<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ</u>

JEODEZİK ÇALIŞMALARLA İZMİT KÖRFEZİ VE YAKIN ÇEVRESİ KABUK DEFORMASYONLARININ BELİRLENMESİ

YÜKSEK LİSANS TEZİ

Mehmet BAK

Geomatik Mühendisliği Anabilim Dalı

Geomatik Mühendisliği Programı

MAYIS 2014

<u>İSTANBUL TEKNİK ÜNİVERSİTESİ ★ FEN BİLİMLERİ ENSTİTÜSÜ</u>

JEODEZİK ÇALIŞMALARLA İZMİT KÖRFEZİ VE YAKIN ÇEVRESİ KABUK DEFORMASYONLARININ BELİRLENMESİ

YÜKSEK LİSANS TEZİ

Mehmet BAK (501111610)

Geomatik Mühendisliği Anabilim Dalı

Geomatik Mühendisliği Programı

Tez Danışmanı: Prof. Dr. Rahmi Nurhan ÇELİK

MAYIS 2014

İTÜ, Fen Bilimleri Enstitüsü'nün 501111610 numaralı Yüksek Lisans Öğrencisi Mehmet BAK, ilgili yönetmeliklerin belirlediği gerekli tüm şartları yerine getirdikten sonra hazırladığı "JEODEZİK ÇALIŞMALARLA İZMİT KÖRFEZİ VE YAKIN ÇEVRESİ KABUK DEFORMASYONLARININ BELİRLENMESİ" başlıklı tezini aşağıda imzaları olan jüri önünde başarı ile sunmustur.

Tez Danışmanı :	Prof. Dr. Rahmi Nurhan ÇELİK İstanbul Teknik Üniversitesi		
Jüri Üyeleri :	Prof. Dr. Şenol Hakan KUTOĞLU Bülent Ecevit Üniversitesi		
	Doc. Dr. Serdar EROL		

İstanbul Teknik Üniversitesi

Teslim Tarihi : 05 Mayıs 2014 Savunma Tarihi : 29 Mayıs 2014

iv

Çok Değerli Ablam ve Abim, Nihan ve Cenk AKSOYLAR'a..

vi

ÖNSÖZ

Jeodezik deformasyon ölçmeleri ve ölçülerin değerlendirilmesi konusu mühendislik ölçmelerinin önemli bir bölümünü kapsar. Teknolojinin ilerlemesiyle birlikte GPS ile gözlem yapılması ve elde edilen gözlem verilerinin değerlendirilmesi hızla artmaktadır. Bu sayede Sürekli Gözlem Yapan Uluslararası, Ulusal ve Local Sabit Referans İstasyonlarının, deformasyon ölçmeleri gibi önemli çalışmalarda kullanımı giderek yaygınlaşmaktadır. Günümüzde GPS verileri ile elde edilen koordinat bilgilerinin hassasiyeti milimetre seviyesine inmiştir. Bu koordinat bilgilerini tasarladığımız ağlara entegre ederek prezisyonlu analizler yapmak son derece doğru bir stratejidir. Bu çalışmada, bu kapsamda Sürekli Gözlem Yapan Sabit Referans İstasyonlarından elde edilen verilerin temel alındığı bir strateji izlenmiştir. Ayrıca ağların güncel durumu incelenerek inşasına başlanan yeni İstanbul-İzmir Otoyol güzergahının deformasyonu gözlemlenmiştir.

Uygulamada yer bulan deformasyon ölçme ve analiz yöntemlerini araştırdığım bu çalışmada, yardımlarından ve engin tecrübelerinden yararlandığım saygı değer danışman hocam Prof. Dr. Rahmi Nurhan ÇELİK'e sonsuz teşekkürlerimi bir borç bilirim.

Çalışma süresince değerli katkılarıyla beni yönlendiren Sayın Hocam Doç. Dr. Serdar EROL'a en içten teşekkürlerimi sunarım. Aynı zamanda tezin oluşturulmasında 'LEICA Geo Office' programının kullanımı konusunda bana yardımcı olan Değerli Hocam Yrd. Doç. Dr. Caner GÜNEY'e teşekkür ederim.

Lisans ve Yüksek Lisans hayatım boyunca ve tez çalışmam süresince her an yanımda olup desteklerini, bilgilerini ve birikimlerini esirgemeyen ablam Yrd. Doç. Dr. Nihan DOĞRAMACI AKSOYLAR ve değerli abim Yrd. Doç. Dr. Cenk AKSOYLAR'a her şey için bir kez daha sonsuz teşekkürler. Desteklerini hiç bir zaman esirgemeyen sevgili halalarım ve eşleri Ayşe ve Mahmut DOĞRAMACI, Aynur ve Erdinç GÜNGÖR'e saygılar ve teşekkürler.

Son olarak, yalnız tez çalışması süresince değil tüm yaşamım boyunca bana her zaman güvenen ve destekleyen çok değerli annem ve babam Emel ve Ahmet Şahin BAK'a ve kardeşim Orhan BAK'a gösterdikleri tükenmez hoşgörülerinden dolayı minnettarım.

Mayıs 2014

Mehmet BAK (Jeodezi ve Fotogrametri Mühendisi)

viii

İÇİNDEKİLER

<u>Sayfa</u>

ÖNSÖZ	vii
KISALTMALAR	xi
ÇİZELGE LİSTESİ	. xiii
ŞEKİL LİSTESİ	XV
SEMBOL LÍSTESÍ	xvii
ÖZET	. xix
SUMMARY	. xxi
1. GİRİŞ	1
2. ULUSLARARASI, ULUSAL VE ÖZEL AMAÇLI GNSS AĞLARI	3
2.1 Uluslararası GNSS Ağları	3
2.1.1 IGS	3
2.1.1.1 IGS'nin görevi	4
2.1.1.2 IGS ürünleri veri formatı	5
2.1.1.3 IGS veri organizasyonu	5
2.1.1.4 İzleme istasyonları	6
2.1.1.5 İşletim merkezleri	7
2.1.1.6 Veri merkezleri	7
2.1.1.7 Analiz ve yardımcı analiz merkezleri	8
2.1.1.8 Merkezi bilgi sistemi bürosu	9
2.1.2 EUREF	9
2.2 Ulusal GPS Ağları	. 11
2.2.1 TUTGA	11
2.2.2 TUSAGA	13
2.2.2.1 Tusaga ile yapılan uygulamalar	. 13
2.2.3 Tusaga-Aktif (CORS-TR)	15
2.2.3.1 Tusaga-Aktif Sisteminin genel özellikleri	16
2.2.3.2 Veri aktarım formatı	. 18
2.2.4 İSKİ-UKBS Ağı	. 19
2.3 Özel Amaçlı GNSS Ağları	20
3. FAYLAR	23
3.1 Fay Nedir ?	23
4. KUZEY ANADOLU FAYI VE İZMİT BÖLGESİ	27
4.1 KAF'ın Tarihi	27
4.2 KAF'ın Geometrik Karakteri	27
4.3 KAF'in Ötelenme Miktarı	28
4.4 Kuzey Anadolu Fayının Yaşı	29
4.5 Kuzey Anadolu Fayı'nin Evrimi	29
4.6 Türkiye'nin Tektonik Yapısı	30
5. ISTANBUL-IZMIR OTOYOLU PROJESI	33
5.1 Güzergâh Nasıl?	. 35
5.2 Kaç Kilometre Uzanacak?	35
6. DEFORMASYON ANALİZİNE GENEL BAKIŞ	37

6.1 Genel Tanımlar	.37
6.1.1 Deformasyon analizi kavramı	.37
6.1.2 Kontrol ağları	. 38
6.1.3 Deformasyonların belirlenmesi	. 39
6.1.4 Deformasyon modelleri	. 39
6.2 Dengeleme modelleri	.40
6.2.1 Bir jeodezik ağın datumu	.40
6.2.2 Serbest ağ dengelemesi	.42
6.2.2.1 Zorlamasız klasik dengeleme	.42
6.2.2.2 Tüm iz minimum yöntemine göre dengeleme	.43
6.2.2.3 Kısmi iz minimum yöntemine göre dengeleme	.45
6.2.2.4 S-dönüşümü	.47
6.3 Datum dönüşümleri	.48
6.3.1 İki boyutlu Helmert Dönüşümü	.48
6.3.2 Üç boyutlu Bursa-Wolf (Helmert) modeli	. 50
6.4 Deformasyonların Belirlenmesi	. 52
6.4.1 Sabit Noktaların deformasyon analizi	. 52
6.4.2 S-Transformasyonu yardımıyla deformasyon analizi	. 53
6.4.2.1 S-Transformasyonu ile Global test	. 53
6.4.2.2 S-Transformasyonu ile anlamlı nokta hareketlerinin araştırılması	. 56
7. İZMİT KÖRFEZ GEÇİŞİ DEFORMASYON AĞI TASARIMI, GNSS	
GÖZLEMLERİ VE DEĞERLENDİRMELERİ	. 59
7.1 Ağın Tasarım Stratejisi	.60
7.2 Ağın Ölçme ve Değerlendirme Stratejisi	.61
7.2.1 2010 – 2011 periyotlarına ait ölçülerinin değerlendirilmesi ve	
sonuçların birbirleriyle karşılaştırılması	.67
7.2.2 2011 – 2013 periyotlarına ait ölçülerinin değerlendirilmesi ve	
sonuçların birbirleriyle karşılaştırılması	.71
7.2.3 2010 – 2013 periyotlarına ait ölçülerinin değerlendirilmesi ve	
sonuçların birbirleriyle karşılaştırılması	.75
7.3 S Transformasyonu İle Ağın 3 Boyutlu Deformasyon Analizi	.77
7.3.1 2010 – 2011 periyotlarının S-transformasyonu ile analizi	. 80
7.3.2 2011 – 2013 periyotlarının S-transformasyonu ile analizi	. 84
7.3.3 2010 – 2013 periyotlarının S-transformasyonu ile analizi	. 88
8. SONUÇLAR VE ÖNERİLER	.93
KAYNAKLAR	.97
EKLER	103
OZGECMIS	129

KISALTMALAR

ABD	: Amerika Birleşik Devletleri			
BKG	: Almanya Jeodezi Ve Kartoğrafya Kurumu			
CBIS	: Merkezi Bilgi Sistemi Bürosu			
CORS-TR	: Sürekli Gözlem Yapan Referans İstasyonları-Türkiye			
DGPS	: Diferansiyel GPS			
DOMES	: Directory Of MErit Sites			
EUREF	: Avrupa Referans Ağı			
ED-50	: Avrupa Datumu 1950			
ED70	: Avrupa Datumu 1970			
EKK	: En Küçük Kareler Yöntemi			
ETRS	: Avrupa Yersel Referans Sistemi			
EPN	: Avrupa Sabit GPS İstasyonları Ağı			
GNSS	: Global Navigasyon Uydu Sistemleri			
GPS	: Global Konum Belirleme Sistemi			
HGK	: Harita Genel Komutanlığı			
IAG	: Uluslararası Jeodezi Birliği			
IGS	: Uluslararası GNSS Servisi			
IGN	: Fransa Milli Coğrafya Enstitüsü			
İKÜ	: İstanbul Kültür Üniversitesi			
İSKİ – UKBS	: İstanbul Su ve Kanalizasyon İdaresi – Uydu Konum			
	Belirleme Sistemi			
ITRF	: Uluslararası Yersel Referans Koordinat Sistemi			
JPL	: Jet İtiş Gücü Laboratuvarı			
KAF	: Kuzey Anadolu Fayı			
KAFZ	: Kuzey Anadolu Fay Bölgesi			
NGS	: Amerikan Ulusal Jeodezik Ölçe Kurumu			
NTRIP	: Internet Protokolü Üzerinden RTCM Verisinin Ağ			
	Dağıtımı			
RINEX	: Alıcıdan Bağımsız Değişim Formatı			
RTCM3	: Gerçek Zamanlı Kinematik düzeltme verileri			
RTK	: Gerçek Zamanlı Kinematik			
SINEX	: Yazılımdan Bağımsız Değişim Formatı			
TUTGA	: Türkiye Ulusal Temel GPS Ağı			
TKGM	: Tapu ve Kadastro Genel Müdürlüğü			
TUSAGA	: Türkiye Ulusal Sabit GPS İstasyonları Ağı			
TUSAGA - Aktif	: Türkiye Ulusal Sabit GPS Ağı- Aktif (CORS-TR)			
TÜBİTAK MAM	: TÜBİTAK Marmara Araştırma Merkezi			
UELN	: Avrupa Birleşik Nivelman Ağı			

xii

ÇİZELGE LİSTESİ

<u>Sayfa</u>

Çizelge 2.1 : IGS ürünlerine ait veri formatı (UNIX sistemler için)	5
Çizelge 2.2 : Avrupa'daki IGS işletim veri merkezleri	7
Cizelge 2.3 : IGS global veri merkezleri	8
Cizelge 2.4 : IGS' nin Avrupa'daki veri merkezleri	8
Cizelge 2.5 : Global referans sistemi tanımlanmasında çalışan global ağ ile	
ilişkili analiz merkezleri (GNAACs)	8
Cizelge 2.6 : IGS' nin Avrupa'daki analiz merkezleri	8
Cizelge 2.7 : Türkiye Ulusal Nirengi Ağı'nın özet teknik verileri	12
Cizelge 6.1 : Deformasyon modellerinin sınıflandırılması (Heunecke,	
Pelzer 1999; Heunecke ve Welsch, 1999; Akyılmaz, 2001)	40
Cizelge 6.2 : Serbest ağ türleri	41
Cizelge 7.1 : Deformasyon noktalarına ait 2010 yılı değerleri	67
Cizelge 7.2 : IGS, TUSAGA-Aktif ve İSKİ-UKBS noktalarına ait 2010 yılı	
değerleri	68
Cizelge 7.3 : Deformasyon noktalarına ait 2011 yılı değerleri	68
Cizelge 7.4 : IGS, TUSAGA-Aktif ve İSKİ-UKBS noktalarına ait 2011 yılı	
değerleri	69
Cizelge 7.5 : Deformasyon noktalarına ait 2010 ve 2011 periyotları	
fark çizelgesi	69
Cizelge 7.6 : IGS , TUSAGA-Aktif ve İSKİ-UKBS noktalarına ait 2010 ve	
2011 periyotları fark çizelgesi	70
Cizelge 7.7 : Deformasyon noktalarına ait 2011 yılı değerleri	71
Cizelge 7.8 : IGS, TUSAGA-Aktif ve İSKİ-UKBS noktalarına ait 2011 yılı	
değerleri	72
Çizelge 7.9 : Deformasyon noktalarına ait 2013 yılı değerleri	72
Çizelge 7.10 : IGS, TUSAGA-Aktif ve İSKİ-UKBS noktalarına ait 2013	
yılı değerleri	73
Çizelge 7.11 : Deformasyon noktalarına ait 2011 ve 2013 periyotları	
fark çizelgesi	73
Çizelge 7.12 : IGS, TUSAGA-Aktif ve İSKİ-UKBS noktalarına ait 2011 ve	
2013 periyotları fark çizelgesi	74
Çizelge 7.13 : IGS, TUSAGA-Aktif, İSKİ-UKBS ve Deformasyon	
noktalarına ait 2010 yılı değerleri	75
Çizelge 7.14 : IGS, TUSAGA-Aktif, İSKİ-UKBS ve Deformasyon	
noktalarına ait 2013 yılı değerleri	76
Çizelge 7.15 : IGS, TUSAGA-Aktif ve İSKİ-UKBS ve Deformasyon	
noktalarına ait 2010 ve 2013 periyotları fark çizelgesi	77
Çizelge 7.16 : 2010-2011 periyotlarına ait bilgiler.	80
Çizelge 7.17 : 2010-2011 periyotları için analiz sonuçları	81
Çizelge 7.18 : 2010-2011 periyotları için analiz sonuçları	82
Çizelge 7.19 : 2010-2011 periyotları için analiz sonuçları	82

Çizelge 7.20 : 2010-2011 periyotları deformasyon büyüklükleri için	
anlamlılık testi	
Cizelge 7.21 : 2011-2013 periyotlarına ait bilgiler	
Çizelge 7.22 : 2011-2013 periyotları için analiz sonuçları	
Çizelge 7.23 : 2011-2013 periyotları için analiz sonuçları	
Çizelge 7.24 : 2011-2013 periyotları için analiz sonuçları	
Çizelge 7.25 : 2011-2013 periyotları deformasyon büyüklükleri için	
anlamlılık testi	
Çizelge 7.26 : 2010-2013 periyotlarına ait bilgiler	
Çizelge 7.27 : 2010-2013 periyotları için analiz sonuçları	
Çizelge 7.28 : 2010-2013 periyotları için analiz sonuçları	90
Çizelge 7.29 : 2010-2013 periyotları için analiz sonuçları	90
Çizelge 7.30 : 2010-2013 periyotları deformasyon büyüklükleri için	
anlamlılık testi	91

ŞEKİL LİSTESİ

<u>Sayfa</u>

Şekil 2.1 : IGS ağı (21 Kasım 2011, 370'i aktif 436 istasyon)	4
Şekil 2.2 : IGS organizasyon şeması	6
Şekil 2.3 : EUREF Sürekli İstasyonlar Ağı	11
Şekil 2.4 : Türkiye Ulusal Temel GPS Ağı	12
Sekil 2.5 : TUSAGA istasyonları	.14
Sekil 2.6 : Planlı Türkiye Ülusal Sabit GPS Ağı	15
Sekil 2.7 : Kurulumu tamamlanan 146 sabit GNSS istasyonu yerleri	16
Sekil 2.8 : TUSAGA-Aktif istasyonu	.17
Şekil 2.9 : Sabit GPS istasyonlarından kontrol merkezine veri aktarımı;	
İşlem sırası 1: Uydulardan alınan ham veri; 2:Kontrol	
Merkezine aktarılan ham veri	.17
Şekil 2.10 : Kontrol merkezi ile kullanıcılar arasındaki iletişim	18
Şekil 2.11 : İSKİ-UKBS istasyonları	20
Sekil 3.1 : Faylanmaya neden olan hareketler	23
Şekil 3.2 : Fay oluşumu	.24
Şekil 3.3 : Atılım yönlerine göre faylar	.25
Şekil 3.4 : Fayın iki tarafı birbirine göre belli bir miktar atımı (1)	26
Şekil 3.5 : Fayın iki tarafı birbirine göre belli bir miktar atımı (2)	26
Şekil 4.1 : Kuzey Anadolu Fayı ve Türkiye	28
Şekil 4.2 : Türkiye ve yakın çevresindeki genç ve güncel tektonik hareketler	31
Şekil 5.1 : Yeni İstanbul-İzmir otoyolu güzergâhı	.33
Şekil 6.1 : İki boyutta benzerlik dönüşümü.	48
Şekil 6.2 : Üç boyutta benzerlik dönüşümü	50
Şekil 7.1 : Körfez bölgesi ve Kuzey Anadolu fay hattı	. 59
Şekil 7.2 : Deformasyon noktası	60
Şekil 7.3 : Deformasyon ağı.	61
Şekil 7.4 : IGS, TUSAGA-Aktif, İSKİ-UKBS ve deformasyon noktaları	62
Şekil 7.5 : Deformasyon noktalarının pilye tesisi	62
Şekil 7.6 : Değerlendirme stratejisine ait parametre seçimi.	65
Şekil 7.7 : MATLAB dengeleme akış diyagramı.	66
Şekil 7.8 : MATLAB S-transformasyonu ile deformasyon analizi akış diyagramı	79

xvi

SEMBOL LÍSTESÍ

A	: Katsayılar matrisi
Bi	: Datum noktalarını tanımlayıcı koşul denklemi katsayılar matrısı
d	: Defekt sayısı
d	: Koordinat fark vektörü
d	: Deformasyon vektörü
Ε	: Datum belirleyici matris
Ι	: Birim matris
f	: Serbestlik derecesi
F	: F dağılımı
G	: Koşul denklemleri katsayılar matrisi
$\mathbf{h_{f}}$: Rank
H_0	: Sıfır hipotezi
1	: Küçültülmüş ölçüler vektörü
Ν	: Normal denklem katsayılar matrisi
N +	: N'in Moore-Penrose inversi
n	: Sabit terimler
Р	: Ağırlık matrisi
$\mathbf{Q}_{\mathbf{dd}}$: d vektörünün kofaktörler matrisi
Sg	: Tüm İz Minimum S Transformayonu dönüşüm matrisi
Si	: Kısmi İz Minimum S Transformayonu dönüşüm matrisi
Т	: Test değeri
X	: Kücültülmüs bilinmeyenler vektörü
V	: Düzeltme denklemleri

JEODEZİK ÇALIŞMALARLA İZMİT KÖRFEZİ VE YAKIN ÇEVRESİ KABUK DEFORMASYONLARININ BELİRLENMESİ

ÖZET

Kabuk deformasyonları belirleme çalışmaları çok eski yıllardan günümüze kadar farklı disiplinlerde çalışan bilim adamları tarafından yürütülmüştür. Jeodezik ölçme tekniklerinin bu çalışmalarda kullanılmaya başlanması ise 1900'lü yılların başlarına rastlamaktadır. Önceleri klasik yersel ölçme teknikleri ile yürütülen çalışmalar, teknolojinin gelişmesi ile EDM, VLBI, SLR gibi ölçme teknikleri ile gelişme ve genişleme imkanı bulmuştur. Özellikle GPS ölçme tekniğinin gelişmesi sadece jeodezi için değil tüm yer bilimleri için önemli bir kazanç olmuştur. 1980'li yıllardan itibaren GPS, klasik ölçme tekniklerini geride bırakarak, geniş kullanım alanı bulmuştur.

Büyük yapıların planlanması sırasında, yapının oturacağı zeminde yapıya zarar verebilecek olası yer kabuğu hareketlerinin saptanması, daha sonra çevrenin yapıya etkileri veya yükleme nedeniyle yapıda meydana gelebilecek geometrik şekil değişmelerinin saptanması veya yapının çevreye etkisiyle çevrede meydana gelebilecek değişimlerin saptanması ya da salt yeryüzü kabuk hareketlerinin belirlenmesi için yapılan jeodezik ölçmelere "deformasyon ölçmeleri", bu ölçülerin değerlendirilerek deformasyonların saptanması ve yorumlanmasına da "deformasyon analizi" adı verilmektedir. Bilindiği gibi yeryuvarı, içerisinde sürekli bir hareketlenmenin yaşandığı dinamik bir yapıya sahiptir ve ülkemizin deprem olmaksızın hareketinin kuzeybatıya doğru yıllık ortalama 2-3 cm/yıl olduğu gerçeği yeryuvarının ne denli hareketli dinamik bir yapıya sahip olduğunu açıkça ortaya koymaktadır. Bu hareketlerin sonucunda yeryüzünde meydana gelen yer ve şekil değiştirmelerin belirlenmesi ve kritik değerlerin hesaplanarak olası felaketlere karşı önlemlerin alınması son derece önemlidir.

Bu çalışmada, yapımına başlanmış İstanbul-İzmir Otoyolu Projesinin otoyol kısmının önemli bir parçasının ve körfez geçişini sağlayacak köprünün güzergâhında kurulan deformasyon ağı ve Sürekli Gözlem Yapan Referans İstasyonlarının güncel durumları incelenmiştir. Kuzey Anadolu Fay hattının aynı güzergâhtan geçmesi nedeniyle tasarlanmış bu deformasyon ağının değerlendiriliş stratejisi belirlenmiştir.

Bu bağlamda, 2010, 2011 ve 2013 yıllarına ait tüm noktalar için baz çözümleri Leica Geo Office programında yapılmş ve sonuçları elde edilmiştir. Elde edilen bu baz çözümleri kullanılarak MATLAB de yazılmış olan dengeleme programı yardımıyla her periyoda ait dengelenmiş sonuçlar elde edilmiştir. MATLAB ile elde edilmiş olan dengeleme sonuçları kullanılarak tüm ağ noktaları için 3 Boyutta deformasyon analizi yapılmıştır. Bu analiz MATLAB de yazılan 3 Boyutta deformasyon analizi programı yardımıyla yapılmış ve analiz sonuçları elde edilmiştir.

Bu sayede 2010-2011, 2011-2013 ve 2010-2013 periyotları karşılaştırılmış ve karşılaştırılan periyotlarda Sürekli Gözlem Yapan Referans İstasyonları'nın güncel durumlarının belirlenmesi ve deformasyon noktalarının durumları incelenmiştir.

DETERMINATION OF CRUST DEFORMATIONS OF IZMIT REGION AND ITS VICINITY WITH GEODETIC STUDIES

SUMMARY

Turkey, situated between Europe, Asia and Africa continents, is under the effect of the crustal deformation for ages. The recent earthquakes occurred since 1999 are resulted in a rise of crustal stress under the Marmara Sea. Since 1988, Marmara Region that carries the earthquake risk from the early times of the history, many studies executed by the contribution of number of organizations from different countries. As a result of these studies the earthquake risk on the region is revealed.

The designation of crust deformation studies are being executed by scientist work out with different disciplines since the very beginning. However, the geodetic measurement techniques began to be used during these studies only by the early 1900's. The previously studies executed with the classic terrestrial measurement techniques have found a way to progress and extend with the developing technology such as EDM, VLBI, SLR measurement techniques. Particularly, the development of GPS measurement technique became a very important gain, not only for geodesy but for all earth sciences. By 1980's, GPS far ahead of the classic measurement techniques, found expanding usage fields.

VLBI, SLR like techniques keep the disadvantages of volumed, complex and expensive mechanisms which keep them away from the optimum campaign plannings. On the contrary, GPS consist of a portable receiver and an antenna. It makes it possible for every individual interested in these studies to own GPS as it gets cheaper by the developing technology. With GPS, high precision position determination for the designation of Crust deformation studies became easy, fast and cheap.

The geodetic measurements performed to determine possible deformations to take place in the ground that the construction is located, to detect the effect of the construction and the possible displacements in the surroundings, and the geometric deformations on the construction as a result of loading on it and to determine just the crustal movements on the earth are called as "deformation measurements", and the determination and the interpretation of the deformations through the evaluation of these measurements is named as "deformation analysis". Deformation surveys have an important status among engineering surveys. Results of the geometrical deformations that can occur in time in both in the environment that we are all living in and in the engineering structures that are build by human being concern the human life and safety closely. Therefore, recognizing, determining, and observing the geometrical deformations in engineering structures and its surroundings have great importance. As it is known, the earth has a dynamic structure in which has a permanent activation. The determination of displacements and deformations occurring at the end of these movements, and taking precautions against possible disasters by calculating the critical values are extremely important.

To investigate the deformations of an object or an area the geodetic observations are repeated at different epochs of time. The observations of each epoch are adjusted independently. From coordinate differences between the epochs the parameters of a deformation model are estimated and conclusions on the object deformations are drawn.

In this study, deformation network located in the route of Izmit Bay Bridge of the new Istanbul-Izmir highway project and current conditions of Continuously Operating Reference Stations are investigated. to a part of the North Anatolian Fault Zone passes from the region, this micro-geodetic network has been designed in the same route of bridge and part of the highway. Because of presence of the Continuously Operating Reference Stations in this region have determined the processing strategy of this network. Using of International Geodetic Networks that has continuously operating GPS/GNSS receivers on has been very common technique to define tectonic activities all over the world. By using these networks; more rapid, healthy and accurate 24-hour data can be obtained by scientific and engineering institutes. One of these kinds of networks is the IGS one that is an international network works whole over the world including Europe and it provides pool resources and permanent GNSS station data to generate precise GNSS products. There are 5 IGS stations in Turkey, two of them in the Marmara Region (near İzmit Gulf Region). ISTA and TUBI stations are located in for the Marmara Region. In addition to these international systems, there are some national and local systems such as TUSAGA (Turkish National Continuously Operating System's Network), TUSAGA-Active (Turkish National Continuously Operating System's Network-Active) and ISKI-UKBS (Istanbul Water and Sewerage Authority-Satellite Positioning Information System) which are active in Turkey can provide wideranged and more precise real-time positioning services. Turkish Real Time Kinematic (RTK) CORS-TR Network are called TUSAGA-Active established by Istanbul Kültür University in association with the General Directorate of Land Registry and Cadastre of Turkey and the General Command of Mapping of Turkey and sponsored by the Turkish Scientific and Technical Research Agency (TÜBİTAK). The network constitutes 147 Continuously Operating Reference Stations controlled by two control stations, the Master Control Station at the Department of Photogrammetry and Geodesy Administration of the General Directorate of Land Registry and Cadastre and the Auxiliary Control Station at the Headquarters of the General Command of Mapping of Turkey. Because of providing geometric strength, reference datum stability and of course redundancy to geodetic methods; TUSAGA-Active) is an important to national purpose. There are 6 stations in Marmara region to serve regional and local projects (the size of the rectangle is roughly 300 by 150 km). TUSAGA is another CORS network of the country and some of its stations are also member of IGS. This network has been established for same purposes by General Command of Mapping of Turkey. TUSAGA network has currently 26 stations actively. Six of these twenty six stations are dedicated as IGS stations. However, these stations have currently no real time facility to broadcast real time kinematic data. ISKI-UKBS (Istanbul Water and Sewerage Authority-Continuously Operating Reference Stations' Network) is a local network that works Istanbul and around, established by the Istanbul Water and Sewerage Authority-Satellite Positioning Information System. There are 8 stations. They continuously (24-hour 7 days a week) records and broadcast GNSS data and rages in between stations are well optimizes, 50 to 70 km. The deformation network which has been processed for the pre-results has integrated these stations. Except of the pre-result of

this network, there is another purpose of this study. Another purpose of the study is to determine updating situations of reference stations. The evaluation strategy of the deformation network is determined. Due to a part of the North Anatolian Fault Zone passes from the region, this micro-geodetic network was designed in the same route of bridge and part of the highway.

In this context, the study area and the study have been described, the main strategy of the study have been presented. Technical features and scope of international, national and local Continuously Operating Reference Stations of this area has been explained and described their efficiency in this region. In addition, the tectonic structure and the seismicity of the study area, the tectonic structure and seismic condition of the gulf and how to influence the route of the bridge and part of the highway will be constructed are discussed. Then, The new Istanbul-Izmir highway project which causes a deformation analyze working in this region, have been focused on technical details. Finally, Design of the network and its measurement and processing and deformation analyzing strategies has been explained.

Base solutions of all points belong to 2010, 2011, and 2013 are done using Leica Geo Office program. By using these base solutions a stabilization program is written in MATLAB and balanced results of each period are obtained. Then three dimensional deformation analyses are performed for all network stations using these balanced results. Also, three dimensional analysis results are obtained with 3D deformation analysis program which is written in MATLAB.

Furthermore periods of 2010 - 2011, 2011 - 2013 and 2010 - 2013 are compared. In the comparison, the determination of current conditions of Continuously Operating Reference Stations and network stations are investigated.

1. GİRİŞ

Dünyanın en aktif faylarından birisi olan Kuzey Anadolu Fay Zonu, bilim adamları için eşsiz bir laboratuardır. Afrika ve Arap plakalarının kuzey yönünde hareketinden kaynaklanan iteleme, Kuzey Anadolu Fay Zonu'nun batıya doğru ilerlemesine neden olmaktadır. KAFZ ile ilgili yürütülmüş ve yürütülmekte olan deformasyon amaçlı birçok çalışma bulunmaktadır. Ancak, bu çalışmaların tamamına yakını batıda ve özellikle Marmara bölgesindedir. 17 Ağustos 1999 Kocaeli ve 12 Kasım 1999 Düzce depremlerinden sonra, sürekli gündemde olan ve zamanı, büyüklüğü ile yeri konusunda tartışmalar yaratan, İstanbul'u da büyük ölçüde etkileyecek olan olası deprem beklentisi nedeniyle Marmara Bölgesi'ndeki benzeri çalışmaların sayısı hızla artarak devam etmektedir. Örnek verecek olursak TÜBİTAK MAM bu çalışmaları yapan kuruluşlardan bir tanesidir. Oysaki 1500 km. uzunluğundaki KAFZ'ın sadece batısı değil doğusu da herhangi bir zaman batıda beklenen deprem büyüklüğünde bir deprem üretebilecek özelliklere sahiptir.

Bir objedeki ya da alandaki deformasyonların belirlenmesi için jeodezik gözlemler değişik periyotlarda tekrarlanır. Her bir periyot ölçüleri bağımsız olarak dengelenir. Periyotlar arasındaki koordinat farklarından deformasyon modelinin parametreleri tahmin edilir ve objedeki deformasyonlar hakkında bir yargıya varılır.

21. yüzyıla girerken, insan ihtiyaçlarının artması ve çeşitlenmesi, teknolojik ve bilimsel alandaki gelişmelere neden olmuştur. Bu gelişmelerin sonucu olarak, kıtaları birbirine bağlayan uzun köprüler, barajlar, gökdelenler, yeraltında açılan madenler, yeryüzü kabuk hareketleri araştırmaları ve tarihi sanat yapılan önem kazanmıştır. Teknolojik ve bilimsel alandaki bu gelişmeler, sanat yapılarının artışının yanı sıra jeodezik deformasyon ölçüm ve değerlendirme yöntemlerinin de gelişmesine neden olmuştur. Son yıllarda meydana gelen ve önemli derecede can ve mal kaybına neden olan yetersizlik ve kazalar, baraj ve köprü gibi büyük yapıların hareketlerinin yakından izlenmesini ve gerekli önlemlerin alınmasını da zorunlu hale getirmiştir. Bütün bu nedenlerden dolayı jeodezik deformasyon ölçülerinin analizi önem kazanmıştır.

Bu çalışmada, inşasına başlanan İstanbul-İzmir Otoyolu Projesi kapsamında yapılacak otoyol ve köprü güzergahında kurulan mikro - jeodezik ağın ve Sürekli Gözlem Yapan Sabit GNSS İstasyonlarının GPS (Global Positioning System) tekniğiyle üç periyot GPS/GNSS gözlemleri incelenmiştir. İstanbul-İzmir Otoyolu'nun önemli bölümünü oluşturan Dil Ovası ve Hersek Burnu arasında şu anda inşası devam eden Körfez Geçiş Köprüsü ile birlikte deniz geçişi kolaylıkla sağlanmış olacaktır. Bölgenin sismik aktivite yoğunluğu, KAFZ'nun bu bölgeden geçişi ve tektonik altyapısı göz önünde bulundurulduğunda inşa edilecek yapılar için mevcut hareketlerin belirlenmesi hayati önem kazanmaktadır. Kuzey Anadolu Fayının bölgede neden olduğu depremler hatırlandığında bu gibi büyük bir mühendislik projesinin inşa sürecinin çok iyi yönetilmesi gerekmektedir.

Bu kapsamda, köprünün kuzey ve güney bölgelerine tesis edilen 8 adet nokta ile mikro jeodezik ağ oluşturulmuştur. Bu noktalar 2010, 2011 ve 2013 yıllarında 3 periyot halinde ölçülmüştür. Bölgenin yakınında seçilen IGS (International GNSS Service) noktaları olan ISTA ve TUBI noktaları, bölgenin yakınında olan 6 adet TUSAGA-Aktif (Türkiye Ulusal Temel GPS Ağı - CORS-TR) noktaları ve 7 adet İSKİ-UKBS (İstanbul Su ve Kanalizasyon İdaresi – Uydu Konum Belirleme Sistemi) noktaları deformasyon ağının değerlendiriliş stratejisini etkilemiştir. İSKİ-UKBS ağı bölgesel bir ağ olup, işlerliği sadece Marmara Bölgesi'yle sınırlı bir ağ olduğundan değerlendirmeye dahil edilmiştir. Çalışmada, Sürekli Gözlem Yapan Referans İstasyonlarıyla entegrasyonu sağlanan mikro jeodezik deformasyon ağının değerlendiriliş stratejisinin ortaya konulmasının yanı sıra bu istasyonlara ait veriler kendi aralarında değerlendirilmiş, analiz edilmiş ve yorumlanmıştır.

2. ULUSLARARASI, ULUSAL VE ÖZEL AMAÇLI GNSS AĞLARI

2.1 Uluslararası GNSS Ağları

2.1.1 IGS

1980'lerin sonlarından beri ABD'ye ait GPS uyduları Dünya'da bölgesel ve global araştırmalarda önemli bir rol oynamaktadır. GPS uygulamalarının çeşitliliği ve gelişmesi karşısında Dünya çapında bilim adamları GPS verilerinin elde edilmesi ve analizi için uluslararası standartları geliştirmeye, kapsamlı global izleme sistemini ortak olarak işletmeye ve belli bir plana göre yerleştirmeye büyük gayret sarf etmektedir.

Bu gayretin bir parçası olarak, Uluslararası GPS Servisi (International GPS Service for Geodynamics, IGS) resmen 1993'de IAG (International Association of Geodesy) tarafından tanımlandı ve jeodezik ve jeofizik araştırmalara destek vermek üzere GPS yörüngeleri, izleme verileri ve diğer ürünleri sağlamak amacıyla 1 Ocak 1994'de işletilmeye başlandı (Zumberge, 1995).

IGS, uygulama ve denemeleri içeren büyük bir alan için gereksinim ve hedefleri karşılamak amacıyla yeterli doğrulukta GPS gözlemlerinden oluşan veri ve ürün gruplarını toplar, arşivler ve dağıtır. İlgili kullanıcılar bu veri ve ürün gruplarını internet aracılığıyla elde edebilir. Bu veri ve ürün grupları; GPS ve GLONASS (GLObal NAvigation Satellite System) uydu efemerisleri, Dünya dönme parametreleri, IGS izleme istasyonu koordinatları ve hızları, GPS uydu ve IGS izleme istasyonları saat bilgisi, başucu (zenit) doğrultusu gecikme tahminleri, global iyonosferik haritalardan oluşmaktadır. Özellikle IGS ürünlerinin doğrulukları, ITRF'yi (International Terrestial Reference Frame) geliştirme ve yayma için, Dünya'nın katı yüzeyindeki deformasyonları ve Dünya'nın sıvı kısmındaki değişimleri (deniz seviyesi, buz tabakaları, vb), Dünya'nın dönüşünü izleme ve bilimsel uyduların yörüngelerini belirleme, iyonosferi izleme ve ayrışabilir su buharı ölçmelerini iyileştirmede yeterlidir (Şekil 2.1).

Şekil 2.1 : IGS ağı (21 Kasım 2011, 370'i aktif 436 istasyon).

2.1.1.1 IGS'nin görevi

IGS'nin birinci görevi GPS veri ürünleri ile jeodezik ve jeofiziksel araştırma faaliyetlerine desteklemek için bir sağlayıcı olmaktır. İkinci görevi ise GPS uygulamalarında çok büyük gelişmelerden haberdar olarak hükümetlerin veya seçilmiş ticari organizasyonların sergilediği geniş bir yelpazeyi içeren işletimsel faaliyetlere destek sağlamaktır. Servis ayrıca gerekli standartları/şartnameleri geliştirmekte ve uluslararası bağlılığı bu kurallar ile teşvik etmektedir.

IGS bu görevlerini yerine getirmek için IGS ağına dahil sabit GPS istasyonlarından gözlem verilerini toplar. Bu veriler GPS ve GLONASS uydu efemerisleri, Dünya dönme parametreleri, IGS izleme istasyonu koordinatları ve hızları, GPS uydu ve IGS izleme istasyonları saat bilgisi, başucu(zenit) doğrultusu gecikme tahminleri, global iyonosferik haritalar gibi ürünleri oluşturmak için kullanılır (IGS, 2003).

IGS ürünleri; ITRF'yi geliştirme ve yayma, Dünya'nın katı yüzeyindeki deformasyonları ve Dünya'nın sıvı kısmındaki değişimleri (deniz seviyesi, buz tabakaları, vb) izleme, Dünya'nın dönmesi, bilimsel uyduların yörüngelerini belirleme, iyonosferi izleme gibi bilimsel aktivitelere destek sağlar.

IGS ürünlerinin bir diğer faydası da bölgesel seviyede ITRF'nin tanımlanmasıdır Bu tanımlama Çözümden Bağımsız Değişim Formatı (Solution / Software Independent Exchange Format; SINEX) kullanarak bölgesel yerel ağlarının sık bir kombinasyonu vasıtasıyla yerine getirilir (Ferland, 2001).

2.1.1.2 IGS ürünleri veri formatı

Veri merkezinden indirilen IGS verilerini kullanabilmek için, kullanılan işletim sistemine göre veri formatı yapısı bilinmelidir. Çizelge 2.1'de bu yapıyı gösteren bir liste bulunmaktadır. Gözlem dosyaları, navigasyon ve meteorolojik dosyalar formatı RINEX formatındadır (Gurtner ve Mader, 1990). Gözlem dosyaları, fazla yer kaplamamaları için, Hatanaka formatında sıkıştırılmıştır (Hatanaka 1996). Hassas efemeris dosyaları SP3 formatındadır (Spofford ve Remondi, 2003).

Verinin İsmi	Formatı	
RINEX Gözlem Dosyası	ssssdddf.yyD.Z	
Navigasyon Mesaj Dosyası	ssssdddf.yyN.Z	
Meteorolojik Dosya	ssssdddf.yyM.Z	
Özet Dosya	ssssdddf.yyS.Z	
Son Uydu ve Alıcı Saat Bilgileri Dosyası	IGSwwwwd.CLK.Z	
Son Dünya Dönme Parametre Dosyası	IGSwwwwd.ERP.Z	
Son Hassas Efemeris Dosyası	IGSwwwwd.SP3.Z	
Haftalık Analiz Çözüm Özet Dosyası	IGSyypww.SUM.Z	
Haftalık Analiz Çözüm Dosyası (Kovaryans Matrisi Dahil	IGSyypwwww.SNX.Z	
Haftalık Analiz Çözüm Dosyası (Kovaryans Matrisi Hariç)	IGSyypwwww.SSC.Z	

Çizelge 2.1 : IGS ürünlerine ait veri formatı (UNIX sistemler için).

ssss : 4-karakter istasyon kodu (DOMES sayısı), ddd : yılın günü, f : dosya sıra numarası (24 saatlik dosya için "0"), yy : yılın son iki basamağı, ww : Yılbaşından itibaren hafta sayısı, wwww : GPS haftası, d : haftanın günü (Pazar "0")

2.1.1.3 IGS veri organizasyonu

Gurtner (2003)' te belirtildiği gibi Uluslararası GPS servisinin esas bileşenleri (Şekil

2.2);

- a. İzleme istasyonları
- b. İşletim merkezleri
- c. Veri merkezleri
- d. Analiz merkezleri ve ortak analiz merkezleri
- e. Merkezi bilgi sistemi bürosu

Şekil 2.2 : IGS organizasyon şeması.

2.1.1.4 İzleme istasyonları

IGS sadece IGS'nin yararı ve kullanımı amaçlı kurulum ve işletim bileşenlerinden oluşmaz, aynı zamanda mevcut istasyon ve merkezlerden mümkün olan en olası yardımı da alır. Katkıda bulunan istasyonların çoğu yerel ağların bir parçasıdır. (örneğin: ABD'de NGS yönetiminde CORS ağı Continuously Operating Reference Stations, Avustralya Sabit GPS Ağı gibi). Bu tür istasyonların verileri genellikle işleme merkezince toplanır, RINEX formatına yeniden dönüştürülür, yerel veri merkezi yardımıyla (yerel) kullanıcıya verilebilir. IGS istasyonları olarak deklere edilen bu istasyonların verileri daha sonra IGS veri merkezine gönderilir.

Bazı alanlarda tüm bölgeyi kapsayan sabit istasyonlar ağı bireysel istasyonların sayısına ek olarak yerel ağ istasyonlarının seçimiyle oluşacak şekilde organize edilir. Bireysel istasyonların verileri doğrudan kendi yerel veri merkezi vasıtasıyla diğer istasyonlara ait verilerin bulunduğu bölgesel veri merkezine gönderilir. Bölgesel ağa örnek tüm Avrupa kıtasını kapsayan EUREF (EUropean REference Frame) sabit GPS ağı EPN (European Permanent Network)'dir (URL:1). EUREF kendi analiz merkezine, bilgi sistemine ve ağ koordinatörüne sahiptir (EPN, 2003).

IGS, global ürünler ve hız açısından istasyonları global, bölgesel ve yerel istasyon olmak üzere üçe ayırır. Global istasyonlar; analiz merkezlerinden en az biri farklı kıtada olmak kaydıyla iki IGS analiz merkezinden daha fazla merkezden analiz edilen istasyonlardır. Bu global amaçlı istasyonların verileri global veri merkezinde mevcut olmalıdır. IGS global ve bölgesel amaçlı bütün istasyonların kayıtlarını tutar.

2.1.1.5 İşletim merkezleri

İşletim merkezleri istasyonlara idari ve teknik destek konusunda güvence vererek, genellikle ham veriyi yeniden dönüştürmek suretiyle izleme istasyonlarının bulunduğu (yerel) ağın işletiminden sorumlu kurumlardır. Bireysel istasyonlar bu görevleri kendileri yaparlar, Çizelge 2.2 (Şanlıoğlu ve İnal, 2004).

Veri Merkezinin Adı, Ülkesi	Kısaltması	Web Adresi		
Centre National d'Etudes	CNES	http://www.cnes.fr/		
Delft University of Technology.		-		
Hollanda	DUT	http://www.geo.tudelft.nl/		
European Space Operations	ESA	http://nng.esoc.esa.de/		
Center, ESA, Almanya				
Almanya	GFZ	http://www.gfz-potsdam.de/		
Geographical Survey Institute,	GSI	http://www.gsi-mc.go.in/		
Japonya	051	http://www.gsr-me.go.jp/		
Italian Space Agency, İtalya	ASI	http://geodaf.mt.asi.it/		
Norwegian Mapping Authority, Norveç	SK	http://www.statkart.no/		
RDAAC-IRIS, SSCB	RDAAC-IRIS	http://gps.gsras.ru/		

Çizelge 2.2 : Avrupa'daki IGS işletim veri merkezleri.

2.1.1.6 Veri merkezleri

Veri merkezleri; kullanıcı ismi/şifre ile korunmuş veya anonim (herkese açık), ftp yoluyla kullanıcılara her bir istasyonun izleme verilerini elde edilebilme imkanı sağlar. IGS global, bölgesel ve yerel veri merkezlerini birbirinden ayırır. IGS'nin içinde IGS rehberliğinde hareket eden bölgesel veri merkezlerin bir adetini ve global istasyonların verisinin her birini toplayıp (en azından) yeniden kullanıma sunan üç adet global veri merkezi vardır; Çizelge 2.3 ve Çizelge 2.4, (Şanlıoğlu ve İnal, 2004).

Kısaltması	Web Adresi
	http://cddisa.gsfc.nasa.gov/
CDDIS	ftp://cddisa.gsfc.nasa.gov/pub/gp
	s/gpsdata
ICN	http://igs.ensg.ign.fr/
ION	ftp://igs.ensg.ign.fr/pub/igs/data
SIO	http://sopac.ucsd.edu/
310	ftp://lox.ucsd.edu/pub/rinex
	Kısaltması CDDIS IGN SIO

Çizelge 2.3 : IGS global veri merkezleri.

Cizolgo 2.4 ·	IGS' n	in Avruna'	dabi	veri mer	kozlori
Çizeige 2.4 :	IUS II	IIII Avrupa	uaki	ven mer	Kezlell.

Veri Merkezinin Adı, Ülkesi	Kısaltması	Web Adresi
Bundesamt fur Kartographie und Geodaesie, Almanya	BKG (IFAG)	http://www.ifag.de/ ftp://igs.ifag.de/IGS/obs/
RDAAC-IRIS, SSCB	RDAAC-IRIS	http://gps.gsras.ru/

2.1.1.7 Analiz ve yardımcı analiz merkezleri

IGS analiz merkezleri en azından global istasyonların rutin analizini sergiler ve hassas yörünge bilgisi, Dünya dönme parametreleri, istasyon koordinatları ve hızları gibi arzu edilen bilgileri üretirler. Ürünlerin bireysel çözümleri resmi IGS ürünleri içinde birleştirilir ve IGS analiz merkezleri ve bilgi sistemi vasıtasıyla kullanıcılara sunulur. Yardımcı analiz merkezleri, ürünlerin kombinasyonlarını veya bölgesel referans sisteminin tanımlanmasını ve spesifik analizleri gerçekleştirir; Çizelge 2.5, ve Çizelge 2.6 (Şanlıoğlu ve İnal, 2004).

Çizelge 2.5 : Global referans sistemi tanımlanmasında çalışan global ağ ile ilişkili analiz merkezleri (GNAACs).

Merkezin Adı, Ülkesi	Web Adresi
University of Newcastle-upon-Tyne, İngiltere	http://www.ncl.ac.uk/
Earth, Atmospheric and Planetary Sciences Massachusetts Institute of Technology ABD	http://www-gpsg.mit.edu/~tah/

Merkezin Adı, Ülkesi	Kısaltması	Web Adresi
Center for Orbit Determination	CODE	http://www.cx.unibe.ch/aiub/ig
in Europe, AIUB, İsviçre		s.html
European Space Operations	ESOC	http://nng.esoc.esa.de/gps/gps.
Center, ESA, Almanya		html
GeoForschungsZentrum,	GFZ	http://www.gfz-
Almanya		potsdam.de/pb1/IGS/ IGS.html

2.1.1.8 Merkezi bilgi sistemi bürosu

Merkezi bilgi sistemi bürosu (CBIS), IGS izleme istasyonu olarak onaylanmış her bir istasyonun kayıtlarını (ftp://igscb.jpl.nasa.gov/igscb/station/log) muhafaza eder ve IGS ürünlerine erişilmesini sağlar. CBIS, JPL (Jet Propulsion Laboratory)'de konuşlandırılmıştır.

Bu büro kullanıcının gereksinim duyduğu, IGS'nin sağladığı servislere ait tüm bilgiyi içeren bilgi sistemini çalıştırmaktadır. Sistem bir web sitesi (http://igscb.jpl.nasa.gov/index.htm) ve (ftp://igscb.jpl.nasa.gov/igscb) ftp sunucusundan oluşmaktadır. Ftp sunucu Avrupa'da bulunan IGN'deki global veri merkezi ile (ftp://igs.ensg.ign.fr/pub/igscb) bire bir aynıdır.

CBIS hassas yörünge bilgisi ve Dünya dönme parametreleri gibi bazı IGS ürünlerini elde edebilme olanağı da sağlar (Şanlıoğlu ve İnal, 2004);

- a. CBIS veri merkezlerinin iletişim adresleri, veri ve kurs organizasyonu, erişim bilgisi (eğer halka açık ise) gibi siteler hakkında bilgiler içerir.
- b. CBIS IGS'nin veri merkezleri günlük olarak elde edilen gerçek verilerin standart hale getirilmiş dosyalarını üretir ve yeniler.
- c. CBIS ayrı zaman periyotlarında IGS veri merkezince toplanan, istasyonlara ait verileri gösteren aylık ve yıllık özet veri dosyalarını üretir.

2.1.2 EUREF

Global üç boyutlu yüksek doğruluktaki üniform bir referans ağının, navigasyon kolaylıkları ve global jeodezik ve jeodinamik araştırmalardan ve uydu tekniklerinden rasyonel yararlanma yanında, bilgi sistemlerine altlık oluşturacak yüksek doğruluklu, güvenilir ve birçok noktada bu ağa dayalı bölge ve ülke jeodezik ağlarının oluşturulmasını da sağlayacağı görülmüş ve ITRFnin gerçekleştirilmesini izleyen yıllarda, bu ağa dayalı bölgesel ve ülke ağlarının oluşturulması çalışmaları başlatılmıştır. Buna bir örnek Avrupa Kıtası için Avrupa Referans Ağı (EUREF) dır.

Avrupa Birliğini oluşturan ülkeler, jeodezik çalışmalarını kendi Jeodezik Datum, Koordinat ve Yükseklik Sistemlerine göre yürütüyorken, aynı ölçekteki harita paftalarının bile, farklı Datumlu nirengi ağlarına, farklı referans elipsoitlerine dayalı olmaları ve ayrıca pafta sınırları olarak farklı coğrafi koordinatların kullanılması nedeni ile kenarlaştırmaların mümkün olmaması uzun vadede önemli bir sorun olarak algılanmış ve ortak bir jeodezik sistem oluşturma zorunluluğu duyulmuştur. Sistemlerin birleştirilmesi için Avrupa Datumu 1950 "European Datum 1950 (ED50)", Avrupa Datumu 1970 "European Datum 1970 (ED70)" ve Avrupa Birim Nivelman Ağı "Uniform European Leveling Nets 1973 (UELN73)" gibi daha önce yapılan çalışmalar ülke sınırlarını aşan çalışmalar olmakla birlikte, bir taraftan eski ölçülere dayanmaları, diğer taraftan yeterince geniş alanı kapsamlarına almamış olmaları nedeniyle yukarda sayılan amaçlar için yetersiz görülmüş ve Avrupa için bir birim sistemde jeodezik ağ sorununun, bilimsel ve teknik yönlerden incelenmesi, Uluslar Arası Jeodezi Topluluğu (IAG) de oluşturulan bir alt komisyon tarafından ele alınmış ve o güne dek yapılan uygulamalardan alınan tatmin edici sonuçlar göz önünde tutularak, 1987 de GPS tekniği ile bir Avrupa Referans Ağı, "Europeaen Reference Frame (EUREF)" in kurulmasına karar verilmiştir ve bu ağın ITRF ağına dayandırılması öngörülmüştür (Şekil 2.3). Ancak, yapılan araştırmalardan, Avrupa Karasının ITRF'ye göre yılda yaklaşık l cm kuzeydoğuya kaydığı ortaya çıkarılmış olmakla, önce Avrasya Plakasının stabil kesimindeki ITRF noktalarının 1988.0 tarihindeki koordinattan değişmez alınarak, Avrupa Yersel Referans Sistemi 1989 "European Terrestrial Reference System (ETRS 1989)" tanımlanmış, aynı yıl GPS tekniği ile 90 istasyonun konumu bu sisteme göre belirlenerek, bu ağ EUREF89 olarak adlandırılmıştır. Daha sonra ETRS 90, ETRS 91 olarak adlandırılan daha doğruluklu güvenilir sistemler gerçekleştirilmiştir. EUREF'in sıklaştırılması suretiyle, Türkiye, Kuzey Kıbrıs ve Bosna-Hersek dışında, Güney Kıbrıs dahil tüm Avrupa Ülkeleri kendi ülke ağı noktalarından seçtikleri 30-50 km aralıklı noktalardan oluşan ağlan, EUREF noktalarına dayalı olarak, GPS tekniği ile ölçmüşler ve değerlendirmişlerdir. Bu ağlar genellikle "Ülke GPS Ağı" olarak (Gubler v. d., 1995) değişik isimler altında anılmaktadır.

Şekil 2.3 : EUREF Sürekli İstasyonlar Ağı.

2.2 Ulusal GPS Ağları

2.2.1 TUTGA

Türkiye Ulusal Temel GPS Ağı 1997-1999 yılları arasında Tapu ve Kadastro Genel Müdürlüğü adına Harita ve Genel Komutanlığı ile imzalanan bir protokol kapsamında Harita Genel Komutanlığı Jeodezi Dairesi tarafından gerçekleştirilmiştir. Gelişen harita ve harita bilgilerinin üretim teknolojilerine altlık oluşturan önemli bir jeodezik altyapıdır. 4D olarak tasarlan TUTGA (Anonim 2002) küçük ölçekli/düşük çözünürlüklü tüm çalışmalara altlık oluşturabilecek özelliktedir. Ayrıca ITRF (Uluslararası Yersel Referans Sistemi) datumunda olması dolayısıyla TUTGA'ya bağlı üretilen harita ve harita bilgileri global düzeyde kullanılabilir ve paylaşılabilir özelliktedir. Bununla beraber büyük ölçekli/yüksek çözünürlüklü çalışmalarda sorunsuz kullanılabilmesi için sıklaştırılması gerekmektedir. Henüz onay aşamasında olan Büyük Ölçekli Harita ve Harita Bilgileri Üretim Yönetmeliği TUTGA'nın sıklaştırılmasına ilişkin standartları da içermektedir. Bu sıklaştırıma özellikle Kent Bilgi Sistemlerini oluşturmayı hedefleyen bilinçli yerel yönetimlerce 1990'lı yılların ortasından beri yapılmaktadır. TUTGA'nın özet teknik bilgileri aşağıdaki gibidir. Ayrıca Şekil 2.4 ve Çizelge 2.7'de TUTGA'nın genel görünümü verilmektedir.

Datum : ITRF96	
Elipsoit : GRS80	
Toplam nokta sayısı : 594	
Ülke Ağı ile çakışık : 91	
Jeodinamik çalışmalarla ortak : 53	
Nivelman yüksekliği olan : 181	
SLR nokta sayısı : 5	
Noktalar arası uzaklıklar : 25 ile 70 km	
Ortalama : 1315 km2/nokta	

Çizelge 2.7 : Türkiye Ulusal Nirengi Ağı'nın özet teknik verileri.

TUTGA'da tasarımı itibarıyla ülkemizin büyük bir yüz ölçüme sahip olması dolayısıyla Türkiye Ulusal Nirengi Ağı gibi hiyerarşik bir ağ yapısına sahiptir. Bununla beraber 4D tasarımındaki 4. Boyut zaman boyutudur. Bu boyutu sayesinde TUTGA'nın ülkenin tektonik yapısına karşı duyarlı olması ve güncellenebilmesi hedeflenmektedir. TUTGA'nın sadece ilk periyot ölçüsü tamamlanmış olmasına karşın tasarımında jeodinamik amaçlı ağları içermesi sayesinde 4.boyutu modellenebilmiştir. Bununla beraber sevindiricidir ki TUTGA'nın 2.periyot gözlemlerinin 2003 yılının yaz aylarında tamamlandığından söz edilmektedir. Bu durumda TUTGA'nın hız modeli daha sağlıklı ve doğru biçimde üretilebilecektir.

TUTGA'nın seyrekliğinin yanı sıra en zayıf noktalarından biri, Türkiye Ulusal Nirengi Ağı ile ortak noktalarının sayısının azlığı ve ülkenin özellikle doğusunda ve kuzeydeki yetersiz dağılımıdır. Bu nedenle de nirengi ağıyla ortaklığını artıracak sıklaştırma çalışmalarının yapılması bir zorunluluktur. Ancak bu yolla yüksek çözünürlüklü geçmiş bilgileri geleceğe doğru ve güvenilir olarak taşımak mümkün olabilecektir (Ayan ve diğ,2003).

Şekil 2.4 : Türkiye Ulusal Temel GPS Ağı.

2.2.2 TUSAGA

Türkiye Ulusal Sabit GPS İstasyonları Ağı (TUSAGA) projesinin başlıca amacı; Türkiye'de gerçekleştirilecek tüm GPS çalışmalarında referans koordinat sistemi belirsizliğini giderecek sabit nokta hizmeti vermek ve bunun yanında, uygun donanımlarla teçhiz edildiğinde, anlık veya yakın gerçek zamanlı DGPS düzeltme verileri üreterek askeri ve sivil kullanıcılar için duyarlı konumlama ve navigasyon imkânı ortaya koymaktır. SGPS istasyonlarında sürekli yapılan gözlemler sayesinde, her gün için yeni nokta koordinatları hesaplanabilmektedir. Harita üretimi amaçlı nokta sıklaştırma çalışmalarının çevredeki sabit GPS istasyonlarına dayandırılması ile bir deprem sonrasında yapılan GPS çalışmalarında ölçülerin dayanabileceği ve koordinatları güncel noktalar her an mevcut olacaktır. Bu sayede tekrar deprem olan bölgeye gidilip referans alınacak GPS noktalarının ölçülmesi, hesabı, ölçüm yapılan noktalarda meydana gelen değişikliklerin belirlenmesi ve ölçüm yapılmayan noktalar için düzeltme miktarlarının modellemesi gibi çok zaman, kaynak ve emek alıcı işlemler ortadan kalkacaktır. Sonuç olarak; Türkiye'deki mevcut nirengi ağlarının harita ve kadastro amaçlarıyla periyodik olarak ölçülmesine büyük ölçüde gerek kalmayacaktır. Harita Genel Komutanlığının 1999 yılında başlatılan TUSAGA projesi kapsamında tüm Türkiye'ye dağılmış SGPS istasyonlarının kurulmasına başlanmıştır. Kurulması planlanan istasyonlardan 13 adedi faal hale getirilmiştir. Aralık 2003 tarihine kadar da üç istasyonun daha kurulması planlanmıştır.

2.2.2.1 Tusaga ile yapılan uygulamalar

Tusaga ile yapılan uygulamalar maddeler halinde açıklanmak istenirse;

- a. Jeodezik çalışmalar için gereksinen üst düzey referans ağı olarak hizmet verilecektir.
- Kinematik modelleme ile Türkiye ve çevresinde mevcut tektonik aktivitenin sürekli izlenmesi sağlanacaktır.
- c. Bölgesel (kampanya bazlı) GPS ölçme çalışmalarında referans nokta olarak kullanılması suretiyle zaman, personel ve alet tasarrufu yapılacaktır.
- d. Konumlama ve elektronik haberleşme çalışmalarında kullanılmak üzere bölgesel iyonosferik modellendirme çalışmaları gerçekleştirilebilecektir.
- e. Normal kullanım şekliyle gözlem sonrası modunda; uygun donanımlar ile

teçhiz edilmesi durumunda da gerçek zamanda (DGPS); yer bilimleri çalışmalarına, CBS, yerel kadastral uygulamalarına yönelik veri sunumu gerçekleştirilecektir.

f. Harita Genel Komutanlığının bu zamana kadar gerçekleştirdiği askeri ve sivil projelere yönelik GPS çalışmalarında uygulanan pasif (belirli süreçler dâhilinde) veri toplama şeklini aktif ve sürekli yapıya dönüştürerek, gerçek zamanda ve duyarlı 3 boyutlu konum, ham ve hesaplanmış veri sağlamak ve Diferansiyel GPS (DGPS) hizmeti sunmaktır.

şeklinde özetlenebilir.

Şekil 2.5 : TUSAGA istasyonları.

Kırmızı renk ile gösterilen noktalar faal istasyonlar, siyah renk ile gösterilenler faal istasyonlar(OXFORD), mavi renk ile gösterilenler 2003 yılı sonuna kadar kurulumu tamamlanacak olan istasyonlar ve son olarak yeşil renk ile gösterilen noktalar 2004 yılı sonuna kadar kurulumu tamamlanacak olan istasyonlar şeklinde Şekil 2.5 de belirtilmiştir.

Uluslararası GPS Servisi (IGS) standartlarında 24 noktadan oluşan bir ulusal sabit GPS istasyonları ağı ilk aşamada hedeflenmiştir. Yakın gelecekte bu ağdaki nokta sayısının 75 olması planlanmaktadır. Planlanan yeni ağ Şekil 2.6'da gösterilmiştir (Kılıçoğlu ve diğ, 2003).

Şekil 2.6 : Planlı Türkiye Ulusal Sabit GPS Ağı.

2.2.3 Tusaga-Aktif (CORS-TR)

TUSAGA-Aktif projesi TÜBİTAK destekli bir kamu AR-GE projesi olup, Tapu ve Kadastro Genel Müdürlüğü (TKGM) tarafından 31 Mayıs 2005 tarihinde TÜBİTAK'a önerilmiş ve İstanbul Kültür Üniversitesi (İKÜ) tarafından yürütülmek üzere desteklenmesine karar verilmiştir. Harita Genel Komutanlığı (HGK), 04 OCAK 2006 tarihinde TKGM ile birlikte imzalanan "İşbirliği Cerçeve Protokolü" ile projeye TKGM ile birlikte müşterek müşteri sıfatıyla dahil olmuştur. Projenin başlangıç tarihi 08 Mayıs 2006 olup, süresi 2.5 yıldır. Söz konusu proje 01 Temmuz 2011 tarihi itibari ile TÜBİTAK Başkanlığı tarafından kabul edilmiştir. Sistem kapsamında, Türkiye geneline dağılmış (KKTC'de 4 istasyon dahil) 146 sabit GPS istasyonu kurulması tamamlanmıştır. HGK ve TKGM'de kurulan kontrol ve analiz merkezinde; istasyonlardan Internet yolu ile alınan GPS verilerinden diferansiyel GPS (DGPS) ve gerçek zamanlı kinematik (RTK) konum belirlemeye olanak sağlayacak düzeltme verileri hesaplanarak kullanıcılara yayınlanmaktadır. Proje ile ayrıca, WGS-84 ve ED50 koordinat sistemleri arasındaki dönüşüm parametreleri tüm Türkiye için doğru ve duyarlı olarak belirlenmesi, başta haritacılık olmak üzere, jeodezik uygulamaların daha kolay gerçekleştirilmesi hedeflenmektedir. TUSAGA-Aktif sisteminin işletilmesi ve düzeltme parametrelerinin hesaplanması TKGM ve HGK'da kurulan kontrol merkezlerinden yapılmaktadır. Tüm istasyonlardan toplanan veriler ADSL ve GPRS/EDGE yolu ile veri merkezine aktarılmakta ve bu merkezlerde düzeltme parametreleri hesaplanarak arazideki kullanıcılara aktarılmaktadır. Gerçek Zamanlı Kinematik düzeltme verileri RTCM3.1 ve CMR iletişim formatlarında olup, GPRS ve NTRIP (Network Transport of RTCM through Internet Protocol) vasıtaları ile gezici alıcılara gönderilmektedir. TUSAGA-Aktif istasyon yerlerinin seçiminde zemin yapısı, elektrik, telefon, İnternet ve güvenlik hususları dikkate alınmış ve tüm Türkiye'de gerçekleştirilen arazi keşifleri neticesinde Devlet Meteoroloji İşleri Genel Müdürlüğü Meteoroloji İstasyonları, Üniversiteler, Belediyeler ile Kamu Kurum ve Kuruluşlarına ait bina ve araziler seçilmiştir. İstasyon dağılımı Şekil 2.7'de verilmiştir.

Şekil 2.7 : Kurulumu tamamlanan 146 sabit GNSS istasyonu yerleri.

2.2.3.1 Tusaga-Aktif Sisteminin genel özellikleri

TUSAGA-Aktif istasyon yerlerinin seçiminde zemin yapısı, elektrik, telefon, İnternet ve güvenlik hususları dikkate alınmış ve tüm Türkiye'de gerçekleştirilen arazi keşifleri neticesinde Devlet Meteoroloji İşleri Genel Müdürlüğü Meteoroloji İstasyonları, Üniversiteler, Belediyeler ile Kamu Kurum ve Kuruluşlarına ait bina ve araziler seçilmiştir. İstasyonlarda birer adet GNSS (GPS+GLONASS ve GALILEO sitemine hazır) alıcısı, ADSL/GPRS bütünleşik modem, akü, akü şarj aleti, yıldırım koruma adaptörü, telefon hat koruması, termostatlı 4 adet fan, sigorta ve standart donanım kabini ile dışarıda (çatı, teras, kule veya yerde) alıcıya bağlı bir jeodezik GNSS anteni bulunmaktadır (Şekil 2.8).

(a) Kurucaşile istasyonu(b) Donanım kabinic) HGK Kont. ve Analiz Mer.Şekil 2.8 : TUSAGA-Aktif istasyonu.

Sistemde, sabit GPS istasyonları ile kontrol merkezi arasındaki iletişim, ADSL/GPRS üzerinden sağlanmaktadır. Ayrıca, ADSL hattında meydana gelebilecek veri kesikliklerinde mevcut bir modem devreye girmekte ve veri iletimi, GPRS ile kesintiye uğramadan devam etmektedir.

Şekil 2.9 : Sabit GPS istasyonlarından kontrol merkezine veri aktarımı; İşlem sırası 1: Uydulardan alınan ham veri; 2:Kontrol Merkezine aktarılan ham veri.

Kontrol merkezlerinde bulunan sunucular, tüm istasyonlardan bir saniye aralıklı gelen ham gözlem verilerden yararlanarak atmosferik modelleme yapmakta ve hassas düzeltme verileri hesaplamaktadır. Söz konusu düzeltme verileri arazide, TUSAGA-Aktif sistemi ile uyumlu kullanıcılara ait gezici alıcılara internet üzerinden aktarılmaktadır. Kullanıcı kendi alıcısında, "koordinat belirleme" işlemini başlattığı andan itibaren, bu gezici alıcı için kontrol merkezinden üretilen düzetme bilgisi GPRS iletişimi ile her bir saniye de bir olmak üzere gelir ve istenilen noktada hassas koordinatlar belirlenmiş olur (Şekil 2.9 ve Şekil 2.10).

Şekil 2.10 : Kontrol merkezi ile kullanıcılar arasındaki iletişim.

Kontrol merkezlerinde bulunan sunucular, tüm istasyonlardan gelen anlık verilerden yararlanarak atmosferik gecikme parametrelerini (iyonosfer ve troposfer) ve hassas düzeltme verilerini hesaplamaktadır. Söz konusu düzeltme verileri, sisteme abone olan arazideki gezici alıcılara internet üzerinden aktarılmaktadır. Bu şekilde tek frekanslı bir GNSS alıcısı metre altı doğrulukta, çift frekanslı bir GNSS alıcısı 1-13 santimetre doğrulukta konum belirleyebilmektedir.

2.2.3.2 Veri aktarım formatı

Veri aktarım formatı olarak NTRIP kullanılmaktadır. NTRIP; diferansiyel düzeltme verisi veya diğer tür GNSS verisinin sabit veya gezici kullanıcılara internet üzerinden yayınlanması için Almanya Jeodezi ve Kartoğrafya Kurumu (BKG) tarafından geliştirilmiş internet tabanlı genel ve bağımsız bir protokoldür.

NTRIP; GSM, GPRS, EDGE veya UMTS gibi Mobil IP ağları üzerinden internete kablosuz ulaşımı desteklemekte, aynı zamanda RTCM komitesi tarafından da önerilen bir standarttır. NTRIP sistemi üç yazılım bileşeninden oluşur; NtripClient, NtripServer ve NtripCaster. NtripServer GPS referans istasyonundan veri almakta ve bunu NtripCaster'a iletmektedir. NtripCaster bir "telefon santrali" gibi davranmakta ve NtripClient'ları istedikleri veri dizilerine bağlamaktadır. Bu türde bir yapı yüzlerce gezici alıcıya aynı anda düzeltme verisi gönderilebilmesi amacıyla geliştirilmiş en yaygın veri aktarım tekniğidir. Bu protokol GNSS RTK çalışmalarına yönelik verinin yanı sıra, kod, taşıyıcı faz gözlemleri, anten ve çevresel parametreleri

de içermektedir. Daha da önemlisi, bu format üzerinde değişikliklere olanak verecek şekilde geliştirilmiştir (GALILEO, GPS L2C, L5 sinyalleri gibi).

Ayrıca sistemden faydalanan aktif kullanıcılar eş zamanlı olarak ekran üzerinden takip edilebilmektedir(URL:2).

2.2.4 İSKİ-UKBS Ağı

İSKİ UKBS (Uydulardan Konum Belirleme Sistemi), öncelikle İSKİ çalışmalarında GNSS teknolojilerini etkin kullanım sağlamak ve veriyi İstanbul sınırları içinde kullanabilecek tüm kişi, kurum ve kuruluşların hizmetine sunulabilecek bir sistem olarak, Kasım 2008 tarihinden itibaren kullanılmaya başlamıştır. İSKİ UKBS sabit istasyonları 8 sabit noktadan oluşmakta ve tüm İstanbul için kapsama alanı sağlamaktadır. Sistemin amacı, GPS ve GLONASS uydularını kullanarak maksimum verimliliği arazide ölçme çalışmalarını gerçekleştirecek GNSS alıcılarına sunmaktadır. Bahsedilen 8 nokta ise, Şekil 2.11'de görüldüğü üzere; KCEK: Küçükçekmece Şube Müdürlüğü, PALA: Kağıthane Genel Müdürlük Binası SILE : Şile Şube Müdürlüğü TERK: Terkos Havza Koruma Şefliği, YALI: Istranca Düzdere Barajı (YALIKÖY), SLVR: Yeraltı Suları ve Göletler Gn. Müd., BEYK: Anadolu Kavağı Terfi Merkezi, TUZL: Tuzla İleri Biyolojik Arıtma Tesisi olarak İstanbul geneline dağılmıştır.

Kontrol merkezi, yazılım özellikleri ve yayınlanan düzeltmeler, İSKİ-UKBS sabit GNSS istasyonlarının kontrol merkezi yazılımı İSKİ Bilgi İşlem Daire Başkanlığı bünyesinde bulunan 2 adet Server (Sunucu)'ya kurulmuştur. GNSMART Pro yazılımı kurulan birinci sunucu Data İşleme Sunucusu ve GNWEB yazılımı kurulan ikinci Sunucu Web Sunucusu olarak tasarlanmış ve çalışır hale getirilmiştir. Kontrol merkezi yazılımından ağ düzeltmeleri NTRIP protokolü ile yayınlanmaktadır. UKBS ağından NTRIP Protokolü ile dünya standartlarında FKP, VRS ve MAC düzeltmeleri yayınlanmaktadır (URL:3)

Şekil 2.11 : İSKİ-UKBS istasyonları.

2.3 Özel Amaçlı GNSS Ağları

Hassas konum bilgisinin daha hızlı, ekonomik ve preziyonlu elde edilmesini sağlayan GNSS ağları, ülkelerin kamu kurum ve kuruluşlarını, üniversiteleri ve özel sektörü yakından ilgilendiren çok amaçlı ağlardır. Mühendislik veya bilimsel amaçlarla tasarlanan GNSS ağlarının kullanılmasıyla, GPS ölçmelerinde, sabit noktalarda alet ve personel bulundurulması zorunluluğunun ortadan kalkması, yapılan ölçmelerin ve bu şekilde elde edilen sonuçların hesap ve düzeltme gerektirmeden doğrudan ulusal referans sisteminde olması, ölçme planında araziye çıkılmadan önce, koordinatları bilinen nokta belirlenmesi işleminin ortadan kalkmasıyla personel ve para kaybının önlenmesi, gerçek zamanlı olarak üç boyutlu koordinatların istenilen datumda elde edilmesi, nokta koordinatlarının sürekli izlenebilmesi ve herhangi bir deformasyon durumunda güncellenebilmesi gibi kazanımlar elde edilmektedir (Kahveci, 2009).

Dünya'da da özel projelere yönelik ağların tasarımı ve kullanımı, ticari ve bilimsel amaçlar doğrultusunda giderek artmaktadır. Örneğin ABD'de de ki ağların yaklaşık %98'i özel amaçlı kurulmuş (NGS –National Geodetic Survey- dışındaki kurum ve kuruluşlar, eyalet yönetimleri, ticari işletmeler vb.) ağlardan oluşmaktadır. Bunların yalnızca %2'si NGS desteğiyle kurulmuştur. %98'lik bölüm yaklaşık 180 ağ operatörüne (işletim sorumlusu) karşılık gelmektedir (Sella ve diğ, 2008; Snay 2008).

Mühendislik projelerinde, gerçek zamanlı konum bilgisi üreten bu ağların kullanılmasıyla, yol projelerinde; köprü, viyadük, baraj gibi önemli yapılar daha ekonomik bir ölçme maliyetiyle inşa edilmektedir. Bilimsel çalışmalara altlık teşkil etmesi amacıyla tasarlanan ağlar da ise amaç, benzer sekilde, ekonomik, yüksek doğruluklu, hassas veri ve ürüne ulaşmaktır. Özellikle yürütülen projeye yönelik olarak tasarlanan bu ağlar, seçilecek uygun yazılım ve donanım imkânlarıyla hukuksal ve bilimsel temellere uygun şekilde kullanılmakta ve yönetilmektedir. Jeodezik ve mikro jeodezik uvgulamalarda kullanımı başta olmak üzere, ağlar özellikle, tektonik plaka yer değiştirmelerinin tespitinde, kıta hareketlerinin izlenmesinde, yerkabuğu deformasyonlarının belirlenmesinde, belli bir alan için deniz seviyesi, buz tabakası vb. gibi değişimlerin tespit edilmesinde kullanılmaktadır. İklim bilim araştırmaları, meterolojik kestirim gibi pek çok interdisipliner çalışma da da kullanılan bu ağlar ülkemizde de giderek yaygınlaşmaktadır.

3. FAYLAR

3.1 Fay Nedir ?

Yerkabuğundaki deformasyon enerjisinin artması sonucunda, kayaç kütlelerinin bir kırılma düzlemi boyunca yerlerinden kayması ile ortaya çıkan kırıktır veya Yerkabuğunu oluşturan kayaçların bir yüzey boyunca kırılması ve oluşan iki parçanın birbirine göre göreceli olarak yer değiştirmesidir (Şekil 3.1);

- a. Eğer bir kırığın iki tarafındaki kayalar birbirlerine göre gözle görülür miktarda hareket etmişlerse (atım gelişmiş ise) bu kırığa fay adı verilir.
- b. Fayların boyutları birkaç cm'den birkaç yüz hatta bin km'ye, atım miktarları ise birkaç cm'den onlarca hatta bazen yüzlerce km 'ye kadar değişmektedir.
- c. Fayların boyu depremin büyüklüğü ile logaritmik olarak oranlıdır.
- d. Büyük ve sığ depremlerde yeryüzünde gözlenen fayın boyu yüzlerce km'ye erişebilmektedir. Örneğin 1939 Erzincan depreminde oluşan fayın boyu 360 km olup üzerindeki en büyük yer değiştirme (atım) ise 750 cm'dir.
- e. Faylar segmentler (birbirinin devamı şeklindeki fay parçaları) şeklinde olabilirler.

Şekil 3.1 : Faylanmaya neden olan hareketler.

Bir fayın oluşumundan önce bölgede bir gerilme gelişir, bölge deforme olur. Gerilme kayaların kaldıramayacağı seviyeye gelince kayalar kırılır (Şekil 3.2 ve Şekil 3.3).

Şekil 3.2 : Fay oluşumu.

Faylar;

Atılım Yönlerine Göre;

- a. Eğim atılımlı fay (normal ve ters)
- b. Doğrultu atılımlı fay (sağ ve sol yönlü)
- c. Yan atılımlı fay (normal ve ters)

Jeolojik Yapılar İle İlişkilerine Göre;

- a. Enine fay
- b. Boyuna fay
- c. Diyagonal fay
- d. Doğrultu fayı
- e. Eğim fayı

Mekanik Özelliklerine Göre;

- a. Gravite fayı (normal fay)
- b. Bindirme fayı (ters fay)
- c. Yırtılma fayı (doğrultu atılımlı fay)

Şekil 3.3 : Atılım yönlerine göre faylar.

Kırılan fay üzerinde o zamana kadar biriken enerji boşalır. Deprem gerçekleşir. Bloklar duruluncaya kadar artçı depremler oluşur. Bunlar daima ana şoktan küçüktür (Şekil 3.4).

Şekil 3.4 : Fayın iki tarafı birbirine göre belli bir miktar atımı (1).

Bölgenin kırılması ile ve fayın iki tarafı birbirine göre belli bir miktar atılır (Şekil 3.5). 17 Ağustos depreminde bu atım 5 metreye yakındır (Şahin, 2011).

Şekil 3.5 : Fayın iki tarafı birbirine göre belli bir miktar atımı (2).

4. KUZEY ANADOLU FAYI VE İZMİT BÖLGESİ

4.1 KAF'ın Tarihi

Kuzey Anadolu'da bir kirik hattının varlığı 1928 yılından beri bilinmekte, ancak bu ayni yerde bulunan (ve bugün bir okyanus kapanma çizgisi olduğu bilinen) bir yapı ile karıştırılmaktaydı. Daha doğrusu tüm jeologlar, 1948 yılına kadar, Kuzey Anadolu'da depremlerle de belirlenen kirik çizgisini daha önce meydana gelmiş dağoluşum olaylarının devamı sanmaktaydılar. İlk defa 1948'de İhsan Ketin, bu çizginin daha önce Kuzey Anadolu'da meydana gelmiş olaylarla nedensel ilgisi olmayan bir fay hattı olduğunu ve bu fay hattı boyunca hareketin sağ yanal olarak meydana geldiğini gösterdi. Bu, dünyada yanal atılımlı olduğu tüm güzergâhı boyunca belirlenmiş ilk fay hattının keşfiydi (A.B.D.'deki meşhur San Andreas Fay hattının yanal atılımlı karakteri tüm güzergâh boyunca ilk kez 1953'te belirlendi).

1948'den yıllarca sonra dahi özellikle Türkiye'de Kuzey Anadolu Fayı'nın yanal atımlı karakteri tam olarak anlaşılamadı. Ancak bu konuda Nazario Pavoni ve Clarence T. Allen gibi yabancıların ve Ketin'in ellili ve altmışlı yıllarda yaptığı yayınlar, Türkiye'de Kuzey Anadolu Fayı'nın yanal atımlı karakterinin giderek daha yaygın tanınmasına neden oldu. Fayın yanal atımlı karakteri Anadolu Plakasının Batı'ya kaçmasına neden olmaktadır.

4.2 KAF'ın Geometrik Karakteri

Kuzey Anadolu Fayı doğudan batıya doğru genişleyen bir yamulma bölgesi içine yerleşmiştir. Fay genel olarak bir fay çizgisi değil, doğudan batıya giderek dallanıp budaklanan bir fay ailesi sekline sahiptir. Bolu'dan batıya fayın iki ana kolu olduğu görülmektedir. Kuzey Kol adi verilen bir hat, Düzce, Adapazarı, Sapanca, İzmit üzerinden Marmara Denizi'ne girmekte ve Şarköy'ün hemen güneyinde karaya çıkarak Gelibolu yarımadasını Trakya'nın geri kalan kısmından ayırmaktadır. Güney Kol denilen hat ise Pamukova ve Yenişehir üzerinden Bursa-Ulubat ve Manyas çizgisini izleyerek Biga Yarımadasından Ege'ye çıkmaktadır. İznik üzerinden Gemlik'e ve güney Marmara sahilini yalayarak Kapıdağ'a ulaşan bir fay çizgisi, bu güney kolun bir parçasıdır (Şekil 4.1).

Şekil 4.1 : Kuzey Anadolu Fayı ve Türkiye.

Fay Kuzey Anadolu'da bulunan bir yığışım karmaşıkları topluluğu içine yerleşmiştir. Yığışım karmaşıkları, bir okyanus kapanırken, deniz tabanlarından kürenen egemen olarak çökel karakterli kayaç paketleridir. Yığışım karmaşıklarını oluşturan kayalar, kıta kabuğu malzemesine nazaran daha kolayca yamulabilip yırtılabilirler. Görüldüğü gibi Kuzey Anadolu Fayı dediğimiz fay ailesi, bu kolay deforme edilebilen kayaçlardan oluşan bir bölgenin içinde oluşmuştur. Fay'ın bu bölge dışına dal gönderme teşebbüsleri, Sungurlu Fayı örneğinde görüldüğü gibi basarisiz olmuştur. Daha doğudaki Ovacık Fayı dahi, Munzurlarla daha güneyde yer alan Malatya başkalaşım kayaçları arasında bulunan daha eski bir sıkışma hattını kullanmıştır (Sengör ve diğ, 2005).

4.3 KAF'in Ötelenme Miktarı

Seymen (1975) Reşadiye-Kelkit vadisi bölgesinde fayın atımını 85 kilometre olarak ölçmüştür. Daha sonra Armijo ve arkadaşları ve Barka ve arkadaşları bu ölçümü destekler bilgiler bulmuşlardır (Armijo ve diğ., 1999; Barka ve diğ., 1992). Ancak gene Armijo ve arkadaşları tarafından Ganos Dağı ve Gelibolu yarımadasından bildirilen 85 kilometrelik atim, Cenk Yaltırak ve arkadaşları ve Aral Okay ve arkadaşları tarafından yapılan kontroller esnasında doğrulanamamıştır (Yaltırak ve diğ., 2000; Okay ve diğ., 2004). Marmara civarında fayın atımının 85 kilometreden daha az olduğu tahmin edilmektedir.

4.4 Kuzey Anadolu Fayının Yaşı

En büyük bilgi eksikliği Kuzey Anadolu Fayı boyunca fay faaliyeti sonucu oluşan havzalardaki çökel paketlerinin yaslarının kesin tespitindedir. Bunun nedeni kimsen mevcut paleontolojik çalışmaların eksikliğinde, kısmen de bizzat çökellerin kendi karakterinde yatmaktadır. Çökellerin büyük çoğunluğu karasal olduğundan bunlarda fosile dayalı yas tahmini yapmak son derece güçtür. Paleontolojiye destek olabilecek eski kayaç manyetizması ve izotopik yas tayini çalışmaları ise çok azdır. Ancak eldeki veriler, daha önce de tahmin edildiği gibi fayın doğudan batıya yırtıldığını doğrular görünmektedir. Buna karşın, tüm fay boyunca fayın gelişimiyle ilgili havza oluşumu 11 milyon yıl önce başlamıştır. Buradan çıkan sonuç ise fay oluşmadan önce, Kuzey Anadolu'da ileride fayın içerisinde oluşacağı bir makaslama bölgesi meydana gelmiştir. Havza dağılımı, bu bölgenin doğudan batıya genişlediğini göstermektedir. Doğuda, Erzincan civarında 10 km kadar genişliğe sahip bu bölge, Marmara Denizi civarında 100 km'yi bulmaktadır. Doğudan batıya genişleyen bu makaslama bölgesi, Kuzey Anadolu'nun evrimi konusunda son derece önemli ipuçları vermektedir.

4.5 Kuzey Anadolu Fayı'nin Evrimi

Her fay, önce kendisinden çok daha geniş bir bölgede oluşan bir makaslama bölgesi içerisinde gelişir. Bu makaslama bölgesi içerisinde belirli bir sırayla tüm bölgeyi etkileyen muhtelif özelliklerde yapılar oluşur. Bu yapıların bir bölümü müstakbel ana fayın atımına paralel veya ters makaslama özelliği gösterirken diğerleri buna dik uzama veya daralma oluştururlar. Mesela Kuzey Anadolu Fayı ile ilgili çökel havzalarının çoğu bu tür uzamalı veya daralmalı yan yapılar üzerinde gelişmişlerdir. Tüm bölge boyunca makaslama yamulması arttıkça, doğrultu ve atımları müstakbel fayın doğrultusuna uygun yapılar birbirleriyle birleşerek fayı oluştururlar. Bir makaslama bölgesinde, her atım miktarı için, makaslama yamulmasının değerleri, makaslamaya uğrayan bölgenin makaslama istikametine dik olarak ölçülen genişliği ile orantılıdır. Bu genişlik arttıkça birim atım için makaslama yamulmasının değeri düşer. Bu günümüzden yaklaşık sekiz yüz bin yıl önce Erzincan'da tek bir fay hattı tam faal olduğunu düşünülürse, Marmara içerisinde henüz tek bir fay sisteminin oluşamadığı anlamına gelmektedir. Kuzey Anadolu Fayı'nın doğudan batıya genişlemesi ve tek tek fay parçaları üzerinde değişik atımların ölçülmesi, fayın içinde

oluştuğu büyük makaslama bölgesinin doğudan batıya genişlemesinin beklenen bir sonucudur. Bu genişlemenin nedenleri de Anadolu'nun kuzeyindeki yığışım karmaşıklarının geometrisinde yatmaktadır.

4.6 Türkiye'nin Tektonik Yapısı

Türkiye'nin tektonik hareketlerini anlamak için yakın çevresinin güncel tektonik hareketlerine bakılması gerekir. Aşağıdaki harita levha tektoniğine göre çizilmiş olup, Türkiye ve yakın çevresindeki genç ve güncel tektonik hareketlerini göstermektedir (Şekil 4.2) (McClusky, 2000).

Alp-Himalaya dağ kuşağı üzerinde yer alan Türkiye depremsellik açısından en aktif ülkelerden biridir. Anadolu ile Arap yarımadası arasında bulunan Tetis okyanusu günümüzden yaklaşık olarak 11 milyon yıl önce bu okyanusun kuzeye (Anadolu levhası altına) dalıp batması ile kapanmıştır. Günümüzde hala kuzey yönünde dalıp batmaya devam eden Akdeniz bu devasa okyanusun bir kalıntısıdır. Tetis okyanusunun kapanması sonucunda Arap yarımadası Anadolu ile çarpışmış, Kızıldeniz boyunca Afrika'dan ayrılan Arap yarımadası kuzeye ilerlemeye devam ederek Doğu Anadolu'yu sıkıştırmaya devam etmiştir. Bu sıkışmayı başlangıçta kısalıp kalınlaşarak karşılayan Anadolu daha sonra daha rahat bir ortam olan batıya doğru hareket etmeye başlamıştır. Anadolu'nun bu batıya hareketi Karlıova'dan başlayarak batıya uzanan iki büyük fay boyunca gerçekleşmiştir. Bunlardan güneyde yer alan Doğu Anadolu fayı Karlıova ile Antakya arasında uzanan 700 km uzunluğunda sol yanal atımlı bir faydır. Batıda Kızıldeniz'den gelmekte olan Ölü Deniz fayı ile kesilerek son bulur. Karlıova'dan başlayarak batıda Yunanistan'a kadar uzanan 1500 km uzunluğundaki Kuzey Anadolu Fayı ise sağ yanal atımlı bir faydır. Bu iki fay tarafından batıya taşınan Anadolu orta kısımdaki ova rejimini takiben, Ege bölgesinde kuzey-güney yönlü bir gerilme rejiminin etkisine girer.

Şekil 4.2 : Türkiye ve yakın çevresindeki genç ve güncel tektonik hareketler.

Böylece doğuda sıkışan ve iki fay boyunca batıya kaçan Anadolu levhası burada gerilme etkisi ile bir horst-graben yapısı kazanmaktadır. Yukarıda kısaca tanıtılan tektonik çerçeve, Türkiye'nin hemen hemen her kesiminin tektonik açıdan aktif olduğunu göstermektedir. Ülkenin depremselliğine bakıldığında depremlerin yukarıda tanımlanan tektonik hatlarla son derece uyumlu olduğu izlenmektedir

5. İSTANBUL-İZMİR OTOYOLU PROJESİ

Toplam 6,5 milyar dolar ile Türkiye'nin en büyük yap-işlet-devret (YİD) projesi olarak proje sözleşmesi imzalanan İstanbul-İzmir otoyolu; Gebze-Orhangazi-İzmir, İzmit Körfez geçişi ve bağlantı yollarından oluşmaktadır. Ulaştırma Bakanı Binali Yıldırım, Karayolları Genel Müdürü Cahit Turhan ile Nurol, Özaltın, Makyol, Astaldi, Yüksel ve Göçay'dan oluşan Otoyol Yatırım ve İşletme AŞ temsilcileri tarafından imzalanan proje kamulaştırmalarla beraber 11 milvar lira büyüklüğündedir. Proje tamamlandığında, İzmir-İstanbul arası 3-3,5 saatte seyahat edilmesi ve projenin 10-11 yıl içinde kendi kendini amorti edebilmesi amaçlanmaktadır (Demirci, 2012).

Şekil 5.1 : Yeni İstanbul-İzmir otoyolu güzergâhı.

Azami 7 yıllık yapım süresi dâhil 22 yıl 4 aylık işletme süresi olan projenin temeli 2010 yılı Kasım ayı itibariyle atılmıştır. Proje kapsamında İzmit körfezinde yapılacak 3.000 metrelik geçiş köprüsü dünyada ikinci büyük asma köprü niteliğinde olmakla birlikte, şu anda yaklaşık bir saat süren Körfez geçişini 6 dakikaya indirmesi ön

görülmektedir. Proje planlamasına göre köprü, körfezin en dar kısmını oluşturan İzmit'in Gebze ilçesine bağlı Dilovası Beldesi sınırları içindeki Dil İskelesi ile Yalova'nın Altınova ilçesine bağlı Hersek Burnu arasında yer almaktadır. Bölgenin tektonik aktivite yoğunluğu göz önünde bulundurularak, bölgede faal olan Kuzey Anadolu Fay Hattının etkileri yapılan deformasyon ölçmeleriyle izlenmektedir. İstanbul Teknik Üniversitesi ve Karayolları Genel Müdürlüğü tarafından yapılan bir protokolle proje kapsamında başlayan ölçmelerin birinci, ikinci ve üçüncü periyot ölçmeleri sırasıyla; 17 Ağustos 2010, 2 Kasım 2011 ve 12 Eylül 2013 tarihlerinde yapılmıştır. Ayrıca, Ulaştırma Bakanlığı tarafından yapılacak köprüden geçiş ücretinin ise KDV (Katma Değer Vergisi) hariç en fazla 35 dolar olacağını bildirilmiştir. Projenin sadece bir noktadan başlamayacağını, ilerleyen tarihlerde İzmir tarafından, hatta birkaç yerde birden başlayarak çalışmaların eşzamanlı olarak gerçekleştirileceği de yapılan açıklamalar arasındadır. Yeni projenin mevcut devlet yoluna göre 140 km civarında kısalması ile yılda 870 milyon TL'lik tasarruf sağlanacağı düşünülmektedir. 377 kilometresi otoyol ve 44 kilometresi bağlantı yolu olmak üzere toplam 421 kilometre uzunluğunda bir yol güzergahını kapsayan projede; yaklaşık 3 kilometre uzunluğunda bir asma köprü, 18.212 metre uzunluğunda 30 viyadük, 7. 395 metre uzunluğunda 4 tünel, 209 köprü, 18 gişe alanı, 5 otoyol bakım işletme merkezi, 7 servis alanı ve 7 park alanı yer almaktadır. 20 ayda kurulan 7 adet şantiye ile 10 bin kişinin doğrudan istihdam edilmesi, dolaylı istihdam sayısının ise 50 bini bulması düşünülmektedir.

2015 yılının ortasında bitirilmesi beklenen köprünün ayaklarının yükseleceği 25 bin tonluk kesonlar 2 ay önce denize indirildi. Köprü, İstanbul Boğazı'nı üçüncü kez geçecek ve yine 2015 yılının ortalarında bitirilmesi beklenen Yavuz Sultan Selim Köprüsü ile bütünleşecek.

Kesonların, deniz dibine batırılma işlemi devam ederken her gün şantiyeden 7 bin kamyonla 105 bin metre küp hafriyat çıkarılıyor. Otoyolun, mevcut yola göre mesafeyi 140 kilometre kısaltmasıyla yılda 870 milyon TL tasarruf sağlanacak. Yap - işlet - devret modeli ile Otoyol Aş. adı altında birleşen 6 firmanın oluşturduğu konsorsiyum tarafından yapımına devam edilen köprü 3 gidiş, 3 dönüş ve 1 yaya olmak üzere 7 şeritli olacak.

5.1 Güzergâh Nasıl?

Projenin başlangıç noktası Gebze olup, yapılacak otoyol Dilovası ile Hersek Burnu arasındaki İzmit Körfezi'ni 3 kilometrelik Asma Köprü ve her iki taraftaki viyadükleri geçerek Orhangazi ve Gemlik yakınlarından devam edip Ovaakça kavşağı ile Bursa Çevre yoluna bağlanacak. Yeni otoyol, mevcut Bursa çevre yolundan sonra (Bursa – Karacabey) Ayrımı kavşağından yeniden başlayarak Susurluk'un kuzeyinden geçerek Balıkesir'e ulaşacak. Devamında Balıkesir'in batısından güneye yönelen otoyol Savaştepe, Soma, Kırkağaç ilçelerinin yakınlarından geçerek Turgutlu yakınlarında batıya, İzmir – Uşak devlet yoluna paralel ilerleyecek ve İzmir Çevreyolu üzerindeki Anadolu Lisesi Kavşağına bağlanacak.

5.2 Kaç Kilometre Uzanacak?

Proje 384 kilometre otoyol ve 43 kilometre bağlantı yolu olmak üzere toplam 427 km uzunluğa göre projelendirildi. Devam eden tasarım çalışmalarına ait rakamsal proje bilgiler şöyle (URL:4; URL:5);

- a. Güzergâh Boyu: İstanbul-İzmir 384 km
- b. Bursa Çevre Yolu (inşaat kapsamı dışında olup trafiğe açık): 22 km
- c. Toplam Ana Gövde: 406 km
- d. Bağlantı Yolları: 43 km
- e. Kavşak Kolları: 65 km
- f. Mevcut Otoyolu, Devlet veya İl Yolu Düzenlemesi: 31 km
- g. Yan Yollar: 136 km

6. DEFORMASYON ANALİZİNE GENEL BAKIŞ

6.1 Genel Tanımlar

6.1.1 Deformasyon analizi kavramı

Büyük yapıların planlanması sırasında, yapının oturacağı zeminde yapıya zarar verebilecek olası yer kabuğu hareketlerinin saptanması, daha sonra çevrenin yapıya etkileri ve yüklenme nedeniyle yapıda meydana gelebilecek geometrik şekil değişmelerinin saptanması veya yapının çevreye etkisiyle çevrede meydana gelebilecek değişimlerin saptanması ya da salt yeryüzü kabuk hareketlerinin belirlenmesi için yapılan jeodezik ölçmelere "deformasyon ölçmeleri", bu ölçülerin değerlendirilerek deformasyonların saptanması ve yorumlanmasına da "deformasyon analizi" adı verilmektedir. Jeodezi biliminde deformasyon analizi için genellikle amaç, olası deformasyonların yer, büyüklük ve zaman parametrelerine bağlı olarak elde edilmesidir. Elde edilen sonuçların yorumu veya deformasyona karşı önlemler diğer bilim dallarının görevleri içinde yer alır.

1970'li yılların başlarında deformasyon analizinin bu klasik tanımı genişletilerek, yalnız geometrik şekil değişimleri değil, deformasyon sebeplerinin de göz önünde tutulması veya belirlenmesi ve sebeplerinin dönüşüm fonksiyonlarının belirlenmesi amaç içinde yer almıştır. Bu görüş, deformasyon analizinin uygulama alanım genişletmiş ve gelişen teknoloji ile modern ölçme aletleri ve yeni analiz tekniklerinin kullanımını gerekli kılmış ve deformasyon analizi yeni boyutlara ulaşmıştır (Ayan, 1982).

Jeodezik yöntemlerle deformasyon analizinin uygulama alanları;

- a. Güncel yerkabuğu hareketlerinin saptanması
- b. Heyelanların izlenmesi
- c. Buzul hareketlerinin izlenmesi
- d. Zemin çökmelerinin belirlenmesi
- e. Barajlardaki olası hareketlerin belirlenmesi

- f. Endüstriyel makinelerdeki aşınma vb. değişimlerin kontrolü
- g. Mühendislik yapılarındaki yer ve şekil değiştirmelerinin saptanması

Deformasyon izlenmesinin amaçları ise;

- a. Jeofizik, jeoloji, buzul bilim ve mühendislik bilimlerinde hipotezlerin geliştirilmesi ve/veya doğrulanması
- b. Mühendislik yapılarının güvenlik ve performansının değerlendirilmesi
- c. Mühendislik yapılarını, olası heyelan vb. zemin hareketlerinden kaynaklanacak risk yayılmasına karşı korumak
- d. Madencilik, tünel açama gibi kazı çalışmalarında olası çökmeden kaynaklanacak sorumlulukların saptanması

şeklinde özetlenebilir (Caspary, 1987).

Jeodezik uygulamalarda, deformasyonların izlenmesi yöntemleri jeodezik kontrol ağlarında yapılan ölçülerin değerlendirilmesine dayanır. Son zamanlarda "Global Konum Belirleme (GPS)" yöntemi ve diğer uydu teknikleri de, kurulan uydu jeodezik ağlan yardımıyla, deformasyonların izlenmesinde dünyada ve ülkemizde yaygın olarak uygulanmaktadır (Yılmaz, 1993).

6.1.2 Kontrol ağları

Deformasyonların saptanmasına yarayan jeodezik ağlar genellikle lokal ağlar olarak kurulurlar. Jeodezik ağlar kullanılarak yapılan deformasyon analizi çalışmalarında ilgili obje veya alan genellikle sağlam şekilde tesis edilmiş veya işaretlenmiş noktalarla temsil edilir. Jeodezik gözlemlerle bu nokta kümeleri bir jeodezik ağa dönüştürülür. Bu noktaların seçimini, çoğu durumda arazi topografyası ve incelenecek objenin yapısı belirler (Ayan, 1982).

Kontrol ağının noktalarının seçiminde yukarıda sayılan özelliklerin yanında, bir klasik jeodezik ağ için aranan özellikler de, aranır. Yani, kontrol ağının geometrik yapısı;

- 1. Deformasyonların saptanmasına elverecek prezisyonu sağlamalıdır.
- 2. Kaba ölçü hatalarına karşı duyarlı olmalıdır (Ayan, 1981).

6.1.3 Deformasyonların belirlenmesi

Deformasyonları saptamak için ağ ölçüleri belli zaman aralıklarında yinelenir. Yineleme ölçüleri arasındaki zaman, ölçme periyodu, muhtemel deformasyonların büyüklüğüne veya yapıya etkiyen kuvvetlerin değişimine bağlı olarak belirlenir. Ağın ilk ölçüleri, sıfır ölçüsü veya referans ölçüsü adım alır. Yineleme ölçüleri ise, yineleme sırasına göre adlandırılır. 1. yineleme ölçüsü, 2. yineleme ölçüsü gibi, ya da t_0 ölçü grubu, t_1 ölçü grubu gibi ölçü gruplarından söz edilir (Ayan, 1982).

6.1.4 Deformasyon modelleri

Deformasyonlar, problemin şekline, kapsamına ve uygulanan veya uygulanacak ölçme yönteminin türüne göre değişik modeller içinde incelenir; bunlar dinamik, kinematik veya statik modellerdir;

- a. Kinematik Modeller, deformasyon irdelemesi yapılacak bölge ya da yapının karakteristik noktalarının hareketlerini ve bu hareketlerin hızlarını belirlemek amacıyla kurulan modellerdir. Deformasyon irdelemesine konu olan bölge ve yapının bir periyottaki ölçme işlerinin uzun zaman aldığı durumlarda uygulanır.
- b. Dinamik modeller, deformasyonların zamanın bir fonksiyonu olarak ele alındığı modellerdir. Dinamik deformasyon modellerinde, geometrik değişimlerin yanında deformasyonlara neden olan kuvvetlerin dış etkenlere bağlı değişimleri ve birbiri ile ilişkileri kuvvetlerin oluşmasına neden olan, zamana bağlı dönüşüm fonksiyonları yardımıyla araştırılır.
- c. Statik modeller, deformasyon incelemesine konu olan bölge ve yapılarda seçilen karakteristik noktaların bir ölçme periyodu süresince konum değiştirmedikleri varsayımına dayalı olarak kurulan modellerdir. Bu modellerde yatay ya da düşey yöndeki konum değişmeleri zamandan ve etkileyen kuvvetlerden bağımsız olarak ele alınır. Jeodezik deformasyon ölçmelerinin irdelenmesinde en çok uygulama alanı bulunan yöntemdir.

Deformasyon ModeliUyuşumluluk ModelKinematik ModelStatik ModelDinamik ModelZamanModeliModelZamanınZamanınZamanFonksiyonu Olarak HareketlerModel YokZamanın ve Yüklerin Fonksiyonu OlarakEtkizerYüklerin Fonksiyonu OlarakJonamik Model Yok						
ModeliModelModelModelModelZamanModel YokZamanınFonksiyonu Olarak HareketlerModel YokZamanın ve YüklerinEtkizerYüklerin Fonksiyonu OlarakFonksiyonu OlarakOlarak	Deformasyon	Uyuşumluluk	Kinematik	Statil: Modal	Dinamik	
Zamanın Model Yok Zamanın Zaman Model Yok Zamanın ve Olarak Hareketler Yüklerin Fonksiyonu Yüklerin Olarak	Modeli	Modeli	Model	Statik Would	Model	
Zaman Model Yok Fonksiyonu Olarak Hareketler Model Yok Zamanın ve Yüklerin Fonksiyonu Olarak Olarak Olarak			Zamanın			
ZamanWodel TokZamann veOlarakOlarakYüklerinHareketlerYüklerinYüklerinOlarakSteinerSenksiyonuOlarakOlarak	Zaman	Model Yok	Fonksiyonu	Model Vok	Zomonin ve	
Hareketler Yüklerin Fonksiyonu Yüklerin Olarak			Olarak	WIGHET TOK	Yüklerin	
Yüklerin Olarak			Hareketler			
Clarak Clarak	Etkiyen Kuvvetler	Model Yok	Model Yok	Yüklerin	Fonksiyonu	
Eikiyen Fonksiyonu				Fonksiyonu	Olarak	
Kuvvetler Model Yok Model Yok Olarak Hareketler				Olarak	Hareketler	
Hareketler				Hareketler		
Yükler Altında	Objenin Durumu	Yeterli Derecede Dengede	Sürekli Hareket Halinde	Yükler Altında	Süreli	
Objenin Yeterli Sürekli Yeterli Süreli				Yeterli		
Durumu Derecede Hareket Hareket Hareket				Derecede	Hareket Halinde	
Dengede Halinde Halinde Halinde				Dengede		

Çizelge 6.1 : Deformasyon modellerinin sınıflandırılması (Heunecke, Pelzer 1999; Heunecke ve Welsch, 1999; Akyılmaz, 2001).

6.2 Dengeleme modelleri

6.2.1 Bir jeodezik ağın datumu

Doğrultu ağlarında doğrultular, kenar ağlarında uzunluklar, doğrultu-kenar ağlarında hem doğrultular ve hem de uzunluklar, nivelman ağlarında yükseklik farkları, trigonometrik nivelman ağlarında düşey açılar ya da yükseklik farkları (düşey açılardan hesaplanır), üç boyutlu ağlarda yatay doğrultu, uzunluk ve düşey açılar ölçülür. GPS ağlarında üç boyutlu koordinat farkları (kod, faz ve zaman ölçülerinden) ölçülür. Bu ölçüler ilgili jeodezik ağın belirli bir koordinat sisteminde yeri, yönü ve ölçeği konusunda hiçbir bilgi içermezler. Bu ölçüler yardımıyla oluşturulan jeodezik ağlara Serbest Ağlar denir.

Bir jeodezik ağın tanımlı bir koordinat sistemindeki yeri, ölçeği ve yönü konusunda bilgi veren parametrelere DATUM parametreleri denir (Bayrak, 2011). Örnek verecek olursak;

- a. Bir nivelman veya trigonometrik nivelman ağının bir koordinat sisteminde tanımlı olabilmesi için en az bir noktasının yükseklik koordinatı o koordinat sisteminde bilinmesi gerekir.
- Bir doğrultu ağının bir koordinat sisteminde tanımlı olabilmesi için en az iki noktasının koordinatları bilinmelidir.

- c. Bir doğrultu-kenar ağının bir koordinat sisteminde tanımlı olabilmesi için en az bir noktasının koordinatları bilinmelidir ve en az bir doğrultusunun yönü bilinmelidir.
- d. Yalnızca doğrultu ve düşey açıları ölçülen bir üç boyutlu ağın bir koordinat sisteminde tanımlı olabilmesi için en az iki noktasının altı koordinatı ve bir ölçek bilinmelidir.
- e. Bir GPS ağının bir koordinat sisteminde tanımlı olabilmesi için en az bir noktasının X, Y ve Z koordinatları o koordinat sisteminde bilinmesi gerekir.

Ağın Türü	d	Datum Parametre Türü	Ağın Tanımlayıcıları
Nivelman	1	1 öteleme	1 noktanın yüksekliği
Trigonometrik	1	1 öteleme	1 noktanın yüksekliği
Doğrultu	4	2 öteleme 1 dönüklük 1 ölçek	2 noktanın (x, y) koordinatı
Doğrultu-Kenar	3	2 öteleme 1 dönüklük	1 noktanın (x, y) koordinatı ve bir doğrultunun yönü
Üç Boyutlu Ağ	7	3 öteleme 3 dönüklük 1 ölçek	2 noktanın (x, y,z) koordinatları
GPS Ağı	3	3 öteleme	1 noktanın (x, y, z) koordinatları

Cizelge 6.2 : Serbest ağ türleri.

d: datum parametre sayısı (datum defekt)

Bir ağ dengelemesinde yeni noktalar ve doğrulukları, dengelemede değişmez değerler olarak kabul edilen datum parametrelerinden etkilenirler. Ölçü hataları yalnızca bilinmeyen yeni noktalara dağılır. Sabit nokta ya da koordinatlardan uzaklaştıkça nokta konum hataları büyür. Bu bakımdan nokta konum doğruluğu datum seçimine bağlı olarak değişir. Bu durum, datum seçimindeki öznelliğin (keyfiliğin) doğal sonucudur. Özellikle deformasyon araştırmak amacıyla oluşturulan jeodezik ağlarda nokta konumları ve doğrulukları belirleyici olduğundan datum tanımı, dengeleme sonuçlarına etkisiyle analiz ve yorum açısından önemli bir problemdir (Demirel, 1987 b-c; Illner, 1985).

6.2.2 Serbest ağ dengelemesi

Serbest ağ dengelemesinde tüm noktalar bilinmeyen noktalar olarak ele alınır. Bu nedenle normal denklem katsayıları matrisinin determinantı sıfır olur. Yani bu matris singüler bir matristir. Rank bozukluğu ya da defekt sayısı serbest datum parametrelerinin sayısına eşittir. Bilinmeyen sayısı u ve rank bozukluğu d ile gösterilirse normal denklem katsayılar matrisinin rangı r = u - d olur. Normal denklem katsayılarının tekil olması açık (tek anlamlı) çözüm için gerekli ölçü sayısından daha çok bilinmeyen (serbest datum parametrelerinin sayısı kadar) öngörülmesinden kaynaklanır.

Aşağıda sonuçları birbirlerine dönüştürülebilen serbest dengeleme türleri; datumun defekt sayısı kadar sabit koordinat ile tanımlandığı **zorlamasız klasik dengeleme**, datum tanımına tüm noktaların katıldığı **tüm iz minimum yöntemine göre dengeleme** ve datum tanımına noktalardan bir bölümünün katıldığı **kısmi iz minimum yöntemine göre dengeleme** açıklanmaktadır.

Bu dengeleme türlerinde nokta konum ve doğruluklarının datum seçimine bağlı olarak değişmesine karşın ağ geometrisi, başka bir deyişle dengeli ölçüler, sonsal varyans (s_0^2) , dengeli ölçülerin ve fonksiyonlarının standart sapmaları değişmez.

6.2.2.1 Zorlamasız klasik dengeleme

Bu çözüm normal denklem katsayılar matrisinin determinantının sıfırdan farklı olduğu bilinen dengeleme türüdür. Tüm noktalar bilinmeyen olduğuna göre oluşturulan $\mathbf{v} = \mathbf{Ax}$ -l düzeltme denklemlerinden A katsayılar matrisinden defekt sayısı kadar sütun çizilerek ya da defekt sayısı (d) kadar koordinat bilinmeyeni sabit kabul edilerek normal denklem katsayılar matrisinin (N=A^TPA) düzenli (determinantı sıfırdan farklı = regüler) bir matrise dönüştürülmesine dayanır. Normal denklem katsayılar matrisinden defekt sayısı kadar sütun ve normal denklemlerden bu sütunlara karşılık satırların çizilmesiyle de aynı sonuca ulaşılır.

Dengeleme sonuçlarının (koordinatlar ve nokta konum hataları), sabit kabul edilen ya da koordinatların ağ içindeki konumuna bağlı olarak değişmesi, sabit kabul edilen noktalardan uzaklaştıkça nokta konum hatalarının artması bu dengeleme türünün olumsuz yanını oluşturmaktadır.

6.2.2.2 Tüm iz minimum yöntemine göre dengeleme

Tüm iz yöntemi, ağın tüm noktalarını içeren küçültülmüş koordinat bilinmeyenleri vektörünün normunun (bilinmeyenlerin kareleri toplamı) ve ağırlık katsayıları matrisi izinin (köşegen elemanları toplamı) en küçük olmasını, başka bir deyişle ağın tüm noktalarının datum tanımına katkıda bulunmasını sağlar.

Tüm iz minimum yöntemine göre dengelemenin doğrusallaştırılmış fonksiyonel modeli, düzeltme denklemleriyle koordinat bilinmeyenleri arasındaki koşul denklemlerinden oluşur;

$$V = Ax_{g} - l (düzeltme denklemleri)$$

$$G^{T}X_{g} = 0 (koşul denklemleri)$$
(6.1)

 X_g koordinat bilinmeyenleri vektörü, ağın tüm noktalarını içerir. Düzeltme denklemlerinden yöneltme vb. bilinmeyenlerinin önceden yok edildiği varsayılmaktadır. Bu çözümde ağın datumu G matrisiyle tanımlanmakta tüm noktalar datum tanımına katılmaktadır. Koşul denklemlerinin sayısı datum parametrelerinin sayısına eşittir. Başka bir deyişle nokta sayısı p ve buna göre koordinat bilinmeyenlerinin sayısı bir boyutlu ağlarda u = p, iki boyutlu ağlarda u = 2p ve üç boyutlu ağlarda u = 3p ise G matrisinin boyutları u x d'dir (Demirel, 2009).

GPS ağlarında <u>G</u> matrisinin boyutu (3p, 3).

 G^{T} ilk üç satırı ile koordinat sisteminin x, y, z eksen doğrultularındaki öteleme parametreleri olarak tanımlanır.

Normal denklem katsayılar matrisi;

$$\underline{\mathbf{N}} = \underline{\mathbf{A}}^{\mathrm{T}} \underline{\mathbf{P}} \underline{\mathbf{A}}$$
(6.3)

Sabit terimler;

$$\underline{\mathbf{n}} = \underline{\mathbf{A}}^{\mathrm{T}} \underline{\mathbf{P}} \underline{\mathbf{l}}$$
(6.4)

Bilinmeyenler vektörü;

$$\underline{\mathbf{x}} = \underline{\mathbf{N}}^{-1} \times \underline{\mathbf{n}} \tag{6.5}$$

Determinantı sıfır olan normal denklem katsayıları matrisinin iz $\{\underline{N}^+\}$ =min ve $\cdot \mathbf{x}^T \mathbf{x}$ = min. şartlarını sağlamak üzere ($Q_g = N^+$) N matrisinin Moore-Penrose tersi olarak adlandırılır; X_g koordinat bilinmeyenlerinin ağırlık katsayıları matrisidir.

$$Q_g = N^+ = (N + GG^T)^{-1} - G(G^T GG^T G)^{-1}G^T$$
 (6.6)

 $G^{T}A^{T}=0$ olduğundan \mathbf{x}_{g} koordinat bilinmeyenleri,

$$x_{g} = Q_{g} n = (N + GG^{T})^{-1} n$$
 (6.7)

Tüm iz minimum yönteminin özellikleri;

a. N matrisinin çeşitli terslerine göre $Q_g=N^+$ matrisinin izi ve x_g vektörünün normu tüm çözümler karşısında en küçüktür (tüm iz minimum):

$$iz Q_g = min, x_g^T x_g = min$$

Bu özelliğin sonucu olarak koordinat varyanslarının toplamı en küçüktür; nokta konum hataları homojen dağılımlıdır.

b.
$$Q_g N = E - G (G^T G)^{-1} G^T$$

 $Q_g G = 0$

 $NQ_gN = N$

$$Q_g N Q_g = Q_g$$

Çıkar.

c. İki boyutlu bir ağa ilişkin G^T matrisinde geçen yaklaşık koordinatlar ağın ağırlık merkezine göre tanımlanmış, ayrıca işlemlerde kolaylık sağlaması nedeniyle satır elemanları normlandırılmıştır($G^TG = E$; birim matris).

Yükseklik ve gravite ağlarında $\mathbf{G}^{T}\mathbf{G} = \mathbf{1}$ çıkar normlandırma sonucu olarak $(\mathbf{G}^{T}\mathbf{G}\mathbf{G}^{T}\mathbf{G})^{-1} = \mathbf{E}$ olur ve çözüm kolaylaşır.

Üç boyutlu ağlar için $\mathbf{G}^{T}\mathbf{G} \neq \mathbf{E}$ olduğu göz önüne alınmalıdır.

- d. G^T matrislerinde ağın bir noktası yerine ağırlık merkezi sabit alındığından datum parametreleri yaklaşık koordinatlara dayandırılmış olmaktadır.
- e. Tüm iz minimum yöntemine göre dengemle, bilinmeyen koordinatlara ve noktalara ilişkin doğruluk ölçütlerine sabit parametre seçiminin etkisini

dışlayan ve bu ölçütlerin homojen dağılımlı olmasını sağlayan bir çözümdür (Demirel, 2009).

6.2.2.3 Kısmi iz minimum yöntemine göre dengeleme

Kısmi iz minimum yöntemi, ağın tüm noktalarını içeren küçültülmüş koordinat bilinmeyenleri vektörünün bir bölümünün normunun (bilinmeyenlerin bir bölümünün kareleri toplamı) en küçük olmasını, başka bir deyişle ağın noktalarından yalnızca bir bölümünün datum tanımına katkıda bulunmasını sağlar.

Tüm iz minimum yöntemine göre dengelemede ağın tüm noktaları datum tanımına katılmakta ve ağın tümünde en uygun konumlandırma sağlanmaktadır. Kısmi iz minimum yönteminde ise en uygun konumlandırma, ağın yalnızca datum tanımına katkıda bulunan noktalar bölümünde gerçekleşmektedir. Bu dengelemenin doğrusallaştırılmış fonksiyonel modelinin (6.1)'de verilenden farkı, orada G yerine, datumu tanımlayan ve G matrisinden dönüştürülen bir B matrisinin geçmesidir.

Bir jeodezik ağ için çok sayıda kısmi iz minimum çözümü olabileceği göz önüne alarak herhangi bir datumu "i" indisi ile tanımlayalım. Buna göre , ağın datumunu tanımlayan ve G matrisinde datum tanımına katılmayan noktalara karşılık tüm elemanlar yerine "0" yazılarak elde edilen matris B_i ve tüm noktaları içeren koordinat bilinmeyenleri vektörü x_i ile gösterilirse dengelemenin doğrusallaştırılmış fonksiyonel modeli,

$$V = Ax_i - 1$$

$$B_i^T x_i = 0$$
(6.8)

ya da $\mathbf{x_1}$ datumunu tanımlayan nokta koordinatları, $\mathbf{x_2}$ datum tanımına girmeyen nokta koordinatları vb. bilinmeyenler, $\mathbf{G_1}$ matrisi **G**'nin datum noktalarına karşılık alt matrisi olmak üzere doğrusallaştırılmış fonksiyonel model (6.8),

$$\mathbf{x}_{i} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{bmatrix}, \ \mathbf{B}_{i} = \begin{bmatrix} \mathbf{G}_{1} \\ \mathbf{0} \end{bmatrix}, \ \mathbf{A} = \mathbf{A}_{1} \mathbf{A}_{2}$$
(6.9)

ile

$$V = A_1 x_1 + A_1 x_1 - 1$$

$$G_1^{T} x_1 = 0$$
(6.10)

biçiminde olur.

 $Q_i = N^-$, N matrisinin genel tersi (inversi) olarak adlandırılır; x_i bilinmeyenlerinin ağırlık katsayıları matrisidir;

$$Q_{i} = (N + B_{i}B_{i}^{T})^{-1} - G(G^{T}B_{i}B_{i}^{T}G)^{-1}G^{T}$$
(6.11)

 $G^{T}A^{T}=0$ olduğundan \mathbf{x}_{g} koordinat bilinmeyenleri,

$$x_i = Q_i n = (N + B_i B_i^T)^{-1} n$$
 (6.12)

Kısmi iz minimum yönteminin özellikleri;

a. $\mathbf{x}_{i} = \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{bmatrix}$ bilinmeyenler vektörünün datum tanımına giren noktalara karşılık

x₁ alt vektörünün normu ve $Q_i = N^- = \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix}$ matrisinin buna karşılık Q_{11}

alt vektörünün izi en küçüktür:

 ${x_1}^T x_1 {=} \min$, iz $Q_{11} {=} \min$

bu özelliğin sonucu olarak datum noktaları koordinatlarının (x_1) varyansları toplamı en küçüktür; datum noktalarının konum hataları homojen dağılımlıdır.

b.
$$Q_i N = E - G(B_i^T G)^{-1} B_i^T$$

 $Q_i B_i = 0$

 $NQ_iN = N$

$$Q_i N Q_i = Q_i$$

Çıkar.

 c. Tüm iz minimum veya kısmi iz minimum yöntemlerine göre dengemle sonuçşarı arasında aşağıdaki ilişkiler vardır;

 $iz\;Q_g\!<\!iz\;Q_i\;,\;\;x_g^{-T}\!x_g\!<\!x_i^{-T}\!x_i$

d. Tüm iz yöntemine göre dengeleme ve zorlamasız klasik dengeleme, kısmi iz minimum yöntemine göre dengelemenin özel biçimleridir. $\mathbf{B_i} = \mathbf{G}$ ise kısmi iz minimum yöntemi, önceki bölümde açıklanan tüm iz minimum yöntemine dönüşür. (6.9) da verilen $\mathbf{B_i}^T = [\mathbf{G_1}^T \mathbf{0}^T]$ matrisinin datum noktalarına karşılık $\mathbf{G_1}^T$ alt matrisinin sütun sayısının serbest datum parametrelerinin sayısına eşit
olması durumunda, Kısmi iz minimum yöntemine göre dengeleme, Bölüm 6.2.2.1'de açıklanan zorlamasız klasik dengeleme ile özdeş olur (Demirel, 2009).

6.2.2.4 S-dönüşümü

Önceki bölümlerde açıklanan zorlamasız klasik dengeleme, tüm iz ve kısmi iz minimum yöntemlerine göre dengelemeler, ölçü düzeltmelerinin ve buna göre dengeli ölçülerin ya da ağ geometrisinin değişmediği (zorlamasız) çözümlerdir. Birine ilişkin sonuçlar bir **S** (similarity) matrisiyle ötekinin sonuçlarına dönüştürülebilir. Örneğin zorlamasız klasik dengelemenin koordinat bilinmeyenleri ve bunun ağırlık katsayıları matrisi, istenen bir datuma karşılık serbest dengeleme (tüm iz minimum veya kısmi iz minimum) sonuçlarına söz konusu datum için oluşturulması gereken S_g ya da S_i matrisleriyle dönüştürülebilir. Böyle bir dönüşüm özellikle deformasyon analizlerinde kolaylık sağlar. Söz konusu dönüşüm matrisleri:

$$S_{g} = Q_{g}N = E - G G^{T}G^{-1}G^{T}$$
 (6.13)

$$S_i = Q_i N = E-G B_i^T G^{-1} B_i^T$$
 (6.14)

Herhangi bir k datumu için geçerli kısmi iz minimum dengeleme sonuçları x_k ve Q_k ise tüm iz minimum yöntemine göre dengeleme sonuçları,

$$\mathbf{x}_{g} = \mathbf{S}_{g} \mathbf{x}_{k}$$

$$\mathbf{Q}_{g} = \mathbf{S}_{g} \mathbf{Q}_{k} \mathbf{S}_{g}^{T} \quad (\mathbf{S}_{g} = \mathbf{S}_{g}^{T})$$
(6.15)

ve i datumuna ilişkin kısmi iz minimum dengeleme sonuçları,

$$\mathbf{x}_{i} = \mathbf{S}_{i} \mathbf{x}_{k}$$

$$\mathbf{Q}_{i} = \mathbf{S}_{i} \mathbf{Q}_{k} \mathbf{S}_{i}^{\mathrm{T}}$$
(6.16)

Dönüşüm eşitlikleriyle elde edilir (Demirel, 2009).

6.3 Datum dönüşümleri

6.3.1 İki boyutlu Helmert Dönüşümü

İki boyutlu dönüşümde xy sistemindeki koordinatlar XY sistemine bilinen, ya da yeteri kadar eşlenik nokta koordinatlarından yararlanarak hesaplanan, dönüşüm parametreleri yardımıyla dönüştürülür.

Bir dönüşümde; dönüşümden sonra oluşan geometrik şekiller benzerliğini koruyorsa buna benzerlik dönüşümü denir. Benzerlik dönüşümünde; düzgün geometrik şekillerin alanları aynı oranda küçülür ya da büyür, şekiller dönüşümden sonra esas şekle benzer, açıların mutlak değerleri değişmez kalır (Pektekin,1989). Sonuçta elde edilen yeni koordinatlar (X, Y) ile hesaplanan semt açıları ve kenar uzunlukları eski sistem (x, y) koordinatları ile hesaplanan değerlere göre farklıdır. Ancak şekiller önceki şeklin benzeridir, dolayısıyla kırılma açıları korunmaktadır (Tanık, 2003).

Şekil 6.1 : İki boyutta benzerlik dönüşümü.

Şekil 6.1 deki;

- x, y: 1. Sistemin koordinatları
- X, Y: 2. Sistemin koordinatları
- c, d: Öteleme elemanları
- ε: İki koordinat sistemi arasındaki dönüklük açısı

m: Ölçek faktörü

Şekil 6.1'de iki dik koordinat sistemi ve bir P noktasının her iki sistemdeki koordinatları gösterilmiştir. Bu noktanın her iki sistemdeki koordinatları arasında,

$$X = x.m.\cos\varepsilon - y.m.\sin\varepsilon + c$$

$$Y = x.m.\sin\varepsilon + y.m.\cos\varepsilon + d$$
(6.17)

eşitlikleri yazılabilir.

$$a = m \cos \epsilon, \quad b = m \sin \epsilon$$
 (6.18)

$$X = a.x - b.y+c$$

 $Y = a.y + b.x + d$
(6.19)

olur. Eşitlikteki a, b, c, d katsayıları dönüşüm parametreleri olarak isimlendirilir. Bu dönüşümde m ölçek katsayısı ve iki dik koordinat sistemi arasındaki ε dönüklüğü, parametreler cinsinden;

$$m = \sqrt{a^2 + b^2}$$

$$\varepsilon = \operatorname{atan} \frac{a}{b}$$
(6.20)

olur (Tanık, 2003; Mikhail ve Weerawong, 1997). Helmert dönüşümü olarak da bilinen Benzerlik dönüşümünde 1 ölçek, 1 dönüklük ve 2 öteleme olmak üzere toplam dört parametre vardır (Mitsakaki, 2004). Dört parametrenin çözümü için bu dört parametreye karşılık gelen her iki sistemde koordinatları bilinen en az iki ortak noktaya ihtiyaç vardır. Ortak nokta sayısının ikiden fazla olması durumunda dönüşüm parametreleri bir parametre kestirim (EKK) yöntemine göre hesaplanır. Nokta sayısının üç ya da daha fazla olması durumunda (6.19) eşitlikleri kullanılarak nokta sayısının iki katı kadar düzeltme denklemi yazılabilir (Yaşayan,1978).

Bir nokta için:

$$\begin{bmatrix} X \\ Y \end{bmatrix} + \begin{bmatrix} V_x \\ V_y \end{bmatrix} = \begin{bmatrix} 1 \ 0 \ x \ -y \\ 0 \ 1 \ y \ x \end{bmatrix} \times \begin{bmatrix} c \\ d \\ a \\ b \end{bmatrix}, \qquad (6.21)$$

$$\stackrel{N=\underline{A}^T \underline{P}\underline{A}}{V \quad A \quad x}$$

$$\stackrel{N=\underline{A}^T \underline{P}\underline{A}}{\underline{n} = \underline{A}^T \underline{P}\underline{I}} \qquad (6.22)$$

$$\stackrel{X=\underline{N}^{-1} \times \underline{n}}{\underline{n}}$$

г ¬

$$\underline{\mathbf{V}} = \underline{\mathbf{A}}\underline{\mathbf{x}} - \underline{\mathbf{l}} \tag{6.23}$$

Bilinmeyenler (6.22) eşitliği ile hesaplanır ve bilinmeyenler bulunduktan sonra (6.23) eşitliği ile ortak nokta koordinatlarına getirilecek düzeltmeler hesaplanır. Eğer öteleme parametreleri, dönüklük ve ölçek değerleri verilmemiş ise dönüşüm parametreleri (6.21;6.22;6.23) formülleri ile hesaplanır (Doğan, 2011)

6.3.2 Üç boyutlu Bursa-Wolf (Helmert) modeli

Şekil 6.2 : Üç boyutta benzerlik dönüşümü.

Uydu ölçmelerinin son yıllarda getirdiği kolaylıklar sadece mutlak koordinatların elde edilmesiyle kalmamış, özellikle bağıl konumlamadaki yüksek hassasiyet ile üç boyutlu konumlamada, ülke jeodezik ağlarının iyileştirilmesi ve nokta sıklaştırılması çalışmalarında da büyük kolaylıklar sağlamıştır. Doğal olarak uydu gözlemleri ile elde edilen verilerle, yersel verilerin ortak bir sistemde değerlendirilmesi gerekir. Dönüşümün gerçekleşmesi için her iki sistem arasındaki dönüşüm parametrelerinin hassas olarak belirlenmesi, bilinmeyen parametrelerin sayısından daha fazla veri içeren ortak noktalar ile dönüşümün yapılması gerekir. Bir koordinat sisteminden diğer sisteme dönüşüm ölçek, dönüklük ve öteleme parametreleriyle gerçekleşir. Dönüşüm için çok sayıda yöntem geliştirilmiştir (Üstün, 1996). Bu çalışmada üç boyutlu benzerlik dönüşümünün (Bursa-Wolf modelinin) açıklaması yapılmaktadır.

Bir koordinat sistemindeki noktaların oluşturduğu şeklin geometrisinin benzerlik ilkelerine uygun olarak, diğer sisteme aktarılması Benzerlik dönüşümü veya Helmert dönüşümü olarak anılır (Leick, 1995).

Üç boyutlu benzerlik, üç boyutlu konformal, üç boyutlu Helmert veya 7 parametreli dönüşüm (Featherstone, 1996) olarak bilinen Bursa-Wolf (Bursa, 1962; Wolf, 1963) modelinde üç adet öteleme (t_x , ty, tz), üç adet dönme (ε_x , ε_y , ε_z) ve bir adet ölçek (k) olmak üzere yedi parametre vardır (Singh, 2002).

İki sisteme ait koordinat vektörleri arasındaki ilişki;

<u>X1</u>: Noktaların 1. sistemdeki (X₁, Y₁, Z₁) koordinatları

<u>X2</u>: Noktaların 2. sistemdeki (X_1, Y_1, Z_1) koordinatları

$$\left. \begin{array}{c} t_{x} \\ t_{y} \\ t_{z} \end{array} \right\} \begin{array}{c} \ddot{O}teleme \ parametreleri \\ t_{z} \end{array} \\ \left. \begin{array}{c} \epsilon_{x} \\ \epsilon_{y} \\ \epsilon_{z} \end{array} \right\} \end{array} \\ D\ddot{O}n\ddot{u}kl\ddot{u}k \ parametreleri \\ \left. \begin{array}{c} \epsilon_{z} \end{array} \right\} \end{array}$$

k Ölçek parametresi

u = 7 (Bilinmeyen sayısı)

$$\underline{X}_{1} = \underline{t} + (1+k)\underline{R}\underline{X}_{2}$$

$$\begin{bmatrix} X_{1} \\ Y_{1} \\ Z_{1} \end{bmatrix} = \begin{bmatrix} t_{x} \\ t_{y} \\ t_{z} \end{bmatrix} + (1+k) \cdot \begin{bmatrix} 1 & \varepsilon_{z} & -\varepsilon_{y} \\ -\varepsilon_{z} & 1 & \varepsilon_{x} \\ \varepsilon_{y} & -\varepsilon_{x} & 1 \end{bmatrix} \cdot \begin{bmatrix} X_{2} \\ Y_{2} \\ Z_{2} \end{bmatrix}$$
(6.24)

Dönüşüm matrisi içindeki açılar radyan cinsinden alınmalıdır (Doğan, 2011). R dönüklük matrisi ardışık olarak gerçekleşen üç dönüklüğün bir sonucudur ve R dönüklük matrisini (6.24) elde ederiz (Ünal, 1994).

Bu yedi parametre başlangıçta bilinmediği için en küçük kareler yöntemiyle bunların en uygun değerlerinin belirlenmesi yoluna gidilir ve her iki sistemde koordinatları bilinen en az üç ortak nokta ile bu dengelemeli dönüşüm gerçekleştirilir (Deniz, 1993).

Bir nokta için:
$$\begin{bmatrix} lx \\ ly \\ lz \end{bmatrix} + \begin{bmatrix} Vx_1 \\ Vy_1 \\ Vz_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -Z_2 & Y_2 & X_2 \\ 0 & 1 & 0 & Z_2 & 0 & -X_2 & Y_2 \\ 0 & 0 & 1 & -Y_2 & X_2 & 0 & Z_2 \end{bmatrix} \times \begin{bmatrix} z_{x_1} \\ z_{y_1} \\ z_{y_1} \end{bmatrix}$$
(6.25)
$$l = \begin{bmatrix} X_1 - X_2 \\ Y_1 - Y_2 \\ Z_1 - Z_2 \end{bmatrix} = \begin{bmatrix} lx \\ ly \\ lz \end{bmatrix}$$
(6.26)
$$\frac{P = E}{\sum_{\substack{N = \underline{A}^T \underline{P} \underline{A} \\ n = \underline{A}^T \underline{P} l}}$$
(6.27)

Bu şekilde her Pi noktası için düzeltme denklemleri yazılır (Doğan, 2011).

6.4 Deformasyonların Belirlenmesi

6.4.1 Sabit Noktaların deformasyon analizi

Bu adımda öncelikle bağımsız periyotlara ilişkin ölçüler ayrı ayrı serbest dengelenirler. İki periyodun ayrı ayrı dengelenmesi sonucunda koordinat bilinmeyenleri elde edilir. Aradaki datum aykırılığını ortadan kaldırmak için konum değiştirmediği varsayılan ölçme noktalarının koordinatları Helmert dönüşümü ile üst üste çakıştırılır. Bu noktaların her biri için Helmert dönüşümünün düzeltme denklemleri bir j noktası için, (6.21) eşitlikleri kullanılır. Helmert dönüşüm katsayılarından yararlanarak sabit kabul edilen noktaların ikinci periyottaki koordinatları, birinci periyoda dönüştürülür. Datum çakışmasının ortak hataları (6.23) bağıntıları yardımıyla hesaplanır (İnal, 1988).

Her periyodun dengelenmesi sonucu elde edilen koordinat duyarlıklarına göre bir P_j noktasının, t_i, t_{i+1} periyodu verileriyle bulunan koordinat farklarının ortalama hataları,

$$m_{xj}^{2} = (m_{x1}^{2} + m_{x2}^{2})_{j}$$

$$m_{yj}^{2} = (m_{y1}^{2} + m_{y2}^{2})_{j}$$
(6.28)

bağıntılarıyla hesaplanır (Ünver ve Tanır, 2001). Hareket etmediği varsayılan noktaların testi için oluşturulacak sıfır hipotezi;

Ho:
$$E\{V_{xi}\} = 0, E\{V_{yi}\} = 0$$
 (6.29)

olur. Test büyüklükleri;

$$\mathbf{t}_{xj} = \frac{|\mathbf{V}_{xj}|}{m_{xj}}, \ \mathbf{t}_{yj} = \frac{|\mathbf{V}_{yj}|}{m_{yj}}$$
 (6.30)

bağıntılarıyla hesaplanır. Test büyüklükleri 1-α istatistik güven ve f=n (nokta sayısı) serbestlik dereceleri ile t-dağılım çizelgesinden alınan karşılaştırma ölçütü ile kıyaslanır.

Eğer; $t_{xj} > t_f$, 1- α ve/veya $t_{yj} > t_f$, 1- α

ise P_j referans noktası t₂-t₁ zaman aralığında konum değiştirmiştir. Bu nedenle her iki ölçme dönemine ait ağları birbirine bağlayacak ortak nokta olarak alınamaz. Aksi durumda o noktanın sabit kaldığı kabul edilir. Eğer konum değiştiren noktalar varsa bu noktalar çıkarılarak dönüşüm tekrar edilir ve artık noktaların ne durum aldığı incelenir (İnal, 2012).

6.4.2 S-Transformasyonu yardımıyla deformasyon analizi

6.4.2.1 S-Transformasyonu ile Global test

İki farklı zamanda yapılan ölçülerle oluşan jeodezik ağın aynı datuma getirilmesi 1944 yılında W. BAARDA tarafından geliştirilmiş S-transformasyonu tekniği ile gerçekleştirilir. S-transformasyonu, tüm iz minimum veya kısmi iz minimum şeklinde gerçekleştirilmiş serbest ağ dengelemesi sonuçlarını (x (bilinmeyenler) ve Qx (bilinmeyenlerin kofaktörler matrisi)) başka herhangi bir dengeleme işlemine gerek duyulmadan ağdaki diğer başka noktalara bağlı kısmi iz minimum çözümlerine dönüştürür. S-transformasyonu tekniği datum dönüşümü sağlamasının yanında, ard arda tekrarlı uygulanmasıyla ve global uygunluk testi-deformasyonların lokalize edilmesi-karesel formun ayrıştırılması işlemlerinin yardımıyla iki kampanya arasında sabit kalan veya hareketli olan nokta gruplarının ortaya çıkartılmasında da kullanılır (Baarda, 1973; Strang van Hees, 1982). İki kampanyalı analiz işleminde, 1. kampanya (t1) ölçülerinin serbest dengelemesi sonuçlarının i ve 2. kampanya (t2) ölçülerinin serbest dengelemesi sonuçlarının j datumunda olduğu varsayılır ve bunların k gibi ortak bir datuma dönüştürülmesi gerekirse bu işlem, aşağıdaki formüllerde verilen S-transformasyonu eşitlikleriyle gerçekleştirilir (Caspary, 1987; Demirel, 1987; Welsch, 1993; Başkaya, 1995).

$$\underline{\mathbf{x}}^{k} = \underline{\mathbf{S}}_{k} \underline{\mathbf{x}}^{i}$$
 (6.31)

$$\underline{\mathbf{Q}}_{\mathbf{x}}^{\mathbf{k}} = \underline{\mathbf{S}}_{\mathbf{k}} \underline{\mathbf{Q}}_{\mathbf{x}}^{\mathbf{i}} \underline{\mathbf{S}}_{\mathbf{k}}^{\mathbf{T}}$$
(6.32)

$$\underline{\mathbf{S}}_{k} = \underline{\mathbf{I}} - \underline{\mathbf{G}}(\underline{\mathbf{G}}^{\mathrm{T}}\underline{\mathbf{E}}_{k}\underline{\mathbf{G}})^{-1}\underline{\mathbf{G}}^{\mathrm{T}}\underline{\mathbf{E}}_{k}$$
(6.33)

Bu eşitliklerdeki, <u>I</u> birim matris, <u>E</u>_k köşegen üzerindeki elemanları datum noktaları için 1 ve diğer noktalar için 0 olan datum belirleyici matrisdir (eşitlik (6.34)). G^{T} matrisi ise GPS ağlarında eşitlik (6.2) de verildiği şekilde tanımlanmaktadır.

$$\underline{\mathbf{E}}_{\mathbf{k}} = \begin{bmatrix} \underline{\mathbf{0}} & \underline{\mathbf{0}} & \underline{\mathbf{0}} \\ \underline{\mathbf{0}} & \underline{\mathbf{I}} & \underline{\mathbf{0}} \\ \underline{\mathbf{0}} & \underline{\mathbf{0}} & \underline{\mathbf{0}} \end{bmatrix}$$
(6.34)

GPS ağlarında ise her üç eksen yönündeki ötelemelerin sayısına eşit ve 3 tür (Leick, 1995; Welsch, 1993). Diğer taraftan, konvensiyonel ağlarda, ağda gerçekleştirilen ölçüler ile ilişkili olarak, datum defekt sayısı kesin olarak bilinirken, GPS ağlarında atmosferik etkiler, farklı anten türlerinin kullanılması, uzun bazların çözümünde farklı uydu efemeris bilgilerinin kullanılması, alıcı antenlerinin lokal kuzey istikametine yönlendirilmemesi gibi hata kaynaklarından dolayı her zaman kesin olarak bilinemeyebilir (Blewitt, 1990).

t₁ ve t₂ zamanlarında gözlenen ağ geometrileri farklı ise, global test yalnızca eşlenik noktalar yardımıyla gerçekleştirilir. Bu noktalar datum noktaları adını da alır ve diğer noktalar, datuma katkısı olmayacak noktalar olarak gruplandırılır.

Ağ noktalarındaki signifikant hareketlerin araştırılmasında, sürekli datum dönüşümü uygulanır. Ancak, bunun öncesinde, birbirleri ile karşılaştırılacak olan ağlar herhangi bir datumda serbest ağ dengelemesi ile dengelenirler. Serbest dengeleme sonucunda, t_1 zamanında ölçülen kontrol ağı noktalarının bilinmeyenleri ve kofaktörleri, i datumunda olmak üzere, f (datum-eşlenik) ve n (deformasyon) noktaları olmak üzere iki gruba ayrılır (eşitlik (6.35)-(6.36)).

$$\underline{\mathbf{x}}^{i} = \begin{bmatrix} \underline{\mathbf{x}}_{f}^{i} \\ \underline{\mathbf{x}}_{n}^{i} \end{bmatrix}$$
(6.35)

$$\underline{\mathbf{Q}}_{\mathbf{x}}^{i} = \begin{bmatrix} \underline{\mathbf{Q}}_{\mathrm{ff}}^{i} & \underline{\mathbf{Q}}_{\mathrm{fn}}^{i} \\ \underline{\mathbf{Q}}_{\mathrm{nf}}^{i} & \underline{\mathbf{Q}}_{\mathrm{nn}}^{i} \end{bmatrix}$$
(6.36)

Eşitliklerdeki, <u>x</u>_i, 1. kampanyanın, i datumundaki bilinmeyenler vektörü, ve Q_x^i , i datumundaki kofaktörler matrisidir. Transformasyon i datumundan k datumuna, <u>E</u>_k datum belirleme matrisinin yardımı ile gerçekleştirilir. Bu transformasyon aşağıda verildiği şekilde gerçekleştirilir.

$$\begin{bmatrix} \underline{\mathbf{X}}_{\mathrm{f}}^{\mathrm{k}} \\ \underline{\mathbf{X}}_{\mathrm{n}}^{\mathrm{k}} \end{bmatrix} = \underline{\mathbf{S}}_{\mathrm{k}} \begin{bmatrix} \underline{\mathbf{X}}_{\mathrm{f}}^{\mathrm{i}} \\ \underline{\mathbf{X}}_{\mathrm{n}}^{\mathrm{i}} \end{bmatrix}$$
(6.37)

$$\underline{\mathbf{Q}}_{x}^{k} = \begin{bmatrix} \underline{\mathbf{Q}}_{ff}^{k} & \underline{\mathbf{Q}}_{fn}^{k} \\ \underline{\mathbf{Q}}_{nf}^{k} & \underline{\mathbf{Q}}_{nn}^{k} \end{bmatrix} = \underline{\mathbf{S}}_{k} \underline{\mathbf{Q}}_{x}^{i} \underline{\mathbf{S}}_{k}^{T}$$
(6.38)

(6.35) - (6.38) numaralı eşitliklerde verilen işlemler, t₂ zamanında gerçekleştirilen 2. kampanya ölçülerinin serbest dengelemesinden elde edilen, j datumundaki bilinmeyenlerin ve kofaktörler matrisinin k datumuna dönüştürülmesi için tekrarlanır. Böylece i datumundaki ve j datumundaki ağlar S-transformasyonu yardımıyla aynı k datumuna, datum noktaları yardımıyla dönüştürülmüş olur. Sonuçta datum noktalarının k datumunda, 1. ve 2. kampanya için $(\underline{x}_{f}^{k})_{1}$ ve $(\underline{x}_{f}^{k})_{2}$ koordinat bilinmeyenleri ve bunların kofaktör matrisleri $(\underline{Q}_{ff}^{k})_{1}$ $(\underline{Q}_{ff}^{k})_{2}$ elde edilir. Global test yardımıyla datum noktalarında herhangi bir hareketin olup olmadığı test edilir. Global test için H₀ sıfır hipotezi ve T test büyüklüğü aşağıdaki gibi belirlenir (Pelzer, 1971; Mierlo, 1978; Gründig ve diğ., 1985; Caspary, 1987).

$$H_{0} : E(\underline{x}_{f}^{k})_{1} = E(\underline{x}_{f}^{k})_{2} \qquad (H_{0} : \text{ sufir hipotezi})$$
(6.39)

$$\mathbf{d}_{\mathrm{f}} = (\underline{\mathbf{x}}_{\mathrm{f}}^{\mathrm{k}})_2 - (\underline{\mathbf{x}}_{\mathrm{f}}^{\mathrm{k}})_1 \qquad (\text{yer değiştirme vektörü}) \qquad (6.40)$$

$$(\underline{\mathbf{Q}}_{dd})_{f} = (\underline{\mathbf{Q}}_{ff}^{k})_{1} + (\underline{\mathbf{Q}}_{ff}^{k})_{2} \qquad (\mathbf{d}_{f} \text{ nin kofaktör matrisi})$$
(6.41)

$$\mathbf{R}_{\mathrm{f}} = \underline{\mathbf{d}}_{\mathrm{f}}^{T} (\underline{\mathbf{Q}}_{\mathrm{dd}})_{\mathrm{f}}^{+} \underline{\mathbf{d}}_{\mathrm{f}} \qquad (\text{karesel form}) \tag{6.42}$$

$$s_0^2 = \frac{f_1 s_{01}^2 + f_2 s_{02}^2}{f_1 + f_2}$$
 (birleşik varyans değeri) (6.43)

$$T = \frac{R_f}{s_0^2 h_f}$$
 (test değeri) (6.44)

Yukarıda verilen eşitliklerde, R_f karesel formun serbestlik derecesi, $h_f = rank (Q_{dd})_f = u_f -d_f$, uf datum noktaları için bilinmeyen sayısı, df datum defekti sayısı, $(Q_{dd})_f^+$ ise $(Q_{dd})_f$ 'nin $(Q_{dd})_f^+ = ((Q_{dd})_f + \underline{G}\underline{G}^T)^{-1} - \underline{G}\underline{G}^T$ olarak pseudo inversidir (Caspary, 1987).

Eğer test değeri T > $F_{hf,f,1-\alpha}$ (f = f₁+f₂) ise, kontrol ağının datum noktalarının en az birinde veya bir bölümünde signifikant (anlamlı) hareketlilik olduğu kararına varılır (Erol, 2008).

6.4.2.2 S-Transformasyonu ile anlamlı nokta hareketlerinin araştırılması

Global test sonucunda ağın tümünün ya da eşlenik noktalar bloğunun herhangi bir bölümünde deformasyon olduğuna karar verilmiş ise, hareketli noktaların belirlenmesi ve araştırılmasına geçilir. Eşlenik noktalardan her birinin yer değiştirmiş olduğu düşünülerek serbest dengeleme ile i datumunda belirlenmiş bir kampanyaya ait x_i parametreler vektörünün eşlenik nokta koordinatlarını tanımlayan \underline{x}_{f}^{i} vektörü; hareket ettiği varsayılan bir noktanın koordinatlarını içeren \underline{x}_{h}^{i} ve sabit kabul edilen diğer eşlenik nokta koordinatlarını içeren \underline{x}_{s}^{i} biçiminde alt vektörlerine ayrılır. Eşlenik olmayan noktalara ilişkin parametreler ve diğer bilinmeyenler \underline{x}_{n}^{i} vektörü içinde toplandığına göre, (6.35) bilinmeyenler vektörü ve (6.36) kofaktörler matrisi,

$$\underline{\mathbf{x}}^{i} = \begin{bmatrix} \underline{\mathbf{x}}_{s}^{i} \\ \underline{\mathbf{x}}_{h}^{i} \\ \underline{\mathbf{x}}_{n}^{i} \end{bmatrix}; \ \underline{\mathbf{Q}}_{x}^{i} = \begin{bmatrix} \underline{\mathbf{Q}}_{ss}^{i} & \underline{\mathbf{Q}}_{sh}^{i} & \underline{\mathbf{Q}}_{sn}^{i} \\ \underline{\mathbf{Q}}_{hs}^{i} & \underline{\mathbf{Q}}_{hh}^{i} & \underline{\mathbf{Q}}_{hn}^{i} \\ \underline{\mathbf{Q}}_{ns}^{i} & \underline{\mathbf{Q}}_{nh}^{i} & \underline{\mathbf{Q}}_{nn}^{i} \end{bmatrix}$$
(6.45)

şeklinde tekrar düzenlenir (Mierlo, 1997; Caspary, 1987; Demirel, 1987).

İki farklı zamanda ölçülen, i ve j gibi iki farklı datumda koordinatları belirlenen ağ şimdi, koordinatları \underline{x}_s içinde toplanan ve sabit kabul edilen noktalara göre yeniden yeni bir k datumunda konumlandırılmalıdır. Bu durumda \underline{x}_f vektörü içindeki bütün noktalar sırasıyla \underline{x}_h vektörü içine alınır, yeni oluşan her \underline{x}_s eşlenik nokta vektörüne göre belirlenen E_k ve S_k matrisleri kullanılarak (6.37)-(6.44) eşitlikleri hesaplanır ve global test tekrarlanır. Eşlenik noktalar kümesindeki her nokta için hesaplanan karesel formlar (R_s) karşılaştırılır ve minimum karesel form değerini veren nokta, global test sonucunda eşlenik (sabit) noktalar kümesinde hareket olduğu kararı verilirse, \underline{x}_n vektörüne dahil edilir. Daha sonra geri kalan eşlenik noktalar için bu başlık altındaki işlemler tekrarlanır ve her defasında tek nokta eşlenik nokta kümesinden çıkarılır. Global test geçerli oluncaya kadar (T >F_{hf,f,1- α}) bu işleme devam edilir (Caspary, 1987; Demirel,1987).

Global test sonucu ağdaki hareketsiz datum noktaları belirlendikten sonra, bu datum noktaları yardımıyla her iki ölçme kampanyası tekrar aynı datuma getirilir ve ağdaki her nokta için aşağıdaki deformasyon vektörü oluşturulur (Cooper, 1987).

Bir P noktası için 3B deformasyon vektörü,

$$d = \begin{bmatrix} (x_{p}^{k})_{2} - (x_{p}^{k})_{1} \\ (y_{p}^{k})_{2} - (y_{p}^{k})_{1} \\ (z_{p}^{k})_{2} - (z_{p}^{k})_{1} \end{bmatrix} = \begin{bmatrix} d_{x} \\ d_{y} \\ d_{z} \end{bmatrix}$$
(6.46)

ve bu vektörün büyüklüğü:

$$|\mathbf{d}| = \sqrt{\underline{\mathbf{d}}^{\mathrm{T}} \underline{\mathbf{d}}} \tag{6.47}$$

belirlenir.

Yukarıda belirlenen deformasyon büyüklüğünün anlamlılığını test etmek için H₀ sıfır hipotezi aşağıdaki gibi kurulur.

$$H_0: |d| = 0$$
 (6.48)

ve test büyüklüğü aşağıdaki gibi hesaplanır,

$$T = \frac{\underline{d}^{T} \underline{Q}_{dd}^{-1} \underline{d}}{3s_{0}^{2}}$$
(6.49)

bu test büyüklüğü Fischer dağılımından alınan $F_{3,f;1-\alpha}$ eşik değeri ile karşılaştırılır. Eğer T> $F_{3,f,1-\alpha}$, ise P noktasının üç boyutlu konumundaki hareketin anlamlı olduğu sonucuna varılır, aksi durumda hareketin anlamlı olmadığı ve rastlantısal ölçü hatalarından kaynaklandığı kabul edilir (Erol ve diğ., 2007b; Denli 1998).

7. İZMİT KÖRFEZ GEÇİŞİ DEFORMASYON AĞI TASARIMI, GNSS GÖZLEMLERİ VE DEĞERLENDİRMELERİ

İstanbul-İzmir Otoyolu projesinin önemli bir ayağını teşkil eden İzmit körfez bölgesi, aynı zamanda önemli bir fay hattı olan Kuzey Anadolu Fayının geçtiği bölgelerden biridir ve fay zonunun etki alanındadır (Şekil 7.1).

Şekil 7.1 : Körfez bölgesi ve Kuzey Anadolu fay hattı.

Bölgenin tektonik aktivite yoğunluğu ve 17 Ağustos depreminin etkileri göz önünde bulundurulduğunda, otoyolun ve körfez geçişini sağlayacak köprünün yapımına

ilişkin detaylar önem kazanmaktadır. Özellikle, körfez geçişini sağlayacak köprünün güney ayağının konumlandırılacağı bölge olan Hersek deltası mevkiinde, 17 Ağustos depreminden sonra Kuzey Anadolu Fay Hattı'na ait yeni bir kırığın meydana geldiğine dair bulgular, bölge için endiseyi ve hassasiyeti artırmaktadır. Bu bölgedeki tektonik hareketlerin oluşturacağı deformasyonların bağlamda, öngörülmesi için yapılacak ölçme çalışmaları da hayatidir. Proje kapsamında, kabuk ve yapısal deformasyonların izlenmesi amacıyla bir deformasyon ağı kurulmuştur. Bu ağ bölgede işlerliğini sürdüren, Sürekli Gözlem Yapan Sabit Referans İstasyonlarına bütünleşmiş şekilde değerlendirilmiştir. Böylelikle kabuk ve yapısal deformasyonlara ilişkin bilgi verecek bir değerlendirme stratejisi ortaya koymak, aynı zamanda bölgede var olan Sabit Referans İstasyonlarına ait güncel konum bilgisine ve farklarına ulaşmak amaçlanmıştır.

7.1 Ağın Tasarım Stratejisi

Deformasyon ağı, projenin ve aynı zamanda Kuzey Anadolu Fay Hattının geçtiği bölgeyi kapsayacak şekilde jeofiziksel ve jeodinamik çalışmalar ışığında kurulmuştur. Kabuk ve yapısal deformasyonların belirlenmesine yönelik tasarlanan ağda 8 adet nokta bulunmaktadır (Şekil 7.2).

Şekil 7.2 : Deformasyon noktası.

Bu noktalar, Kuzey Anadolu Fay Hattının bölgedeki varlığına ilişkin bir düzenlemeyle, hattın kuzey ve güneyine konumlandırılmıştır. Kuzey Anadolu Fay hattının kuzeyinde kalan Avrasya Plakası bölgesinde 4 adet nokta; proje güzergâhının doğusu ve batısında 2'şer adet olacak şekilde tesis edilmiştir. Benzer şekilde, diğer 4 nokta ise; fay hattının güneyinde kalan Anadolu Bloğu üzerinde, proje güzergahının doğu ve batısı olmak üzere, 2'şer nokta olarak tesis edilmiştir (Şekil 7.3).

Şekil 7.3 : Deformasyon ağı.

7.2 Ağın Ölçme ve Değerlendirme Stratejisi

Körfez geçişini sağlayacak olan otoyol Dilovası ile Hersek Burnu arasındaki İzmit Körfezi'ni Asma Köprü ve her iki taraftaki viyadükleri geçerek projenin önemli bir kısmını oluşturmaktadır. Bu bölümün inşası için bölgede uluslararası, ulusal ve lokal anlamda faaliyet gösteren ve gerçek zamanlı veri üreten Sabit Referans İstasyonlarının olması ağın değerlendiriliş stratejisi bakımından çok büyük bir önem teşkil etmiştir. Bölgede sürekli gözlem yapan IGS, TUSAGA-Aktif ve İSKİ-UKBS noktaları bölgede kurulan deformasyon ağının noktalarını değerlendirecek sabit noktalardır. Uluslararası noktalar olan IGS noktaları; ISTA (İstanbul Teknik Üniversitesi) ve TUBI (Gebze), ulusal bir ağ olan TUSAGA-Aktif' e ait 6 adet istasyon; IZMT (İzmit), BURS (Bursa), ISTN (İstanbul), SLEE (Şile), BAND (Bandırma), KABR (Karaburun)) ve İstanbul' a ait lokal veri sağlayan İSKİ-UKBS ye ait 7 nokta; SILE, YALI, TUZL (Tuzla), PALA (Pala), SLVR (Silivri), TERK (Terkos), KCEK (Küçükçekmece), değerlendirmeye katılan noktalardır (Şekil7.4).

Şekil 7.4 : IGS, TUSAGA-Aktif, İSKİ-UKBS ve deformasyon noktaları.

IGS, TUSAGA-Aktif ve İSKİ-UKBS noktalarına ait saniyelik, 10 saniyelik ve 30 saniyelik GNSS verileri gün veya saat bazında, ilgili kurumların web sunucuları ya da internet siteleri aracılığıyla ücretli veya ücretsiz ölçü olarak epoğunda temin edilebilmektedir.

Uluslar arası, ulusal ve yerel anlamda faaliyet gösteren bu noktaların gerçek zamanlı GNSS verileri 24 saatlik olarak alınmış ve değerlendirilmiştir. Deformasyon ağına ait 8 nokta ise, GPS tekniğiyle statik ölçüm yapılarak, 17 Ağustos 2010, 2 Kasım 2011 ve 12 Eylül 2013 tarihlerinde 3-5 saatlik periyotlarla gözlenmiştir. Zemin tesisleri, beton yer pilyesi olarak yapılmış toprak zemin üzerine kurulan GPS alıcıları ile yapılan ölçmeler diğer yıllarda da periyodik olarak sürecektir (Şekil 7.5).

Şekil 7.5 : Deformasyon noktalarının pilye tesisi.

Farklı zamanlarda konumları belirlenen ağların datumları çeşitli nedenlerle farklı olabileceğinden, karşılaştırılacak parametrelerin aynı datumda belirlenmesi gerektiğinden ve sabit noktalara ait veriler arasında ortaya çıkabilecek bir datum uyuşumsuzluğu problemini ortadan kaldırmak için, tüm veriler ITRF 2005 datumunda alınmıştır. Bununla birlikte her iki periyot ölçüsünün ayrı ayrı serbest dengelemesinde koordinat bilinmeyenleri için aynı yaklaşık değerler kullanılsa bile, ağların datumları birbirlerinden farklı olur. Bu nedenle iki periyoda ilişkin sonuçlar doğrudan birbirleri ile karşılaştırılamazlar. Bu yüzden iki periyoda ilişkin ölçülerin oluşturacağı ağların datum aykırılığını ortadan kaldırmak için, (t₂-t₁) zaman aralığında konum değiştirmediği varsayılan noktalar S-transformasyonu yardımıyla belirlenir. Böylelikle değerlendirilen iki periyot için konumu değişmemiş noktalar bulunur. Ardından anlamlı nokta araştırılmasına geçilir.

Noktaların mevcut stabilizasyonun ortaya çıkması için izlenen strateji ise; Sürekli sabit referans istasyonlarına ait veriler kendi içlerinde gözlem yapan değerlendirilmiştir. Bu değerlendirmeler ve deformasyon noktalarının da birlikte değerlendirildiği değerlendirmeler Leica Geo Office programında uydu konum bilgilerine ait 'hassas efemeris' bilgileri kullanılarak yapılmıştır. IGS hassas efemeris bilgileri URL:6 vasıtasıyla ilgili siteden indirilmiştir. Sürekli gözlem yapan verilerin kendi içerisinde değerlendirilmesine ilk önce IGS istasyonları olan ISTA ve TUBI noktalarından başlanmıştır. Lineer bağımsızlığı sağlamak amacı ile ISTA ve TUBI noktalarının, deformasyon noktalarının ölçüldüğü günden bir gün önce veya bir gün sonra ki 24 saatlik RINEX verileri URL:7 adresinden indirilmiş ve ISTA referans tutulmak şartı ile TUBI noktası değerlendirilmiştir. ISTA noktasının kesin koordinatları URL:8 adresinden ITRF 2005 datumunda ve ölçü epoğunda alınmıştır. Bu işlemden sonra deformasyon noktalarının GPS gözlemlerinin yapıldığı gün için değerlendirme aşamasına geçilmiştir. ISTA ve TUBI noktaları referans tutulmak koşulu ile TUSAGA-Aktif noktaları ve İSKİ-UKBS noktaları ITRF 2005 datumunda değerlendirilmiştir. Bu yolla, deformasyon ağına ait noktaların hareketlerinin izlenmesi ek olarak da uluslararası ve ulusal kapsamdaki sabit referans istasyonlarının güncel durumlarının gözlenmesi amaçlanmıştır. Başka bir deyişle, 2010, 2011 ve 2013 yıllarının ölçü epoklarına göre IGS ağının veri sağlayıcı sitesinden indirilen uydu konumlarına ait hassas efemeris verileri kullanılarak ISTA

ve TUBI istasyonlarının 24 saatlik RINEX verilerine dayalı şekilde bölgede bulunan diğer ulusal ve lokal ağların 24 saatlik RINEX verileri değerlendirilmiştir.

Yapılan değerlendirmeler sonucu, ISTA ve TUBI noktaları referans alınarak baz çözümleri yapılan İSKİ-UKBS ve TUSAGA-Aktif ağlarına ait yatay ve düşey konum doğrulukları stabil bulunan noktalar referans alınarak deformasyon ağına ait noktaların baz çözümleri gerçekleştirilmiştir. Tüm bu stratejiler 2010, 2011 ve 2013 yıllarında yapılan kampanyalar için kullanılmış ve ağın geometrisi karşılaştırılacak olan periyotlar için sürekli aynı tutulmuştur. Belirlenen baz çözüm stratejisinde Leica Geo Office programında kullanılan iyonosferik model: Automatic, Troposferik model ise; Hopfield'tir. Ayrıca ağı kapsayan bazların uzun bazlar olması nedeniyle L1, L2 frekanslarının kombinasyonu olan L3 seçilmiş, böylece iyonosfer etkisi elimine edilmiştir (Şekil 7.6).

Baz çözümlerinin Leica Geo Office programında yapılmasın sonra dengeleme işlemi MATLAB Programında yazılan bir dengeleme programı ile yapılmıştır. Burada MATLAB programını kullanmamızın ana sebebi, deformasyon analizi işlemi için küçültülmüş bilinmeyenlere ait kofaktör matrislerini kullanacağımızdan dolayı ve bu matrisler analiz için büyük önem taşıdığı için ve Leica Geo Office programının dengeleme sonucunda küçültülmüş bilinmeyenlere ait kofaktör matrislerini vermemesinden dolayı MATLAB programı kullanılmıştır. MATLAB programı ile Leica Geo Office programında çözdürdüğümüz bazları ve onların kofaktör matrislerini girdi olarak alarak dengeleme işlemi gerçekleştirilmiştir.

Dengeleme stratejisi olarak ilk başta zorlamasız klasik dengeleme modeli seçilip, kontrol noktası olarak ISTA noktası seçilmiş ve ağdaki tüm noktalar bu noktaya dayalı şekilde dengelenmiştir. Sonrasında S-transformasyonu yardımıyla zorlamasız klasik dengeleme ile dengelenmiş ağ, tüm noktaların datum tanımına katkı verdiği tüm iz minimum yöntemine göre dengeleme modeline dönüştürülmüştür. Bu işlemler tüm periyotlar için ayrı ayrı gerçekleştirilmiştir.

Dengeleme işlemi sonucunda noktalara ait X,Y ve Z Kartezyen koordinatları, sağa ve yukarı değerlere dönüştürülmüştür. Projeksiyon sistemi olarak Transversal Merkator ve 3 derecelik, genişliği 30° dilim orta meridyeni kullanılmıştır.

General Strategy Extended Output Auto	o. Processing			
Frequency:	Iono free (L3)		•	
Fix ambiguities up to:		300	÷	km
Min. duration for float solution (static):		300	÷	sec
Sampling rate:	Use all		•	
Tropospheric model:	Hopfield		•	
Ionospheric model:	Automatic		•	
☑ Use stochastic modelling	Min. distance:	8	•	km
	Ionospheric activity:	Automatic	•	

Şekil 7.6 : Değerlendirme stratejisine ait parametre seçimi.

Çalışma, aynı zamanda Sürekli Gözlem Yapan Sabit Referans İstasyonlarının güncel durumlarına ilişkin bilgi vermeyi de amaçladığından, ülkemizde kullanımı giderek yaygınlaşan TUSAGA-Aktif ve İstanbul içerisinde sürekli gözlem verisi sağlayan İSKİ-UKBS ağlarının çalışma bölgesindeki noktaları da incelenmiştir. Kuzey Anadolu Fay Zonu'nun İzmit körfezi ile Marmara Denizi çukurlarının güneyinden geçerek, Saroz körfezine kadar ilerleyen kuzey kolunun, deformasyon ağının kuzeyinden geçmesi ve genel olarak bölgenin sismik aktivitesini artırması da, özellikle güneyde kalan TUSAGA-Aktif noktalarının 'BURS (Bursa), BAND (Bandırma)' hareketlerinin izlenmesini gerekli kılmaktadır.

Tüm bu işlemlerin sonunda IGS, TUSAGA-Aktif ve İSKİ-UKBS noktalarına ait güncel sağa ve yukarı değerler elde edilmiştir ve 2010-2011, 2011-2013 ve 2010-2013 yılları arasında hız vektörleri gözlemlenmiştir. Bizim için önemli olan deformasyon ve diğer noktalardaki hız vektörleri olduğundan ISTA noktasının 2013 yılındaki ölçü epoğundaki koordinatları 2005.0000 epoğuna kaydırılmış ve bu kaydırmadan dolayı oluşan farklar da diğer noktalara yansıtılmıştır. Böylece İSTA noktası baz alınarak epok bütünlüğü sağlanmış ve hız vektörleri rahatlıkla gözlemlenmiştir.

Şekil 7.7 : MATLAB dengeleme akış diyagramı.

7.2.1 2010 – 2011 periyotlarına ait ölçülerinin değerlendirilmesi ve sonuçların birbirleriyle karşılaştırılması

17 Ağustos 2010 ve 2 Kasım 2011 yıllarında elde edilen kampanya verilerinin değerlendirme aşamasına önce 2010 yılı için ISTA ve TUBI noktalarının 16 Ağustos 2010 yılına ait 24 saatlik RINEX verilerinin ve 2011 yılı için ISTA ve TUBI noktalarının 3 Kasım 2011 yılına ait 24 saatlik RINEX verilerinin ilgili siteden indirilip ISTA referans alınıp TUBI'nin değerlendirilmesiyle başlanmıştır (İndirilen ISTA verisi 2005.0000 epoğundadır). Burada ki amaç lineer bağımsızlığı sağlamaktır. Böylece ISTA ve TUBI noktaları referans alınarak çözülen TUSAGA-Aktif ve İSKİ-UKBS noktaları korelâsyonsuz olacaktır. Çözülen TUSAGA-Aktif ve İSKİ-UKBS noktaları arasından stabilliği belirlenen noktalar seçilip referans alınarak deformasyon noktaları arasındaki bazlar çözülmüştür. Dengeleme işlemi için ise daha önceden belirtildiği gibi ISTA noktası kontrol noktası olarak seçilip dengeleme işlemi yapılmıştır. Daha sonrasında S-transformasyonu ile zorlamasız dengeleme sonuçları, tüm noktaların datuma katkı verdiği tüm iz minimum yöntemine göre dengeleme sonuçlarına dönüştürülmüştür ayrıca veriler WGS84 datumunda olduğundan hesaplanan dengeleme sonuçları Kartezyen koordinatlar cinsindendir ve koordinat hataları ve nokta konum hataları da aşağıdaki çizelgelerde verilmiştir (Cizelge 7.1; Cizelge 7.2; Cizelge 7.3; Cizelge 7.4).Sonrasında Kartezyen koordinatlar sağa (easting) ve yukarı (northing) değerlerine dönüştürülmüş, hız vektörleri ve koordinat fark grafikleri çizilmiştir (EK A; EK B; EK C).

Nokta Adı	X (m)	Y (m)	Z (m)	mx (mm)	my (mm)	mz (mm)	mp (mm)
		Deformas	syon Noktaları				
Kuzey							
K4	4208547.7887	2384767.3313	4143382.6179	± 1.4	± 1.0	± 1.3	±2.1
K5	4209471.8808	2383434.4133	4143163.7909	±1.5	± 1.0	± 1.3	±2.2
K6_1	4209729.2866	2383287.1689	4142903.3567	±1.5	± 1.0	± 1.4	±2.3
K7	4209374.0650	2382749.0300	4143670.3622	±1.9	±1.3	± 1.8	±2.9
Güney							
K1	4218138.4031	2382012.7260	4135354.5294	±1.3	±0.9	±1.2	±2.0
K2	4216798.7823	2384097.7471	4135591.3989	±1.4	± 1.0	±1.3	±2.2
K3_1	4212276.7983	2384447.1336	4139666.4706	±3.2	±2.4	± 3.8	±5.5
K3	4211402.6297	2384156.9819	4140707.2382	±1.6	±1.1	±1.5	±2.4

Çizelge 7.1 : Deformasyon noktalarına ait 2010 yılı değerleri.

Nokta Adı	X (m)	Y (m)	Z (m)	mx (mm)	my (mm)	mz (mm)	mp (mm)
IGS Noktaları							
ISTA	4208830.3022	2334850.2915	4171267.2486	±0.6	±0.4	±0.6	±1.0
TUBI	4211317.3703	2377865.8839	4144663.2959	±0.6	±0.4	±0.6	±1.0
		TUSAGA	-Aktif Noktaları				
Kuzey							
ISTN	4223661.0206	2325014.9566	4161716.2165	±1.2	± 0.8	±1.1	± 1.8
IZMT	4189506.3622	2414031.2689	4146014.8358	± 1.1	± 0.8	±1.0	±1.7
KABR	4206855.6547	2301542.2660	4191502.3637	±1.1	± 0.8	±1.0	±1.7
SLEE	4180827.6361	2375106.4621	4176631.2221	±1.3	±0.9	±1.2	±2.0
Güney							
BAND	4299255.7913	2285638.1987	4106154.0656	±1.2	± 0.8	±1.1	± 1.8
BURS	4265348.1141	2365803.2043	4096299.4061	±1.1	± 0.8	±1.0	±1.7
		İSKİ-UI	KBS Noktaları				
KCEK	4225042.4671	2320792.6653	4162734.0889	±1.3	±0.9	±1.2	±2.0
PALA	4212288.9367	2331374.4996	4169765.6969	±1.1	± 0.8	±1.1	± 1.8
SILE	4179619.5452	2375639.6000	4177457.8083	±1.3	±0.9	±1.2	±2.0
SLVR	4247961.9628	2266619.1800	4169233.1641	±1.6	±1.1	±1.5	±2.4
TERK	4210029.1253	2302400.8210	4187798.4110	± 1.1	± 0.8	±1.0	±1.7
TUZL	4215242.0018	2364753.1326	4147898.5071	±1.4	±1.0	±1.3	±2.2
YALI	4214237.5210	2268487.6544	4202012.2962	±1.2	±0.8	±1.1	±1.9

Çizelge 7.2 : IGS, TUSAGA-Aktif ve İSKİ-UKBS noktalarına ait 2010 yılı değerleri.

Çizelge 7.3 : Deformasyon noktalarına ait 2011 yılı değerleri

Nokta Adı	X (m)	Y (m)	Z (m)	mx (mm)	my (mm)	mz (mm)	mp (mm)
		Deformas	syon Noktaları				
Kuzey							
K4	4208547.7692	2384767.3239	4143382.6005	±1.2	±0.9	±1.2	±1.9
K5	4209471.8619	2383434.4065	4143163.7720	±1.6	±1.0	±1.5	±2.4
K6_1	4209729.2581	2383287.1419	4142903.3131	±1.2	±0.8	±1.1	±1.8
K7	4209374.0370	2382749.0040	4143670.3343	±1.4	±0.9	±1.3	±2.1
Güney							
K1	4218138.3825	2382012.6843	4135354.4888	±1.2	± 0.8	±1.1	±1.8
K2	4216798.7427	2384097.7093	4135591.3639	±1.4	±1.0	±1.3	±2.2
K3_1	4212276.7682	2384447.1040	4139666.4571	±1.5	± 1.0	±1.5	±2.4
K3	4211402.6149	2384156.9522	4140707.2225	±2.2	±1.4	±2.1	±3.4

Nokta Adı	X (m)	Y (m)	Z (m)	mx (mm)	my (mm)	mz (mm)	mp (mm)
		IGS	Noktaları				
ISTA	4208830.3032	2334850.2929	4171267.2503	±0.7	±0.5	±0.6	±1.1
TUBI	4211317.3535	2377865.8657	4144663.2768	±0.7	±0.5	±0.7	±1.1
		TUSAGA	-Aktif Noktaları				
Kuzey							
ISTN	4223661.0030	2325014.9480	4161716.2037	±1.4	± 1.0	±1.3	±2.1
IZMT	4189506.3460	2414031.2495	4146014.8133	±1.3	±0.9	±1.2	±1.9
KABR	4206855.6486	2301542.2581	4191502.3554	±1.3	±0.9	±1.3	±2.1
SLEE	4180827.6297	2375106.4608	4176631.2103	±1.6	±1.1	±1.6	±2.5
Güney							
BAND	4299255.7625	2285638.1608	4106154.0216	±1.3	±0.9	±1.3	±2.1
BURS	4265348.0293	2365803.1325	4096299.3101	±1.3	±0.9	±1.2	±1.9
		İSKİ-UI	KBS Noktaları				
KCEK	4225042.4599	2320792.6658	4162734.0819	±1.3	±0.9	±1.2	±1.9
PALA	4212288.9407	2331374.5041	4169765.7004	±1.0	±0.7	±0.9	±1.5
SILE	4179619.5364	2375639.5934	4177457.7934	±1.1	± 0.8	±1.1	±1.7
SLVR	4247961.9570	2266619.1770	4169233.1568	±1.7	±1.2	±1.6	±2.6
TERK	4210029.1152	2302400.8123	4187798.3998	±0.9	±0.6	±0.9	±1.4
TUZL	4215241.9681	2364753.1124	4147898.4794	±1.4	±0.9	±1.3	±2.1
YALI	4214237.4901	2268487.6347	4202012.2635	±1.3	±0.9	±1.3	±2.1

Çizelge 7.4 : IGS, TUSAGA-Aktif ve İSKİ-UKBS noktalarına ait 2011 yılı değerleri.

Bulunan dengeleme sonuçlarının ardından iki periyot ölçüleri birbirleri ile karşılaştırılmış ve farklar hesaplanmıştır (Çizelge 7.5; Çizelge 7.6).

Nokta Adı	X (cm)	Y (cm)	Z (cm)					
	Deformasyon Noktaları							
Kuzey	Kuzey							
K4	-1.95	-0.74	-1.74					
K5	-1.88	-0.68	-1.88					
K6_1	-2.84	-2.70	-4.36					
K7	-2.80	-2.60	-2.79					
Güney								
K 1	-2.06	-4.17	-4.06					
K2	-3.96	-3.78	-3.50					
K3_1	-3.01	-2.95	-1.36					
K3	-1.48	-2.97	-1.57					

Çizelge 7.5 : Deformasyon noktalarına ait 2010 ve 2011 periyotları fark çizelgesi.

Nokta Adı	X (cm)	Y (cm)	Z (cm)				
	IC	S Noktaları					
ISTA	0.10	0.14	0.17				
TUBI	-1.68	-1.81	-1.92				
TUSAGA-Aktif Noktaları							
Kuzey							
ISTN	-1.76	-0.87	-1.28				
IZMT	-1.62	-1.94	-2.25				
KABR	-0.61	-0.79	-0.83				
SLEE	-0.64	-0.13	-1.18				
Güney							
BAND	-2.88	-3.80	-4.40				
BURS	-8.49	-7.18	-9.60				
	İSKİ-U	UKBS Noktaları					
KCEK	-0.72	0.04	-0.69				
PALA	0.40	0.45	0.35				
SILE	-0.88	-0.66	-1.48				
SLVR	-0.58	-0.30	-0.73				
TERK	-1.01	-0.87	-1.12				
TUZL	-3.37	-2.02	-2.77				
YALI	-3.09	-1.98	-3.27				

Çizelge 7.6 : IGS, TUSAGA-Aktif ve İSKİ-UKBS noktalarına ait 2010 ve 2011 periyotları fark çizelgesi.

Tüm bu işlemlerin ardından Çizelgelerden de görüldüğü gibi tüm iz minimum yöntemine göre GPS dengeleme sonuçlarına bakacak olursak koordinat standart sapmaları ve nokta konum hataları oldukça düşük çıkmıştır.

2010 yılı için tüm ağa bakacak olursak en düşük m_x değeri ±0.6mm ve en büyük m_x değeri ise ±3.2 mm, en düşük m_y değeri ±0.4 mm ve en büyük m_y değeri ise ±2.4 mm, en düşük m_z değeri ±0.6mm ve en büyük m_z değeri ise ±3.8 mm ve nokta konum doğruluğu için en düşük m_p değeri ±1 mm ve en büyük m_p değeri ise ±5.5 mm olmuştur. 2011 yılı için tüm ağa bakacak olursak en düşük m_x değeri ±0.7 mm ve en büyük m_x değeri ise ±2.2 mm, en düşük m_y değeri ±0.5 mm ve en büyük m_y değeri ise ±1.4 mm, en düşük m_z değeri ±0.6 mm ve en büyük m_z değeri ise ±2.1 mm ve nokta konum doğruluğu için en düşük m_p değeri ±1.1 mm ve en büyük m_p değeri ise ±3.4 mm olmuştur.

7.2.2 2011 – 2013 periyotlarına ait ölçülerinin değerlendirilmesi ve sonuçların birbirleriyle karşılaştırılması

2 Kasım 2011 ve 12 Eylül 2013 yıllarında elde edilen kampanya verilerinin değerlendirme aşamasına önce 2011 yılı için ISTA ve TUBI noktalarının 3 Kasım 2011 yılına ait 24 saatlik RINEX verilerinin ve 2013 yılı için ISTA ve TUBI noktalarının 11 Eylül 2013 yılına ait 24 saatlik RINEX verilerinin ilgili siteden indirilip ISTA referans alınıp TUBI'nin değerlendirilmesiyle başlanmıştır (İndirilen ISTA verisi 2005.0000 epoğundadır). Burada ki amaç lineer bağımsızlığı sağlamaktır. Böylece ISTA ve TUBI noktaları referans alınarak çözülen TUSAGA-Aktif ve İSKİ-UKBS noktaları korelâsyonsuz olacaktır. Çözülen TUSAGA-Aktif ve İSKİ-UKBS noktaları arasından stabilliği belirlenen noktalar seçilip referans alınarak deformasyon noktaları arasındaki bazlar çözülmüştür. Bu karşılaştırılan iki periyotta deformasyon noktalarından biri olan K6 1 noktası yerine K6 noktası değerlendirilmiştir. 2011-2013 yılları Dengeleme işlemi için ise daha önce karşılaştırılan 2010-2011 periyotlarındaki stratejinin aynısı benimsenmiştir. Aşağıda ki çizelgelerde 2011-2013 yıllarına ait WGS84 datumunda Kartezyen koordinatlar, koordinat hataları ve nokta konum hataları verilmiştir (Çizelge 7.7; Çizelge 7.8; Cizelge 7.9; Cizelge 7.10). Sonrasında Kartezyen koordinatlar sağa (easting) ve yukarı (northing) değerlerine dönüştürülmüş, hız vektörleri ve koordinat fark grafikleri çizilmiştir (EK A; EK B; EK C).

Nokta Adı	X (m)	Y (m)	Z (m)	mx (mm)	my (mm)	mz (mm)	mp (mm)
		Deform	asyon Noktaları				
Kuzey							
K4	4208547.7666	2384767.3225	4143382.5967	±1.6	±1.1	±1.5	±2.5
K5	4209471.8584	2383434.4057	4143163.7694	±1.8	±1.2	±1.8	±2.8
K6	4209707.0833	2383301.3636	4142935.1663	±2.2	±1.5	±2.2	±3.5
K7	4209374.0384	2382749.0034	4143670.3339	±1.5	±1.0	±1.5	±2.4
Güney							
K1	4218138.3801	2382012.6827	4135354.4855	±1.3	±0.9	±1.2	±2.0
K2	4216798.7417	2384097.7087	4135591.3625	±1.5	±1.1	±1.5	±2.4
K3_1	4212276.7693	2384447.1048	4139666.4576	±1.8	±1.2	± 1.8	±2.8
K3	4211402.6181	2384156.9533	4140707.2248	±2.3	±1.4	±2.2	±3.5

Çizelge 7.7 : Deformasyon noktalarına ait 2011 yılı değerleri.

Nokta Adı	X (m)	Y (m)	Z (m)	mx (mm)	my (mm)	mz (mm)	mp (mm)
_	IGS Noktaları						
ISTA	4208830.3040	2334850.2932	4171267.2507	± 0.8	±0.5	±0.7	±1.2
TUBI	4211317.3543	2377865.8660	4144663.2772	± 0.8	±0.5	±0.7	±1.2
		TUSAGA	A-Aktif Noktaları				
Kuzey							
ISTN	4223661.0032	2325014.9479	4161716.2034	±1.6	±1.1	±1.5	±2.5
IZMT	4189506.3461	2414031.2495	4146014.8128	±1.4	±1.0	±1.3	±2.2
KABR	4206855.6481	2301542.2580	4191502.3545	±1.5	±1.0	±1.5	±2.3
SLEE	4180827.6302	2375106.4610	4176631.2102	± 1.8	±1.2	±1.7	±2.7
Güney							
BAND	4299255.7630	2285638.1607	4106154.0213	±1.4	±1.0	±1.3	±2.2
BURS	4265348.0291	2365803.1323	4096299.3094	±1.4	±1.0	±1.3	±2.2
		İSKİ-U	KBS Noktaları				
KCEK	4225042.4604	2320792.6655	4162734.0817	±1.4	±0.9	±1.3	±2.1
PALA	4212288.9406	2331374.5036	4169765.6998	±1.3	±0.9	±1.2	±2.0
SILE	4179619.5403	2375639.5955	4177457.7972	±1.6	±1.1	±1.5	±2.4
SLVR	4247961.9618	2266619.1799	4169233.1620	±1.5	±1.0	±1.4	±2.3
TERK	4210029.1141	2302400.8116	4187798.3982	±1.1	± 0.8	±1.1	±1.7
TUZL	4215241.9683	2364753.1121	4147898.4790	±1.5	±1.0	±1.4	±2.3
YALI	4214237.4921	2268487.6365	4202012.2685	±3.4	±2.3	±3.4	±5.3

Çizelge 7.8 : IGS, TUSAGA-Aktif ve İSKİ-UKBS noktalarına ait 2011 yılı değerleri.

Çizelge 7.9 : Deformasyon noktalarına ait 2013 yılı değerleri.

Nokta Adı	X (m)	Y (m)	Z (m)	mx (mm)	my (mm)	mz (mm)	mp (mm)
		Deform	asyon Noktaları				
Kuzey							
K4	4208547.7678	2384767.3239	4143382.5931	±2.3	±1.4	±2.1	±3.4
K5	4209471.8717	2383434.3859	4143163.7727	±1.7	±1.1	±1.6	±2.6
K6	4209707.0908	2383301.3494	4142935.1643	±2.8	±1.6	±2.5	±4.1
K7	4209374.0509	2382749.0021	4143670.3379	±1.5	±1.0	±1.5	±2.4
Güney							
K1	4218138.3979	2382012.6582	4135354.5058	±1.5	±0.9	±1.4	±2.2
K2	4216798.7529	2384097.6787	4135591.3650	± 1.8	±1.1	±1.7	±2.7
K3_1	4212276.7750	2384447.0948	4139666.4473	±2.1	±1.3	±2.0	±3.2
K3	4211402.6083	2384156.9405	4140707.2053	±2.1	±1.3	±2.1	±3.2

Nokta Adı	X (m)	Y (m)	Z (m)	mx (mm)	my (mm)	mz (mm)	mp (mm)
IGS Noktaları							
ISTA	4208830.2983	2334850.2906	4171267.2443	±0.8	±0.5	±0.7	±1.2
TUBI	4211317.3518	2377865.8587	4144663.2702	±0.8	±0.5	±0.7	±1.2
		TUSAGA	A-Aktif Noktaları				
Kuzey							
ISTN	4223660.9949	2325014.9408	4161716.1903	±1.6	±1.1	±1.5	±2.4
IZMT	4189506.3520	2414031.2471	4146014.8070	±1.4	±1.0	±1.3	±2.2
KABR	4206855.6479	2301542.2658	4191502.3519	±1.5	±1.0	±1.4	±2.3
SLEE	4180827.6406	2375106.4687	4176631.2048	±1.6	±1.1	±1.6	±2.5
Güney							
BAND	4299255.8021	2285638.1418	4106154.0321	±1.4	±1.0	±1.3	±2.2
BURS	4265348.0623	2365803.1096	4096299.3135	±1.4	±1.0	±1.3	±2.2
		İSKİ-U	KBS Noktaları				
KCEK	4225042.4429	2320792.6547	4162734.0659	±1.4	±0.9	±1.3	±2.1
PALA	4212288.9392	2331374.5010	4169765.6985	±1.3	±0.9	±1.2	±2.0
SILE	4179619.5504	2375639.6057	4177457.8068	±1.5	±1.1	±1.5	±2.4
SLVR	4247961.9507	2266619.1765	4169233.1484	±1.5	±1.0	±1.4	±2.3
TERK	4210029.1111	2302400.8133	4187798.3959	±1.4	±0.9	±1.3	±2.1
TUZL	4215241.9662	2364753.1054	4147898.4750	±1.9	±1.2	±1.8	±2.9
YALI	4214237.4820	2268487.6337	4202012.2558	± 1.8	±1.3	±1.7	±2.8

Çizelge 7.10 : IGS, TUSAGA-Aktif ve İSKİ-UKBS noktalarına ait 2013 yılı değerleri.

Bulunan dengeleme sonuçlarının ardından iki periyot ölçüleri birbirleri ile karşılaştırılmış ve farklar hesaplanmıştır (Çizelge 7.11; Çizelge 7.12).

Nokta Adı	X (cm)	Y (cm)	Z (cm)					
	Deformasyon Noktaları							
Kuzey								
K4	0.12	0.15	-0.36					
K5	1.33	-1.98	0.33					
K6	0.75	-1.42	-0.20					
K7	1.25	-0.13	0.40					
Güney								
K1	1.78	-2.44	2.03					
K2	1.13	-3.00	0.25					
K3_1	0.58	-0.99	-1.03					
K3	-0.98	-1.28	-1.95					

Çizelge 7.11 : Deformasyon noktalarına ait 2011 ve 2013 periyotları fark çizelgesi.

Nokta Adı	X (cm)	Y (cm)	Z (cm)							
IGS Noktaları										
ISTA	-0.57	-0.26	-0.64							
TUBI	-0.24	-0.73	-0.70							
TUSAGA-Aktif Noktaları										
Kuzey										
ISTN	-0.83	-0.70	-1.31							
IZMT	0.59	-0.25	-0.58							
KABR	-0.02	0.78	-0.26							
SLEE	1.05	0.77	-0.54							
Güney										
BAND	3.91	-1.89	1.08							
BURS	3.32	-2.26	0.41							
	İSKİ-U	KBS Noktaları								
KCEK	-1.76	-1.09	-1.58							
PALA	-0.14	-0.26	-0.13							
SILE	1.01	1.03	0.97							
SLVR	-1.11	-0.34	-1.37							
TERK	-0.30	0.17	-0.23							
TUZL	-0.21	-0.67	-0.40							
YALI	-1.01	-0.28	-1.27							

Çizelge 7.12 : IGS, TUSAGA-Aktif ve İSKİ-UKBS noktalarına ait 2011 ve 2013 periyotları fark çizelgesi.

Çizelgelerden de görüldüğü gibi tüm iz minimum yöntemine göre GPS dengeleme sonuçlarına bakacak olursak koordinat standart sapmaları ve nokta konum hataları oldukça düşük çıkmıştır.

2011 yılı için tüm ağa baktığımızda en düşük m_x değeri ±0.8mm ve en büyük m_x değeri ise ±3.4 mm, en düşük m_y değeri ±0.5 mm ve en büyük m_y değeri ise ±2.3 mm, en düşük m_z değeri ±0.7 mm ve en büyük m_z değeri ise ±3.4 mm ve nokta konum doğruluğu için en düşük m_p değeri ±1.2 mm ve en büyük m_p değeri ise ±5.3 mm olmuştur. 2013 yılı için tüm ağa bakacak olursak en düşük m_x değeri ±0.8 mm ve en büyük m_x değeri ise ±2.8 mm, en düşük m_y değeri ±0.5 mm ve en büyük m_y değeri ise ±1.6 mm, en düşük m_z değeri ±0.7 mm ve en büyük mz değeri ise ±2.5 mm ve nokta konum doğruluğu için en düşük m_p değeri ±1.2 mm ve en büyük mz değeri ise ±2.5 mm ve nokta konum doğruluğu için en düşük m_p değeri ±1.2 mm ve en büyük mz değeri ise ±2.5 mm ve nokta konum doğruluğu için en düşük m_p değeri ±1.2 mm ve en büyük mz heğeri ise ±4.1 mm olmuştur.

7.2.3 2010 – 2013 periyotlarına ait ölçülerinin değerlendirilmesi ve sonuçların birbirleriyle karşılaştırılması

17 Ağustos 2010 ve 12 Eylül 2013 yıllarında elde edilen kampanya verilerinin değerlendirme aşamasına daha önce açıklanan 2010-2011 ve 2011-2013 periyotlarının karşılaştırılmasında ki stratejilerin aynısı izlenmiştir. Bu karşılaştırılan iki periyotta deformasyon noktalarından biri olan K6 2010 kampanyasında ölçülemediğinden değerlendirilmeye katılmamıştır. Aşağıda ki çizelgelerde 2010-2013 yıllarına ait WGS84 datumunda Kartezyen koordinatlar, koordinat hataları ve nokta konum hataları verilmiştir (Çizelge 7.13; Çizelge 7.14). Sonrasında Kartezyen koordinatlar sağa (easting) ve yukarı (northing) değerlerine dönüştürülmüş, hız vektörleri ve koordinat fark grafikleri çizilmiştir (EK A; EK B; EK C).

Çizelge 7.13 : IGS, TUSAGA-Aktif, İSKİ-UKBS ve Deformasyon noktalarına ait 2010 yılı değerleri.

Nokta Adı	X (m)	Y (m)	Z (m)	mx (mm)	my (mm)	mz (mm)	mp (mm)			
		IGS	()		~ /	. /				
ISTA	4208830.3021	2334850.2914	4171267.2484	±0.7	±0.5	±0.7	±1.1			
TUBI	4211317.3702	2377865.8838	4144663.2957	±0.7	±0.5	±0.7	±1.1			
		TUSAGA	A-Aktif Noktaları							
Kuzey										
ISTN	4223661.0193	2325014.9560	4161716.2144	±1.5	± 1.0	±1.3	±2.2			
IZMT	4189506.3624	2414031.2689	4146014.8359	±1.3	±0.9	±1.2	±2.0			
KABR	4206855.6546	2301542.2659	4191502.3636	±1.3	±0.9	±1.2	±2.0			
SLEE	4180827.6359	2375106.4620	4176631.2218	±1.5	± 1.0	± 1.4	±2.3			
Güney										
BAND	4299255.7934	2285638.1997	4106154.0678	±1.3	±0.9	±1.2	±2.0			
BURS	4265348.1140	2365803.2043	4096299.4061	±1.3	±0.9	±1.2	±2.0			
	ÍSKÍ-UKBS Noktaları									
KCEK	4225042.4653	2320792.6643	4162734.0859	±1.6	±1.1	±1.5	±2.5			
PALA	4212288.9364	2331374.4999	4169765.6973	±1.5	± 1.0	±1.3	±2.2			
SILE	4179619.5461	2375639.6004	4177457.8093	±1.6	± 1.1	±1.6	±2.5			
SLVR	4247961.9627	2266619.1800	4169233.1639	± 1.8	± 1.2	±1.7	± 2.8			
TERK	4210029.1253	2302400.8209	4187798.4108	±1.3	±0.9	±1.2	±2.0			
TUZL	4215242.0022	2364753.1328	4147898.5073	±1.6	± 1.1	±1.5	±2.5			
YALI	4214237.5203	2268487.6539	4202012.2956	± 1.8	±1.2	±1.7	±2.8			
		Deform	asyon Noktaları							
Kuzey										
K4	4208547.7874	2384767.3306	4143382.6172	± 1.8	±1.3	±1.7	± 2.8			
K5	4209471.8817	2383434.4139	4143163.7929	±1.9	±1.3	±1.7	±2.9			
K7	4209374.0719	2382749.0333	4143670.3683	±2.4	±1.6	±2.2	± 3.6			
Güney										
K1	4218138.4033	2382012.7262	4135354.5293	±1.6	± 1.1	± 1.4	±2.4			
K2	4216798.7825	2384097.7474	4135591.3991	± 1.8	± 1.2	±1.6	±2.7			
K3_1	4212276.8009	2384447.1352	4139666.4742	±3.7	± 2.8	±4.3	6.3			
K3	4211402.6289	2384156.9811	4140707.2368	±1.7	±1.2	±1.6	±2.6			

Nokta Adı	X (m)	Y (m)	Z (m)	mx (mm)	my (mm)	mz (mm)	mp (mm)			
		IG								
ISTA	4208830.2986	2334850.2908	4171267.2445	±0.7	±0.5	±0.7	±1.1			
TUBI	4211317.3521	2377865.8588	4144663.2704	±0.7	±0.5	±0.7	± 1.1			
		TUSAGA	A-Aktif Noktaları							
Kuzey										
ISTN	4223660.9950	2325014.9409	4161716.1903	±1.5	± 1.0	±1.4	±2.3			
IZMT	4189506.3520	2414031.2471	4146014.8069	± 1.4	± 1.0	±1.3	±2.1			
KABR	4206855.6479	2301542.2657	4191502.3518	±1.5	±1.0	±1.4	±2.2			
SLEE	4180827.6408	2375106.4687	4176631.2049	±1.6	±1.1	±1.5	±2.5			
Güney										
BAND	4299255.8021	2285638.1418	4106154.0321	± 1.4	±0.9	±1.3	±2.1			
BURS	4265348.0622	2365803.1096	4096299.3135	± 1.4	±0.9	±1.3	±2.1			
	İSKİ-UKBS Noktaları									
KCEK	4225042.4443	2320792.6554	4162734.0669	±1.5	±1.0	±1.4	±2.2			
PALA	4212288.9390	2331374.5009	4169765.6983	±1.3	± 0.8	±1.2	±1.9			
SILE	4179619.5506	2375639.6058	4177457.8070	±1.5	±1.0	±1.5	±2.3			
SLVR	4247961.9529	2266619.1777	4169233.1503	± 1.8	±1.2	±1.7	± 2.8			
TERK	4210029.1107	2302400.8132	4187798.3956	± 1.4	±0.9	±1.3	±2.1			
TUZL	4215241.9662	2364753.1054	4147898.4749	±1.9	±1.2	±1.7	± 2.8			
YALI	4214237.4823	2268487.6339	4202012.2561	± 1.8	±1.2	±1.7	± 2.8			
		Deform	asyon Noktaları							
Kuzey										
K4	4208547.7661	2384767.3231	4143382.5918	±2.6	±1.6	±2.4	± 3.8			
K5	4209471.8724	2383434.3863	4143163.7732	±1.9	±1.2	±1.7	± 2.8			
K7	4209374.0507	2382749.0020	4143670.3377	±1.7	± 1.1	±1.6	±2.6			
Güney										
K1	4218138.3970	2382012.6579	4135354.5049	±1.6	± 1.0	±1.5	±2.4			
K2	4216798.7502	2384097.6774	4135591.3629	±2.0	±1.2	±1.9	± 3.0			
K3_1	4212276.7750	2384447.0948	4139666.4472	±2.0	±1.3	±2.0	±3.1			
K3	4211402.6083	2384156.9404	4140707.2053	±2.1	±1.3	±2.0	±3.2			

Çizelge 7.14 : IGS, TUSAGA-Aktif, İSKİ-UKBS ve Deformasyon noktalarına ait 2013 yılı değerleri.

Çizelgelerden de görüldüğü gibi 2010 yılı için tüm ağa baktığımızda en düşük m_x değeri ±0.7mm ve en büyük m_x değeri ise ±3.7 mm, en düşük m_y değeri ±0.5 mm ve en büyük m_y değeri ise ±2.8 mm, en düşük m_z değeri ±0.7 mm ve en büyük m_z değeri ise ±4.3 mm ve nokta konum doğruluğu için en düşük m_p değeri ±1.1 mm ve en büyük m_p değeri ise ±6.3 mm olmuştur. 2013 yılı için tüm ağa bakacak olursak en düşük m_x değeri ±0.7 mm ve en büyük m_y değeri ±0.7 mm ve en büyük m_z değeri ise ±2.6 mm, en düşük m_y değeri ±0.5 mm ve en büyük my değeri ise ±1.6 mm, en düşük m_z değeri ±0.7 mm ve en büyük m_z değeri ise ±2.4 mm ve nokta konum doğruluğu için en düşük m_p değeri ±1.1 mm ve en büyük m_p değeri ise ±3.8 mm olmuştur.

Hesaplanan dengeleme sonuçlarının ardından iki periyot ölçüleri birbirleri ile karşılaştırılmış ve farklar hesaplanmıştır (Çizelge 7.15; Çizelge 7.16).

Nokta Adı	X (cm)	Y (cm)	Z (cm)								
	IG	S Noktaları									
ISTA	-0.35	-0.06	-0.39								
TUBI	-1.80	-2.50	-2.53								
TUSAGA-Aktif Noktaları											
Kuzey											
ISTN	-2.43	-1.51	-2.41								
IZMT	-1.04	-2.18	-2.90								
KABR	-0.67	-0.02	-1.18								
SLEE	0.49	0.68	-1.69								
Güney											
BAND	0.87	-5.79	-3.57								
BURS	-5.18	-9.47	-9.26								
İSKİ-UKBS Noktaları											
KCEK	-2.10	-0.89	-1.90								
PALA	0.26	0.10	0.10								
SILE	0.45	0.55	-0.23								
SLVR	-0.98	-0.23	-1.36								
TERK	-1.46	-0.78	-1.52								
TUZL	-3.60	-2.73	-3.24								
YALI	-3.80	-2.00	-3.95								
	Deform	asyon Noktaları									
Kuzey											
K4	-2.13	-0.75	-2.54								
K5	-0.93	-2.77	-1.97								
K7	-2.11	-3.13	-3.06								
Güney											
K 1	-0.63	-6.83	-2.44								
K2	-3.23	-6.99	-3.62								
K3_1	-2.59	-4.04	-2.70								
K3	-2.06	-4.07	-3.16								

Çizelge 7.15 : IGS, TUSAGA-Aktif ve İSKİ-UKBS ve Deformasyon noktalarına ait 2010 ve 2013 periyotları fark çizelgesi.

7.3 S Transformasyonu İle Ağın 3 Boyutlu Deformasyon Analizi

Bölüm 6.4.2 de de anlatıldığı gibi S-transformasyonu ile Global test ve anlamlı nokta hareketlerinin araştırılması ve analizi mümkündür t₁ ve t₂ zamanlarında gözlenen ağ geometrileri farklı ise global test, yalnızca eşlenik noktalardan oluşan ağ bölümlerini kapsar. t₁ ve t₂ zamanlarında ölçülen ağlar eşlenik noktalara göre konumlandırılır. Anlamlı nokta hareketlerinin araştırılmasında da sürekli datum değişikliği zorunludur. S - Transformasyonu, karşılaştırılacak ağları önce herhangi bir datumda, örneğin defekt sayısı kadar parametreyi sabit alarak yapılan dengeleme sonuçlarını istenilen datumlara dönüştürmede kolaylık sağlar. Bu çalışmamızda 2010-2011,

2011-2013 ve 2010-2013 periyotları karşılaştırılmıştır. S-transformasyonu ile deformasyon analizi oldukça zahmetlidir ve bi o kadar da işlem yükü fazladır. Bunu minimuma indirebilmek için analizlerde Matlab de yazılan analiz programı diğer sebebi ise. kullanılmıştır. Matlab kullanmamızın bir küçültülmüş bilinmeyenlere ait kofaktör matrislerini bazları çözdürdüğümüz Leica Geo Office programından alamamamızdır. Matlab ile hem bilinmeyenlerin kofaktör matrisleri hem de bilinmeyenlerin birbirleriyle olan kofaktör matrisleri elde edilmiştir Şekil 7.7'de ki algoritmaya ek olarak her periyot için ayrı ayrı elde ettiğimiz tüm iz minimum dengeleme sonuçları, Matlab'de Bölüm(6.4.2.1)'de anlatılan Stransformasyonu ile Global test analizine uygun biçimde yazılan analiz programına girdi olarak alınmıştır. Global testin sonunda anlamlı nokta hareketlerinin analizi için de Bölüm(6.4.2.2)' de anlatılan S-transformasyonu ile anlamlı nokta analizine uygun şekilde yazılan Matlab kodları kullanılmış ve sonuçlar analiz edilmiştir. Stransformasyonu ile deformasyon analizinde noktaların WGS84 datumundaki X, Y, Z Kartezyen koordinatları kullanılmış ve üç boyutlu deformasyonlar incelenmiştir. Stransformasyonu ile analiz aşağıdaki akış diyagramında gösterilmiştir (Şekil 7.8).

Şekil 7.8 : MATLAB S-transformasyonu ile deformasyon analizi akış diyagramı.

7.3.1 2010 – 2011 periyotlarının S-transformasyonu ile analizi

Serbest ağ dengeleme sonuçları her iki periyot içinde ayrı ayrı bulunmuş ve iki periyot da S-transformasyonu ile aynı datuma getirilmiştir. Global test yapılmış daha sonrasında anlamlı nokta hareketlerin incelenmesi yapılmıştır. Aşağıdaki çizelgede (Çizelge 7.16) 2010 ve 2011 periyotlarına ait bilgiler verilmektedir ve karşılaştırılan bu iki periyodun geometrileri birbirleri ile aynıdır.

ORTALAMA HATA								
	PERİYOT 2010	PERİYOT 2011						
S.Derecesi	213	213						
PVV	701.786981	989.971681						
\mathbf{S}_0^2	3.294775	4.647754						

Çizelge 7.16 : 2010-2011 periyotlarına ait bilgiler.

ISTA noktasına dayalı zorlamasız klasik dengeleme sonucunda bulunan bilinmeyenlere ait ters ağırlık matrisi Q ile her iki periyoda ait x vektörleri genişletilmiştir. (6.33) dönüşüm matrisinde geçen datum seçici E matrisinin tüm köşegen elemanları "1" alınarak ağ tüm iz minimum yapılmıştır.

$$R = \underline{d}^{T} \underline{Q}_{dd}^{t} \underline{d} = 27084.1847$$
$$T = \frac{R}{s_{o}^{2}h} = 103.33$$
$$F_{66,426,0.95} = 1.34$$
$$F_{66,426,0.95} < T$$

Tüm ağ noktaları için yapılan bu Global test sonucunda test değeri, F büyüklüğünü aşmış ve ağın bir bölümünde veya tamamında deformasyon olduğuna karar verilmiştir. Global test sonrasında anlamlı nokta analizlerine geçilmiş ve Rmin değerinin veren noktalar ağdan çıkartılmıştır. Rmin değerini veren nokta koyu ile yazılmış, ağdan çıkartıldıktan sonra tekrar test değeri ve F büyüklüğü hesaplanmış ve bu değerler çizelgelerin altına yazılmıştır (Örneğin Global test sonrasında 'BURS' (BURSA) noktası Rmin değerini vermiş ve ağdan çıkarıldıktan sonra ağ için test değeri '59.38' ve F büyüklüğü '1.34' olarak bulunmuş ve çizelgenin altına yazılmıştır). Sonuçlar Çizelge (7.17;7.18;7.19) da verilmiştir.

Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R
BAND	25319.33	BAND	13078.43	BAND	9750.12	BAND	8067.64	BAND	6114.23	ISTN	5877.74	ISTN	4931.24	ISTN	4021.91
BURS	14857.22	ISTA	12588.37	ISTA	9649.80	ISTN	9395.93	ISTN	7340.12	IZMT	6025.16	IZMT	5000.93	IZMT	4006.47
ISTA	23079.40	ISTN	14648.40	ISTN	11765.28	IZMT	9572.36	IZMT	7547.35	K2	5113.13	K3_1	4885.70	K3_1	3923.48
ISTN	26875.05	IZMT	14767.95	IZMT	11713.03	K2	8516.83	K2	6794.16	K3_1	5901.98	K3	4458.76	K3	3487.28
IZMT	26998.73	K1	11881.40	K2	10721.19	K3_1	9407.04	K3_1	7431.64	K3	5498.03	K4	4928.76	K4	3974.05
K1	24626.06	K2	13724.15	K3_1	11633.61	K3	8844.92	K3	7011.71	K4	5921.52	K5	4974.12	K5	4021.56
K2	26390.97	K3_1	14613.69	K3	11055.99	K4	9459.97	K4	7422.00	K5	5959.34	K6_1	4155.73	K7	3990.90
K3_1	26901.97	K3	14055.63	K4	11686.49	K5	9496.98	K5	7402.68	K6_1	5198.09	K7	4962.20	KABR	3960.51
K3	26508.27	K4	14654.86	K5	11730.74	K6_1	8665.04	K6_1	6859.22	K7	5985.52	KABR	4860.07	KCEK	3677.17
K4	26882.21	K5	14696.26	K6_1	10870.08	K7	9483.08	K7	7540.99	KABR	5784.12	KCEK	4488.46	SILE	4005.98
K5	26834.82	K6_1	13869.34	K7	11705.28	KABR	9319.01	KABR	7254.43	KCEK	5474.08	SILE	4913.67	SLEE	3767.64
K6_1	26478.01	K7	14690.56	KABR	11757.83	KCEK	8996.00	KCEK	6908.13	SILE	5904.13	SLEE	4719.79	SLVR	3937.32
K7	27028.40	KABR	14681.22	KCEK	11528.32	PALA	7619.44	SILE	7378.42	SLEE	5709.81	SLVR	4888.81	TERK	3987.50
KABR	26902.91	KCEK	14218.24	PALA	10391.60	SILE	9448.18	SLEE	7175.19	SLVR	5881.77	TERK	4863.45	TUBI	3386.48
KCEK	26446.18	PALA	13365.05	SILE	11794.62	SLEE	9251.16	SLVR	7347.66	TERK	5740.78	TUBI	4386.73	TUZL	3857.83
PALA	25567.99	SILE	14674.00	SLEE	11651.55	SLVR	9416.55	TERK	7202.79	TUBI	5453.48	TUZL	4819.09	YALI	3836.35
SILE	26895.53	SLEE	14627.02	SLVR	11828.88	TERK	9284.45	TUBI	7240.14	TUZL	5826.05	YALI	4898.34	Test D.	20.3
SLEE	26852.76	SLVR	14804.70	TERK	11711.81	TUBI	9086.12	TUZL	7332.11	YALI	5953.40	Test D.	23.25	F-Değeri	1.41
SLVR	27031.66	TERK	14558.81	TUBI	11226.22	TUZL	9342.85	YALI	7460.50	Test D.	26.82	F-Değeri	1.4		
TERK	26776.28	TUBI	14227.48	TUZL	11377.13	YALI	9480.88	Test D.	30.19	F-Değeri	1.39			-	
TUBI	26763.45	TUZL	14352.50	YALI	11623.73	Test D.	35.53	F-Değeri	1.38			_			
TUZL	26579.48	YALI	14575.23	Test D.	42.63	F-Değeri	1.37			-					
YALI	26798.59	Test D.	49.86	F-Değeri	1.36			_							
Test D.	59.38	F-Değeri	1.35			-									
F-Değeri	1.34			-											

Çizelge 7.17 : 2010-2011 periyotları için analiz sonuçları.

Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R
ISTN	3324.30	ISTN	2601.34	ISTN	2230.36	ISTN	1831.06	ISTN	1406.43	ISTN	933.46	ISTN	603.38	ISTN	468.84
IZMT	3092.28	IZMT	2274.81	K3_1	1985.63	K3_1	1577.81	K3_1	1161.91	K3_1	676.85	K4	546.47	K4	439.04
K3_1	3135.78	K3_1	2397.68	K4	2163.00	K4	1754.98	K4	1338.56	K4	871.76	K5	575.14	K5	462.06
K3	2661.81	K4	2517.12	K5	2202.41	K5	1779.27	K5	1364.16	K5	898.34	KABR	539.55	KCEK	433.53
K4	3225.43	K5	2564.58	K7	2014.03	K7	1528.62	K7	1001.71	KABR	869.22	KCEK	561.41	SILE	473.77
K5	3275.00	K7	2449.48	KABR	2089.02	KABR	1718.13	KABR	1341.64	KCEK	878.26	SILE	622.80	SLEE	480.07
K7	3192.70	KABR	2489.18	KCEK	2033.40	KCEK	1679.34	KCEK	1310.78	SILE	941.35	SLEE	612.74	SLVR	515.68
KABR	3225.89	KCEK	2376.56	SILE	2180.23	SILE	1790.83	SILE	1403.92	SLEE	913.88	SLVR	658.91	TERK	406.34
KCEK	3087.59	SILE	2570.61	SLEE	2127.91	SLEE	1742.40	SLEE	1360.90	SLVR	981.74	TERK	585.14	Test D.	5.68
SILE	3290.65	SLEE	2494.50	SLVR	2198.46	SLVR	1817.87	SLVR	1435.66	TERK	931.56	Test D.	6.47	F-Değeri	1.62
SLEE	3135.90	SLVR	2570.18	TERK	2164.61	TERK	1794.95	TERK	1410.69	Test D.	7.1	F-Değeri	1.58	_	
SLVR	3290.08	TERK	2556.13	TUZL	1931.58	TUZL	1466.13	Test D.	9.34	F-Değeri	1.54			_	
TERK	3275.61	TUZL	2329.65	YALI	1873.43	Test D.	12.31	F-Değeri	1.51			_			
TUZL	3058.20	YALI	2289.76	Test D.	14.3	F-Değeri	0.00	_		_					
YALI	3019.70	Test D.	15.91	F-Değeri	1.46			_							
Test D.	17.19	F-Değeri	1.44												
F-Değeri	1.43			_											

Çizelge 7.18 : 2010-2011 periyotları için analiz sonuçları.

		, 0		1	5	,	,		
Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R
ISTN	324.71	ISTN	239.71	ISTN	170.71	ISTN	105.66	ISTN	3.83
K4	331.72	K4	245.75	K4	191.30	K4	122.25	K4	47.75
K5	350.62	K5	272.14	K5	198.58	K5	112.10	K5	30.45
KCEK	314.48	SILE	233.26	SLEE	146.73	SLVR	56.44	Test D.	0.32
SILE	317.12	SLEE	248.00	SLVR	173.31	Test D.	2.37	F-Değeri	2.63
SLEE	353.90	SLVR	268.92	Test D.	4.11	F-Değeri	2.12		

1.90

F-Değeri

Çizelge 7.19 : 2010-2011 periyotları için analiz sonuçları.

5.28 Test D. F-Değeri F-Değeri 1.69

374.02

Test D.

4.89

1.77

SLVR
Çizelge (7.19)'a göre, en son 'ISTN' (İstanbul) noktası ağdan çıkarıldıktan sonra 'K4' ve 'K5' noktaları için 'Test Değeri:0.32' ve 'F Büyüklüğü:2.63' olarak belirlenmiştir. Görüldüğü gibi T<F olduğundan dolayı, Global test sonucu ağdaki hareketsiz datum noktaları yüzde 95 olasılıkla deformasyon bölgesinin kuzeyinde kalan 'K4' ve 'K5' noktaları olarak bulunmuştur. Bu datum noktaları yardımıyla her iki ölçme kampanyası tekrar aynı datuma getirilir ve anlamlı nokta(ların) araştırılmasına geçilir.

Nokta Adı	Test Değeri	F-Değeri	Hareket Sonucu
	IGS	Noktaları	
ISTA	0.27	2.63	Hareket Anlamsız
TUBI	94.08	2.63	Hareket Anlamlı
	TUSAGA-	Aktif Noktaları	
ISTN	25.20	2.63	Hareket Anlamlı
IZMT	74.06	2.63	Hareket Anlamlı
KABR	13.14	2.63	Hareket Anlamlı
SLEE	13.06	2.63	Hareket Anlamlı
BAND	244.93	2.63	Hareket Anlamlı
BURS	1030.72	2.63	Hareket Anlamlı
	İSKİ-UK	BS Noktaları	
KCEK	9.74	2.63	Hareket Anlamlı
PALA	2.43	2.63	Hareket Anlamsız
SILE	21.94	2.63	Hareket Anlamlı
SLVR	4.15	2.63	Hareket Anlamlı
TERK	21.70	2.63	Hareket Anlamlı
TUZL	76.00	2.63	Hareket Anlamlı
YALI	97.98	2.63	Hareket Anlamlı
	Deformas	syon Noktaları	
K1	288.71	2.63	Hareket Anlamlı
K2	169.56	2.63	Hareket Anlamlı
K3_1	35.54	2.63	Hareket Anlamlı
K3	80.39	2.63	Hareket Anlamlı
K6_1	150.68	2.63	Hareket Anlamlı
K7	67.82	2.63	Hareket Anlamlı

Cizelge 7.20 : 2010-2011 periyotları deformasyon büyüklükleri için anlamlılık testi.

Anlamlılık testi sonuçlarından anlaşılacağı üzere, yüzde 95 olasılıkla 'ISTA' ve 'PALA' noktaları harici diğer 19 noktanın üç boyutlu konumunda anlamlı bir hareket olduğu görülmektedir. 'ISTA' ve 'PALA' noktalarında ise hareketin anlamlı olmadığı ve rastlantısal ölçü hatalarından kaynaklandığı kabul edilir.

7.3.2 2011 – 2013 periyotlarının S-transformasyonu ile analizi

2011-2013 periyot ölçülerinin analizinde de bir önceki bölümde anlatılan 2010-2011 periyotlarının S-transformasyonu ile analizinde ki stratejilerinin aynısı izlenmiştir.

	ORTALAMA HATA	Α
	PERİYOT 2011	PERİYOT 2013
S.Derecesi	180	180
PVV	979.474236	1039.361342
\mathbf{S}_0^2	5.441524	5.774230

Çizelge 7.21 : 2011-2013 periyotlarına ait bilgiler.

ISTA noktasına dayalı zorlamasız klasik dengeleme sonucunda bulunan bilinmeyenlere ait ters ağırlık matrisi Q ile her iki periyoda ait x vektörleri genişletilmiştir. (6.33) dönüşüm matrisinde geçen datum seçici E matrisinin tüm köşegen elemanları "1" alınarak ağ tüm iz minimum yapılmıştır.

$$R = \underline{d}^{T} \underline{Q}_{dd}^{t} \underline{d} = 27611.3085$$
$$T = \frac{R}{h.m_{o}^{2}} = 74.60$$
$$F_{66,360,0.95} = 1.34$$

$$F_{66,360,0.95} < T$$

Tüm ağ noktaları için yapılan bu Global test sonucunda test değeri, F büyüklüğünü aşmış ve ağın bir bölümünde veya tamamında deformasyon olduğuna karar verilmiştir. Global test sonrasında anlamlı nokta analizlerine geçilmiş ve Rmin değerinin veren noktalar ağdan çıkartılmıştır. Rmin değerini veren nokta koyu ile yazılmış, ağdan çıkartıldıktan sonra tekrar test değeri ve F büyüklüğü hesaplanmış ve bu değerler çizelgelerin altına yazılmıştır (Örneğin Global test sonrasında 'K1' noktası Rmin değerini vermiş ve ağdan çıkarıldıktan sonra ağ için test değeri '61.46' ve F büyüklüğü '1.34' olarak bulunmuş ve çizelgenin altına yazılmıştır.

Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R
BAND	22545.53	BAND	16114.80	BURS	10585.15	ISTA	10458.77	ISTA	6347.99	ISTA	4790.11	ISTA	3908.97	ISTA	3348.04
BURS	22636.58	BURS	16230.55	ISTA	15627.95	ISTN	10439.30	ISTN	6374.87	ISTN	4827.26	ISTN	3973.45	ISTN	3411.03
ISTA	26504.08	ISTA	20614.50	ISTN	15964.43	IZMT	10436.71	IZMT	6330.23	IZMT	4755.43	IZMT	3901.69	IZMT	3335.24
ISTN	27334.04	ISTN	21557.15	IZMT	15967.49	K2	6461.07	K3_1	5896.42	K3_1	4317.81	K3_1	3658.36	K3_1	3091.74
IZMT	27396.64	IZMT	21566.48	K2	12529.53	K3_1	10042.35	K3	6024.86	K3	4452.17	K3	3803.78	K3	3238.45
K1	21712.69	K2	18618.60	K3_1	15740.63	K3	10161.55	K4	6330.61	K4	4772.23	K4	3918.42	K4	3476.88
K2	24521.45	K3_1	21445.90	K3	15750.96	K4	10440.86	K5	4895.87	K6	4332.28	K6	3478.49	K7	2980.03
K3_1	27344.57	K3	21352.00	K4	15843.84	K5	9063.66	K6	6414.75	K7	4398.85	K7	3545.03	KABR	2948.26
K3	27250.61	K4	21272.74	K5	14907.09	K6	10538.93	K7	5971.30	KABR	4337.75	KABR	3483.78	KCEK	3071.71
K4	27170.23	K5	20772.03	K6	16069.16	K7	10106.01	KABR	5795.75	KCEK	4489.00	KCEK	3635.20	PALA	3435.54
K5	26674.47	K6	21667.60	K7	15758.71	KABR	9709.24	KCEK	6053.11	PALA	4849.19	PALA	3995.36	SLEE	3026.16
K6	27566.26	K7	21454.83	KABR	15225.43	KCEK	9984.98	PALA	6350.69	SILE	4042.06	SLEE	3589.40	SLVR	3212.62
K7	27355.39	KABR	20810.30	KCEK	15486.06	PALA	10180.82	SILE	5607.21	SLEE	4443.19	SLVR	3775.78	TERK	3175.49
KABR	26480.19	KCEK	21051.41	PALA	15687.11	SILE	9731.25	SLEE	6008.48	SLVR	4629.59	TERK	3698.51	TUBI	2978.08
KCEK	26362.45	PALA	21261.37	SILE	15260.53	SLEE	10132.40	SLVR	6193.10	TERK	4552.30	TUBI	3551.37	TUZL	3447.91
PALA	26662.17	SILE	20858.22	SLEE	15662.81	SLVR	10314.64	TERK	5942.53	TUBI	4269.09	TUZL	4011.63	YALI	3425.75
SILE	26756.87	SLEE	21261.24	SLVR	15822.83	TERK	9614.26	TUBI	5873.67	TUZL	4865.43	YALI	3989.32	Test D.	12.52
SLEE	27159.73	SLVR	21396.46	TERK	15113.24	TUBI	10060.47	TUZL	6431.13	YALI	4843.12	Test D.	13.78	F-Değeri	1.42
SLVR	26700.13	TERK	20681.26	TUBI	15922.22	TUZL	10556.03	YALI	6408.33	Test D.	15.02	F-Değeri	1.41		
TERK	26072.00	TUBI	21529.74	TUZL	16089.36	YALI	10532.41	Test D.	17.12	F-Değeri	1.40			-	
TUBI	27427.00	TUZL	21690.10	YALI	16062.06	Test D.	21.34	F-Değeri	1.39						
TUZL	27546.67	YALI	21659.95	Test D.	33.11	F-Değeri	1.38								
YALI	27558.57	Test D.	47.89	F-Değeri	1.37										
Test D.	61.46	F-Değeri	1.36			-									
F-Değeri	1.34			-											

Çizelge 7.22 : 2011-2013 periyotları için analiz sonuçları.

Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R
ISTA	2753.68	ISTA	2262.53	ISTA	1795.14	ISTA	1505.54	ISTA	1201.76	ISTA	946.14	ISTA	727.15	ISTA	492.72
ISTN	2881.62	ISTN	2399.17	ISTN	1946.59	ISTN	1614.34	ISTN	1219.26	ISTN	933.02	ISTN	681.55	ISTN	415.60
IZMT	2805.22	IZMT	2278.89	IZMT	1825.80	IZMT	1468.24	IZMT	998.73	К3	753.47	K4	721.72	K4	474.94
K3_1	2611.85	K3_1	2110.27	K3_1	1665.34	K3	1464.57	K3	1050.18	K4	964.53	KCEK	502.46	PALA	419.15
K3	2744.50	K3	2248.01	K3	1818.51	K4	1639.09	K4	1258.71	KCEK	757.00	PALA	649.74	SLVR	383.18
K4	2938.03	K4	2439.43	K4	1969.57	KCEK	1393.46	KCEK	1019.30	PALA	892.55	SLVR	651.65	TERK	428.29
K7	2450.02	KCEK	2177.27	KCEK	1724.81	PALA	1594.51	PALA	1185.66	SLVR	897.29	TERK	661.17	TUZL	384.79
KCEK	2546.02	PALA	2378.69	PALA	1926.13	SLVR	1487.95	SLVR	1170.10	TERK	836.87	TUZL	638.28	YALI	479.77
PALA	2903.09	SLEE	1997.45	SLVR	1819.00	TERK	1436.86	TERK	1109.39	TUZL	886.86	YALI	732.38	Test D.	3.80
SLEE	2495.73	SLVR	2271.55	TERK	1674.93	TUBI	1280.31	TUZL	1179.14	YALI	977.53	Test D.	4.27	F-Değeri	1.63
SLVR	2678.51	TERK	2127.46	TUBI	1668.59	TUZL	1615.44	YALI	1256.94	Test D.	5.60	F-Değeri	1.59		
TERK	2625.28	TUBI	2078.99	TUZL	1948.06	YALI	1612.59	Test D.	6.60	F-Değeri	1.55				
TUBI	2587.99	TUZL	2400.65	YALI	1944.69	Test D.	7.61	F-Değeri	1.52			_			
TUZL	2919.79	YALI	2397.28	Test D.	9.00	F-Değeri	1.49								
YALI	2895.52	Test D.	9.89	F-Değeri	1.47	_		_							
Test D.	11.20	F-Değeri	1.45												

Çizelge 7.23 : 2011-2013 periyotları için analiz sonuçları.

F-Değeri 1.44

Çizelge 7.24 : 2011-2013 periyotları için analiz sonuçları.

Sta.	R	Sta.	R	Sta.	R	Sta.	R
ISTA	356.01	ISTA	272.05	ISTA	145.35	ISTA	57.61
ISTN	288.59	ISTN	181.27	K4	154.75	K4	79.57
K4	355.85	K4	254.72	PALA	105.94	TERK	56.89
PALA	321.62	PALA	202.84	TERK	127.75	YALI	84.33
TERK	308.31	TERK	215.93	YALI	156.03	Test D.	1.69
TUZL	281.50	YALI	257.65	Test D.	2.10	F-Değeri	2.13
YALI	357.03	Test D.	2.69	F-Değeri	1.91		
Test D.	3.35	F-Değeri	1.78				
F-Değeri	1.69						

Bu sonuçlara göre Çizelge (7.24)'de en son 'TERK' (Terkos) noktası ağdan çıkarıldıktan sonra ağdaki IGS noktası olan 'ISTA', deformasyon bölgesinin kuzeyinde bulunan 'K4' noktası ve İSKİ-UKBS noktası olan 'YALI' noktaları için 'Test değeri:1.69' ve F büyüklüğü:2.13' olarak belirlenmiştir. Görüldüğü gibi T<F olduğundan dolayı, Global test sonucu ağdaki hareketsiz datum noktaları yüzde 95 olasılıkla 'ISTA', 'K4' ve 'YALI' noktaları olarak bulunmuştur Bu datum noktaları yardımıyla her iki ölçme kampanyası tekrar aynı datuma getirilir ve anlamlı nokta(ların) araştırılmasına geçilir.

Nokta Adı	Test Değeri	F-Değeri	Hareket Sonucu
	IGS No	ktaları	
TUBI	24.34	2.63	Hareket Anlamlı
	TUSAGA-Ak	tif Noktaları	
ISTN	5.53	2.63	Hareket Anlamlı
IZMT	15.77	2.63	Hareket Anlamlı
KABR	14.98	2.63	Hareket Anlamlı
SLEE	22.61	2.63	Hareket Anlamlı
BAND	395.38	2.63	Hareket Anlamlı
BURS	391.84	2.63	Hareket Anlamlı
	İSKİ-UKBS	S Noktaları	
KCEK	15.21	2.63	Hareket Anlamlı
PALA	2.50	2.63	Hareket Anlamsız
SILE	21.02	2.63	Hareket Anlamlı
SLVR	6.12	2.63	Hareket Anlamlı
TERK	2.32	2.63	Hareket Anlamsız
TUZL	5.83	2.63	Hareket Anlamlı
	Deformasyo	n Noktaları	
K1	313.38	2.63	Hareket Anlamlı
K2	204.55	2.63	Hareket Anlamlı
K3_1	23.06	2.63	Hareket Anlamlı
K3	12.96	2.63	Hareket Anlamlı
K5	106.68	2.63	Hareket Anlamlı
K6	29.81	2.63	Hareket Anlamlı
K7	21.44	2.63	Hareket Anlamlı

Cizelge 7.25 : 2011-2013 periyotları deformasyon büyüklükleri için anlamlılık testi.

Anlamlılık testi sonuçlarından anlaşılacağı üzere, yüzde 95 olasılıkla 'PALA' ve 'TERK' noktaları harici diğer 18 noktanın üç boyutlu konumunda anlamlı bir hareket olduğu görülmektedir. 'PALA' ve 'TERK' noktalarında ise hareketin anlamlı olmadığı ve rastlantısal ölçü hatalarından kaynaklandığı kabul edilir.

7.3.3 2010 – 2013 periyotlarının S-transformasyonu ile analizi

2010-2013 periyot ölçülerinin analizinde de diğer periyotlarda kullanılan stratejilerin aynısı izlenmiştir.

	ORTALAMA HATA	A
	PERİYOT 2010	PERİYOT 2013
S.Derecesi	168	168
PVV	721.898087	947.286796
\mathbf{S}_0^2	4.297012	5.638612

Cizelge 7.26 : 2010-2013 periyotlarına ait bilgiler.

ISTA noktasına dayalı zorlamasız klasik dengeleme sonucunda bulunan bilinmeyenlere ait ters ağırlık matrisi Q ile her iki periyoda ait x vektörleri genişletilmiştir. (6.33) dönüşüm matrisinde geçen datum seçici E matrisinin tüm köşegen elemanları "1" alınarak ağ tüm iz minimum yapılmıştır.

$$R = \underline{d}^{T} \underline{Q}_{dd}^{t} \underline{d} = 59485.7730$$
$$T = \frac{R}{h.m_{o}^{2}} = 190.07$$
$$F_{63,336,0.95} = 1.35$$

 $F_{63,336,0.95} < T$

Tüm ağ noktaları için yapılan bu Global test sonucunda test değeri, F büyüklüğünü aşmış ve ağın bir bölümünde veya tamamında deformasyon olduğuna karar verilmiştir. Global test sonrasında anlamlı nokta analizlerine geçilmiş ve Rmin değerinin veren noktalar ağdan çıkartılmıştır. Rmin değerini veren nokta koyu ile yazılmış, ağdan çıkartıldıktan sonra tekrar test değeri ve F büyüklüğü hesaplanmış ve bu değerler çizelgelerin altına yazılmıştır (Örneğin Global test sonrasında 'BURS' noktası Rmin değerini vermiş ve ağdan çıkarıldıktan sonra ağ için test değeri '138.26' ve F büyüklüğü '1.35' olarak bulunmuş ve çizelgenin altına yazılmıştır). Sonuçlar Çizelge (7.27;7.28;7.29) da verilmiştir

Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R
BAND	49943.81	BAND	31594.96	BAND	20327.44	ISTA	18662.65	ISTA	12297.77	ISTA	8999.63	ISTA	6711.52	ISTN	6566.53
BURS	41210.37	ISTA	38427.54	ISTA	28714.11	ISTN	19895.36	ISTN	13571.21	ISTN	10037.41	ISTN	7683.95	IZMT	5872.68
ISTA	54137.92	ISTN	40369.85	ISTN	30955.15	IZMT	19940.55	IZMT	13372.47	IZMT	9440.08	IZMT	6865.20	K3_1	6081.85
ISTN	58642.91	IZMT	40826.12	IZMT	31050.66	K2	13851.01	K3_1	13277.97	K3_1	9682.63	K3_1	7302.16	K4	6599.06
IZMT	59108.76	K1	31416.34	K2	26141.13	K3_1	19791.83	K3	11659.71	К3	7945.97	K4	7824.39	К5	5806.77
K1	51201.98	K2	36082.21	K3_1	31021.74	K3	18280.77	K4	13701.57	K4	10165.66	K5	7014.24	K7	6170.31
K2	55671.10	K3_1	40830.37	K3	29995.96	K4	20154.14	K5	13071.90	K5	9419.26	K7	7376.10	KABR	6396.80
K3_1	59258.98	K3	39849.76	K4	30941.20	K5	19638.56	K7	13381.19	K7	9760.58	KABR	7761.60	KCEK	6550.66
K3	58765.09	K4	40701.71	K5	31113.32	K7	19912.39	KABR	13073.57	KABR	9954.32	KCEK	7782.86	PALA	5905.54
K4	58477.14	K5	40943.66	K7	31236.38	KABR	19076.06	KCEK	13485.48	KCEK	10129.60	PALA	7472.79	SILE	6175.74
K5	59392.63	K7	41052.77	KABR	30106.24	KCEK	19954.48	PALA	12994.14	PALA	9807.40	SILE	7661.46	SLEE	5882.79
K7	59474.74	KABR	39294.90	KCEK	30997.92	PALA	18780.70	SILE	12726.47	SILE	9694.15	SLEE	7194.99	SLVR	6634.24
KABR	57542.98	KCEK	40063.78	PALA	29812.74	SILE	19198.62	SLEE	12423.73	SLEE	9339.18	SLVR	7912.14	TERK	6620.27
KCEK	58336.08	PALA	38719.13	SILE	30272.86	SLEE	18897.24	SLVR	13583.94	SLVR	10258.92	TERK	7891.84	TUZL	6148.46
PALA	56994.39	SILE	40068.54	SLEE	29977.48	SLVR	20060.37	TERK	13444.69	TERK	10126.06	TUZL	7169.52	YALI	6134.18
SILE	58318.72	SLEE	39769.42	SLVR	31149.27	TERK	19404.85	TUBI	10294.86	TUZL	9531.59	YALI	7031.80	Test D.	29.97
SLEE	58032.92	SLVR	40943.31	TERK	30439.13	TUBI	17027.46	TUZL	13358.36	YALI	9387.43	Test D.	32.17	F-Değeri	1.44
SLVR	59218.71	TERK	39521.70	TUBI	29603.49	TUZL	19841.10	YALI	13081.18	Test D.	35.54	F-Değeri	1.42		
TERK	57782.15	TUBI	39483.89	TUZL	30932.96	YALI	19557.61	Test D.	43.17	F-Değeri	1.41				
TUBI	58857.56	TUZL	40676.52	YALI	30646.50	Test D.	54.67	F-Değeri	1.40			•			
TUZL	58952.54	YALI	40440.54	Test D.	75.77	F-Değeri	1.39			•					
YALI	58715.94	Test D.	110.95	F-Değeri	1.37										
Test D.	138.26	F-Değeri	1.37												

Çizelge 7.27 : 2010-2013 periyotları için analiz sonuçları.

F-Değeri 1.35

Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R	Sta.	R
ISTN	5661.01	ISTN	4632.54	ISTN	3865.18	ISTN	3125.34	ISTN	2307.21	ISTN	1602.10	ISTN	820.18	ISTN	529.90
IZMT	4786.05	K3_1	4067.74	K3_1	3333.90	K3_1	2615.77	K3_1	1863.69	K4	1777.83	K4	1083.16	K4	724.88
K3_1	5161.60	K4	4703.91	K4	3890.05	K4	3196.52	K4	2463.73	KABR	1766.01	KABR	1124.93	KABR	710.13
K4	5702.15	K7	4075.75	K7	3280.42	KABR	3077.94	KABR	2415.35	KCEK	1788.33	KCEK	1056.10	KCEK	732.35
K7	5238.90	KABR	4629.31	KABR	3757.78	KCEK	3234.44	KCEK	2479.14	PALA	1363.05	PALA	806.08	SILE	445.26
KABR	5586.15	KCEK	4686.51	KCEK	3886.71	PALA	2658.55	PALA	2043.97	SILE	1487.63	SILE	913.16	SLVR	790.25
KCEK	5654.72	PALA	4141.96	PALA	3282.48	SILE	2724.34	SILE	2095.41	SLVR	1839.45	SLVR	1174.12	TERK	768.61
PALA	5093.75	SILE	4322.12	SILE	3402.91	SLVR	3219.19	SLVR	2522.29	TERK	1835.52	TERK	1142.32	Test D.	5.98
SILE	5283.97	SLEE	3977.80	SLVR	3909.08	TERK	3273.95	TERK	2542.64	YALI	1187.68	Test D.	9.01	F-Değeri	1.69
SLEE	4991.97	SLVR	4746.23	TERK	3968.98	TUZL	2551.82	YALI	1888.38	Test D.	11.38	F-Değeri	1.63		
SLVR	5735.75	TERK	4766.76	TUZL	3434.13	YALI	2719.16	Test D.	15.63	F-Değeri	1.59				
TERK	5760.14	TUZL	4165.90	YALI	3426.17	Test D.	19.02	F-Değeri	1.55			-			
TUZL	5233.18	YALI	4184.20	Test D.	22.01	F-Değeri	1.52			_					
YALI	5228.17	Test D.	24.26	F-Değeri	1.49			_							
Test D.	26.76	F-Değeri	1.47			-									

Çizelge 7.28 : 2010-2013 periyotları için analiz sonuçları.

F-Değeri 1.45

Çizelge 7.29 : 2010-2013 periyotları için analiz sonuçları.

Sta.	R	Sta.	R	Sta.	R	Sta.	R
ISTN	252.75	K4	177.39	K4	76.31	KCEK	33.54
K4	377.75	KABR	141.17	KCEK	106.59	SLVR	25.61
KABR	263.61	KCEK	178.87	SLVR	90.76	TERK	59.56
KCEK	410.33	SLVR	235.39	TERK	96.80	Test D.	1.72
SLVR	399.62	TERK	201.97	Test D.	2.56	F-Değeri	2.63
TERK	413.42	Test D.	3.16	F-Değeri	2.13		
Test D.	4.24	F-Değeri	1.91				
F-Değeri	1.78						

Bu sonuçlara göre Çizelge (7.29)'da en son 'SLVR' (Silivri) noktası ağdan çıkarıldıktan sonra ağdaki İSKİ-UKBS noktaları olan 'KCEK', ve 'TERK' noktaları için 'Test değeri:1.72' ve F büyüklüğü:2.63' olarak belirlenmiştir. Görüldüğü gibi T<F olduğundan dolayı, Global test sonucu ağdaki hareketsiz datum noktaları yüzde 95 olasılıkla 'KCEK', ve 'TERK' noktaları olarak bulunmuştur Bu datum noktaları yardımıyla her iki ölçme kampanyası tekrar aynı datuma getirilir ve anlamlı nokta(ların) araştırılmasına geçilir.

Nokta Adı.	Test Değeri	F-Değeri	Hareket Sonucu
	IGS No	oktaları	
ISTA	2.74	2.63	Hareket Anlamlı
TUBI	183.61	2.63	Hareket Anlamlı
	TUSAGA-Ak	ktif Noktaları	
ISTN	42.52	2.63	Hareket Anlamlı
IZMT	97.24	2.63	Hareket Anlamlı
KABR	10.79	2.63	Hareket Anlamlı
SLEE	39.31	2.63	Hareket Anlamlı
BAND	774.74	2.63	Hareket Anlamlı
BURS	1349.80	2.63	Hareket Anlamlı
	İSKİ-UKBS	S Noktaları	
PALA	0.23	2.63	Hareket Anlamsız
SILE	4.11	2.63	Hareket Anlamlı
SLVR	8.62	2.63	Hareket Anlamlı
TUZL	81.34	2.63	Hareket Anlamlı
YALI	75.26	2.63	Hareket Anlamlı
	Deformasyo	n Noktaları	
K1	738.75	2.63	Hareket Anlamlı
K2	454.61	2.63	Hareket Anlamlı
K3_1	49.12	2.63	Hareket Anlamlı
K3	160.95	2.63	Hareket Anlamlı
K4	25.40	2.63	Hareket Anlamlı
K5	80.19	2.63	Hareket Anlamlı
K7	75.24	2.63	Hareket Anlamlı

Cizelge 7.30 : 2010-2013 periyotları deformasyon büyüklükleri için anlamlılık testi.

Anlamlılık testi sonuçlarından anlaşılacağı üzere, yüzde 95 olasılıkla 'PALA' noktası harici diğer 19 noktanın üç boyutlu konumunda anlamlı bir hareket olduğu görülmektedir. 'PALA' noktasında ise hareketin anlamlı olmadığı ve rastlantısal ölçü hatalarından kaynaklandığı kabul edilir.

8. SONUÇLAR VE ÖNERİLER

Karadeniz, Ege ve Anadolu levhaları içinde bulunan Marmara Bölgesi, çağlardan beri süregelen yerkabuğu hareketlerinin etkisi altındadır. 1999'da yaşanan son depremler özellikle Marmara Denizi'nin altında bulunan yerkabuğundaki gerilmeyi arttırmıştır. Gerçekleşen tüm çalışmalar sonucunda Marmara Bölgesinde yatay ve düşey yönde meydana gelen kabuk deformasyonları ile ilgili ilk bilgiler elde edilmeye başlanmıştır. Bu nedenle GPS verileriyle desteklenen ITRF'e dayalı olan jeodezik ağlar bölgesel yerkabuğu hareketlerinin araştırılması konusunda önemli rol oynamaktadır. Aynı zamanda bir mühendislik yapısının sağlıklı olarak planlanması için o bölgenin yapısının iyi bilinmesi gerektiğinden yapımına başlanan ve devam etmekte olan İstanbul- İzmir Otoyolu kapsamında büyük öneme sahip Körfez geçiş köprüsü içinde bilgilerin güncel durumu önem taşımaktadır. Bu çalışmada anlatılan modern izleme yöntemleriyle elde edilen GPS verilerinin birlikte analizi ile bölgede deformasyonlar 3 boyutlu olarak tanımlanarak bölgeyle ilgili bilgi artmıştır.

Bölgedeki hız değerlerinin belirlenmesi için koordinatlara göre oluşturulan hız modeli kullanılmış ve ISTA noktası ITRF2005 datumunda ve 2005.00 epoğunda sabit ve referans alınarak her periyoda ilişkin dengelemeli çözümler yerel koordinat sisteminde elde edilmiştir. Ağların noktalarına ait 1. ve 2. Periyot Sağa, Yukarı değerleri, bölgede aktif olan Kuzey Anadolu Fay Hattının sağ atımlı fay davranışı göstermesinden dolayı incelenmiştir. Özellikle yatay hareketin incelenmesinin en önemli sebebi fay hattından beklenen davranışın bölgeyi yatay yönde etkileyeceği düşüncesidir.

İzmit Bölgesi'ndeki deformasyon ağı ve İzmit Bölgesinin yakınında seçilen ulusal, uluslar arası ve local ağlardaki noktalar için baz çözümleri Leica Geo Office programında yapılmış olup bu sonuçlar üç boyutlu deformasyon analizi için MATLAB programında yazılan dengeleme ve analiz programları için girdi verileri olmuştur. Bu sayede bölgede Kuzey Anadolu Fayından etkilendiği düşünülen aynı zamanda deformasyon ağına yakın IGS noktaları, TUSAGA-Aktif noktaları ve İSKİ-UKBS noktaları değerlendirilmiş ve bu noktalara ait güncel sonuçları elde edilmiştir. Elimizde 3 kampanya ya ait veriler olduğundan yer değiştirmelerin hız vektörlerine rahatlıkla bakabiliriz ve 2010-2011 periyotları ile 2011-2013 periyotlarını karşılaştırarak bölgelerdeki stres (gerinim) hakkında yorumlarda bulunabiliriz.

Elde edilen hız değerleri incelendiğinde bölgede KAFZ boyunca nokta hızlarının homojen olmadığı, KAFZ'ın kuzey kısmındaki Karadeniz levhasında yer alan Tusaga-Aktif, İSKİ-UKBS ve Deformasyon ağına ait noktaların bir bölümünün 2010-2011 ve 2011-2013 periyotları arasında doğudan batıya veya batıdan doğru hareket ettiği görülürken, güneyindeki Anadolu levhasında yer alan noktalarda ise, saat yönünün tersi seklinde doğudan batıya doğru hızla gittiği görülmektedir. Anadolu levhası üzerinde yer alan nokta hızlarının doğudan batıya doğru artmasının Marmara ve Ege bölgesindeki açılmadan kaynaklandığı düşünülmektedir. Ayrıca, Anadolu levhası üzerindeki nokta hızlarının fay hattından uzaklaştıkça arttığı ve Karadeniz levhası üzerindeki hızların ise yaklaşık homojen bir dağılım gösterdiği görülmektedir.

2010-2011 periyotları incelendiğinde IGS noktaları olan ISTA ve TUBI'nin, Tusaga-Aktif ağına ait altı noktanın tamamının, İSKİ-UKBS ağına ait yedi noktanın tamamının ve Deformasyon bölgesine ait sekiz noktanın kuzeyinde bulunan K4 ve K5 noktaları hariç tamamının üç boyutlu deformasyon analizinde %95 güvenilirlikle hareketlerinin anlamlı olduğu ve deformasyona uğradıkları saptanmıştır. Deformasyon bölgesine ait K4 ve K5 noktalarında hareket olmadığı bunun yanında İSKİ-UKBS ağına ait PALA noktasında ve IGS noktası olan ISTA noktasında ise anlamlı bir hareket olmadığı görülmüştür.

2011-2013 periyotları incelendiğinde IGS noktası olan TUBI'nin, Tusaga-Aktif ağına ait altı noktanın tamamının, İSKİ-UKBS ağına ait yedi noktanın YALI noktası hariç tamamının ve Deformasyon bölgesine ait sekiz noktanın kuzeyinde bulunan K4 noktası hariç tamamının üç boyutlu deformasyon analizinde %95 güvenilirlikle hareketlerinin anlamlı olduğu ve deformasyona uğradıkları saptanmıştır. IGS noktası olan ISTA noktasında, İSKİ-UKBS ağına ait PALA noktasında ve Deformasyon bölgesinin kuzeyinde bulunan K4 noktasında hareket olmadığı bunun yanında İSKİ-UKBS ağına ait PALA ve TERK noktalarında ise anlamlı bir hareket olmadığı görülmüştür.

2010-2013 periyotları incelendiğinde IGS noktaları olan ISTA ve TUBI'nin, Tusaga-Aktif ağına ait altı noktanın tamamının, İSKİ-UKBS ağına ait yedi noktanın KCEK ve TERK noktaları hariç tamamının ve Deformasyon bölgesine ait sekiz noktanın tamamının üç boyutlu deformasyon analizinde %95 güvenilirlikle hareketlerinin anlamlı olduğu ve deformasyona uğradıkları saptanmıştır., İSKİ-UKBS ağına ait KCEK ve TERK noktalarında hareket olmadığı bunun yanında İSKİ-UKBS ağına ait PALA noktasında ve neredeyse IGS noktası olan ISTA noktasında anlamlı bir hareket olmadığı görülmüştür.

Bu çalışmalarda elde edilen sonuçlar incelendiğinde, bölgede belirli gerinim birikimi olduğu, sert ve sağlam görünen yüzeylerin uzun zaman aralıkları içinde ve yerkabuğundaki kuvvetlerin etkisi altında deforme olduğu gözlemlenmiştir. KAF'ın kuzeyinde kalan bölgede çekmelerin ve sıkışmanın, güneyinde ise de aynı şekilde hem çekme hem sıkışmanın olduğu görülmektedir.

Bu yer değiştirmelere bakıldığında, çalışmanın bölgenin sismik davranışı üzerine yapılmış ve aynı zamanda diğer çalışmalarla tutarlılık gösterip göstermediğinin gözlenmesi için de yapılmıştır. Bu anlamda, GPS ile konumlandırılan deformasyon noktalarının Avrasya plakasının kuzeyinde kaldığı ve daha önce yapılmış araştırmalarda, Avrasya Plakası bölgesinde sabit tutulmuş noktalarla yapılan değerlendirmeler sonucu batı yönünde deprem olmaksızın yatay hareketin yıllık ortalama 2-3 cm/yıl olarak bulunduğu düşünülürse; mikro jeodezik ağa ait deformasyon noktalarının üç kampanya ölçüleri arasındaki farklarının ve hareket yönlerinin tutarlı olduğu görülmektedir. Aynı zamanda iki periyot arasındaki farkların fark vektörleri de beklenen fay davranışını desteklemektedir

Deformasyon belirleme amacıyla kurulan mikro jeodezik ağların değerlendirilmesi ve izlenmesi konusunda belirlenen stratejiyi ve bu doğrultuda deformasyon ağına entegre şekilde incelenen sürekli gözlem yapan sabit referans istasyonlarının güncel durumlarının ortaya konulduğu bu çalışmada, deformasyon analizi S-transformasyonu ile yapılmış olup yüzde 95 olasılıkla analiz sonuçları elde edilmiştir. 2010-2011, 2011-2013, 2010-2013 kampanyaları arasında sabit noktalar bulunmuştur. Böylece, sürekli gözlem yapan uluslararası, ulusal ve lokal ağ noktalarının güncel konumları hakkında bilgiler elde edilmiştir. Önümüzdeki yıllarda da izlenmeye devam edilecek bu ağların bölgenin tektonik hareketliliğinden ya da bölgede var olan ve çalışmada da spesifik olarak belirtilen fay hatlarından nasıl ve hangi yönde etkilendiği soruları cevap bulacaktır.

KAYNAKLAR

- Armijo, R., Meyer, B., Hubert, A., ve Barka, A. (1999). Westward propagation of the North Anatolian fault into the northern Agean, *Timing and Kinematics*, Geology, 27, 3, 267-270.
- Ayan, T. (1981). Jeodezik ağların analizi, Lisans üstü Ders Notları, İstanbul.
- Ayan, T. (1982). Jeodezik ağlarda deformasyon analizine genel bakış, *İTÜ Dergisi*, Cilt **40**, Sayı 1, İstanbul.
- Ayan T., Deniz R., Gürkan O., Özturk E., ve Çelik N. (2003). Ulusal jeodezik referans sistemleri ve CBS, *Coğrafi Bilgi Sistemleri ve Jeodezik Ağlar Çalıştayı*. Çağrılı Bildiri. 24-25-26 Eylül 2003 Konya, Türkiye.
- Baarda, W. (1973). S-transformation and criterion matrices, *Netherlands Geodetic Commission Publications on Geodesy*, New Series, 5(1), Hollanda.
- Barka, A. A. (1992). The North Anatolian Fault Zone, Ann. Tectonicae, 6, 164-195.
- Bayrak, T. (2011). Dengeleme hesabı, Lisans ders notları, Gümüşhane Üniversitesi, Mühendislik Fakültesi, Harita Mühendisliği
- Başkaya, B. (1995). S-transformasyonu ve yatay kontrol ağlarında deformasyon analizi, Yüksek Lisans Tezi, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul.
- Blewitt, G. (1990). GPS Techniques for monitoring geodynamics at regional scales, In Proceeding of Second International Symposium on GPS, Kanada, s. 495-507.
- Blewitt, G. (2003). *IGS densification program*, Department of Geomatics, University of Newcastle upon Tyne, UK, http://igscb.jpl.nasa.gov/
- Bursa, M. (1962). The theory for the determination of the non-parallelism of the minor axis of the reference ellipsoid and the inertial polar axis of the Earth, and the planes of the initial astronomic and geodetic meridians from observations of Earth satellites, *Studia Geophysica et Geodetica*, 6, 209-214.
- Caspary, W.F. (1987). Concepts of network and deformation analysis. *Monograph* 11, School of Surveying-The University of New South Wales, Kensington.
- Cooper, M.A.R. (1987). Control surveys in civil engineering, Blackwell Scientific, Oxford.
- **Demirel, H.** (1987). S-transformasyonu ve deformasyon analizi, *Türkiye I. Harita Bilimsel ve Teknik Kurultayı*, Ankara, 23-27 Şubat, s. 593-608.
- **Demirel, H.** (1987b). S-transformasyonu ve deformasyon analizi, *Türkiye I. Harita Bilimsel ve Teknik Kurultayı*, Ankara, 23-27 Şubat 1987, s. 593-608.
- **Demirel, H.** (1987c). Jeodezik ağlarda datum tanımlama ve bağlantı noktalarının test edilmesi, HKM, **72**, s. 47-55

Demirel, H. (2009). Dengeleme hesabı, Y.T.Ü,İstanbul.

- **Demirci, P.** (2012). Yerel, Ulusal Ve Uluslararası Sabit Referans İstasyonlarının Kabuk Ve Yapısal Deformasyon Belirleme Amaçlı Tasarlanan Jeodezik Ağlara Entegrasyonu, Ölçme Ve Değerlendirme Stratejileri, Yüksek Lisans Tezi, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul.
- **Deniz, R.** (1993). *Uydu jeodezisi*, Lisanüstü Ders Notları İ.T.Ü. İnşaat Fakültesi Jeodezi ve Fotogrametri Bölümü, İstanbul
- **Denli H.H.**, (1998). *GPS ile Marmara Bölgesindeki Yer Kabuğu Hareketlerinin Belirlenmesi*, Doktora Tezi, İ.T.Ü., Fen Bilimleri Enstitüsü, İstanbul.
- **Doğan, U.** (2011). *Jeodezide özel konular*, Lisans Ders Notları, Y.T.Ü. İnşaat Fakültesi Jeodezi ve Fotogrametri Bölümü, İstanbul
- EPN (2003). Avrupa sabit ağı,adres: http://www.epncb.oma.be/
- **Erol S.** (2008). *Gps Ve Nivelman Ölçüleriyle Deformasyonlarin Belirlenmesi*, Doktora Tezi, İ.T.Ü. Fen Bilimleri Enstitüsü, İstanbul
- Erol, S., Erol, B. ve Ayan, T. (2007). Combination of GPS and Levelling Data interms of 1D, 2D and 3D Deformation Analysis, *International Union of Geodesy and Geophysics (IUGG) XXIV General Assembly*, Perugia, İtalya, Temmuz 2-13.
- Featherstone, W.E. ve Barrington, T.R. (1996), A Microsoft Windows-based package to transform coordinates to the geocentric datum of Australia, Cartoraphy, 25, 1, 81-87.
- **Ferland R.** (2001). Activities of the International GPS Service (IGS) Reference Frame Working Group. *International Association of Geodesy Symposium*, Budapest, September 2001.
- Gründig, L. Neureither, M. ve Bahndorf, J. (1985). Detection and localization of geometrical ovements. ASCE Journal of Surveying Engineering, 111:2, 118-132.
- Gubler, E., Hornik, H. (1995). Report on the Symp. of the IAG Subcommision for the European Reference Frame (EUREF), Helsinki, 3 - 6 Mayıs
- Gurtner, W. ve Mader, G. (1990), Receiver independent exchange format version 2, GPS Bulletin, Vol.3, No.3, 1-8
- Gurtner, W. (2003). Access to IGS data, Astronomical Institute, University of Berne, IGS,adres: http://igscb.jpl.nasa.gov
- Hatanaka, Y. (1996). A RINEX compression format and tools, *Proceedings of ION GPS-96*
- Heunecke, O. Pelzer, H. ve Welsch, W. (1998). On the classification of Deformation Models and dentification Methods in Engineering Surveying, XXI. FIG Congress, Com.6, Brighton, s. 230-245
- IGS (2003). Uluslararası GPS servisi, adres: http://igscb.jpl.nasa.gov/
- **Illner, I.** (1985). Datumsfestlegung in freien Netzen, Deutsche Geodaetische Kommission, Reilhe C, Nr. 309.

- **İnal, C.** (1998). Konya Alaeddin Camii'nin deformasyon ve deplasmanının jeodezik yöntemlerle belirlenmesi, Doktora Tezi, Y.T.Ü. Fen bilimleri Enstitüsü, İstanbul.
- İnal, C. (2012). Deformasyon ölçülerinin analizi, Ders Notları (Basılmamış), Konya.
- Kahveci, M. (2009). Gerçek zamanlı ulusal sabit GNSS (CORS) ağları ve düşündükleri, Jeodezi, *Jeoinformasyon ve Arazi Yönetimi Dergisi*, Sayı:100.
- Kılıçoğlu, A., Kurt, A.İ., Tepeköylü, S., Cingöz, S. ve Akça, E. (2003). Türkiye Ulusal Sabit GPS İstasyonları Ağı (TUSAGA), *Coğrafi Bilgi Sistemleri ve Jeodezik Ağlar Çalıştayı Bildirileri*, s:44.
- Leick, A. (1995). GPS satellite surveying. John Willey & Sons Inc., New Jersey.
- McClusky, S., Balassanian, S., Barka, A.,Demir, C., Ergintav, S., Georgiev, I., Gurkan. O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadriya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksoz, M. N. ve Veis, G. (2000). Global positioning system constraints on plate kinematics and dynamics in the eastern, *Journal of Geophysical Research*, 105, s. 5695-5719
- Mierlo, V.J. (1978). A testing procedure for analysing geodetic measurements, Proceedings of the 2nd International Symposium on Deformation Measurements by Geodetic Methods, Bonn, Almanya, s. 321-352.
- Mierlo V. J. (1997). Geodetic deformation analysis alternative similarity and congruency test, *Proceedings of 2nd Turkish – German Geodetic Days*, 28 – 30 Mayıs, Berlin, Almanya.
- Mikhail, M.E. ve Weerawong, K. (1997). Exploitation of linear features in surveying and photogrammetry, *Journal of Surveying Engineering*, 23, 1, 32-47.
- Mitsakaki, C. (2004). Coordinate transformations, *FIG Working Week*, Mayıs 22-27, Atena, Yunanistan.
- Okay, A., Tüysüz, O., ve Kaya, S. (2004). From transpression to transtension: change in morphology and structure around a bend on the North Anatolian Fault in the Marmara region, *Tectonophysics*, 91, 259-282.
- Pektekin, A. (1989). Dönüşümler ve seçmeli noktalara göre programlanması, *Türkiye II. Harita Bilimsel ve Teknik Kurultayı*, 6-10 Ocak, Ankara.
- Pelzer, H. (1971). Zur analyse geodatischer deformationsmessungen, Deutsche Geodatische Kommission, Reihe C, Heft 164, 1–86, Münih, Almanya.
- Remondi, B. W. (1991). NGS second generation ASCII and binary orbit formats and associated interpolated studies, *Proceedings of the Twentieth General Assembly, International Union of Geodesy and Geophysics*, Viyana, Avusturya, Agustos 11-24, s. 28.
- Sella, G., Chin, M., Cline, M., Haw, D., Kass, W., Snay, R. ve Soler, T. (2008). NGS CORS Network Guidelines for New and Existing Sites and their Relation to IGS, USA

- Singh, S.K. (2002), Coordinate transformation between Everest and WGS-84 datuma parametric approach; geodetic and research branch, *Survey of India*, Dehradun.
- Snay R.(2008). CORS Users Forum at the CGSIC Meeting Savannah,GA. The SM&G Subcommittee, NGS, USA
- **Spofford, P.R. ve Remondi, B.W.** (2003). The national geodetic survey standart GPS format SP3, NOAA, National Geodetic Survey, adres: http://www.ngs.noaa.gov
- Strang van Hees, G.L., (1982). Variance-covariance transformations of geodetic networks, Manuscripta Geodaetica, 7, 1–20.
- Şanlıoğlu, İ. ve İnal, C. (2004). IGS ürünlerinin Tanıtımı, IGS ürünlerine erişim ve bir uygulama, *Teknik-Online Dergi*, Cilt 3, Sayı 1, Konya
- Şengör, A.M.C., Tüysüz, O., Sakinç, M., Imren, C., Eyidogan, H., ve Görür, N., (2003). Kuzey Anadolu Fayından haberler, *Cumhuriyet Gazetesi Bilim* ve Teknik eki, Sayı:856, s.6-7
- **Tanık, A.** (2003). *Dönüşümler ve uygulamaları*, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
- **Ünal, T.** (1994). *Uydu jeodezisi*, Lisans Ders Notları, Y.T.Ü. İnşaat Fak. Jeodezi ve Fotogrametri Bölümü, İstanbul.
- **Ünver, M. ve Tanır, E.** (2001). Cholesky çarpanlarına ayırma ve bağıl güven elipsi yöntemleriyle yatay hareketlerin belirlenmesi, *Harita Dergisi*, Sayı 126, s.17-34, Ankara.
- **Üstün, A.** (1996). *Datum dönüşümleri*, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
- Yaltırak, C., Sakınç, M., ve Oktay, F.Y. (2000). Westward propagation of North Anatolian fault into northern Aegean: *Timing and Kinematics*, Comment, Geology, 28, 2, 187-188.
- Yaşayan, A. (1978). Hava fotogrametrisinde iki boyutlu doğrusal dönüşümler ve uygulamaları, K.T.Ü. Yayın No:102, YBF Yayın No: 19, Trabzon.
- Yılmaz, M. (1993). Barajlara yerleştirilen deformasyon ölçme donatımları, Yüksek Lisans Tezi, İ.T.Ü. Fen Bilimleri Enstitisü, İstanbul.
- Wolf, H. (1963). Geometric connection and re-orientation of the three-dimensional triangulation nets, *Bulletin Geodesique*, 68, 165-169.
- Welsch, W.M. (1993). A General 7-parameter transformation for the combination, comparison and accuracy control of terrestrial and satellite network observations, Manuscripta Geodaetica, 18, 295-305.
- Zumberge, J. F., Liu, R. ve Neilan R.E. (1995). 1994 Annual report., international GPS service for geodynamics, IGS Central Bureau, Jet Propulsion Lab., Pasadena, California, ABD.
- Url 1< http://www.epncb.oma.be/> alındığı tarih: 15.03.2013.
- Url 2< http://www.hgk.msb.gov.tr/haritalar_projeler/jeodezi/TUSAGA __Aktif_Genel_Bilgi_internete.pdf/> alındığı tarih: 15.03.2013.

Url 3<*http://harita.iski.gov.tr/iskiukbs.aspx*> alındığı tarih: 27 02 2012

Url4<http://www.hurriyet.com.tr/ekonomi/25208471.asp>alındığı tarih: 10.04.2013.

- Url 5<http://tr.wikipedia.org/wiki/Gebze_-_%C4%B0zmir_Otoyolu_Projesi# Proje_Ayr.C4.B1nt.C4.B1lar.C4.B1> alındığı tarih 10.04.2013.
- Url 6<http://igscb.jpl.nasa.gov/components/prods_cb.html> alındığı tarih 10.04.2013.

Url 7<http://sopac.ucsd.edu/cgi-bin/dbDataBySite.cgi > alındığı tarih 10.04.2013.

Url 8<http://sopac.ucsd.edu/cgi-bin/sector.cgi> alındığı tarih 10.04.2013.

EKLER

<u>Sayfa</u>

EK A	: 2010-2011,2011-2013 Ve 2010-2013 Periyotları İçin Sağa (Easting),	
	Yukarı (Northing) Değerler Ve Periyotlar Arası Farklar	105
EK B:	: 2010-2011, 2011-2013 Ve 2010-2013 Periyotları İçin Sağa Ve Yukarı	
	Değer Yatay Ve Düşey Fark Diyagramları	. 114
EK C	: 2010-2011,2011-2013 Ve 2010-2013 Periyotları İçin Hız Vektörleri ve	
	Harita Üzerinde Gösterimi	. 120

EK A: 2010-2011,2011-2013 Ve 2010-2013 Periyotları İçin Sağa (Easting), Yukarı (Northing) Değerler Ve Periyotlar Arası Farklar

2010-2011 periyotları için değerler ve farklar:

Çizelge A.1 : IGS, TUSAGA-Aktif,	İSKİ-UKBS	ve Deformasyon	noktalarına ait
2010 yılı değerleri.			

Nokta Adı	Easting (m)	Northing (m)	Ellip. Hgt. (m)
	IGS	S Noktaları	
ISTA	417621.8384	4552636.2105	147.2369
TUBI	453634.3607	4517033.9103	220.3605
	TUSAGA	A-Aktif Noktaları	
Kuzey			
ISTN	401684.9140	4540227.1861	77.0683
IZMT	495859.4341	4518583.7813	326.1185
KABR	389756.8925	4579960.6096	93.6137
SLEE	466489.0773	4559388.5156	127.8016
Güney			
BAND	329755.0569	4468234.2241	97.3241
BURS	416169.2026	4453783.9903	183.4225
	İSKİ-U	KBS Noktaları	
KCEK	397337.2906	4541595.6822	122.9247
PALA	412881.9881	4550678.0082	170.5517
SILE	467554.5961	4560523.9886	79.6245
SLVR	338938.1022	4551252.1395	138.2609
TERK	388912.6535	4575080.1048	48.0384
TUZL	440314.0618	4521546.2553	55.2976
YALI	357427.3961	4594549.1811	86.7731
	Deforma	asyon Noktaları	
Kuzey			
K4	460995.5134	4515376.9119	131.4131
K5	459378.8966	4515123.7941	99.9341
K6_1	459122.3156	4514829.0594	44.5713
K7	458834.2999	4515786.5458	110.5805
Güney			
K 1	453814.9144	4504772.5585	192.1697
K2	456290.7812	4505028.8689	239.9323
K3_1	458853.1069	4510558.1350	44.1912
K3	459038.8831	4511935.4755	38.6091

Nokta Adı	Easting (m)	Northing (m)	Ellip. Hgt. (m)
	IGS	S Noktaları	
ISTA	417621.8391	4552636.2107	147.2392
TUBI	453634.3531	4517033.9113	220.3302
	TUSAGA	A-Aktif Noktaları	
Kuzey			
ISTN	401684.9150	4540227.1892	77.0451
IZMT	495859.4254	4518583.7798	326.0859
KABR	389756.8885	4579960.6095	93.6013
SLEE	466489.0793	4559388.5108	127.7892
Güney			
BAND	329755.0368	4468234.2190	97.2627
BURS	416169.1809	4453783.9876	183.2773
	İSKİ-U	KBS Noktaları	
KCEK	397337.2945	4541595.6809	122.9156
PALA	412881.9901	4550678.0071	170.5583
SILE	467554.5947	4560523.9846	79.6064
SLVR	338938.1023	4551252.1383	138.2512
TERK	388912.6507	4575080.1051	48.0212
TUZL	440314.0607	4521546.2601	55.2498
YALI	357427.3934	4594549.1808	86.7241
	Deforma	asyon Noktaları	
Kuzey			
K4	460995.5166	4515376.9121	131.3862
K5	459378.9000	4515123.7927	99.9068
K6_1	459122.3061	4514829.0513	44.5140
K7	458834.2911	4515786.5490	110.5341
Güney			
K1	453814.8881	4504772.5530	192.1141
K2	456290.7679	4505028.8771	239.8693
K3_1	458853.0961	4510558.1514	44.1515
K3	459038.8646	4511935.4817	38.5780

Çizelge A.2 : IGS, TUSAGA-Aktif, İSKİ-UKBS ve Deformasyon noktalarına ait 2011 yılı değerleri.

Bulunan serbest dengeleme sonuçlarının ardından iki periyot ölçüleri birbirleri ile karşılaştırılmış ve farklar hesaplanmıştır (Çizelge A.3).

Nokta Adı	Easting (m)	Northing (m)	Ellip. Hgt. (m)
	IGS N	oktaları	
ISTA	0.0007	0.0002	0.0023
TUBI	-0.0076	0.0010	-0.0303
	TUSAGA-A	ktif Noktaları	
Kuzey			
ISTN	0.0010	0.0031	-0.0232
IZMT	-0.0087	-0.0015	-0.0326
KABR	-0.0040	-0.0001	-0.0124
SLEE	0.0020	-0.0048	-0.0124
Güney			
BAND	-0.0201	-0.0051	-0.0614
BURS	-0.0217	-0.0027	-0.1452
	İSKİ-UKB	S Noktaları	
KCEK	0.0039	-0.0013	-0.0091
PALA	0.0020	-0.0011	0.0066
SILE	-0.0014	-0.0040	-0.0181
SLVR	0.0001	-0.0012	-0.0097
TERK	-0.0028	0.0003	-0.0172
TUZL	-0.0011	0.0048	-0.0478
YALI	-0.0027	-0.0003	-0.0490
	Deformasy	on Noktaları	
Kuzey			
K4	0.0032	0.0002	-0.0269
K5	0.0034	-0.0014	-0.0273
K6_1	-0.0095	-0.0081	-0.0573
K7	-0.0088	0.0032	-0.0464
Güney			
K1	-0.0263	-0.0055	-0.0556
K2	-0.0133	0.0082	-0.0630
K3_1	-0.0108	0.0164	-0.0397
K3	-0.0185	0.0062	-0.0311

Çizelge A.3 : IGS, TUSAGA-Aktif, İSKİ-UKBS ve Deformasyon noktalarına ait 2010 ve 2011 periyotları fark çizelgesi.

2011-2013 periyotları için değerler ve farklar:

Nokta Adı	Easting (m)	Northing (m)	Ellip. Hgt. (m)
	IGS	S Noktaları	
ISTA	417621.8390	4552636.2105	147.2401
TUBI	453634.3530	4517033.9111	220.3311
	TUSAGA	A-Aktif Noktaları	
Kuzey			
ISTN	401684.9149	4540227.1889	77.0450
IZMT	495859.4254	4518583.7794	326.0856
KABR	389756.8886	4579960.6091	93.6004
SLEE	466489.0792	4559388.5103	127.7895
Güney			
BAND	329755.0365	4468234.2185	97.2628
BURS	416169.1808	4453783.9872	183.2766
	İSKİ-U	KBS Noktaları	
KCEK	397337.2939	4541595.6805	122.9156
PALA	412881.9897	4550678.0069	170.5577
SILE	467554.5946	4560523.9845	79.6123
SLVR	338938.1026	4551252.1385	138.2588
TERK	388912.6506	4575080.1047	48.0192
TUZL	440314.0603	4521546.2598	55.2495
YALI	357427.3941	4594549.1828	86.7293
	Deforma	asyon Noktaları	
Kuzey			
K4	460995.5166	4515376.9112	131.3815
K5	459378.9010	4515123.7930	99.9025
K6	459145.7841	4514861.0728	56.0055
K7	458834.2899	4515786.5481	110.5345
Güney			
K1	453814.8879	4504772.5523	192.1098
K2	456290.7678	4505028.8768	239.8675
K3_1	458853.0962	4510558.1509	44.1529
K3	459038.8639	4511935.4813	38.5820

Çizelge A.4 : IGS, TUSAGA-Aktif, İSKİ-UKBS ve Deformasyon noktalarına ait 2011 yılı değerleri.

Nokta Adı	Easting (m)	Northing (m)	Ellip. Hgt. (m)
	IGS	S Noktaları	
ISTA	417621.8395	4552636.2098	147.2312
TUBI	453634.3479	4517033.9096	220.3222
	TUSAGA	A-Aktif Noktaları	
Kuzey			
ISTN	401684.9126	4540227.1861	77.0283
IZMT	495859.4203	4518583.7724	326.0848
KABR	389756.8955	4579960.6047	93.6013
SLEE	466489.0807	4559388.4978	127.7956
Güney			
BAND	329755.0012	4468234.2109	97.2894
BURS	416169.1448	4453783.9791	183.2930
	İSKİ-U	KBS Noktaları	
KCEK	397337.2929	4541595.6821	122.8898
PALA	412881.9881	4550678.0075	170.5549
SILE	467554.5985	4560523.9826	79.6290
SLVR	338938.1048	4551252.1357	138.2413
TERK	388912.6536	4575080.1041	48.0163
TUZL	440314.0555	4521546.2601	55.2431
YALI	357427.3963	4594549.1800	86.7133
	Deforma	asyon Noktaları	
Kuzey			
K4	460995.5172	4515376.9073	131.3804
K5	459378.8773	4515123.7944	99.9060
K6	459145.7681	4514861.0716	56.0038
K7	458834.2826	4515786.5444	110.5449
Güney			
K1	453814.8579	4504772.5657	192.1256
K2	456290.7362	4505028.8821	239.8653
K3_1	458853.0847	4510558.1432	44.1462
K3	459038.8576	4511935.4762	38.5581

Çizelge A.5 : IGS, TUSAGA-Aktif, İSKİ-UKBS ve Deformasyon noktalarına ait 2013 yılı değerleri.

Bulunan serbest dengeleme sonuçlarının ardından iki periyot ölçüleri birbirleri ile karşılaştırılmış ve farklar hesaplanmıştır (Çizelge A.6).

Nokta Adı	Easting (m)	Northing (m)	Ellip. Hgt. (m)	
	IG	S Noktaları		
ISTA	0.0005	-0.0007	-0.0089	
TUBI	-0.0051	-0.0015	-0.0089	
	TUSAG	A-Aktif Noktaları		
Kuzey				
ISTN	-0.0023	-0.0028	-0.0167	
IZMT	-0.0051	-0.0070	-0.0008	
KABR	0.0069	-0.0044	0.0009	
SLEE	0.0015	-0.0125	0.0061	
Güney				
BAND	-0.0353	-0.0076	0.0266	
BURS	-0.0360	-0.0081	0.0164	
	İSKİ-U	JKBS Noktaları		
KCEK	-0.0010	0.0016	-0.0258	
PALA	-0.0016	0.0006	-0.0028	
SILE	0.0039	-0.0019	0.0167	
SLVR	0.0022	-0.0028	-0.0175	
TERK	0.0030	-0.0006	-0.0029	
TUZL	-0.0048	0.0003	-0.0064	
YALI	0.0022	-0.0028	-0.0160	
Deformasyon Noktaları				
Kuzey				
K4	0.0006	-0.0039	-0.0011	
K5	-0.0237	0.0014	0.0035	
K6	-0.0160	-0.0012	-0.0017	
K7	-0.0073	-0.0037	0.0104	
Güney				
K1	-0.0300	0.0134	0.0158	
K2	-0.0316	0.0053	-0.0022	
K3_1	-0.0115	-0.0077	-0.0067	
K3	-0.0063	-0.0051	-0.0239	

Çizelge A.6 : IGS, TUSAGA-Aktif, İSKİ-UKBS ve Deformasyon noktalarına ait 2011 ve 2013 periyotları fark çizelgesi.

2010-2013 periyotları için değerler ve farklar:

Nokta Adı	Easting (m)	Northing (m)	Ellip. Hgt. (m)
	IGS N	loktaları	
ISTA	417621.8383	4552636.2104	147.2367
TUBI	453634.3607	4517033.9103	220.3603
	TUSAGA-A	ktif Noktaları	
Kuzey			
ISTN	401684.9141	4540227.1854	77.0658
IZMT	495859.4340	4518583.7813	326.1187
KABR	389756.8924	4579960.6096	93.6135
SLEE	466489.0773	4559388.5155	127.8013
Güney			
BAND	329755.0568	4468234.2243	97.3273
BURS	416169.2027	4453783.9903	183.4224
	İSKİ-UKE	3S Noktaları	
KCEK	397337.2905	4541595.6813	122.9212
PALA	412881.9885	4550678.0086	170.5519
SILE	467554.5960	4560523.9887	79.6259
SLVR	338938.1023	4551252.1394	138.2607
TERK	388912.6534	4575080.1047	48.0383
TUZL	440314.0618	4521546.2552	55.2981
YALI	357427.3960	4594549.1812	86.7721
	Deformasy	on Noktaları	
Kuzey			
K4	460995.5134	4515376.9123	131.4116
K5	459378.8967	4515123.7949	99.9362
K7	458834.2994	4515786.5454	110.5902
Güney			
K1	453814.9144	4504772.5583	192.1699
K2	456290.7814	4505028.8689	239.9327
K3_1	458853.1070	4510558.1357	44.1959
K3	459038.8828	4511935.4752	38.6073

Çizelge A.7 : IGS, TUSAGA-Aktif, İSKİ-UKBS ve Deformasyon noktalarına ait 2010 yılı değerleri.

Nokta Adı	Easting (m)	Northing (m)	Ellip. Hgt. (m)	
	IGS	S Noktaları		
ISTA	417621.8395	4552636.2097	147.2316	
TUBI	453634.3478	4517033.9095	220.3225	
	TUSAGA	A-Aktif Noktaları		
Kuzey				
ISTN	401684.9126	4540227.1860	77.0284	
IZMT	495859.4203	4518583.7724	326.0847	
KABR	389756.8954	4579960.6047	93.6012	
SLEE	466489.0806	4559388.4978	127.7958	
Güney				
BAND	329755.0012	4468234.2109	97.2894	
BURS	416169.1448	4453783.9791	183.2930	
	İSKİ-U	KBS Noktaları		
KCEK	397337.2929	4541595.6818	122.8916	
PALA	412881.9881	4550678.0075	170.5546	
SILE	467554.5985	4560523.9826	79.6293	
SLVR	338938.1048	4551252.1355	138.2444	
TERK	388912.6537	4575080.1042	48.0158	
TUZL	440314.0555	4521546.2600	55.2430	
YALI	357427.3964	4594549.1800	86.7137	
Deformasyon Noktaları				
Kuzey				
K4	460995.5174	4515376.9076	131.3782	
K5	459378.8773	4515123.7943	99.9069	
K7	458834.2826	4515786.5444	110.5446	
Güney				
K1	453814.8581	4504772.5656	192.1243	
K2	456290.7364	4505028.8825	239.8617	
K3_1	458853.0847	4510558.1431	44.1461	
K3	459038.8575	4511935.4763	38.5580	

Çizelge A.8 : IGS, TUSAGA-Aktif, İSKİ-UKBS ve Deformasyon noktalarına ait 2013 yılı değerleri.

Bulunan serbest dengeleme sonuçlarının ardından iki periyot ölçüleri birbirleri ile karşılaştırılmış ve farklar hesaplanmıştır (Çizelge A.9).

Nokta Adı	Easting (m)	Northing (m)	Ellip. Hgt. (m)
	IG	S Noktaları	
ISTA	0.0012	-0.0007	-0.0051
TUBI	-0.0129	-0.0008	-0.0378
	TUSAG	A-Aktif Noktaları	
Kuzey			
ISTN	-0.0015	0.0006	-0.0374
IZMT	-0.0137	-0.0089	-0.0340
KABR	0.0030	-0.0049	-0.0123
SLEE	0.0033	-0.0177	-0.0055
Güney			
BAND	-0.0556	-0.0134	-0.0379
BURS	-0.0579	-0.0112	-0.1294
	İSKİ-U	JKBS Noktaları	
KCEK	0.0024	0.0005	-0.0296
PALA	-0.0004	-0.0011	0.0027
SILE	0.0025	-0.0061	0.0034
SLVR	0.0025	-0.0039	-0.0163
TERK	0.0003	-0.0005	-0.0225
TUZL	-0.0063	0.0048	-0.0551
YALI	0.0004	-0.0012	-0.0584
	Deform	nasyon Noktaları	
Kuzey			
K4	0.0040	-0.0047	-0.0334
K5	-0.0194	-0.0006	-0.0293
K7	-0.0168	-0.0010	-0.0456
Güney			
K1	-0.0563	0.0073	-0.0456
K2	-0.0450	0.0136	-0.0710
K3_1	-0.0223	0.0074	-0.0498
K3	-0.0253	0.0011	-0.0493

Çizelge A.9 : IGS, TUSAGA-Aktif ve İSKİ-UKBS ve Deformasyon noktalarına ait 2010 ve 2013 periyotları fark çizelgesi.

EK B: 2010-2011, 2011-2013 Ve 2010-2013 Periyotları İçin Sağa Ve Yukarı Değer Yatay Ve Düşey Fark Diyagramları 0.50

(c) TUSAGA aktif noktaları.

Şekil B.1 : 2010 - 2011 Yatay ve düşey koordinat farkları.

(d) İSKİ - UKBS noktaları.

(e) Deformasyon noktaları.

(f) Deformasyon noktaları.

Şekil B.1 (devam) : 2010 - 2011 Yatay ve düşey koordinat farkları.

(b) TUSAGA Aktif noktaları.

Şekil B.2 : 2011 - 2013 Yatay ve düşey koordinat farkları.

(d) İSKİ - UKBS noktaları.

(e) Deformasyon noktaları.

(f) Deformasyon noktaları.

Şekil B.2 (devam) : 2011 - 2013 Yatay ve düşey koordinat farkları.

(a) IGS noktaları.

(c) TUSAGA aktif noktaları.

Şekil B.3 : 2010 - 2013 Yatay ve düşey koordinat farkları.

(d) İSKİ - UKBS noktaları.

(e) Deformasyon noktaları.

Şekil B.3 (devam) : 2010 - 2013 Yatay ve düşey koordinat farkları.

EK C: 2010-2011,2011-2013 Ve 2010-2013 Periyotları İçin Hız Vektörleri ve Harita Üzerinde Gösterimi

Şekil C.1 : 2010-2011 TUSAGA Aktif noktaları.

Şekil C.2 : 2010 -2011 Deformasyon noktaları.

Şekil C.3 : 2010 -2011 İSKİ-UKBS noktaları.

Şekil C.4 : 2011 -2013 TUSAGA Aktif noktaları.

Şekil C.5: 2011 -2013 Deformasyon noktaları.

Şekil C.6 : 2011 -2013 İSKİ-UKBS noktaları.

Şekil C.7 : 2010 -2013 TUSAGA Aktif noktaları.

Şekil C.8 : 2010 - 2013 Deformasyon noktaları.

Şekil C.9 : 2010 -2013 İSKİ-UKBS noktaları.

ÖZGEÇMİŞ

Ad Soyad: Mehmet BAK

Doğum Yeri ve Tarihi: KAYSERİ, 07.05.1988

Adres: Dikilitaş Mahallesi Emirhan Caddesi Saraka Çıkmazı Uğur Apartmanı No:1 Daire:9 Beşiktaş/İSTANBUL

E-Posta: bakmehmet@gmail.com

Lisans: Yıldız Teknik Üniversitesi Jeodezi ve Fotogrametri Mühendisliği