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“Anyone who has common sense will remember that the bewilderment of the
eyes are of two kinds and arise from two causes, either from coming out of the
light or from going into the light, and, judging that the soul may be affected
in the same way, will not give way to foolish laughter when he sees anyone
whose vision is perplexed and weak; he will first ask whether that soul of man
has come out of the brighter life and is unable to see because unaccustomed
to the dark, or having turned from darkness to the day is dazzled by excess
of light.”

Plato, The Republic
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GLOBAL PHASE DIAGRAMS OF BEG SPIN-GLASS AND SPINLESS
FERMION SYSTEMS

SUMMARY

Throughout this thesis, attention was given to phase transitions taking
place in classical and quantum systems with specific renormalization-group
transformation applications to the Blume-Emery-Griffiths (BEG) model and
the Hubbard model. The Blume-Emery-Griffiths model is a useful system
for the study of the various meetings of first- and second-order phase
boundaries between ordered and disordered phases, in a plethora of phase
diagram topologies. This model has already been used to describe
3He-4He mixtures, solid-liquid-crystal-gas systems, multicomponent fluid and
liquid-crystal mixtures, microemulsions, semiconductor alloys, and electronic
conduction systems. In this study with the inclusion of frozen disorder
(quenched randomness) to the BEG system and by calculating the global phase
diagram of the Blume-Emery-Griffiths spin-glass model, the phase boundaries
in that system were investigated and an inverted tricritical point behavior was
observed. Also, a strong-coupling second-order phase transition was observed
between the paramagnetic and ferromagnetic phases. In the topologies of
the calculated phase diagrams, spin-glass and paramagnetic reentrances were
seen. The phase diagrams were determined by the basins of attraction of the
renormalization-group sinks, namely the completely stable fixed points and fixed
distributions. In the second part of the thesis, the phase diagrams and expectation
values of the interaction terms were obtained for the hard-core fermionic Hubbard
model which is a simple but realistic model for describing electronic systems. In
the investigated model it was found that the system had four different phases,
all of which were separated by second-order phase transitions. The phases found
were a dilute phase, a dense phase, and two intermediate phases characterized by
enhanced fermion hopping.
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BEG SPIN CAMININ GLOBAL FAZ DİYAGRAMLARI VE SPİNSİZ
FERMİYON SİSTEMLERİ

ÖZET

Bu tez sürecinde klasik ve kuantum sistemlerde meydana gelen faz geçişleri
üzerinde durularak Blume-Emery-Griffiths ve Hubbard modelleri üzerinde
uygulamalar yapılmıştır. Blume-Emery-Griffiths modeli, düzenli ve düzensiz
fazlar arasındaki birinci ve ikinci derece faz sınırlarlarının buluşmalarını inclemek
için faydalı bir karmaşık sistemdir. Bu model daha önce 3He-4He karışımlarını,
katı-sıvı-kristal-gaz sistemlerini, çok bileşenli akışkan ve sıvı-kristal sistemlerini,
mikro emülsüyonları, yarı iletken alaşımları, ve elektronik iletim sistemlerini
açıklamak için kullanılmıştır. Bu çalışmada, sisteme donmuş düzensizlikler
eklenerek Blume-Emery-Griffiths spin camı modelinin global faz diyagramları
hesaplanmış, bu faz diyagramları üzerindeki faz sınırları incelenmiş; birinci
ve ikinci dereceden faz geçişlerini ayıran trikritik noktanın sıcaklığa olan ters
bağlılığı gözlemlenmiştir. Ayrıca, paramagnetik ve ferromagnetik fazlar arasında
kuvvetli etkileşimli ikinci dereceden bir faz geçişi gözlemlenmiştir. Hesaplanan
faz diyagramlarının topolojisinde spin camı ve paramagnetik geri dönüşlerine
raslanmıştır. Faz diyagramları ve geçişleri hesaplanırken, Hamiltonyende yer alan
etkileşim katsayılarının renormalizasyon grubu dönüşümü altında gittikleri sabit
noktalardan veya sabit dağılımlardan faydalanılmıştır. Tezin ikinci kısmında,
elektronik sistemleri açıklamak için basit fakat gerçekçi bir model olan Hubbard
modeli üzerinde durularak, fermiyon sistemlerinin faz diyagramları ve etkileşim
sabitlerinin yoğunluklar hesaplanmıştır. Yoğun, seyrek ve iki ara fazdan oluşan
bu sistemde bütün faz geçişlerinin ikinci dereceden olduğu yapılan özdeğer üsteli
hesaplamaları sonucunda görülmüştür.
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1. INTRODUCTION

1.1 Phase Transitions and Critical Phenomena

Everyone has experienced the occurrence of a phase transition while watching a

cold rainy day from their window and drawing figures on the foggy glass, hoping

to add some enjoyment to the day alone at home by changing the phase of the

condensed water particles. Having greatly enjoyed this action, in order to have

a better understanding of the laws of nature, investigating the thermodynamic

events taking place during this phenomenon might be a good next step to take.

In nature, thermodynamic systems can be in different phases depending on their

conditions. Passing from one phase to another is named a phase transition

and during this transition one or more of the properties of the system can vary

spontaneously. It is possible to find various physical systems which experience a

phase transition when one of the intensive physical quantities characterizing the

system is changed. Well-known examples of phase transitions are those between

solid, liquid, and gaseous phases, the appearance of superconductivity in some

metals when they are cooled under a certain temperature, or the transition of

magnetic materials from the paramagnetic phase to the ferromagnetic phase at

the Curie temperature. In general, it can be said that in order for a phase

transition to occur, there should be a singularity in the free energy and its

derivatives for some choice of the thermodynamic variables. Such non-analytical

situations generally appear as a result of the interactions in many-body systems.

The most striking result of the interactions between particles is the appearance of

new phases. Formally, all of the macroscopic properties of a statistical system can

be derived from the partition function or the free energy. Since phase transitions

typically involve sharp changes, they correspond to singularities of the free energy.

Since a system formed by a finite number of particles is always going to be
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analytical, a phase transition can only occur in the thermodynamic limit as a

result of interactions between infinitely many particles.

A classification of phase transitions can be made based on the existence of a

latent heat in the system and the level at which the singularity explained above

appears. In first-order phase transitions, there exists a latent heat and the system

absorbs (or emits) a fixed amount of heat from its environment. Since the

energy exchange between the system and the environment will not be sudden,

there is a probability of finding two phases together. In these types of phase

transitions the first derivative of the free energy is discontinuous. In contrast,

a second-order transition does not have a latent heat and the singularity is

found in the second derivative of the free energy. Solid/liquid/gaseous systems

(away from the critical point) and the paramagnetic-ferromagnetic transition of

magnetic materials in zero field are examples of first-order and second-order phase

transitions respectively. In Figure(1.1), the phase diagram of an Ising ferromagnet

is shown.

Figure 1.1: A phase diagram of an Ising magnet is shown in terms of magnetization
(M), external field (H), and temperature (T ). If route number 1 is
followed by changing the magnetic field at a constant temperature under
the critical temperature (Tc), there will be a change from a positive
magnetization phase (spin up) to a negative magnetization phase (spin
down). This situation is an example of a first-order phase transition. If the
temperature is changed at zero magnetic field, there will be a second-order
phase transition in the system at the critical temperature. In this case, the
magnetization rapidly increases starting from zero when T is decreased
below Tc. At the second-order phase transition point, the system suddenly
chooses to be in one of the spin up or spin down phases.
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By using the principles of statistical mechanics it is possible to describe physical

systems in terms of intrinsic and extrinsic thermodynamical variables. Thus, the

connection between statistics and thermodynamics is established by the statistical

definition of the free energy

F(T,H ) =−kT lnZ(T,H ), (1.1)

where k is Boltzmann’s constant, T is the temperature, H is the Hamiltonian of

the system and Z is the partition function calculated from

Z(T,H ) = ∑
r

e−βEr , (1.2)

with β = 1/(kT ) and Er representing the total energy of the system for some

state r [1]. For a classical system, once the properties of all of the particles in the

system are defined, the free energy can be expressed as,

F(T,H ) =−∑r e−βEr

β
, (1.3)

In the case of a quantum system, the partition function is a trace of the

exponential of the Hamiltonian matrix.

The order parameter of a system, m, is a value that becomes non-zero below the

critical temperature. The difference in densities between a fluid and gas phase

and the magnetization in a magnetic system are examples of order parameters. A

phase boundary between two phases can have both first-order and second-order

phase transitions depending on the values of the interaction constants defining

the system. The point separating the two different kinds of phase transitions is

referred to as a tricritical point.

The critical properties of the system can be characterized quantitatively by

examining the form of the divergences and singularities present in the derivatives

of the free energy, namely the thermodynamic functions, near the critical points

[2]. Allowing t to be a measure of the deviation from criticality in a function G(t),

for example the difference between the temperature and the critical temperature

Tc,

t =
T −Tc

Tc
, (1.4)

3



the critical exponent associated with that function is

λ = lim
t→0

ln|G(t)|
ln|t| , (1.5)

expressing the fact that G(t) scales like

F(t)∼ |t|λ (1.6)

near Tc. A striking property of these critical exponents is that although

other values characterizing phase transitions may vary widely between different

systems, the critical exponents are generally dependent only on a few parameters,

and whole classes of systems share the same exponent. It is this property of the

critical exponents that leads to the idea of universality.

Table 1.1: Some critical exponents used in magnetic systems.

Zero-field specific heat CH ∼ |t|−α

Zero-field magnetization M ∼ (−t)β

Zero-field isothermal susceptibility χT ∼ |t|−γ

Critical isotherm H ∼ |M|δ
Correlation length ξ ∼ |t|−ν

Pair correlation function at Tc G(~r)∼ 1/rd+η−2

1.2 The Renormalization-Group Procedure

Various methods have been developed in order to understand and identify

different types of phase transitions. Mean-field theories, transfer matrix

formulations, high-temperature and low-temperature series expansion methods,

and Monte Carlo simulations are useful tools for exploring the mysteries of critical

phenomena. In this study, the renormalization-group procedure was used to

derive and characterize the phase diagrams of certain classical and quantum

systems.

In the most general sense, a renormalization-group transformation consists of

changing the scale of a given system in order to create a mathematical relation

between the physical quantities of the system at the new and old scales and

then to acquire information about the system using this derived relation. The

rescaling, which is the core idea of any renormalization-group transformation, can

4



be made by replacing a group of elements by one element which is representative

of that particular group. For instance, a 3x3 block of spins containing 6 spin-up

sites and 3 spin-down sites can be replaced by a single site with an up spin.

By iterating this rescaling procedure, it is possible to observe how the original

system behaves depending on its starting point. This rescaling keeps going until

a known characteristic point is reached such that the system continues to map

onto itself in successive iterations. The special characteristic points at which the

renormalization-group flows stay unchanged are called fixed points.

In Figure(1.2), the behavior of a two-dimensional Ising model under a

renormalization-group transformation is seen. At each step, nine neighboring

spins were replaced by a new single spin which takes the same value as the

majority of the spins in the original cluster. When this procedure was initiated

far away from the critical point, the scale change shows its effect immediately

and the correlation length decreases under repeated iterations. This occurs at

all points, except at the critical point, where the correlation length stays the

same under iteration. Therefore, by looking at the behavior of a system under

a renormalization-group transformation, the critical points can be identified and

the thermodynamic behavior around these points can be explained.

In general, the system may flow to a line or plane of fixed points rather

than a single unique point. The type of a fixed point is related to the

form of the corresponding critical exponents. For a positive critical exponent,

the renormalization-group iteration will drive the system away from the fixed

point. This corresponds to a relevant field. If the exponent is negative, the

renormalization-group will move the system closer to the fixed point and this

corresponds to an irrelevant field. Therefore, the stability of any fixed point

depends on the number of relevant and irrelevant fields associated with it. A

completely stable fixed point is going to have only irrelevant fields whereas an

unstable fixed point is going to contain at least one relevant field.

5



Figure 1.2: A real-space renormalization-group transformation for the two
dimensional Ising model on the square lattice. The top-left, top-right, and
bottom figures are the renormalization-group flows starting from above,
below and on the critical temperature(Tc) respectively. Source: Wilson,
K. G. (1979). Scientific American, 241, 140.
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1.2.1 The Ising Model in One Dimension

The one-dimensional Ising model is a well-known system on which the

renormalization-group method can be illustrated. It is defined by the classical

Hamiltonian

−βH = ∑
<i j>

Jsis j +G≡ ∑
<i j>

−βH (i, j), (1.7)

where J is the interaction coefficient between two nearest-neighbor spins, G

is an additive constant and < i j > denotes that the sum is taken over only

nearest-neighbor pairs. Every site si can take values of ±1/2. The partition

function of the system is

Z = ∑
{s}

e−βH (s). (1.8)

Here s represents {s1,s2, ....,sN−1,sN}, the state of all N spins in the lattice.

In order to implement the renormalization-group procedure we should first

decimate(perform the summation over) the odd- (or even-) numbered sites, and

then equate the resulting partition function to the original one to find the relation

between the renormalized system and the original system. For every cluster of

three sites this will give

∑
s j=±1/2

e−βH (i, j)−βH ( j,k) = ∑
s j=±1/2

e−Jsis j+G+Js jsk+G

= ∑
s j=±1/2

e−Js j(si+sk)+2G

= e2G(eJ(si+sk)/2 + e−J(si+sk)/2) (1.9)

= eJ′sis j+G′

= e−β ′H ′(i, j)

defining a renormalized pair Hamiltonian e−β ′H ′(i, j). At the end, using Eq.(1.9)

derived above, a relation between the renormalized interaction coefficients, J′,G′,

and the original coefficients J,G can be found as

J′ = 2ln[cosh(
J
2
)], G′ = 2G+

1
2

ln[4cosh(
J
2
)]. (1.10)
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1.2.2 The Migdal-Kadanoff Procedure

The renormalization-group recursion relations for the regular Ising model and

many other classical models in one dimension can be obtained relatively

easily by decimating the spins. What is more interesting is to develop a

renormalization-group procedure that would be usable to obtain the recursion

relations and hence the critical points in higher dimensions. A simple, but very

useful, approximate technique is the Migdal-Kadanoff procedure [3]. It makes

reasonable predictions for dimensions greater than one which have been helpful

in explaining the phase diagrams of real physical systems like krypton adsorbed

on graphite [4].

The two steps of the Migdal-Kadanoff procedure on a square lattice are illustrated

in Fig.(1.3). First, the bonds of the nearest-neighbor interaction strengths J are

moved to create bonds of strength 2J at every other line. By repeating the process

in both directions symmetry is preserved and we end in a final lattice similar to

the first one with bond strengths of 2J but with a subset of disconnected sites.

Next, the remaining site in the middle of each bond is decimated. Hence, a

two-dimensional renormalization is achieved. This idea is important because

it makes working in higher dimensions possible. In arbitrary dimensions, any

nearest neighbor interaction Kp (p = 1,2, ...,d) for bonds parallel to the d-axes of

a d-dimensional hypercubic lattice can be obtained from

K′
p = bd−pRb(bp−1Kp) (1.11)

where Rb is the operator defined by the 1-dimensional decimation and b is the

length rescaling factor of the renormalization-group transformation [5].

Figure 1.3: Renormalization on a square lattice
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2. SYSTEMS WITH QUENCHED RANDOMNESS: BEG SPIN GLASS

2.1 Addition of Randomness

In all of the renormalization-group transformations introduced in the previous

chapter, the bonds between sites were all identical to each other. However, any

real system is naturally going to contain disorder in it. Although one may wish

to get rid of these disordered situations, studying the effects of impurities and

randomness on the critical behavior might be exciting. The disorder might lead

to new phases in the system, might completely remove the order in the system

or sometimes can change the universality class of the system while preserving its

order.

The inclusion of some non-magnetic atoms in a lattice consisting of magnetic

atoms can be regarded as an example of disorder. In order to create disorder,

impurities can be added to a pure material at high temperatures and then the

system can be allowed to cool. If this cooling is done sufficiently slowly, the

system is going to crystalize, the impurities and the magnetic atoms will come

to a thermal equilibrium and the resulting distribution is going to be determined

by the final temperature of the system. A disorder obtained in such a way is

an example of annealed randomness. If one is going to perform thermodynamic

calculations on this system at long time scales, not only the positions of the

magnetic ions will be important but also the positions of the impurities will need

to be considered. However, the mobility of the impurities is very low in a solid

structure and achieving thermal equilibrium might take very long times. It would

be more realistic to accept the positions of the impurities as constant and do the

calculations only on magnetic degrees of freedom. This would correspond to a

quenched random system [6].

9



One of the important effects of adding randomness to an ordered system might

be the appearance of a spin-glass phase which was not present before. The frozen

structural disorders which result from the addition of impurities might cause

the interactions between the magnetic moments to become frustrated and hence

create a spin-glass phase [7]. As the temperature is lowered, no long-range order

of the ferromagnetic or antiferromagnetic type will occur but the system is going

to have a freezing transition characterized by a new type of order parameter. The

physics of spin-glasses raises essential questions and that is why this phenomenon

is one of the central research fields in condensed matter physics.

The renormalization-group transformation of a system including quenched

randomness can be done through the use of hierarchial lattices [8–10]. In general,

a hierarchical lattice can be constructed by replacing every bond in the connected

cluster of bonds with the connected cluster of bonds itself and repeating this step

infinitely many times. Unique recursion relations can be found for each hierarchial

lattice leading to the solutions of the thermodynamic properties of that system.

There are certain interesting questions to be answered related to the effects of

randomness on systems. Suppose there exist two phases separated by a phase

boundary having first-order and second-order phase transitions meeting on a

tricritical point. One might ask how would quenched randomness affect the nature

of this phase boundary. It is also worth investigating whether the addition of

quenched randomness completely eliminates first-order phase transitions or not,

and the way the evolution between phases takes place. In the remaining part of

this chapter, the effects of quenched randomness on a complex system are going

to be examined and answers will be sought to the questions above.

2.2 The Blume-Emery-Griffiths Spin Glass and Inverted Tricritical Points

One of the attractive systems containing both first- and second-order phase

transitions along with tricritical and critical-end point phase diagrams is the

Blume-Emery-Griffiths model [11,12]. This system has pure-system tricritical and

critical points in d = 3. However, the inclusion of quenched randomness increase

the interest in this system, as it is predicted that first-order boundaries should

thus be converted to second order. In a well-known phase diagram topology,

10



a tricritical point separates the high-temperature second-order boundary and

the low-temperature first-order boundary. In the present work, we find that

a temperature sequence of transitions that is reverse to the above can occur

with the inclusion of quenched randomness. Thus, an inverted tricritical

point is obtained, separating a high-temperature first-order boundary and a

low-temperature second-order boundary. Interest is further compounded with

spin-glass type of quenched randomness [13], as the spin-glass phase appears

within the Blume-Emery-Griffiths global phase diagram. Thus, a new spin-glass

phase diagram topology was found, in which disconnected spin-glass regions occur

close to the ferromagnetic and antiferromagnetic phases, but are separated by a

paramagnetic gap.

2.2.1 The Recursion Relations

We have studied, in spatial dimension d = 3, the model with Hamiltonian

−βH = ∑
<i j>

[Ji jsis j +Ks2
i s2

j −∆(s2
i + s2

j)], (2.1)

where si = 0,±1 at each site i of the lattice and < i j > indicates summation over

nearest-neighbor pairs of sites. The interaction constants, J,K,∆, respectively

represent the linear exchange coefficient, the quadratic exchange coefficient and

the crystal-field interaction. The spin-glass type of quenched randomness is

given by each local Ji j being ferromagnetic with the value +J with probability

1− p and anti-ferromagnetic with the value −J with probability p. With this

representation, p = 0 and p = 1 limits correspond to purely ferromagnetic and

purely anti-ferromagnetic systems respectively. Under the scale change induced

by renormalization-group transformation, all renormalized interactions become

quenched random and the more general Hamiltonian

−βH = ∑
<i j>

[Ji jsis j +Ki js2
i s2

j −∆i j(s2
i + s2

j)−∆†
i j(s

2
i − s2

j)] (2.2)

has to be considered.

With the quenched randomness added to the system, the renormalization-group

transformation is expressed in terms of the joint quenched probability distribution

11



P(Ji j,Ki j,∆i j,∆†
i j), which is renormalized through the convolution [14]

P′(K′
i′ j′) =

∫
[

i′ j′

∏
i j

dKi jP(Ki j)]δ (K′
i′ j′−R({Ki j})), (2.3)

where the primes refer to the renormalized system, Ki j ≡ (Ji j,Ki j,∆i j,∆†
i j).

P′(Ki′ j′) in the re-scaled system is calculated from P′(Ki j) in the original system

so that the product in the integral is over all the bonds i j in the connected cluster

of the original system between sites i and j. Here, R(Ki j) is a local recursion

relation for each of the bond strengths.

The integral equation is solved numerically using an hierarchical lattice. Hence,

we obtain a model solvable by renormalization-group procedure. The probability

distribution P(J,K,∆,∆†) is represented by histograms, where each histogram

is specified by bond strengths and their corresponding probabilities. For our

problem, the initial probability distribution will consist of two histograms;

one at (J,K,∆,0) with a probability of 1− p and one at (−J,K,∆,0) with a

probability of p. The hierarchial lattice that we studied (Figure 2.1) represents

a three-dimensional lattice with a scaling factor of 3, and contains 27 bonds,

therefore a direct application of Eq.(2.3) will result in a convolution of 27

probability distributions.

Figure 2.1: The d=3 hierarchial lattice for which our calculation is exact. This lattice
is constructed by the repeated imbedding of the graph as shown in this
figure. This hierarchical lattice gives very accurate results for the critical
temperatures of the d = 3 isotropic and anisotropic Ising models. [15]

However, Eq.(2.3) can be separated into pairwise convolutions, each of which

having two distributions convoluted at a time using an appropriate R function.

The necessary convolutions are a bond moving convolution, with

Rbm(Ki1 j1 +Ki2 j2) = Ki1 j1 +Ki2 j2 (2.4)

12



and a decimation convolution yielding the following renormalized interactions:

J′i′ j′ = ln(R3/R4)/2, K′
i′ j′ = ln(R2

oR3R4/R2
1R2

2)/2,

∆′i′ j′ = ln(R1R2/R2
o)/2, ∆†′

i′ j′ = ln(R1/R2)/2, (2.5)

where

Ro = 2exp(∆i j−∆†
jk +∆ jk +∆†

jk)+1

R1 = exp(Ji j +Ki j +2∆i j +∆ jk +∆†
jk)

+ exp(−Ji j +Ki j +2∆i j +∆ jk +∆†
jk)

+ exp(∆i j +∆†
i j),

R2 = exp(∆i j−∆†
i j + J jk +K jk +2∆ jk)

+ exp(∆i j−∆†
i j− J jk +K jk +2∆ jk)

+ exp(∆ jk−∆†
jk),

R3 = exp(Ji j +Ki j +2∆i j + J jk +K jk +2∆ jk)

+ exp(−Ji j +Ki j +2∆i j− J jk +K jk +2∆ jk)

+ exp(∆i j +∆†
i j +∆ jk−∆†

jk),

R4 = exp(Ji j +Ki j +2∆i j− J jk +K jk +2∆ jk)

+ exp(−Ji j +Ki j +2∆i j + J jk +K jk +2∆ jk)

+ exp(∆i j +∆†
i j +∆ jk−∆†

jk).

For our hierarchial lattice, using the bond-moving and the decimation

convolutions, the order of pairwise convolutions yielding the total convolution

of equation (2.3) is: (i) a bond moving convolution of Pinitial with itself, yielding

P1; (ii) a decimation convolution of P1 with itself yielding P2; (iii) a decimation

convolution of P2 with P1 ,yielding P3; (iv) a bond moving convolution of

P3 with itself, yielding P4, (v) a bond moving convolution of P4 with itself,

yielding P5; (vi) a decimation convolution of Pinitial with itself, yielding P6; (vii)

a decimation convolution of P6 with Pinitial yielding P7; (viii) a bond moving

convolution of P7 with P5, yielding Pf inal. The number of histograms representing

the probability distributions increases rapidly, therefore before every pairwise

convolution the number of histograms is controlled at a desired value using a

13



binning procedure, in a way such that the average and the standard deviations of

the probability distributions are preserved. At the end, our results are obtained by

the renormalization-group flows of 22,500 histograms. The histograms are placed

on a grid of interactions on a four-dimensional interaction space (Ji j,Ki j,∆i j,∆†
i j)

and all histograms that fall within the same grid cell are combined together to

represent one new interaction point, while the histograms falling outside the grid

are grouped together in a single histogram. The size of the grid is adjusted so

that only a negligible portion of the histograms will fall outside the grid. Once

Pf inal is reached after the 8 piecewise convolutions with a binning step between

each of them, Pf inal is re-set as Pinital and the same routine is repeated until the

characteristics of the flow are fully determined.

2.2.2 Phase Diagrams and Results

Using the recursion relations derived in the previous section it was possible to

determine the phase diagram of our system. A detailed study of the calculated

phase diagrams, by pinching the phase transition lines, enabled us to observe

different kinds of phase transitions between the ferromagnetic and the disordered

phases. We have found 3 different kinds of behavior on the phase boundary of

ferromagnetic and disordered states as well as a spin-glass phase which was not

present before the inclusion of impurities. The first region, corresponding to a

second-order phase transition had a sink with a fixed point of J = 0.184,∆/J =−∞.

Any trajectory, initiated within a narrow neighborhood of this second-order line,

will first follow the phase boundary before it reaches the second-order fixed point.

Once the flow reaches the fixed point, it is going to stay there for some time

(some number of iterations), after which it is going to choose between disordered

and ferromagnetic states depending on which side of the phase boundary it was

initiated from.

The next region observed was a strong-coupling second-order phase transition

region. Flows initiating in this segment of the phase boundary no longer visit

the second-order fixed point explained above. Instead, they have their unique

fixed distribution. In this strong coupling region, at each renormalization-group

iteration, the value of (2∆avg−Javg−Kavg) increases by a factor of 9, hence giving
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a critical exponent value of 2 for our b = 3, d = 3 system, indicating that it is not

a first-order transition. Finally, we observed a first-order phase transition region

in which the critical exponent was found to be 3, which is equal to d, and the

first-order phase transition criterion for our system is satisfied.

Tricritical phase diagram cross-sections of the purely ferromagnetic system for

different K/J values are shown in Fig.2.2. These are standard tricritical phase

diagrams, in the absence of quenched randomness, with the tricritical point

separating the second-order transitions at high temperature and the first-order

transitions at low temperature. The humped boundary, occurring in mean-field

theory but not in the d = 2 system [12], is thus found to occur in the d = 3 system.
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Figure 2.2: Tricritical phase diagram cross-sections of the purely ferromagnetic
system for different K/J values, shown consecutively from the innermost
curve for K/J = 0. First- and second-order transitions are respectively
shown by dotted and full lines, meeting at a tricritical point. In these
systems, with no quenched randomness, the standard tricritical topology
occurs, with the second-order boundary at high temperature and the
first-order boundary at low temperature.

Our calculated global phase diagram for the BEG spin-glass system is in Fig.2.3

for K = 0. The ferromagnetic phase is bounded by a first-order surface close to

p = 0, which recedes along the full line on the surface from a new second-order

transition induced by randomness and controlled by a strong-coupling fixed

distribution. At the dashed line, an ordinary second-order transition takes over.

The full line is thus a line of random-bond tricritical points. The dashed line
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is a line of special critical points around which universality is violated, since

the second-order phase transitions on each side of this line have different critical

exponents. [14] These two lines meet at the non-random (p = 0) tricitical point.

The transitions from the spin-glass phase, to the paramagnetic or ferromagnetic

phase, are second order.
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Figure 2.3: Our calculated global phase diagram for K = 0. The ferromagnetic phase
is bounded by a first-order surface close to p = 0, which recedes along
the full line on the surface from a new second-order transition induced
by randomness and controlled by a strong-coupling fixed distribution.
At the dashed line, an ordinary second-order transition takes over. The
transitions from the spin-glass phase, to the paramagnetic or ferromagnetic
phase, are second order. The system being symmetric about p = 0.5, the
antiferromagnetic sector is not shown.

Cross-sections of this global phase diagram for constant chemical potential

∆/J of the non-magnetic state are in Fig.2.4. The outermost cross-section

has ∆/J = −∞, meaning no si = 0 states, and therefore is equivalent to the

phase diagram of the spin-1/2 Ising spin glass [16], showing as temperature is

lowered the paramagnet-ferromagnet-spinglass reentrance [17, 18]. The annealed

vacancies, namely the nonmagnetic states si = 0, are introduced in cross-sections

with successively higher values of ∆/J. For ∆/J greater than the non-random

tricritical value of ∆/J = 0.192, first-order transitions between the ferromagnetic

and paramagnetic phases are introduced from the low randomness side, but

are converted to the strong-coupling second-order transition at a threshold

value of randomness p. This constitutes an inverted tricritical point, since the

phase boundary is converted from first order to second order as temperature

16



is lowered, contrary to the ordinary tricritical points (as seen for example in

Fig.2.2). The above results are consistent with the general prediction that, in

d = 3, quenched randomness gradually converts first-order boundaries into second

order. [19] (In d = 2, this conversion is predicted to happen with infinitesimal

quenched randomness. [19, 20]). As the annealed vacancies si = 0 are increased,
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Figure 2.4: Blume-Emery-Griffiths spin-glass phase diagrams: Constant ∆/J
cross-sections of the global phase diagram in Fig.1. The outermost
cross-section has ∆/J = −∞, meaning no si = 0 states. The annealed
vacancies si = 0 are introduced in cross-sections with successively higher
values of ∆/J, making all ordered phases recede. The dotted and full
lines are respectively first- and second-order phase boundaries. The
dashed lines are strong-coupling second-order phase boundaries induced
by quenched randomness. The inverted tricritical topology is seen
between the dotted and dashed lines, with the first-order transitions
occurring at high temperature and the second-order transitions occurring
at low temperature, on each side of the tricritical point. A new phase
spin-glass phase diagram topology is obtained for ∆/J = 0.35, in which
the spin-glass phase occurs close to the ferromagnetic (and, symmetrically,
antiferromagnetic, not shown here) phase, but yields to the paramagnetic
phase as p is increased towards 0.5. The spin-glass phase disappears at
∆/J = 0.37.

at ∆/J ≥ 0.34, of the second-order transitions between the ferromagnetic and

paramagnetic phases, only the strong-coupling transition remains. At ∆/J ≥
0.42, the strong-coupling second-order transition also disappears, leaving only

first-order transitions between the ferromagnetic and paramagnetic phases. Also

as the annealed vacancies are increased, all ordered phases recede. In this process,

first the spin-glass phase disappears, at ∆/J = 0.37, which is understandable, since

it is tenuously ordered due to frustration. The new, disconnected spin-glass phase
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diagram topology is obtained in this neighborhood, e.g., for ∆/J = 0.35 as shown

in Fig.2.4, in which the spin-glass phase occurs close to the ferromagnetic (and,

symmetrically, antiferromagnetic, not shown in the figures) phase, but yields to

the paramagnetic phase as p is increased towards 0.5 .

The paramagnetic-ferromagnetic-spin-glass reentrances, as temperature is

lowered, of the Blume-Emery-Griffiths spin-glass cross-sections fall on the same

reentrant second-order boundary, as seen in Fig.2.4. As seen for ∆/J = 0.45 and

0.48 in this figure, before disappearing at ∆/J = 0.5, the ferromagnetic phase

exhibits paramagnetic-ferromagnetic-paramagnetic reentrance as temperature is

lowered.

Constant p cross-sections of the global phase diagram in Fig.2.3 are shown in

Fig.2.5. The outermost curve corresponds to the pure Blume-Emery-Griffiths

model with no quenched randomness (p = 0). As spin-glass quenched randomness

is introduced with increasing values of p, we see that the first-order boundary

recedes to the strong-coupling second-order boundary, while the ordinary

second-order boundary also expands. At p = 0.18, the first-order transition

completely disappears. At p = 0.241, the spin-glass phase appears below the

ferromagnetic phase, reflecting complete reentrance. At p = 0.249, the spin-glass

phase completely replaces the ferromagnetic phase as the ordered phase, which

is enveloped by second-order transitions only. Thus, for 0.241 < p < 0.759, the

second-order boundary between the spin-glass and paramagnetic phases reaches

zero temperature.

In the results above, the phase diagrams are determined by the basins of attraction

of the renormalization-group sinks, namely the completely stable fixed points and

fixed distributions: Each basin is a thermodynamic phase. The nature of the

phase transitions is determined by analysis of the unstable fixed points and fixed

distributions to which the phase diagram points of these transitions flow. Fig.2.6

shows the unstable fixed distributions of (a) the quenched randomness-induced

second-order transitions between the ferromagnetic and paramagnetic phases, (b)

the first-order transitions between the ferromagnetic and paramagnetic phases, (c)

the second-order transitions between the ferromagnetic and spin-glass phases, and

(d) the second-order transitions between the spin-glass and paramagnetic phases.
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Figure 2.5: Spin-glass Blume-Emery-Griffiths phase diagrams: Constant p
cross-sections of the global phase diagram in Fig.1. The dotted and
full lines are respectively first- and second-order phase boundaries. The
dashed lines are strong-coupling second-order phase boundaries induced
by quenched randomness. The outermost curve corresponds to the pure
Blume-Emery-Griffiths model with no quenched randomness (p = 0). As
spin-glass quenched randomness is introduced with increasing values of
p, ordered phases and first-order phase transitions recede.
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The (totally stable) sink fixed distribution of the spin-glass phase is also shown,

in (e). The eigenvalue exponent of the unstable fixed distribution controlling (b)

the first-order transitions between the ferromagnetic and paramagnetic phases

is y = 3 = d, as is required for first-order transitions. The eigenvalue exponents

of the other unstable fixed distributions, (a),(c),(d), are y < d as is required for

second-order transitions.
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Figure 2.6: Projections of the fixed distributions P∗(Ji j,Ki j,∆i j,∆†
i j) for: (a) the

disorder-induced second-order transitions between the ferromagnetic
and paramagnetic phases, (b) the first-order transitions between the
ferromagnetic and paramagnetic phases, (c) the second-order transitions
between the ferromagnetic and spin-glass phases, (d) the second-order
phase transitions between the spin-glass and paramagnetic phases, and (e)
the sink fixed distribution for the spin-glass phase. Note that (a),(b),(c),(e)
are runaways, in the sense that the couplings renormalize to infinity while
the distribution retains its shape shown here. In the second-order phase
transitions between the spin-glass and paramagnetic phases (d), ∆ is a
runaway (to minus infinity), while the other interactions remain finite. The
fixed distributions in this figure are singly unstable, except for the sink (e),
which is totally stable.
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3. PHASE TRANSITIONS IN QUANTUM SYSTEMS

All systems in nature obey quantum mechanics. The study of phase transitions

in fermionic and bosonic systems has been one of the most interesting aspects of

quantum systems since it involves numerous exciting effects like superconductivity

[21], the metal-insulator transition [22], metallic magnetism [23], heavy fermion

behavior [24, 25], ferromagnetism, anti-ferromagnetism, etc. Although most

earlier studies had focused on zero-temperature behavior, with the discovery

of the high-temperature superconducting ceramics [26] increasing attention has

been given to finite-temperature studies of phase transitions in quantum systems

of interacting electrons. The natural starting point for a theory of high-Tc

materials is to write down a Hamiltonian modeling the behaviors of the electrons

in the system of interest. The Hubbard model is a simple but realistic model

for describing electronic systems. In this chapter, as a first step toward more

complicated systems, applications of renormalization-group theory to spinless

fermionic and bosonic Hubbard models will be presented.

3.1 The Hubbard Model with Spinless Fermions

The Hubbard model we examined is defined by the Hamiltonian

−βH =−t ∑
<i j>

(c†
i c j + c†

jci)+ µ ∑
<i j>

(ni +n j)−U ∑
<i j>

nin j + ∑
<i j>

G (3.1)

with β = 1/kT . The terms in the Hamiltonian are the kinetic energy term

(parameterized by the electron hopping strength t), the nearest neighbor

attraction term (U < 0) and the chemical potential µ0. Here c†
i and ci represent

respectively the creation and destruction operators obeying the anticommutation

rules for a fermionic system, {ci,c
†
j}= δi j, and the commutation rules for a bosonic

system, [ci,c
†
j ] = δi j.
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3.1.1 Derivation of the Recursion Relations

The general Hamiltonian given in Eq.(3.1) can be written as

−βH = ∑
i
[−βH (i, i+1)], (3.2)

where −βH(i, i+1) is the Hamiltonian of a neighboring pair on the lattice. The

decimation procedure that was used for the classical system studied in Chapter

2 is of no use for the quantum system because the exponential of the sum of

pair Hamiltonians can no longer be expressed as a product of the individual

exponentiated Hamiltonians. Therefore, summing over the ‘middle’ terms in order

to eliminate half of the sites is done approximately by using the Suzuki-Takano

approximation [27,28]:

Trevene−βH = Trevene∑i {−βH (i,i+1)}

= Trevene∑even
i {−βH (i−1,i)−βH (i,i+1)}

'
even

∏
i

Trie{−βH (i−1,i)−βH (i,i+1)}

=
even

∏
i

e−β ′H ′(i−1,i+1) (3.3)

' e∑even
i {−β ′H ′(i−1,i+1)}

= e−β ′H ′
.

In the above derivation, the non-commutation of operators separated beyond

three consecutive sites of the unrenormalized system was ignored. Since in both

of the approximation steps the same approach was used in opposite directions,

one can expect a compensation of errors. Note that we have implemented

e−βH1−βH2 = e−βH1e−βH2eC (3.4)

where the correction term, C = β 2[H 1,H 2] + higher order terms, is going to

vanish as β → 0 or T → ∞. Therefore, our approximation becomes exact at high

temperatures. Earlier studies have verified the success of this approximation at

predicting the finite temperature behaviors of quantum spin systems [27,28].

From the above derivation, Eq.(3.3), the renormalized pair Hamiltonian

−β ′H ′(i, j) can be extracted as:

e−β ′H ′(i−1,i+1) = Trie−βH (i−1,i)−βH (i,i+1). (3.5)
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Eq.(3.5) is an operator equality and by choosing an appropriate basis it can be

written as a matrix equality as follows:

〈uivk|e−β ′H ′(i,k)|uivk〉= ∑
w j

〈uiw jvk|e−βH (i−1,i)−βH (i,i+1)|uiw jvk〉. (3.6)

Here, u,v and w are sites which can be either empty (◦) or occupied (•). Now

the strategy of solving the system will be to find the matrix elements on both

sides of Eq.(3.6), and then to contract the right-hand side to the left-hand side

matrix to obtain the recursion relations of the system. The unrenormalized 8×8

Hamiltonian matrix, the right hand side of Eq. (3.6) was found as:




| ◦ ◦◦〉 | •◦◦〉 | ◦•◦〉 | ◦◦•〉 | ••◦〉 | •◦•〉 | ◦••〉 | •••〉
〈◦◦◦ | 0 0 0 0 0 0 0 0
〈•◦◦ | 0 µ −t 0 0 0 0 0
〈◦•◦ | 0 −t 2µ −t 0 0 0 0
〈◦◦• | 0 0 −t µ 0 0 0 0
〈••◦ | 0 0 0 0 −U +3µ −t 0 0
〈•◦• | 0 0 0 0 −t 2µ −t 0
〈◦•• | 0 0 0 0 0 −t −U +3µ 0
〈••• | 0 0 0 0 0 0 0 −2U +4µ




For calculational purposes, the matrices of Eq.(3.6) were diagonalized by using

the basis states {|Φp〉} and {|Ψq〉}, which are shown in Table(3.1) with their

corresponding eigenvalues. With these states, Eq.(3.6) can be re-written as

γp ≡ 〈φp|e−β ′H ′(i,k)|φp〉 (3.7)

= ∑
u,v,u,v,w,q

〈φp|uivk〉〈uiw jvk|ψq〉〈ψq|e−βH(i, j)−βH( j,k)|ψq〉〈ψq|uiw jvk〉〈uivk|φp〉

Using the four γp values obtained from Eq.(3.7), the recursion relations giving

the renormalized coefficients G′, t ′,µ ′,U ′ were theoretically calculated for a b = 2
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system in 3 dimensions as

G′ = 8G+4lnγ1,

t ′ = 2ln
γ3

γ2
,

µ ′ = 2
(

ln(γ3γ2)−2lnγ1
)
,

U ′ = 4
[

ln
(γ2γ3

γ4

)− lnγ1
]
, (3.8)

where

γ1 = 1+
e

1
2 (3µ−

√
µ2+8t2)(µ−

√
µ2 +8t2

)2

4t2
(

2+ 1
4

∣∣µ−
√

µ2+8t2

t

∣∣2
) +

e
1
2 (3µ+

√
µ2+8t2)(µ +

√
µ2 +8t2

)2

4t2
(

2+ 1
4

∣∣µ+
√

µ2+8t2

t

∣∣2
) ,

γ2 =
2e

1
2 (3µ−

√
µ2+8t2)

2+ 1
4

∣∣µ−
√

µ2+8t2

t

∣∣2
+

2e
1
2 (3µ+

√
µ2+8t2)

2+ 1
4

∣∣µ+
√

µ2+8t2

t

∣∣2

+
2e

1
2 (5µ−U−

√
µ2+8t2−2µU+U2)

2+ 1
4

∣∣−µ+U−
√

µ2+8t2−2µU+U2

t

∣∣2
+

2e
1
2 (5µ−U+

√
µ2+8t2−2µU+U2)

2+ 1
4

∣∣−µ+U+
√

µ2+8t2−2µU+U2

t

∣∣2
,

γ3 = eµ + e3µ−U ,

(3.9)

γ4 = e4µ−2U

+
e

1
2

(
5µ−U−

√
m2+8t2−2µU+U2

)(
−µ +U−

√
µ2 +8t2−2µU +U2

)2

4t2
(

2+ 1
4

∣∣−µ+U−
√

µ2+8t2−2µU+U2

t

∣∣2
)

+
e

1
2

(
5µ−U+

√
µ2+8t2−2µU+U2

)(
−µ +U +

√
µ2 +8t2−2µU +U2

)2

4t2
(

2+ 1
4

∣∣−µ+U+
√

µ2+8t2−2µU+U2

t

∣∣2
) .

24



Table 3.1: The eigenvectors (shown here without normalization factors) used to
diagonalize the matrices in Eq.(3.4) and their corresponding eigenvalues.

The coefficients appearing in the table are: C26 = (µ−U)−
√

(µ−U)2+8t2

2t ,

C36 = (µ−U)+
√

(µ−U)2+8t2

2t , C43 = −µ−
√

µ2−8t2

2t , and C53 = −µ+
√

µ2+8t2

2t .

Eigenvector Eigenvalue
|Ψ1〉=−|•◦◦〉+ | ◦ ◦•〉 λ1 = µ
|Ψ2〉= | • •◦〉+ | ◦ ••〉

+C26| • ◦•〉 λ2 = (5µ−2U)+
√

(m−U)2+8t2

2
|Ψ3〉= | • •◦〉+ | ◦ ••〉

+C36| • ◦•〉 λ3 = (5µ−2U)−
√

(m−U)2+8t2

2
|Ψ4〉= | • ◦◦〉+ | ◦ ◦•〉

+C43| ◦ •◦〉 λ4 = 3µ+
√

µ2+8t2

2
|Ψ5〉= | • ◦◦〉+ | ◦ ◦•〉

+C53| ◦ •◦〉 λ5 = 3µ−
√

µ2+8t2

2
|Ψ6〉=−|•◦•〉+ | ◦ ••〉 λ6 =−U +3µ
|Ψ7〉=−|•••〉 λ7 =−2U +4µ
|Ψ8〉=−|◦◦◦〉 λ8 = 0
|φ1〉=−|◦◦〉 Λ1 = 0
|φ2〉= | • ◦〉+ | ◦ •〉 Λ2 = µ− t
|φ3〉= | • ◦〉− |◦•〉 Λ3 = µ + t
|φ4〉=−|••〉 Λ4 = 2µ−U
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3.1.2 Calculation of Densities with the Recursion Matrix

If we define an interaction vector K, then each interaction constant Kα present in

the Hamiltonian is going to be a coefficient of one of the operators in the original

Hamiltonian and we can calculate the expectation values of those operators

by using the following procedure. A recursion matrix, whose elements are the

derivatives of the recursion relations, will be calculated at each renormalization

step until a sink is reached. Through this method, the densities for all of the

interaction constants can be found.

For the Hamiltonian of our system, the recursion matrix has the form:

T̂ =




∂G′
∂G

∂G′
∂ t

∂G′
∂ µ

∂G′
∂U

∂ t ′
∂G

∂ t ′
∂ t

∂ t ′
∂ µ

∂ t ′
∂U

∂ µ ′
∂G

∂ µ ′
∂ t

∂ µ ′
∂ µ

∂ µ ′
∂U

∂U ′
∂G

∂U ′
∂ t

∂U ′
∂ µ

∂U ′
∂U




. (3.10)

The thermodynamic densities are calculated from

Mα =
1
N

∂
∂Kα

lnZ

=
1
N

(
∂

∂K′
β

lnZ)
∂K′

β

∂Kα

= b−d 1
N′ (

∂
∂K′

β
lnZ)

∂K′
β

∂Kα

= b−dM′
β

∂K′
β

∂Kα
= b−dM′

β Tβα (3.11)

where ~K = (t,µ ,U,G), N is the number of bonds and Z is the partition function.

The interaction coefficients, (t,µ ,U,G), are not going to change at the fixed points

with repeating renormalization steps. Therefore, the equality derived in Eq.(3.11)

will become a solvable eigenvalue/eigenvector equality,

bd ~M∗ = ~M∗ ·T (k). (3.12)
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Here, ~M∗ is the left eigenvector of the recursion matrix T (k) at the fixed point

reached after k renormalization steps, with an eigenvalue of bd. After finding ~M∗,

repeated applications of Eq.(3.11) allow us to calculate ~M for the original system.

3.1.3 Phase Diagrams and Densities

Using the derived recursion relations, the phase diagrams of the system were

calculated. It can be seen from Fig.(3.1) that the system can exist in four

different phases: the dilute phase (phase I), the dense phase (phase IV), and

two intermediate phases (phase II and phase III) characterized by significant

electron hopping. The values of the interaction constants at the phase sinks are

shown in Table(3.2). In order to identify the order of the phase transitions, the

eigenvalue exponents were calculated at the phase boundaries and it was found

that all of the phase transitions for this system are second order (Table 3.3).

Table 3.2: Values of the interaction coefficients at the phase sinks.

Phase No t µ U µ/t U/t U/µ µ− t U−2t µ + t−U
I 0 −∞ 0 −∞ 0 0 −∞ 0 −∞
II −∞ −∞ −∞ 1 0 0 2.1126 ∞ −∞
III −∞ −∞ −∞ -1 0 0 ∞ ∞ -2.1126
IV 0 ∞ 0 ∞ 0 0 ∞ 0 ∞

Table 3.3: Values of the interaction coefficients at the phase boundary fixed points and
their eigenvalue exponents

Boundary t µ U µ/t U/t U/µ µ− t U−2t µ + t−U Eigenvalue
exponents

I - II −∞ −∞ −∞ 1 0 0 1.744 ∞ −∞ 0.27 , -1.00, −∞
II - III −∞ −∞ −∞ 1 2 2 5.538 11.076 -5.538 0.42 , -1.00, −∞
III -IV −∞ ∞ −∞ -1 0 0 ∞ ∞ 1.744 0.27 , -0.58, −∞
I- IV 0 0 0 0 0 2 0 0 0 2.00, −∞,−∞

Multicritical
point -0.554 -0.034 -0.068 0.062 0.123 2 0.520 1.040 -0.520 1.92,0.776

It can be seen from the phase diagrams that the system exhibits a character which

is totally symmetric about the µ
t = (1

2)U
t line, on the plane of 1

t vs µ
t . For all the

different U
t values, the dilute phase only exists when µ

t < 1 and the dense phase

only exists when µ
t > 1. As U

t decreases (leading to a more attractive system), the

dense phase expands towards lower µ
t values and reduces the area of intermediate

phases leaving less room for hopping. The intermediate phases, II and III, are

seen between the dense and dilute phases for U
t > −2 but they disappear with
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Figure 3.1: Phase diagrams of the fermionic Hubbard model for different U/t values.
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decreasing U
t eventually leaving behind only the dilute and dense phases separated

by µ
t = U

2t , the vertical boundary. At low
1
t values, when U

2t >−0.63, phases I and

IV (or II and III) reappear in the regions of phase II and III (or phase I and IV)

in small islands.

The density diagrams of the t,U , µ terms for different 1/t values with U/t = 1

are shown in Fig.(3.2-3.5). It can be seen from the diagrams that for high

values of µ/t, all sites get filled completely and no hopping exists as predicted

for a dense phase. Similarly there is no hopping for low µ/t values since all

sites are empty in that region as predicted for a dilute phase. The hopping of

particles takes place mostly in the intermediate phase regions (Table 3.4). In the

diagrams, the full line represents the hopping density < c†
i c j +c†

jci >, the dashed

line represents < ni +n j > and the dotted line represents < nin j >. The vertical

dashed lines correspond to the phase transitions. It should be noted that close

to the phase transition regions, there is an increase in the slopes of < ni + n j >

and < nin j > as a function of µ/t, particularly for low 1/t.

Table 3.4: Expectation values at the phase sinks.

Phase No 〈 hopping 〉 〈ni +n j〉 〈nin j〉
I 0 0 0
II 0.629 0.629 0
III 0.629 1.371 0.371
IV 0 2 1
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Figure 3.2: Expectation values for 1/t = 0.01, U/t =−1.

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0   0.2 
0  

0.5

1.0

1.5

2.0

µ/t

U/t =−1; 1/t=0.1 

I II III IV 

<h
op

pi
ng

> 
<n

i+n
j> 

<n
in

j>

Figure 3.3: Expectation values for 1/t = 0.1, U/t =−1.
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Figure 3.4: Expectation values for 1/t = 0.6, U/t =−1.

−3 −2 −1 0 1 2 3
0  

0.5

1.0

1.5

2.0

µ/t

U/t=−1; 1/t=2 

I IV 

<h
op

pi
ng

> 
<n

i+n
j> 

<n
in

j>

Figure 3.5: Expectation values for 1/t = 2, U/t =−1.
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4. CONCLUSION

Throughout this thesis, attention was given to phase transitions taking

place in classical and quantum systems, with specific applications of

renormalization-group theory to the Blume-Emery-Griffiths and Hubbard models.

As far as the classical system is concerned, the detailed phase diagrams of

the Blume-Emery-Griffiths spin glass were calculated with the inclusion of

quenched randomness to the system. The effects of impurity addition to the

ordered system were demonstrated and the appearance of a spin-glass phase

and evolution of the first- and second-order phase transitions were witnessed

as well as a strong-coupling second-order transition. The topology of the BEG

spin-glass was found to have inverted tricritical points, first-order transitions

replacing second-order transitions as temperature is lowered. Also, the phase

diagrams had disconnected spin-glass regions, spin-glass and paramagnetic

reentrances and complete reentrance, where the spin-glass phase completely

replaced the ferromagnetic phase as temperature was lowered for all chemical

potentials. The phase diagrams were determined by the basins of attraction of

the renormalization-group sinks, namely the completely stable fixed points and

fixed distributions in the parameter space of the interaction constants J,K,∆ and

∆†. With this analysis, it was found that for ∆/J greater than 0.192 first-order

transitions between the ferromagnetic and paramagnetic phases start to appear.

When ∆/J > 0.34, second-order transitions completely change to strong coupling

transitions, which also disappear for ∆/J > 0.42.

In the quantum system chapter, the spinless hard-core Hubbard model was

studied for fermions. The phase diagrams and the expectation values of the

interaction terms were calculated and presented in the study. It was found that

the system had four different phases, all of which were separated by second-order

phase transitions. The phases found were a dilute phase, a dense phase and two

intermediate phases where the hopping of fermions takes place. While calculating
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the recursion relations of this model, the Suzuki-Takano approximation was used

to do the necessary decimation. Although the phase diagrams are not presented,

the same analysis was done on a system of bosons where each site can be doubly

occupied. In the investigation of this situation (and of the n-particle situation)

the inclusion of randomness and long-range interactions are the future prospects

that should be considered.
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