ve insani gelişme endeksinin bir fonksiyonu olarak
ilişkilendirmek için bir girişimde bulunulmuştur. Bir bölgenin zaman serisi istatistik
analizi, OSM’nin ekosistemini şekillendiren ve yöneten birçok soruyu cevaplamaya
yardımcı olmaktadır. Birçok ilgili sorunun cevaplanması, bir sonraki bölümün son
bölümlerinde yer almaktadır.

Bir yönlendirme servisini iyileştirmek için anahtar parametre, temel yol uzunluğunun
doğruluğudur. Eğri uydurma (Curve Fitting) yaklaşımı kullanılarak OpenStreetMap
ten türetilmiş yol uzunluğunun küresel ölçekte geliştirilmesi başlıklı 3. bölümde,
mevcut olduğu kanıtlanmış, parçalı kübik parametrik polinom eğri uydurma
yaklaşımını benimseyerek, kavisli yol uzunluğunu tahmin etmek için mevcut
metodolojiyi geliştirmek için bir girişimde bulunulmuştur. Mevcut OSM veri işleme
araçları, noktalar arasındaki Öklid uzunluğunu tahmin ederek eğri yol kesiti oluşturur
ve böylece yol eğriliği faktörünü tamamen ortadan kaldırır. Bu durum keskinliklerin
ortadan kalması durumunda daha da artmaktadır. Pratik olarak, bu tür bölümleri
haritacılar tarafından kapsamlı haritalama çabaları gerektirdiğinden tolere edilebilir
hassasiyetle takip edemez ve OSM sunucuları için de yönetilemez duruma gelir.
Ne yazık ki, bu sorunun çözümüne yönelik bir çalışma, belki de kavramanın ve
düzeltmenin basitliğinden dolayı herhangi bir hakemli dergide başka araştırmacılar
tarafından yapılmamıştır. Ancak bilimsel kanıtlama yoluyla doldurulması gereken
bir boşluk olduğu düşünülmektedir. Temel bulgular ve önerilen metodolojinin
sınırlamaları 3. bölümün son kısmında kapsamlı olarak ele alınmıştır. Ayrıca, bir
web tabanlı grafik kullanıcı arayüzü bir kullanışlı görselleştirme platformu olarak
geliştirilmiştir.

OSM’nin kullanım olasılığı anlaşıldıktan ve yolun veri kalitesi iyileştirildikten sonra,
dünyaca ünlü Gezgin Satıcısı Probleminin bir uzantısı olan Eşit-Genelleştirilmiş
Gezgin Satıcısı Problemi (E-GGSP) adı verilen daha gelişmiş bir yönlendirme
sorgusuna cevap vermek için gerçek uygulama alanında OSM verilerini test ederek
ayrıntılı bir çalışma yapılmıştır. Bu optimal çözümler için literatürde yer alan bir
optimizasyon problemidir. E-GGSP’ni çözmek için daha fazla önerilen bir dinamik
programlama yaklaşımı, bunun mevcut birçok GSP dönüştürücüsü kullanılarak karşı
geldiği GSP ne dönüştürmektir. Ancak, mevcut tüm E-GGSP’nin GSP dönüşüm
algoritmalarına göre kökeni matematikseldir ve yönlendirme modelleri için eğitimsiz
kullanıcılar için uygulanabilirliğini zorlaştırmaktadır. Bu dönüşümün optimale
yakın çözümü için gerçekleştirecek yeni bir yaklaşım, E-GGSP’nin GSP’ye verimli
dönüşümü için yeni bir mekânsal yaklaşım başlıklı 4. bölümde ayrıntılı olarak
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açıklandığı gibi, belirli bir şehrin karayolu ağı grafikleri içindeki köşe noktalarının
mekansal yayılımını göz önünde bulundurmayı kapsar. Dünya çapında 15 şehrin
gerçek verileri üzerinde olası testler için 5 farklı arama algoritması geliştirilmiştir. Her
bir örnekte, bu yönlendirme modeline sahip grupların toplam sayısı gösterilmektedir.

Başlığı GLKH çözümü için bir E-GGSP örnek büyüklüğünü azaltma girişimi olan 5.
bölüm, 4. bölümde sunulan modeli geliştirmekle ilgilidir. Kırık noktalarının yeni bir
maliyeti, , belirli bir GLKH çözümünü çözmeden önce örnek boyutlarını azaltmak
için üretilir. Bu maliyet kullanılarak üretilen daraltılmış matrisler, maliyet hatası,
zaman ve alan için GTSPLIB’den elde edilen test matrisleri ile karşılaştırılmıştır.
Zaman ve uzay ölçümleri için, büzülmüş matrislerin orijinal derecelere göre 2. derece
polinoma göre daha iyi olduğu gözlenmiştir. Yüzde maliyet hatasının, kümelenme
başına ortalama kırık sayısının bir fonksiyonu olduğu ve farklı senaryolar için belirli
bir aralık içinde sınırlandığı gözlemlenmiştir. Maliyet ürününün, belirli bir E-GGSP
örneğinin boyutunu GLKH kullanarak çözmeden önce azaltmak için kullanılabilecek
bir özel durum olduğu görülmektedir. Son bölümüde temel bulgular ve genel yorumlar
yer almaktadır.

Birbirini izleyen dört bölümün bulguları, aşağıdaki soruların kısmen yanıtlanmasına
yardımcı olmuştur. Gelişmiş bir E-GGSP çözücü yönlendirme hizmeti için ne kadar iyi
OSM veri kümesi kullanılmalıdır ve daha iyi sonuçlar için yol uzunluğunun hassasiyeti
nasıl geliştirilebilir? Bu çalışmada, GCB, OSM, AYS ve açık coğrafi veriler alanındaki
bilim adamları ve araştırmacılar için yeni araştırma olanaklarını açması ve her
bölümün sonuç kısmında belirtildiği gibi, geliştiricilerin daha iyi hizmet sunabilmeleri
için uygulamaları benimsemelerine yardımcı olması beklenmektedir. Bununla birlikte,
son bölümde genel sonuçlara yer verilmiştir. Gelecekteki çalışmalar, OSM nokta
yoğunluğu evrimi için daha iyi sosyo-ekonomik verilerin tanımlanmasını ve farklı
türdeki yol ağlarının tanımlanmasını içerebilir. Geliştirilmiş R-Arama yöntemi,
makine öğrenimi ve sezgisel kavramlar kullanılarak geliştirilebilir. İstatistiksel analiz
yardımıyla gereksiz noktaları tanımlamak ve eğri uydurma için uygun olmayan
yol bölümlerini kontrol etmek mümkün olacaktır. Sonuç bölümünde genel olarak
gelecekte gerçekleştirilebilecek çalışma olasılığı sunulmuştur.
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1. INTRODUCTION

With global urban population expected to grow from 4.9 to 7.4 billion between

the years 2014 and 2050, there is a worldwide need for smart urban transportation

solutions. Almost 90% of this increase is expected to take place in developing

nations, primarily from Asia and Africa [155]. It is believed that by 2050, there

would be around 2-3 billion vehicles running in the world [156]. Smart urban

solution refers to the use of Information and Communication Technologies (ICT) to

optimize city functions and drive economic growth, primarily by the use of emerging

automation, machine learning and advanced routing algorithms. [73] has defined smart

urban mobility as the use of technology to generate and share data, information and

knowledge that influences decisions to enhance vehicles, infrastructure and services.

Smart mobility is a system that requires optimised geo-data and optimised routing

algorithms to run on top of it. With over 50 different public and private routing projects

using the free availability of OpenStreetMap (OSM) dataset, it is believed to be one

continuously evolving dataset to built any routing service on top of. Few aspects,

however, are necessary to consider before understanding its suitability for routing

services. These are how the data is changing and behaving with time and how accurate

the dataset is for routing use-case. Routing algorithm, however, remains independent

of these aspects as any dataset could be used with it. Nevertheless, it should be studied

along with underlying dataset to find any semantics dependency. Improving routing

algorithm involves optimising mathematical ways to find a near optimal route within

a given time and space. The whole thesis is structured in this manner. The first two

chapters, primarily, talk about the dataset and the last two chapters talk about routing

algorithm’s optimisation.

This age of online-data dissemination with no physical constraints and bottlenecks

is allowing narrowly targeted goods and services as economically attractive as

mainstream businesses ([128], [2]). For example, Wikipedia holds a huge pile of online

free-content and competes with proprietary Encyclopedia Britannica. This approach

1



has even allowed amateur cartographer or citizen to upload tagged geo-data of any

region to online servers [104]. OpenStreetMap (OSM) is one classic example of this

kind which started in 2004, with objective to establish a free and editable map of

the world. This VGI has recently gained huge popularity by providing big volume

data with limited or no restrictions [163]. By the end of 2015, there were around 5

billion GPS points, 3 billion nodes and 4 million relations in OSM dataset [127]. It is

important to understand what spatial evolutionary pattern does Turkey-OSM dataset

have followed since 2007 to predict the future of it as has already been done by

researchers for other cities ([167], [41], [19], [18], [162], [60]). The time-series

statistical analysis of a region helps to answer the following questions, which govern

shaping that OSM’s ecosystem: What is the mapping behaviour at more refined zoom

level? • What are the few local restrictions to be handled separately? • Which

areas require more mapping efforts? • What is the psychology of a mapper behind

volunteered activity? • How much data is prone to vandalism or already affected

by it? • How the project should be treated locally in future? Factors used for this

analysis are Literacy Level (graduated students), Population Density, Tourism Activity,

Internet Usage [84], and Human Development Index (HDI). 2nd chapter primarily talks

about the evolution of dataset and reports crucial finding. No acknowledged study

regarding Turkey-OSM dataset spatial evolution, socio-economic factors impact on

such evolution, contributors involvement and general commentary on data health is

present in online literature. Conducting this study is therefore essential to bring forth

VGI responses at higher resolution (spatial and temporal) in developing country ([163],

[66], [162]) like Turkey with fairly rich OSM dataset (17 million points, 1.3 million

edges AKA lines, and 0.4 million polygons [124]). This analysis is also important for

any VRS development that leverages its open geo-dataset for underlying graphs. 2nd

chapter, thus, primarily talks about how to obtain an improved geo-attribute from OSM

dataset for VRS and other urban planning tasks, like road network visualisation, urban

construction etc.

The broad range of applications of OSM has encouraged researchers and developers to

collaboratively develop tools like osm2pgsql, osmium, osmosis, osm2pgrouting etc. to

handle, manipulate and tweak its Extensible Markup Language (XML) data. Many

services online leverage its raster and vector dataset for different use cases [131].

2



These services could be broadly divided into Thematic Mapping and VRS [54]. In

cartography, map generalisation is used to reduce feature details [96]. It is being

done by mappers while uploading features in VGI projects like OSM. There is no

one reason for mappers generalising features, ranging from time availability etc. to

poor background imagery ([98], [78]). It is observed that a reverse-generalisation of

linear features is fruitful for better geo-attribute estimation. Chapter 3 talks about

a curve fitting approach to obtain improved geo-attributes, that otherwise is missing

in raw XML data. For curved road sections this kind of curve fitting is highly

crucial. Instead of using Euclidean formula, a cubic parametric polynomial curve

fitting algorithm, based on Pythagoras and Mean-Value theorem, is derived. The main

objective of this chapter is to explain a data processing limitation in OSM ecosystem

and a quick fix to it. The derived equation is applicable for any VGI with XML data

format. Quality assessment done by other researchers primarily work on raw data set

by comparing it with other governmental/proprietary data set ([43], [66]), by using

indirect approaches like Linus Law ([42], by using contributors count as quality proxy

([84], [84], [78]), by developing intrinsic quality assessment parameter/tools ([82],

[36], [31]) and by reviewing its change set dump file [5]. This way, they do not

consider the derived attributes after download post-processing. No online literature

in peer-reviewed journal is available to be used as benchmark for this study. Once

improved, this value is crucial for services where road length value is primarily used

like vehicle navigation and routing like the world famous TSP.

Travelling Salesman Problem (TSP) is a well-known and thoroughly studied

combinatorial optimisation problem that asks to find a minimum-cost Hamiltonian

cycle in G [46] connecting each node in a graph exactly once. It has numerous

applications in areas like vehicle routing, networking, sequencing, scheduling,

communication etc. [67] and therefore has attracted researchers for decades. A

detailed classification of different type of TSPs and their solutions is done by [91].

Generalized-TSP (GTSP) is a direct extension of TSP [51] where the set of nodes is

further divided into a number of groups and the task is to find a minimim-cost cycle

passing each group exactly once. It has huge relevance in location based problems like

routing, logistics, urban planning, telecommunication etc. Many advanced heuristics to

solve its complexity include Ant Colony algorithm [161], Memetic algorithm ([10] and
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[38]), Variable Neighbourhood Search algorithm [53], Random Key Genetic algorithm

[100], Reinforcing Ant Colony system, Efficient Composite heuristic [93] etc. Chapter

4 talks about a spatial approach to reduce an E-GTSP instance to TSP before solving

it using some TSP solver like the state-of-the-art Lin-Kernighan-Helsgaun [50]. Since

the attempt is to see how good or bad the OSM dataset is for vehicle routing services,

a spatial approach is followed for this transformation problem. Five possible search

algorithms are proposed and tested on OSM street-network dataset to decide how to

reduce the instance size. No key literature for this type of spatial transformation of

E-GTSP is available online.

Finally, we have tried to improve the proposed R-Search model by defining a new cost

value, called as Cost Product. It is formulated to reduce the overall cost-matrix size for

fast and low-spaced computation. This new matrix systematically reduces the cluster

size by keeping the probability of finding the best and optimal vertex in each cluster

high. Results in terms of time, space, and cost error are compared with results drawn

from the state-of-the-art GLKH solution [150]. Chapter 5 talks about it’s nature of

being bounded and how coefficient of variation limits the probability of finding optimal

node within X%. Cost Product, thus, is applicable for any kind of instances, and not

just instances representing routing problem. The proposed hypothesis of relationship

between cost error, probability, coefficient of variation and X% is justified by the

observed curve, which turned out to be inversely proportional.

All chapters attempt to answer the question of how efficiently the OSM dataset of a

developing country, like Turkey, could be used for advanced vehicle routing problems.

It has also been attempted to see if derived geo-attributes from OSM XML format

could be improved with any tweak in existing algorithms. Results are promising and it

has been observed that although OSM project has a long way to go, there are ways to

understand the quality of derived attributes and, indeed, it could be used for advanced

routing problems like E-GTSP, especially for rich graphs. A general conclusion and

recommendation is provided by the end of each chapter and the last one. Developed

codes and concepts are freely available online at my Github repository and is open

under the MIT license.
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Figure 1.1 : Graphical abstract of the whole thesis.
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2. ANALYSING THE GROWTH AND GOVERNING FACTORS OF TURKEY
OPENSTREETMAP DATASET

2.1 Abstract

Plethora of studies have already been conducted in recent years about OpenStreetMap

(OSM) project covering many aspects for developed countries and major world cities

with limited attention on the developing ones. This paper presents an analysis of the

spatial evolution of Turkey-OSM dataset from 2007 to 2015 year, and shows how

it is related to different socio-economic factors of the region. Major key findings

from this analysis are (a) an east-west spatial biasedness in OSM features density

is observed in the country, (b) there is a high direct correlation between Population

Density and Literacy Level with features density in the region, (c) there is an increase

in socio-economic factors correlation with features density and OSM registered users

mapping involvement with time, (d) Exploration and Densification processes are found

responsible for the evolution pattern of street network dataset, (e) there is a high

participation inequality among contributors among editing activities, (f) only around

5 Crazy mappers are found responsible for country’s 50% OSM geo-data upload,

however there varied data sources (e.g. other mapping projects, governmental data,

in-person data acquisition etcetera) support the usefulness for specific case scenarios.

Present study, thus, has opened up research paradigm for data quality assessment

of Turkey-OSM dataset and modelling relationships between different Volunteered

Geographic Information (VGI) mapping projects.

2.2 Introduction

Advent of Web2.0 [130] technology has allowed the Twenty-first century mankind to

exploit more intelligently the Long Tail theory according to which our economy and

culture is profoundly getting drifted away from a focus on a relatively small number of

"hits" (mainstream solutions and domains) at the crest of the demand curve and towards

a glut of niches in the tail. The call for one-size-fits-all bucket to encapsulate products
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and users is waning away with reduction in the production- and distribution-cost of

online content. In this age of no physical constraints and bottlenecks of online-data

dissemination narrowly-targeted goods and services are getting as economically

attractive and lucrative as mainstream fare ([128], [2]). For example, we now

have Skype and Viber in Telecommunication sector, which was predominantly

governed by Telecom industries for decades. Wikipedia is holding a huge stock of

online free-content, competing proprietary Encyclopedia Britannica. Government and

National Intelligence Agencies were regulating confidential information in the past but

recent free publication of classified information by WikiLeaks and OpenLeaks has left

a foot-print on human history [74]. Similarly, Volunteered Geographic Information

(VGI) ([34], [69], [43]) or Crowdsourcing Geographic Data ([47], [23]) has evolved

due to easy geo-data generation and circulation by human-beings acting as a sensor

[33] as an additive to geographic information which is conventionally being compiled

and retained by National Mapping Agencies and other private cartographic companies

[26]. This contemporary approach has allowed even a naive cartographer/citizen with

limited or no mapping experience to collect, map, and upload geo-data with extendable

tagging options [104] of any region to online-servers. A classic live VGI example is

OpenStreetMap (OSM) project [45] with genesis in 2004 with the objective to establish

a free and editable global street map, in addition to many other similar examples

like Wikimapia, Wikiloc, Foursquare, Google Map Maker etcetera but with distinct

objectives. This classic example has recently gained immense popularity because of its

big volume data (mapped by contrasting geo-data producers, AKA NeoGeographers

([35], [44]) because of no defined editing restrictions), heterogeneity, abundance, and

free data access and thus has attracted extensive interest from researchers of ranging

domains [163].

Present article is an attempt to answer what spatial evolutionary pattern does

Turkey-OSM dataset have followed since 2007 until 2015 considering the necessity

which has already been proven in plethora in the past ([167], [41], [19], [18], [162],

[60]) for live/future VGI project’s formulation and growth rate speculation, and has

tried to understand selected socio-economic factors’ impact on it. Selected factors’,

i.e. Literacy Level (graduated students), Population Density, Tourism Activity, Internet

Usage [84], and Human Development Index (HDI), effect on VGI projects has not
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been discerned so far in previously acclaimed studies with few mere speculations

[84]. Furthermore, a commentary on the correlation between the number of active

contributors and size of OSM dataset and the health of Turkey-OSM dataset is

provided. To the best of authors’ knowledge this kind of high resolution (at provincial

level) OSM statistical analysis for a whole country backing existing theories along

with current case specific vital observations on an eight year time-frame is first of its

kind and authors believe that this will bring forth compelling pattern, trend, proxy

parameters, and future research paradigm with usefulness to restructure existing and

future similar projects.

The rest of the article’s body is documented into the following sections • Review

of latest notable OSM research and different facets of tackled analysis; • Study

set-up: Data sources/processing/adjustment and adopted hypothesis; • Results and

Discussions; and • Conclusions and Future Work.

2.3 Review of Research on OpenStreetMap

By the end of 2015 OSM dataset has had an enormous amount of geo-tagged world

data in the form of approximately 5 billion GPS points, 3 billion nodes, 3 billion ways,

and 4 million relations contributed by around 2.5 million registered users worldwide

[127]. One of the many possible reasons for this popularity hype is Google’s partial

pulling out its Map APIs from public domain in 2012 [126], thus encouraging Apple

iPhoto, FourSquare, Craiglist, Flickr [166], and many more to switch to the OSM.

This massive dataset has brought forth possibilities of investigating a broad spectrum

of domains such as data accuracy, data exhaustiveness, possible usage, time-series

data evolution, motivated psychology and elements governing this psychology of

contributors, and relationship with other VGI projects [83].

Regional/Global OSM data accuracy has already been studied by researchers in

great detail from many perspectives in recent years, for example by comparing with

governmental/proprietary dataset ([43], [66]), by using indirect approaches like Linus

Law [42] or using contributors count as a quality proxy ([84], [86], [78]), by developing

intrinsic quality assessment parameter/tools ([82], [36], [31]), and by reviewing its

changeset dump file [5]. Linus law (formally "Given enough eyeballs, all bugs

are shallow" [92]) which explains the direct relationship between the number of
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developers assigned to a project and its bugs detection rate was also found applicable

for OSM data reliability and credibility assurance by [42] where below 6 m positional

accuracy is reported for regions with more than 15 contributors per km2 area. OSM

participation inequality was stated by few researchers ([163], [78], [84] by reporting

top 3% OSM members as Senior Mappers in 12 urban cities, and [86] by reporting

5 active per 100 members with majority being located in Europe as a proxy for data

quality check-up [data_quality ∝ 1/participation_inequality]). On the contrary, a

thought-provoking conclusion was drawn by [79] by negating the idea of counting

the number of contributors as a quality (metadata) proxy ([42], [84], [86], [78]).

Researchers like [82] (comprehensive rule-based prototypical tool for vandalism), [36]

(VGI quality assessment approaches), and [31] (key French-OSM spatial data quality

assessment parameters, extending the work of [43] for London) have tried to exploit the

OSM intrinsic parameters for plausible data scrutiny and boost, thus adding additional

quality assurance mechanism.

Sagacious delve on deciphering OSM dataset completion has always been impeded

by strict licensing policy, bounded usage, reserved availability, and lofty pricing of

governmental/proprietary geo-data sources which act as a reference dataset ([27], [43],

[66], [167]). Nonetheless, recent years have witnessed some notable contributions

on this in scientific literature (for example, Germany-OSM street network data by

[85] using proprietary dataset, USA-OSM bicycle trail and lane data by [52] using

data from local planning agencies, and USA-OSM street network data by [166] using

TIGER/Line data [125]). Few of the many OSM use-case scenarios include measuring

urban sprawl with its street data as a population proxy [55], developing Location

Based and Emergency Medical Services ([80], [1], [4]), generating interactive 3D

City Models using Shuttle Radar Topography Mission height data [89], extracting

Image-based road network [15] and multilane roads data [70], calculating shortest

routes within urban cities [165], and validating/reforming existing Land Use/Land

Cover (LULC) data like Global Land Cover Maps [29]. Recent adoption of OSM data

during Haiti earthquake relief operations has further stretched out its plausible usage in

natural calamities as well [17]. [33] has argued personal satisfaction and community

serving as two key motivating fuels behind crowd sourcing activities and VGI gain.
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[11] and [12] have further segregated these and other motivating aspects into intrinsic

and extrinsic categories.

2.3.1 OSM effort in Turkey

No acknowledged study regarding Turkey-OSM dataset spatial evolution,

socio-economic factors impact on such evolution, contributors involvement, and

general commentary on data health is present in online literature. Conducting

current study is therefore essential to bring forth VGI responses at higher resolution

(spatial and temporal) in a developing country ([163], [66], [162]) i.e. Turkey with

fairly rich OSM dataset (17 million points, 1.3 million edges AKA lines (in the

following text, edge terminology is used for any line/polyline feature), and 0.4 million

polygons [124]), and authors do believe that this will subsequently add insights to

help popularize/expand the same. Five aspects of dataset analysis are:

1. Time-series spatial evolution: One of the first aspect which has been studied

thoroughly in this article is how the dataset has spatially evolved in a ten year of

time-span. This will advance the work of [18], [163], [19], and [162] and discuss if

the mapping activity is regionally biased or not.

2. Effect of region’s socio-economic factors on its spatial evolution: In order to

identify the impact of socio-economic factors on VGI activities five major factors

(namely, Population Density [85], Literacy Level, Tourism Activity, Internet Usage

[84], and HDI) as also discussed by other researchers are compared with OSM

features density on a time-scale.

3. Processes governing the evolution of country’s road network: What evolutionary

trend [41] does the Turkey-OSM street network dataset has followed in the given

span of time is observed and reported? This aspect is studied considering the

famous Exploration and Densification elementary processes concept for road

networks evolution [103] which has already been propped in other similar studies

([19] and [18]).

4. OSM-contributors mapping behaviour: The forth aspect of conducted analysis is

to determine the confidence level by which the density of the number of distinct

contributors with at least one contribution can be used as a proxy for region’s OSM
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features denstiy. This proxy has been thoroughly studied by other researchers but

at different zoom-level and region ([85], [83], [42], [74], [79], [78], [167], [163],

[166]).

5. Quality of the dataset: It is fairly important to report the quality of a given OSM

dataset in order to identify the usefulness for specific use-cases. Past researchers

have used the participation inequality in editing processes as one strong proxy for

VGI data accuracy/health ([163], [78], [84], [86]) and therefore in this study also

authors have used this proxy along with mappers varied geo-data sources to provide

a general commentary on Turkey-OSM dataset usefulness.

2.4 Study Set-up: Data Sources and Processing

2.4.1 Source and Format of Data

High interoperability of OSM dataset by having various data sources (Full Planet

dump file [124], Geofabrik downloads [121], Overpass API [122]) and formats

(ESRI-Shapefiles ∗.shp, Extensible Markup Language (XML) ∗.osm, Protocolbuffer

Binary Format ∗.pbf) is considered as one another reason for its popularity hype.

This was further facilitated by upgrading its Editing API (latest v0.6) in due course

of time [120] depending upon the technological advancements and user requirements

and switching its license from Creative Commons Attribution-ShareAlike 2.0 to Open

Database License (OdbL) in 2012 [119], thus allowing users and others to freely share,

modify, and use the database [118]. Full Planet dump file does not consist of edits

before 2007 since object history feature was introduced in Editing API v0.5 [120] as

also reported in Section 2.5.1 and has lost 1% of data during conflict of users interest

during 2012 licensing event [119]. Nonetheless, dump files are proven to be the best

source of OSM dataset to study time-series evolution ([78], [79], [81], [85], [52], [166],

[81], [5]) as other sources only reflect the latest snapshots for a specialized region, and

authors do not believe 2012 data loss to bias it.

Full Planet dump file (size approximately 67 GB and 1.5 TB when compressed

and uncompressed, respectively) dated September 02, 2015 (last stable history

release at the time of data processing) was downloaded from [124] which contained

OSM complete database including editing history from as far back as 2007 until
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September 2015. The file is in a human-readable XML format containing three

primitive data elements/features: node (point), way (polyline and polygon), and

relation (logical combination of nodes, ways and/or other relations), annotated

with tags in a key-value structure of free format text fields [123]. Provincial

statistical data of socio-economic factors for last ten years was downloaded freely

from TUIK (Turkish Statistical Institute) online portal [108] which is a national

level government organization for data (demographic/geographic/scientific/economic

etcetera) collection, storage, processing, and distribution for policy formulation,

educational, and scientific purposes. The variable of related domain downloaded from

TUIK statistics portal are as follows: Number of students for vocational training

school and undergraduate programs of higher education institutions: Graduates /

Total from Education >Higher Education domain as an indicator of Literacy Level

(Figure 2.1a), Annual growth rate and population density of provinces from Population

and migration >General Population Censuses as Population Density (Figure 2.1b),

Number of arriving foreigners by province of border gate and mode of transport : Air

way from Tourism as Tourism Activity (Figure 2.1c), The proportion of individuals

regularly using the Internet from Transportation and Communication as Internet

Usage (Figure 2.1e), and Per capita gross value added (GVA) : Per capita GVA

($) from National Accounts as a proxy of HDI (equation 5.2) (Figure 2.1d). The

ill-famed Syrian Refugee Crisis has caused heavy foreigners influx via Road way

at the south-eastern (South-East Anatolia, Figure 2.1e) part of country in recent

years contaminating data of Tourism Activity and therefore only Air way as the

mode of transport was selected to get a better statistical picture (Figure 2.1c). Data

corresponding to the length of provincial roads in order to negate the idea of roads

scarcity as a reason for spatial biasedness of Edges feature density (Section 2.5.1) was

obtained from General Directorate of Highways [107] website (Figure 2.1f).

2.4.2 Data Processing Steps

OSM XML file could be made processable by a variety of command line tools such as

osmosis (Java application for reading/writing databases [117]), osmium (multipurpose

tool for data interoperability and time-series analysis [116]), osm2pgsql (tool to

convert XML data to PostGIS-enabled PostgreSQL databases [115]), osm2postgresql
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(to simplify rendering with QGIS and other GIS/web servers [114]), osm2pgrouting

(to import data file into pgRouting databases [113]) etcetera; however because of

being designed to work on recent data version of a given region for specialized

tasks these are not suitable for the carried out processing. Instead, osmium based

open-source osm-history-splitter tool [112] which is laid out to help split the Full

Planet dump files for any world region using its bounding-boxes, .poly files, or .osm

polygon files was used to crop September 02, 2015 dump file using bounding-box

covering the political region of Turkey by softcut-algorithm. Subsequently, country’s

ESRI-shapefile for provincial boundaries was used to further crop down the data into

81 different provinces excluding Cyprus which is a land of conflict with finally loading

up each cropped province into different schemas of PostGIS enabled PostgreSQL

database. In order to expedite the process of data management and querying each

provincial dump file data was classified into three databases delineating point, edge,

and polygon (covering all primitive geometry elements for analysing individual dataset

evolution) with each one having 81 schemas. Finally, each schema was divided into 18

time-tagged tables depending upon the features’ date of creation (valid_ f rom column),

thus, making (18×81×3) 4374 tables in totality. The time intervals used for feature

categorization are as follows: between April 01, 2004 to April 01, 2007, between April

01, 2007 to September 01, 2007, between September 01, 2007 to April 01, 2008 and

so on, till between April 01, 2015 to September 01, 2015, comprising 18 such intervals

(April and September months were selected to divide a year into two halves in order

to represent summer (Tourism and out-door activity) and winter (arm-chair mapping

activity) season).

It is possible to attach any kind/type of tag to an OSM feature using its online [111]

or stand-alone JOSM [110] editor making it prone to noise intrusion. It was therefore

necessary to be specific in features selection using pre-defined tags [104] for current

analysis. It was observed that only 2% of the whole point data under investigation

have some sort of tags associated with it and authors decided to break it down into

Points(all) (all Point features present in the dump file) and Points(tagged) (all Point

features with not null tags) subcategories. For edges and polygons, features with

Highway (describing all roadways and footpaths including motorways, residential

roads, primary roads etcetera, except cycleways and railways) and Building, Landuse,
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Natural (describing major LULC feature and man-made structure) key were selected,

respectively, making four final feature categories, i.e. Points(all), Points(tagged),

Edges, and Polygons. Only relevant keys, with no values legitimacy estimation

because of the unavailability of any reference dataset, are favoured for Edges and

Polygons knowingly the fact that it may influence the true picture marginally. Author

has developed three Python scripts in order to automate data querying and results

storage processing which took around two months to finish on an Ubuntu-14.04 Trusty

Server with 40 GB total RAM, downloadable from his Github account [105] along

with a comprehensible README file. However the author has advocated the scripts

development on language more closer to the hardware (mainly C++) for accelerated

big data processing.

2.4.3 Data Adjustment and Normalization

It is not straight-forward to compare two elementary geometry features, i.e. point,

edge, and polygon, when the idea behind is to determine contribution effort (Figure

2.2). Production of a point, a line, and a polygon does not involve similar toil from

contributors side making them incomparable to each other in this perspective. Similar

argumentation is valid for comparing lines ([163], [18], [103], [43]) and polygons

of different length and area, respectively. As a matter of fact, lines and polygons

are digitally stored and defined as a collection of nodes and therefore the number of

nodes (vertices) constituting Points(all), Points(tagged), Edges, and Polygons were

counted as a proxy for respective feature’s count in order to make them comparable

and entertain contribution activity more reasonably [163] (Figure 2.2). Additionally, to

nullify the geographic effect of varied provincial area on nodes count for each province

it was divided by the respective area. For example, two regions, namely A and B,

with area of 1 unit2 and 100 unit2 and nodes count (for let’s say Edges) of 10 and

500, respectively, can not be correlated regarding feature density by mere count of

nodes because of varied spatial sizing of the two regions. Division of nodes count with

corresponding area will give us a better sum (count per unit2) for correlation calculated

as 10 and 5 for this example, thus exhibiting region A as doubly crowded with Edges

features as region B. On the other hand, demographic effects are not considered as a

potential threat for ongoing OSM dataset spatial analysis, although researchers like
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Figure 2.1 : Color legends are (a)Total number of students in the year 2013, (b)
Population density in the year 2014, (c) Total number of arriving

foreigners in the year 2014, (d) Human Development Index as a function
of Gross Value Added per capita ($), (e) Total number of person in the
year 2013 using internet, (f) Road (state+provincial) length in km, per

km2 area.

[103] and [18] have tried to remove it in similar studies regarding street network

evolution.

JOSM [110] application even lets one to import/edit features offline and bulk upload

the same to online databases through OSM API despite the fact that the community

discourages this approach for database gain, if not performed by Senior Mappers,

for world regions with underdeveloped datasets as it may severely propagate errors

and affect other contributors’ efforts of manual data acquisition and editing. Past

researchers have accounted the necessity and process of bulk imports removal as an

outlier element in order to avoid unexpected data spikes and observations ([78], [19],

[1], [166], [18], [5]); however, the true definition of bulk import documented as "Bulk

import means more than a few hundred nodes or for a larger area like a whole country"

[106] is itself pretty vague and researchers have used their own explanations at various
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past scenarios ([1] have used tens of thousands of edits by a single user in a single day

as a model for bulk import). Therefore, authors have selected 25000 nodes contribution

by a single user in a week as a model of bulk import event and have subsequently

removed it from all calculations. Less than 10 Crazy Mappers are identified as bulk

importers during this study throughout the country and removed accordingly.

In graph theory the degree ki of a node i is the number of nodes adjacent to it, i.e.[
ki = ∑

N
j=1 ai j

]
, in terms of the adjacency matrix [13]. In real street networks degree

of a street junction is the number of road segments having it as their starting or

terminating node. To a great extent distribution of different degree values in a street

network is a manifestation of its topological structure and how densely or sparsely the

street segments are connected. Degree distribution P(k), defined as P(k) = N(k)/N

where N(k) is the number of nodes with degree k and N is the total number of

nodes, in a primal graph or real road network is therefore necessary to understand

its evolved stage, i.e. how much the region has been explored and densified with roads

at any given point in time. Decrease in the degree distribution value of low degree

junction represents early stage Exploration, whereas increase in the same for high

degree junction indicates late stage Densification [163]. These are the two elementary

mechanisms governing the evolution of road networks [103]. These two mechanisms

are used in Section 2.5.3 to support observations.

Finally, in order to compare provincial HDI value as one of the socio-economic factors

with OSM feature density per capita GVA ($) value as an HDI proxy was used since

no direct measurements are available on TUIK portal. HDI is defined as the geometric

mean of Life Expectancy Index (LEI), Education Index (EI), and Income Index (II)

[129]; mathematically:

HDI

= (LEI×EI× II)1/3

= (
LE−20
85−20

×

MY S
15

+
EY S
18

2
×

ln(GNIpercapita)− ln(100)
ln(75000)− ln(100)

)1/3 (2.1)
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where, LE is Life expectancy at birth (years), MYS is Mean years of schooling for ages

25 and above (years), EYS is Expected years of schooling (years), and GNI is Gross

National Income per capita ($). Since:

GNIpercapita = GVApercapita +T + IF−S− ID

where, T is Taxes on products ($), S is Subsidies on products, IF is factor Incomes

earned by foreign residents, and ID is Income earned in the domestic economy by

non-residents [68]; substituting GNI value in equation 5.1 will give:

HDI

= (
LE−20
85−20

×

MY S
15

+
EY S
18

2
×

ln(GVApercapita +T + IF−S− ID)− ln(100)
ln(75000)− ln(100)

)1/3

≈ (ln(
GVApercapita

100
))1/3 (2.2)

considering other variables as constant.

Although, authors are aware of the fact that the above approximated relationship

at equation 5.2 between HDI and GVA is a biased depiction and will affect final

observations but because of being one of the first of its kind (one previous work was by

[84] using GNP per capita) this comparison will lead future clues about the influence

of income/living standard per capita as the motivational sources for VGI involvement.

2.5 Results and Discussions

This section is divided into five aspects of current analysis of Turkey-OSM dataset and

key observations are discussed accordingly. The sections follow the trend presented by

previous researchers on understand how a dataset evolves with space and time. Each

section follows figures to explain observed findings.

2.5.1 Time-series spatial evolution

Figure 2.3 shows the time-series evolution of nodes density for 81 provinces of Turkey

constituting Points(all), Points(tagged), Edges, and Polygons since 2007 until 2015. It

18



Figure 2.2 : Different geometrical features with corresponding nodes count.

can be seen that data before April, 2007 is absent in the dump file as all the graphs

are tapering towards the origin as one moves back in time, especially in Figure 2.3b.

This observation was expected as Editing API v0.5 has introduced the object history

feature into the project in 2007 [120] meaning no history data before it. Between 2007

and 2012 the curves are following a gradual increment (Figure 2.3a,c,d) with almost

horizontal trend in case of Points(tagged) Figure 2.3b (points with attributes and no

bulk imports), thus depicting limited contributions by dormant contributors because

of limited editing flexibility by old OSM license ([119]) which was then followed by

an exponential growth in 2012 ([163] has also reported similar growth rate for both

the number of nodes and Edges for Beijing, China) because of the inception of Odbl

license and increased OSM usage in ranging mapping projects [166]. Although the

sudden boost in data contribution activity is exponential it is not equally powered for

all provinces as it is a function of the number of active contributors in the region [163].

A closer look at graphs (especially for provinces with high nodes density) illustrates

that the exponential curve itself is a partial exponential-step curve (exponential curve

growing step-wise). This is because time-span between September, 2007 and April,

2007 every year has witnessed fewer nodes edit through different mapping events as

compared to between April, 2007 and September, 2007 because of low level Tourism

and out-door activity in winter. However, this observation is exclusively visual.

Another observation can be drawn regarding nodes density value across the country.

Figure 2.3 also shows nodes density map at 2009, 2012, and 2015 time-slices. At each

snap-shot it can be visualized that the eastern and south-eastern part of the country

is less densified as compared to the western and south-western part ([162] has also

reported the spatial distribution of China’s OSM road network) with some outliers.

Socio-economic factors can be attributed for this spatial biasedness of nodes density

as similar biasedness is present in Figure 2.1. Density maps of Literacy Level per
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Figure 2.3 : Features’ nodes density evolution with time.

km2 area of year 2013, Population Density of year 2014, Tourism Activity per km2

area of year 2013, Internet Usage per km2 area of year 2014, and HDI of year 2011

were drawn showing similar density pattern which was observed in Figure 2.3. In

order to negate the notion that this spatial biasedness in OSM Edges nodes density

is because of the absence of the features itself on the ground provincial road length

density map was drawn from General Directorate of Highways [107] website (Figure

2.1f). Cross-validation is not possible for Points(all), Points(tagged), and Polygons

since these features generally do not exist de facto onto the ground.
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Figure 2.4 : Graphs between the socio-economic factors and OSM features density
under study.

Except buildings Polygons, landuse and natural Polygons are mobile and sporadic

features and no reference dataset or satellite imageries could be used for

cross-validation. Figure 2.1f illustrates a uniform road length density throughout the

country depicting that the road itself is not scarce rather OSM Edges features are non

uniformaly mapped by contributors ([19], [163], and [18] have also studied OSM road

network evolution). Some provinces in the eastern and south-eastern part show nodes
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density spikes, thus acting as an outlier because of Senior mappers being active there.

One such region is Batman province, red box in Figure 2.3, which shows a high nodes

frequency, especially in 2015, because of a mapper (a university student, Table 5.1)

who is responsible for around 4 and 3% Turkey-OSM contributions for Points(all) and

Edges, respectively. Since this mapper is currently a university student no spikes are

present for this province for earlier years.

2.5.2 Effect of region’s socio-economic factors on its spatial evolution

A normalized (0-1) scatter plots between nodes density and all five socio-economic

factors under consideration at different time-slices are plotted in Figure 2.4 to better

relate which was merely limited to visual interpretation in the previous Section 2.5.1.

The Figure shows a matrix of graphs of Points(all), Points(tagged), Edges, Polygons

vs Literacy Level, Population Density, Tourism Activity, Internet Usage, HDI, with all

possible pairs. Mathematically, the more the two variables (x- and y-axis) in a graph

are directly related to each other the closer the normalized (0-1) scattered points are to

a 45 degree line passing through the origin (orange line in Figure 2.4) with exactly on

the line for highest correlation with coefficient of determination (R2) being equal to 1.

Although, statistically, R2 (which always fall between 0 and 1) values between 0.0-0.5,

0.5-0.6, 0.6-0.7, 0.7-0.8, and 0.8-1.0 depicts No, Weak, Moderate, Good, and High

correlation between physical parameters, socio-economic factors are based on human

activities and therefore even Weak correlation with others are good enough to deduce

definite conclusion [41]. Authors have manually removed few provinces (between

4-6 depending upon the feature which were homogeneously distributed throughout

the region) which were exhibiting spikes and contrary trend between the two axis.

It can be seen that R2 value is quite high (more than 0.6) for all features against

Population Density (Figure 2.4e,f,g,h) showing a Moderate correlation between them.

For Points(tagged) features this value is even stronger (more than 0.7 for recent years

(Figure 2.4f)). It should be noted that Points(tagged) features can be treated as a sample

of an ideal dataset, out of Points(all), Points(tagged), Edges, and Polygons, because of

having attributes associated with it. Similar observations are drawn for graphs against

Literacy Level (Figure 2.4a,b,c,d). It can be said that Population Density and Literacy

Level are better proxy for OSM features density and contribution activity in a region
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(Figure 2.4a-h). Although [84] has guessed some dependency of Tourism Activity (and

Internet Usage) on project’s evolution, No correlation was observed between nodes

density and the number of tourists visiting that province per km2 area (Figure 2.4i,j,k,l).

In spite of having high R2 value for Internet Usage no concrete statement can be drawn

(Figure 2.4m,n,o,p) because of limited data availability (only 2013 data for the number

of people regularly using internet at zonal level in Turkey is available at TUIK portal

[108]), similar explanation is possible for No correlation in case of Tourism Activity

as only data from 37 provinces out of 81 is available (Figure 2.1c). Weak correlation,

on the other hand, is reported for GVA per capita as a proxy for HDI (Figure 2.4q,r,s,t)

(although [84] has reported a Moderate R2 value of 0.664 between the number of

members in OSM and the GNP per capita for major world cities). Since HDI factor is

a function of life expectancy, mean year of schooling, and gross national income (the

three parameters strongly represents the health and economic status of a region) a better

analysis would be to directly compare HDI value (instead of some proxy parameter)

with nodes density. It can said that in Turkey-OSM dataset Population Density has

showed a high correlation with the number of features present/mapping activity in the

region, followed by Literacy Level, and finally HDI, with no strong remarks about

Internet Usage and Tourism Activity.

R2 value for Population Density against Points(tagged), Edges, and Polygons increases

as one moves from older to recent time-slices (2008-2011-2014), i.e. from 0.61

to 0.73 to 0.71, from No corr. to 0.60 to 0.67, and from No corr. to 0.53 to

0.61, respectively (Figure 2.4e,f,g,h), similarly for Literacy Level it grows against

Points(all), Points(tagged), and Polygons for three time-slices (2007-2010-2013), i.e.

from No corr. to 0.38 to 0.45, from 0.67 to 0.65 to 0.78, and from No corr. to 0.58

to 0.57, respectively. For Population Density vs Points(all) the R2 value for the year

2007 is quite high (0.72 (Figure 2.4e)) because of all the scattered points lying close

to the origin. On the other hand, for Literacy Level vs Edges R2 value is high for

the year 2010 as compared to the year 2007 and 2013 (Figure 2.4c) and this can not

be explained and can be considered as an outlier. Generalizing for all VGI projects

it can be reported that as project grows in time the socio-economic factors get better

correlated with database features density. The scatter-points mainly lies on the y-axis

in the early years of OSM project’s inception and as one moves further forth in time
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these points get more and more concentrated over the 45 degree line which is an

indicator of correlation improvement. The Turkey-OSM dataset size is synchronizing

with socio-economic factors with time and the same notion can be generalized for any

kind of VGI projects governed by crowd sourcing activities.

2.5.3 Processes governing the evolution of country’s road network

The elementary processes governing the evolution of any real life road network was

explained in depth by [103] by devising two scientific terminologies, i.e. Exploration

and Densification processes, according to which any road network’s evolution first

experiences an exploration phase where unexplored regions and regions with scare

road connectivity are explored followed by a densification phase where further

secondary and tertiary level roads get popped up around the initially developed primary

network. These phases of network evolution are also visible in VGI projects where

mappers edit road networks on a geographic information system [163]. The y-axis

of Figure 2.5 is the slope value of graphs between degree distribution (P(1), P(2),

P(3), P(4), P(5), and P(6)) (Section 2.4.3) and time-series from 2007 to 2015, for

all 81 provinces in Turkey; whereas the x-axis is the provinces, grouped together into

respective zones and plotted from west to east of the country (Figure 2.1e). Authors

have only plotted graphs for junctions upto 6 degree, since 7 or higher degree junctions

are practically not possible in real life scenarios, although [163] have entertained

maximum 5 degree junctions. The y value which are all negative (with mean value

of -0.00016, Figure 2.5 1 degree histogram) except for one vertex in Central East

Anatolia which could be considered as an outlier for vertices of blue line (Figure

2.5) which belongs to 1 degree junctions exhibits a decrease in degree distribution

for all the provinces, an indicator of initial phase Exploration process (Section 2.4.3).

3 degree junctions (grey line in Figure 2.5), on the other hand, exhibits an increase

in degree distribution for all the provinces by having positive y values for all its

vertices (with mean value of 0.0001, Figure 2.5 3 degree histogram) a cursor of later

phase Densification process. For 2 and 4 degree junctions (orange and yellow line,

respectively, Figure 2.5), the y value is not definite (i.e. positive and negative and lying

very close to the x-axis (having mean values of 2.09E-5 and 2.89E-5, respectively,

Figure 2.5 2 and 4 degree histograms) as compared to 1 and 3 degree junctions for
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Figure 2.5 : Graph supporting the Exploration and Densification processes for street
network evolution of Turkey-OSM dataset.

different provinces). This is because the P(k) vs time-series graph for them is almost

parallel to the x-axis which shows a constant density of such kind of junctions in the

dataset throughout the time. Whereas for junctions with degree 5 and 6 (dark-blue and

green line, respectively, Figure 2.5) the slope value is almost zero (having mean value

of 7.97E-7 and 4.56E-6, respectively, Figure 2.5 5 and 6 degree histograms) because

they are absent or highly scarce in real road networks in Turkish provinces. The high

frequency of graphs with zero slope (Figure 2.5 6 degree histogram) is because of

the scarcity of 6 degree junctions in Turkish road networks since no junctions for

a given degree will result graphs to lie on the x-axis with zero slope. It can be

concluded that the Turkey-OSM does have followed the elementary Exploration and

Densification processes for street network evolution in an eight year time span which

has already been reported for Beijing, China [163] and Ireland [18]; and the 3 degree

road junctions are the most abundant one in country’s urban network setup which

represents an organic street layout [30] which has also been evidenced by [146] for

developing countries.

Furthermore, a linear trendline was drawn over blue and grey plots and respective slope

values were calculated which came out to be positive and negative, respectively (Figure

2.5). Since the provinces on the x-axis are plotted from west to east of Turkey (Figure

2.1e), the tapering of trendline towards the x-axis (the trendline slope is positive for 1
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degree and negative for 3 degree) as one moves further right direction shows the high

slope values (both positive and negative) of degree distribution (P(1), and P(3)) vs

time-series graph for western part of the country as compared to the eastern part. This

attributes to the high mapping activity by contributors resulting into large nodes density

in western part as compared to the eastern part which has already been documented in

Section 2.5.1 (Figure 2.3). One might doubt about the acceptance of small absolute

values of trendline slope and y-axis for any concrete conclusion but the idea behind

this current discussion is not based upon the magnitude of the slope but sign. It is

important to note that human behaviours are generally cumbersome to map, unlike

physical parameters.

2.5.4 OSM-contributors mapping behaviour

Figure 2.6 is the graph between the total number of distinct contributors with atleast

one contribution of a particular feature in Turkey-OSM dataset per 1000×km2 area

and the total number of nodes constituting that feature per km2 area for three different

time-slices normalized on a 0-1 scale. Selection of only those contributors who did

atleast one contribution will filter out inactive, fake, and those registrations which

happened because of some trail attempts, which are noises in the data. Orange line

is again a 45 degree line passing through the origin (Figure 2.6). High R2 value

is calculated for each graph corresponding to the Points(all) (0.67), Points(tagged)

(0.69), Edges (0.83), and Polygons (0.78) features for the year 2015 (Figure 2.6a,b,c,d)

which characterizes a Moderate, Moderate, High, and Good correlation, respectively.

It can be reported that the active contributors density is a strong proxy for respective

features density in a region by being directly proportional, thus backing the findings

of [167], [84], and [163] who have also reported a direct relationship between total

points and registered users density. As a matter of fact, the logarithmic or exponential

relationship will cause the scatter points to deviate from the 45 degree line. Another

point to be noted is that contributors responsible for bulk imports (Section 2.4.3) are

not considered in counting the y values (Figure 2.6).

The R2 value for all four graphs against 45 degree line increases as one moves from

old to recent time-slice. For Points(all), Points(tagged), Edges, and Polygons the

value increases from 0.61 to 0.74 to 0.67, from No corr. to 0.66 to 0.69, from 0.59
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Figure 2.6 : Graph showing a direct fairly good correlation between the number of
active contributors edited a particular feature and the density of nodes

frequency constituting that feature.

to 0.71 to 0.83, and from 0.86 to 0.73 to 0.78 for the time-slice 2009, 2012, and

2015, respectively. It must be noted that although the R2 value for graphs against

Polygons for the year 2009 is 0.86, it is in fact a bad correlation and this high value

is because of the clustering of all scattered points close to the origin. This happened

because very limited contributors were there who did Polygons features mapping back

in 2009 in Turkey-OSM dataset. The increase in R2 value in time indicates later

stage involvement in contribution activity by dormant contributors. For 2009, all four

features, especially Points(tagged) and Edges, show the scattered points clustering

over the y-axis (red triangle, Figure 2.6b,c) which is because of limited mapping

activities (no mapping activity is not possible as authors have intentionally selected

distinct contributors with atleast one feature contribution) by users in the early days

of OSM project. As one moves forth in time, the scattered points get drifted from

y-axis towards y = x line which shows a later staged mapping involvement by inactive
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contributors, thus creating a direct relationship between the frequency of mappers and

mapped events. It can be stated that although users do perform some initial staged

editing as soon as they register to any VGI project these edits are only limited to

a few number of features as a result of trial/testing activity and they generally take

some time to get started editing and contributing significantly which is evident by

the increase in R2 value from 2009 to 2012 to 2015. Because of the ease of online

registration and editing in VGI projects, thanks to Web2.0 [130], people do register and

perform some initial edits but typically do not show any serious personal commitment

or community service motivation. Another possible reason for later staged contribution

activity in Turkey-OSM dataset is the introduction of Odbl license in 2012 [119] which

has permitted more flexibility in data edits and uploads. This pattern of R2 increase

with time has also been observed during the correlation of socio-economic factors with

nodes density (Section 2.5.2) (Figure 2.4).

2.5.5 Quality of the dataset

Participation inequality is accounted as a proxy for VGI project’s accuracy according

to Linus Law [42]. Several researchers ([79], [86], [163], [84]) have reported that

heavy mapping by few selected users, also called as Crazy mappers, generally through

bulk imports impedes the suitability of data practice for specialized GIS tasks. Crazy

mappers are different from Senior mappers by the fact that they generally do not

have any proficiency in mapping activities yet contribute heavy chunk into mapping

VGI projects. Figure 2.7 shows the percentage contribution by all bulk importers

and remaining mappers without any bulk import event. The Figure illustrates that

almost three fourth (≈75%) of the total nodes density for Points(all), Edges, and

Polygons is uploaded by bulk importers by the end of 2015. For Points(all) and

Edges there are around 37 bulk importers (Figure 2.7a,c) whereas for Polygons only

12 (Figure 2.7d) which shows that point and edge features are more easily identifiable

on the satellite imageries and are readily available from other geo-data sources for

on-line uploads. On the contrary, Points(tagged) pie chart (Figure 2.7b) shows no bulk

import event since attributed point features dataset is difficult to generate or obtain

from other portals. Thus, the credibility of tagged point features in Turkey-OSM

dataset is high as compared to other features, i.e. Points(all), Edges, and Polygon,
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Figure 2.7 : Pie charts showing the participation inequality and bulk importers for all
four OSM features.

because of the inverse relationship between data quality and participation inequality

(data_quality ∝ 1/number_o f _bulk_importers) (Section 2.3).

Additionally, from Figure 2.7a,c,d only one user (User ID: 17497) is accountable for

almost 50% of the whole dataset generation for Points(all), Edges, and Polygons, along

with few other mappers contributing between 3 to 12% of the database. It is of utmost

importance to understand these Crazy mappers’ geo-data sources in order to control the

origin and propagation of random/systematic errors, if any. Table 5.1 contains general

information about few of these mappers, i.e. their nationality (to understand if they

had local knowledge about the mapped region), technical background (to understand if

they have performed the crowd sourcing activities soundly), and geo-data sources (to

check if their parent data sources are reliable), which was obtained during in person

communications by the author. Although two out of five mappers (Table 5.1) are

from Germany their contributions can be trusted because of being resident of Turkey

which brings forth local knowledge about the surrounding regions (although they are

responsible not only for their locality but also for the whole country’s data evolution).

Two of the remaining mappers are from Turkey and data is not available for the fifth

one. Technically these mappers are sound by being System Programmer, University

student, and GIS specialist which is positive for the online bulk upload events as

blunders are less prone to happen. Parent geo-data source information is crucial to

provide some commentary about Turkey-OSM dataset accuracy (Table 5.1). It can be

seen that all of these mappers are using proprietary satellite images, i.e. Google, Bing,

and Mapbox basemaps which are open for general public use, from private companies

which are one of the reliable geo-data sources. Apart from that they are mostly using

data from other kind of similar VGI mapping projects (wikiloc, geofabrik tools for

data correction) for bulk imports. It can commented that VGI projects share data
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among themselves and once an error get inserted it is hard to fix completely as it

propagates, sometimes automatically. Therefore, users must be highly careful while

performing any crowd sourcing activity as easy digital data dissemination will not limit

their contribution to a particular project. User Nesim Is from Batman University (and

Penom, Table 5.1), on the other hand, have used more authentic geo-data obtained from

local municipalities (Konya and Denizli Municipality) for bulk imports, thus, causing

heavy contributions in Batman province in recent years (red boxs in Figure 2.3 for

2015 time-slice). Authors believe these kind of bulk importers to be responsible for

disrupting the general picture of mapping evolution in a country ([78], [166], [5]) by

creating outlier regions (e.g. Batman province) which can be seen in Figure 2.3 at

the eastern and south-eastern part of the country which otherwise have showed low

socio-economic growth (Figure 2.1). In spite of having high participation inequality

in Turkey-OSM contribution dataset can be considered suitable for fairly detailed

GIS purposes, especially for Points(tagged) features since it’s free from bulk import,

because of having varied geo-data sources, in-person data collection events, and data

acquisition processes backed by local community help. However, there is a high urge

for data’s accuracy assessment using some proprietary dataset or data acquired from

ground truth campaigns.

2.6 Conclusions and Future Work

This article presents an analysis of the spatial evolution of Turkey-OSM dataset and

its correlation with different socio-economic factors of the region in an eight year

time span (2007-2015). The five facets of this analysis are: (a) how spatially the

dataset has evolved in the given course of time?; (b) how socio-economic factors are

correlated with this evolution?; (c) What road network evolutionary pattern does the

street network dataset has followed?; (d) How the active contributors are related to

this evolution?; and (e) How reliable the dataset is for any given purpose, a general

commentary on its quality?

It has been observed that the dump files do not have history data before 2007 because

of the absence of object history feature in Editing API v0.4 or earlier. In Figure 2.3

the curves are horizontal between 2007 to 2012 which shows a period of immobility

in contribution activity, however, there is an exponential rise after year 2012 because
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Table 2.1 : General information about Turkey-OSM Crazy mappers

OSM
User ID

OSM
Username Nationality

Technical
Background

Geo-data
Sources

17497 Roman Germany
IBM System
Programmer

• Bing-Maps and Mapbox satellite
imageries to trace over.

• .jpg images for boundary data.
• .gpx files from Wikiloc.

1386706 Nesim Is Turkey
Batman

University
Student

• Kentrehberi Konya Belediyesi.

• Denizli Buyuksehir Belediyesi.
• Google Street View.

• In-person data collection.
• Local community help.
• Various literature sources.
• Different websites.

18069
Claudius
Henrichs Germany

• Geofabrik Tools -
OSM Inspector.

• In-person data collection.
•Mapped remotely

using satellite images.
• Publicly available data.

1400888 Summerson GIS specialist •Mostly polygons for buildings.
• Bing satellite maps.

• Online maps by municipalities.
• Perform regular bulk imports.

436145 Penom Turkey
• Regional Municipality

for detailed mapping.
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of the change in OSM license from Creative Commons Attribution-ShareAlike 2.0 to

Odbl. After 2012, the curves are following a partial exponential-step function because

of less contribution activities in winter seasons. The spatial analysis has revealed that

there is an spatial biasedness from west to east of the country towards the evolution

of dataset at any given point in time (Figure 2.3), with some exceptional provinces.

Provinces along the Mediterranean sea (western and south-western provinces) have

experienced more nodes density at three selected time-slices (2009, 2012, and 2015)

as compared to the eastern and south-eastern part of the country which were always

under-developed in the past. This pattern in nodes density is believed to be the

consequence of socio-economic factors, i.e. Literacy Level, Population Density,

Tourism Activity, Internet Usage, and HDI, in the region, where similar pattern in

factors density is observed (Figure 2.1).

The R2 value for recent years for the graph between different socio-economic factors

and OSM features under analysis has revealed that the Population Density and

Literacy Level in a region are highly correlated with the success of OSM project in

Turkey (Figure 2.4). Pictorially, all factors with their degree of impact (by different

font sizes) on OSM database can be summed up like:

Population Density >Literacy Level >HDI >Internet Use ≈ Tourism Activity

However, it should be noted that further analysis in different regions around the

world is required to generalise this trend in the degree of impact. For the moment, this

has only been observed in Turkey-OSM. Furthermore, it can commented out that with

time the impact of socio-economic factors on any VGI project grows stronger.

Regarding street network evolution, it has been found that the country’s street network

does have followed the primary Exploration and Densification processes for its

expansion in time (Figure 2.5). The country has organic street layout with abundance

of 3 degree road junctions. It has also been observed that the western and south-western

part of the country has followed a sudden change in degree distribution values for P(1)

and P(3) in time as compared to the eastern and south-eastern part depicting more

mapping activities which has already been commented in Figure 2.3.
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The active contributors density is a strong proxy of nodes density in a region (Figure

2.6). It has been observed that early staged inactive contributors do start contributing

as the project evolves or policies change.

Finally, a profound participation inequality is observed in the given OSM dataset with

only 37 Crazy mappers responsible for around 75% of whole dataset upload through

bulk imports (Figure 2.7). A personal, one on one, communication with these mappers

has revealed that they themselves are dependent on other similar VGI mapping projects

for geo-data sources (Table 5.1). This opens a concern about how and upto what extent

different VGI projects are intermingled with each other. A part from that, their varied

other data sources, like governmental data portals, proprietary satellite images, data

collected in-person and with local community help, are positive elements to reduce the

impact of participation inequality upto some extent, although this effect of different

elements on the health of OSM is a matter of statistical analysis which is beyond the

scope of current study.

Future work may include considering more socio-economic factors with direct or

indirect association with OSM growth. What motivation does these factors bring forth

to the users will help better structure future VGI projects and formulate corresponding

licenses. Study to relate different mapping projects will aid VGI project administrators

to check possible sources of error and provide data accuracy indicator.
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3. IMPROVING OPENSTREETMAP DERIVED ROAD LENGTH ON A
GLOBAL SCALE USING CURVE FITTING APPROACH

3.1 Abstract

In OpenStreetMap (OSM) ecosystem, derived length of road is an imperative attribute

necessary for successful analysis of street network and development of geo-services.

Conventionally, this geometrical attribute is calculated after data download using

FOSS4G tools that operate on Euclidean formulation based upon Pythagoras Theorem.

Therefore they ignore the road curvature factor altogether. In this study, a piece-wise

cubic parametric polynomial curve fitting approach is presented which incorporates

curviness into account for improved data visualization and better road length

estimation. The approach operates on OSM (a famous VGI project) highway feature’s

node set on an iterative basis by considering four nodes at a time. When tested on

highway features of four urban cities, the developed methodology has bestowed better

results than Euclidean method. An overall 0.70% improvement in length estimation is

observed over tested cities. Computational cost is substantially reduced by selecting

10 number of segment between each pair of nodes in order to solve the developed

definite integral using Simpson’s rule. Further commentary on mapping precision

of curved-sections in OSM and VGI, in general, is also provided with three defined

classes, i.e. Precise Mapped, Curvature-Underestimated, and -Overestimated Mapped;

and discussion is done on how fit the developed methodology is for each one of these

classes. This study opens few potential research areas where OSM derived attribute

could be improved, attribute that otherwise is absent in OSM raw XML file.

3.2 Introduction

In past few years, the near-ubiquitous presence of Global Positioning System (GPS)

enabled devices, remote internet availability, advent of Web2.0 technology [130]

and Information and Communication Technology (ICT) advancement has facilitated

the sudden increase in free online geographic content. When generated voluntarily
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by individuals or teams primarily on a local basis this geo-content is termed as

Volunteered Geographic Information (VGI) ([34], [69], [43]) or Crowdsourcing

Geographic Data ([47], [23]). Although a lot of VGI projects with different aims,

scope and restriction/licensing policy thrive these days, like Wikimapia, Wikiloc,

Foursquare, Google Map Maker etc., one classic example is OpenStreetMap (OSM)

[45] with objective to establish a free and editable map of the world. This over a

decade old project with genesis in 2004 allows anybody from anywhere to map almost

any physical or virtual (like ship trajectory) geo-features online in abstracted form

using flexible specifications [104] and varied web/desktop platforms ([111], [110]). Its

sudden hype in popularity was led by its big volume data, heterogeneity, abundance

and open access (Open Database License [119]).

By end of June 2017, the project had almost 5.8 billion uploaded GPS points, 4.0

billion nodes, 0.4 billion ways, 5.1 million relations and 4.0 million registered users

[127]; although only a small fraction of these users actually contribute to the project

regularly ([84], [163], [78], [84]). It has recently attracted extensive interest from

researchers and service providers from ranging domains ([163]). Its broad range of

application has encouraged developers to collaboratively develop tools, like osm2pgsql

[115], osm2postgresql [114], osmium [116], osmosis [117], osm2pgrouting [113] etc.,

mainly on social coding websites like GitHub to handle, manipulate and tweak its

Extensible Markup Language (XML) data file and to derive inherited geo-attributes

useful for different use-cases. Plethora of OSM based web/mobile-GIS services could

be find online [131] leveraging its raster and vector data set. They can be broadly

divided into Thematic Mapping and Vehicle Routing Services (VRS) [54]. For VRS

the precision of derived road length is of great importance.

3.2.1 OSM Way Tagged Length

Figure 3.1 shows the structure of an OSM XML file format with node, way and

relation tags [132]. During feature generation in OSM ecosystem user generates

collection of nodes representing each particular feature in WGS84 reference system

by collecting either by GPS devices or manual tracing over satellite imageries. For

way and relation features, OSM refers to the set of nodes constituting them and avoids

tag redundancy and improves data readability. By default, the raw XML data does not
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Figure 3.1 : A shortened sample OSM XML file format showing the dependency of
way and relation features on to the corresponding nodes set.

contain geometrical attributes of ways and relations, mainly length and area, because of

the way being structured syntactically. In order to derive these attributes, user needs to

perform some post-download steps to the file. There are almost 320 different kind of

features that could be marked by way tag inside OSM specifications. Among them,

28 features represent roads and footpaths and are marked by highway keys [104].

Although highway key represents only a small fraction of all possible way features,

they represent one of the biggest chunk of way tags. We are interested in highway

features (mainly road) primarily because of the extent to which they are mapped in

OSM and used in different geo-services.

In order to estimate the length of a road for different applications, like to feed to the

underlying graph for weighting purposes in VRS [1] etc., user commonly calculates

the Euclidean Length (EL) using Pythagoras Theorem that gives EL aka straight-line

length [147]. Since OSM XML format describes way as collection of nodes, EL

approach eventually sums up all individual node-pair EL values falling adjacent to

each other for overall length. Figure 3.2 shows how existing tools treat the shape

and length of curved road sections in OSM. This way the curvature of a road which

is critical for curved roads is circumvented altogether, hampering length estimation

and feature visualization. Practically, it is unattainable to map these curved sections

with great precision as it demands huge mapping effort by mappers and computational

resource by servers. Therefore EL of roads is unsuitable for specialized purposes and

advanced VRS, although it is also a factor of city street pattern [77]. Since in practice
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Figure 3.2 : A plotted sample road section over satellite imagery.

the curvature of road is always generalized in OSM, EL is always less than or equal to

Actual ground Length (AL).

EL≤ AL (3.1)

In eq. 5.1 the equality holds true for cases where section is precisely linear with only

two nodes representing the start and end point of the section. Otherwise, the length

error, i.e. AL−EL, solely dependents upon the extent of generalization or, in other

words, the mapped precision of the mapper. It should be noted that representation of

linear features as collection of point is a global phenomena and is not limited to OSM

or VGI and although this study talks only about road features in OSM the developed

algorithm could be applied to any other linear feature in order to reduce the affect of

generalization.

3.2.2 Problem Encountered

Map generalization is a technique used in cartography to reduce the detail of feature.

Whatever map we see at whatever scale is generalized upto certain extent [96].

Possible reasons for map or feature generalization are better readability, low data

size, fast rendering etc. [159]. One famous feature generalization technique is

Ramer-Douglas-Peucker algorithm where a subset of points that defines the original

curve is identified to represent a simplified version of it [24]. Researchers like [90]

and [75] have tried to compare the errors produced by different line simplification
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algorithms and developed a hybrid approach for better results by segmenting and

simplifying linear features based on quantitative characteristics of the line. In one

decent study, [102] have developed a methodology to check the requirement and

limitation of automated map generalization in various commercial software. In case

of VGI geo-data generation, mappers generalize these features too but within their

mind and submit a simplified version of it manually, generally speaking, to the server.

There is no quantitative way to say the extent of generalization in any VGI data set,

like famous OpenStreetMap, as there are many different reasons for simplification

done by mappers, ranging from lack of mapping experience, background imagery’s

resolution, time availability etc. ([98], [78]). In normal generalization, we reduce a

detailed data set to something handy for both the user and the computer, but in VGIs

a simplified version of features is all what we get from servers and sometimes that

is not what we want for spatial use-cases. It has been observed that for VGI data

set a reverse-generalization or curve fitting of linear feature is fruitful. Researchers

have already used curve fitting approaches for linear feature detailing on different

venues ([56], [7], [14] and [25]) but no such study exists around VGI or OSM

project. We believe that this curve fitting application in linear feature is beneficial for

end-users/citizen scientists who better want to leverage the power of public geo-data.

In this study, a methodology is developed to reduce the affect of generalization, done

by mappers within their head or by GPS device because of limited mapping rate, on

road sections by using a cubic polynomial curve fitting approach by using underlying

nodes set taken from OSM file (discussed in detail in Section 4.4). This becomes

crucial for sections that are curved on the ground. Instead of calculating the EL

pair-wise, a mathematical formula is derived based upon cubic polynomial equation,

Pythagoras and Mean-Value Theorem in order to calculate the Curved Length (CL)

pair-wise (Section 3.4.1). The implementation is done in C++ environment (Section

3.4.2) and tested over around 400 road sections from four major world cities (Section

3.5). The results are discussed graphically in Section 5.5 to present the usefulness

of this easy to understand and implement approach. The essence of this study is to

explain a data processing limitation in OSM related tools and a quick fix to it. The

curve fitting approach itself is not novel as past researchers have already used similar

mathematical ways to improve best fitting curves on series of data points, possibly
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subjected to constraints ([158], [135], [136]). However, the implementation is hoped

to bring forth improved tools for better services, thus increasing the usefulness of OSM

data set altogether. The workflow is scalable for whole Planet-OSM and other similar

data set where feature is stored in XML format. Furthermore, an identified limitation

is discussed in Section 3.6.2. We have also developed a web-GUI for data visualization

(Figure 3.6). This short demonstration opens future research possibilities for improved

OSM road length estimation as discussed in Section 3.7.

The rest of the sections of the chapter are documented as follows: • Related Work

(Section 3.3); • Methodology (Section 4.4); • Study Set-Up (Section 3.5); • Results

and Discussions (Section 5.5); • Conclusions and Future Work (Section 3.7).

3.3 Related Work

In recent years, the quality checkup of OSM data set has been done by plethora

of researchers by comparing it with other governmental/proprietary data set ([43],

[66]), by using indirect approaches like Linus Law ([42], by using contributors

count as quality proxy ([84], [84], [78]), by developing intrinsic quality assessment

parameter/tools ([82], [36], [31]) and by reviewing its change set dump file [5].

However, these kind of quality assessments basically work on raw data set by

comparing accuracy of existing tags and do not assess derived values calculated after

download post-processing. We could not find any online literature in peer-reviewed

journal in this regard to use as benchmark. Although tackled problem and presented

solution might appear trivial to advanced users in terms of complexity and novelty, we

believe its usefulness for better services and data usage.

3.4 Methodology

A typical OSM curved road section consists of at least four or more number of

underlying nodes. For two and three number of nodes it could be primarily treated

as straight-line, if not an artifact. In order to piece-wise apply a curve fitting approach

to a section user has to select four consecutive nodes at a time. Figure 3.3 shows

how the fitting is done on step-basis on sample curved section. The initial four nodes

are selected out of seven representing RJ-RJ section (RJ = Road Junction, Figure

3.3b). A piece-wise cubic parametric polynomial equation is derived to best fit these
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Figure 3.3 : A step-wise CL (Curved Length) estimation of sample road section using
presented curve fitting approach.

selected four nodes. Finally, the mid XY section is selected for visualization and length

estimation using derived integral as explained in Section 3.4.1. This step is performed

programmatically (Section 3.4.2) on an iterative basis for all possible adjacent four

nodes-pair for the road section under consideration. Each iteration derives the CL

of XY for final summation (Figure 3.3). For the first and last XY section (Figure

3.3a,f), the cubic curve from immediate neighbouring four nodes-pair is used. Only

mid-sections (XY) are used to obliterate unrealistic spikes/bends in road features that

can be seen at node Y (Figure 3.3f). These spikes are inevitable to prevent because

of them being at the junction. This way one obtains the overall CL value after n− 3

iterations where n is the number of nodes in that road.

3.4.1 Derived Mathematical Equation

For a valid mathematical representation of road section, a parametric piece-wise cubic

polynomial schema is adopted. The coefficients of this cubic polynomial are calculated

for each consecutive quadruple points and mid section of each curve is represented with

obtained formula. There are exceptions for the first and last quadruple points for which

the same coefficients are used from the immediate neighbouring curve. The method

ensures the value of consecutive curve segments on either side of the control point
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to be same at control point but does not guarantee the value of first derivative to be

equal. However, the results obtained by this method are analyzed visually and found

acceptable. The method is chosen over a more widely used cubic spline interpolation

for its simple implementation and cheap resource demand in order not to rule out

the possibility of deployment on light hardware machines such as mobile devices or

embedded systems that contain pretty limited computational resources.

Figure 3.4 : A modelled Earth sphere in WGS84 CS with two given points (A’ and
B’).

The following section derives a mathematical formula to calculate the length of a given

cubic polynomial parametric equation, applicable in WGS84 Coordinate System (CS).

Let’s assume A,B,C,D to be four points with known latitude and longitude through

which we want to pass a 3rd degree curve and further assume the parametric equation

of this curve to be:

long(some− point) = x = f (t) = a1t3 +b1t2 + c1t +d1

lat(some− point) = y = g(t) = e1t3 + f1t2 +g1t +h1 (3.2)

where, t is the parameter. It means that the point A, where x = long(A) and y = lat(A),

is on a 3rd degree curve if and only if there is a value of t such that the above two

equations generate that point. Since the coordinates of A,B,C,D are known from OSM,

eq. 5.2 can be easily solved for constants a1,...,h1. This gives a parametric equation of
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3rd order representing curved shape defined by points A,B,C,D. This equation is also

used by us for visualization of section BC (Section 3.4.2). Now, given a continuous

parametric function x = f (t) and y = g(t) of curve A,B,C,D, eq. 3.3 will determine its

length based upon Pythagoras Theorem (PT) and Mean-Value Theorem within interval

[α,β ] by assuming the derivative to be continuous within the range [133].

CurveLength(units) =

β∫
α

√{
d f (t)

dt

}2

+

{
dg(t)

dt

}2

dt (3.3)

where, d f (t), dg(t) and dt are respective differentials. Eq. 3.3 is valid only for a

2-D system where plane is in regular grid pattern, i.e. length(xn−xn−1) = length(yn−

yn−1), which is not the case with WGS84 CS. In latitude-longitude plane, length(latn−

latn−1) 6= length(lonn− lonn−1) and, therefore, eq. 3.3 is not directly applicable to

OSM node set. Figure 3.4 represents two random locations in WGS84 CS. In order to

use the PT for length estimation we need B′O and OA′ length. Because of the latitudes

being mutually parallel B′O = y1− y2 = latB′ − latA′ equality holds true. As for OA′

length we have to consider the sinusoidal shape of longitudes into account as they are

not mutually parallel. Hence,

OA′ = x1− x2

=

{
L
2

}
cosy1−

{
−L

2

}
cosy2

= (x0
1− x0

2)×
{

cosy1 + cosy2

2

}
= (lonB′− lonA′)×

{
cos latB′+ cos latA′

2

}
(3.4)

Please refer to Figure 3.4 for notations of eq. 3.3. The
{

cos latB′+cos latA′
2

}
component

in eq. 5.4 is the Equirectangular Approximation (EA) factor which considers the

non-parallelism of longitudes into account applicable for small distances ([134]).

Hence, by incorporating EA factor into eq. 3.3, the new curve length equation

applicable to WGS84 CS for section BC becomes:
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CurveLength(radians) =
C∫

B

√{
d f (t)

dt
× cos{g(tB)}+ cos{g(tC)}

2

}2

+

{
dg(t)

dt

}2

dt

(3.5)

where, tB and tC are the parameters for B and C points, respectively. Unfortunately,

the above definite integral is not integrable in its current form and we need to use

Simpson’s rule [137] to solve it into disintegrated form which involves division of BC

into n-number of segments. Mathematically, the larger the number of segment is the

better the approximated integral value would be. The optimal number of segmentation

for presented workflow is turned out to be 10, as discussed in Section 3.6.1 (Figure

3.7). Once CL for each segment is calculated, it is multiplied by the radius of Earth at

that latitude to get the value in metric scale. Eq. 5.5 gives the radius of earth at any

given latitude in meters.

Radius of Earth(latx) =
{[cos(latx)

a

]2
+
[sin(latx)

c

]2}−0.5

where, tan(latx) =
{c

a

}2
× tan(latmean) (3.6)

where, latmean is the mean latitude of a given segment, i.e. latA′+latB′
2 for Figure 3.4,

and a and c are the equatorial (6378137 meter) and polar (6356752.3 meter) radii of

WGS84 Earth Ellipsoid. Iteratively, all segments are measured for all XY sections

(Figure 3.3) to estimate the overall CL of given road section.

3.4.2 Code Implementation

The software part of this study should be examined in two halves. Firstly, the OSM

road data is processed with native application to benefit from system resources as

efficiently as possible and secondly, the results are visualized using a web application

to benefit from platform mobility and development ease [139]. The native application

is coded in an object oriented fashion using C++ language by highly utilizing

the curve fitting library previously developed by us. Section’s length, cumulative

road length (Figure 3.3) and frequency histogram (Figure 3.5) are calculated using

mentioned code by exploiting data set acquired from OSM server. The application

for visualization is coded using web technologies, mainly JavaScript for algorithm
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Figure 3.5 : Graph between frequency and node-pair EL (Euclidean Length) for
selected cities and Planet-OSM.

implementation, HTML for GUI structuring and CSS for GUI visual aestheticism.

The application inputs OSM XML file containing road data and displays improved

curves on top of Bing Satellite Imagery powered by Leaflet v1.0.1 library [138]. The

web-GUI is currently in development phase as more features are needed to enrich the

user-experience.

3.5 Study Set-Up

In order to test the proposed methodology on real OSM road data set, around 100

sections are randomly selected from each four cities with large street network data

set, i.e. Mexico City (Mexico), Paris (France), Istanbul (Turkey), and Republic of

Singapore [84]. These selected cities represent urban setup at different latitudes. The

attempt of this study is not to show case how much gain in road length a city graph

might observe once the presented CL methodology is applied onto it but to exhibit

how much gain a single road section might attain using this technique. The overall

gain in length is primarily a function of street pattern too with grid pattern gaining

least because of few curved sections and cul-de-sacs gaining most [77]. For selected

road section’s visualization JOSM [110] editor is used. Downloaded data is directly

imported into the editor along with satellite imagery. Randomly selected sections,
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Figure 3.6 : A visual comparison of proposed curve fitting approach (yellow line)
with existing linear approach (red line).

suitable for analysis, are observed and corresponding IDs are noted down for later

referencing. Since existing tools measure EL and presented methodology estimates

CL, we need a reference value, ideally≈AL (eq. 5.1), for length comparison; although

visually speaking CL is less erroneous than EL (Figure 3.6). So, in order to calculate

AL we have manually traced over all randomly selected sections with high precision by

mapping more than 50 nodes per 50 meter ground length, thus considering curvature

factor extensively into account. For subsequent discussion, this length is going to be

referred to as Ground Length (GL) and used as reference value.

3.6 Results and Discussions

In this section, we have discussed preliminary results obtained by applying proposed

methodology to estimate length of given roads. Sections are divided into parts where

we have tried to explain, first, the optimal number of segmentation for Simpson’s rule,

then to classify curved sections into three road categories. Each section follows figures

to explain respective findings.
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Figure 3.7 : A graph between the total number of segments and CL (Curved Length)
for selected ways showing plateau at around 10 (dashed-line).

3.6.1 Optimal Number of Segmentation

As explained in Section 3.4.1, in order to solve eq. 3.5 using Simpson’s rule one had to

divide BC section into n-number of segments. Although precision of definite integral

is directly proportional to the number of segments in Simpson’s rule, practically

speaking, taking large number of segments is computationally not possible. The

sub-graph in Figure 3.7 shows a direct relationship between total number of segments

and total amount of time taken by hardware to solve it. This Figure also presents the

relationship between number of segments and CL for all sections taken from selected

cities. It is observed that beyond 10 number of segments, CL attains a saturation point.

For higher number of segments, it is computationally and precision-wise not beneficial.

Although this testing is done on selected cities, similarity of frequency histogram

(Figure 3.5) of different cities and Planet-OSM suggests that this observation could

be extended to other world cities as well. Figure 3.5 shows the frequency histogram of

node-pair EL for all four cities, including Planet-OSM. It can be seen that for selected
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Figure 3.8 : Satellite imagery of a road section showing three different categories of
mapping precision, as discussed in Section 3.6.2.

urban setups as well as for Planet-OSM, the node-pair EL with maximum frequency is

between 10 to 30 meter. Since 10 number of segments is apt for given cities (Figure

3.7), it can be generalized for whole OSM data set as well since XY sections (Figure

3.3) are all mostly of similar EL. For all subsequent analysis for curve fitting the mid

section, i.e. XY, is divided into 10 number of segments.

3.6.2 Precise, Underestimated and Overestimated Mapped Curved Road Sections

Another topic worth consideration is how strictly different road sections are mapped

in given VGI project. As explained in Section 4.4, the primary hypothesis behind

derivation for CL calculation is that all mapped nodes of given section are mapped

onto the underlying satellite imagery as shown in Figure 3.2. By this the derived

cubic curve will also fall onto the actual road section. But, as the scope and

definition of VGI project says [34], anybody can plot these sections and, therefore,

mapping errors do exist ([5], [66], [36], [43]). A close inspection of selected roads

suggests that there are three different categories of mapped sections, classified by

us as Precise Mapped Section (PMS), Underestimated-Curvature Mapped Section

(UMS), and Overestimated-Curvature Mapped Section (OMS) (Figure 3.8a,b,c). PMS

is a category where respective nodes are precisely mapped onto the road section in

sat-imagery (Figure 3.8a). UMS, on the other hand, are cases where mappers have

underestimated the road curvature because of limited mapping experience, poor road

visibility or laziness and added nodes in more linear fashion (Figure 3.8b). Finally,

the third category, i.e. OMS (Figure 3.8c), are cases where road curvatures are

overestimated by mapper and, therefore, as can be seen in Figure 3.8c, there are two

bends where nodes get overshot beyond curvature. From the derivation point of view

(Section 3.4.1) presented approach is applicable for PMS and UMS but not for OMS as

it brings in more error than already is there by Euclidean formulation. This is the only
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known limitation of presented methodology. It is necessary to check how precisely a

mapper has mapped roads onto the underlying imagery. An automated way to identify

these OMS roads is beyond the scope of this study, although this definitely opens new

research topics for us. For current research, it is necessary to manually filter out these

roads from selected ones before applying any curve fitting.

3.6.3 Removing OMS

In order to identify OMS, graphs are plotted between Error and GL for all selected

sections from four cities (Figure 3.9). GL is the EL precisely mapped by us (Section

3.5) and Error is the difference between GL and EL for each section. Keeping the

following relationship in mind:

EL≤CL≤ GL≈ AL (3.7)

where, EL, CL, GL and AL are Euclidean, Curved, Ground (plotted length) and

Actual Length, respectively. Error value, i.e. GL− EL, must remain positive for

PMS and UMS. However, for OMS it should be negative. Therefore, sections marked

by triangular marker on the positive side of y-axis represent PMS (lying close to

x-axis) and UMS (Figure 3.9) and sections marked by ovals represent OMS. For

subsequent analysis OMS sections are not used and needed to be accurately mapped

first. Automated identification of these roads is necessary using image analysis and/or

proprietary data comparison ([166], [43]) and for current study this is beyond the

scope.

3.6.4 Comparison between Euclidean and Curve Fitting Methodology

We have calculated the EL and CL of selected road sections that belong to either

PMS or UMS (Section 3.6.3) by using existing OSM tool and developed algorithm,

respectively. Calculated values are compared with GL that was estimated after precise

mapping. Figure 3.10 is a set of graphs showing absolute Errors introduced by EL

and CL formulation for selected roads. Axes originating from the center represents

Error in meter, i.e. GL−EL and GL−CL, from existing and developed methodology.

Vertices represent each analyzed road for each city. Dashed curve exhibits Euclidean
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Figure 3.9 : A graph between GL (Ground Length) and Euclidean Error (i.e. GL -
EL) for selected ways for all four cities.

method whereas solid curve represents curve-fitting. It is clear from all four graphs

that CL is more close to GL than EL. For all cities the error by curve fitting approach

is smaller than by Euclidean with few sections being equal. For PMS and UMS,

the presented methodology brings forth more precision in terms of visualization and

attribution. It must be noted that at least one road gives negative error (Figure 3.10)

because of it being too close to the x-axis (Figure 3.9). These sections are nothing but

a transition case between PMS and OMS and, therefore, curve fitting could be applied.

However, for sections lying far enough to the positive side above x-axis (Figure 3.9) it

is preferable to use curve fitting for better results.

Another way to observe similar behavior is by plotting a stock bar graph between

Errors and GL for selected roads (Figure 3.11a). X-axis shows the GL of analyzed

curved section in meter and y-axis shows the absolute Error in EL and CL. In stock bar

graph, the lower limit is error in CL and the upper limit error in EL. It is clear that for

all cases the curve fitting approach bestows improved results which can be observed by

noticing the absence of any solid bar (Figure 3.11a). It is also clear from the Root Mean

Square (RMS) Error graph (Figure 3.11b) where for all cities the overall RMS Error is

less for CL. It is evident by observing the slope of the trendline of the two methods that
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Figure 3.10 : Graphs comparing the absolute Error of CL (Curved Length) and EL
(Euclidean Length) for tested roads for given cities (Section 3.6.3).

with increase in AL error of EL gets bigger than error of CL (Figure 3.11c). It is noted

that, except Paris (France), for all cities the slope value corresponds to curve fitting

approach is smaller than the other one. This demonstrates how length estimation gets

more inaccurate for longer roads while using existing tools. Exceptional behavior of

Paris could be marked by its least number of analyzed sections, i.e. only 35 (Figure

3.9), and further analysis is required.

Finally, Figure 3.12 is a plot showing the percentage gain in length value after

migrating from Euclidean to curve-fitting approach. This comparison is necessary

to quantify the value brought in by proposed algorithm. For all four tested cities, the

average % length improvement randomly fluctuates between [0.50-0.90]. The numbers

might look trivial for a while but when compared on a city/country level scale with

millions of road sections the impact caused by them would be staggering. Overall

% length improvement for all tested roads sums up to 0.70%. Those couple of data

points for Paris, Istanbul and Mexico that are above the general data point population

(Figure 3.12, solid points) are cases where road section is highly curved and its mapped

precision in OSM data is poor. These two factors have collectively made the percentage

length improvement for them more than 1.5%. A detailed analysis of Planet-OSM is
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Figure 3.11 : (a) Graphs showing direct relationship between absolute EL (Euclidean
Length) Error and GL (Ground Length). (b) Overall RMS Error from
Euclidean and Curve Fitting formulation for selected cities. (c) Higher

trendline slope of EL Error for all cities, except Paris (discussed in
Section 3.6.4).

believed to give us overall picture of current state of OSM and how better its vector

data could be used for services where road length value is used.

We have discussed the suitability of proposed methodology over existing ones by

comparing various graphs. Proposed formulation is recommended for existing tools

for better road length estimation for improved OSM street data usage. However, how

precisely a section is mapped by a mapper (Section 3.6.2) is still a matter of concern

for applicability of this workflow for Planet-OSM and future research might improve

presented tool (Section 3.4.2) or provide a better one to control OMS road sections.

3.7 Conclusions and Future Work

OSM and other VGI data opens copious doors to deploy geo-services by leveraging

their freely downloadable vector data. However, data quality has always been a

concern in these services. Plethora of online literature is available discussing its

usefulness for spatial use-cases, although little or no study related to quality estimation

of derived attributes is available. One such attribute is length value of road feature that

one derives after data download. Existing open source tools limit curvature factor of

these roads and measure lengths using Euclidean approach (Section 3.2.1). This brings

error that is necessary to be ameliorated for any usage. The attempt of this study is to

derive and propose a piece-wise cubic parametric polynomial curve fitting approach
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Figure 3.12 : Graph showing the percentage gain in length value of all tested roads
by shifting to the Curve-Fitting. Overall percentage gain is found to be

0.70%.

to consider road curvature during download post-processing in order to extract more

accurate geometrical attribute. This easy to understand and apply approach brings forth

better way to visualize and calculate road length and, as discussed in Section 3.6.4, is

identified to be better over existing approach that is solely based upon PT. An overall

0.70% gain in length value is observed by using proposed curve-fitting methodology

over existing one. It is, therefore, suggested to implement in existing tools. However,

it should be noted that because of various level of precision of mapping presented

approach should not be applied to OMS (discussed in Section 3.6.2). This is the

only observed constraint of this algorithm. Another observation is that in Planet-OSM

the EL between each adjacent node-pair generally lies between 10 to 30 meter and,

therefore, 10 number of segments for each node-pair is most suitable for any CL

calculation (Section 3.4.1, eq. 3.5).

Current research opens few potential research doors to improve OSM derived road

length. We have also developed a public web-GUI to visualize these redrawn curves

on top of underlying Bing imagery and currently the development is under-progress

(Section 3.4.2). This GUI will assist users to better analyze how good presented

methodology is for any geo-data where features are stored in OSM XML format.

Future work might include developing an automated way to identify the discussed

OMS sections from raw OSM file or developing a way to statistically identify overshot

nodes (Figure 3.8) to fix them on the fly. In this study, we have manually mapped
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roads to obtain GL for referencing purposes but cross validation with other proprietary

or governmental data is equally conducive for better comparison. Another work might

include testing presented workflow on other major world cities in order to help develop

a more generalized commentary and to better understand limitations.
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4. A NEW SPATIAL APPROACH FOR EFFICIENT TRANSFORMATION
OF EQUALITY - GENERALISED TSP TO TSP

4.1 Abstract

The Equality - Generalized Travelling Salesman Problem (E-GTSP), which is an

extension of the Travelling Salesman Problem (TSP), is stated as follows: Given

a groups of points within a city, like banks, supermarkets etc., find a Hamiltonian

cycle visiting each group exactly once. It is an NP-hard problem which can model

many real-life combinatorial optimization scenarios like planning, logistics, etc. more

efficiently than TSP. An E-GTSP instance can be successfully transformed into its

equivalent TSP instance before solving with a given TSP solver. This paper presents 5

novel spatially driven search-algorithms for possible transformation which consider

the spatial spread of points in a given urban set-up. Algorithms are tested over

15 different cities, classified with their street-network’s fractal-dimension, with 5

instances of different group-counts each. The obtained results point out that the

R-Search algorithm, which selects station (i.e. selected point) from each group based

upon its radial separation with respect to the start-end point, is the best search criterion

for any given city or group-count instance with an average length error of 8.8%. This

will help geo-developers to answer complex routing-queries and researchers to solve

graph problems from a spatial perspective.

4.2 Introduction

The Travelling Salesman Problem (TSP) is by far one of the well-known and

extensively studied combinatorial optimization problem, used as a benchmark for new

developments for decades. It demands to find the shortest (in terms of length, time,

or any custom cost) route that visits each vertex in a given set exactly once before

returning to the starting vertex. Formally, it could be stated as follows: Given a

directed/undirected graph G = (V,E) with set of vertices V and set of weighted edges

E, find the shortest path between start vertex s and end vertex e (e could be same as
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s for closed path) that visits each vertex for a given set V ′ ⊆ V −{s,e} exactly once.

It is equivalent to finding the minimum-cost Hamiltonian cycle in G [46], which is

an NP-hard problem. It can be formulated as an integer linear program. It has huge

applications in ranging areas including vehicle routing, communication networking,

sequencing and scheduling, to name a few [67], and therefore has always remained a

great source of attraction from varied disciplines, especially in last three decades. [91]

has documented a detailed classification of different types of TSP and their possible

solutions.

A variety of heuristic and tabu search algorithms to tackle it are developed by

researchers in the past [148] like • Nearest Neighbour, also known as Greedy

algorithm, which was the first of its kind [40], • Clarke-Wright heuristic [16],

•Minimum Spanning Tree heuristic (eg. Kruskal’s algorithm) [95], and • Christofides

heuristic [37]. All four approximate algorithms above are constructive, i.e. a tour is

improved iteratively. Other algorithms include • K-OPT [20], • Tabu search [32],

• Simulated Annealing [59], • Held-Karp lower bound [157], • Lin-Kernighan algo-

rithm [48], • Lin-Kernighan-Helsgaun [49], and • Cutting Plane and Branch-Bound

techniques. Readers are furthermore encouraged to visit [141] for a quick and suffice

in-depth introduction. GIS users may also read [21].

The Generalized-TSP (GTSP) or Set-TSP or Travelling Politician Problem is a useful

exemplary for selection and sequence related problems. It is one practical direct

extension of TSP introduced by [51], where V is further segmented into n number

of groups and task is to find a minimum-cost route passing through at least one

vertex from each group before reaching to the destination. For almost all inherently

hierarchical real-world problems, it offers a more precise model than TSP. The GTSP

could be mathematically defined as follows: Let G = (V,E) be a graph where V =

{v1,v2, ...,vn} is the set of vertex, E =
{
(vi,v j) | i 6= j;vi,v j ∈V

}
is the edge set, and

W =
{

wi j
}

is the non-negative cost or weightage defined on E. If E is undirected

then directions are irrelevant and (vi,v j) = (v j,vi). Now, in the GTSP V is partitioned

into x mutually exclusive and exhaustive groups such that V g = {V1,V2, ....,Vx} and

V = V1∪V2∪ ...∪Vx with Vα ∩Vβ = ∅ for all α,β = 1,2, ...,x and α 6= β . It asks to

determine the shortest Hamiltonian circuit passing through each group at least once

(introduced independently by [51], [97], and [101]) or exactly once (introduced by
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Figure 4.1 : Representation of one possible (a) closed and (b) open Hamiltonian
cycle in a given symmetric E-GTSP instance.

[87], and [62]). If the matrix W is symmetrical, i.e. wi j = w ji for all i, j = 1,2, ...,n

and i 6= j, the problem is prefixed with symmetric, otherwise asymmetric. This results

to many vertices from each group left being visited. The exactly once variant of the

GTSP is also known as Equality-GTSP or E-GTSP [50], where the shortest route

contains exactly one vertex, i.e. station, from each V g group. The E-GTSP is an

NP-hard problem [58], as it reduces down to the famous TSP (also NP-hard) whenever

(|Vα | = 1 ∀ α = 1,2, ...,x) condition met, i.e. individual groups become singleton.

Figure 4.1a represents one possible closed Hamiltonian cycle, also called as a g-tour,

which visits exactly one vertex from each group before returning to the starting vertex,

and therefore this vertex could be anyone from any group. In Figure 4.1b the cycle is

open as the start and end groups are discrete.

[61] has explained how GTSP can be used as one versatile and elegant tool to

model different classes of combinatorial optimization problems like covering tour

problem, material flow system design, post-box collection, stochastic vehicle routing,

and arc routing. It has prime relevance in location-based problems, urban planning,

postal routing, logistics, microchips manufacturing, telecommunication problems, and

railway track optimization. [8] and [87] have also discussed similar applications in

detail. The complexity of GTSP has led to the advancement of various heuristic

and metaheuristic algorithms like Ant Colony algorithm [161], Memetic algorithm
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([10] and [38]), Variable Neighbourhood Search algorithm [53], Random Key Genetic

algorithm [100], Reinforcing Ant Colony system, Efficient Composite heuristic [93],

etc. However, because of bearing a mathematical origin, these algorithms are onerous

to replicate by general users for TSP models representing GIS problems, primarily

vehicle-routing.

In this study, the authors are primarily interested in E-GTSP to TSP transformation,

which is a logical approach to solve E-GTSP for vehicle routing scenarios, as there

already exists a large variety of exact and heuristic methods to solve TSP ([39],

[65], [49]) like the state-of-the-art Lin-Kernighan-Helsgaun TSP solver [50]. Since

the underlying model represents an urban street setup, authors have tried to think

this transformation from an spatial point of view instead of mathematical which was

being done by other researchers so far. Five different possible search algorithms

are suggested and tested on real-world OpenStreetMap (OSM) street-network data

to decide the best possible search criterion. Different group-counts (i.e. |V g| =

1,2,3,4,5) are employed to test proposed algorithms at different complexity levels.

Generated results are presented in graphical form and discussed in depth in the Results

and Discussions Section 5.5.

To the best of authors’ knowledge, this kind of spatial transformation of E-GTSP

to TSP is first of its kind and no related work is available in any peer-reviewed

online literature. It has opened-up future research possibilities to improve existing

search algorithms or derive better one. In the following sections, the proposed search

algorithms are explained and tested on OSM road data-set. Finally, a commentary on

results are provided in the Conclusions and Future Work section.

4.3 Transformation of E-GTSP to TSP

The GTSP was introduced by [51], [101], and [97] through record balancing problems

aroused in computer design. It is one of the few optimization problems that has been

studied extensively ([63], [87]). Researchers ([22], [64], [87], [71], [9], [88]) have also

elaborately attempted to transform it to standard TSP with many of them exploiting

dynamic programming techniques ([28], [6]), which design to disintegrate complex

problems to a set of relatively simple sub-problems and solve them independently.

The shortcoming of this transformation, however, is that it increases the problem’s
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Figure 4.2 : Diagrammatic representation of 5 different proposed search algorithms.

dimension dramatically. Therefore, although theoretically it is possible to solve GTSP

by converting to corresponding TSP, the new increased problem size ruins its practical

feasibility. [160] have tried to unify both the problems into one uniform state by

introducing generalized chromosome design. [28] have proposed a branch-and-cut

algorithm to solve its symmetric version to optimality. However, these attempts are

exclusively mathematical to apply and may intimidate amateur users to reproduce.

Dynamic programmatically, an E-GTSP’s solution, representing a vehicle-routing

model, is based upon deciding the following two decisions in written order:

• Selection of a vertex subset V s, also termed as station, such that V s ⊆ V and V s∩

Vα = 1 for all α = 1,2, ...,x. Note that, |V s|= |V g|.

• Calculation of the minimum-cost Hamiltonian cycle in subgraph Gs = (V s,Es) of

G produced by V s.
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Since in our E-GTSP model the start and end vertices are different, the calculated

g-tour is going to be an open one (Figure 4.1b). The presented search algorithms

do not increase the problem’s size by increasing vertex or edge count. Considering

vertices’ spatial distribution with respect to the start-end vertex, it is much easier to

filter-out distant and possibly sub-optimal vertices from each group. In this article,

points represent all possible vertices of V including start/end, group represents each set

of vertex from V exhibiting one particular attribute, and station represents the selected

point from each group (Figure 4.1).

4.4 Methodology

The main objective of this article is to answer decision 1 (Section 4.3) for E-GTSP

models which represent finding the shortest route from start to end point visiting

exactly one point, i.e. station, from each mutually exclusive and exhaustive groups

of points, like shops, offices, etc., within a city. Five different search criteria to select

exactly one point from each group depending upon the start/end point are coined here

(Figure 4.2). Although a number of such different algorithms are possible with little

tweaks, authors believe selected ones to be mutually absolute and cover a whole range

of search possibilities. Since this kind of spatial transformation is first of its kind, no

other spatial approach is discussed in other literature. Primarily, they all consider the

spatial spread of points in a given urban set-up, which is the first of its kind, to select

the best possible one from each group for a given E-GTSP instance.

4.4.1 E-Search and D-Search

Euclidean-Search (E-Search) is the first search criterion based upon the euclidean line

between start-end points in a given instance. As can be seen in Figure 4.2, the basic

approach behind it is to connect both the start/end points by a straight line and select

the closest point from each group with respect to this line. It involves two stages before

reducing E-GTSP to TSP. It is O(n), where n = |V |.

Dijkstra-Search (D-Search), on the other hand, involves calculating Dijkstra route,

instead of euclidean line, between given start/end points before selecting the closest

point from each group with respect to that route (Figure 4.2). Computationally it
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is more expensive than E-Search, with O(n2). Algorithm 1 is an easy to grasp

pseudo-code of the above two search algorithms.

4.4.2 R-Search

Radial-Search (R-Search) is the third methodology to select stations based upon their

radial distance from both the start/end points for a particular E-GTSP instance. Closest

point from each group is selected twice, making |V s|= 2×x (Section 4.3), which leads

to 2x different possible TSPs, making decision 2 computationally expensive (Figure

4.2). There is only one stage in decision 1. It involves an O-complexity of O(n)

and Algorithm 2 represents its pseudo-code. It should be noted that, unlike E-Search

and D-Search, it evaluates points lying outside the proximity of start-end region more

efficiently (white region in Figure 4.7).

4.4.3 RE-Search and RD-Search

Finally, the last two search algorithms are a hybrid of R-Search and E-Search

(RE-Search), and R-Search and D-Search (RD-Search). They first ask to find the

radially closest two points from each group with respect to both the start/end points

independently, making |V s|= 2×2×x. Subsequently, they reduce their V s size to half

by selecting closest stations from both the ends with respect to the euclidean line (for

RE-Search) or Dijskstra route (for RD-Search), Figure 4.2. They have the complexities

of O(n) and O(n2), respectively. The second stage, thus, leads to the total of 2x possible

TSPs, similar to R-Search. Algorithm 3 represents their pseudo-codes.

Once estimated the best possible station, i.e. optimal V s, from each group for

minimum-cost open Hamiltonian route for a given instance, it is solved by Simulated

Annealing [59] TSP Solver. Although authors personally have used this algorithm to

solve reduced TSP (decision 2), one is free to select from among any available options

(Section 5.2), as it will only going to affect all five search algorithms equally. Presented

results in the Results and Discussion Section 5.5 are more relative in nature.

4.5 Study Area and Data-Set Used

In order to test all proposed search algorithms, real-world OSM street-network data

were used. 15 cities belonging to five different fractal dimension (frac-D) bins were
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Figure 4.3 : Histogram showing the frequency of cities (marked on the world map
right) for each Fractal-Dimension bin.

selected for analysis out of 210 cities worldwide, a sorted collection of which was

downloaded from [142], (Figure 4.3). Increasing frac-D represents increasing road

density within a given region, with 1-D represents area with only one road section

and 2-D represents area completely filled with networks. Bin size in Figure 4.3 is

intentionally kept small, i.e. 0.1, for finer fractally resolved classes. Fractal Dimension

Calculator is used to calculate the dimension of each city [143]. Table 5.1 contains

all analysed cities sorted-out with increasing frac-D value along with corresponding

decisive attributes derived from OSM vector data.

OSM data were downloaded from its OverpassAPI [122] covering the bounding

box of each city, derived from [144]. All 105 start-end point pairs are randomly

generated and 5 different kind of points for each group making one particular

E-GTSP model are randomly selected from OSM point data to closely depict physical

stops on the ground like shops, supermarkets, etc. In total, only 5 such groups

are generated representing different group-counts as higher |V g| count dramatically

increased brute-force processing time for optimal V s selection for a given instance. The

whole processing was done in python language. Instead of using sample instances from

existing libraries, like GTSPLIB [140], which do not represent real-world scheme,

authors have created their own E-GTSP instances from downloaded vector data.

This provides an opportunity to test presented algorithms for better understanding

and applicability for real-services. Authors also provide tested instances along with

optimal V s info, download-able from Github [145], for other researchers to carry out

related studies in order to escape brute-force processing time which took months to

finish. 5 E-GTSP instances with different |V g| value are used for each selected city to
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Table 4.1 : General statistics of selected cities (Figure 4.3) for proposed search algorithm’s
test.

ID
City

Country
Fractal
Dim.

Area
km2

OSM
# Vertex

OSM
ρ Vertex

OSM
# Edge

OSM
ρ Edge

OSM
∑Edge

1
Hargeisa
Somalia 1.400 42332 7267 0.17 10839 0.26 7782

2
Antananarivo
Madagascar 1.413 42291 26955 0.64 33188 0.78 10455

3
La Paz
Bolivia 1.432 14454 55239 3.82 83209 5.76 11012

4
Nairobi
Kenya 1.511 84 3386 40.3 4469 53.2 482

5
Mexico City

Mexico 1.517 1153 6839 5.93 7819 6.78 1241

6
Las Vegas

USA 1.537 81440 154289 1.89 205164 2.52 40971

7
Seoul

S-Korea 1.609 226 11764 52.0 16301 72.1 1394

8
Edmonton

Canada 1.627 181262 95083 0.52 127203 0.70 56965

9
Calgary
Canada 1.630 96779 130982 1.35 185201 1.91 49842

10
Amsterdam

Holland 1.730 1152 62630 54.4 88977 77.2 8048

11
Brussels
Belgium 1.745 943 54941 58.3 75833 80.4 7273

12
Delhi
India 1.779 5078 198972 39.2 270302 53.2 27063

13
Dallas
USA 1.800 4688 116034 24.7 166882 35.6 26376

14
Milan
Italy 1.802 8043 265604 33.0 356506 44.3 36666

15
Munich

Germany 1.811 1817 188387 103.7 253015 139.2 17380

run discussed algorithms for various complexities. Vital observations regarding best

search algorithm and its behavior with increased complexity are discussed in Section

5.5.

4.6 Results and Discussions

In order to test the above five proposed search algorithms for efficient E-GTSP to TSP

transformation, 15 cities are selected depending upon different levels of street-network

pattern and density (quantified by frac-D, Table 5.1), for which data were obtained

from OSM API. For each city, 5 different instances, i.e. |V s|, modeling varied

complexity of E-GTSP are created and tested for given algorithms. Figure 4.4a is

a 3D-plot between different search algorithms used, different number of stations to

be visited, i.e. |V g|, and different type of street-networks, where each colored circle
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represents the average fractional error (average of fractional errors coming out from

all 105 analysed start-end pairs) in E-GTSP route-length estimated with respect to

the optimal route (by brute-force). There are 375 (15cities×5group-counts×

5algorithms) colored circles, with black circles representing errors more than 20%.

It is clear from the horizontal color-shade shift that irrespective of the choice of a given

search algorithm the percentage error in route length is bound to increase with higher

|V s| instances (marked with big white arrow Figure 4.4a). It is an expected behavior

in combinatorial optimization problem. It is, therefore, needed to slice the whole

plot down into 5 different cross-sections for each group-count for astute observation.

Figure 4.4b represents 5 graphs between different search algorithms and different

type of street-networks belonging to different |V s| values. The black-boxed circles

mark the lowest fractional error for that row. It can be seen that for lower |V s|, the

D-Search algorithm gives the lowest percentage error for maximum number of cities

irrespective of their frac-Ds. It has drastically outperformed over other approaches

for one group-count, with no win for RE-Search. However, this out-performance

gets drifted towards R-Search for higher group-counts, with win of similar intensity

at |V s| = 5 as that for D-Search for |V s| = 1. It is an interesting observation which

suggests that for complex E-GTSP scenarios it is better to select radially close points

from each group with respect to the start-end points than to find one closest to

the corresponding Dijkstra-route. Another important observation is that in spite of

bearing a more sophisticated algorithmic design for RE-Search and RD-Search, their

performance was below average. A thought provoking notion which could be derived

here is that computational complexity does not always mean better precision.
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Figure 4.4 : 3D-graph between Different Search Algorithms, Number of Stations to
be visited, i.e. |V s|, and City’s Fractal-Dimension bin.

Overall, out of 75 tests (15cities×5group-counts) D-Search has outperformed

39 times, E-Search 3 times, R-Search 30, RE-Search 0, and RD-Search 3 times.

Quantity-wise, D-Search is the best one for analyzed instances. However, it is

important to realize that these wins are quantized and do not give any numerical idea

of winner’s gain over other runner-ups, making it necessary to compare results from a

more absolute point of view, Figure 4.5.

Figure 4.5a contains 5 plots displaying average fractional error on y-axis for each

city ordered according to Table 5.1 with each one for one particular |V s|. Each

colored circle represents one distinct search algorithm, mentioned in the legend. In

order to make plots comparable, red (D-Search), and green (R-Search) circles for

different cities are connected linearly. It can be seen that for |V s| = 1 the red-line
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Figure 4.5 : (a) Scatter plot between the Average Fractional Error and City Number
(representing city, Table 5.1) for all |V s| instances. (b) Y-axis, here,
represents the summation of Average Fractional Error from all |V s|

instances.

is almost always below the green-line (Figure 4.5a), which shows its out-performance.

For higher |V s| this pattern gets reversed with green-line being below the red one.

We have already mentioned this observation in Figure 4.4b. However, Figure 4.5a

allows us to compare them absolutely. Figure 4.5b is a summation of average

fractional errors from all |V s| instances for each city. It is clear that the green-line

lies below the red one for most of the cities. This makes R-Search, accuracy-wise,

the best possible overall search-algorithm for E-GTSP to TSP transformation although

D-Search was quantity-wise better. In vehicle routing problems, absolute route length

value, representing route-cost, acts as the most vital attribute quantity for any route

selection process and therefore R-Search would be favoured over D-Search. Figure

4.6 gives the percentage route-length error one is supposed to score through presented

search-algorithms for any given E-GTSP model for any number of group-counts

(although only 5 different group-counts are tested over here). The R-Search gives

an average error of 8.8%. However, because of being tested upon real-street data, it

has brought-forth a better picture. It would be compelling to compare the performance

gain of it with other approaches developed by [28] and [6] on common data-set.

Figure 4.7 gives one possible justification for R-Search win over D-Search for higher

|V s| instances. The grey area is the proximity region of a given start-end points
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Figure 4.6 : Percentage error coming out of all proposed search algorithms.

Figure 4.7 : Possible explanation of R-Search’s win over D-Search for increased |V s|
value.

pair, while the two white areas are outside this. Algorithmically, D-Search is quite

efficient to select distant points, with respect to start-end point, lying close enough to

the underlying Dijskstra-route. Since this route terminates at start-end points, points

lying behind them (white region, Figure 4.7) unfavorably do not get selected during

stage 2 (decision 1), refer Figure 4.2. On the other hand, as can be seen in Figure

4.2, R-Search remains unbiased toward points for their region of location (white/grey)

during selection procedure. Although this leads to 2x TSP routes, R-Search is a

better bet for white-regioned points. Y-axis in Figure 4.7 represents the average

fraction of optimal stations for each |V s| instance belonging to the white and grey

areas, demarcated with an example on the left of the Figure. It should be noted that

the amount of optimal stations falling into the grey-area gets lower with increase in

complexity (|V s|). This shows that with increase in group-counts more and more

optimal stations come out of the white-area, thus, leading R-Search to win over

D-Search, as it more efficiently inculcates behind stations too for decision 2. This

is an interesting observation which shows the consideration of homogeneous spread
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Figure 4.8 : Graph comparing the absolute route lengths coming after Brute-Force
and D-Search/R-Search approaches.

of groups throughout the city-network, and continuous drop of curve value (Figure

4.7right) allows us to generalize the R-Search’s performance for even higher |V s|

instances too.

In order to observe the D-Search and R-Search performance for increasing start-end

points pair distances, a plot is created between their estimated route length and optimal

length (Figure 4.8). The graph represents all 105 routes from each 15 city for 5

group-counts. The key observation here is the fanning-out behavior of data-points

with increase in optimal route length. As one increases the best route length, the

estimated one by both the algorithms gets farther away from mean-line (solid) (Figure

4.8). Although only |V s| = 5 scenario is presented here, similar spread is observed

for other instances too. This behavior was expected as almost all routing algorithms

get error-prone with distant start-end point pairs, nevertheless, it is always better to

document all possible observations. Another point worth stating here is that in a given

city road-network, for mere |V s| = 5 instance, the optimal route length might get of

the order of a couple of hundreds of kilometer. This shows the complexity of TSP in

general and, therefore, a necessity to find its optimal solution as even half a percent

gain may cause a drastic profit in time and money.

Finally, an interesting observation is extracted by plotting a graph between start-end

points’ displacement and corresponding optimal route length for each instance (Figure

4.9). Instead of plotting individual data-points on the graph authors have demarcated
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Figure 4.9 : Graph (left) between start-end points’ displacement and corresponding
optimal route length for all 5 group-counts (for Brussels), where only a

polygon is plotted to show data-point’s spread.

their spread-region with different styled lines, making rugged polygons, for better

visualization and explanation. With increase in instance complexity (|V s|) for a given

city’s E-GTSP model, Brussels (Belgium) in this case, corresponding polygon gets

drifted (marked by solid arrow) away from the mean line towards higher y-value. On

the right of Figure 4.9, there are two plots showing trendline’s slope and R2 value with

respect to |V s|. The trendline here belongs to each data-set which are demarcated by

polygons (only one city is there on the left of the Figure). Each curve exemplifies one

city model in Figure 4.9. Decreasing trendline’s slope value with instance complexity

shows the attainment of optimal route lengths saturation. It means that for larger

group-counts for a given E-GTSP model the optimal route length becomes more

independent to its start-end points euclidean separation. This observation is quite

novel and lets us deduce the commentary that once an optimal route length for a

given start-end pair for a complex instance is known it could be extrapolated to other

pairs too. Like trendline’s slope value, its R2 value has also behaved similarly with

decreasing trend. Since with increase in |V s| the points get more widely spreadout

throughout the city, the decreased R2 value pin-points the complex street-networking

of real-world cities. For complex models, therefore, an amalgamation of heuristic

approach to improve existing algorithms is advised, which is necessary also because
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of the fact that a fresh route estimation every time for each scenario is computationally

and realistically not feasible.

4.7 Conclusions and Future Work

The E-GTSP, which is an extension of famous TSP, has proven by plethora of

researchers to model more realistically real-life combinatorial optimization problems

where the task is to find a close/open Hamiltonian cycle visiting exactly one vertex

from each group in a given graph. The recommended approach to solve it involves

reducing it to corresponding TSP before solving to optimality, which is a dynamic

programming approach and backed by many researchers. However, this transformation

increases problem’s dimension, making it practically unfeasible to solve. Nevertheless,

there do exist a range of efficient transformation algorithms but with core mathematical

origin. In this study, authors have presented 5 different search algorithms for a given

E-GTSP to TSP model conversion that operate spatially, thus, not increasing TSP’s

vertex or edge count. They have been tested over 15 selected cities classified into

road-network frac-Ds with 5 different |V s| instances each.

It is observed that with increase in instance complexity all algorithms get erroneous,

thereby, giving longer routes which is independent of the choice of city street-pattern

(Figure 4.4a). For |V s| = 1 instances, D-Search is better among all presented one;

however, as one increases the |V s| value R-Search gets better (Figure 4.4b). Figure

4.5b and Figure 4.6, additionally, refine this observation by showing that R-Search is

in fact the best search approach for tested cities, which is a good sample of any city

worldwide, by giving least overall route-length value. The win of R-Search in this

study could be attributed by its ability to consider stations belonging to regions outside

the start-end proximity (Figure 4.7). It has also been observed that with increase in the

optimal route length value its corresponding estimated length error from D-Search

or R-Search also gets bigger irrespective of the instance complexity (Figure 4.8).

One final observation, which proves the convoluted networking of street-networks of

world-cities, is done in Figure 4.9, where a deviation of data-points (between start-end

displacement and their optimal routes for all instances) away from the mean value line

towards a saturation zone is observed. It shows that for higher number of groups, i.e.
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group-counts, in a given E-GTSP model, the optimal route length almost gets similar

irrespective of the start-end points’s euclidean displacement.

This study has brought forth a new search criterion of point/vertex selection from each

group for an adequate E-GTSP to TSP transformation, tested on real-street data. This

search criterion, i.e. R-Search, considers the radial spread of all points from each group

with respect to the start and end point for best possible selection. It has widened up

research possibilities in this pursuit; and other interested researchers are encouraged

to use tested data provided by [145] as benchmark for subsequent studies. Future

research might involve testing R-Search criterion with other algorithms discussed by

researchers, like the state-of-the-art Lin-Kernighan-Helsgaun TSP solver. Additional

work might involve developing heuristic-R-Search or ANN-R-Search algorithm.

Algorithm 1 E-Search & D-Search pseudo-code

Require: Terminal points S and F , G = (V,E) representing urban street-network, &
V g = {V1,V2, ...,Vx}, i.e. points’ groups set, where Vi ⊆ V & Vi∩Vj = ∅ ∀ i, j =
1,2, ...,x & i 6= j.

1: procedure E-GTSP⇒ TSP
2: if Algorithm 1 = E-Search then Draw SF Euclidean Line
3: end if
4: if Algorithm 1 = D-Search then Calculate SF Dijkstra Route
5: end if
6: Initialize an empty container C1
7: for Vi ∈V g ∀ i = 1,2, ..,x do
8: Initialize an empty container C2.
9: for vm ∈Vi ∀ m = 1,2, .., |Vi| do

10: C2 <- vm−SF shortest Euclidean distance
11: end for
12: return C2
13: C1 <- v = vm−SF ∈C2, with the smallest Euclidean distance
14: end for
15: return C1
16: end procedure
17: procedure TSP
18: Calculate the minimum-cost Hamiltonian cycle induced by C1. Note: C1=V s.
19: end procedure
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Algorithm 2 R-Search pseudo-code

Require: Terminal points S and F , G = (V,E) representing urban street-network, &
V g = {V1,V2, ...,Vx}, i.e. points’ groups set, where Vi ⊆ V & Vi∩Vj = ∅ ∀ i, j =
1,2, ...,x & i 6= j.

1: procedure E-GTSP⇒ TSP
2: Initialize an empty container C1
3: for Vi ∈V g ∀ i = 1,2, ..,x do
4: Initialize an empty container C2.
5: for vm ∈Vi ∀ m = 1,2, .., |Vi| do
6: C2 <- vm−S Euclidean distance
7: C2 <- vm−F Euclidean distance
8: end for
9: return C2

10: C1 <- v = vm−S & vm−F ∈C2, with the smallest Euclidean distance
11: end for
12: return C1
13: end procedure
14: procedure TSP
15: Calculate the minimum-cost Hamiltonian cycle for all pairs (i.e. 2x) induced

by C1.
16: Select the pair with shortest minimum-cost cycle.
17: end procedure
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Algorithm 3 RE-Search & RD-Search pseudo-code

Require: Terminal points S and F , G = (V,E) representing urban street-network, &
V g = {V1,V2, ...,Vx}, i.e. points’ groups set, where Vi ⊆ V & Vi∩Vj = ∅ ∀ i, j =
1,2, ...,x & i 6= j.

1: procedure E-GTSP⇒ TSP
2: Initialize an empty container C1
3: for Vi ∈V g ∀ i = 1,2, ..,x do
4: Initialize an empty container C2.
5: for vm ∈Vi ∀ m = 1,2, .., |Vi| do
6: C2 <- vm−S Euclidean distance
7: C2 <- vm−F Euclidean distance
8: end for
9: return C2

10: C1 <- Two v = vm−S & vm−F ∈C2, with least Euclidean distances
11: end for
12: return C1
13: if Algorithm 3 = RE-Search then Run E-Search (Algorithm 1), treating C1≡

V g

14: end if
15: if Algorithm 3 = RD-Search then Run D-Search (Algorithm 1), treating C1≡

V g

16: end if
17: Estimate C1 f (Filtered C1 after E-Search or D-Search)
18: end procedure
19: procedure TSP
20: Calculate the minimum-cost Hamiltonian cycle for all pairs (i.e. 2x) induced

by C1 f .
21: Select the pair with shortest minimum-cost cycle.
22: end procedure
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5. AN ATTEMPT TO REDUCE AN E-GTSP INSTANCE SIZE FOR GLKH
SOLUTION

5.1 Abstract

The state-of-the-art approach to solve an E-GTSP instance involves its asymmetric

transformation into TSP before using some TSP solver. This approach does not reduce

instance size at any stage. For very large instances, this taxes considerable time and

space resources. This study presents a custom cost of vertex, termed as Cost Product,

in order to reduce the dimension of instance before solving it using GLKH solution.

The shrinked matrices generated using this cost are compared with original matrices,

obtained from GTSPLIB, in terms of cost error, time, and space. GLKH 1.0 is used

to solve these two matrices. It is observed that for time and space, shrinked matrices

are better than original ones of the order of 2nd degree polynomial. It is also reported

that percentage cost error is a function of average number of vertex per cluster and is

bounded within certain range for different instances. The Cost Product is observed to

be one custom cost that could be systematically used to reduce the size of any E-GTSP

instance before solving it using the state-of-the-art solution.

5.2 Introduction

The Travelling Salesman Problem (TSP) is by far one of the well-known and

extensively studied combinatorial optimization problem. It asks to find the shortest

route (in terms of length, time, or any custom cost) that visits each vertex in a given

set exactly once before returning to the starting vertex. Formally, it could be stated as

follows: Given a directed/undirected graph G = (V,E) with set of vertices V and set

of weighted edges E, find the shortest route between start vertex s and end vertex e (e

could be same as s for closed route) that visits each vertex in the set V ′ ⊆ V −{s,e}

exactly once. It is equivalent to finding the minimum-cost Hamiltonian cycle in G

[46], which is an NP-hard problem. The problem has numerous applications in areas

like vehicle routing, communication networking, sequencing and scheduling etc. [67],
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and therefore has always remained great source of attraction for various disciplines

for decades. [91] has documented a detailed classification of different types of TSP

and their possible solutions. In graph theory and also in this study, (route, tour, cycle,

path), (node, vertex), and (cost, weightage) are loosely used synonymously.

The Generalized-TSP (GTSP) or Set-TSP or Travelling Politician Problem is an

exemplary for selection and sequence related problem. It is an extension of TSP [91]

and was introduced by [51]. Here, the set V is further segmented into m number

of groups and the problem is to find a minimum-cost route, also known as g-tour,

passing through at least one vertex from each group making an open or closed route.

For many inherently hierarchical real-world problems, it offers a more precise model

than TSP. The GTSP is mathematically defined as follows: Let G = (V,E) be a graph

where V = {v1,v2, ...,vn} is the set of vertex, E =
{
(vi,v j) | i 6= j;vi,v j ∈V

}
is the

edge set, W =
{

wi j
}

is the non-negative cost defined on E, and V is partitioned

into m mutually exclusive and exhaustive groups such that V g = {V1,V2, ....,Vm} and

V =V1∪V2∪ ...∪Vm with Vα ∩Vβ =∅ for all α,β = 1,2, ...,m and α 6= β , determine

the shortest Hamiltonian route passing through each group at least once. If E is

undirected then direction is irrelevant and (vi,v j) = (v j,vi). The at least once variant

of GTSP was independently introduced by [51], [97], [101] and exactly once variant

(also known as Equality-GTSP or E-GTSP) was introduced by [87] and [62]. If

the cost-matrix W is symmetrical, i.e. wi j = w ji for all i, j = 1,2, ...,n and i 6= j,

the problem is prefixed with symmetric, otherwise asymmetric. The GTSP is an

NP-hard problem [58] as it reduces down to equivalent TSP (also NP-hard) whenever

|Vα | = 1 ∀ α = 1,2, ...,m, i.e. individual groups become singleton. In graph theory

and also in this study, (route, tour, cycle, path), (node, vertex), and (cost, weightage)

are loosely used synonymously.

It is well known that any E-GTSP instance can be asymmetrically transformed into

TSP instance preserving the number of vertices [88]. The transformation allows one

to solve the instance using the state-of-the-art LKH asymmetric TSP solver. LKH

[151] is a local search heuristic that is based on the variable depth local search of

Lin and Kernighan [72]. Figure 5.1a shows the state-of-the-art way to reduce a given

E-GTSP instance to TSP before solving it using LKH solution. On the left, the matrix

contains the cost of visiting between any two vertices of instance. Although, on one
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hand, the state-of-the-art E-GTSP solution (i.e. GLKH [57]) guarantees to give optimal

route in given time span [50], the approach does not reduce matrix size at any stage,

i.e. at E-GTSP instance or Clustered TSP instance or TSP instance (Figure 5.1a).

For instances with large V set and numerous clusters m, it consumes considerable

computational space and time (especially when cost-matrices are generated on-the-fly).

Figure 5.1b matrix represents a cost-matrix where the cost is unknown beforehand and

is a function of time. Examples are cases where E-GTSP instance represents vehicle

navigation scenario and the cost is defined as the time taken to navigate between two

ground locations. Since time taken is a function of traffic (at least), cost-matrix is

generated on-the-fly. One only need to calculate the time-dependent cost for grey

cells in Figure 5.1b as only they connect vertices of different clusters. These kind of

instances are not only empty but are also big in dimension and therefore cannot be fed

into the state-of-the-art E-GTSP solution Figure 5.1a.

In this study, a new cost value is defined for each vertex in a given E-GTSP instance in

order to reduce the overall cost-matrix size for fast and low-spaced computation. This

new cost, termed as Cost Product or CP, is used to systematically reduce cluster size,

keeping the probability of finding the best or optimal vertex in each cluster high. It has

been argued that CP governs the above defined probability. Results in terms of time,

space, and cost error are compared with results drawn from the state-of-the-art GLKH

solution [150].

5.3 Cost Product (CP)

Graph is represented in the form of cost-matrix for better visualization. The ith row in

this matrix contains the cost of visiting each vertex from ith vertex, Figure 5.1a. By

far, there is no definite way to estimate the overall cost of ith vertex in a graph. This

overall cost is necessary to compare vertices of cluster to systematically delete those

with high cost for fast solution. This cost, termed as Cost Product or CP, is defined as

follows:

{p(VCmi) = {a(VCmiC1)×{a(VCmiC2) ... {a(VCmiCm−1)

=
m−1

∏
x=1

{a(VCmiCx) (5.1)
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where, {p(VCmi) i.e. Costprod.(VCmi) is the cost product of VCmi vertex, VCmi is the ith

vertex (Vi) of Cm cluster, Cx is the xth cluster, and {a(VCmiCx) i.e. Costavg.(VCmiCx) is

the average cost between Vi vertex and all vertices of Cx cluster.

{a(VCmiCx) =
{(VCmiVCx1)+{(VCmiVCx2) ... {(VCmiVCx|Cx|)

|Cx|

=
∑

|Cx|
y=1 {(VCmiVCxy)

|Cx|
(5.2)

where, {(VCmiVCxy) i.e. Cost(VCmiVCxy) is the non-negative cost between Vi of Cm cluster

and yth vertex of Cx cluster and |Cx| is the dimension of Cx cluster. The definition of

CP is derived from the nearest neighbour search concept as has also been done by

[164]. It should be noted that one very small Cost(VCmiVCxy) value reduces the overall

Costprod.(VCmi) value of the vertex, and therefore this vertex should be taken among the

set of optimal vertices for E-GTSP solution.

Figure 5.2 is an illustration of the problem. Here each oval represents a cluster as

defined in cost-matrix in Figure 5.1a. It has been argued that a low CP value of vertex

in a cluster indicates its high possibility of being among the set of vertices for best

or optimal route. In other words, when sorted in increasing CP value from left to

right in a cluster, vertices on the left are optimal for minimum-cost route than vertices

on the right. This filtering criteria on the basis of CP value dramatically reduces the

overall cost-matrix size of Figure 5.1a, thus reducing the time and computational space

consumption.

It rises to the question that how many vertices with low CP value (from the left of sorted

CP list) should be taken from each cluster for shrinked cost-matrix. The shrinked

cost-matrix is the matrix with same number of clusters, i.e. m, as in the original

one but with less number of vertices. In other words, if for an original E-GTSP

instance the total number of clusters are m and total number of vertices are n, then

for shrinked E-GTSP instance, after vertex filtering using CP criteria, the total number

of clusters would remain m, however the total number of vertices will get less than n.

Fixed number of vertices for selection is not used for CP filtering as clusters vary in

dimension within an instance and among different instances and rather CP percentage

(%) is used. For example, if for a cluster the lowest and highest CP values are 1 and

101, respectively, then 5% will select all vertices with CP less than 6. This X% is a
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Figure 5.1 : The state-of-the-art GLKH solution for any E-GTSP instance.

matter of choice and in the results and discussion section it is shown how this % value

governs the maximum possible error that can be introduced in route cost.

Figure 5.3 helps to visualise the CP % filtering approach. Vertices of each cluster

are placed in increasing order of CP from left to right and over a number line for

relative scaling. Solid oval represents a vertex for best or optimal route. As can

be seen, clusters with high coefficient of variation miss the chances of finding solid

oval within X%. The coefficient of variation (CV), also known as relative standard

deviation (RSD), is a standardized measure of dispersion of data in relation to the mean

of population. It is defined as the ratio of standard deviation and mean. For clusters

with highly dispersed CP value, CV is high, otherwise low. Decreasing probability of

finding solid oval within X% denotes increasing error.
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Figure 5.2 : An illustration of E-GTSP instance. In this example ovals representing
each cluster do not overlap.

5.3.1 Upper bound of CV

Assume there is a cluster Cm in an E-GTSP instance that has k number of vertices. The

non-negative CP of these vertices vary between the range [0,M], where M is some very

large value. The mean x̄, standard deviation σx, and CV of CP for this cluster would

be:

x̄ =
∑

k
i=1 {p(VCmi)

k
(5.3)

σx =
√
[
∑

k
i=1{{p(VCmi)− x̄}2

k
] =
√
[
∑

k
i=1{{p(VCmi)}2

k
− x̄2] (5.4)

CV =
σx

x̄
(5.5)

The CV would attain maximum value when k− 1 vertices of cluster have Costprod.

value equal to 0 and remaining one vertex, considered as an outlier, has value M. This

gives:

x̄ =
M
k
,
∑

k
i=1{{p(VCmi)}2

k
=

M2

k

⇒ σx =
√
[
M2

k
−M2

k2 ] =
M
k
√
(k−1)

CVmax. =
σx

x̄
=

M
k
√
(k−1)
M
k

=
√
(k−1) (5.6)
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Figure 5.3 : Clusters with sorted vertices in increasing order of CP.

Eq.5.6 shows that the upper limit of CV of a cluster is a function of only its dimension.

For an E-GTSP instance with average K number of vertices in cluster, the overall or

average CV will not go beyond
√
(K−1).

5.3.2 Probability as a function of CV and X%

Error induced by CP filtering in a given E-GTSP instance is not only a function

of X% but also a function of average CV of all clusters, as shown in Figure 5.3.

Mathematically the dependency can be explained as follows:

1
CostError

∝ Probability(Figure5.3) = e(CV f×ln(X f )) (5.7)

where, f = f raction. Figure 5.4 is a plot between Probability and CV for different

values of X%. The plot justifies eq.5.7 by making probability equal to 1 for X=100%

and equal to 0 for X=0%. As for intermediate curves, it shows an asymptotic behavior

by tending towards 0 probability for high CV values. It should be noted that for a given

X% and average cluster dimension, the probability gets bounded within [1,econstant ]

(eq.5.6 and eq.5.7), irrespective of the Costprod. or number of clusters m. For example,

for an E-GTSP instance with average cluster dimension of 3601, CVmax. becomes
√
(3601−1) = 60 and for a CP % filtering with X=98% the lowest possible probability

of finding solid oval (Figure 5.3) becomes e(60×ln(0.98)) = 0.3 (Figure 5.4).
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Figure 5.4 : A plot between Probability of finding solid oval within X% (Figure 5.3)
and CV .

5.4 GTSPLIB sample instance library

Using Costprod. value, the effort is to reduce the E-GTSP instance size for GLKH

solution. It is necessary to compare the results drawn from the GLKH solution for

both original and shrinked matrices for different instances. The GTSP instances for

comparison are downloaded from [152]. This GTSP instance library was generated

from TSPLIB using clustering procedure. TSPLIB offers a collection of sample

instances for TSP and other related problems generated from various sources and of

various types [153]. TSPLIB ([3] and [76]) and GTSPLIB [99] are primarily used by

graph researchers as benchmark instances for development.

Small, large, and very large benchmark instances used in this study are documented

in Table 5.1. This classification is based on the # of cluster in instances [50], with

[0,40] marked as small, [40,100] as large, and [> 100] as very large. Instance is the

name of the instance as written in the GTSPLIB library and Avg.#N/C is the average

# of node in cluster in sample instances. The Avg.#N/C is nothing but K of Section

5.3.1. The STOP_AT_OPTIMUM = NO specifies whether the run to find an optimal

route should stop when route length becomes equal to Optimum Value (provided in

the library) or not (in the documentation of [154]). This setting was necessary as

almost in all instances one does not know the Optimum Value beforehand. Also since

the original and shrinked matrix represent two considerably different graphs, the YES
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value of STOP_AT_OPTIMUM key will bias the results. The other key-values of

runGLKH_EXP file of GLKH-1.0 are kept unaltered during the process.

Table 5.1 : Info. of small benchmark instances (STOP_AT_OPTIMUM = NO)

S.No. Instance Optimum #Cluster #Node Avg.#Node/Cluster

1 3burma14 1805 3 14 4.7
2 4ulysses16 4 16 4.0
3 5ulysses22 5307 5 22 4.4
4 10att48 5394 10 48 4.8
5 11berlin52 4040 11 52 4.7
6 11eil51 174 11 51 4.6
7 14st70 316 14 70 5.0
8 16eil76 209 16 76 4.7
9 16pr76 64925 16 76 4.7
10 20gr96 29440 20 96 4.8
11 20kroA100 9711 20 100 5.0
12 20kroB100 10328 20 100 5.0
13 20kroC100 9554 20 100 5.0
14 20kroD100 9450 20 100 5.0
15 20kroE100 9523 20 100 5.0
16 20rd100 3650 20 100 5.0
17 21eil101 249 21 101 4.8
18 21lin105 8213 21 105 5.0
19 22pr107 27898 22 107 4.9
20 25pr124 36605 25 124 5.0
21 26bier127 72418 26 127 4.9
22 26ch130 2828 26 130 5.0
23 28gr137 36417 28 137 4.9
24 28pr136 42570 28 136 4.9
25 29pr144 45886 29 144 5.0
26 30ch150 2750 30 150 5.0
27 30kroA150 11018 30 150 5.0
28 30kroB150 12196 30 150 5.0
29 31pr152 51576 31 152 4.9
30 32u159 22664 32 159 5.0
31 39rat195 854 39 195 5.0
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Table 5.2 : Info. of large benchmark instances (STOP_AT_OPTIMUM = NO)

S.No. Instance Optimum #Cluster #Node Avg.#Node/Cluster

32 40d198 10557 40 198 5.0
33 40kroa200 13406 40 200 5.0
34 40krob200 13111 40 200 5.0
35 41gr202 23301 41 202 4.9
36 45ts225 68340 45 225 5.0
37 45tsp225 1612 45 225 5.0
38 46gr229 71972 46 229 5.0
39 46pr226 64007 46 226 4.9
40 53gil262 1013 53 262 4.9
41 53pr264 29549 53 264 5.0
42 56a280 1079 56 280 5.0
43 60pr299 22615 60 299 5.0
44 64lin318 20765 64 318 5.0
45 80rd400 6361 80 400 5.0
46 84fl417 9651 84 417 5.0
47 87gr431 101946 87 431 5.0
48 88pr439 60099 88 439 5.0
49 89pcb442 21657 89 442 5.0
50 99d493 20023 99 493 5.0

Table 5.3 : Info. of very large benchmark instances (STOP_AT_OPTIMUM = NO)

S.No. Instance Optimum #Cluster #Node Avg.#Node/Cluster

51 200C1k.0 6375154 200 1000 5.0
52 200dsj1000 9187884 200 1000 5.0
53 200E1k.0 9662857 200 1000 5.0
54 201pr1002 114311 201 1002 5.0
55 212u1060 106007 212 1060 5.0
56 217vm1084 130704 217 1084 5.0
57 235pcb1173 23399 235 1173 5.0
58 259d1291 28400 259 1291 5.0
59 261rl1304 150468 261 1304 5.0
60 265rl1323 154023 265 1323 5.0
61 276nrw1379 20050 276 1379 5.0
62 280fl1400 15316 280 1400 5.0
63 287u1432 54482 287 1432 5.0
64 464u2319 65758 464 2319 5.0
65 479pr2392 169874 479 2392 5.0
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Figure 5.5 : A plot between Average CV and % Cost Error for different X% values.

5.5 Results and Discussions

Eq.5.7 is a mathematical relation between Probability, CV and X% as observed in this

study. Probability is inversely proportional to CostError as increasing probability of

finding solid oval (Figure 5.3) within X% decreases the cost error in optimal route

of shrinked matrix. This inverse relationship is visible when compared Figure 5.4

and Figure 5.5, where one appears to be a mirror image of another along horizontal

line parallel to x-axis. Figure 5.5 is a plot between average CV of GTSPLIB sample

instances and Cost Error induced by applying GLKH solution on shrinked instances

for different X%. R2 value being greater than 0.6 shows good fit for each logarithmic

curve. The Cost Error, instead of increasing exponentially, polynomially or linearly,

increases logarithmically and appears to be tending towards some saturation value for

high CV. This is because for given average cluster dimension and X% the probability

of finding solid oval does not go below certain limit and keeps the Cost Error below

certain plateau (Section 5.3.2). Author comments that more GTSP sample instances

are required to compare Probability and CostError, as current GTSPLIB only offers

140 instances. However, it is clear that they follow an inverse relationship.
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By applying CP filtering on clusters of sample instances one alters the state of the graph

and cost-matrix altogether, and therefore cost-errors induced by GLKH solution for

original and shrinked matrix cannot be compared directly. Rather these errors should

be studied individually with Optimum values provided in GLKH-1.0 (Table 5.1). It

should be further noted that for instances with same # of node and cluster the CP

filtering approach will give different results for different values of CV. However, the

result will not get worsen than certain limit as eq.5.7 becomes constant. Studies like

[50] only compare errors induced by different algorithms individually for different

samples. This is because each instance in TSPLIB and GTSPLIB represents scenario

of different source and type and a collective comparison is not possible.

In Section 5.3.1, it is showed that maximum value of CV is independent of Costprod.

and m and is only a function of K (eq.5.6). Since for all GTSPLIB instances the K

value, i.e. Avg.#Node/Cluster, is between 4.0 and 5.0 range (Table 5.1), the CVmax.

value of these instances remains within [
√
(4−1),

√
(5−1)] range, i.e. [1.7,2.0]. This

is clear in Figure 5.5 as x-value of all data-points does not go beyond 1.7. To test cases

with different K values more sample instances in GTSPLIB with various number of

vertices per cluster are required. Current sample collection does not provide this. The

over cluttering of curves for X less than 75% in Figure 5.4 shows that probability only

varies minutely for them. This behavior in Cost Error is also observed in Figure 5.5

where errors almost get similar in magnitude for 50% and 75%, and only gets double

when stepping from 75% to 5%. More E-GTSP instances will help generalize these

observations and help users find suitable combinations of X% for specific use-cases.

The time taken and resources consumed by GLKH solution for original and shrinked

matrix are important to compare to test the suitability of CP filtering criteria for

large and very large E-GTSP instances. Cost-matrix size and # of grey boxes count

(Figure 5.1) are used as proxy of RAM consumption during the process since CP

filtering is coded in Python in this study and GLKH was coded in C and the two

cannot be compared directly. The Time Taken is the time taken by GLKH to solve

the two matrices. Figure 5.6 is a collection of plots of TimeTakenV s#Cluster,

CostMatrixSizeV s#Node, and GreyBoxesV s#Node. These plots represent CP filtering

with X equal to 5%. From all three plots it is clear that shrinked matrix takes less

time and resource than original matrix, especially for large and very large instances.
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The best fit curves are of 2nd degree polynomial order with R2 = 1 and 0.99998 in

2nd and 3rd plot since for them the equation of curve is CostMatrixSize = n2 and

GreyBoxes = n2−∑
m
x=1 |Cx|2, respectively.

5.6 Conclusions and Future Work

This study has evaluated the performance of shrinked matrices generated by applying

CP filtering criteria on GTSPLIB sample E-GTSP instances on error, time, and space

scale. The filtering criteria defined in this study is one possible way to reduce any

cost-matrix size for GLKH solution. In terms of time and space requirement, shrinked

instances are way too faster and efficient than original instances. As for cost-error

the study shows that the result cannot deviate from best solution beyond certain limit,

which is a function of average # of vertex per cluster. The argued approach to reduce

cost-matrix size is especially suitable for large and very large instances (Figure 5.6)

where the gain in performance is of 2nd degree polynomial order. Similar study with

large number of varied E-GTSP instances will help to guesstimate beforehand the

cost-error possible by CP filtering for new instances.

A possible future path for research would be to improve CP to better govern the

probability of finding solid oval within X% (Figure 5.3). More number of GTSP

instances would help support the findings of this study. One also need to better

understand the relationship between CostError and Probability as defined in eq.5.7

by studying the structure, nature, and origin of used GTSPLIB instances.
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6. CONCLUSIONS AND RECOMMENDATIONS

OpenStreetMap (OSM) has been demonstrated to be one valuable source of spatial data

because of its big volume heterogeneity in context of many applications. However,

concerns still exist regarding its suitability for specific use-cases. The study conducted

during the presented doctoral thesis has attempted to understand how fit is it for

E-GTSP (consult 4th and 5th chapters for detail) Vehicle Routing Services (VRS).

Specialized VRS is getting more and more main stream to target specific users, like

delivery van, transportation companies, or even general public with custom queries.

Although in this thesis the main interest was over E-GTSP, many other similar queries

are also possible. In order to interpret the big picture, the first important task is to

see how the data-set has evolved with time, what are the governing factors for this

evolution, how complete the data is for VRS and what is the future of it. Once done,

it is necessary to see how existing algorithms could be improved for better road-length

attribute calculation. Finally, an attempt is necessary to efficiently solve E-GTSP by

converting it to TSP.

Although, the main attempt was to provide a general commentary about OSM

time-series evolution, Turkish provincial boundary has been studied to act as one

indicator for big picture. It has been observed that mapping activities drop down

during winter season because of reduced outdoor activity and limited tourism. A

spatial biasedness in mapped data is observed within the country, which is noticed

to be a consequence of heterogeneous socio-economic factors, with maximum

influence by population density and literacy level. Furthermore, a considerable

mapping-participation inequality is observed, raising a question about data quality for

VRS. Interestingly, it is found that major contributors sometime use other VGI projects

as primary data-source for OSM. In a nutshell it could be said that, in spite of being a

successful VGI project so far, OSM has a long way to go before it overtakes existing

proprietary data-sets like Google Maps for advanced VRS. However, identification of

better proxies to predict OSM node density evolution is required as next step. Along
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with that, it is believed that a study on the interdependency of different VGI projects

can help project developers and curators to better identify the source of the geo-data

error.

Once the general attributes of OSM is understood in 2nd chapter, an attempt has

been made to improve its derived road length value. It was necessary to be fixed

as one existing post-processing gap. Syntactically, it is not possible to estimate

OSM’s road length during data generation, except after data download which involves

euclidean length estimation by existing tools. In spite of being accurate enough for

gridded street-networks like Chicago (USA) or places with least round-abouts, this

approach becomes erroneous for more curved sections by ignoring road curvature

factor altogether. The attempt of 3rd chapter was to derive and propose a piecewise

cubic parametric polynomial curve fitting approach to consider road curviness during

post-processing for improved road length calculation. The new algorithm is proven

to be better for all four tested cities and is one potential development which should

be incorporated into existing OSM handling tools. Unfortunately, because of having

a varied mapping precisions in the data-set, road sections where the mapper has

over-estimated curvature are not suitable for this curve-fitting approach, as it will bring

more error than is already there because of euclidean formulation. This is the only

known limitation of this methodology to become globally applicable. Future work

requires the formulation of statistical analysis and machine learned tools to identify

these overshot nodes, along with satellite imagery image analysis. A cross validation

with other proprietary and government geo-data set is also required. It has raised a

concern about how accurate our derived attributes are, like road length, polygon area,

etcetra, and how they could be ameliorated.

In the 4th chapter, an elaborate study has been done to understand E-GTSP problem

and possible solution. So far, this problem has been understood as one graph theory

problem, and a large number of researchers have attempted to provide a sub-optimal

to optimal solution to this. However, because of all solutions being mathematical,

a new approach to solve it is discussed in detail that considers the spatial spread of

vertices in a graph into account (consult the chapter for detail). Out of five proposed

search algorithms to select one vertex from each group in a given E-GTSP model,

one turned out to be the best relative approach with route precision of 8.8%. This
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approach, termed as radial search criterion, considers the radial separation of vertices

with respect to the end destinations for filtering for sub-optimal E-GTSP to TSP

transformation. Because of being tested on real street-data, derived from OSM, this

observation is much reliable and provides a better picture of usability of different

approaches. Although, the selected search criterion is quite precise, especially for

low instances with few number of groups, there is room for possible improvisation

by adoption of heuristic and neural network concepts. Depending upon the kind of

street network the definition of R-Search should be tweaked to inculcate the effect of

topology. Another key observation which has been deduced is that for models with

large number of groups, the optimal route length almost gets saturated within a range

in a given city irrespective of the location of end destinations. This has been used

as a proxy to show the real street-network’s complexity in an urban city. Presented

approach has opened-up a possibility to structure complex routing-engines by thinking

spatially, which is an easy to adopt approach in GIS realm.

Finally, the 5th chapter is an extension of previous one where a Cost Product criteria

is presented to reduce the matrix size of any E-GSTP instance for possible solution.

The testing is done on GTSPLIB sample dataset, that is being used as benchmark for

these kind of development. It has been observed that in terms of time and space, the

shrinked matrix by cost product is way too faster and efficient than the one provided by

GTSPLIB. For cost-error, the results show that there is a bounded bin where all values

lie and has been observed mathematically. The presented cost product criteria is quite

efficient for large and very large instances, causing a gain of 2nd degree polynomial

order. Detailed analysis has been provided in respective chapter and the explanation

is beyond the scope in this section. Future suggestion is to improve the CP filtering

criteria considering the probability of finding solid oval (consult the chapter). Study

with other instances libraries with different average number of nodes per cluster is

necessary as the current used library only provides instances with 4 and 5 average

number of nodes per cluster. A comparison between Cost Error and Probability would

help researchers to improve such kind of transformation, primarily by studying the

structure, nature and origin of used instances.

This thesis is expected to be useful for scientific community, developer community,

OSM system admins and almost anybody who deals with OSM, VRS, open-source
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data and Free and Open Source Software for GeoSpatial (FOSS4G). Future research

might include a more exhaustive approach to identify and fix data error in OSM, as

it is proven to be a prime controlling factor for usage in geo-services. Researchers

may also work on system designs for these kind of projects as existing platforms lack

many functionalities and syntactic structuring. One promising work might involve

satellite data usage to identify land features to fill data gaps, like erroneous and missing

features. Although this current thesis was based on OSM project, there do exist some

other less popular similar projects like wikimapia, which might also demand similar

study for much wider commentary about VGI in general. Using these studies, a more

advanced VRS is possible for specific use-cases. Since all major developed codes used

in this thesis are published on-line with MIT License, they will assist future researchers

and developers to pursue studies in this domain. For a more comprehensive topic-wise

explanation and suggestions for further reading, one should consult each chapter’s

introduction and reference section.

Geo-data access has always remained a barrier in the past for successful

Location-Based Services (LBS). There is a monopoly of few players in this sector, like

Environmental Systems Research Institute (ESRI) or Governmental Agencies, because

of their ability to obtain or collect these expensive data-sets. However, this trend is

now changing with increase in awareness among end-users about open-source VGI

projects, like OSM. This trend has caused this recent hype of OSM based services and

is expected to get stronger in coming days. The open-source movement has overpassed

its abstracted form and is really happening. It is believed to be the future of LBS and

GIS.
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