ÇOK KATLI KONUT YAPILARINDA
ŞÖNT BACALAR ÜZERİNE BİR DEĞERLENDİRME

YÜKSEK LİSANS TEZİ
Mimar Dilek Dilhan HATİPOĞLU

(502991411)

10 40 78

Tezin Enstitüye Verildiği Tarih : 11 Haziran 2001
Tezin Savunulduğu Tarih : 27 Haziran 2001

Tez Danışmanı : Doç. Dr. Nihal ARIOĞLU
Diğer Jüri Üyeleri : Prof. Dr. Erol GÜRDAL
Doç. Dr. Fevziye AKÖZ (Y.T.Ü.)

HAZİRAN 2001
ÖNSÖZ

Bugünün mimarı, mesleği ile ilgili her konuyu öğrenerek bunları tasarladığı projeye ve uygulamaya dökebilen bir tasarım erbabi olmak zorundadır. Günümüz bilgi çağında göre, bina yapımının başlangıç evresi olan tasarım aşamasında ‘baca’ için gerekli bilgi birikimini edinmeden, gelişen teknolojiyi ve yapı malzemelerini takip etmeden ve yeni gereksinimlere göre daha iyi ve uygun olan yapabilme yollarını araştırmadan iyı bir baca tasarımını ve sonucunda da iyi bir yapı tasarımını gerçekleştirelemez.

Farklı disiplinlerin kapsamına giren ‘BACALAR’ mimarı da, en az bir makine mühendisi ya da inşaat mühendisi kadar ilgilendiktedir.

Bu tez çalışması, mimarlar için bacalar konuşusunda bilgi alabileceği ve tek başına bile tama miyle bir uzmanlık konusu olan bacaya verilen önem derecesini artırmak amacıyla bir el kitabı niteliğinde hazırlanmıştır.

Yüksek lisans yapabilmem için bana fırsat veren, tez çalışmasında beni yönlendiren, bana çalışmam süresince hoşgörüyle yaklaşan ve konunun belirli bir sistem içinde ele alınıp sonuçlandırılmasına yardımcı olan değerli hocam Doç. Dr. Nihal ARIOĞLU’na teşekkür ve saygılarını sunarım.

Bana lisans eğitimin tamamlanamada ve yüksek lisans eğitimime başlamam ve bitirebilmemde destek olan, tezin yazım aşamasında yardımcı olan ve moral desteği, sevgisi ve sabrı ile bana güç veren sevgili eşim inşaat mühendisi Beha HATİPOĞLU’na ve ilgileri ve sevgileri ile kısma anneannelik ve dedelik yapan, bana karşı hırsızlıkları hiç esirgemeyen annem ve babam Türkan ve Mürsel ALTINIŞIK’ a, çalışmalarım gereğini gerçekleştirene alışmaya çalışan, moral kaynağı, canım kızım Eda Behan HATİPOĞLU’na, sevgili kardeşim Dinçer ALTINIŞIK’a bana karşı gösterdikleri sabır, maddi ve manevi destekleri için teşekkür ederim.

Haziran 2001

Dilek Dilhan HATİPOĞLU
İÇİNDEKİLER

KISALTMALAR .. viii
TABLO LISTESİ .. ix
ŞEKİL LISTESİ .. x
SEMBOL LISTESİ .. xiii
ÖZET .. xiv
SUMMARY .. xv

1. GİRİŞ ... 1
 1.1. Giriş ... 1

2. BACALAR ... 6
 2.1. Baca ile ilgili tanımlar ... 6
 2.1.1. Konut vb. bina bacarı ... 6
 2.1.2. Konut bacarı grubu ... 6
 2.1.3. Baca gazı .. 6
 2.1.4. Etken bacarı yüksekliği .. 6
 2.1.5. Etken bağlantı borusu yüksekliği 7
 2.1.6. Bacanın hidrolik narinliği ... 7
 2.1.7. Bacanın ısı geçirgenlik direnci .. 7
 2.1.8. Ocaklar ... 7
 2.1.9. Ayarlı ocaklar .. 8
 2.1.10. Özel ocaklar ... 8
 2.1.11. Yakma tekniği .. 8
 2.1.12. Tek cidarlı baca .. 8
 2.1.13. Çok cidarlı baca ... 8
 2.1.14. Kombi bacalar ... 9
 2.1.15. Sıcaklığı dayanıklılığı sınırlı bacalar 9
 2.1.16. Düşük nitelikli çelik baca .. 10
 2.1.17. Tekli baca ... 10
 2.1.18. Müşterek baca .. 10
 2.1.19. Karışık ocaklı baca .. 11
 2.1.20. Buhar geçışı (difüzyonu) özelliği 11
 2.1.21. İmüsyon koruması ... 11
2.1.22. Atmosfer üstü basınçta sızdirmazlık ... 12
2.1.23. Bacalarda yoğunma ... 12

2.2. Yakma tekniği .. 12

2.2.1. Yakma tekniği ile ilgili kurallar .. 13
2.2.1.1. Bacalar, ocaklar ve yerleşime mahalleri 13
2.2.1.2. Üst basınç altında sızdirmazlık .. 13
2.2.1.3. Baça malzemesinin buhar difüzyonu özelliği 13
2.2.1.4. İç yüzeyler .. 13
2.2.1.5. Buhar difüzyonu davranışı ... 14
2.2.2. Genel ... 14
2.2.3. Yere göre baca ve ocakların yerleşirilmesi 14
2.2.4. Modern ısıtma tekniğinin bacaya etkileri 14

2.3. Bacan bileşenleri .. 15

2.3.1. Bacan cidari .. 15
2.3.2. Bacan ara bölümü duvarı .. 15
2.3.3. Bacan kaidesi ... 15
2.3.4. Bacan başı .. 16
2.3.5. Bacan gövdesi .. 16
2.3.6. Bacan ağzı ... 17
2.3.7. Bacan şapkası .. 17
2.3.8. Bacan deliği ... 19
2.3.9. Temizleme ağzı .. 19
2.3.10. Temizleme kapağı .. 20
2.3.11. Hazır form bacan elemanı .. 20
2.3.12. Hazır form bacan taşı .. 21
2.3.13. Bağlanti borusu .. 21
2.3.14. Müşterek bağlanı borusu .. 21
2.3.15. Kısmal tirtibatı ... 21
2.3.16. Kapatma tirtibatı .. 22
2.3.17. Yardımcı (yan) havalandırma tirtibatı 23
2.3.18. Kurum tutucu ... 23
2.3.19. Atık gaz vantılatoru ... 24
2.3.20. Bacan susturucuları .. 24
2.3.21. Yoğuşma suyu filtreleri ... 25
2.4. Baca bileşenlerinin malzemeleri .. 27
2.4.1. Seramik asılı baca malzemeleri ... 27
2.4.2. Metal asılı baca malzemeleri ... 31
2.4.3. Cam ve sentetik baca malzemeleri 35
2.5. Baca sınıflandırması ... 36
2.5.1. Birinci grup baca sınıflandırması (Alpin Kemal Dağız’e göre) 36
2.5.1.1. Yanma havası iç ortamdan temin edilen ocaklı ısı üretim cihazları ... 36
2.5.1.2. Yanma havası dış ortamdan temin edilen ocaklı ısı üretim cihazları. 40
2.5.1.3. U-Boru sistemi bacalar .. 45
2.5.1.4. Bina dışında kullanılan çift kabuklu çelik bacalar 48
2.5.1.5. Dış duvara açılan bacalar .. 51
2.5.1.6. Yoğuşma (rutubet) açısından bacalar 53
2.5.2. Ikinci grup baca sınıflandırması (TS 11386’ya göre) 57
2.5.3. Üçüncü grup baca sınıflandırması
(İsyan/Mimarın Tesisat El Kitabı’na göre) 58
2.5.3.1. Tek katmanlı (tabakalı) bacalar 59
2.5.3.2. İki katmanlı bacalar ... 59
2.5.3.3. Üç katmanlı bacalar ... 60
2.5.3.4. Metal bacalar ... 60
2.5.4. Dördüncü grup baca sınıflandırması
(MMO/Kazan ve Baca’ya göre baca tipleri ve sistemleri) 60
2.5.4.1. Tek cidarlı bacadan çok cidarlıya geçiş 60
2.5.4.2. İç cidarlı harfif beton veya şamot olan çok cidarlı bacalar 62
2.5.4.3. Çok cidarlı paslanmaz çelik bacalar 63
2.5.4.4. Nemden etkilenmeyen bacalar 64
2.5.4.5. Hava-baca gazı baca sistemi .. 66
2.5.4.6. Kondensasyon (üst ısı değer) kazançları için baca sistemleri 70
2.5.4.7. Baca gazı tahliyesi için alternatif çözümler 71
2.5.4.8. Havalandırma boşukları ile baca gazı tahliyesi 75
2.6. Bacalar ile ilgili şartnameler .. 76
2.6.1. İş Yalıtımı Yönetmeliği .. 76
2.6.2. İmar Kanunu/Belediye ve mücair alan sınırları içinde ve dışında planı
bulunan alanlarda uygulanacak imar yönetmeliği 77
2.6.3. Tip İmar Yönetmeliği .. 77
2.6.4. Genel Teknik Şartname/Tuğla Yapım Şartnamesi 79
2.6.5. Bacalar ile ilgili Türk standartları 80
2.7. Piyasada varolan baca malzemeleri ... 81

2.8. Baca hesabı .. 87

2.8.1. DIN 4705’e göre basitleştirilmiş baca hesabı 88
2.8.1.1. Duman gazı miktarının belirlenmesi .. 89
2.8.1.2. Bacada duman gazı sıcaklığının belirlenmesi 89
2.8.1.3. Gaz akışı ile ilgili büyüklüklerin belirlenmesi 89
2.8.1.4. Basınç kayıplarının belirlenmesi ... 92
2.8.1.5. Baca çekisiin belirlenmesi ... 93
2.8.1.6. Hesap yolu ... 93
2.8.1.7. Baca hesabı örneği ... 94
2.8.2. Hazır diyagramlar ve tablolar yardımcı ile baca boyutlandırılması 97

2.9. Sonuçlar ... 104

3. ÇOK KATLI KONUT YAPILARINDA ŞÖNT (SHUNT) BACA
UYGULAMALARININ DEĞERLENDİRİLMESİ .. 106

3.1. Anket formları ... 107

3.2. Alan çalışması yapılan siteler ... 112

3.2.1. Ayazağa Oyak Sitesi ... 112
3.2.1.1. Ayazağa Oyak Sitesi D-8/32 Blok anket sonuçları 113
3.2.1.2. Ayazağa Oyak Sitesi K-7/11 Blok anket sonuçları 117
3.2.1.3. Ayazağa Oyak Sitesi D Blok anket sonuçları 121
3.2.1.4. Ayazağa Oyak Sitesi K Blok anket sonuçları 122
3.2.2. Yeşil Yamaç Sitesi ... 124
3.2.2.1. Yeşil Yamaç Sitesi A-4 Blok anket sonuçları 125
3.2.2.2. Yeşil Yamaç Sitesi D-3 Blok anket sonuçları 130
3.2.2.3. Yeşil Yamaç Sitesi D-4 Blok anket sonuçları 136
3.2.2.4. Yeşil Yamaç Sitesi A-4 Blok anket sonuçları 141
3.2.2.5. Yeşil Yamaç Sitesi D-3 Blok anket sonuçları 142
3.2.2.6. Yeşil Yamaç Sitesi D-4 Blok anket sonuçları 143
3.2.3. Başakşehir ... 145
3.2.3.1. Başakşehir D-103 Blok anket sonuçları 146
3.2.3.2. Başakşehir D-103 Blok (Lojman) anket sonuçları 151
3.2.3.3. Başakşehir D-103 Blok anket sonuçları 154
3.2.3.4. Başakşehir D-103 Blok (Lojman) anket sonuçları 155
3.2.3. Bahçeşehir ... 157
3.2.4.1. Bahçeşehir B-22 Blok anket sonuçları 158
3.2.4.2. Bahçeşehir C-3 Blok anket sonuçları ... 161
3.2.4.3. Bahçeşehir C-3 Blok (Lojman) anket sonuçları 163
3.2.4.4. Bahçeşehir D-1 Blok anket sonuçları .. 165
3.2.4.5. Bahçeşehir B-22 Blok anket sonuçları .. 168
3.2.4.6. Bahçeşehir C-3 Blok anket sonuçları ... 169
3.2.4.7. Bahçeşehir C-3 Blok (Lojman) anket sonuçları 170
3.2.4.8. Bahçeşehir D-1 Blok anket sonuçları .. 170

3.3. Alan çalışması sonuçları ... 171

4. BACA HASARLARI ... 174

4.1. Mimaroba Orçelik Sitesi ... 174
4.2. Avcilar .. 179
4.3. Gölcük .. 194
4.4. Sonuçlar ... 202

5. BACA HASARLARINDA ONARIM YÖNTEMLERI 203

5.1. Onarımın amacı ve aşamaları .. 203
5.2. Onarım yöntemleri ... 205

5.2.1. Betonarme mantolama ... 205
5.2.2. Çelik levha ile kiliflama ... 206
5.2.3. Çelik profilden iskelet kurma .. 206
5.2.4. Çatıların genişletilerek onarılması .. 206
5.2.5. Enjeksiyon ile onarım .. 207
5.2.5.1. Portland çimentolu şerbetler .. 207
5.2.5.2. Polimerli şerbetler ... 207
5.2.6. Delerek kapatma ... 207
5.2.7. Elastik malzeme ile onarım .. 208

5.3. Sonuçlar ... 208

6. SONUÇ VE ÖNERİLER .. 209

KAYNAKLAR ... 213

ÖZGEÇMİŞ .. 214
KISALTMALAR

CO₂ : Karbon dioksit
NO₂ : Azot oksit
SO₂ : Kükürt dioksit
PVDF : Polyvinilidenfluorid
MMO : Makine Mühendisleri Odası
Ha Ba El : Hazır form baca elemanı
Ha Ba Taş : Hazır form baca taşı
<table>
<thead>
<tr>
<th>şekil</th>
<th>işel</th>
<th>olması</th>
<th>sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Öz (tekli) bacaklar</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Ekleme parçasının bacaya bağlanması</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Atık gaz tesisatı ve elemanları</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Şönt (ortak) baca</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Karışık ocaklı baca</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>2.6.a</td>
<td>Ekleme parçasının bağılarma tarzi ve temizleme kapağı</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2.6.b</td>
<td>Baca kaidesi ve ekleme parçasının yerleştirilmesi örnekleri</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Baca bileşenleri</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Baca bileşenleri (TS 2165’te kullanılan isimler)</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Birbirine boyuna geçmeli betondan baca</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(baça tepesi konstrüksyonuna örnek)</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>Betondan baca ağız kapağındaki iç ve dışa doğru eğimli kapak</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>Yumuşak çatı kaplamalı bir binada baca başı ölçüleri</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>Baca bileşenleri</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>2.13</td>
<td>Baca bileşenleri</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2.14</td>
<td>Bir şöfben ve bir ısı üreticisinin ortak ekleme parçasına bağlanması</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>2.15</td>
<td>İki şöfbenin birlikte bir bacaya bağlanması</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>2.16</td>
<td>Baca kapama tertibatın çeşitli takılma yerleri</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>2.17</td>
<td>Baca kapama tertibatları</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>2.18</td>
<td>Yan hava temini</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>2.19</td>
<td>Baca atık gaz aspiratörü (vantilatörü örnek)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>2.20</td>
<td>Baca susturucuları</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2.21</td>
<td>Yoğunlaşma suyu (kondensat) filtresi, Plewa sistemi</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>2.22</td>
<td>Yoğunlaşma suyu (kondensat) filtresi</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>2.23</td>
<td>Tuğladan örtülü tek ve çift tabakali bacaklar</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>2.24</td>
<td>Tek ve çok tabakali bacaklar</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>2.25</td>
<td>Çeşitli baca kesit şekilleri</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2.26</td>
<td>Bina dışından geçen düz metal bacaklar</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>2.27</td>
<td>Bina içinden geçen düz metal borular</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>2.28</td>
<td>Oynak (bükülebilir=flexible) baca örnekleri</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>2.29</td>
<td>Tekli şönt bacaklar</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>2.30</td>
<td>Havalandırma gayeli tekli şönt bacaklar</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>2.31</td>
<td>İkili şönt baca</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>2.32</td>
<td>Tek kolonlu bacaklar</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>2.33</td>
<td>Kombine yana havasi baca gazı bacakları</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>2.34</td>
<td>İç içe aynı merkezli daire veya kare kesitli boru sistemli bacaklar</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>2.35</td>
<td>Bitișik kolonlu bacaklar</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>2.36</td>
<td>U-boru sistemli bacaklar</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>2.37</td>
<td>U-boru sistemli bacaklar</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>2.38</td>
<td>Bina dışındaki baca örnekleri</td>
<td>49</td>
<td></td>
</tr>
</tbody>
</table>
Şekil 2.39 : Çift kabuklu çelik baca elemanlarının birleştirilmesi ... 51
Şekil 2.40 : C₃ türü doğal gaz cihazlarının dış duvara bağlanması .. 52
Şekil 2.41 : C₃ türü doğal gaz cihazlarının yanma havası ve baca gazi borularının ventilatörlü olup olmadığını göre çeşitli bağlanış şekilleri .. 53
Şekil 2.42 : Rutubete hassas olan ve olmayan bacalar ... 55
Şekil 2.43 : İç yüzeyi sirh ve hava aralıklı baca sistemleri .. 57
Şekil 2.44 : Baca cinsleri ... 59
Şekil 2.45 : Tuğladan örtülmüş tek cidarlı baca ... 60
Şekil 2.46 : Form parçalardan oluşan tek cidarlı baca ... 60
Şekil 2.47 : Form parçalardan oluşan çift cidarlı baca ... 61
Şekil 2.48 : Üç cidarlı baca ... 62
Şekil 2.49 : İç cidarı hassif beton veya şamot olan çok cidarlı baca .. 62
Şekil 2.50 : Tek cidarlı paslanmış çelik iç borulu çok cidarlı baca .. 63
Şekil 2.51 : Çift cidarlı paslanmış çelik iç borulu çok cidarlı baca ... 63
Şekil 2.52 : Çift cidarlı izole edilmiş paslanmış çelik borulu baca ... 64
Şekil 2.53 : Hava hücresi baca .. 65
Şekil 2.54 : Su geçirmez iç cidarlı baca ... 66
Şekil 2.55 : Hava-baca gazi baca sistemi .. 67
Şekil 2.56 : Hava-baca gazi baca Plewa sistemi ... 68
Şekil 2.57 : Schiedel ve Simo sistemleri ... 69
Şekil 2.58 : Schreyer ve Eterdor sistemleri ... 70
Şekil 2.59 : Kondensasyon (üst ısıt değer) kazançları için baca sistemi ... 71
Şekil 2.60 : Sicaklık dayanımı sınırı olan bacalar .. 72
Şekil 2.61 : Dış duvar cihazlarında baca gazi tahliyesi ve taze hava temini ... 73
Şekil 2.62 : Çatı üzerinden baca gazi tahliyesi ... 74
Şekil 2.63 : Şönt baca tuğlaları .. 81
Şekil 2.64 : Yuvarlak kare ve şönt baca tuğlaları .. 82
Şekil 2.65 : Baca tuğlaları ... 82
Şekil 2.66 : Kudret baca tuğlalarının teknik çizimleri ... 83
Şekil 2.67 : Büyük tip şomineler için baca tuğlası .. 83
Şekil 2.68 : Volkan A.Ş. baca tuğlası ... 84
Şekil 2.69 : Yüksek A.Ş. baca tuğlası ... 84
Şekil 2.70 : Kilsan A.Ş. baca tuğlası .. 84
Şekil 2.71 : Süperlit baca (Doğalgaz kalorifer bacaları) ... 85
Şekil 2.72 : Süperlit baca aksesuarları ... 86
Şekil 2.73 : Kazan cinsine ve grüne bağlı olarak duman gazı miktarı ve kazandaki yük kaybı 89
Şekil 2.74 : Farklı yakıtların baca gazlarındaki su buharı yoğunması sıcaklıklar ... 90
Şekil 2.75 : Kükürt içeriğine karşılık minimum malzeme sıcaklığı .. 90
Şekil 2.76 : Bacalar için sürtünme katsayısı ... 91
Şekil 2.77 : Kapasite/keşiş diyagramı .. 93
Şekil 2.78 : Baca çekisi .. 93
Şekil 2.79 : Kömür kazanları baca çapları (cm) .. 98
Şekil 2.80 : Alçak basınçlı brülörülü sıvı yakıt ve doğal gaz kazanları baca çapları (cm) 99
Şekil 2.81 : Yüksek basınçlı sıvı yakıt ve doğal gaz kazanları baca çapları (cm) .. 100
Şekil 2.82 : Atmosferik brülörülü doğal gaz kazanları baca çapları (cm) .. 101
Şekil 3.1 : Ayazağa Oyak Sitesi vaziyet planı ... 112
Şekil 3.2 : Ayazağa Oyak Sitesi D Blok anket sonuçları ile ilgili grafikler ... 116
Şekil 3.3 : Ayazağa Oyak Sitesi K Blok anket sonuçları ile ilgili grafikler .. 120
Şekil 3.4 : Yeşil Yamaç Sitesi vaziyet planı .. 124
Şekil 3.5 : Yeşil Yamaç Sitesi A-4 Blok anket sonuçları ile ilgili grafikler 129
Şekil 3.6 : Yeşil Yamaç Sitesi D-3 Blok anket sonuçları ile ilgili grafikler 136
Şekil 3.7 : Yeşil Yamaç Sitesi D-4 Blok anket sonuçları ile ilgili grafikler 140
Şekil 3.8 : Başakşehir D-103 Blok anket sonuçları ile ilgili grafikler 150
Şekil 3.9 : Başakşehir D Blok (lojman) anket sonuçları ile ilgili grafikler 153
Şekil 3.10 : Bahçeşehir B-22 Blok anket sonuçları ile ilgili grafikler 160
Şekil 3.11 : Bahçeşehir C-3 Blok anket sonuçları ile ilgili grafik 162
Şekil 3.12 : Bahçeşehir C-3 Blok (lojman) anket sonuçları ile ilgili grafik 164
Şekil 3.13 : Bahçeşehir D-1 Blok anket sonuçları ile ilgili grafikler 167
Şekil 4.1 : Mimaroba Orçelik Sitesi’nde hasarlı bir baca 176
Şekil 4.2 : Mimaroba Orçelik Sitesi’nde hasarlı bir baca 177
Şekil 4.3 : Mimaroba Orçelik Sitesi’nde hasarlı bir baca 178
Şekil 4.4 : Avcılar Belediye Bloklarında hasarlı bir baca 180
Şekil 4.5 : Avcılar Belediye Bloklarında hasarlı bir baca 181
Şekil 4.6 : Avcılar Belediye Bloklarında hasarlı bir baca 182
Şekil 4.7 : Avcılar Belediye Bloklarında hasarlı bir baca 183
Şekil 4.8 : Avcılar Belediye Bloklarında hasarlı bir baca 184
Şekil 4.9 : Avcılar Belediye Bloklarında bir mutfak başısı 185
Şekil 4.10 : Avcılar Belediye Bloklarında bir mutfak başısı 186
Şekil 4.11 : Avcılar Belediye Bloklarında bir mutfak başısı 187
Şekil 4.12 : Avcılar Belediye Bloklarında bir mutfak başısı 188
Şekil 4.13 : Avcılar’da hasarlı bir baca .. 189
Şekil 4.14 : Avcılar’da hasarlı bir baca .. 190
Şekil 4.15 : Avcılar’da hasarlı bir baca .. 191
Şekil 4.16 : Avcılar’da hasarlı bir baca .. 192
Şekil 4.17 : Avcılar Aksan-2 binasında hasarlı bir baca 193
Şekil 4.18 : Azaklar Mevkii/ Aktrukoğlu Sitesi’nde hasarlı bir baca 195
Şekil 4.19 : Azaklar Mevkii/ Aktrukoğlu Sitesi’nde bir mutfak başısı 196
Şekil 4.20 : Azaklar Mevkii/ Aktrukoğlu Sitesi’nde bir mutfak başısı 197
Şekil 4.21 : Azaklar Mevkii/ Aktrukoğlu Sitesi’nde bir mutfak başısı 198
Şekil 4.22 : Azaklar Mevkii/ Aktrukoğlu Sitesi’nde devrilmış bir baca 199
Şekil 4.23 : Gölcük’te hasarlı bacalar .. 200
Şekil 4.24 : Gölcük’te ve Aktrukoğlu Sitesi’nde devrilmış bacalar 201
Sembol Listesi

<table>
<thead>
<tr>
<th>Sembol</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_H</td>
<td>Baca çekisi</td>
</tr>
<tr>
<td>P_W</td>
<td>Kazandaki basınç kaybı</td>
</tr>
<tr>
<td>P_A</td>
<td>Bağlantı kanalındaki basınç kaybı</td>
</tr>
<tr>
<td>P_E</td>
<td>Bacadaki basınç kaybı</td>
</tr>
<tr>
<td>P_O</td>
<td>Hava teminindeki basınç kaybı</td>
</tr>
<tr>
<td>m</td>
<td>Duman miktarı (kütlesi)</td>
</tr>
<tr>
<td>Q</td>
<td>Kazan ısıl gücü</td>
</tr>
<tr>
<td>D_R</td>
<td>Hidrolik Çap</td>
</tr>
<tr>
<td>F</td>
<td>Baca kesiti</td>
</tr>
<tr>
<td>U</td>
<td>Kesitin çevresel uzunluğu</td>
</tr>
<tr>
<td>n</td>
<td>Hava fazlalık katsayısı</td>
</tr>
<tr>
<td>t</td>
<td>Yoğunma sıcaklığı</td>
</tr>
<tr>
<td>r</td>
<td>Pürüzlülük değeri</td>
</tr>
<tr>
<td>λ</td>
<td>Sürünme basınç kayıp katsayısı</td>
</tr>
<tr>
<td>ξ</td>
<td>Özel kayıp katsayısı</td>
</tr>
<tr>
<td>$\sum \xi$</td>
<td>Özel kayıp katsayıları toplamı</td>
</tr>
<tr>
<td>ρ_A</td>
<td>Baça gazlarının yoğunluğu</td>
</tr>
<tr>
<td>ρ_H</td>
<td>Hava yoğunluğu</td>
</tr>
<tr>
<td>W</td>
<td>Ortalama gaz hızı</td>
</tr>
<tr>
<td>H</td>
<td>Baça yüksekliği veya bağlanı kanalı uzunluğu</td>
</tr>
<tr>
<td>$1/A$</td>
<td>Bacanın ısı geçirgenlik direnci</td>
</tr>
<tr>
<td>g</td>
<td>Yer çekimi ivmesi</td>
</tr>
<tr>
<td>k</td>
<td>Duman miktarı belirleme katsayısı</td>
</tr>
<tr>
<td>T_{lob}</td>
<td>Rejim halinde baca ağızında iç yüzey sıcaklığı</td>
</tr>
<tr>
<td>T_{g}</td>
<td>Baça gazı sıcaklığı</td>
</tr>
<tr>
<td>T_{bg}</td>
<td>Baça gazı yoğun ve sıcaklığı</td>
</tr>
</tbody>
</table>
ÇOK KATLI KONUT YAPILARINDA ŞÖNT BACALAR ÜZERİNE BİR DEĞERLENDİRME

ÖZET

AN EVALUATION ON SHUNT CHIMNEYS OF THE RESIDENTIAL HIGH BUILDINGS

SUMMARY

This study analyzes the shunt chimneys used in multistorey housing - especially smoke chimneys in apartments - and earthquake damages upon the chimneys. In Turkey in the last 25 years the need for housing has increased because of migrations, the increase in population, fastly urbanizing, etc. Too much high residence buildings have existed. Even tough almost every smoke and ventilation chimney in high residence buildings is constructed with using the shunt chimney brick, no adequate importance is given to the chimneys and they are not constructed truly. Despite in developed countries chimneys are taken as a specialization branch, in our country chimneys have no importance at all. Chimney construction firms should be widespread around the country. This study aims at preparing a handbook about chimneys for the architects. Inquiry study has been performed in order to evaluate the problems relating to the chimneys in multistorey housing. The high buildings that have been affected by the Marmara Earthquake are observed in order to realize the chimney damages. Reparation ways for the damaged chimneys are suggested. True construction of chimneys can be obtained by getting know-how, by attaching importance to chimneys, by making necessary controls, by improving the building culture of the architect, civil and mechanical engineers and the society and by increasing the building quality.
1. GİRİŞ

Baca, esas olarak yanma ürünü gazları (duman veya atık gaz) çevreye zarar vermeyecek şekilde dışarı atan ve kazanda sıcak gazların istenilen bir hızda dolaşabilmesi için gerekli doğal çeşitli sağlayan boru veya kanallara verilen adır.

Ülkemizde özellikle küçük sanayi tesisleri ile konutlardaki bacaları hem tasarım, hem de yapım aşamalarında önem verilmemiş ve bacaların doğru yapılamadığı gözlenmektedir. Bacaların doğru yapılamamasının nedenleri arasında:

- bilgi eksikliği,
- önemsememek, umursamamak,
- denetim yetersizliği,
- yapı kültür,
- yapı kalitesi

sayılabilir.

Kazanların verimli çalışmasının yanında, yangın ile yapı sağlamlığı ve benzeri yönlerden bacanın

- kesitinin belirlenmesi,
- yüksekliğinin belirlenmesi,
- malzemesinin seçimi,
- konstrüksiyonu

çok önemlidir.

Genel olarak bir ev duman bacasında aranan özellikler şunlardır:

1. Baca yeterli kesitte olmalıdır.
2. Kazan tipine uygun yeterli yükseklikte olmalıdır.
3. Baca yüksekliği, baca hidrolik çapının 150 mislinden fazla olmalıdır.
4. Bacanın içinde meydana gelebilecek kurum yanmalarına karşı dayanıklı olmalıdır.
5. Baca malzemesi yanmaz olmalı ve baca dışında oluşan yangınların, bacakdan diğer bölümlere geçmesini belirli bir süre engelleyebilecek dayanıklılıkta olmalıdır.
7. Özellikle doğal gaz kullanan kazanların bacaları, yoğun suyu dışarı geçirmemelidir.
8. Yüksek binalarda bacaların genleşme ve kendini taşımazı şartları kontrol edilmelidir.
9. Baca yüzeyleri sertlama kayıplarını azaltmak üzere mümkün olduğu kadar düzgün olmalıdır.
10. Baca iç yüzeyi, sıcak gazların neden olduğu ısıl gerilmelere dayanabilecek özellikte olmalıdır.

- İrä üretici cihazın kapasitesinin küçülmesi ile baca gazı debisinin azalması,
- Yüksek yakma sistemi verimi nedeniyle baca gazı sıcaklığının düşmesi,
- Hava fazlalık katsayısının küçük olması nedeniyle baca gazı debisinin azalması ve su buhari yoğunlaşma sıcaklığının yükselmesi,
- Brülör çalışma süresinin uzatılması ile brülör durma zamanının kısalması ve bacanın soğumasının önlenmesi gibi baca tasarımını için gerekli olan verilerde büyük değişmeler meydana gelmiştir.

Baca gazı şartlarındaki bu değişmeler, binalarda yeni gereksinimlere göre baca yapısını gerektirir. Yoğunlaşma sınırına kadar düşen baca gazı sıcaklığı ve baca gazı
debisinin azalması, baca tasarımında daha dikkatli olma gerektiğini getirmektedir. Bu konuya özellikle kalorifer sistemi modernizasyonu sırasında dikkat edilmelidir. Kalorifer tesisatı ve bacanın uyumlu olmaması, maddi zararlarla neden olur.

Yeni yapılan binalarda, modern kalorifer tesisatının ihtiyacına göre, tamamen yeni, iyi izole edilmiş ve boyutlandırılmış baca yapma imkanı vardır. Mevcut tesisatta ısı üreticinin değiştirilmiş durumunda, baca gazı debisi, baca gazı sıcaklığı ve gerekli gaz basıncı önceliği kazana göre önemli oranda değiştiğinden, baca kontrol edilmelidir. Yeni ısı üreticisi cihaz takılmalıdır önce yetkililere başvurulmalı ve baca, yetkililer tarafından incelenmelidir.

Baca, yanma ürünü gazları (duman) dışarı atan bir yapı elemanıdır. Yanma sonucu meydana gelen yanma ürünleri (CO₂, SO₂ ve NOₓ gibi) ve partikülleri yanında, su buharı da baca gazı (duman) ile birlikte dışarı atılır. Eğer baca malzemesi ve kontrüksiyonu gereklilik şartları sağlanıyorsa, baca gazındaki su buharının baca içinde yoğunlaşması ile baca duvar malzemesinde buhar geçışı (diffüzyonu) olayı meydana gelir. Bu da, maddi zarara ve sonuç olarak bacađa çökmelere neden olur.

Ülkemiz sınırlı enerji kaynaklarını verimli şekilde tüketmek zorunda. Bunun için, uzun vadeli enerji tasarruf programına ihtiyac vardır ve bu programda konut ischemesi için harcanan enerjinin toplam enerji tüketimi içindeki payının % 41 olduğu ve konutlardaki ısı kaybının % 32’sinin bacakdan olduğu düşünülürse, konunun özel olarak ele alınması gerekliği ortaya çıkar.

Baca yapımı ve baca sorunlarının çözümu işi, bir uzmanlık dalıdır. Çeşitli Avrupa ülkelerinde, baca konusunda uzmanlaşmış firmalar olması, bu konuya verilen önemi göstermektedir.

Baca konusu, gelişmiş ülkelerde bir uzmanlık dalları olarak ele alınmaktayken, ülkemizde de bacaların önemine anlaşılması ve özel baca firmalarının yaygınlaşması gerekmektedir.

Baca konusunun incelenmesi ve yaygınlaşmasında herşeyden önce konunun bilinmesi ve tanınların yerinde kullanılması gerekir.

Çok katlı, yüksek binalar yapımaya başladığında itibaren bacaların planda işgal ettiği alan bir sorun olmuştur. Her kata ait baca deliklerinin müstakil olarak çatının üstüne kadar çıkması prensibine göre, bütün katların bacalarının toplamı, bu tip binalarda doğal olarak önemli bir miktar tutar. Şönt baca sistemi, bu konuda yenilik
yapmış ve geniş ekonomi sağlamış bir sistemdir. Şönt prensibi, bu sorunu biri özel, diğeri ortak olan iki kanalla (baca ile) çözülmüştür. Ortak kanal, bir katın kendine bağlanan dumanını bir sonraki kat tavanı seviyesinde umumi kanala vermekle ve bu prensip her katta aynı şekilde tekrar edilmektedir. Özel kanal dar, ortak kanal genişir ve özel kanallar her katta üst üste geldikleri için bacaların işgal ettiği alan daima aynıdır.

Büyük kanalın, katlar arasında sesi iletmesi söz konusu olamaz; aksi halde sesin küçük kanallardan aşağıya inmesi gerekirdi. Şu halde, şönt baca sistemi, akustik bakımından da mükemmelidir.

Dar kanallar kolyasınısı ve isıını koruduğu, içindeki dumanı sıcak olarak büyük kanala verdiği ve her katta bu geniş kanala sıcak duman verildiği için orada bir doğal çekis meydana gelir.

Hollanda şönt sistemi baca, ülkemizde ilk defa İstanbul Ataköy Sitesi için planlanmış ve o sıralarda yapılacaktır olan Levent Mahallesi 4. kısım inşaatına ait ‘OAD 7’ tip numarasını ihtiva eden 7 katlı bir blokta (Sinema bloğunda) uygulanmak sureti ile denenmiştir.

Bu çalışma, mimarlara baca konusunda yararlanabileceği bir el kitabı sunabilmeyi; yüksek konut yapılarında şönt bacaların neden olduğu sorunları, deprem sonucunda bacalarda ve özellikle şönt bacalarda meydana gelen hasarları araştırmayı ve ortaya koyabilmeyi; baca hasarları için onarım yöntemleri önerabilmeyi amaçlamaktadır. Bu kapsamda, baca konusunu anlayabilmek için öncelikle temel bilgiler bölümü oluşturulmuş, bacalar ile ilgili şartnameler sıralanmış, piyasada mevcut baca malzemeleri incelenmiş, basit baca hesap yöntemleri verilmıştır. Çok katlı konut yapılarında şönt baca uygulamalarının değerlendirilmesi için İstanbul içinde dört farklı sitede anket çalışması yapılmıştır. Baca hasarları incelenmiştir ve gidermek için onarım yöntemleri sıralanmıştır.

Çalışmada çok katlı konut yapılarında şönt bacalar ve duman bacaları esas alınmıştır. Çalışmanın hazırlanma süresinin sınırlı olması, bacalarında hasar bulunan yüksek konut yapılarında onarım veya güçlendirme görmemiş veya yükülecek olanların bulma zorluğu çalışmanın gelişmesi için kısıtlayıcı faktörler olmuştur.
2. BACALAR

2.1. Baca İle İlgili Tanımlar

2.1.1. Konut vb. Bina Bacası

Ocaklardan çıkan atık gazları, dam üstünden açık havaya atmaya yarayan, bina içinde veya binaya bitişik olarak silindir veya dikdörtgen prizma biçiminde inşa edilmiş içi boş bir bina elemandır.Bacada oluşan atmosfer altı basınçla da ocağa yanma için gerekli temiz havanın ocağa girmesi sağlanır.

2.1.2. Konut Bacası Grubu

Birçok konut bacasını bir araya toplayarak bina içine veya binaya bitişik olarak inşa edilen baca sistemidir. Bir veya birden çok havalandırma bacası yanında sadece bir atık gaz (duman) bacası içeren yapı bölümleri de baca grubudur.

2.1.3. Baca Gazı

Kuan çıkış deliğinden çıkan, yakıt cinsine bağlı olmayan ve baca yoluyla atmosfere atılan gaz karışımıdır.

2.1.4. Etken Baca Yükseklüğü

Baca ağzı yüksekliği ile dumanın bacağa girdiği deliğin (bağlantı borusunun giriş deliği) yüksekliği arasındaki farktır.
2.1.5. Etken Bağlantı Borusu Yüksekliği
Bağlantı borusunun bacaya giriş deliği yüksekliği ile kazan çıkış deliği yüksekliği arasındaki farktır.

2.1.6. Bacanın Hidrolik Narinliği
Baca etkili yüksekliğinin, baca iç enkesitinin hidrolik çapına olan oranıdır.

2.1.7. Bacanın İst Geçirgenlik Direnci (1/°A , birimi m²K/W)
Düz duvarın (veya silindir biçimli bacada silindir cidarın) ısı geçirgenlik direncine eşittir. Bacanın ısı geçirgenlik direnci, baca cidarının kısmi yüzey elemanlarına (dA) ait ısı geçirgenlik dirençlerinin aritmetik ortalama değeridir. Bu değer, bacanın iç yüzeyleri ile bu yüzeylere ait 200°C’lik ortalama yüzey sıcaklığı esas alınarak tespit edilmiştir. İst geceirgenlik direnci grupları Tablo 2.1’de verilmiştir.

Tablo 2.1 : İst geçirgenlik direnci grupları

<table>
<thead>
<tr>
<th>ISİ GECİRGENLİK DIRENCİ m²K/W (1/°A)</th>
<th>ISİ GECİRGENLİK DIRENCİ GRUBU</th>
<th>TS 11389’A GÖRE UYGULAMA TIPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>En az 0,65</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>0,22 – 0,64</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td>0,12 – 0,21</td>
<td>III</td>
<td>III ve III a</td>
</tr>
<tr>
<td>< 0,12 *</td>
<td>IV</td>
<td></td>
</tr>
</tbody>
</table>

* Düşük nitelikli çelik bacalar içindir. Yalnızca yasaya izin verildiğinde kullanılabilir.

2.1.8. Ocaklar
Atık gazları bacalara verilen, katı, sıvı veya gaz şeklindeki yakıtların veya çöp gibi başka maddelerin (atıkların) yakılmasına mahsus tertibat veya tesistir. Tek bir atık ağızi bulunan tertibatlar, tek ocak olarak kabul edilir. Belirli hallerde atık gazlarının
bir bacağa bağlanmasına ihtiyaç duyulmayan gaz yakıtlı ocaqların atık gazları, bulundukları mahalle olduğu gibi bırakılır.

2.1.9. Ayarlı Ocaqlar (Kurala Uygun Ocaqlar)

18/50 krible kömür, kok, briki, odun, odun kömürü, torf, fuel-oil, doğal gaz, LPG ile her türlü araylamada atık gaz sıcaklığı 400°C'yi aşmaya, oluşan atık gaz içinde yanabilen veya parlayıcı ve patlayıcı madde meydana getirmeyen gazlarla çalışan ocaqlardır. Kurumlar, bu tanımda göz önune alınmamıştır.

2.1.10. Özel Ocaqlar

Hiçbir ayar tertibatına sahip olmayan ocaqlardır. (Tütsü ocaqları, fritözler, gril ocaqları ve yakıt olarak başka yakıtların yakılmasına mahnus ocaqlardır.)

2.1.11. Yakma Tekniği

Ocağın anma ısısı güçlü göz önune alınarak ve gerekli ayar ve kumanda (otomatik kontrol) alet ve cihazları ile donanımları da kullanmak ve

- Baca ve ekleme parçalarına ait iç enkesit, etkili yüksekliklerle ilgili geometrik büyüklüklerin amaca uygun zararda haposlanması,
- Atık gazların taşımadasında hava ağırlarıyla meydana gelmesi muhtemel tehlikelerin engellenmesine ilişkin gerekli bütün emniyet tedbirlerinin alınması,
- Atık gazın taşımadasında gerekli itme alt basıncı ile atık gaz sıcaklığı, çıq noksası sıcaklığı, vb. termodinamik büyüklüklerle atık gaz yolundaki aks dirençlerini ve baca ekonomik ömrünü azaltan malzeme pürzülüğü ve cinsi gibi fiziki değerin tespiti,
- Yakma için gerekli yakma (besleme) havasının uygun değerde seçilmesi suretiyle yakının, en az çevre kirilılığıne sebeb olarak olacak zarında optimum verimle yakılması teknliği di.

2.1.12. Tek Cidarlı Baca (Tek Kabuklu/Tabakalı Baca)

Duvarları kağır inşaat teknigiğine göre tek duvar halinde örtülerek tülglardan veya bu maksatla özel olarak imal edilmiş Ha Ba El veya Ha Ba Taş elemanlarından inşa edilen bir tip bacadır.

2.1.13. Çok Cidarlı Baca

Duvarları birden fazla ve farklı malzemeden yapılmış tabakaldan oluşan bacadır.
2.1.14. Kombi Bacalar

Tek tabakalı ile çok tabakalı baca gruplarından oluşan bacadir.

2.1.15. Sıcaklığa Dayanıklılığı Sınırlı Bacalar

Yalnızca 350°C'den daha yüksek olmayan gaz yakıtlı ocakların atık gazlarına karşı dayanıklı olan bacadir. Ancak kurum yanmalarına karşı dayanıklı değildir.

Şekil 2.1 : Öz (tekli) bacalar

Şekil 2.2 : Ekleme parçasının bacaya bağlanması

Şekil 2.3 : Atık gaz tesisati ve elemanları
2.1.16. Düşük Nitelikli Çelik Baca:

Baca içindeki kurum yanmalarına ve binadaki yangınlara karşı dayanıklılığı düşük, kısa ömürlü ve dayanıksız, binayı ancak yangının meydana gelmesine veya yangının yayılmasına karşı düşük seviyede koruyan, beklenilmeyen isınlara karşı oturma (çalışma) mahallerini korumayan veya ısı geçirgenlik direnci IV. gruba giren bacadır.

2.1.17. Tekli Baca (Öz / Müstakil Baca)

Yalnızca bir ocağın bağlılığı bacakları bacakdır. Birden çok ocağın bağlılığı bir ekleme parçasını ihtiva eden baca öz baca değildir. Öz (tekli) bacalar, ekleme parçasının baca ya da ilânmasının, atık gaz tesisatı ve elemanları sırasıyla şekil 2.1, 2.2, 2.3’de görülmektedir.

2.1.18. Müsterek Baca (Ortak / Şönt Baca)

Her defasında birçok ocağın bağlılığı ocaklar, birçok ekleme parçasıyla bağlantılılarında ve birbirinden bağımsız işlemlebildiklerinde, şönt bacalar çok ocağı baca sayılır. (Şekil 2.4)

Şönt bacaları bir kattaki ocağın ait ekleme parçası, şönt bacaya paralel ve ekleme parçasının iç enkesitine eşit kesitteki yardımcı bir baca ile bağlanır; ancak bu yardımcı (yan) baca, bir üst kata ait ekleme parçasına ait yan bacakın hemen altında ortak baca ya da girmelidir. Şönt baca ile yan baca arasındaki ara duvar en az 90 mm kalınlığa, en az 0,005 m yüzey pürüzlülüğüne ve tam (gaz) sızdırmaz bir özelliğe sahip olmalıdır.

![Şekil 2.4 : Şönt baca (ortak baca)](image-url)
2.1.19. Karışık Ocaklı Baca

Katı veya sıvı yakıtlarla çalışan ocaklarla çalışan ocaklardan başka, gaz yakıtlı ocakların da bağlandığı ortak bacadır. Karışık ocaklı baca Şekil 2.5'te görülmektedir.

Şekil 2.5 : Karışık ocaklı baca

2.1.20. Buhar Geçişi (Difüzyonu) Özelliği

Ara havalandırmalı bacalar hariç olmak üzere çok tabakalı bacaların her bir tabakasının buhar geçişi direncinin içteki tabakanın buhar geçiş direncinden yüksek olmaması durumudur. Ara havalandırma yapılan çok tabakalı bacaların dış tabakaları için de aynı durum geçerlidir.

Baca gazı ve malzemesi gerekli şartları sağlamıyorsa baca gazındaki su buhari baca içinde yoğunur ve baca duvar malzemesinde buhar geçişi (difüzyonu) meydana gelir.

2.1.21. İnfısyon Koruması

İsi üreten cihazların ve bacaların, baca gazı içindeki kurum, CO, vb. zararlı maddelerin mümkün olduğu kadar az olarak şekilde çalıştırılması ve boyutlandırılmasıdır.
2.1.22. Atmosfer Üstü Basınçta Sızdırmazlık

Baca içindeki dumanın statik basıncının, çok kısa süre için dış ortamlardaki hava basıncından büyük olması halinde, baca içinde dış ortama baca duvarından kaçak olmaması halidir.

2.1.23. Bacalarda Yoğuşma

Yanma sonunda meydana gelen yanma ürünler ve partiküller (CO₂, SO₂, NOₓ gibi) yanından su buharı da oluşur ve baca gazi ile birlikte dışarı atılır. Baca gazındaki su buharının yoğunluğu, baca gazının yüzeylerde soğuyarak yoğunlaşma (çığ) noktasına düşmesi ile meydana gelir ve pratikte 50°C civarındadır. Bacalardaki yoğunlaşma ile yoğunlaşma sıcaklığı; baca iç yüzeyinin soğuk olması, baca gazının hızının düşlüğü, brülörün kesikli çalışması, baca gazındaki su buharının miktarı, yanma havası fazladır katsayısı, kullanılan yakıtın cinsi, CO₂ yüzdesi, vb. faktörlere bağlıdır.

2.2. Yakma Tekniği

Bacanın iç enkesiti, etkili yüksekliği, tertibi, sızdırmazlığı ve ısı geçirenlik direnci, ısı iletici ve ekleme parçasına ait gerekli itme basınçının sağlanmasıyla, yakma için gerekli besleme havasının teminine imkan vermelidir ve bacanın sürtünme basınçının (sürtünme direncini) yenilmesini sağlamlıdır.

Vantilatörli (üflemeli) yakma donatılara sahip ocaklar için yakma havasının sağlanmasında gerekli itme basınç göz önüne alınmamalıdır. Ancak, esas olarak bacaya bağlı olan ocakların çalışmaya başlama durumunda, periyodu, bacadaki ve ekleme parçasındaki atık gazi statik basınç, çevre mahallerdeki havanın statik basınçından daha az olmalıdır.

Atık gaz içinde bulunan buhar şeklindeki atık gaz elemanlarının yoğunlaştırarak bacaya zarar vermemesi için atık gazlar, tam olarak emin bir şekilde açık havaya atılmalıdır. Bu bakımından bacalar soğumaya karşı tam korunmuş olmalıdır.

Bacalar, yakma havasının sağlanmasında ve atık gazların taşınmasında meydana gelen haya akışlarıyla tehlike meydana getirmeyecek tarzda tertiplenmelidir ve inşa edilmelidir.

Bacaların iç yüzeyleri, kullanılan yapı malzemesinin ve yapının verdiği imkanlar ölçüsünde, pürüzsz (en çok 0,002 m) olmalıdır.

12
2.2.1. Yakma Tekniği İle İlgili Kurallar

2.2.1.1. Bacalar, Oacaklar ve Yerleştirmeye Mahalleri

Bacalar, binaya önceden yerleştirilmesi kararlaştırılan oacakların, sayısı ve anma ısı güçleri göz önüne alınmak suretiyle usulüne uygun olarak bacalarla bağlantılmasına ve kullanılabilirmesine imkan verecek sayısı, özellikle ve durumda inşa edilmelidir. Bacalarla yalnızca usulüne uygun tesis (yapılardırma) imkanı olan oacaklar bağlantılmalı; yerleştirmeye (montaj) mahalleri (biçim, boyut, yerleştirmeye, vb. bakımından), oacaklara gerekli miktarda yanma havasını her durumda sağlayacak yeterliktir olmalıdır.

2.2.1.2. Üst Basınç Altında Sızdırmazlık

Baca içindeki atk gazın statik basınıncı, kısa süre, sız girişi bir ocağa ait brülörün çalışmaya başlaması durumunda çevresel maddelerdeki hava basıncından daha büyük olduğunda, bacaklarda cidarlardan dışarıya sızan atk gaz miktari tehlike yaratmayacak miktarda olmalıdır.

Yalnızca kısa süre statik üst basınç altında çalışabilen bacakların cidarlardan ve ara duvarlarından ve ara duvarlarından sızan atk gaz miktari, izin verilen değerin altında olmalıdır.

2.2.1.3. Baca Malzemesinin Buhar Difüzyonu Özelliği

Baca malzemesinin buhar difüzyonu özelliği, Madde 5’e uygun olmalıdır. Baca duvarlarının inden daha yüksek buhar difüzyonu dirençli dış giydirmeler (kılıflar) ve Kaplanmalar, bacakı büyük örtü halinde kapladıkları takdirde, baca dış yüzeyleri sürekli ve tam olarak havalandırılabilecek şekilde, baca dış yüzeyinden uygun aralıktı yerleştirilmelidir. Baca duvarlarının inden daha yüksek buhar difüzyonu dirençli büyük yüzeyli dış Kaplanmaların yapımına izin verilmemek.

2.2.1.4. İç Yüzeyler

Bacanın iç yüzeyleri kaplanmamalıdır, ancak bu kural iç enkesitin küçültülmesinde kullanılmamasına izin verilen kaplamalar光纤 için geçerli değildir. Yüzey özelliklerine ilişkin kurallar sebebiyle pürüzsüz olması gereği (en fazla 0,002 m) ve kagir bacalarla ilgili esaslar göz önune alınmalıdır.
2.2.1.5. Buhar Diffüzyonu Davranışı
Çok ciddi ların münferit cidalarına ait buhar diffüzyonu direnci, arkadaş havalandırılan cidalar hariç, iç cidaların buhar diffüzyon direncinden daha büyük olmamalıdır. Bu kural, mantıklı olarak bacalarında büyük alanlar meydana getiren arkadaş havalandırımlayan kaplamaları teşkil eden ek dış tabakaların buhar diffüzyonu dirençleri için de geçerlidir.

2.2.2. Genel
Yakma tekniği ile ilgili şartlar, madde 6.1.1, 6.1.2, 6.1.3, 6.1.4 teki şartlarla birlikte gerçekleştirmelidir.

2.2.3. Yere Göre Baca ve Ocakların Yerleştirilmesi
Bacalar ve ocaklar, güç ve fonksiyonuna göre TS 1257 ve 2192’ye uygun olarak yerleştilmelidir. Yerleştirmede, ocağın bacaya en kısa yoldan olabildiğince yön değiştirme kısının ve bacaya yüksek bir eğimle bağlanması gerekliydi, göz önünde bulundurulmalıdır. Ekleme parçasının (atık gaz kanalı veya atık gaz borusunun) yerleştilmesinde TS 11384 teki kurallara tam olarak uygulanmalıdır. Uygulamada, Bölüm 3.1.1’deki kurallar da göz önünde alınmalıdır.

2.2.4. Modern Isıtma Tekniğinin Bacaya Etkileri
Önceleri ısı izolasyonu olmayan, tek cidarlı, geniş kesitli bacaların kullanılması ve baca gazlarının yüksek sıcaklıkta olması, gerekli baca çekişini rahatlıkla karşılyordu. Bu nedenle birden fazla cihazın aynı bacaya bağlanmasında baca uygunluğu dikkat edilmedi.

2.3. Baca Bileşenleri

2.3.1. Baca Cidarı (Baca Duvarı/Yanağlı)

Bacanın ve baca grubunun dış duvarlardır. Şekil 2.7'de görülmektedir.

2.3.2. Baca Ara Bölme Duvarı (Baca Perdesi/Dili)

Bir baca grubunda bacalar arasındaki veya bir atık gaz bacası ile havalandırma bacanın birbirinden ayıran, aynı baca malzemessinden aynı özellikte (sizdirmazlık, pürüzlülük, ...) inşa edilen ara (iç) duvardır ve Şekil 2.7'de görülmektedir.

2.3.3. Baca Kaidesi (Baca Temeli)

Bacanın en altında bulunan ve bacadan ayrı tarzda ve malzemeden yapılmış olan, bir nevi taşyıcı vazifesi gören kısımdır. Kaidenin bir taban vardır. En alta temizleme ağızı (deliği) ile ekleme parçası için bağlama ağızı ve kapağı da vardır. Şekil 2.7, 2.6.a, 2.6.b'de sırası ile ekleme parçasının bağlanma tarzı ve baca kaidesi ve ekleme parçasının yerleştirilmesi görülmektedir.

Şekil 2.6.a : Ekleme parçasının bağlanma tarzı ve temizleme kapağı
Şekil 2.6.b : Baca kaidesi ve ekleme parçasının yerleştirilmesi
2.3.4. Baca Başı

Bacanın çatının üstünde kalan bölümdür. Şekil 2.7, 2.9, 2.10, 2.11'de görülmektedir.

2.3.5. Baca Gövdesi (Baca Kolonu/Kanah)

Baca kaidesi ile baca başı (ağzi) arasındaki bölümdür. Şekil 2.7'de görülmektedir.

Şekil 2.7: Baca bileşenleri
a) iki kolonlu baca
b) metalik (keramik) baca

1. baca temeli
2. temizleme deliği
3. baca kolonu - kanalı -
4. baca duvarı - yanağı -
5. baca perdesi - dili -
6. baca başı
7. baca örtüsü
8. kazan
9. gaz yakacaklı ısı cihazı
10. baca kaidesi
11. yaka
12. uzatma elemanı
13. ara tesbit elemanı
14. montaj bileziği
15. kontrol elemanı
16. hava giriş kafesi
17. destek elemanı
18. dirsek
19. temizleme elemanı
20. hava kolonu
2.3.6. Baca Ağızı

Bacanın atmosfere açıldığı üç kısımdır.

2.3.7. Baca Şapkası

Baca ağızının üstünde bulunan saç veya inşaat malzemesinden yapılmış, alt yan taraflarından duman (baca gazı) çıkan bileşendir. Şekil 2.7’de görülmektedir.

Şekil 2.8 : Baca bileşenleri (TS 2165’te kullanılan isimler)
Şekil 2.9: Birbirine boyuna geçmeli betondan baca (baca tepesi konstrüksiyonuna örnek)

Şekil 2.10: Betondan baca ağzı kapağında içe ve dışa doğru eğimli kapak

Şekil 2.11: Yumuşak çatı kaplamalı bir binada baca başı ölçüleri
2.3.8. Baca Deliği

Baca içinde bulunan dumanların ve yanma havasının geçtiği daire, kare veya dikdörtgen kesiti kanallardır.

Şekil 2.12: Baca bileşenleri

2.3.9. Temizleme Ağızı (Temizleme Deliği)

Bacanın temizlenmesinde kullanılan, baca cidarları (duvarları) üzerinde yer alan, kapatılabilen açıklıklardır. Temizleme maksadıyla baca içine girmek için baca cidarları üzerindeki giriş delikleri (menhol) de temizleme ağzıdır. Ekleme parçasının
2.3.12. Hazır Form Baca Taşı (Ha Ba Taş)

Tek başına bir baca iç enkesitini tam olarak meydana getiremeyen, baca iç enkesitinin biçimine cidar kalınlığına uygun olarak (dökme, yontma, vb. kama tuğla, kilit taş, daire halka parça prizması vb.) imal edilmiş bir baca inşaat malzemesidir.

2.3.13. Bağlantı Borusu / Kanalı (Duman Toplama Borusu) (Ekleme Parçası)

Ocağın bulunduğu kazan, soba, vb. ısı üreten cihazda oluşan damarı bacaya ulaştıran kağır veya çoğu kez çelik saçtan yapılmış daire, kare veya dikdörtgen kesitli kanalıdır. Ekleme parçasının bacaya bağlanması Şekil 2.2’de görülmektedir.

2.3.14. Müşterek Bağlantı Borusu (Ortak Ekleme Parçası)

Birden fazla sayıdaki ocaklarda oluşan damarı nakleden boruların (kol boruları) birleştği ve bacadaki giriş deliğiine ulaştıran bağlantı borusudur. Bir şofben ve bir ısı üreticisinin ortak ekleme parçasına bağlanması Şekil 2.14’te, : İki şofbenin birlikte bir hacaya bağlanması Şekil 2.15’te görülmektedir.

Şekil 2.14 : Bir şofben ve bir ısı üreticisinin ortak ekleme parçasına bağlanması

Şekil 2.15 : İki şofbenin birlikte bir hacaya bağlanması

2.3.15. Kısma Tertibatı

Ekleme parçasındaki atık gaz akış direncinin yükseltildiği için ocağın atık gaz ağızlarına veya ekleme parçasında atık gaz yoluna yerleştirilen bir baca tesisatı elemanıdır.
2.3.16. Kapatma Tertibatı

Yakıt tertibatının durdurulması veya bir açık şominenin işletme dışı bırakılması sırasında atık gaz yolu nun kapatılması için şominelere, dumlumbazlara (duman sandıklarına), bacakların ağızlara veya eklemee parçaları içine yerleştirilen bir baca tesisatı elemanıdır. Baca kapama tertibatının çeşitli takılma yerleri Şekil 2.16’da, baca kapama tertibatları Şekil 2.17’de görülmektedir.

Şekil 2.16 : Baca kapama tertibatının çeşitli takılma yerleri
1. yan hava tertibatı
2. baca kapama tertibatı
3. havalandırma deliği

22
2.3.17. Yardımcı (Yan) Havalandırma Tertibatı

Bacaya kendiliğinden ek hava veren bir baca tesisatı tertibatıdır. Yan hava temini Şekil 2.18'de görülmektedir.

Şekil 2.17: Baca kapama tertibatları

2.3.18. Kurum Tutucu

Bacanın temizlenmesi sırasında, atık gaz yolu nun süzülmek şekilde kapatılması için, ekleme parçaları içine veya baca içinde atık gaz yolu üzerine yerleştirilen bir baca tesisatı elemanıdır.
2.3.19. Atık Gaz Ventilatörü (Aspiratörü)

1. yan hava
2. kapak - klape-
3. karşı ağırlık
4. baca gazı

Şekil 2.18 : Yan hava temini

Şekil 2.19 : Baca atık gaz aspiratörü (ventilatörü-örnek)

2.3.20. Baca Susturucuları

Şekil 2.20 : Baca susturucuları
1. baca susturucu
2. yan hava tertibatı

2.3.21. Yoğunuma Suyu Filtreleri

Yoğunan su (kondensat), saf su özelliğinde olmayıp bünüyesinde baca gazi ile atmosfere atılması gerekenin yoğunan su ile karşı bir miktar zararlı madde bulunur. Bünüyesindeki yanmamış CH, kurum, kükürt ve azot bileşimleri ile yoğunan su korozyona sebep olur ve bozucu özellikleri vardır. Tablo 2.2'de yoğunan su içinde bulunan zararlı maddelerin miktarları verilmiştir.

Tablo 2.2 : Yoğunan su içinde bulunan zararlı maddeler

<table>
<thead>
<tr>
<th>madde adı</th>
<th>en az</th>
<th>en fazla</th>
<th>ortalama</th>
</tr>
</thead>
<tbody>
<tr>
<td>klorid</td>
<td>0.5 - 80 mg/l</td>
<td>10 mg/l</td>
<td></td>
</tr>
<tr>
<td>sülfat</td>
<td>2.0 - 90 mg/l</td>
<td>17 mg/l</td>
<td></td>
</tr>
<tr>
<td>nitrit</td>
<td>1.0 - 350 mg/l</td>
<td>105 mg/l</td>
<td></td>
</tr>
<tr>
<td>nitrat</td>
<td>1.0 - 400 mg/l</td>
<td>65 mg/l</td>
<td></td>
</tr>
<tr>
<td>demir</td>
<td>0.04 - 26.5 mg/l</td>
<td>1.95 mg/l</td>
<td></td>
</tr>
<tr>
<td>krom</td>
<td>0.05 - 6.8 mg/l</td>
<td>0.38 mg/l</td>
<td></td>
</tr>
</tbody>
</table>

Yoğunan suyun pH değeri, fuel-oil yakacak kullanılması halinde pH=2, doğal gaz kullanılması halinde pH=4 değerindedir.
Yoğun suyun filtrelenmesi 3 kademede olur:
1. kademede yoğun su aktif karbon üzerinden geçirilir ve yoğun su suda bulunan parçacıklar, karbonlu hidrojenler tutulur.
2. kademede aktif karbon üzerinden geçen yoğun su, kuvars kumu tabakasına gelir. Bu tabaka esas olarak yoğun suyun ön dağılımını sağlar ve az miktarda da temizleme olur.

Şekil 2.21 : Yoğun suyu (kondensat) filtresi, Plewa sistemi

1. aktif karbonfiltresi 6. iyon değiştirici reçine
2.3. hortum 7. çıkış ağzı
4. dirsek 8. çıkış borusu
5. giriş ağzı 9. hortum
Şekil 2.22: Yoğunlaşma suyu (kondensat) filtresi
 a) Schott Ruhrglas
 b) Selkirk

2.4. BACA BİLEŞENLERİNİN MALZEMELERİ

2.4.1. Seramik Asılı Baca Malzemeleri

Tek tabakalı (kabuklu) bacaldarda, baca delik çapının 400 cm² ve daha büyük değerlerinde, baca duvarları (yanakları) 24 cm kalınlıktan daha büyük olmalıdır. Tablo 2.3’te ısı iletim dirençlerine göre tuğla yoğunlukları ve duvar kalınlıkları verilmiştir.
Tablo 2.3 : Isı iletim dirençlerine göre tuğla yoğunlukları ve baca duvar kalınlıkları

<table>
<thead>
<tr>
<th>Isı iletim direnci</th>
<th>Tuğla yoğunluğu</th>
<th>Duvar kalınlığı</th>
</tr>
</thead>
<tbody>
<tr>
<td>m²K/W</td>
<td>kg/dm³</td>
<td>Cm</td>
</tr>
<tr>
<td>0,12-0,21 (ıştılan hacimler içinde)</td>
<td><1,8</td>
<td>>11,5</td>
</tr>
<tr>
<td>0,22-0,64 (ıştılmayan hacimler içinde)</td>
<td><1,4</td>
<td>>24,0</td>
</tr>
<tr>
<td>baca başı (çatı üstündeki kısımda)</td>
<td><1,4</td>
<td>>24,0</td>
</tr>
</tbody>
</table>

Dolu ve delikli tuğlalar, taş ve hafif betondan hazır yapı elemanları baca malzemesi olabilir. Tuğladan üretilmiş tek ve çift tabakanlı bacaklar Şekil 2.23'te, tek ve çok tabakanlı bacaklar Şekil 2.24'te, çeşitli baca kesit şekilleri Şekil 2.25'te görülmektedir.

İki tabakanlı bacaklarda içteki tabaka hafif beton veya şamottan yapılır. Dıştaki tabaka ise hafif betondan, delikli tuğladan, taştan, gaz betondan ve hafif beton ve taş karışımı malzemelerden yapılır.

Üç tabakanlı bacaklarda iç kalınlık,
- içte oyanabilir ve genleşme engellenmeyecek veya
- içte tamamen riyit olarak oynamayacak ve genişlemesine müsaade edilmeyecek şekillerde olmak üzere iki türülü monte edilirler.

Genellikle iç ve dış tabakalar aynı malzemeden yapılır. Arada ısı yalıtım tabakası kullanılır.
a. tügla
b. tek tabakalı hazır yapım
c. tek tabakalı delikli
d. iki tabakalı
e. üç tabakalı
f. üç tabakalı sırlı
g. üç tabakalı hava aralıklı

Şekil 2.23: Tuğlayadan örtülmuş tek ve çift tabakalı bacalar

Şekil 2.24: Tek ve çok tabakalı bacalar
Şekil 2.25: Çeşitli baca kesit şekilleri
2.4.2. Metal Asıllı Baca Malzemeleri

Metal asıllı baca malzemeleri de kullanılmaktadır. Tablo 2.4’te doğal gaz ve fuel-oil yakıtlar kullanılması halinde muhtelif metal baca malzemelerinin uygunlukları görülmektedir.

<table>
<thead>
<tr>
<th>Malzeme</th>
<th>Doğal gaz</th>
<th>Fuel-oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>St 37</td>
<td>uygun değil</td>
<td>uygun değil</td>
</tr>
<tr>
<td>Kaplamalı çelik</td>
<td>kullanılabılır</td>
<td>uygun değil</td>
</tr>
<tr>
<td>Nr.1.4301 rijit boru V2A</td>
<td>uygun</td>
<td>uygun değil</td>
</tr>
<tr>
<td>Nr.1.4571 rijit boru V4A</td>
<td>uygun</td>
<td>kullanılabılır</td>
</tr>
<tr>
<td>Nr.1.4539 rijit boru</td>
<td>uygun</td>
<td>uygun</td>
</tr>
<tr>
<td>Alu. rijit boru</td>
<td>uygun</td>
<td>uygun değil</td>
</tr>
<tr>
<td>Şamot</td>
<td>uygun</td>
<td>uygun</td>
</tr>
<tr>
<td>Nr.1.4301 oynak boru V2A</td>
<td>uygun değil</td>
<td>uygun değil</td>
</tr>
<tr>
<td>Nr.1.4436 oynak boru</td>
<td>kullanılabılır</td>
<td>uygun değil</td>
</tr>
</tbody>
</table>

Bina dışından geçen bacalarla dış ortam ile doğrudan temas olduğu için ısı kaybı daha fazladır. Düşük baca gazı sıcaklıklarında ve küçük kazaın güçlerinde yoğunlaşma olmayın daha çok olacağını göz önünde bulundurularak bina dışında kullanılan bacalar, arasına ısı yalıtım malzemesi yerleştirilmiş çift kabuklu ve çelik malzemeden yapılmalıdır. Bacanın iç kabuk malzemesi ne kadar ince olursa yutacağı ısı o kadar az olur, yani iç yüzey sıcaklığı daha çok yükselir. İç kabuk ile dış kabuk arasına konulan ısı yalıtım malzemesi ile bacanın soğumasını önler.

Çift kabuklu çelik bacalarla iç kabuk malzemesi olarak 1.4404 no.lu çelik kullanılır. Bu çelinin bileşiminde en az % 2 molibden, % 11 nikel ve en fazla % 0,03 karbon bulunur. Dış kabuk malzemesi olarak 1.4301 no.lu çelik kullanılmaktadır. İki kabuk arasında genellikle 25 mm kalınlıkta cam yünü bulunur. 1. grup ısı iletim direnci olması arzu edildiği halde kalınlık 75 mm alınır. Kabuk malzemelerinde karbon miktarının çok az olması ve kromkarbit oluşumu ile yüksek sıcaklıklarda interkristalin korozyonu önlenir.

Kazanların fuel-oil yakacakta doğal gaz yakacağı dönüşüm yapıldığı hallerde baca kesitlerinde küçülme söz konusudur. Bu durumlarda mevcut baca içinden
hesaplanmış daha küçük kesitteki düz (rijit) veya oynak (büyüklebilen-fleksibl) metalik borular geçirilir.

Metal borular,
- düz (rijit) metal borular
- oynak (büyüklebilen-fleksibl) metal borular

olmak üzere iki grupta toplayabiliriz. Bina dışından geçen düz metal bacalar Şekil 2.26’da, bina içinden geçen düz metal borular Şekil 2.27’de, oynak (büyüklebilen-fleksible) bacar örnekleri Şekil 2.28’de görülmektedir.

Şekil 2.26 : Bina dışından geçen düz metal bacalar
Şekil 2.27: Bina içinden geçen düz metal borular
Şekil 2.28: Oynak (bükülbilen=fleksible) baca örnekleri
2.4.3. Cam ve Sentetik Baca Malzemeleri

U-boru sistemi bacaklar yüksek kaliteli polivinylenfluorid (PVDF) plastik malzemeden yapılmıştır. Teflona benzer yapıldık bu malzeme; ısıt, kimyasal ve mekanik özellikleriyile ve ara hava akımı sayesinde 160 C baca gazi sıcaklığına kadar fuel-oil ve gaz yakacaklar için uygundur. U boruları maksimum 5 m uzunluhta ve 75, 90, 110, 125, 160, 180, 200, 225, 250, 280, 315, 355 mm çaplarında piyasaya sürülmektedir. Bir başka firmanın boru çapları ise 180-600 mm aralığında değişmektedir.

Son yıllarda özel imalat cam asılı bacaklar da kullanılmaktadır. Almanya’da piyasaya sürülen camdan yapılmış bacakların özellikleri:

- baca gazi ve yoğun suyu (kondensat) sırrırmamaları,
- korozyon tehlikesi bulunmaması,
- gözeneksiz yüzeyi sebebi ile temizlenmelerinin kolay olması,
- pürüzsüz denilebilecek yüzeyi sebebi ile baca gazi sürtünme direncinin olmaması,
- sıcaklık değişimlerine dayanıklı olması

şeklinde belirtilebilir.Yapımçı firma tarafından verilen özellikleri ise;

Kullanma aralığı : C tipi bacaklar ve en büyük baca sıcaklığı 160°C
Yakacak cinsi : doğal gaz ve fuel-oil
İşı iletim katsayısı : 1016 W / mK
Pürüzlülük : < 0,05 m
Yoğunluk : 2,23 gr / cm³
Uzama katsayısı : 3,25 x 10 K
Elastisite modülü : 63000 N / mm²

Camdan yapılmış bacaklar 30 m baca yüksekliğine kadar kullanılabilmekte ve 50 ile 290 mm arasında 18 muhtelif çapta yapılmaktadır.

Muhtelif baca malzemeleri ve uygun kullanılabileceği yerler, Tablo 2.5’te verilmiştir.
Tablo 2.5. : Baca malzemelerinin uygun kullanma yerleri
1): ruhsat gerekiş

<table>
<thead>
<tr>
<th></th>
<th>Seramik</th>
<th>Çelik</th>
<th>Alüminyum</th>
<th>Cam</th>
<th>Sandık</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DIN 18160 Rutubete hassas olmayan</td>
<td>Baca borusu</td>
<td>DIN 18160 Rutubete hassas olmayan</td>
<td>Baca borusu</td>
<td>Baca borusu</td>
</tr>
<tr>
<td>R₁ ≥ 0.65 m²/K/W</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>R₁ ≥ 0.22 m²/K/W</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Katı yakacak</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sıvı yakacak</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Gaz yakacak</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Yangına dayanm.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kondansat dayanm.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Yükseklik 14 m</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>20 m</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>25 m</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>30 m</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>> 30 m</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Baca gazı</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sıcaklığı < 500 °C</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>< 350 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 160 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 120 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 80 °C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 40 °C</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>> 40 °C</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

2.5. Baca Sınıflandırması

2.5.1. Birinci Grup Sınıflandırma (Alpin Kemal Dağsız’e Göre) [2]

2.5.1.1. Yanma Havası İç Ortamdan Temin Edilen Ocaklı İşi Üretim Cihazları
Bacaları

Şofben, kombi su ısıtıcısı gibi bazı ocaklı ısı üretim cihazları ile kazanlarda, yanma havası bulundukları ortamdan alınır. Isı üretim cihazlarında meydana gelen duman (baca gazı) ise baca yolu ile havaya atılır.

Bu tip bacaları,
1. Şönt bacalar
2. Tek kolonlu bacalar
 a) Tekli bacalar
 b) Müşterek bacalar
 a) Tekli şönt bacalar
 b) İkili şönt bacalar

olmak üzere gruplandirmak mümkündür.
1. Şönt Bacalar

a. Tekli Şönt Bacalar

Şekil 2.29'da görüldüğü gibi tekli şönt bacalar ana kolon ve yan kolon olmak üzere iki kolondan meydana gelmiştir.

Her bir katta sadece tek bir ısı üretim cihazının baca gazı borusunun bağlandığı yan kolon 1800 mm'den az olmamak üzere en fazla kat yüksekliği kadardır. Baca gazı yan kanal içinde bir üst kattaki ısı üretim cihazının baca bağlantı seviyesinin hemen altında kadar yükselerek ana kolona geçiş yapar.

İkinci kattaki yan kanal alttan kapalı olup ısı üretim cihazından çıkan baca gazını bir sonraki kata kadar nakleder ve ana kanala geçiş olur.

Şekil 2.29 : Tekli şönt bacalar
Binanın en üst katındaki ısı üretim cihazının bağlılığı yan kanal ise doğrudan doğruya baca ağzından havaya açılar.

En üst kata kadar olan ısı üretim cihazlarında oluşan baca gazları hep ana kanalda toplanarak ana kolonun baca ağzından dışarıya, yani havaya atılır.

Ana ve yan kolon boyutları, kullanılan ısı üretten cihazların ısı yüklerine göre değişir ve hesap yoluyla olduğu gibi diyagramlardan faydalanarak tespit edilir.

İıs üretten cihazların yüklerine ve tekli şört baca boyutlarına göre bağlanabilecek ısı üretten cihaz sayıları, yani kat sayılanı için aynı firma tarafından verilen değerler Tablo 2.6’da görülmektedir.

Tablo 2.6: Tekli şört bacaların boyutlarına göre bağlanabilecek ısı üretten cihazların katsayıları

<table>
<thead>
<tr>
<th></th>
<th>Tip 1</th>
<th>Tip 2</th>
<th>Tip 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ana kolon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boyutu cm x cm</td>
<td>14 x 14</td>
<td>16 x 16</td>
<td>18 x 18</td>
</tr>
<tr>
<td>Kesiti cm²</td>
<td>196</td>
<td>256</td>
<td>324</td>
</tr>
<tr>
<td>Yan kolon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boyutu cm x cm</td>
<td>12,5 x 12,5</td>
<td>12,5 x 12,5</td>
<td>12,5 x 12,5</td>
</tr>
<tr>
<td>Kesiti cm²</td>
<td>156</td>
<td>156</td>
<td>156</td>
</tr>
<tr>
<td>Toplam boyut cm x cm</td>
<td>24 x 48</td>
<td>29 x 52</td>
<td>29 x 56</td>
</tr>
<tr>
<td>Sağlık kg / m</td>
<td>115</td>
<td>150</td>
<td>155</td>
</tr>
<tr>
<td>İıs yükü</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><12000 kcal / h</td>
<td>8 + 1</td>
<td>8 + 1</td>
<td>8 + 1</td>
</tr>
<tr>
<td>12000-16000 kcal / h</td>
<td>4 + 1</td>
<td>8 + 1</td>
<td>8 + 1</td>
</tr>
<tr>
<td>16000-20000 kcal / h</td>
<td>3 + 1</td>
<td>6 + 1</td>
<td>8 + 1</td>
</tr>
<tr>
<td>20000-23000 kcal / h</td>
<td>3 + 1</td>
<td>5 + 1</td>
<td>7 + 1</td>
</tr>
<tr>
<td>23000-30000 kcal / h</td>
<td>1 + 1</td>
<td>3 + 1</td>
<td>4 + 1</td>
</tr>
</tbody>
</table>

Şekil 2.30’da ise aynı firmanın havalandırma gayesiyle kullanılan tekli şört bacalar için verdiği boyutlar görülmektedir.
b. İkili Şönt Bacalar

Eğer katlarda ikişer adet ısı üretici cihaz varsa, ikili şönt bacalar kullanılır. Bu tip bacalarda ortada bulunan ana kolona karşılıklı olarak iki yan kolon, tek şönt bacadaki gibi bağlanır. Şekil 2.31'de ikili şönt bacalar şematik olarak verilmiştir.

Şekil 2.31: İkili şönt baca
2. Tek Kolonlu Bacalar

a. Tekli Bacalar

Bir bacaya sadece bir tane kazanın (ısı üretici cihazın) bağlanması haline tek kolonlu tekli baca denir. Unutulmaması gereken husus; yanma havasının, ısı üretici cihazın bulunduğu ortamdan alınmasıdır.

b. Müşterek Bacalar

Bir bacaya birden fazla saydaki kazanın (ısı üretici cihazın) bağlanması haline müşterek baca denir. Şekil 2.32’de tek kolonlu bacalar için iki ayrı örnek verilmiştir.

Şekil 2.32 : Tek kolonlu bacalar
 a) Tekli baca
 b) Müşterek baca

2.5.1.2. Yanma Havası Dış Ortamdan Temin Edilen Ocaklı Isı Üretim Cihazları

C sınıfı doğal gaz cihazlarında yanma havası cihazın bulunduğu ortam haricinden alınmaktadır. Gelişen teknoloji sonucu kapı ve pencelerdeki hızırmazlığın hiç denecek kadar az olması ve benzeri sebeplerle yanma havasının dış havadan alınması zorunluluğu ortaya çıkmıştır.
İş üretiminin ocaklarındaki yanma için gerekli yanma havası, cihazın bulunduğu ortam yerine ek bir kanal (veya kolon) ile dış ortamdan alınır.

Bu tip bacaları,

1. **Yanma havası ile baca gazının karıştığı bacalar** (kombine yanma havası, baca gazı bacaları)
 a) Zeminde yatay emme kanallı kombine bacalar
 b) Çatıdan emmeli düzey emme kolonlu kombine bacalar

2. **Yanma havası ile baca gazının bitişik kanallardan geçtiği bacalar**
 a) İç içe boru sistemli bacalar (Plewa sistemi)
 b) Bitişik dıkdörtgen kesitli iki kolonlu bacalar (Schiedel sistemi)

şeklinde gruplandırılabiliriz.

1. **Yanma Havası ile Baca Gazının Karıştığı Bacalar** (Kombine Yanma Havası Baca Gazı Bacaları)

Şekil 2.33’te görüldüğü gibi yanma havası atmosferden (bina dışından),

a) Zeminde yatay emme kanalı yoluyla
b) Çatıdan emmeli düzey emme kanalı yoluyla olmak üzere iki yoldan alınır.

Şekil 2.33 : Kombine yanma havası baca gazı bacaları
a) Zeminde yatay emme kanallı
b) Çatıdan düşey emme kanallı
c) Yanma havasının emilimi ve baca gazi ile karışımı

Yanma havası düşey kanalda (kolonda) yükselişken ilk kattaki ısı üreten cihaz tarafından yanma havası emilir, cihazda yanma olur ve yanma sonucu oluşan gaz (baca gazi) yine aynı kolona verilir. Anlaşılcak üzere kolonda yükselen temiz yanma havası ile ilk cihazdan çıkan baca gazi karışmaktadır. Bu karışımda CO₂ oranı oldukça düşüktür.

İkinci kattaki cihaz bu karışımı yanma havası olarak aynı şekilde kullanır ve her katta CO₂ oranı artarak üst kata kadar devam eder. CO₂ oranının yanmayı zorlaştıracağı kaçınılmazdır.

Bu sebeple doğal gaz kullanılması halinde yanma havasındaki CO₂ miktarının hacimce % 1,5 oranını geçmemesi gerekir. Başka bir kaynaktan da CO₂ yüzdesi % 1 olarak verilmektedir.

Kapalı ocağı sıfı üretim cihazlarında yanmanın kontrolünde

\[
\frac{CO}{CO_2} < 0,02
\]

sını degerine dikkat edilmelidir.

Kolon içinde kuvvetli bir hava ve baca gazi akımının ejektör etkisini azaltmak için kanal girişlerine perde (jaluzi) konulması veya klapa kullanılması gerekir. Ayrıca rüzgar yönüne göre de binanın kanal açıları ve her iki tarafındaki basınç etkileri de göz önüne alınmalıdır.

2. Yanma Havası İle Baca Gazının Bitişik Kanallardan Geçtiği Bacalar

Baca, ya iç içe aynı merkezli daire veya kare kesiti boru ya da bitişik iki veya daha çok sayıda kanal şeklindedir.

a. İç İçe Aynı Merkezli Daire Veya Kare Kesiti Kolon Sistemli Bacalar

(Plewa Sistemi)

Şekil 2.34' te görüldüğü gibi baca kanalı aynı merkezli daire veya kare kesiti iç içe iki kolondan meydana gelmiştir. Yanma havası çatıda, atmosferden halka kesit yoluya girer, aşağıya doğru gider ve her bir kattaki sıfı üretim cihazı tarafından

İç içe kanallarda baca kolonu dibinde birbirine geçiş vardır. Özellikle doğal gaz yakacak halinde dip kısmında yoğun suyun toplanması, filtreden geçirilmesi ve atılması ile ilgili tesisat da bulunmaktadır.

Plewa firması tarafından bu tip bacalar çok çeşitli şekilde geliştirilmiştir. Bir katta en fazla 4 adet ısı üretimi cihazı olmak üzere toplam 10 bağlantı yapılabilen tipleri mevcuttur. Ancak karşılık bağlantı delikleri 30’ar cm kaydırılmış olmalıdır.

Tablo 2.7’de Plewa firması tarafından yapılan bu cins bacalar için seçilecek değerler verilmiştir. Bu tablodan anlaşılacağı gibi en fazla 10 adet ısı üretici cihaz kullanlabiliriyor ve kesitler hem ısı gücünde hem de en üst kattaki ısı üretici cihaz için bulunan etken baca yüksekliğine bağlı olarak değişmektedir.

Şekil 2.34 : İç içe aynı merkezli daire veya kare kesitli boru sistemi bacalar
Tablo 2.7: İç içe kare kesitli kolon sistemli bacalarada kesitin belirlenmesi
(Plewa sistemi)

<table>
<thead>
<tr>
<th>Güç (kW)</th>
<th>Cihaz Sayısı</th>
<th>En üst cihaza göre etken baca yüksekliği</th>
<th>2<4</th>
<th>2<6<8</th>
<th>≥8</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1638</td>
<td>1234</td>
<td>1638</td>
<td>1638</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2046</td>
<td>1638</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2046</td>
<td>1638</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2046</td>
<td>1638</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2046</td>
<td>1638</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2046</td>
<td>1638</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2046</td>
<td>1638</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2046</td>
<td>1638</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2046</td>
<td>2249</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2046</td>
<td>2249</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2555</td>
<td>2555</td>
<td>2249</td>
<td>2249</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2555</td>
<td>2555</td>
<td>2555</td>
<td>2555</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2555</td>
<td>2555</td>
<td>2555</td>
<td>2555</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2046</td>
<td>1638</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2046</td>
<td>1638</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
<td>1234</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2046</td>
<td>1638</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2046</td>
<td>1638</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td>1638</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2046</td>
<td>1638</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2046</td>
<td>2249</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2046</td>
<td>2249</td>
<td>2046</td>
<td>2046</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2555</td>
<td>2555</td>
<td>2249</td>
<td>2249</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2555</td>
<td>2555</td>
<td>2555</td>
<td>2555</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2555</td>
<td>2555</td>
<td>2555</td>
<td>2555</td>
<td></td>
</tr>
</tbody>
</table>

b. Bitişik Kolonlu Bacalar

Baca başından giren temiz ve soğuk yanma havası dikdörtgen kesitli kolonda aşağıya doğru gider, her bir kattaki ısı üretici cihaz tarafından emilir ve yanma sonucu oluşan baca gazları bitişik diğer kolondan (kanaldan) atmosfere atılır. Şekil 2.35’ten de görüleceği gibi baca gazlarının atıldığı kolon çok tabakalı baca özelliğinde ve kare veya dairesel kesitli olabilir.

44
Şekil 2.35 : Bitişik kolonlu bacalar

2.5.1.3. U-Boru Sistemi Bacalar

Gelişmiş ülkelerde kazan verimlerini arttırmak üzerinde durulmakta ve enerji (yakıt) tasarrfu sağlamak için üst ısıl değer (kondensasyon=yüşüşma) kazanları kullanılmaktadır. Üst ısıl değer kazanlarında baca gazındaki kalan ısdan (buharlaşma isının geri kazanılmasını) yararlanılmaktadır. Bu ısl alınmadı baca gazının sıcaklığı oldukça düşmekte ve doğal kaldirma (çekme) ile bacadan atılmasının göz
önde tutulması gerekmektedir. Eğer sıcaklık çok düşerse baca gazı ısıl yenden yani doğal kaldırma (çekme) yerine ventilatörle (mekanik enerji yoluya) atmosfere atılır.

Normal ev bacaları sadece alt basınçla çalışmaya uygundur. Alt basınçla çalışmada baca sıvırmazlığında önemli sorunlar ortaya çıkmaz. Bu sebeple baca gazlarının sıcaklığının düşürülmesi yolub tercih edilmektedir.

Baca gazı sıcaklığına göre bacaları:

- 80°C A Tipi
- 120°C B Tipi
- 160°C C Tipi

olmak üzere üç grupta toplanmak mümkündür.

Normlarda tespit edilen değerlere göre baca sistemleri hem üst basınç (karşılık basınç), hem de alt basınç (vakum) için kullanılabilir.

Bu bölümde söz konusu olan bacalar, fuel-oil ve doğal gaz yakacaklar için uygundur.

Düşük sıcaklıkta baca gazlarında sık sık rastlanan yoğunma olayı ve yoğunulan suyun (kondensat) atılması problemi çok önemlidir.

Düşük sıcaklıkta baca gazları genellikle metal veya seramik boru yoluyla atmosfere atılır ve bu borular evlerin mevcut bacalarının içinde geçerilir.

Şekil 2.36. a’da görüldüğü gibi yanma havası, kazanın bulunduğu ortamdan emildiği halde, metal veya seramikten yapmış baca kolonu (kanalı) ile baca duvarı arasında bir hava akımı oluşturulur. Bu arada hava akımı, iyi olmayan sıvırmazlığa ve kaçaklara karşı gereklidır ve baca gazı akışı ile hava akımı aynı yönde olur.
Şekil 2.36: U-boru sistemli bacalar

a) yanma havası iç ortamdan
b) yanma havası dış ortamdan
c) U-boru sistemi ve elemanları

Şekil 2.36. b’de ise, yanma havasının dış ortamdan emildiği hal görüülüyor. Bu hal, işleyiş olarak yanma havasını ile baca gazının birleşik kanallardan geçtiği baca tiplerine benzemektedir. Baca gazı akışı ile hava akımı zıt yöndedir.

Plewa firmasının piyasaya sürdüğü U-boruları maksimum 5 m uzunluğa ve 75, 90, 110, 125, 160, 180, 200, 225, 250, 280, 315, 355 mm çaplarında bulunuyor. Şekil 2.37’de ise Selkirk firmasının montaj şekilleri verilmiştir. Bu firmanın boru çapları 180-600 mm aralığında değişmektedir.

Şekil 2.37: U-boru sistemli bacalar

2.5.1.4. Bina Dışında Kullanılan Çift Kabuklu Çelik Bacalar

Bazı hallerde kazan veya kazanların bacalarını bina dışından çıkarmak gerekebilir. Örneğin 20 apartmandan oluşan bir yerleşim merkezinde bölge ısıtması (kücük
ölçüde şehir ısıtması) yapılması halinde, kalorifer kanzanlarının bulunduğu tek katlı binadaki baca/bacaları söyleyebiliriz. Şekil 2.38'de bunlara ait örnekler verilmiştir.

Şekil 2.38: Bina dışındaki baca örnekleri

Bina dışından geçen bacalarda, dış ortam (hava) ile doğrudan doğruya temas olduğu için ısı kaybı daha fazladır. Özellikle düşük baca gazı sıcaklıklarında ve küçük kazaan güçlerinde yoğunlaşma olayının daha çok olacağı da göz önünde bulundurularak bina
dişinde kullanılan bacalar, arasına ısı yatlımalzemesi yerleştirilmiş çift kabuklu ve çelik malzemeden yapılır.

Bruitürün tek, iki, hatta üç kademeli olması; kesikli, sürekli çalışmaya; kazanın büyük veya küçük güçte olması ile baca gazının sıcaklığında göre bakanın ısınması çabuk veya geç olabilir.

Bakanın iç kabuk (iç yüzey) malzemesi ne kadar ince olursa yutacağı ısı o kadar az olur. Yani iç yüzey sıcaklığı daha çabuk yükselir.

Ayrıca iç kabuk (iç yüzey) ile dış kabuk (dış yüzey) arasına konulan ısı yatlı malzemesi ile bakanın soğuması önlenir.

Baca malzemelerinin de işletme şartlarına uygun olması gerekir.

Çift kabuklu çelik bacalarda iç kabuk malzemesi olarak 1.4404 no.lu çelik kullanılır. Bu çeliğin bileşiminde en az % 2 molibden, % 11 nikel ve en fazla % 0,03 karbon bulunur. Dış kabuk malzemesi olarak 1.4301 no.lu çelik kullanılmaktadır. İki kabuk arasında genellikle 25 mm kalınlıkta cam yünü bulunur. 1. grup ısı iletim direnci olması arzu edildiği halde kalınlık 75 mm alınırlar.

Kabuk malzemelerinde C miktarının çok az olması ve krom karbit oluşumu ile yüksek sıcaklıklarda interkristalin korozyonu önlenir.

Arasında ısı yatlamı bulunan çift kabuklu çelik bacalarda Şekil 2.39'da görüldüğü gibi iki konstrüksiyon söz konusudur:

a) İki baca elemanı iç içe geçerek monte edilirler ve titreşimsiz çalışma için uygundurlar (atmosferik bruğör halinde olduğu gibi). Kelepçe sistemi ile bağlantı takviye edilir.

b) İki baca elemanı birbirlerine civata somun kullanılarak tesbit edilirler.
Şekil 2.39: Çift kabuklu çelik baca elemanlarının birleştirilmesi

2.5.1.5. Dış Duvarlara Açılan Bacalar

Yanma havası atmosferden alınan ve baca gazı yine atmosfere verilen C₁ türü doğal gaz cihazlarına, sobaları ve su ısıtıcılarına örnek verebiliriz.

Şekil 2.40'ta dış duvar yoluya atmosfere açılan aynı merkezli iç içe borulu baca hali ile yanma havası ve baca gazı borularının ayrı ve üst üstte olduğu hal görülmektedir. Delik çapları ve diğer ölçümler aynı şekilde verilmiştir.
Şekil 2.40: C₁ türü doğal gaz cihazlarının dış duvara bağlanması

a) Aynı merkezli iç içe borulu baca

b) Yanma havası girişi baca gazı çıkışı ayrı olan baca

Şekil 2.41'de ise yanma havasının dış duvardan açılan boru ile atmosferden alındığı ve baca gazının başka bir baca borusu ile başka yere atıldığı, çatıdan iç içe boru olarak çatıdan alıp yine çatıdan attığı ve vantilatör (fan) bulunup bulunmadığı haller verilmiştir.
ve en uygun malzemelerden yapılmasını gerektir. Kömür ve fuel-oil yakılması halinde ise baca malzemesinin ayrıca asite de dayanıklı olması gerekmektedir.

İç yüzü sırlanmış seramik, çam, polyvinylidenfluorid (PVFD), korozyona karşı dayanıklı kaliteli çelik ve rutubete ve / veya asite dayanıklı malzemeler kullanılır.

Bacalarda yoğunma olmaması için baca gazlarının baca ağındaki (baca çıkışındaki) sıcaklığın yoğunma noktasının altında düşmemesi gerekir. Bu tip bacalar **rutubet hassas bacalar** olarak adlandırılır.

Eğer bakanın içinde yoğunma noktasının (sıcaklığının) altında düşerse yoğunma başlar ve baca malzemesi zarar görür. Yoğunan sudan baca malzemesinin zarar görmemesi için **rutubet hassas olmayan** baca sistemi gereklidir.

Şekil 2.42'de her iki hal ayrı ayrı açıklanmıştır :

a. şekilde görüldüğü gibi baca ağındaki \(T_{solv} = T_{by} \) bakanın iç yüzey sıcaklığının \(T_s = T_{by} = T_{by} \) baca gazı sıcaklığından (baca gazı sıcaklığı=baca gazı yoğunma sıcaklığı alınmaktadır) büyük olması durumunda yoğunma olmaz.

b. şekilde ise baca gazının bacaaya girişinde sıcaklığının 80-90°C, arada 50°C ve baca ağından 40°C olduğu görülmektedir. Yüzey sıcaklığının, 50°C yoğunma sıcaklığı altında düştüğünü seviyeden itibaren baca iç yüzeylerinde yoğunma başlamaktadır.

c. ile d. şekillerinde ise ısı gücü 18 kW olan ve doğal gaz yakacak kullanılan kazanın bacasının

\[
\begin{align*}
\text{yüksekliği} & : 9 \text{ m} \\
\text{kesiti} & : 13,5 \times 20 \text{ cm}^2 \\
\text{ısı iletim direnci} & : 0,12 \text{ m}^2 \text{ K} / \text{ W}
\end{align*}
\]

olduğuna göre baca gazı sıcaklığı ile bakanın iç yüzey sıcaklığının baca yüksekliğinde göre değişimleri ayrı ayrı verilmiştir. Yalnız CO\text{2} yüzdesi ile \(P_z \) baca gazının bacaaya girişinde basınç farklı olduğu için yoğunma sıcaklığı ve baca gazı sıcaklığı ile bakanın iç yüzey sıcaklığının değişimlerinin farklı çıktığı göz önünde bulundurmak gerekir.
Şekil 2.42: Rutubete hassas olan ve olmayan bacalar

 a) rutubete hassas olan
 b) rutubete hassas olmayan
 c) yoğunlaşma yok
 d) yoğunlaşma var
Şeklindedir P₂ = 19,8 N / m² ve hacimsel CO₂ yüzdesi % 5 olduğuna göre baca gazı 43,2°C yoğunlaşma sıcaklığında düşeyi baca iç yüzey sıcaklık değişiminin takriben 9 m baca yüksekliğindekestiği görülmektedir. Bu halde bacada yoğunma meydana gelmez. (Baca yüksekliğinin 9 m olduğu unutulmamalıdır.)

Şeklindedise P₂ = 26,6 N / m² ve hacimsel CO₂ yüzdesi % 9 olduğuna göre baca gazı 52,8 °C yoğunlaşma sıcaklığında düşeyi baca iç yüzey sıcaklık değişiminin takriben 7 m baca yüksekliğindekestiği görülmektedir. Bu halde gerçekte 9 m yükseklikte bakanın 7. metreinde yoğunma meydana geldiği anlaşılır.

Baca içinde yoğunmanın olduğu halde baca malzemesinin zarar görmemesi için rutubete hassas olmayan baca sistemi kullanılması gerekmektedir.

Rutubete hassas olmayan bacalarda 2 tip söz konusudur:

1. Şamottan yapılmış bacanın (tek, iki veya üç kabaklu olabilir) iç yüzeyleri sırlı yapılır ve su geçirmez sızdırılmazlık malzemeleri kullanılarak üst üstte oturtulurlar. Asıl çelikten yapılmış iç borular ile PVFD asılı malzemelerde de sızdırılmazlık önemlidir. Bu tip bacalarda baca içinde yoğun su, ya aşağı taraf doğru akarken yüzey buharlaşması olur ya da kazan brülörü çalışmalarında (aralıklarda) dip tarafta toplanarak filtre üzerinden kanalizasyona atılır. Şekil 2.43.a da 3 kabuklu bu tip baca görünmektedir.

2. Hava aralıklı tipte ise, baca gazındakı su buhari difüzyon yolu ile bakanın iç kabuğunu (iç kabuk sırlı değildir) ve ısı yaltımının oluşturduğu ikinci kabuğunu geçerek hava aralığına gelir. Ara halk bölgesindeki hava akımı ile su buhari alınır (dişa atılır ve kuruma olur.

Aynı olay bakanın iç yüzeyinde oluşan su için de söz konusudur.

Şekil 2.43 a, b, c, d, e şekillerinde hava aralıklı tipten örnekler verilmiştir. Şekillerden anlaşılacağı üzere hava aralığındaki su buhari aksı hem düşey, hem de enine olmaktadır.

56
Şekil 2.43: İç yüzeyi sırlı ve hava aralıklı baca sistemleri

2.5.2. İkinci Grup Baca Sınıflandırması (TS 11386'ya Göre) [5]

Tablo 2.8'de TS 11386'da mevcut baca tipleri, istenen özellikler ve yararları verilmiştir.
2.5.3. Üçüncü Grup Baca Sunflandırması
(Isisan / Mimarın Tesisat El Kitabı’na Göre) [6]

Yapılarda kullanılan bacalar konstrüksiyonlarına göre aşağıdaki sınıflara ayırmak mümkündür. Baca cinsleri Şekil 2.44'te görülmektedir.

![Baca Cinsleri Grafik]

Şekil 2.44 : Baca cinsleri

2.5.3.1. Tek Katmanlı (Tabakalı) Bacalar

Bu bacalar 50’li yıllara kadar kullanılan geleneksel baca tipleridir. İkiye ayrılabilir:

1. **Örme Tuğlalı Bacalar**
 Tuğla veya taştan örme bacaklardır.

2. **Hazır Elemanlardan Dolu Bacalar**
 Beton briket gibi üst üste konulduğunda baca oluşturan hazır elemanlardır.

3. **İçi Boşluklu Hazır Elemanlardan Bacalar**
 Üst üste konuluklarında baca çevresinde bacaya paralel kenarlar oluşturan bu elemanlar bir öncekine göre daha gelişmiştir.

2.5.3.2. İki Katmanlı Bacalar

Bu bacalar 60’lı yılların ortalarından itibaren daha çok kullanılmaya başlanmıştır. Burada iç duman borusu ve bunu çevreleyen bağımsız bir ikinci kabuk tabakası
mevcuttur. İki tabaka arasında çeper çevresi bir hava boşluğu kalacak şekilde konstrükte edilirler. Bu hava tabakası, ısı ve nem yalıtımı açısından önemlidir.

2.5.3.3. Üç Katmanlı Bacalar

1970’li yılların ortasından itibaren kullanılmaya başlanan bu üç katmanlı bacalarda; iç ve dış tabaka arasında cam yünü gibi bir ısı yalıtım malzemesi bulunmaktadır.

Serbest hareketli iç katman hafif beton, şamot, seramik, superlit, cam, plastik vb. gibi malzemelerden mamul hazır duman borusudur. Ara katman cam yünü gibi ısı yalıtım malzemesidir. Dış katman ise tek katmanlı bacalarda olduğu gibi örme tuğla, hazır hafif beton elemanlar, gaz beton, vb. gibi malzemelerden yapılabilmektedir.

2.5.3.4. Metal Bacalar

Genellikle paslanmaz çelik veya alüminyumdan yapılan bu bacalar iki şekilde olabilir.

a. Yukarıda tarif edilen çok katmanlı bacalarda sadece iç borusun metal olması hali
b. İç ve dış katmanın metal, arada ısı yalıtımı olması hali

2.5.4. Dördüncü Grup Sınıflandırma

(MMO / Kazan ve Baca’ya Göre Baca Tipleri ve Sistemleri) [8]

2.5.4.1. Tek Cidarlı Bacadan Çok Cidarlıya Geçiş

Şekil 2.45 : Tuğladan örtülmüş tek cidarlı baca

Şekil 2.46 : Form parçalardan oluşan tek cidarlı baca
Çift Cidarlı Bacalar

60’lı yılların ortasından itibaren merkezi ısıtma sistemlerinin kullanımı sürekli artmıştır. Bu artış karşısında bacadan istenen özellikler (düşük baca gazı sıcaklığı, daha az baca gazı debisi) de değişmiştir. Bacanın zarar görmesi önlemek için çift cidarlı baca konstrüksiyonu geliştirilmiştir. İç cidar hafif beton, şamot veya isya karşı izole edilmiş çift cidarlı paslanmaz çelikten oluşur.

Diş cidar aşağıdaki parçalardan oluşabilir:

- Hafif betondan yapılmış form parçalar
- Tuğla
- Delikli tuğla
- Yüksek finn blokları
- Gaz beton blokları
- Hafif betondan yapılmış içi boş bloklar
- Hafif beton blokları

Şekil 2.47: Form parçalardan oluşan çift cidarlı baca

Üç Cidarlı Bacalar

70’li yılların ortalarındaki birinci enerji krizinden sonra, yanma verimi oldukça yüksek ısıtma cihazları geliştirilmiştir. Ayrıca binaların iyi izole edilmesiyle gerekli ısı ihtiyaç azalmıştır. Bu gelişmeler üç cidarlı bacaya geçiş sağlamlıştır. Üç cidarlı baca, ısı kapasitesi düşük iç cidar, ısı geçiş direnci yüksek dış cidar ve bunların arasında izolasyon malzemelerinden oluşur. İç cidarın ısı tutumu az olduğu için yeniden çalıştırma sırasında bacanın ısılaşma sorunu olmaz. Üç cidarlı bacalar Şekil 2.48'de görülmektedir.
Şekil 2.48: Üç cidarlı bacaklar

İç ve dış cidarlar için, iki cidarlı bacaklarda kullanılan malzemeler kullanılır. İzolasyon malzemesi iç cidara bağlı olarak ikiye ayrılır:

- İç cidarı hareketli bacaklar (Örneğin mineral esashi izolasyon plakaları)
- İç cidarı hareketsiz bacaklar

(Yaş uygulanan izolasyon malzemeleri kullanılır. Bunlar kuruduğları zaman iç cidarı sıkı sıkıya sararlar ve belirli bir baca yüksekliğinin üzerinde inşa edilemezler.)

2.5.4.2. İç cidari hafif beton veya şamot olan çok cidarlı bacaklar

Bu tip bacaklar, çok cidarlı bacakların en önemli kısmını oluşturur. Yuvarlak veya kare şeklindeki iç cidar hafif beton veya ateşe dayanıklı şamottan yapılmıştır. Bu sayede yüksek ısına (yanmaz) ve asitlere dayanıklı, sızdırmaz ve sağlam bir baca elde edilir. İç cidar kültüsinin çabuk ısınması, bacakda kondens oluşumunu azaltır. İç cidarı hafif beton veya şamot olan çok cidarlı bacaklar Şekil 2.49'da görülmektedir.

Şekil 2.49: İç cidarı hafif beton veya şamot olan çok cidarlı bacaklar
İç cidar tamamen mineral esaslı izolasyon plakası ile çevrilmiştir. Dış cidar hafif beton veya diğer uygun malzemeden yapmış hazır form parçalardan oluşur. Bunlar farklı boyut ve şekillerde piyasada bulunurlar (tek girişli, çok girişli, temizleme ve kontrol delikli, vb.). Baca bağlantıları, bağlantı elemanları ve diğer elemanlar baca sistemin tamamlar.

2.5.4.3. Çok Cidarlı Paslanmaz Çelik Bacalar

Çok cidarlı baca konstrüksiyonlarında paslanmaz çelik borular da kullanılır. Paslanmaz çelik bacalar farklı tiplerdedir:

1. Bacanın iç cidarı, tek cidarlı paslanmaz çelik borudan oluşabilir. İç cidar ile form parçalardan veya tuğladan oluşan dış cidar arası izolasyon malzemesi ile doldurulmalıdır. Tek cidarlı paslanmaz çelik iç borulu çok cidarlı baca Şekil 2.50’de görülmektedir.

![Şekil 2.50: Tek cidarlı paslanmaz çelik iç borulu çok cidarlı baca](image)

2. İç boru, çift cidarlı paslanmaz çelikten oluşabilir. Paslanmaz çelik cidarlar arasında izolasyon malzemesi vardır. İç boru ile bacanın dış cidarı arasındaki boşluğu izolasyon malzemesi komşaz, boş bırakılır. Çift cidarlı paslanmaz çelik iç borulu çok cidarlı baca Şekil 2.51’de görülmektedir.

![Şekil 2.51: Çift cidarlı paslanmaz çelik iç borulu çok cidarlı baca](image)

63
Şekil 2.52: Çift cidalı izole edilmiş paslanmaz çelik borulu baca

Paslanmaz çelik bacalar, genellikle yüksek kapasiteli kazanlarda (endüstriyel kamuya ait binalar gibi) kullanılır:

- Kazan daresi çatı kıldığı ise
- Mevcut binaların yeni modern cihazlara uyumunun sağlanması için
- Baca sonradan yapılacaksız.

2.5.4.4. Nemden Etkilenmeyen Bacalar

Doğal gazın büyük kısımı karbon ve hidrojenden oluşur. Bu nedenle yanma sonunda karbondioksit ve su buharı açığa çıkar. 1 m³ doğal gazın yakılması ile baca gazında yaklaşık 1,5 kg su buharı oluşur ve bu su buharı baca yoluyla tahliye edilir. Baca gazı sıcaklığı düşük olan modern ısı üreticilerinde, nemin baca gazı ile tahliyesi her zaman problemsiz olmaz.

Özellikle 100°C’tan daha düşük baca gazı sıcaklığında çalışan cihazlarda, bakanın iyi ısı izolasyonu olması rağmen yoğunlaşma olabilir (Doğal gazda baca gazı yoğunlaşma sıcaklığı yaklaşık 50°C’tür). Bu olaya, düşük sıcaklıkta çalışan kazanlar ve kondensasyon cihazlarında sık olarak rastlanır ve zaman zaman kondensat oluşur.

Bu sistemler ile baca gazı, sisteme bağlı olarak baca girişindeki sıcaklığı 40-60°C sıcaklığa kadar düşürebilir ve emniyetli olarak tahliye edilir. Bacalar yetkili kurum tarafından kontrol edilip nemden etkilenmeyen baca olarak onaylanmalıdır. Aynı kurum, bacaların minimum gaz giriş sıcaklığını da tespit eder.

Nemden etkilenmeyen bacalar iki tıptir:

1. Havalandırmalı Bacalar

![Hava hücreli baca](image)

Şekil 2.53: Hava hücreli baca
2. Su Geçirmez İç Cidarlı Baca

Bu konstrüksiyonda bacakın iç cidarı su geçirmez olarak yapılmıştır, örnek olarak camlaşmış şamot kaplanmış iç boru ile.

Şekil 2.54: Su geçirmez iç cidarlı baca

2.5.4.5. Hava – Baca Gazi Baca Sistemi

Merkezi olmayan ısıtma sistemlerine (katkaloriferi, kombi şöfben vs.) talepler sürekli artmaktadır. Bu sistemler, ısıtma giderlerinin mükemmel şekilde ve problemsiz hesaplanmasını sağladığı gibi özel ihtiyaçlar doğrultusunda çalıştırılabilmesi nedeniyle tercih edilir. Gaz tüketim cihazlarının daire ve evlerin içine tesis edilmesi
halinde, gerektiğ kadar yanma havası sağlanmasına dikkat edilmelidir; çünkü modern, sızdırmaz pencereler doğal hava sirkülasyonunu azaltır.

Şekil 2.55 : Hava – baca gazı baca sistemi
Çalışma Şekli
İki kanal baca dibinde birbirile bağlanmıştır. Bu şekilde fazla hava baca gazı kanalına girer; baca gazının yoğunluğu azalır ve yoğunma sıcaklığı düşer ve kondensat birikimi azalır.

Hava giriş ve baca gazı çıkış ağızları bağlandığından, rüzgarın, yanma için olumsuz etkileri de giderilmiş olur. Özel baca başlıkları ile baca gazının hava kanalına girmesi önlenir.

Konstrüksiyonları
Hava-baca gazı- baca sistemleri yetkili kurum tarafından onaylanmalıdır. İki tip konstrüksiyonları vardır:
- Hava ve gaz kanalları iç içe geçirilmiş
- Hava ve gaz kanalları yan yana konulmuş

Plewa Modeli

Şekil 2.56 : Hava-baca gazı baca Plewa sistemi
Bu tip bacalar, kat yüksekliğinde prefabrik parçalar halinde imal edilir ve imalatçılardan montaj yapılır. Dış cıdar baca gazı tahliyesi için kullanılmadığından, cihazlar doğrudan baca dış yüzeyine monte edilebilir. Plewa tipi bacalara en fazla 10 cihaz bağlanabilir.

Şekil 2.57 : Schiedel ve Simo sistemleri

Schiedel, Schreyer, Simo ve Eternit Modelleri

69
Şekil 2.58: Schreyer ve Eterdur sistemleri

2.5.4.6. Kondensasyon (Üst Isıl Değer) Kazanları İçin Baca Sistemleri

Yukarıda anlatılan nedenlerden dolayı ve yalnız kazanada değil, bacada sürekli yoğunma olması nedeniyle geleneksel bacaların bu kazanlarda kullanımı uygundur. En iyi baca gazı tahliyesi iki yolla yapılır:

- Nemden etkilenmeyen bacalar ile
- Korozyona dayanıklı ve pozitif basınçta sızdırmaz bacalar ile

Nemden etkilenmeyen bacalarında, baca dış çidəri hiçbir şekilde nemlenmeden, iç çidardaki sıcaklık yoğunma sıcaklığının altında düşürlülebilir. Bu bacalar genellikle negatif basınçta çalıştıklarından ve baca gazı sıcaklığının düşük olması baca yapımında birçok kriterin dikkate alınmasını gerektirir.

Buna karşılık kondensasyon kazanlarının gaz tahliyesi pozitif basınçta yapılabilir. Bacaların pozitif basınca, kondensata karşı sızdırmaz ve korozyon ile belirli oranda sıcaklıkta karşı dayanıklı olması gerekir. 80°C, 120°C ve 160°C baca gazı sıcaklığı için cam, plastik, paslanmaz çelik, alüminyum alaşımı ve seramik bacalar, Berlin İnşaat
Enstitüsü tarafından onaylanmıştır. Bacalar, bağlantılı parçaları, bağlama elemanları, kondens tahliyesi ve kontrol delikli elemanları ile komple teslim edilmektedir.

Şekil 2.59: Kondensasyon (üst ışıl değeri) kazanları için baca sistemleri

Kondensasyon kazanlarının nemden etkilenmeyen bacalarına bağlanması için baca gazı kanalının sızdırmaz olması gerekir.

2.5.4.7. Baca Gazi Tahliyesi İçin Alternatif Çözümler

Belirli koşullar altında, gaz türkem cihazları için baca şartnamesi, emniyetli gaz tahliyesini etkilememen basitleştirilebilir. En önemli alternatif çözümler şunlardır:
1. Sıcaklık Dayanımı Sınırlı Olan Bacalar

Atmosferik brülörlü gaz tüketime cihazlarında, sıcaklık dayanımı sınırlı olan bacalar (sıcaklık dayanımı 350°C'a kadar) şartlı olarak kabul edilebilir. Bunun için gerekli şartlar:

- Cihazın ana ısı güçü 30 kW'tan az olmamalıdır.
- Baca gazı sıcaklığı 300°C'ı geçmemelidir.

Sıcaklık dayanımı sınırlı bacalar olarak, yeni yapı malzemesi veya yapı elemanından yapılmış ve yeni tip bacalar kabul edilebilir.

Sıcaklık dayanımı sınırlı olan bacalar, Bölüm 2.5.4.1'de anlatılan malzemelerin yanında, diğer yanmaya malzemeleerden de (örneğin elyafli çimento) yapılabilir. Sık görülen bir uygulama, dış cidan özel yangına dayanıklı plakaldan (Elyaf-Kalsiyum-Silikat) yapılmış elyaflı çimentolu form parçalardan oluşan bacalardır. Diğer bir uygulama ise, çevresine en az 30 mm kalınlığında ısı izolasyon malzemesi sarılmış paslanmaz çelik boru ve fiber-silikat plakalı dış cidardan oluşan bacalardır. Sıcaklık dayanımı sınırlı olan bacalar Şekil 2.60'ta görülmektedir.

İç boru ve dış cidar arasına ısı izolasyon malzemesi yerleştirilmiştir. Önceden hazırlananmış elemanlar uygulama yerinde birbirine geçirilerek bağlantı yerlerinin sızdırmazlığı sağlanır. Bu tıp bacalar özellikle eski binaların restorasyonu yapılmırken çok sık uygulanır.

Şekil 2.60: Sıcaklık dayanımı sınırlı olan bacalar
2. Çelik Bacalar

Belirli şartlar altında çelik bacalar kullanılabılır. Çelik bacalar izolasyonlu ve izolasıyonsuz yapılabilir.

Çelik bacalar ışıkta izole edilmişse, yeni tip baca olarak kabul edilir ve bunların kullanım için yetkili kurumdan onay alınması gerekir.

3. Dış Duvara Monte Edilen Cihazlar

Gaz tüketim cihazlarında, baca gazının çatıdan tahliye edilmesi mümkün değil veya problemli ise dış duvara monte edilen cihazlar kullanılabılır. Bu cihazlar baca gazlarını dış duvara monte edilmiş bacadan dışarıya atarlar ve yanma havasını da buradan temin ederler. Kapalı yanma odaları olduğundan tesis edildikleri odanın büyüklüğünden bağımsızdır. Dış duvar cihazlarında baca gazı tahliyesi ve taze hava temini Şekil 2.61'de görülmektedir.

Dış duvar cihazları oda ıstıncıları, sıcak su hazırlayıcılar ve kat kaloriferi olarak farklı tiplerdedir. Bu cihazların montajı yalmız, baca gazı tahliyesinin çatıdan yapılması mümkün değilse veya binada çok büyük değişiklikler gerektiriyorsa yapılabilir.

Cihaz kapasitesi ve tipine bağlı olarak şu şartlara uyulmalıdır:
- Fansız dış duvar cihazları (C1 türü cihazlar) sadece oda ıstıncısı veya sıcak su hazırlanması için kullanılabılır ve yalmız dış duvara monte edilebilirler. Maksimum kapasite, oda ıstıncılarında 7 kW ve sıcak su hazırlayıcılarında 25 kW ile sınırlıdır.
- Fanlı dış duvar cihazları (C3,1 türü cihazlar) yalnız dış duvara değil, iç duvara da monte edilebilirler. Maksimum kapasite, oda ıstıncılarında 11 kW ve sıcak su hazırlayıcılarında 25 kW olarak tespit edilmiştir.

Şekil 2.61: Dış duvar cihazlarında baca gazı tahliyesi ve taze hava temini

73
4. Çatı Üzerinden Baca Gazı Tahliyesi

Klasik dış duvar cihazlarından ayrı olarak özel baca gazı tahliyesi olan, oda havasından bağımsız gaz tüketim cihazları aşağıda tanımlanmıştır:

- Baca gazı tahliyesini ve yanma havasını hava-baca gazı- baca sistemile sağlayan, fanlı, oda havasından bağımsız cihazlar.
- Baca gazı tahliyesini ve yanma havasını aynı merkezli iç içe geçirilmiş iki boru ile sağlayan, fanlı, oda havasından bağımsız cihazlar. Bu cihazlar, yalnız çatı katlarına, tavanın üzerinde başka kat bulunmayan katlara veya tavanın üzerinde sadece çatı olan katlara konulabilir.

Bu uygulama, bacaya bağlantının mümkün olmadığı durumlarda baca gazının çatı üzerinden tahliyesi için bir çözümdür. Baca dikey olarak çatıdan çıkabileceği gibi, yatay olarak da çıkabilir. Kapasitesi 30 kW'a kadar olan cihazlarda baca çıkış ağızi ile çatı yüzeyi arasındaki mesafe en az 40 cm olmalıdır. Daha yüksek kapasiteli cihazlarda baca çıkış ağızı, çatı omurgası üzerinden en az 40 cm yükseklikte olmalıdır.

Cihazın, tavanın üzerinde sadece çatı konstrüksiyonu bulunan katlara yerleştirilmesi halinde, baca tavanın üst kısmından çatıya kadar yanmayan, şekil değiştirmemeyen, mineral esaslı yapı malzemesi veya koruyucu metal boru ceketi ile Kaplanmalıdır. Bacanın, belirli yangın dayanım süresi öngörülmüş tavanından geçmesi halinde, koruyucu ceket de aynı yangın dayanım süresine sahip olmalıdır.

Cihaz yerleştilirirken, duvarların, çatı yüzeylerinin ve diğer çatı malzemelerinin cihazın bakım ve kontrolünü engellememesine dikkat edilmelidir. Çatı üzerinden baca gazı tahliyesi Şekil 2.62'de görülmektedir.

Şekil 2.62 : Çatı üzerinden baca gazı tahliyesi
2.5.4.8. Havalandırma Boşlukları İle Baca Gazi Tahliyesi

Çok katlı binalarda iç kısılarda yapılmış banyo ve tuvaletlere sık rastlanır. Bu odaların havalandırılması istenir. Belirli şartlar altında havalandırma boşlukları baca gazı tahliyesi için kullanılabilir.

1. Fansız Kanallar İle Havalandırma

Gaz tüketim cihazlarının (şofren, depolu su ıstııcısı, kambi, oda ıstııcısı, vb.) baca gazlarını özel havalandırma kanallarından tahliye etmek mümkünündür. Kanallar, sıcaklığı sınırlırdırılmış bacalarda istenen şartlara uygun olmalıdır. (Bakınız 2.5.4.7)

Oda havasına bağlı cihazların bu tip kanallara bağlanabilmemesi için yanma havası temini kontrol edilmelidir.

2. Mekanik Havalandırma Odalar

İç kısılardaki sihhi odalar mekanik olarak da (aspiratör ile) havalandırılabilir. Bu durumda tek daire için özel aspiratör ve çok konutlarda merkezi havalandırma ayırımı yapmak gerekir. Havalandırılmış odalara oda havasına bağlı gaz tüketim cihazları kurulabilir. Havalandırma, cihazın yanmasını etkilememelidir. Bu konutlardaki hava değişimi mekanik havalandırma ile sağlandığından belirli şartlara dikkat edilmelidir:

- Havalandırma ve cihazın çalışması konutta 4 Pa’dan daha fazla negatif basınç oluşturulmalıdır.
- Aksi takdirde özel havalandırma (tek konutlarda) aspiratörünü cihazın çalıştığı zamanlarda kapatan bir sistem bulunmalıdır.
- Merkezi havalandırmada aspiratör kapatma imkanı yoktur. Aspiratörün sürekli çalışması baca gazlarının emniyetli şekilde tahliyesini sağlar.
2.6. Bacalar İle İlgili Şartnameler

2.6.1. Isı Yalıtımı Yönetmeliği (Madde 3.47)

Kazan daireleri, yanma için gerekli temiz havanın girebilmesi için, zemin düzeyinde ve duman bacası kesitinin en az % 50’yi kadar kesitte, bir temiz hava girişi ile dış havaya bağlanmış olacaktır.

Kazan dairelerinde, toplanacak pis havanın uzaklaştırılması için duman bacası kesitinin en az % 25’i kadar kesitte ağlı kazan dairesinin tavanı düzeyinde bulunan bir pis hava bacası bulunacaktır.

Her kazanın aynı bir duman bacası olacak, birden fazla kazan, her ne sebeple olursa olsun aynı bacağa bağlanamayacaktır. Kalorifer bacalarına soba, şofben, vs. bağlanamayacaktır.

Duman bacaları, teknik ve zorunluluk olmadıkça binanın dış duvarlarına konulmamakta.

Baca duvarlarının et kalınlığı bir tuğladan az olmayacak ve baca duvarı yapımında delikli tuğla ve briket kullanılmayacaktır.

Kazan daireleri, yanma için gerekli temiz havanın girebilmesi için, zemin düzeyinde ve duman bacası kesitinin en az % 50’si kadar kesitte, bir temiz hava girişi ile dış havaya bağlanmış olacaktır.

Bacalar kalorifer tesisatı projesinde belirtilen kesitlerde, içine dışarıdan hava almayacak şekilde içi ve dışı sivalı olarak yapılacaktır. Bacalar, komşu yüksek binanın çekişi bozan etkisini azaltmak amacıyla, mümkünse bu binalardan en az 6 m. uzaklıkta bulunacak ve ait olduğu bina mahyasının en az 80 cm. üzerine kadar çıkartılacaktır. Bacalar mümkün olduğu kadar yön değiştirilecek şekilde yapılacak, yön değiştirilmenin zorunlu olduğu hallerde ise, yön değiştirmede yatayla açı en az 60° olacaktır.

Bacaların en alt kotunda, saçıntan ve hava sızmayacak şekilde yapılmış, kontalı bir temizleme kapağı yapılacaktır. Yatay duman kanalları bacaaya en % 5’lik yüksek bir eğimle bağlanacak ve uzunluğu hiçbir suretle baca yüksekliğiniğinin ¼’ünü aşmayacaktır. Duman kanallarının temizlenmelerine imkan verecek, sızmaz, ısı yalıtımı, kolay açılıp kapanabilir ve en küçük ölçüsü 30 x 30 cm olan yeter sayıda temizleme kapağı bulunacaktır.
Duman kanalları bacaya doğrudan doğruya veya zorunlu durumlarda yuvarlak dirseklerle bağlanacak, asla 90'lık keskin köşeli dirsek kullanılmayacaktır.

2.6.2. İmar Kanunu/Belediye ve Mücavir Alan Sınırları İçinde ve Dışında Planı Bulunmayan Alanlarda Uygulanacak İmar Yönetmeliği

2.6.2.1. Işıklıklar ve Hava Bacaları (Madde 24)

Her müstakil ev veya dairede, en az 1 oturma odası ile yatak odalarının doğrudan doğruya hariçten ışık ve hava alması şarttır. Diğer odalarla mutfaklar ışıklıktan, yıkanma yerleri ve helalar hava bacalarından faydalanabilirler.

Işıklık ve hava bacaları ihtiyacı olan kattan itibaren başlayabilir. Bu ölçüler temiz ölçüler olup, işıklık içinde balkon ve baca gibi işık alanını küçültücü imalat yapılamaz.

2.6.2.2. Bacalar (Madde 30)

1. Normal bacaların iç genişlikleri en az (0,13 x 0,13) m. olacaktır ve sivanacaktır. Her katın bacası müstakil olacak ve her baca ancak bir mahal için kullanılacaktır. Şönt baca yapılamaz.

2. Kalorifer bacaları projesine göre yapılır.

3. Kaloriferli binalarda konutların her dairesi için mutfak ve banyo dışında en az bir mahalde, iştahı ve benzeri binaların ise her katında en az bir baca yapılması mecburidir.

2.6.3. 3030 Sayılı Kanun Kapsamı Dışında Kalan Belediyeler Tip İmar Yönetmeliği (Madde 47)

2.6.3.1. Bacalar (Madde 37)

Her müstakil ev ve dairede en az 1 oturma odası ile yatak odalarının doğrudan doğruya hariçten ışık ve hava almaları gerekliidir. Bu şekilde ışık ve hava almalarına lüzum olmayan diğer odalarla mutfakların ışıklıktan, yıkanma yerini ve helaların işıklık veya hava bacasından faydalanmaları da mümkündür.

- Işıklıklar 1 ve 2 katlı binalarda dar kenarı 1,00 m'den ve alanı 3,00 m²'den;
- 3 ila 9 katlı binalarda dar kenarı 1,50 m'den ve alanı 4,50 m²
3. Binada sıcak su bulunması durumunda banyolarda baca yapılması mecburiyeti yoktur.

5. Tekniğe uygun olarak şönt baca yapılabilir.

B. Sobah Binalarda:

1. Konut olarak kullanılan bağımsız bölümlerin oturma veya yatma hacimlerinden birinde (1) adet,
2. Banyolarda (1) adet,
3. Ticari, kullanılışı bağımsız bölümlerinde birer adet soba başçası yapılması mecburidir.

5. Şönt baca yaplamaz.

II. Baca Ölçüleri ve Nitelikleri

Bacalar gerek yangına karşı ve gerekse çekiş bakımından fenni şekilde yapılacaktır. Bunların iç genişlikleri (0,13) x (0,13) m. olacaktır. Bacalar çatı örtüsünü en az (1) m. mahayı ise en az (0,50) m. aşacaktır.

Bitişik blok ve ikili blok binalarda, aşağıda kalan bacaların komşu binaya zarar vermemesini temin için bunların en az yüksek olan bina yüksekliğine kadar çıkartılması zorunludur.

Kalorifer bacaları ile ilgili İsı Yangıtını Yönetmeliğinde getirilen hükümler saklıdır.

2.6.4. Genel Teknik Şartname/Tuğla Yapım Şartnamesi

... Tuğla soba bacaları, bodrum katından başlayan çatıya kadar ve çatıdan sonra en yüksek mahaya yakın yerlerde mahya seviyesinden en az 50 cm. yukarıya çıkarılacaktır. Diğer yerlerde baca ile çatının kesiştiği baca deliklerinin içi yukarıdan aşağıya kadar çimento harcı ile gayet düz bir şekilde sivanacaktır. İki baca deliği arası en az yarı tuğla kalınılığında olacak ve iki bacanın birleşmesesine dikkat edilecektir. Her baca için, soba deliği ve temizleme deliği bırakılacaktır.
2.6.5. Bacalar İle İlgili Türk Standartları

Bacalar konusunda halihazırda geçerli olan Türk Standartları şöyle sıralanabilir:

TS 2165 / Nisan 1994
Bacalar – Baca Boyutlarının Yakma Tekniği Bakımından Hesaplanması – Terimler ve Ayrıntılı Hesap Metotları

TS 2166 / Mayıs 1976
Yapılarda Çöp Bacalarının Projelendirilmesi ve Düzenlenmesi Kuralları

TS 2167 / Mayıs 1976
Tesisat Baca ve Kanallarının Projelendirilmesi ve Düzenlenmesi Kuralları

TS 11380 / Nisan 1994
Yan Hava Tertibatları (Yardımcı Hava Düzenleyicileri) – Konut ve Benzeri Bina Bacaları İçin

TS 11382 / Nisan 1994
Bacalar – Çelik (Endüstriyel)

TS 11383 / Nisan 1994
Bacalar – Metal – Konut ve Benzeri Binalar İçin

TS 11384 / Nisan 1994
Bacalar – Konut vb. Bina Bacaları – Ekleme Parçaları Tasarımı ve Yapım Kuralları

TS 11385 / Nisan 1994
Bacalar – Konut vb. Binalar İçin – Deney Bacaları Deneyleri İçin Şartlar ve Değerlendirme Kriterleri (Kuralları)

TS 11386 / Nisan 1994
Bacalar – Konut ve Benzeri Binalar İçin– Tasarım ve Yapım Kuralları

TS 11387 / Nisan 1994
Bacalar – Konut ve Benzeri Binalarda Baca Temizleme Tertibatı Yapım Kuralları

TS 11388 / Nisan 1994
Bacalar – Boyutlandırma Hesapları – Çok Ocalıklı Bacalar İçin Yaklaşık Olarak Sonuç Veren Hesaplama Metodu

TS 11389 / Nisan 1994
Bacalar – Boyutlandırma Hesapları – Tek Ocalıklı Bacalar İçin Yaklaşık Olarak Sonuç Veren Hesaplama Metodu
2.7. Piyasada varolan baca malzemeleri

Bu bölümde halihazırda piyasada mevcut baca malzemeleri üreten firmalar ve ürünleri yer almaktadır.

- Şönt Baca Tuğlaları

Şekil 2.63 : Şönt baca tuğlaları

normal ve delikli baca üniteleri piyasada istenildiği zaman bulunmasına rağmen kilit ünitelerini bulmak mümkün değildir. [11]

Şönt baca kilit ünitelerinin iç pazarda sadece sipariş üzerine üretilmesi istenildiği an piyasada bulunmaması nedeniyle şantiyelerde değişik uygulamalar yapılarak normal şönt tuğlaları kilit elemanına dönüştürülmektedir. En çok kullanılan çözümlerden biri 15 x 15 x 0,5 cm'lik saat levha ile kapak yapımıdır. Korozyona karşı yüksek sıcaklığa dayanıklı boyanın boyanı duman göznünün üzerine harç ile yapıtırılarak aşağıdan gelen dumanın temiz hava göze yönlenmesi sağlanmaktadır. Diğer bir çözüm ise taşıyıcı olmayan delikli bir tuğlanın uygun kenar kırılırak elde edilen kapaklar ile sağlanmaktadır. Yine harç ile yerine yapıtırılan bu çözüm de tuğlanın kalınlığı nedeniyle baca örgüsündeki bir kısının harç kalınlığı çok artmaktadır.

- Kudret Tuğla Sanayi Ve Tic. A.Ş.

Şekil 2.64: Yuvarlak,kare ve şönt baca tuğlaları

Şekil 2.65: Baca tuğlaları

Tablo 2.9: Kudret Tuğla Sanayi ürünleri

<table>
<thead>
<tr>
<th>CINSİ</th>
<th>ÖLÇÜLER (cm)</th>
<th>AĞIRLIK (kg)</th>
<th>ADET (m²)</th>
<th>HACIM AĞIRLIĞI (kg/m²)</th>
<th>BASINÇ DAYANIMI (kg)</th>
<th>KAMYONA YÜKLENEN (code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5 Tuğla</td>
<td>19x19x13.5</td>
<td>2.9</td>
<td>35</td>
<td>600</td>
<td>27</td>
<td>3500 - 6000</td>
</tr>
<tr>
<td>6.5 Tuğla</td>
<td>19x19x8.5</td>
<td>2</td>
<td>28</td>
<td>600</td>
<td>26</td>
<td>5000 - 8500</td>
</tr>
<tr>
<td>Normal Baca</td>
<td>19x19x19</td>
<td>5</td>
<td>5 (1 m)</td>
<td>600</td>
<td>...</td>
<td>2500 - 4500</td>
</tr>
<tr>
<td>Kare Baca</td>
<td>19x23x19</td>
<td>5</td>
<td>5 (1 m)</td>
<td>600</td>
<td>1700</td>
<td>3000 - 6000</td>
</tr>
<tr>
<td>Şönt Baca</td>
<td>19x39x19</td>
<td>8</td>
<td>5 (1 m)</td>
<td>600</td>
<td>1250 - 2250</td>
<td>2500 - 4500</td>
</tr>
<tr>
<td>Yeğma (TS 705)</td>
<td>29x19x13.5</td>
<td>8.5</td>
<td>22</td>
<td>1150</td>
<td>92</td>
<td>1200 - 2100</td>
</tr>
<tr>
<td>Yuv. Delikli</td>
<td>29x19x13.5</td>
<td>4.5</td>
<td>22</td>
<td>650</td>
<td>63</td>
<td>2250 - 4000</td>
</tr>
<tr>
<td>Kare Delikli</td>
<td>29x19x13.5</td>
<td>4</td>
<td>22</td>
<td>650</td>
<td>55</td>
<td>2500 - 4500</td>
</tr>
</tbody>
</table>
Şekil 2.64'te Kudret Tuğla Sanayi'nin ürettiği yuvarlak, kare ve şönt baca tuğlaları görülmektedir. Şekil 2.65'te baca tuğlaları cinsleri mevcuttur. Tablo 2.9'da ise Kudret Tuğla Sanayi'nin ürettiği tuğlaların teknik özellikleri görülmektedir.

![Baca Tuğlaları Grafikleri](image)

Şekil 2.66: Kudret baca tuğlalarının teknik çizimleri

Şekil 2.67: Büyük tip şömineler için baca tuğlası

Şekil 2.66'da Kudret baca tuğlalarının teknik çizimleri ve tipleri görülmektedir. Şekil 2.67'de büyük tip şömineler için kullanılabilecek baca tuğlası verilmiştir.
- Volkan Toprak Sanayi Ve Tic. A.Ş.

![Bacaların haritası](image1)

Şekil 2.68: Volkan A.Ş. baca tuğlaları

- Yüksek Toprak Sanayi Ve Tic. A.Ş.

Tablo 2.10: Yüksek A.Ş. baca tuğlaları teknik özellikleri

<table>
<thead>
<tr>
<th>NR.</th>
<th>Ölçüler (cm)</th>
<th>Ağırlık (kg)</th>
<th>Aset (m)</th>
<th>Kamyonla Tükeniş (Adet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>18 x 18 x 18</td>
<td>8.3</td>
<td>25</td>
<td>250</td>
</tr>
<tr>
<td>0.01</td>
<td>18 x 19 x 20</td>
<td>13.5</td>
<td>25</td>
<td>150</td>
</tr>
<tr>
<td>0.02</td>
<td>19 x 20 x 22</td>
<td>19</td>
<td>30</td>
<td>120</td>
</tr>
<tr>
<td>0.03</td>
<td>20 x 22 x 25</td>
<td>25</td>
<td>35</td>
<td>90</td>
</tr>
<tr>
<td>0.04</td>
<td>24 x 25 x 25</td>
<td>17.5</td>
<td>40</td>
<td>70</td>
</tr>
</tbody>
</table>

![Bacaların haritası](image2)

Şekil 2.69: Yüksek A.Ş. baca tuğlaları

- Kilsan Kil Sanayi Ve Tic. A.Ş.

Tablo 2.11: Kilsan A.Ş. ürünler

<table>
<thead>
<tr>
<th>ŞEKIL</th>
<th>BOYUTLAR</th>
<th>DUVAR KANUNÇI</th>
<th>BRIM AĞIRLIĞI</th>
<th>Kullanılan ADET</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.000</td>
<td>18 x 18 x 18</td>
<td>8.3</td>
<td>25</td>
<td>250</td>
</tr>
<tr>
<td>35.001</td>
<td>18 x 19 x 20</td>
<td>13.5</td>
<td>25</td>
<td>150</td>
</tr>
<tr>
<td>35.002</td>
<td>19 x 20 x 22</td>
<td>19</td>
<td>30</td>
<td>120</td>
</tr>
<tr>
<td>35.003</td>
<td>20 x 22 x 25</td>
<td>25</td>
<td>35</td>
<td>90</td>
</tr>
<tr>
<td>35.004</td>
<td>24 x 25 x 25</td>
<td>17.5</td>
<td>40</td>
<td>70</td>
</tr>
</tbody>
</table>

![Bacaların haritası](image3)

Şekil 2.70: Kilsan A.Ş. baca tuğlası

Şekil 2.68'de Volkan Toprak Sanayi'nin baca tuğlası, Şekil 2.69'da Yüksek A.Ş. baca tuğlaları, Şekil 2.70'te Kilsan A.Ş. baca tuğlası görülmektedir. Tablo 2.10'da Yüksek A.Ş. baca tuğlalarının teknik özellikleri, Tablo 2.11'de Kilsan A.Ş. ürünlerinin teknik özellikleri verilmektedir.
Şekil 2.71: Süperlit baca (Doğalgaz kalorifer bacakları)
Şekil 2.72: Süperlit baca aksesuarları

Şekil 2.71’de doğal gaz kalorifer bacaları, Şekil 2.72’de Süperlit baca aksesuarları görülmektedir.
2.8. Baca Hesabı

Bacanın boyutlandırılmasında gerekli olan ana veriler şunlardır: [3]

- Yakacak cinsi
- Kazan ve brülör özellikleri
- Baca gazı (duman) miktarı
- Baca gazının (dumanın) kazandand giriş sıcaklığı
- Baca gazının (dumanın) CO₂ yüzdesi
- Kazanın bulunduğu hacme giden havanın, kazanın ve bağlantı parçașının gerekli üfleme basınçları
- Bağlantı parçașının konstrüksiyonu ve uzunluğu
- Bacanın malzemesi, konstrüksiyonu ve yüksekliği

Doğal çekişli bacaların hesabı, gerekli baca yüksekliği ve kesitinin belirlenmesi anlamına gelir. Burada söz konusu olan kesit, net baca kesiti olup, baca konstrüksiyonunda siva vs. payları göz önüne alınmalıdır.[10]

Baca yüksekliği ise efektif yükseklik olup, duman kanalının bacaça bağlandığı nokta ile baca şapkası arasındaki mesafedir. Tabandan kanal bağlantısına kadar olan yükseklik hesaba girmez. [10]

2.8.1. DIN 4705'E Göre Basitleştirilmiş Baca Hesabı [10]

Baca hesabında kullanılan denklem;

\[P_H = P_W + P_A + P_E + P_O \] \hspace{1cm} (2.1)

şeklindedir. Burada,

\[P_H = \text{Baca çekişi (Pa veya mmSS)} \]
\[P_W = \text{Kazandaki basınç kaybı (Pa veya mmSS)} \]
\[P_A = \text{Bağlantı kanalındaki basınç kaybı (mmSS)} \]
\[P_E = \text{Bacadaki basınç kaybı (Pa veya mmSS)} \]
\[P_O = \text{Hava teminindeki basınç kaybı (Pa veya mmSS)} \]

olarak verilmiştir. Bu denklem bacadaki doğal çekişiin, söz konusu olabilecek basınç düşümlerine eşit olması gerektiğini ifade etmektedir.
2.8.1.1. Duman Gazi Miktarının Belirlenmesi

Hesaba başlayabilmek için öncelikle duman gazi miktarının belirlenmesi gerekir. Farklı yakıtlar için duman miktarı yaklaşık olarak,

\[m = k \cdot Q / 1000 \text{ (kg / sn)} \] \hspace{1cm} (2.2)

ifadesi ile bulunabilir. Burada Q (kW) kazan ısıt güçtür. Formüldeki k katsayısı ise Şekil 2.73'ten okunabilir.

Şekil 2.73: Kazan cinsine ve güçüne bağlı olarak duman gazi miktarı ve kazandaki yük kaybı

Örneğin; 100kW gücündeki sıvı yakıt yanarak kazandaki duman gazi miktarı:

\[0,58 \cdot 100 / 1000 = 0,058 \text{ kg / s} \]

2.8.1.2. Bacada Duman Gazi Sıcaklığının Belirlenmesi

Kazanı terk eden dumanların sıcaklığı (baca gazi sıcaklığı) kazan üreticisi firma tarafından verilir. Baca gazları içinde bulunan su buharının ve asit buharlarının baca iç yüzeylerinde yoğunlaşması için, minimum iç yüzey sıcaklıkları Şekil 2.74 ve Şekil 2.75'te verilmiştir.

2.8.1.3. Gaz Akışı İle İlgili Büyüklüklerin Belirlenmesi

1. Hidrolik Çap, \(D_H \)

Dairesel kesitli olmayan baca ve kanalların eşdeğer hidrolik çapı

\[D_H = \frac{4F}{U} \text{ (m)} \] \hspace{1cm} (2.3)

şeklinde bulunur. Burada F baca kesiti (m²), U kesitin çevresel uzunluğudur.
Şekil 2.74: Farklı yakıtların baca gazlarındaki suhu buhari yoğuşma sıcaklıklarını
Örnek: n = 1,1 olan doğal gazda \(t_s = 54.5^\circ C \)
\(n = 1,3 \) olan sıvı yakıtta \(t_s = 46^\circ C \)
\(n = 1,4 \) olan taş kömürde \(t_s = 39.5^\circ C \)

Şekil 2.75: Kükürt içeriğine karşılık minimum malzeme sıcaklığı

2. Boru ve Kanalların Pürüzlülüğü
Baca ve bağlantılı kanal yapımında kullanılabilecek malzemelerin pürüzlülük değerleri Tablo 2.12'de verilmiştir.
Tablo 2.12: Farklı malzemeden boru ve kanallardaki pürüzlülük, r değeri

<table>
<thead>
<tr>
<th>Malzeme</th>
<th>Pürüzlülük r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Çelik��pın boru</td>
<td>0.0005</td>
</tr>
<tr>
<td>Örte kimyası paşi boru</td>
<td>0.0015</td>
</tr>
<tr>
<td>Metal kanat</td>
<td>0.005</td>
</tr>
<tr>
<td>Beton kanat</td>
<td>0.001</td>
</tr>
<tr>
<td>Güterm taşlar</td>
<td>0.001</td>
</tr>
<tr>
<td>Kayık taşlar (mali)</td>
<td>0.020</td>
</tr>
</tbody>
</table>

3. Sürtünme Basınç Kayıp Katsayısı, \(\lambda \)
Baca ve bağlantı kanallarındaki sürtünme basınç kayıp katsayısı, pürüzlülük değeri ve hidrolik çapa bağlı olarak Şekil 2.76'dan okunabilir.

Şekil 2.76: Bacalar için sürtünme katsayısı

4. Özel Kayıp Katsayısı, \(\xi \)
Dirsek vs. gibi yerel kayıp kaynaklarındaki, özel kayıp katsayları Tablo 2.13'te verilmiştir. Göz önüne alınan bir baca veya bağlantı kanalındaki özel katsayılarnın toplamları, \(\sum \xi \) ile gösterilir.

5. Baca Gazlarının Yoğunluğu, \(\rho_A \)
Gazların yoğunluğu sıcaklık ve dış basınca bağlıdır. Basınca olan bağlılık ihmal edilirse herhangi bir \(T \) (°C) sıcaklığında gazın yoğunluğu,

\[
\rho_A = 1.27 \frac{273}{273+T} \text{ (kg/m}^3\text{)}
\]

(2.4)

ifadesi ile bulunabilir.
6. Ortalama Gaz Hızı, W
Baca veya bağlı kanalındaki gaz hızı, duman debisinin kesite bölünmesi ile bulunur.

\[W = \frac{m}{\rho_A F} \text{ (m/s)} \] \hspace{1cm} (2.5)

Burada, \(F \) kanalin kesit alanını \((m^2)\) göstermektedir. Doğal çekişli bacaklarda gaz hızı 4 m/s değerini genellikle aşmamalıdır. Baca hesaplarında ilk yaklaşım için bu değerden yararlanabilir.

2.8.1.4. Basınç Kayıplarının Belirlenmesi

1. Bacadaki \((P_B)\) ve baca bağlı kanallarındaki \((P_A)\) basınç kayıpları

\[P = 1.5 \left(\frac{H}{D_h} + \sum \xi \right) \rho_A \frac{W^2}{2} \text{ (Pa)} \] \hspace{1cm} (2.6)

şeklinde ifade edilebilir. Burada,
\(\lambda\) = Sürteşme kayıp katsayısı (Bakınız 3.)
\(H\) = Baca yüksekliği veya bağlı kanalı uzunluğu (m)
\(D_h\) = Hidrolik çap, (m) (Bakınız 1)
\(\sum \xi\) = Toplam özel kayıp katsayısı (Bakınız 4.)
\(\rho_A\) = Baca gazlarının yoğunluğu \((kg/m^3)\) (Bakınız 5.)
\(W\) = Ortalama gaz hızıdır, \((m/s)\) (Bakınız 6.)

2. Kazandaki Basınç Kaybı, \(P_w\)
Kazan üreticileri tarafından kataloglarında belirtilir. Eğer bu değer kataloglarda yoksa Şekil 2.73’ten yaklaşık bir değer okunabilir.

3. Hava Teminindeki Basınç Kaybı, \(P_0\)
Sadece üflemesiz kömür kazanları için söz konusudur. Bu değer yaklaşık olarak Şekil 2.77’de verilmiştir.
2.8.1.5. Baca Çekişinin Belirlenmesi

Doğal baca çekisi, \(P_H \) gazlarının sıcaklığına ve baca yüksekliğine bağlıdır.

\[
P_H = H.g \left(\rho_H - \rho_A \right) \text{ (Pa)}
\]

(2.7)

ifadesi ile bulunabilir. Burada,

\(g = \text{Yer çekimi ivmesi} = 9,81 \text{ m/s}^2 \)
\(\rho_H = \text{Hava yoğunluğu} = 1,15 \text{ kg/m}^3 \)

olup, bu eşitlik Şekil 2.68'da verilmiştir.

2.8.1.6. Hesap Yolu

2.8.1.7. Baca Hesabı Örneği

200 kW gücünde, alçak basınçlı brülörť, sıvı yakıt yakan bir sıcak su kazanında; sıcak bağlantı kanalı çapı 20 cm olup bacaya dik bir açı ile girmektedir. Bağlantı kanalı düzdir ve uzunluğu 2 m'dir. Baca gazi sıcaklığı 200°C ve baca yüksekliği 20 m olup, baca tuğla ile örtülmüş ve içten sıvaidır. Herhangi bir kesit değişimi yoktur.

ÇÖZÜM
1. Baca kesiti 20 x 30 cm dikdörtgen seçildi.
2. Duman gazi miktarı,

\[m = k \cdot \frac{Q}{1000} \]

(2.2)

Şekil 2.63 ten k = 0,55 okunur.

\[m = 0,55 \cdot \frac{200}{1000} = 0,11 \text{ kg/s} \]

3. Hidrolik çap (baca için)

\[D_H = \frac{4F}{U} \text{ olup,} \]

(2.3)

\[F = 0,2 \times 0,3 = 0,06 \text{ m}^2 \]
\[U = 2 \times (0,2 + 0,3) = 1 \text{ m} \]
\[D_H = 0,24 \text{ m} \]

4. Kanal ve baca pürüzlülük değerleri
Tablo 2.12'den metal bağlantı kanalı için r = 0,002 ve içten sıvai tuğla baca için r = 0,005 okunur.
5. Sırtt DMA basinç kayıpları katsayları Şekil 2.76 yardımı ile,
Bağlantı kanalı için (r = 0,002, D_H = 0,20 m)
\[\lambda = 0,047 \]
Baca için (r = 0,005, D_H = 0,24 m)
\[\lambda = 0,054 \]
6. Özel kayıp katsayları
Baca bağlantı kanalındaki yerel kayıp olarak sadece bacaya giriş vardır. Tablo 2.13'ten 90° giriş için \(\xi = 0,92 \)
Bacada ise sadece çıktılı şapka vardır. Tablo 2.13'ten \(\xi = 1 \) okunur.
Tablo 2.13 : Çeşitli elemanlar için yeral kayıp katsayları

<table>
<thead>
<tr>
<th>Şekil</th>
<th>Geometrik özellik</th>
<th>ζ değerleri</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Keşin direk: Açı $\alpha = $</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30°</td>
<td>$\zeta = 0.1$</td>
</tr>
<tr>
<td></td>
<td>45°</td>
<td>$\zeta = 0.1$</td>
</tr>
<tr>
<td></td>
<td>60°</td>
<td>$\zeta = 0.4$</td>
</tr>
<tr>
<td></td>
<td>90°</td>
<td>$\zeta = 0.7$</td>
</tr>
<tr>
<td></td>
<td>Yuvrağa Dikdörtgen</td>
<td>$\zeta = 1.2$</td>
</tr>
<tr>
<td>2</td>
<td>Saplama $\frac{d_1}{d_2} = 1,0$</td>
<td>$\zeta = 1,0$</td>
</tr>
<tr>
<td>3</td>
<td>Eğik Saplama $\frac{d_1}{d_2} = 1,0$</td>
<td>$\zeta = 0,4$</td>
</tr>
<tr>
<td>4</td>
<td>Direk $b = $</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>$\zeta = 1,0$</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>$\zeta = 0,5$</td>
</tr>
<tr>
<td></td>
<td>$1,0$</td>
<td>$\zeta = 0,3$</td>
</tr>
<tr>
<td></td>
<td>$1,5$</td>
<td>$\zeta = 0,2$</td>
</tr>
<tr>
<td></td>
<td>$2,0$</td>
<td>$\zeta = 0,2$</td>
</tr>
<tr>
<td>5</td>
<td>Direk $d = \varnothing$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>$\zeta = 0,9$</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>$\zeta = 0,4$</td>
</tr>
<tr>
<td></td>
<td>$1,0$</td>
<td>$\zeta = 0,3$</td>
</tr>
<tr>
<td></td>
<td>$1,5$</td>
<td>$\zeta = 0,2$</td>
</tr>
<tr>
<td></td>
<td>$2,0$</td>
<td>$\zeta = 0,2$</td>
</tr>
<tr>
<td>6</td>
<td>Parçalı direk $d = \varnothing$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$d = 1,0$</td>
<td>$\zeta = 0,5$</td>
</tr>
<tr>
<td></td>
<td>$1,5$</td>
<td>$\zeta = 0,4$</td>
</tr>
<tr>
<td></td>
<td>$2,0$</td>
<td>$\zeta = 0,4$</td>
</tr>
<tr>
<td></td>
<td>$3,0$</td>
<td>$\zeta = 0,4$</td>
</tr>
<tr>
<td></td>
<td>$5,0$</td>
<td>$\zeta = 0,4$</td>
</tr>
<tr>
<td>7</td>
<td>Redüksiyon $F_1 = $</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$0,1$</td>
<td>$\zeta = 0,02$</td>
</tr>
<tr>
<td></td>
<td>$0,2$</td>
<td>$\zeta = 0,04$</td>
</tr>
<tr>
<td></td>
<td>$0,4$</td>
<td>$\zeta = 0,26$</td>
</tr>
<tr>
<td></td>
<td>$0,8$</td>
<td>$\zeta = 0,15$</td>
</tr>
<tr>
<td>8</td>
<td>Redüksiyon $Aç\ \alpha = 30^\circ$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$0,1$</td>
<td>$\zeta = 0,02$</td>
</tr>
<tr>
<td></td>
<td>$0,2$</td>
<td>$\zeta = 0,04$</td>
</tr>
<tr>
<td></td>
<td>$0,4$</td>
<td>$\zeta = 0,07$</td>
</tr>
</tbody>
</table>

7. Baca gazlarının yoğunluğu: Gazların yoğunluğu, $T = 200^\circ C$ baca sıcaklığı için,

$$\rho_A = 1,27 \cdot \frac{273}{273+200} = 0,733 \text{ kg/m}^3$$
8a. Bağlantı kanalındaki ortalama gaz hızı

Kanal kesiti \(F = 3,14 \times (0,20)^2 / 4 = 0,0314 \text{ m}^2 \)

\[
W = \frac{0,11}{0,733 \times 0,0314} = 4,8 \text{ m/s}
\]

8b. Bacadaki ortalama gaz hızı

\[
W = \frac{0,11}{0,733 \times 0,06} = 2,5 \text{ m/s}
\]

9. Bağlantı kanalındaki basınç kaybı

\[
P_A = 1,5 \left(A \frac{H}{D_h} + \Sigma \xi \right) \rho A \frac{W^2}{2}
\]

\[
P_A = 1,5 \left(0,047 \frac{2}{0,20} + 0,92 \right)
0,733 \frac{(4,8)^2}{2} = 17,6 \text{ Pa}
\]

10. Bacadaki basınç kaybı

\[
P_E = 1,5 \left(0,054 \frac{20}{0,24} + 1 \right)
0,733 \frac{(2,5)^2}{2} = 18,9 \text{ Pa}
\]

11. Kazandaki basınç kaybı

Şekil 2.73'ten \(P_w = 48 \text{ Pa} \)

12. Üflemeli brülör kullanıldığından hava teminindeki basınç kaybı hesaba katılmayacaktır.

13. Doğal baca çekişi

\[
P_H = H \cdot \bar{g} \left(\rho_H - \rho_A \right) = 20 \times 9.81 \times (1,5 - 0,733)
 P_H = 81,8 \text{ Pa}
\]
14. Eşitliğin kontrolü

\[P_H = P_A + P_E + P_W \text{ olmalı} \] \hspace{1cm} (2.1)

81,8 = 17,6 + 18,9 + 48
81,8 = 84,5

Toplam kayıp doğal çekişten biraz daha büyük olmakla birlikte aradaki fark ihmal edilebilir ve ilk seçilen baca kesitinin uygun olduğu sonucuna varılır.
Buna göre gerekli dördüncü baca kesiti,
F = 20 x 30 cm. olarak belirlenmiştir.

2.8.2. Hazır Diyagramlar ve Tablolar Yardımı İle Baca Boyutlandırılması

DIN 4705’e dayanan baca hesabı oldukça uzun olduğunu, bazı özel durumlar için yine DIN 4705’e göre hazırlanmış baca çapı seçim tabloları kullanılmaktadır. Şekil 2.79, 2.80, 2.81, 2.82’de sırası ile komürli alçak ve yüksek basınçlı üflemeli brülörül ve atmosferik doğal gaz brülörül kazanlar için Schiedel baca seçim diyagramları verilmiştir.

Baca açısından kazanlar 4 grupta toplanabilir:
1. Üflemesiz Katı Yakıt Kazanları
 Yakma havası temini; kazandaki, bağlantı kanalındaki ve bacadaki basınç kayıplarının karşılanması doğal baca çekişi ile sağlanır.
2. Alçak Basınçlı Brülörül Sıvı ve Gaz Yakıt Kazanları
 Yakma havası brülörlerle temin edilir. Kazandaki, bağlantı kanalındaki ve bacadaki basınç kayıpları doğal baca çekişi ile sağlanır.
3. Yüksek Basınçlı Brülörül Sıvı ve Gaz Yakıt Kazanları
 Yakma havası temini ve kazandaki basınç kayıplarının karşılanması brülör tarafından gerçekleştirilir. Sadece bağlantı kanalı ve bacadaki kayıplar doğal baca çekişi ile sağlanır.
4. Atmosferik Brülörül Gaz Yakıt Kazanları
 Doğal baca çekişi sadece baca akım sigortasından sonraki bağlantı kanalındaki ve bacadaki basınç kayıplarını karşılar.
Şekil 2.79: Kömür kazanları baca çapları (cm)
ÖRNEK : Kazan güçü, $Q_k = 200 \text{ kW}$ ve baca yüksekliği, $H = 20 \text{ cm}$ için baca çapı, $D = 30 \text{ cm}$

Şekil 2.80 : Alçak basınçlı brülörü sıvı yakıt ve doğal gaz kazanları baca çapları(cm)

Bu diyagramlar hazırlanırken bağlantılı kanalı kesiti, baca kesitine eşit alınmış ve toplam özel kayıp katsayıları değeri 2,8, bağlantılı kanalı uzunluğu baca yüksekliğinin $\frac{1}{4}$'ü ve baca gazı sıcaklığı 220°C kabul edilmiştir.
Şekil 2.81: Yüksek basınçlı brülörlü sıvı yakıt ve doğal gaz kazanları baca çapları (cm)
Şekil 2.82: Atmosferik brülörülu doğal gaz kazanları baca çapları (cm)

Modern sıcak su kazanlarında, baca sıcaklıkları daha düşüktür ve özellikle doğal gaz kazanlarında paslanmaz çelik baca kullanılmaktadır. Baca gazı sıcaklığı 160°C için doğal gaz ve sıvı yakıtlı modern kazanların paslanmaz çelik baca ölçüleri Tablo 2.14’té verilmiştir.
Tablo 2.14: Paslanmaz çelik baca iç çap ve baca rezervasyonu (kaya yünü ile izolasyon kalınlığı dahil) ölçüleri

<table>
<thead>
<tr>
<th>Dökme Durumu</th>
<th>Íç Çap (mm)</th>
<th>Gövde Dış Çap (mm)</th>
<th>Kapaçlık (mm)</th>
<th>摈v în (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 mm</td>
<td>180 (180)</td>
<td>150 (150)</td>
<td>130 (130)</td>
<td>100 (100)</td>
</tr>
<tr>
<td>40 mm</td>
<td>180 (180)</td>
<td>180 (180)</td>
<td>160 (160)</td>
<td>120 (120)</td>
</tr>
<tr>
<td>50 mm</td>
<td>180 (180)</td>
<td>180 (180)</td>
<td>180 (180)</td>
<td>140 (140)</td>
</tr>
<tr>
<td>60 mm</td>
<td>180 (180)</td>
<td>180 (180)</td>
<td>180 (180)</td>
<td>160 (160)</td>
</tr>
<tr>
<td>70 mm</td>
<td>180 (180)</td>
<td>180 (180)</td>
<td>180 (180)</td>
<td>180 (180)</td>
</tr>
</tbody>
</table>

Hesap Tb = 160°C için yapılmıştır. Tablodaki ilk rakamlar baca iç çapını (mm) ve yanında parantez içindeki rakamlar izoleli geçiş için gerekli rezervasyon çapını (mm) göstermektedir.

Tablo 2.15 : Süperlit hazırlık baca nominal çap (mm) seçim tablosu

<table>
<thead>
<tr>
<th>Kazan Giriş (Kcal/h)</th>
<th>Doğal Gaz-Sıvı Yetişiklik Atmosferik Erimesi</th>
<th>Doğal Gaz-Sıvı Yetişiklik Atmosferik Erimesi</th>
<th>Doğal Gaz Atmosferik Erimesi</th>
<th>PİA Hava M浆çası (Doğal Gaz Darbeşi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>h<10</td>
<td>h=10</td>
<td>h=20</td>
<td>h=30</td>
<td>h=50</td>
</tr>
<tr>
<td>20.000</td>
<td>150 150</td>
<td>150 150</td>
<td>150 150</td>
<td>150 150</td>
</tr>
<tr>
<td>30.000</td>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
<td>160 160</td>
</tr>
<tr>
<td>40.000</td>
<td>175 175</td>
<td>175 175</td>
<td>175 175</td>
<td>175 175</td>
</tr>
<tr>
<td>50.000</td>
<td>190 190</td>
<td>190 190</td>
<td>190 190</td>
<td>190 190</td>
</tr>
<tr>
<td>75.000</td>
<td>220 220</td>
<td>220 220</td>
<td>220 220</td>
<td>220 220</td>
</tr>
<tr>
<td>100.000</td>
<td>250 250</td>
<td>250 250</td>
<td>250 250</td>
<td>250 250</td>
</tr>
<tr>
<td>150.000</td>
<td>300 300</td>
<td>300 300</td>
<td>300 300</td>
<td>300 300</td>
</tr>
<tr>
<td>200.000</td>
<td>350 350</td>
<td>350 350</td>
<td>350 350</td>
<td>350 350</td>
</tr>
<tr>
<td>300.000</td>
<td>400 400</td>
<td>400 400</td>
<td>400 400</td>
<td>400 400</td>
</tr>
<tr>
<td>400.000</td>
<td>450 450</td>
<td>450 450</td>
<td>450 450</td>
<td>450 450</td>
</tr>
<tr>
<td>500.000</td>
<td>500 500</td>
<td>500 500</td>
<td>500 500</td>
<td>500 500</td>
</tr>
<tr>
<td>750.000</td>
<td>600 600</td>
<td>600 600</td>
<td>600 600</td>
<td>600 600</td>
</tr>
<tr>
<td>1.000.000</td>
<td>750 750</td>
<td>750 750</td>
<td>750 750</td>
<td>750 750</td>
</tr>
<tr>
<td>1.500.000</td>
<td>850 850</td>
<td>850 850</td>
<td>850 850</td>
<td>850 850</td>
</tr>
<tr>
<td>2.000.000</td>
<td>950 950</td>
<td>950 950</td>
<td>950 950</td>
<td>950 950</td>
</tr>
</tbody>
</table>

Tablo 2.16 : Baca çapı hesap yönteminin karşılaştırılması

<table>
<thead>
<tr>
<th>KAZAN GÖÇÜ (Kcal/h)</th>
<th>ALÇAK BASINÇLI BRÜLÖRLÜ, SİVİ VE GAZ YAKITLI KAZAN BACALARI (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baca Yüksekliği = 10 m</td>
</tr>
<tr>
<td></td>
<td>Redtenbach Formülü</td>
</tr>
<tr>
<td>20.000</td>
<td>20x20 14x14</td>
</tr>
<tr>
<td>30.000</td>
<td>20x20 14x14</td>
</tr>
<tr>
<td>40.000</td>
<td>20x20 16x16,5</td>
</tr>
<tr>
<td>50.000</td>
<td>20x20 16,5x16,5</td>
</tr>
<tr>
<td>100.000</td>
<td>27x27 16,8x16,5</td>
</tr>
<tr>
<td>150.000</td>
<td>27x30 18,5x18,5</td>
</tr>
<tr>
<td>200.000</td>
<td>27x30 18,5x18,5</td>
</tr>
<tr>
<td>300.000</td>
<td>27x30 18,5x18,5</td>
</tr>
<tr>
<td>400.000</td>
<td>27x30 18,5x18,5</td>
</tr>
<tr>
<td>500.000</td>
<td>27x30 18,5x18,5</td>
</tr>
<tr>
<td>750.000</td>
<td>27x30 18,5x18,5</td>
</tr>
<tr>
<td>1.000.000</td>
<td>27x30 18,5x18,5</td>
</tr>
<tr>
<td>1.500.000</td>
<td>27x30 18,5x18,5</td>
</tr>
<tr>
<td>2.000.000</td>
<td>27x30 18,5x18,5</td>
</tr>
</tbody>
</table>
2.9. Sonuçlar

Makine mühendisliği disiplinindeki bir yapı elemanı olan bacanın tasarımını ve gerçekleştirmesinde önemli rolü olan mimarin, bu yapı elemanını en azından kavramsal düzeyde belirle ve yapış üretim sürecinde rol alan diğer karar vericiler ile ortak bir dili paylaşabilmesi için gerekli bilgiler bu bölümde verilmiştir.

Bacanın boyutlandırılmasında gerekli olan ana veriler şunlardır : Yakacak cinsi, kazan ve brülör özellikleri, baca gazı (duman) miktarı, baca gazının (dumanın) kazandırılmış sıçaklık, baca gazının (dumanın) CO₂ yüzdesi, kazanın bulunduğu hacme giden havanın, kazanın ve bağlantı parçasının gerekliți üfleme basınçları, bağlantı parçasının kontrüksiyonu ve uzunluğu, bacanın malzemesi, kontrüksiyonu ve yüksekliği.

Yanmanın iyileştirilmesi ve veriminin arttırılması için baca kayıplarının ve baca gazı çıkışındaki dirençlerin azaltılması, dolayısıyla baca gazı sıçaklığının düşmesi, baca gazı hacminin küçük olması gerekir. Bu sayede iyi bir yanma sağlanacaktır. Bu noktada baca konunun yanma ve enerji tasarrufu konularıyla birlikte incelenmesi gerektiğine görülmektedir.

Bacadaki kayın azalması durumunda yakıt tasarrufu sağlanacaktır ve hava kirliliği de azalacaktır.

Bacalarına gerek önemli verildiği takdirde yeni bir sektör oluşacaktır ve böylece bacalar artık sorun yaratmayacaktır.

Baca–kazan ilişkisi iyi incelemelidir. Atomsfere atılan baca gazı sıçaklığından yeni sistemler kullanılarak yararlanmalıdır. Halka hava kirliliği ve enerji tasarrufu ilişkisi iyi anlatılmalıdır. Baca yapımında, malzemelerinin üretiminde uzmanlaşma sağlanmalı; araştırma ve geliştirmeye önem verilmeli; teknolojik gelişmeler
izlenmeli ve uygulanmalıdır. Her şeyden önemlisi, gerekli denetimler yetkili kurum tarafından eksiksiz olarak yapılmalıdır.

Ana bir kural olarak bacaların işletme emniyetini sağlamak, yangına karşı emniyetli olmaları, kolay ve iyi şekilde temizlenebilmeleri, ısı yalıtımının iyi yapılmış olması, ısı cihazları ile emniyetli şekilde bağlanmış olmaları gerekir. Bacalar ayrıca yanma tekniği, imüson koruması, ısıyı az geçirmesi, sızmazlığa, yangına dayanıklı malzemeden yapılmış, yapı olarak mukavim (sağlam) olması, buhar geçişi, yangını yayıcı nitelikte olmadan, baca çekiği yönlerinden de bazı şartları sağlamalıdır. Bacalar yanmayan malzemeden yapılmalı, 500°C baca gazı sıcaklığında dış yüzeyinin sıcaklığı 100°C 'yi geçmemeli, kurum sebebiyle baca yangını olmadan, dış tarafta olan ve 90 dakika sürelen bir yangın baca yoluyla diğer katlara geçmemelidir. [7]

Bacanın planda kapladığı alan kat sayısının artması ile arttığından dolayı, yüksek binalarda bacanın planda işgal ettiği alanı daraltmak amacıyla şönt sistemi bacalar kullanılmaktadır.
3. ÇOK KATLI KONUT YAPILARINDA ŞÖNT BACA UYGULAMALARININ DEĞERLENDİRİLMESİ

10. Baca içinde baca dizilişi :
 □ Dizi halinde yan yana □ Ayrı ayrı

11. Dairede (bağimsız birimde) kaç adet baca var?
 □ Bir □ İki □ Daha fazla

12. Baca tipleri ve adedi : Toplam ... adet.
 □ Duman bacısı - ...
 □ Çöp bacısı - ...
 □ Havalandırma bacısı - ...
 □ Tesisat bacısı - ...

13. Kullanılan baca tipleri ve adedi : Toplam ... adet.
 □ Duman bacısı - ...
 □ Çöp bacısı - ...
 □ Havalandırma bacısı - ...
 □ Tesisat bacısı - ...

14. Baca malzemesi ve markası :
 □ Şönt baca tuğlası (.............................)
 □ Normal tuğla (.................................)
 □ Diğer (..)

15. Bacanın çatı üzerindeki kısının malzemesi : ..

16. Baca şapkası malzemesi ve markası : ..

17. Baca yeri :
 □ Betonarme bir kiriste daralıyor mu?
 □ Üst katlarda kapı, iç pencere gibi yerlere geliyor mu?
 □ Hacmin duvarı yerine, ortasına geliyor mu?

18. Duman bacısı kesiti (Duman borusu çapı + hava boşluğu + tuğla duvar boyutları ve kalınlığı) : ...

19. Baca izoleli mi?
 □ Evet. (İzolasyon malzemesi ve kalınlığı : ..)
 □ Hayır.

20. Bacanın mahyadan yüksekliği : cm.

21. Baca temizleme kapağı yeri : ...

22. Doğal gaz bacasında su drenaji : ..

23. İstıma sistemi ne ile çalışıyor?
 □ Klasik radyatörlü sistem □ Sıcak hava apreyi (Fan coil)
 □ Yerden istıma □ Diğer (Kanallı istıma sistemi)

24. Yakıt cinsi :
 □ Doğal gaz □ Fuel-oil
 □ Motorin □ Kömür
YÜKSEK KATLI KONUTLARDA SÖNṬ BACA UYGULAMALARI ALAN ÇALIŞMASI

ANKET FORMU
(Kullanıcı Bilgileri)

Ankete katılan kişi/unvanı : .. Tarih :/....../2000
Daire no. : ...

1. Mahal : ..

2. Konut türü :
 □ Kooperatif □ Lojman □ Özel teşebbüs

3. Blok tipi ve kat sayısı : ..

4. Yapıym (Teslim tarihi) : ..

5. Dairede (bağımız birimde) kaç adet baca var?
 □ Bir □ İki □ Daha fazla

 □ Duman bacası - ...
 □ Havalandırma bacası - ...
 □ Çöp bacası - ...
 □ Tesisat bacası - ...

7. Kullanılan baca tipleri ve adedi : Toplam ... adet.
 □ Duman bacası - ...
 □ Havalandırma bacası - ...
 □ Çöp bacası - ...
 □ Tesisat bacası - ...

8. Oturduğunuz daire size mi ait, yoksa kiracı mıınız?
 □ Bize ait. □ Kiracıyız.

9. Diğer katlardan mutfaq bacası yoluya gelen yemek kokularını duyuyor musunuz?
10. Sıcak su ne ile sağlanıyor?
 □ Merkezi sistem-boyler □ Şofben □ Diğer(..................)

11. Cihazın markası nedir?
 □ ECA □ Demirdöm □ Buderus

12. Cihaz kaç yıl hijo?
 □ 1 - 5 □ 5 - 10 □ 10 - ...

13. Cihazın servis siklığı:
 □ Bugüne kadar bir kere □ Yılda bir bakım
 □ Bugüne kadar iki kere □ Yılda iki bakım
 □ Daha fazla □ Daha fazla

14. Sıcak su şofben ile sağlanıyorrsa, cihaz tipi nedir?
 □ Hermetik (Bacasız) □ Klasik (Bacalı)

15. Sıcak su şofben ile sağlanıyorrsa, yakıt türü nedir?
 □ Doğal gaz □ LPG □ Elektrikli şofben

16. Cihaz (şofben), yanarken sönüyor mu?
 □ Evet □ Hayır

17. Cihaz yanarken sönüyorsa, bu sorun için servis geldi mi?
 □ Evet □ Hayır

18. Servis geldiye servisin görüşü nedir?
 □ Baca yetersiz □ Diğer (..........................)
 □ Mekan yetersiz

19. Merkezi ısıtma sistemi ne ile sağlanıyor?
 □ Kazan □ Bölge ısıtması

20. Kazan adedi:
 □ Bir □ İki

21. Her kazan için ayrı baca yerı mevcut mu?
 □ Evet □ Hayır

22. Çöp bacası var mı?
 □ Evet (Adedi :) □ Hayır

23. Havalandırma bacası var mı?
 □ Evet □ Hayır

24. Banyo, WC nerede yer alıyor?
 □ İç duvarda □ Dış tarafta
25. Banyo, WC iç tarafta ise nasıl havalandırılıyor?
 □ Pencere ile □ Menbez kapağı ile
26. Banyo, WC iç tarafta ise diğer katlardan havalandırma bacağı yoluyla koku geliyor mu?
27. Şömne var mı?
 □ Evet □ Hayır
28. Şömne kullanılıyor mu?
 □ Evet □ Bazen (Kullanım sıklığı :)
 □ Hayır
29. Şömne kullanılıyorrsa, bugüne dek baca herhangi bir sorun oldu mu?
 □ Evet, oldu. □ Hayır, hiç olmadı.
30. Sorun varsa, ne gibi bir sorun meydana geldi?
 ..
 ..
31. Depremden sonra konutunuzda, baca ile ilgili bir hasar gözlemlediniz mı?
 ..
 ..
32. Depremden sonra konutunuzdaki tuğla bacakta çatlaklar oldu mu?
 □ Evet. (Zehirli duman gazları yaşam mahallerine sızdı.)
 □ Evet. (Çatlak olmasına rağmen, duman yaşam mahallerine sızmadı.)
 □ Hayır.
33. Deprem sonucunda bacakın çatı üstündeki kısmi zarar gördü mü?
 □ Evet. (Zarar gördü.)
 □ Evet. (Örme tuğladan yapılan bu kısm yıkıldı.)
 □ Hayır.
34. Deprem sonrasında baca kontrolü (mekanik kontrol ve duman tabletleriyle çeşiş kontrolü) yapıldı mı?
 □ Evet □ Hayır
35. Deprem sonrasında bıça deprem ile ilgili bir önlem alındı mı?
 ..
 ..
 ..
111
3.2. Alan Çalışması Yapılan Siteler

3.2.1. Ayazağa Oyak Sitesi

İki tip blok mevcuttur (K ve D Blok). K blok, her katta dörder daireye sahip ve 12 katlı; D blok ise, her katta ikişer daireye, A ve B olmak üzere iki girişe sahip ve 9 katlıdır. 1995 yılında teslim edilen iki K blokta ve iki D blokta anket yapılmıştır.

Huzur Mahallesi Cumhuriyet Caddesi 4. Levent / Şişli

Şekil 3.1 : Ayazağa Oyak Sitesi vaziyet planı

112
3.2.1.1. Ayazağa Oyak Sitesi D-8/32 Blok Anket Sonuçları

1. Mahal : AYAZAĞA OYAK SİTESİ
5. Dairede (bağımız birimde) kaç adet baca var? 4 adet.
 ✔ □ Duman bacası – 4 (1 aspiratör bacası, 1 şofben bacası, 1 yedek baca banyoda, 1 yedek baca odada.)
 ✔ □ Havalandırma bacası – 1
 □ Çöp bacası
 □ Tesisat bacası
 ✔ □ Duman bacası – 2 (1 aspiratör bacası, 1 şofben bacası.)
 ✔ □ Havalandırma bacası – 1
 □ Çöp bacası
 □ Tesisat bacası
8. Oturduğunuz daire size mi ait, yoksa kiracı misiniz?
 □ Bize ait. % 33,33 (3 kişi)
 □ Kiracıyz. % 66,67 (6 kişi)
 (Bakınız Şekil 3.2.a.)
9. Diğer katlardan mutfak bacası yoluyla gelen yemek kokularını duuyor musunuz?
 Evet. (% 100)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>ECA</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>ECA</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>ECA</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>ECA</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>ECA</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>ECA</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Beko</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Auer</td>
<td>(1-5 yıllık.)</td>
</tr>
</tbody>
</table>

% 100 Klasik (bacalı) şofben. % 77,78 ECA, % 11,11 Beko, (1-5 yıllık) % 100 % 11,11 Auer.

(Bakınız Şekil 3.2.b.)

13. Cihazın servis sıklığı:

☐ Bugüne kadar hiç gelmedi. % 11,11 (1 kişi)
☐ Bugüne kadar bir kere. % 33,33 (3 kişi)
☐ Bugüne kadar iki kere. % 55,55 (5 kişi)

(Bakınız Şekil 3.2.c.)

14. Sıcak su şofben ile sağlanıyorsa, cihaz tipi nedir?
Klasik (bacalı) şofben. % 100

15. Sıcak su şofben ile sağlanıyorsa, yakıt türü nedir?
LPG. % 100

16. Cihaz (şofben), yanarken sönüyor mu?
☐ Evet. % 33,33 (3 kişi)
☐ Hayır. % 66,67 (6 kişi)

(Bakınız Şekil 3.2.d.)

22. Çöp bacası var mı? Hayır.
23. Havalandırma başısı var mı? Evet. (1 adet)
26. Banyo, WC iç tarafta ise diğer katlardan havalandırma başısı yoluya koku geliyor mu?
 □ Evet, sık sık. % 55,55 (5 kişi)
 □ Hayır. % 11,11 (1 kişi)
 □ Bazen. % 33,33 (3 kişi)
 (Bakınız Şekil 3.2.e.)
27. Şömine var mı?
 Hayır.
31. Depremden sonra konutunuzda, baca ile ilgili bir hasar gözlemlediniz mı?
 Hayır. % 88,89 (8 kişi)
 Dışardan gelen yemek kokusu arttı. % 11,11 (1 kişi)
 (Bakınız Şekil 3.2.f.)
32. Depremden sonra konutunuzdaki tuğla bacakta çatlaklar oldu mu?
 Hayır. (% 100)
33. Deprem sonucunda bacakın çatı üstündeki kısmı zarar gördü mü?
 Hayır.
34. Deprem sonrasında baca kontrolü (mekanik kontrol ve duman tabletleriyle çekiş kontrolü) yapıldı mı?
 Hayır.
35. Deprem sonrasında baca deprem ile ilgili bir önlem alındı mı?
 Hayır.
Şekil 3.2 : Ayazağa Oyak Sitesi D Blok anket sonuçları ile ilgili grafikler.
3.2.1.2. Ayazağa Oyak Sitesi K-7/11 Blok Anket Sonuçları

1. Mahal : AYAZAĞA OYAK SİTESİ
5. Dairede (bağımız birimde) kaç adet baca var? 4 adet.
 - Duman bacası – 3 (1 aspiratör bacası, 1 şofben bacası, 1 yedek baca odada.)
 - Havalandırma bacası – 1
 - Çöp bacası
 - Tesisat bacası
 - Duman bacası – 2 (1 aspiratör bacası, 1 şofben bacası.)
 - Havalandırma bacası – 1
 - Çöp bacası
 - Tesisat bacası
8. Oturduğunuz daire size mi ait, yoksa kiracı misiniz?
 - Bize ait. % 72,72 (8 kişi)
 - Kiracıyz. % 27,27 (3 kişi)
 (Bakınız Şekil 3.3.a.)
9. Diğer katlardan mutfak bacası yoluyla gelen yemek kokularını duuyor musunuz?
 Evet. (% 100)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>ECA</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>ECA</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>ECA</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>ECA</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>ECA</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>ECA</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>ECA</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>ECA</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Demirdöküm</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Demirdöküm</td>
<td>(1-5 yıllık.)</td>
</tr>
</tbody>
</table>

% 100 Klasik (bacalı) şofben. % 81,82 ECA, (1-5 yıllık) % 100
% 18,18 Demirdöküm.

(Bakıınız Şekil 3.3.b.)

13. Cihazın servis sıklığı:

✓ □ Bugüne kadar hiç gelmedi. % 36,36 (4 kişi)

✓ □ Bugüne kadar bir kere. % 54,54 (6 kişi)

□ Bugüne kadar iki kere.

✓ □ Daha fazla. % 9,09 (1 kişi)

(Bakıınız Şekil 3.3.c.)

14. Sıcak su şofben ile sağlanıyorsa, cihaz tipi nedir?
Klasik (bacalı) şofben. % 100

15. Sıcak su şofben ile sağlanıyorsa, yakıt türü nedir?
LPG. % 100

16. Cihaz (şofben), yanarken sönyor mu?

□ Evet. % 9,09 (1 kişi)

□ Hayır. % 90,9 (10 kişi)

(Bakıınız Şekil 3.3.d.)
17. Cihaz yanarken sönüyorsa, bu sorun için servis geldi mi?
 Evet. % 9,09 (1 kişi için)

18. Servis geldiysese servisin görüşü nedir?
 Cihazın arızasından dolayı sonduştu.

22. Çöp başısı var mı? Hayır.

23. Havalandırma başısı var mı? Evet. (1 adet)

26. Banyo, WC iç tarafta ise diğer katlardan havalandırıma başı yoluyla koku geliyor mu?
 □ Evet, sık sık. % 54,54 (6 kişi)
 □ Hayır. % 18,18 (2 kişi)
 □ Bazen. % 27,27 (3 kişi)
 (Bakınız Şekil 3.3.e.)

27. Şömine var mı?
 Hayır.

31. Depremden sonra konutunuzda, baca ile ilgili bir hasar gözlemlediniz mı?
 Hayır. % 100

32. Depremden sonra konutunuzdaki tuğla bacakda çatlaklar oldu mu?
 Hayır. (% 100)

33. Deprem sonucunda bacakın çatı üstündeki kısmı zarar gördü mü?
 Hayır.

34. Deprem sonrasında baca kontrolü (mekanik kontrol ve duman tabletleriyle çekiş kontrolü) yapıldı mı?
 Hayır.

35. Deprem sonrasında baca deprem ile ilgili bir önlem alındı mı?
 Hayır.

119
Şekil 3.3 : Ayazağa Oyak Sitesi K Blok anket sonuçları ile ilgili grafikler.
3.2.1.3. Ayazağa Oyak Sitesi D Blok Anket Sonuçları

1995 yılında teslim edilen iki D blokta anket yapılmıştır. Bu anket sonucunda ele edilen bilgilere göre; her dairede (bağimsiz birimde) toplam 5 adet baca mevcuttur. Bunlardan dördü duman başacı (1 aspiratör başacı, 1 şöfben başacı, 1 yedek baca odada, 1 yedek baca bahçesinde) ve bir tanesi de havalandırma başacıdır. Duman başacalarından ikisi (mutfakta aspiratör başacı ve şöfben başacı) kullanılmakta, diğer ikisi kullanılmamaktadır. Banyo ve WC, iç duvarla yer almaktar ve havalandırma başacına açılan birer pencere yardımı ile havalandırılmaktadır. Çöp başacı ve şömine başacı mevcut değildir. Tesiat başacı ise, daire içinde geçmişmektedir.

Mutfak başacı yoluyla gelen yemek kokuları, büyük bir sorun oluşturmaktadır. Ankete katılan D blok sakinlerinin tümü, aspiratör başacından gelen yemek kokularından şikayet etmiştir.

Merkezi ısıtma sistemi, klasik radyatörlü sistem ile sağlanmaktadır ve bir adet fuel-oil yakan kazan mevcuttur.

Banyo, WC’nin havalandırmmasını sağlayan bacadan diğer katların kokusunun gelip gelmediği sorulduğunda, ankete katılanların çoğu, koku geldiğini söylemiştir; çok az bir kısmı, koku gelmediğini söylemiştir.

Ankete katılan D blok sakinleri arasında, depremden sonra baca ile ilgili bir hasar gözlemleyip gözlemlememişti sorulduğunda, bir kişi (% 11), dışardan gelen yemek

3.2.1.4. Ayazağa Oyak Sitesi K Blok Anket Sonuçları

K blokta yapılan anket sonucunda edilen bilgilere göre; her dairede (bağimsız birimde) toplam 4 adet baca mevcuttur. Bunlardan üçü duman bacası (1 aspiratör bacası, 1 şofben bacası, 1 yedek baca odada) ve bir tanesi de havalandırma bacasıdır. Duman bacalarından ikisi (mutfağa aspiratör bacası ve şofben bacası) kullanılmaktadır, biri kullanılmamaktadır. Banyo ve WC, iç duvara yer almaktadır ve havalandırma bacasına açılan birer pencere yardımı ile havalandırılmaktadır. Çöp bacası mevcut değildir. Tesisat bacası ise, daire içinden geçmemektedir. Şömine bacası ise mevcut değildir.

K blokta oturan kişiler arasında yapılan anket sonucunda, konutta oturanların çoğunun ev sahipleri olduğu anlaşılmıştır. Kiracı olanların sayısı daha azdır.

Merkezi istıma sistemi, klasik radyatör sistemi ile sağlanmaktadır ve bir adet fuel-oil yanakan kazan mevcuttur.
Banyo, WC’nin havalanmasını sağlayan bacadan diğer katların kokusunun gelip gelmediği sorulduğunda, ankete katılanların çoğu, koku geldiğini söylemiştir.

3.2.2. Yeşil Yamaç Sitesi

İki tip blok mevcuttur (A ve D Blok). A blok, her katta ikişer daireye sahip ve 10 katlı; D blok ise, her katta dördür daireye sahip ve 10 katlıdır. D bloğun kat sayısı, değişen arazi eğimine göre farklılıklar göstermektedir. Kat yüksekliği 2,90 m.'dir.

Yavuztürk Mahallesi Okul Arkası Sokak Üsküdar

Şekil 3.4 : Yeşil Yamaç Sitesi vaziyet planı
3.2.2.1. Yeşil Yamaç Sitesi A-4 Blok Anket Sonuçları

1. Mahal: YEŞİL YAMAÇ SİTESİ
5. Dairede (bağımsız birimde) kaç adet baca var? 4 adet.
 ✔ Duman bacası – 3 (1 aspiratör bacası, 1 şofben bacası, 1 yedek baca.)
 ✔ Havalandırma bacası – 1
 ✔ Çöp bacası
 ✔ Tesisat bacası

 ✔ Duman bacası – 2
 1 aspiratör bacası (% 33,3 – 2 kişi iptal etmiş, % 66,7 – 4 kişi kullanıyor.)
 1 şofben bacası (% 50 – 3 kişi iptal etmiş, % 50 – 3 kişi kullanıyor.)
 (Bakınız Şekil 3.5.a ve Şekil 3.5.b.)
 ✔ Havalandırma bacası – 1
 ✔ Çöp bacası
 ✔ Tesisat bacası

8. Oturduğunuz daire size mi ait, yoksa kiracı mıınız?
 ☐ Bize ait. % 66,7 (4 kişi)
 ☐ Kiracıyz. % 33,3 (2 kişi)
 (Bakınız Şekil 3.5.c.)

9. Diğer katlardan mutsak bacası yoluya gelen yemek kokularını duyunur musunuz? (Yemek kokusu, merdiven boşluğunda ve holde var.)
 ☐ Evet, sık sık. % 50 (3 kişi)
 ☐ Hayır. % 33,3 (2 kişi)
 ☐ Nadiren. % 16,7 (1 kişi) (Bakınız Şekil 3.5.d.)
Tablo 3.3: Yeşil Yamaç Sitesi A-4 blokta 10., 11. ve 12. sorular için verilen yanıtlar

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrikli şofben.</td>
<td>Sintel</td>
<td>(5-10 yıllık.)</td>
</tr>
<tr>
<td>Elektrikli şofben.</td>
<td>İhlas</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Elektrikli şofben.</td>
<td>Arçelik</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Auer</td>
<td>(5-10 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Arçelik</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Junkers</td>
<td>(1-5 yıllık.)</td>
</tr>
</tbody>
</table>

% 50 Klasik (bacalı) şofben. % 33,33 Arçelik, (5-10 yıllık) % 33,3
% 50 Elektrikli şofben. % 16,67 Sintel, % 16,67 İhlas, (1-5 yıllık) % 66,7
% 16,67 Auer, % 16,67 Junkers.

(Bakınız Şekil 3.5.e, Şekil 3.5.f ve Şekil 3.5.g.)

13. Cihazın servis süresi:

- **Bugüne kadar hiç gelmedi.** % 83,3 (5 kişi)
 (1 kişi şofbenini değiştirmiş, elektrikliye çevirmiş.)
- **Bugüne kadar bir kere.** % 16,7 (1 kişi)
 (1 bacalı şofben - çakmak için.)
(Bakınız Şekil 3.5.h.)

14. Sıcak su şofben ile sağlanıyorsa, cihaz tipi nedir?

- **Elektrikli** % 50 (3 kişi)
- **Klasik (Bacalı)** % 50 (3 kişi)
(Bakınız Şekil 3.5.i.)

15. Sıcak su şofben ile sağlanıyorsa, yakıt türü nedir?

- **Doğal gaz** % 50 (3 kişi)
- **Elektrikli şofben** % 50 (3 kişi)
(Bakınız Şekil 3.5.j.)

16. Cihaz (şofben), yanarken sönmüyor mu? (Doğal gazlı şofbenler için.)

- **Evet. (Bazen)** % 33,3 (1 kişi)
- **Hayır.** % 66,7 (2 kişi) (Bakınız Şekil 3.5.k.)

22. Çöp bacası var mı? Hayır.

23. Havalandırma bacası var mı? Evet. (1 adet)

26. Banyo, WC iç tarafta ise diğer katlardan havalandırma bacası yoluya koku geliyor mu?

☐ Evet, sık sık. % 50 (3 kişi)

☐ Hayır. % 50 (3 kişi)

☐ Bazen.

(Bakınız Şekil 3.5.1.)

27. Şömine var mı?

Hayır.

31. Depremden sonra konutunuzda, baca ile ilgili bir hasar gözlemlediniz mi?

Hayır. (% 100)

32. Depremden sonra konutunuzdaki tuğla bacadan çatlaklar oldu mu?

Hayır. (% 100)

33. Deprem sonucunda bacakta çatı üstündeki kısmı zarar gördü mü?

Hayır.

34. Deprem sonrasında baca kontrolü (mekanik kontrol ve duman tabletleriyle çekiş kontrolü) yapıldı mı?

Hayır.

35. Deprem sonrasında baca deprem ile ilgili bir önlem aldı mı?

Hayır.
Şekil 3.5: Yeşil Yamaç Sitesi A-4 Blok anket sonuçları ile ilgili grafikler.
Şekil 3.5 devamı: Yeşil Yamaç Sitesi A-4 Blok anket sonuçları ile ilgili grafikler.
9. Diğer katlardan mutfak başçısı yoluya gelen yemek kokularını duyunuz?

- Evet, sık sık. % 7 (1 kişi)
- Hayır. % 86 (12 kişi)
- Nadiren. % 7 (1 kişi) (Bakınız Şekil 3.6.d.)

Tablo 3.4 : Yeşil Yamaç Sitesi D-3 blokta 10., 11. ve 12. sorular için verilen yanıtlar

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Arçelik</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Arçelik</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Arçelik</td>
<td>(5-10 yıllık.)</td>
</tr>
<tr>
<td>Elektrikli şofben.</td>
<td>Arçelik</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Demirdöküm</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Hermetik (bacasız) şofben.</td>
<td>Demirdöküm</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Hermetik (bacasız) şofben.</td>
<td>Demirdöküm</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Hermetik (bacasız) şofben.</td>
<td>Demirdöküm</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Hermetik (bacasız) şofben.</td>
<td>ECA</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Elektrikli şofben.</td>
<td>ECA</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Vestel</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Simtel</td>
<td>(5-10 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Auer</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Elektrikli şofben.</td>
<td>İhlas</td>
<td>(1-5 yıllık.)</td>
</tr>
</tbody>
</table>

% 50 Klasik (bacalı) şofben. % 28,57 Arçelik, (5-10 yıllık) % 14,3
% 28,6 Elektrikli şofben. % 28,57 Demirdöküm, (1-5 yıllık) % 85,7
% 21,4 Hermetik (bacasız) şofben. % 14,29 ECA,
 % 7,14 Vestel, % 7,14 Simtel,
 % 7,14 Auer, %7,14 İhlas

(Bakınız Şekil 3.6.e, Şekil 3.6.f ve Şekil 3.6.g.)

13. Cihazın servis süklüğü:

- Bugüne kadar hiç gelmedi. % 50 (7 kişi)
- Bugüne kadar bir kere. % 43 (6 kişi)
(1 kişi – Cihazın yanarken sönmesi ile ilgili olarak servis görüşü, çakmaktan dolayı olduğu.)
(1 kişi – Conta için gelmiş. Cihazın yanarken sönmesi ile ilgili olarak servis görüşü, bacakın yetersiz olduğu, bacakın tıkalı olduğu ve içinde harç olması.)
(1 kişi – Cihazla ters bağlantılı olduğu için gelmiş. Cihaz yanarken sönüyor, fakat bununla ilgili olarak servis gelmemiş.)
(1 kişi – Cihazla ilgili bir sorun varmış.)
(1 kişi – Cihaz yanarken sönuyormuş, fakat bununla ilgili olarak servis gelmiş, filtre tıkalымış, artık sönümüyor.)
(1 kişi – Cihazla ilgili bir sorun varmış.)
☐ Bugüne kadar üç kere. % 7 (1 kişi)
(Bir kere baca için gelmiş. Şofben, salon bacasına bağlıymiş, kapatarak mutfaktakine bağlanmıştır. Servis, şofbenin yanarken sönmesi ile ilgili olarak “baca yetersiz” demiş.)
(Bakınız Şekil 3.6.h.)

14. Sıcak su şofben ile sağlanıyorsa, cihaz tipi nedir?
☐ Hermetik (Bacaz) % 28,6 (4 kişi)
☐ Elektrikli şofben % 21,4 (3 kişi)
☐ Klasik (Bacalı) % 50 (7 kişi)
(Bakınız Şekil 3.6.i.)

15. Sıcak su şofben ile sağlanıyorsa, yakıt türü nedir?
☐ Doğal gaz % 78,6 (11 kişi)
☐ Elektrikli şofben % 21,4 (3 kişi)
(Bakınız Şekil 3.6.j.)

16. Cihaz (şofben), yanarken sönuyor mu?
☐ Evet. % 28,6 (4 kişi) (3 adet klasik (bacalı) şofben,
1 adet hermetik (bacaz) şofben.)
☐ Hayır. % 71,4 (10 kişi)
(Bakınız Şekil 3.6.k.)

22. Çöp bacsı var mı? Hayır.
23. Havalandırma bacsı var mı? Evet. (1 adet)
26. Banyo, WC iç tarafla ise diğer katlardan havalandırma bacsı yoluya koku geliyor mu?
 □ Evet, sık sık. % 14 (2 kişi)
 □ Hayır. % 43 (6 kişi)
 □ Bazen. % 43 (6 kişi)
 (Bakınız Şekil 3.6.1.)
27. Şömine var mı?
 Hayır.
31. Depremden sonra konutunuzda, baca ile ilgili bir hasar gözlemlediniz mi?
 Hayır. (% 100)
32. Depremden sonra konutunuzdaki tuğla bacadan çatılar oldu mu?
 Hayır. (% 100)
33. Deprem sonucunda bacakın çatı üstündeki kısmız zarar gördü mü?
 Hayır.
34. Deprem sonrasında baca kontrolü (mekanik kontrol ve duman tabletleriyle çek iş kontrolü) yapıldı mı?
 Hayır.
35. Deprem sonrasında bacadan deprem ile ilgili bir önlem alındı mı?
 Hayır.
Şekil 3.6 : Yeşil Yamaç Sitesi D-3 Blok anket sonuçları ile ilgili grafikler.
Şekil 3.6 devamı: Yeşil Yamaç Sitesi D-3 Blok anket sonuçları ile ilgili grafikler.
3.2.2.3. Yeşil Yamaç Sitesi D-4 Blok Anket Sonuçları

1. Mahal : YEŞİL YAMAÇ SİTESİ
4. Yapım yılı (Teslim tarihi) : 1997. (Yapım süresi 7 yıl.)
5. Dairede (bağimsız birimde) kaç adet baca var? 4 adet.
 ✓ □ Duman bacası – 3 (1 aspiratör bacası, 1 şofben bacası, 1 yedek baca.)
 ✓ □ Havalandırma bacası - 1
 □ Çöp bacası
 □ Tesisat bacası
 ✓ □ Duman bacası – 2
 1 şofben bacası (% 90 - 9 kişi kullanıyor.)
 (Bir kişi, elektrikli termosifon kullanıyor.)
 1 aspiratör bacası (% 50 – 5 kişi iptal etmiş, % 50 – 5 kişi kullanıyor.)
 (Bir aspiratör bacası balkondan dışarı verilmiş, bir diğeri de iptal edilmiş ve ocak, şofben bacasına bağlanmış. Diğer üçü de iptal edilmiş.)
 ✓ □ Havalandırma bacası – 1
 □ Çöp bacası
 □ Tesisat bacası (Bakımız Şekil 3.7.a ve 3.7.b.)
8. Oturduğunuz daire size ait, yoksa kiracı misiniz?
 □ Bize ait. % 40 (4 kişi)
 □ Kiracıyız. % 60 (6 kişi) (Bakınız şekil 3.7.c.)
9. Diğer katlardan mutfak bacası yoluyla gelen yemek kokularını duyuyor musunuz?
 □ Evet, sık sık. % 50 (5 kişi)
 □ Hayır. % 50 (5 kişi) (Bakınız Şekil 3.7.d.)
Tablo 3.5: Yeşil Yamaç Sitesi D-4 blokta 10., 11. ve 12. sorular için verilen yanıtlar

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Arçelik</td>
<td>(1-5 yıllık)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Arçelik</td>
<td>(1-5 yıllık)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Arçelik</td>
<td>(1-5 yıllık)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Demirdöküm</td>
<td>(1-5 yıllık)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Demirdöküm</td>
<td>(1-5 yıllık)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Vestel</td>
<td>(1-5 yıllık)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Bosch</td>
<td>(1-5 yıllık)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Electrolux</td>
<td>(1-5 yıllık)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Demirdöküm</td>
<td>(1-5 yıllık)</td>
</tr>
<tr>
<td>Elektrikli termosifon.</td>
<td>Arçelik</td>
<td>(1-5 yıllık)</td>
</tr>
</tbody>
</table>

% 90 Klasik (bacalı) şofben. % 40 Arçelik, % 10 Elektrikli termosifon, % 30 Demirdöküm, % 10 Vestel, %10 Bosch, %10 Electrolux.

(Bakınız Şekil 3.7.e ve Şekil 3.7.f.)

13. Cihazın servis sıkılığı:

- **Bugüne kadar hiç gelmedi.** % 60 (6 kişi)
- **Bugüne kadar bir kere.** % 10 (1 kişi) (Cihazla ilgili.)
- **Bugüne kadar iki kere.** % 10 (1 kişi) (Conta için.)
- **Bugüne kadar üç kere.** % 10 (1 kişi) (Cihazla ilgili.)
- **Bugüne kadar dört kere.** % 10 (1 kişi) (Cihazla ilgili.)

(Bakınız Şekil 3.7.g.)

14. Sıcak su şofben ile sağlanyorsa, cihaz tipi nedir?

- **Elektrikli termosifon** % 10 (1 kişi)
- **Klasik (Bacalı)** % 90 (9 kişi) (Bakınız Şekil 3.7.h.)

15. Sıcak su şofben ile sağlanyorsa, yakıt türü nedir?

- **Doğal gaz** % 80 (8 kişi) **Elektrikli termosifon** % 10 (1 kişi)
- **LPG** % 10 (1 kişi)

(Bakınız Şekil 3.7.i.)

137
16. Cihaz (sofben), yanarken sönüyor mu?
 Hayır. (% 100)

22. Çöp bacası var mı? Hayır.
23. Havalandırma bacası var mı? Evet. (1 adet)
26. Banyo, WC iç tarafta ise diğer katlardan havalandırma bacası yoluya koku geliyor mu?
 □ Evet, sık sık. % 70 - 7 kişi (5 kişi "yemek kokusu geliyor" dedi.)
 □ Hayır. % 10 - 1 kişi
 □ Bazen. % 20 - 2 kişi (1 kişi "yemek kokusu geliyor" dedi.)
 (Bakınız Şekil 3.7.j.)

27. Şömine var mı?
 Hayır.

31. Depremden sonra konutunuzda, baca ile ilgili bir hasar gözlemlediniz mi?
 Hayır. (% 100)

32. Depremden sonra konutunuzdaki tuğla bacada çatlaklar olduğu mu?
 □ Evet. % 10 (1 kişi) (Sıva çatlağı.)
 □ Hayır. % 90 (9 kişi)
 (Bakınız Şekil 3.7.k.)

33. Deprem sonucunda bakanın çatı üstündeki kısmın zarar gördü mü?
 Hayır.

34. Deprem sonrasında baca kontrolü (mekanik kontrol ve duman tabletleriyle çekiş kontrolü) yapıldı mı?
 Hayır.

35. Deprem sonrasında bacaça deprem ile ilgili bir önlem alındı mı?
 Hayır.
Şekil 3.7: Yeşil Yamaç Sitesi D-4 Blok anket sonuçları ile ilgili grafikler.
Şekil 3.7 devami: Yeşil Yamaç Sitesi D-4 Blok anket sonuçları ile ilgili grafikler.
3.2.2.4. Yeşil Yamaç Sitesi A-4 Blok Anket Sonuçları

Anket sonucunda elde edilen bilgilere göre; her dairede (başımsız birimde) toplam 4 adet baca mevcuttur. Bunlardan üçü duman bacası (1 aspiratör bacası, 1 şöfben bacası, 1 yedek baca odada) ve bir tanesi de havalandırma bacasıdır. Duman bacalarından ikisi (mutfakta aspiratör bacası ve şöfben bacası) kullanılmaktadır, biri kullanılmamaktadır. Aspiratör bacasını, ankete katılanların % 33’ü iptal etmiş ve % 67’i kullanabilmektedir. Şöfben bacasını, ankete katılanların yarısı iptal etmiş ve elektrikli şöfben takılmıştır. Banyo ve WC, iç duvarda yer almakta ve havalandırma bacasına açılan birer menfes kapısı yardımı ile havalandırmaktadır. Çöp bacası mevcut değildir. Tesisat bacası ise, daire içinden geçmemektedir. Şömine bacası ise mevcut değildir.

A-4 blokta oturan kişiler arasında yapılan anket sonucunda, konutta oturanların çoğunun ev sahipleri olduğu anlaşılmıştır. Kiracı olanların sayısı daha azdır.

Ankete katılan A-4 blok sakinlerinden aspiratör bacasını kullananların tümü, diğer katıldardan mutlak bacayı yoluyla gelen yemek kokularından şikayet etmiştir.

Merkezi ısıtma sistemi, klasik radyatörlü sistem ile sağlanmaktadır ve bir adet doğal gaz yakıtı kazan mevcuttur.

Banyo, WC’nin havalanmasına sağlayan bacadan diğer katların kokusunun gelip gelmediği sorulduğunda, ankete katılanların çoğu, koku geldiğini söylemiştir.

3.2.2.5. Yeşil Yamaç Sitesi D-3 Blok Anket Sonuçları

Anket sonucunda elde edilen bilgilere göre; her dairede (bağımsız birimde) toplam 4 adet baca mevcuttur. Bunlardan üçü duman bacası (1 aspiratör bacası, 1 şofben bacası, 1 yedek baca odada) ve bir tanesi de havalandırma bacasıdır. Duman bacalarından ikisi (mutfağa aspiratör bacası ve şofben bacası) kullanılmamaktadır, biri kullanılmamaktadır. Aspiratör bacası, ankette katılanların sadece % 14'ünü kullanmakta, % 14'ü aspiratör kullanmamaktadır. Geriye kalan büyük bir oranda ise, aspiratör çığlığı balkondan dışarıya verilmiştir. Şofben bacası, ankete katılanların yarısı iptal etmiş ve bunların bir bölümü elektrikli şofben taktırılmış, bir bölümü de duman çığlığı balkondan dışarıya verilmiştir. Banyo ve WC, iç duvarında yer almaktadır ve havalandırma bacaşına açılan birer memfez kapağı yardımı ile havalandırılmaktadır. Çöp bacası mevcut değildir. Tesisat bacası ise, daire içinden geçmemektedir. Şömine bacası ise mevcut değildir.

D-3 blokta oturan kişiler arasında yapılan anket sonucunda, konutta oturanların çoğunun ev sahipleri olduğu anlaşılmıştır. Kiracı olanların sayısı daha azdır.

Ankete katılan D-3 blok sakinlerinden aspiratör bacası kullanılanların tümü, diğer katlardan mutfaq bacası yoluyla gelen yemek kokularından şikayet etmiştir.

Sıcak su, hermetik (bacasız) şofben, elektrikli şofben ve doğal gaz ile çalışan klasik (baca) şofben ile sağlanmaktadır. Cihazların çoğu, 1-5 yıllık; küçük bir bölümü, 5-10 yıllık. Cihazların markası çokluk oranlarına göre; Arçelik, Demirdökm, ECA, Vestel, Simtel, Auer, İhlas'tır. Cihazın servis sıkılığı sorunudunda, cihazların yarısı için hiç servis çağrılmadığı, diğer yarısı için ise en az bir kere servise başvurulduğu sonucu ortaya çıkmıştır. Yanarken sonraki sorunu olanların oranı % 29'dur ve bunların çoğu klasik (baca) şofben, az bir bölümü de hermetik (bacasız) şofbendir.

Merkezi ısıtma sistemi, klasik radyatörler sistem ile sağlanmaktadır ve bir adet doğal gaz yakıtlı kazan mevcuttur.
Banyo, WC’nin havalanmasını sağlayan bacakdan diğer katların kokusunun gelip gelmediğini sorulduğunda, ankete katılanların yarısından çoğu, koku gelmediğini, geri kalanı ise her zaman ve baze koku geldiğini söylemiştir.

3.2.2.6. Yeşil Yamaç Sitesi D-4 Blok Ankет Sonuçları

Ankет sonucunda elde edilen bilgilere göre; her dairede (bağımsız birimde) toplam 4 adet baca mevcuttur. Bunlardan üçü duman bacası (1 aspiratör bacası, 1 şöfben bacası, 1 yedek baca odada) ve bir tanesi de havalandırma bacasıdır. Duman bacaklarından ikisi (mutfaka aspiratör bacası ve şöfben bacası) kullanılmaktadır, biri kullanılmamaktadır. Aspiratör bacasını, ankete katılanların sadece yarısı kullanmaktadır; geri kalanın % 10’u aspiratör bacasını balkondan dışarıya vermiş, % 10’u iptal edilmiş ve oacak, şöfben bacasına bağlanmış; % 30’u da iptal edilmiştir. Ankete katılanların çoğu, şöfben bacasını kullanmakta, küçük bir bölümü de elektrikli termosifon kullanmaktadır. Banyo ve WC, iç duvara yer almaktadır ve havalandırma bacasına açılan birer menfaz kapağı yardımı ile havalandırılmaktadır. Çöp bacası mevcut değildir. Tesisat bacası ise, daire içinden geçmemektedir. Şömne bacası ise mevcut değildir.

D-4 bloktı oturan kişiler arasında yapılan ankет sonucunda, konutta oturanların yarısından çoğunun kırıcı olduğu anlaşılmıştır. Ev sahibi olanların sayısı daha az olmakla birlikte, oranları birbirine yakındır.

Ankete katılan D-4 blok sakinlerinin yarısı, aspiratör bacasından gelen yemek kokularından şikayetçi olmuştur.

Sıcak su, az oranda elektrikli termosifon ve çoğunlukla klasik (baca) şöfben ile sağlanmaktadır. Klasik (baca) şöfbenlerin yakıt türü, doğal gaz ve az da olsa

143
LPG'dir. Cihazların tümü, 1-5 yıllık. Cihazların markası çokluk oranlarına göre; Arçelik, Demirdöküm, Vestel, Bosch, Electrolux'tür. Cihazın servis sıklığı sorulduğuunda, cihazların % 60'ı için hiç servis çağrılmadığı, % 10'arlık bölümleri için ise sırayla bir, iki, üç, dörd kere servise başvurulduğu sonucu ortaya çıkmıştır. Cihazlarda yanarken sönme sorunu yoktur.

Merkezi ısıtma sistemi, klasik radyatörlü sistem ile sağlanmaktadır ve bir adet doğal gaz yakılıt kazan mevcuttur.

Banyo, WC'nin havalanmasını sağlayan bacakdan diğer katların kokusunun gelip gelmediği sorulduğuunda, ankete katılanların % 90'ı, koku geldiğini söylemiştir.

3.2.3. Başakşehir

Başakşehir Toplu Konutları, Kağıthane ilçesine bağlı bir yerleşim yeri olarak planlanmış bir toplu konut kooperatifidir. İstanbul Büyükşehir Belediyesi’nin yapımını üstlendiği konutların satışı, inşaat bittikten sonra yapılmıştır. Anketin uygulandığı konutların teslim tarihi, 1997 / Mayıs’tır.

Anket, D tipi blokta uygulanmıştır. D blok, her katta dörder daireye sahip ve 9 katlıdır.
3.2.3.1. Başakşehir D-103 Blok Anket Sonuçları

1. Mahal: BAŞAKŞEHİR
5. Dairede (bağımsız birimde) kaç adet baca var? 4 adet.
 - Duman bacası - 3 (Aspiratör bacası yok – dışarı veriliyor, 1 şofben
 bacası, 1 yedek baca odada, 1 yedek baca banyoda.)
 - Havalandırma bacası - 1
 - Çöp bacası
 - Tesisat bacası
 - Duman bacası – 1
 1 şofben bacası (% 83,33 – 5 kişi şofben bacasını kullanıyor,
 % 16,67 – 1 kişi elektrikli şofben kullanıyor.)
 - Havalandırma bacası – 1
 - Çöp bacası
 - Tesisat bacası
8. Oturduğunuz daire size mi ait, yoksa kiracı misiniz?
 - Bize ait. % 16,67 (1 kişi)
 - Kiracıyız. % 83,33 (5 kişi)
 (Bakınız Şekil 3.8.a.)
Tablo 3.6: Başakşehir D-103 blokta 10., 11. ve 12. sorular için verilen yanitlar.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Demirdöküm</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Demirdöküm</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Arçelik</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>AEG</td>
<td>(5-10 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Bosch</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Elektrikli şofben.</td>
<td>İhlas</td>
<td>(1-5 yıllık.)</td>
</tr>
</tbody>
</table>

% 83,33 Klasik (bacalı) şofben, % 33,33 Demirdöküm, % 16,67 Elektrikli şofben. % 16,67 Arçelik, % 16,67 AEG, % 16,67 Bosch, % 16,67 İhlas.

(Bakınız Şekil 3.8.b, 3.8.c ve 3.8.d.)

13. Cihazın servis sıkığı:

- **Bugüne kadar hiç gelmedi.** % 66,66 (4 kişi)
- **Bugüne kadar iki kere.** % 16,67 (1 kişi)
- **Bugüne kadar üç kere.** % 16,67 (1 kişi)

(Bakınız Şekil 3.8.e.)

14. Sıcak su şofben ile sağlanıyorsa, cihaz tipi nedir?

- **Klasik (bacalı) şofben.** % 83,33 (5 kişi)
- **Elektrikli şofben.** % 16,67 (1 kişi)

(Bakınız Şekil 3.8.f.)

15. Sıcak su şofben ile sağlanıyorsa, yakıt türü nedir?

- **Doğal gaz** % 50 (3 kişi)
- **LPG** % 33,33 (2 kişi)
- **Elektrikli şofben.** % 16,67 (1 kişi)

(Bakınız Şekil 3.8.g.)

16. Cihaz (şofben), yanarken sönüyor mu?

- **Evet.** % 16,67 (1 kişi) (Sönmemesi için balkon kapısunun açılması gerekiyor.)
- **Hayır.** % 83,33 (5 kişi)

(Bakınız Şekil 3.8.h.)
17. Cihaz yanarken sönyorsa, bu sorun için servis geldi mi?
 Evet. (Servisin görüşü; baca yetersiz, tikalı.)

22. Çöp bacası var mı? Hayır.

23. Havalandırma bacası var mı? Evet. (1 adet)

26. Banyo, WC iç tarafta ise diğer katlardan havalandırma bacası yoluya koku geliyor mu?
 □ Evet, sık sık. % 33,33 (2 kişi)
 □ Hayır. % 50 (3 kişi)
 □ Bazen. % 16,67 (1 kişi)
 (Bakınız Şekil 3.8.i.)

27. Şömine var mı?
 Hayır.

31. Depremden sonra konutunuzda, baca ile ilgili bir hasar gözlemlediniz mi?
 Hayır. (% 100)

32. Depremden sonra konutunuzdaki tuğla bacada çatlaklar oldu mu?
 Hayır. (% 100)

33. Deprem sonucunda bacakın çatı üstündeki kısmı zarar gördü mü?
 Hayır.

34. Deprem sonrasıda baca kontrolü (mekanik kontrol ve duman tabletleriyle çekiş kontrolü) yapıldı mı?
 Hayır.

35. Deprem sonrasıda bacada deprem ile ilgili bir önlem alındı mı?
 Hayır.
Şekil 3.8: Başakşehir D-103 Blok anket sonuçları ile ilgili grafikler.
Şekil 3.8 devamı: Bağışıklık D-103 Blok anket sonuçları ile ilgili grafikler.
3.2.3.2. Başakşehir D Blok (Lojman) Anket Sonuçları

1. Mahal : BAŞAKŞEHİR
5. Dairede (bağimsız birimde) kaç adet baca var? 4 adet.
 □ Duman bacısı – 3 (Aspiratör bacası yok – dışarı veriliyor, 1 şofben bacası, 1 yedek baca odada, 1 yedek baca banyoda.)
 □ Havalandırma bacısı – 1
 □ Çöp bacısı
 □ Tesisat bacısı
 □ Duman bacısı – 1
 1 şofben bacısı (% 85,7 – 6 kişi şofben bacasını kullanıyor, % 14,3 – 1 kişi elektrikli şofben kullanıyor.)
 □ Havalandırma bacısı – 1
 □ Çöp bacısı
 □ Tesisat bacısı

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Demirdöküm</td>
<td>(5-10 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Demirdöküm</td>
<td>(10-... yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Demirdöküm</td>
<td>(10-... yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Arçelik</td>
<td>(5-10 yıllık.)</td>
</tr>
<tr>
<td>Klasik (bacalı) şofben.</td>
<td>Arçelik</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td>Elektrikli şofben.</td>
<td>Beko</td>
<td>(1-5 yıllık.)</td>
</tr>
<tr>
<td></td>
<td>İhlas</td>
<td>(1-5 yıllık.)</td>
</tr>
</tbody>
</table>

% 85,7 Klasik (bacalı) şofben. % 14,29 İhlas, % 14,29 Beko (5-10 yıllık) % 28,57 % 14,3 Elektrikli şofben. % 42,86 Demirdöküm % 28,57 Arçelik, (1-5 yıllık) % 71,43

(Bakınız Şekil 3.9.a, Şekil 3.9.b ve Şekil 3.9.c.)
13. Cihazın servis sıkığı:
 □ Bugüne kadar hiç gelmedi. % 71,43 (5 kişi)
 □ Bugüne kadar bir kere. % 28,57 (2 kişi)
 (1 kişi – Çakmak ve istıma sorunu için.) (Bakınız Şekil 3.9.d.)

14. Sıcak su şöfben ile sağlanıyorsa, cihaz tipi nedir?
 □ Klasik (bacaltı) şöfben. % 85,7 (6 kişi)
 □ Elektrikli şöfben. % 14,3 (1 kişi) (Bakınız Şekil 3.9.e.)

15. Sıcak su şöfben ile sağlanıyorsa, yakıt türü nedir?
 □ Doğal gaz % 85,7 (6 kişi)
 □ Elektrikli şöfben. % 14,3 (1 kişi) (Bakınız Şekil 3.9.f.)

16. Cihaz (şöfben), yanarken sönyör mu?
 Hayır. (% 100)

22. Çöp bacası var mı? Hayır.

23. Havalandırma bacası var mı? Evet. (1 adet)

26. Banyo, WC iç tarafta ise diğer katlardan havalandırma bacası yoluya koku geliyor mu?
 Hayır. (% 100)

27. Şömine var mı? Hayır.

31. Depremden sonra konutunuzda, baca ile ilgili bir hasar gözlemlediniz mı?
 Hayır. (% 100)

32. Depremden sonra konutunuzdaki tuğla bacakta çatlaklar oldu mu?
 Hayır. (% 100)

33. Deprem sonucunda bacakın çatı üstündeki kısmının zarar gördü mü? Hayır.

34. Deprem sonrasında baca kontrolü (mekanik kontrol ve duman tabletleriyle çekiş kontrolü) yapıldı mı?
 Hayır.

35. Deprem sonrasında baca ile ilgili bir önlem alındı mı?
 Hayır.

152
Şekil 3.9: Başakşehir D Blok (lojman) anket sonuçları ile ilgili grafikler.
3.2.3.3. Başakşehir D-103 Blok Anket Sonuçları

Başakşehir konutlarında site müdüründen alınan bilgiye göre, tuğla baca kesitinin yetersiz olmasından dolayı baca iyi çekememekteydi. Bu sorunu çözmek için bir fan denemesi yapılmış, son dört katın baca tuğlasının kırlılıp genişletime olasılığı düşünülmuş, fakat bu henüz gerçekleştirilmemiştir.

Yapılan anket sonucunda elde edilen bilgilere göre; her dairede (bağımsız birimde) toplam 4 adet baca mevcuttur. Bunlardan üçü duman bacısı (1 şofben bacısı, 1 yedek baca odada, 1 yedek baca banyoda) ve bir tanesi de havalandırmaudasıdır. Duman bacalarından biri (mutfakta şofben bacısı) kullanılmakta, diğerleri kullanılmamaktadır. Aspiratör çıkışi ise, dışarıya verilmiş; aspiratör bacası mevcut değildir. Banyo ve WC, iç duvarda yer almaktar ve havalandırma bacasına ait olan birer menfrez kapağı yardımı ile havalandırılmaktadır. Çöp bacası mevcut değildir. Tesisat bacası ise, daire içinden geçmemektedir. Şömne bacası ise mevcut değildir.

D-103 bloktaki oturan kişiler arasında yapılan anket sonucunda, konuta oturanların büyük bir çoğunluğunun kiracı olduğu analiz edilmiştir. Ev sahibi olanların sayısı daha azdır.

Merkezi istıta sistemi, klasik radyatörlü sistem ile sağlanmaktadır ve bir adet kazan mevcuttur.

Banyo, WC’nin havalanmasını sağlayan bacadan diğer katların kokusunun gelip gelmediğini sorulduğunda, koku geldiğini ve gelmediğini söyleyenlerin oranı aynı olmuştur.

3.2.3.4. Başakşehir D Blok (Lojman) Anket Sonuçları

Anket yapılan diğer D blok, İSKİ Lojmanı olarak kullanılmaktadır.

Lojman bloğunda yapılan anket sonucunda elde edilen bilgilere göre; her dairede (bağımız birimde) toplam 4 adet baca mevcuttur. Bunlardan üçü duman bacası (1 şofben bacası, 1 yedek baca odada, 1 yedek baca banyoda) ve bir tanesi de havalandırma bacasıdır. Duman bacalarından biri (mutfakta şofben bacası) kullanılmakta, diğerleri kullanılmamaktadır. Aspiratör çıkışı ise, dışarıya verilmiştir; aspiratör bacası mevcut değildir. Banyo ve WC, iç duvarda yer almaktak ve havalandırma bacasına açılan birer menfез kapağı yardımcı ile havalandırılmaktadır. Çop bacası ve şömine bacası mevcut değildir. Tesisat bacası ise, daire içinden geçmişmektedir.

Merkezi ısıtma sistemi, klasik radyatörülü sistem ile sağlanmaktadır ve bir adet kazan mevcuttur.

Banyo, WC'in havalandırmasını sağlayan bacadan diğer katların kokusunun gelip gelmediği sorudugunda, ankete katılanların tümü, koku gelmediğini söylemiştir.

Başakşehir konutlarında tuğla baca kesiti yetersiz olduğu, bacanın çekişi iyi olmadığını için bir fan denemesi yapılmış, son dört katın baca tuğlasının kırılıp genişletilmesi düşünülmuş, fakat henüz gerçekleştirilmemiştir.
3.2.4. Bahçeşehir

Bahçeşehir, Emlak Bankası’nın yapımını üstlendiği bir toplu konut kooperatifidir. Şu anda kendi belediyesi olan; kent dışında, her türlü alışverişin ve sosyal aktivitenin sağlanabileceği, yeşilliklerle dolu bir yerleşim yeri olarak planlanmış konutların satışı, inşaat bittikten sonra yapılmıştır.

3.2.4.1. Bahçeşehir B-22 Blok Anket sonuçları

1. Mahal : BAHÇEŞEHİR
5. Dairede (bağımsız birimde) kaç adet baca var? 3 adet.

☐ Duman bacası - 2 (1 aspiratör bacası, 1 yedek baca.)
☐ Havalandırma bacası - 1
☐ Çöp bacası - 1 (Apartman holünde.)
☐ Tesisat bacası

☐ Duman bacası - 1 (aspiratör bacası.)
☐ Havalandırma bacası - 1
☐ Çöp bacası - 1
☐ Tesisat bacası

8. Oturduğunuz daire size mi ait, yoksa kıracı mıınız?

☐ Bize ait. % 75 (6 kişi)
☐ Kiracıyız. % 25 (2 kişi)
(Bakınız Şekil 3.10.a.)

9. Diğer katlardan mutlak bacası yoluyla gelen yemek kokularını duuyor musunuz?

☐ Evet, sık sık. % 25 (2 kişi)
☐ Hayır. % 62,5 (5 kişi)
☐ Nadiren. % 12,5 (1 kişi)
(Bakınız Şekil 3.10.b.)

20. Kazan adedi: İki (iki bitişik blok besleniyor.)
22. Çöp bacası var mı? Evet. (1 adet)
23. Havalandırma bacası var mı? Evet. (1 adet)
26. Banyo, WC iç tarafta ise diğer katlardan havalandırma bacası yoluya koku geliyor mu?
 □ Evet, sık sık.
 ✔ □ Hayır. % 75 (6 kişi)
 ✔ □ Bazen. % 25 (2 kişi)
 (Bakınız Şekil 3.10.c.)
27. Şömine var mı?
 Hayır.
31. Depremden sonra konutunuzda, baca ile ilgili bir hasar gözlemlediniz mi?
 Hayır. (% 100)
32. Depremden sonra konutunuzdaki tuğla bacada çatılar olduğu mu?
 Hayır. (% 100)
33. Deprem sonucunda bacinin çatı üstündeki kısmı zarar gördü mü?
 Hayır.
34. Deprem sonrasında baca kontrolü (mekanik kontrol ve duman tabletleriyle çekiş kontrolü) yapıldı mı?
 Hayır.
35. Deprem sonrasında bacakta deprem ile ilgili bir önlem alındı mı?
 Hayır.
Şekil 3.10: Bahçeşehir B-22 Blok anket sonuçları ile ilgili grafikler.
3.2.4.2. Bahçeşehir C-3 Blok Anket sonuçları

1. Mahal : BAHÇEŞEHİR

5. Dairede (bağımsız birimde) kaç adet baca var? 3 adet.

 - □ Duman bacası - 1 (Aspiratör çıkışi dışarı veriliyor, 1 yedek baca.)

 - □ Havalandırma bacası - 2

 - □ Çöp bacası - 1 (Apartman holünde.)

 - □ Tesisat bacası

 - □ Duman bacası

 - □ Havalandırma bacası - 2

 - □ Çöp bacası (Temizlik şartları sağlanamadığı için kullanılmıyor.

 Haşere ile mücadele edilemiyor.)

 - □ Tesisat bacası

8. Oturduğunuz daire size ait, yoksa kiracımisınız?

 - □ Bize ait. % 60 (3 kişi)

 - □ Kiracyız. % 40 (2 kişi)

 (Bakınız Şekil 3.11.)

22. Çöp bacası var mı? Evet. (1 adet-kullanılmıyor.)

23. Havalandırma bacası var mı? Evet. (2 adet.)

26. Banyo, WC iç tarafta ise diğer katlardan havalandırma bacası yoluya koku geliyor mu?
 Hayır. (% 100)
27. Şömine var mı?
 Hayır.
31. Depremden sonra konutunuzda, baca ile ilgili bir hasar gözlemlediniz mı?
 Hayır. (% 100)
32. Depremden sonra konutunuzdaki tuğla bacada çatılar oldu mu?
 Hayır. (% 100)
33. Deprem sonucunda bakanın çatı üstündeki kısmını zarar gördü mü?
 Hayır.
34. Deprem sonrasında baca kontrolü (mekanik kontrol ve duman tabletleriyle çekiş kontrolü) yapıldı mı?
 Hayır.
35. Deprem sonrasında baca da deprem ile ilgili bir önlem alındı mı?
 Hayır.

Şekil 3.11 : Bahçeşehir C-3 Blok anket sonuçları ile ilgili grafik.
26. Banyo, WC iç tarafta ise diğer katlardan havalandırma bacak yoluya koku geliyor mu?

☑ Evet, sık sık. % 16,7 (1 kişi)

☑ Hayır. % 83,3 (5 kişi)

☐ Bazen.

(Bakınız Şekil 3.12.)

27. Şömine var mı?

Hayır.

31. Depremden sonra konutunuzda, baca ile ilgili bir hasar gözlemlediniz mi?

Hayır. (% 100)

32. Depremden sonra konutunuzdaki tuğla bacak çatılar oldugu mu?

Hayır. (% 100)

33. Deprem sonucunda bacanın çatı üstündeki kısımı zarar gördü mü?

Hayır.

34. Deprem sonrasında baca kontrolü (mekanik kontrol ve duman tabletleriyle çekış kontrolü) yapıldı mı?

Hayır.

35. Deprem sonrasında bacada deprem ile ilgili bir önlem alındı mı?

Hayır.

Şekil 3.12 : Bahçeşehir C-3 Blok (lojman) anket sonuçları ile ilgili grafik.
3.2.4.4. Bahçeşehir D-1 Blok Anket Sonuçları

1. Mahal : BAHÇEŞEHİR
5. Dairede (bağımsız birimde) kaç adet baca var? 4 adet.
 ✔ Duman bacası - 2 (1 aspiratör bacası, 1 yedek baca.)
 ✔ Havalandırma bacası - 2 (2 banyo var.)
 ✔ Çöp bacası - 1 (Apartman holünde.)
 □ Tesisat bacası

 ✔ Duman bacası - 1 (aspiratör bacası.)
 ✔ Havalandırma bacası - 2
 □ Çöp bacası - Kullanılmıyor.
 □ Tesisat bacası

8. Oturduğunuz daire size mi ait, yoksa kıracı mıınız?
 □ Bize ait. % 58,3 (7 kişi)
 □ Kiracıınız. % 41,7 (5 kişi)
 (Bakınız Şekil 3.13.a.)

9. Diğer katlardan mutfak bacası yoluyla gelen yemek kokularını duuyor musunuz?
 ✔ Evet, sık sık. % 83,3 (10 kişi)
 □ Hayır.
 ✔ Nadiren. % 16,7 (2 kişi)
 (Bakınız Şekil 3.13.b.)

22. Çöp basası var mı? Evet. (1 adet-kullanılmıyor.)
23. Havalandırma basası var mı? Evet. (2 adet.)
26. Banyo, WC iç tarafta ise diğer katlardan havalandırma basası yoluya koku geliyor mu?

☐ Evet, sık sık. % 16,7 (2 kişi)
☐ Hayır. % 58,3 (7 kişi)
☐ Bazen. % 25 (3 kişi)
(Bakınız Şekil 3.13.c.)

27. Şömine var mı?
Hayır.
31. Depremden sonra konutunuzda, baca ile ilgili bir hasar gözlemlediniz mı?
Hayır. (% 100)
32. Depremden sonra konutunuzdaki tuğla baca çatlaklar oldu mu?
Hayır. (% 100)
33. Deprem sonucunda bakanın çatı üstündeki kısmi zarar gördü mü?
Hayır.
34. Deprem sonrasıda baca kontrolü (mekanik kontrol ve duman tabletleriyle çekiş kontrolü) yapıldı mı?
Hayır.
35. Deprem sonrasıda baca da deprem ile ilgili bir önlem alındı mı?
Hayır.
Şekil 3.13: Bahçeşehir D-1 Blok anket sonuçları ile ilgili grafikler.

167
3.2.4.5. Bahçeşehir B-22 Blok Anket Sonuçları

Yapılan anket sonucunda elde edilen bilgilere göre; her dairede (bağımsız birimde) toplam 3 adet baca mevcuttur. Bunlardan ikisi duman bacası (1 aspiratör bacası, 1 yedek baca odada) ve bir tanesi de havalandırıma bacasıdır. Duman bacalarından biri (mutfakta aspiratör bacası) kullanılmaktadır, diğeri kullanılmamaktadır. Banyo ve WC, iç duvarda yer almakta ve havalandırma bacasına açılan birer menfez kapığı yardımı ile havalandırılmaktadır. Çöp bacası, apartman holündedir. Çöp bacası kullanılmaktadır. Tesisat bacası, daire içinden geçmektedir (kalorifer ve su tesisati). Şömine bacası ise mevcut değildir.

B-22 blokta oturan kişiler arasında yapılan anket sonucunda, konutta oturanların dörtte üçünün ev sahibi olduğu anlaşılmıştır. Kiracı olanlar ise dörtte bir oranındadır.

Mutfak bacası yoluyla gelen yemek kokularını duyup duymadıkları sorulduguna, ankete katılanların yarısından fazlası, koku duymadıklarını; kalani, koku duyduğunu söylemiştir.

Sıcak su, merkezi sistem-boyler ile; merkezi ısıtma sistemi, radyatörlü sistem ile sağlanmaktadır. İki bitişik bloğun beslediği iki kazan mevcuttur. Yakıt türü, doğal gazdır. Cihazın markası, Buderus’tur.

Banyo, WC’nin havalanını sağlayan bacadan diğer katların kokusunun gelip gelmediği sorulduguna, koku gelmediğini söyleyenlerin oranı, dörtte üç; bazen koku geldiğini söyleyenlerin oranı, dörtte bir olmuştur.

168
3.2.4.6. Bahçeşehir C-3 Blok Anket Sonuçları

Yapılan anket ile C-3 blokta, 7. kat ve yukarısının Sermaye Piyasası Kurulu’nun lojmanı olduğu anlaşılmuştur. Lojman katları ve diğer katlar, ayrı ayrı değerlendirilmiştir.

C-3 blokta oturan kişiler arasında yapılan anket sonucunda, konutta oturanların yarısından fazlasının ev sahibi olduğu anlaşılmuştur. Kiracı olanlar ise ev sahibi olanların oranı birbirine yakındır.

Sıcak su, merkezi sistem-boyler ile; merkezi ısıtma sistemi, radıatörlü sistem ile sağlanmaktadır. İki kazan mevcuttur. Yakıt türü, doğal gazdır. Cihazın markası; Buderus’tur.

Banyo, WC’nin havalanmasını sağlayan bacadan diğer katların kokusunun gelip gelmediği sorulduğunda, ankete katılanların tümü, koku gelmediğini söylemiştir.

Ankete katılan C-3 blok sakınıleri arasında, depremden sonra baca ile ilgili bir hasar gözlemleyen olmadığını; tuğla bacadan çatlak oluşmamıştır. Bacanın çatı üzerindeki kısmı, deprem sonucunda zarar görmemiştir. Deprem sonrasında baca (duman çekiş) kontrolü yapılmamıştır. Bacada depremle ilgili bir önlem alınmamıştır.
3.2.4.7. Bahçeşehir C-3 Blok (Lojman) Anket Sonuçları

Sıcak su, merkezi sistem-boyler ile; merkezi ısıtma sistemi, radyatörlü sistem ile sağlanmaktadır. İki kazan mevcuttur. Yakıt türü, doğal gazdır. Cihazın markası; Buderus’tur.

Banyo, WC’nin havalanmasını sağlayan bacakın diğer katların kokusunun gelip gelmediği sorulduğunda, ankete katılanların büyük bir çoğunluğu, koku gelmediğini söylemiştir. Koku geldiğini söyleyenlerin oranı ise, % 17’dir.

Ankete katılan C-3 blok sakinleri arasında, depremden sonra baca ile ilgili bir hasar gözlemleyen olmadığını; tuğla bacada çatlak oluşmamıştır. Bacanın çatı üzerindeki kısmi, deprem sonucunda zarar görmemiştir. Deprem sonrasında baca (duman çiği) kontrolü yapılmamıştır. Bacada depremle ilgili bir önlem alınmamıştır.

3.2.4.8. Bahçeşehir D-1 Blok Anket Sonuçları

Anket sonucunda elde edilen bilgilere göre; her dairede (bağimsiz birimde) toplam 4 adet baca mevcuttur. Bunlardan ikisi duman bacası (1 aspiratör bacası, 1 yedek baca odada) ve iki tanesi de havalandırma bacasıdır. Aspiratör çıkışı dışarı verilmektedir. Banyo ve WC, iç duvarda yer almakta ve havalandırma bacasına açılan birer menfes kapağı yardımcı ile havalandırılmaktadır. Çöp bacası, apartman holündedir. Çöp bacası, kullanılmamaktadır. Çöpler, çöp bacasının ağzının bulunduğu odaya
birakılmakta ve oradan toplanmaktadır. Tesisat başısı, daire içinden geçmektedir (kalorifer ve su tesisatı). Şömine başı mevcut değildir.

C-3 blokta oturan kişiler arasında yapılan anket sonucunda, konutta oturanların yarısından fazlasının ev sahibi olduğu anlamıştır. Kiracı olanlar ile ev sahibi olanların oranı birbirine yakındır.

Mutfak başısı yoluya gelen yemek kokularını, büyük bir sorun oluşturmaktadır. Ankete katılan D blok sakinlerinin tümü, aspiratör başasından gelen yemek kokularından şikayet etmiştir.

Banyo, WC’nin havalanmasını sağlayan bacadan diğer katların kokusunun gelip gelmediğini sorulduğunda, koku gelmediğini söyleyenlerin oranı yarıdan fazladır. Ancak koku geldiğini ve gelmediğini söyleyenlerin oranı, birbirine yakındır.

3.3. Alan Çalışması Sonuçları

Çok katlı konut yapılarında shunt (şönt) baca uygulamalarının değerlendirilmesi amacıyla dört sitece anket çalışması yapılmıştır: Ayazağa Oyak Sitesi, Yeşil Yamaç Sitesi, Başakşehir Konutları, Bahçeşehir. Yapılan anket çalışmasının sonuçlarına göre:
Anket çalışması yapılan konutların tamamı, kooperatif olarak inşa edilmiştir ve çok katlı konut yapılarıdır. 1995 ve sonrasında yapıları tamamlanmış ve kullanıma başlanmıştır.

Söz konusu konutlarda oturanların % 55’i ev sahibi, % 45’i ise kırıcıdır.

Ayazağa Oyak Sitesi’nde, sıcak su, LPG ile çalışan klasik başlı şofben ile sağlanmaktadır. Cihazların çoğunun markası, ECA’dır ve tamamı 1-5 yıllıktir.
Yeşil Yamaç Sitesi’nde ise, % 63,33 oranında klasik (bacağı) şofben, % 29,53 oranında elektrikli şofben, % 7,13 oranında da hermetik (bacasız) şofben kullanılmaktadır. Cihazların çoğunun markası, Arçelik ve Demirdöküm’dür ve cihazların çoğunluğu 1-5 yıllıktir. Yakıt türü, % 69,5 oranında doğal gaz, % 3,3 oranında LPG, % 27,1 oranında elektriktir.

Başakşehir’de, sıcak su, % 84,5 oranında klasik (bacaklı) şofben, % 15,5 oranında elektrikli şofben ile sağlanmaktadır. Cihazların çoğunun markası, Demirdöküm’dür ve cihazların çoğunluğu 1-5 yıllıktir. Yakıt türü, % 67,85 oranında doğal gaz, % 16,67 oranında LPG, % 15,48 oranında elektriktir.

Sıcak su, merkezi sistemle ısıtıldığı için Bahçeşehir’de şofben bacası bulunmaktadır.

Cihazların yanarken sönüp sönmediği sorulduğuunda, % 17,29 oranında sönüldü, % 82,71 oranında da sönmediği yanıtı alınmıştır. Ayazağa Oyak Sitesi’nde sönmenin nedeni, cihaz arızasıdır. Başakşehir’de ise, baca yetersizliğinden dolayı cihaz sönmektedir.

Cihazların servis süklüğü ile ilgili olarak, cihazların % 54,13’ü için hiç servis çağrılmadığı, % 45,87’si için ise en az bir kere servis çağrıldığı sonucu ortaya çıkmıştır. Servis çağrılma nedeni çoğulukla cihaz arızasıdır.

Anket çalışması yapılan tüm konutlar, merkezi sistemle ısıtılmaktadır.

Diğer katlardan havalandırma bacası yoluya koku gelip gelmediği sorulduğunda; % 54,45 oranında koku gelmediği, % 45,55 oranında koku geldiği yanıtı alınmıştır.

Ankete katılanlar arasında, depremden sonra baca ile ilgili bir hasar gözlemleyen olmadığını, konutlarda tuğla bacada çatlık oluşmamıştır. Bacanın çatı üzerindeki kısmını, deprem sonucunda zarar görmemiştir. Deprem sonrasında baca (duman çekiş) kontrolü hiçbir sitede yapılmıştır ve bacada depremle ilgili bir önlem alınmamıştır.
4. BACA HASARLARI

Hemen hemen tüm çok katlı yapılarla örülen duman ve hava bacarıları hazırlıktı baca malzemeleri ve özellikle hazırlıktı baca tuğlaları ile oluşturulmaktadır. Türkiye'nin büyük bir bölümü deprem etkisindedir ve Türkiye'de baca yapımı ile ilgili birçok bağlayıcı yönetmelik ve yasa bulunmaktadır. Buna rağmen deprem sonucunda yüksek konut yapılarında şönt bacaların hasara uğradığı bilinmektedir.

4.1. Mimaroba Orçelik Sitesi

Marmara Depremi sonucunda yüksek katlı konutlarda baca hasarlarının meydana geldiği ve tez çalışması kapsamında incelenen yerleşim yerlerinden ilki, Mimaroba Orçelik Sitesi'dir.

ve depreme dayanıklılığı açısından hangi onarım yönteminin iyi olduğunu deprem gösterecektir.

Şekil 4.1: Mimaroba Orçelik Sitesi’ndeki hasarlı bir baca

Şekil 4.1’de Orçelik Sitesi’ndeki hasarlı bir baca örneği görülmektedir. Beton briket malzemesi olan şont baca ile kirişin ve tuğla duvarın birleşim çizgisi üzerinde, farklı malzemelerin farklı çalışmasından ötürü çatlama meydana gelmiştir. Ayrıca beton briketlerin birleştiği yatay derzde, bakanın üst doşemeye yakın kısmında ve bakanın ortasında olmak üzere iki çatlık oluşmuştur.
Şekil 4.2: Mimaroba Orçelik Sitesi’nde hasarlı bir baca

Şekil 4.2’de Orçelik Sitesi’nde bir diğer hasarlı baca örneği görülmektedir. Baca ünitesi ve dolgu malzemesi arasında bir çatlama oluşmamıştır. Fakat kirişin altındaki tuğla duvar ile dolgu malzemesi arasında, birleşim hattı boyunca ayrılama şeklinde hafif çatlık meydana gelmiştir.
4.2. Avcılar Belediye Blokları

Deprem sonrasında çok katlı konut yapılarında meydana gelmiş hasarların incelendiği konut gruplarından biri de İstanbul’un Avcılar ilçesinde, Yanyol üzerinde bulunan Belediye Blokları’dır. Depremden büyük ölçüde zarar görmüş ve yıkılmış yapıların bulunduğu Avcılar’da, deprem hasarları bacalarda da kendini göstermiştir.

Avcılar Belediye Blokları, 9 katlı binalardan oluşan bir site görünümütedir. Bir katta altı daire bulunmaktadır. Şönt baca malzemesi olarak beton briket kullanılmıştır. Depremden zarar gören bloklar, onarım gömekte ve çok hasara uğrayan tuğla duvarların yerine, kolonlar arasına betonarme perdeler yapılarak bloklara güçlendirme uygulanmaktadır.

Şekil 4.4 : Avcılar Belediye Bloklarında hasarlı bir baca

Şekil 4.5: Avcılar Belediye Bloklarında hasarlı bir baca

Şekil 4.5’te Avcılar Belediye Blokları’nda hasarlı bir baca görülmektedir. Şört baca bileşeninin bitiştiği tuğla duvar ve kolonla birleşme çizgisi üzerinde farklı malzemelerin farklı çalışmasıından dolayı sıvada çatlama olduğu gözlenmektedir. Ayrıca depremin oluşturduğu sarsıntı, kesme kuvveti etkisi ile kolon ve baca malzemesi üzerinde 45° eğimli çatlaklar meydana getirilmişdir.
Şekil 4.6: Avcılar Belediye Bloklarında hasarlı bir baca

Şekil 4.7: Avcılar Belediye Bloklarında hasarlı bir baca

Şekil 4.7'de Avcılar Belediye Bloklarında hasarlı bir baca görülmektedir. Deprem esnasında kirişin bacaya uyguladığı yatay kuvvetten dolayı, kirişin hızasında şönt bacada yatay bir kesilme meydana gelmiştir. Bunun bir nedeni de, baca ağzının burada olması ve baca ünitesindeki deliğin baca kesitini zayıflatması olabilir. Bacaın iki adet boşluk ihlâva etmesinden dolayı, kesitinin zayıflığı nedeniyle, bacaın ön yüzde görülen köşesinden birkaç cm. sağda, yani içindeki boşluk boyunca düşey bir çatıak oluştuğu gözlemektedir.
a. Bacanın köşe görünüşü

b. Bacadaki çatıkların karşısında görünüşü

c. Bacanın plandaki yeri

Şekil 4.8 : Avcular Belediye Bloklarında hasarlı bir baca

Şekil 4.9: Avcılar Belediye Bloklarında bir mutfak bacası

Şekil 4.9’da Avcılar Belediye Blokları’nda hasarlı bir mutfak bacası görülmektedir. Şönt baca bileşeni üzerinde iki yönde de görülen 45° açılı çatılar, hem sıvanın, hem de baca malzemesinin (beton briket) dayanıklı olmamasından kaynaklanmaktadır. Ayrıca kesitin baca ağızında oldukça zayıflaması da, deliğin çevresinde çatılar oluşmasına neden olmuştur. Baca malzemesi ve duvar malzemesinin farklı davranışları, arakesit boyunca çatlama meydana getirmiştir.
Şekil 4.10: Avcılar Belediye Bloklarında bir mutfak bacası

Şekil 4.11: Avcılar Belediye Bloklarında bir mutfak bacası

Şekil 4.12 : Avcılar Belediye Bloklarında bir mutfak bacası

Şekil 4.12’de Avcılar Belediye Blokları’nda hasarlı bir mutfak bacası görülmektedir. Şönt baca üzerinde görülen 45° açılı çatlaklar, hem sivanın, hem de baca malzemesinin (beton briket) dayanıklı olmamasından kaynaklanmaktadır. (X şeklinde çatlak)
Şekil 4.13: Avcılar' da hasarlı bir baca

Şekil 4.14: Avcılar’da hasarlı bir baca

Şekil 4.15: Avcılar’da hasarlı bir baca

Şekil 4.16: Avcılar’da hasarlı bir baca

Şekil 4.16’da Avcılar’da hasarlı bir baca görülmektedir. Baca malzemesinin boşluklu kesitinin zayıf olması nedeniyle, baca bileşeninin dışa çıkan kenarına yakın ve paralel olmak üzere düzey bir çatlama meydana gelmiştir.
Şekil 4.17: Avcılar Aksan-2 binasında hasarlı bir baca

4.3. Gölcük

Deprem sonrasında çok katlı konut yapılarında meydana gelmiş hasarların incelendiği yerleşim bölgelerinden biri de Gölcük çevresidir. Marmara Depremi merkez üssü olan Gölcük’te, depremden büyük ölçüde zarar görmüş ve yıkılmış yapılar bulunmaktadır ve deprem hasarları bacalarda da kendini göstermiştir.

Depremden zarar gören yapılar, onarım görmekteşir ve çok hasara uğrayan tuğla duvarlarının yerine, kolonlar arasına betonarme perdeler yapılarak yapılarak güçlendirme uygulanmaktadır.

Şekil 4.18 : Azaklar Mevkii/Aktürkoğlu Sitesi’nde hasarlı bir baca

Şekil 4.19: Azaklar Mevkii/Aktürkoğlu Sitesi’nde bir mutfak bacası

Şekil 4.20 : Azaklar Mevkii/Aktürkoğlu Sitesi‘nde bir mutfak bacası

Şekil 4.21: Azaklar Mevkii/Aktürkoğlu Sitesi’nde bir mutfak bacası

Şekil 4.22: Azaklar Mevkii/ Aktürkoğlu Sitesi’nde devrilmiş bir baca
Şekil 4.23: Gölcük'te hasarlı bacalar

Şekil 4.22’de Aktürkoglu Sitesi’nde devrilmiş bir baca, Şekil 4.23’te Gölcük’te hasarlı baca örnekleri, Şekil 4.24’te ise Gölcük’te ve Aktürkoglu Sitesi’nde devrilmiş bacalar görülmektedir.
Gölcük: Devrilmiş baca.

Gölcük: Devrilmiş baca

Gölcük: Eğîlmiş baca.
4.4. Sonuçlar

Marmara Depremini’den sonra İstanbul’da ve Gölcük’teki bazı bölgelerde çok katlı konut yapılarda hasar belirlemeye çalışmaları ile anlaşılmıştır ki, şönt bacakların bir kısmının devrilmiş, bir kısmı sadece sığa çatıkları olmak üzere zarar görmüş, bir kısmı da deprem etkisi ile kat içiinde patlamış, tamamen parçalanmıştır.

Çok katlı yapılarda çoğunlukla baca yüzeyinde sığa çatıklarına rastlanmıştır. Yapıların şönt baca bileşenleri de küçük unitelerin birleşiminden meydana gelmesi nedeniyle yatay derzler hızasında sığa çatığa neden olmuştur. Çatı üzerinde kalan bölüm, baca çeklinin iyi olabilmesi için çatı seviyesinden de fazla yükseltilmesi ve desteksiz olduğu için, depremden zarar görmüştür. Özellikle dikkatsiz tasarım sonucu, mahyadan uzak kalmış bacaklar hasara uğramıştır.

Çatı üzerindeki kısmın dibinden çatlama veya devrilme haline rastlanmıştır. Şönt baca malzemesinin kolondan veya bitiştiği duvardan ayrıldığı, kolon ve baca unite salesına uygulanan dolgu malzemesinin de sarsıntı esnasında farklı çalışmaya baca unite salesinden ayrıldığı görülmüştür. Hasar oranı fazla olan yapıda da, bacakın kiriş hızasında ve kesitin zayıfladığı baca deliği hızasında patlattığı, tuğlanın kırıldığı gözlenmiştir.

Bacakların çatı üzerinde kalan kısımlarında ise baca şapkalarının devrildiği gözlenmiştir. Hasar oranı yüksek olan şapka türleri, düz betonarme plak olarak şantiyede dakülen ve harç ile baca üstüne oturtulanlardır.

Baca kesitinin boşluklu olması ve baca ağzında kesitin daha da çok zayıflaması nedeniyle, deliğin çevresinde bir de kirişten gelen yatay kuvvet de eklenince çatlamalar, hatta parçalanmalar meydana gelmektedir.

Bacanın hasar gören kısımlarının oranılması veya bacanın yıkılıp yeniden yapılmasına karar verebilmek için, iyi bir gözlem yapıllması, hasarlı kısmın oranının belirlenmesi, malüyet açısından ve bacanın iyi işlev görmesi açısından hangisinin uygun olduğunu araştırma gereklidir. Bunlar da, ancak iyi bir hasar tespit çalışması ile mümkün olabilir.
5. BACA HASARLARINDA ONARIM YÖNTEMLERİ

5.1. Onarımın Amacı ve Aşamaları

Depremler, yapılar da hasara ve mukavemet kaybına neden olurlar. Depremin bu olumsuz etkisinden bacalar da payını alır.

Bacada herhangi bir onarım işlemine başlamadan önce, ortaya çıkan hasarın nedeni araştırılmalıdır. Daha sonra düşünülmesi gereken onarımın amacıdır. Yapılacak onarımın amacı aşağıdaki gibi sınıflandırılabilir: [13]

- Bacanın mukavemetini arttırmaya yönelik onarım
- Bacanın yapısal mukavemetini sağlamakaya yönelik onarım
- Bacanın dayanıklılığını sağlamakaya yönelik onarım
- Bacanın görünümünü düzeltmeye yönelik onarım
- Bacayı kullanılabilir hale getirmeye yönelik onarım

Baca hasarlarının teşhisi ve onarımı için yapılması gereken, çalışma stratejisi belirlemek ve belli bir sistematik dahilinde çalışmaları yürütmektir. Şekil 5.1'de onarımın aşamalarını gösteren aksý diyagramı verilmektedir.
Şekil 5.1: Onarımın aşamalarını gösteren akış diyagramı.
5.2. Onarım Yöntemleri

Hasarlı bacaların onarımında kullanılabilecek yöntemler, betonarme yapı hasarlarını onarımı için geçerli olan yöntemler ile benzerlik göstermektededir. Baca hasarlarında onarım yöntemleri şu şekilde sıralanabilir: [12],[13]

- Betonarme mantolama
- Çelik levha ile kılıflama
- Çelik profilden iskelet kurma
- Çatıların genişletilerek onarılması – Reçinelerle (epoksi, polyester, poliüretan)
- Enjeksiyon ile onarım
 - Portland çimentolu şerbetler
 - Polimerli şerbetler
- Delerek kapatma
- Elastik malzeme ile onarım

5.2.1. Betonarme Mantolama

Güçlendirme gereken bacalarla, tipki betonarme iskeletli yapılardaki kolonlara uygulandığı gibi mantolama yöntemi ile onarım veya güçlendirme yapılabilir. Mantolama yönteminde, bacaların kendi yükünü ve diğer yükleri (deprem ve rüzgar) taşıma kapasitesini artırmak amacıyla baca boyunca donatılı beton bir kılif giydirilir.

Genelde çatı arası ve üzerinde kalan bacalarda uygulanabilecek bu tür onarım yoluna gidilmesi ile aynı zamanda, çatının üzerinde kalan kısımda fazla ısı kaybı nedeniyle fazla yoğunlaşma olması, buna bağlı olarak çekış gücü azalması ve hasar miktarı artması şikayetleri azaltılabilir.

Betonarme mantolamada üzerinde durulması gereken noktalar, baca malzemesi ile yeni betonun kazınıtırılmasına dair. Yeni eklenen bölümdede, etriyeler ile boyuna donatların sarılması suretiyle boyuna donatların burkulması önlenir.

Betonarme mantolama yapılırken yeni malzemenin dayanımı, baca malzemesinin dayanımına eşit veya ondan fazla olmalıdır.

Manto kalınlığı, püskürtme beton ise en az 5 cm, yerinde dökme beton ise en az 10 cm olmalıdır. Etriyelerin çapları 6 veya 8 mm, etriyeler arasındaki düşey aralık 20 ~ 30 cm olabilir.
5.2.2. Çelik Levha İle Kılıflama

5.2.3. Çelik Profilden Iskelet Kurma

Güçlendirme gereken bacalara uygulanabilecek bir diğer onarım yöntemi, bacanın dört tarafına köşebant profili yerleştirilerek ve profiller bir iskelet oluşturulacak şekilde enine kusaklarla bağlanarak oluşturulan çelik profil iskelet kurma yöntemidir. Korniyer ve mevcut baca arası boşluklar, rötre yapmayan çimento harcı veya reçine harcı ile doldurulur. Çelik elemanlara, yangına karşı, püskürtme beton ileörtü geçirilir.

Bu yöntem, hem yük taşıma kapasitelerini, hem de sünek davranış iyileştirir. Rijitlik yönünden bir değişme olmaz.

5.2.4. Çatıkların Genişletilerek Onarılması –

Reçinelerle (epoksi, polyester, poliüretan)

Çatıkların genişletilerek onarılması yöntemi, esas olarak çatıkların genişletilmesi, temizlenmesi ve amaca göre onarım malzemesi ile doldurulmasına dayanır.

Çatlık genişliği minimum 6 mm olmak üzere, 10 ~ 12 mm'ye kadar genişletilmedir.Dolgu malzemesi, elastik olmalı, sabit kalmalı ve görünüşü iyi olmalıdır. Genellikle polisulfit ve poliüretan esaslı epoksi bileşimleri kullanılır. Poliüretanlar, yüksek elastikiyete sahiptir ve 13 mm'ye kadar genişlikteki çatıklara uygulanabilirler.
5.2.5. Enjeksiyon İle Onarım

5.2.5.1. Portland Çimentolu Şerbetler

Küçük çatlaklarda enjeksiyon tabancaları, daha büyük çatlaklarda ise enjeksiyon pompaları kullanılır. Çatıdak doldurulduktan sonra, iyi penetrasyon için kısa süreli basınç uygulanmalıdır.

5.2.5.2. Polimerli Şerbetler
Polimerli şerbetler, 0.05 mm’ den küçük çatlıkların oranında kullanılabilir. Polimerli şerbetler, içlerinde iki veya daha fazla kimyasal bulunmaktadır ve su ile reaksiyonu girerek katı veya köpüktü bir görünüm alan malzemelerdir. Avantajları, iyi işlenebilir oluşları ve düşük viskoziteleridir. Dezavantajları, iyi sonuç alınabiliyor için bilgili kişilerin uygulaması gereği ve düşük çekme gerilmeleridir.

5.2.6. Delerek Kapatma
Delerek kapatma yöntemi, düşey doğrultuda, düzgün bir doğru şeklinde ilerleyen ve bir noktada biten çatlakların oranında kullanılabilir. Bu tür çatlaklar, çok sık görülen bir hasar çeşidi olmayıp genelde, büzülme ve sıcaklık değişimlerinden kaynaklanan çatlaklar olabilirler. Çok sık rastlanan çatlaklardır.
Çatıdak boyunca, 50 ~ 70 mm arasında bir delik açılır. Bu delik, çatlakın onarılmasında kullanılacak malzemenin yeterli derecede çatıldığa için girebileceği genişlikte olmalıdır. Delik, açılduktan sonra temizlenir ve çimento veya polimerli şerbetler ile doldurulur ve üzerine çatıdak boyunca yoklama çekildir. Böylece çatlakları dolduran beton veya harç tipolar, çatılak boyunca hareketi önler ve çatıdak yüzünden meydana gelen su sırtılarını azaltır.

207
5.2.7. Elastik Malzemeler İle Onarım

Elastik malzemeler ile onarım yöntemi, aktif çatıkların onarılmasında kullanılan bir yöntemdir.

Hareketli çatıklar, hava ve su jeti ile temizlenir; çatıkl boyunca bir oyuq açılır ve bu oyuq, uygun bir elastik onarım malzemesi ile doldurularak aktif çatığın, hareketli birleşime dönüşmesi sağlanır. Çatıkl boyunca kullanılan elastik conta, elastik onarım malzemesinin çatıkl dip kısmında oluşan iç kuvvetlerden etkilenmemesini sağlar. Çatık üzerindeki elastik conta, onarım malzemesinin iyi yapışması için uygun bir yüzey oluşturur.

5.3. Sonuçlar

Hasarlı bacaların onarımına karar verebilmek için, bir hasar tespit çalışması yapılarak yeniden yapım veya güçlendirme yollarından hangisinin daha uygun olacağı belirlenmelidir. Bu amaçla emniyet koşulları, maliyet ve bacakın sağlam kısımlarına zarar verme derecesi goût önde bulundurulmalıdır.

Hasarlı bacaların onarımında kullanılabilecek yöntemler, betonarme mantolama, çelik levha ile kiliflama, çelik profilden iskelet kurma, çatıkların genişletilerek onarılması, enjeksiyon ile onarım, delerek kapatma, elastik malzeme ile onarım yöntemleridir. Deprem sonucunda bacalarda oluşan hasarlar içinde, sıva çatıkları ve bacakın çatı üzerindeki kısmının dibinden çatlaması ve hatta devrilmesi en çok görülen hasar türleridir.

Betonarme mantolama yöntemi, genel olarak çatı arası ve üzerinde kullanılabilir. Çelik levha ile kiliflama ve çelik profilden iskelet kurma yöntemleri de güçlendirme gereken bacalar için uygun yöntemlerdir. Fakat bu yöntemlerde çelik elemanların püskürtme beton bir orta ile yağına karşı korunması gereklidir.

6. **SONUÇ VE ÖNERİLER**

Bacaların doğru yapılmasını, bilgi eksikliğini gidermek; bu konuyu önemsemek; gerekli denetimleri yapmak; mimarın, inşaat mühendisinin, makine mühendisinin ve toplumun yapılı kütürlüğün ilerleme kaydetmek ve yapılı kalitesini belli standartlar seviyesine getirebilmek ile mümkün olabileceğini düşünülmektedir.

Bacalar konusuna bir katkı getirebilmek için, öncelikle konunun bilinmesi ve tanımının yerinde kullanılması gereği ortaya çıkmaktadır. Ayrıca konutlarda baca konusunda imar mevzuatında belirtilen yükümlülükler yerine getirilmelidir.

Yakacak cinsi, kazan ve brülör özellikleri, baca gazı (duman) miktari, baca gazının (dumanın) kazanından çıkış sıçaklığı, baca gazının (dumanın) CO_{2} yüzdesi, kazanın bulunduğu hacme giden havanın, kazanın ve bağlantılı parçanın gerektiği üfleme basınçları, bağlantılı parçanın konstrüksiyonu ve uzunluğu, bacakın malzemesi, konstrüksiyonu ve yüksekliği, baca hasabında göz önune alınması gereken ana hususlardır.

İyi bir yanma sağlanabilmesi için baca kayıplarının ve baca gazı çıkışındaki dirençlerin azaltılması, dolayısıyla baca gazı sıçaklığının düşmesi, baca gazı hacminin küçük olması gerekir. Bu nedenle baca konusu yanıma ve enerji tasarrufu konularıyla birlikte incelenmelidir. Ayrıca bacak adı kayını azalması durumunda yakıt tasarrufu sağlanabilir ve hava kirliliği de azalır.

Baca konusu, gelişmiş ülkelerde bir uzmanlık dalı olarak ele alınmaktadır, ülkemizde de bacaların öneminin anlaşılamalı ve özel baca firmaları yaygınlaşmalıdır.

Bacaları gereken önem verildiği takdirde yeni bir sektor oluşacaktır ve böylece bacalar artık sorun yaratmayacaktır.

Bacaların sağlanması gereken ana hususlar şunlardır: İşletme emniyetini sağlamaklar; yangına karşı emniyetli olmaları; kolay ve iyi şekilde temizlenebilmeleri; ısı yalıtımının iyi yapılmış olması; ısı cihazları ile emniyetli şekilde bağlanmış olmaları; yanma tekniği, imüsyon koruması, ısıyı az geçirmesi, sızdırmazlığı, yangına dayanıklı malzemeden yapılması, yapı olarak mukavim (salğam) olması, buhar geçiş, yangını yayıcı nitelikte olmaması, baca çekisi yönlerinden de bazı şartları sağlamaları. Bunun yanı sıra, bacalar yanmayan malzemeden yapılmalı, 500°C baca gazi sıcaklığında dış yüzeyinin sıcaklığı 100°C 'yi geçmemeli, kurum sebebiyle baca yangını olmamalı, dış tarafta olan ve 90 dakika süren bir yangın baca yoluyla diğer katlara geçmemelidir. [7]

Çok katlı konut yapıları incelendiğinde anlaşılışı kır; hemen hemen tüm çok katlı yapılarında örülten duman ve hava bacaları hazır şönt baca malzemeleri ve özellikle hazırlık şönt baca tuğlaları ile oluşturulmaktadır. Bu tuğlaların normal ve delikli baca türlerini piyasada istenildiği zaman bulunmasına rağmen kilit türlerini bulmak mümkün değildir. Kilit türlerini, sadece sipariş üzerine üretilmekte veya şantiyede değişik uygulamalarla normal şönt tuğlalar kilit elementlerin dönüştürülmektedir. Kilit türlerini piyasada rahatça bulunabilmelidir ki şönt baca tasarım prensibine göre işlevini doğru bir biçimde yerine getirebilirsin.

Çok katlı konut yapılarında mevcut şönt baca uygulamanının değerlendirilmesi amacıyla, Ayazağa Oyk Sitesi, Yeşil Yamaç Sitesi, Başakşehir ve Bahçeşehir olmak üzere çok katlı konutlardan oluşan dört sitede uygulanan anket çalışmasından elde edilen sonuçlara bakıldığında, yüksek konutlarda duman bacası, banyo ve WC için de havalandırma bacası kullanıldığı, çöp bacasının kullanımının ise yaygın olmadığı anlamıştır. Çöp bacası mevcut olan konutlarda bile çöp bacasının temizlik

Bacalardaki deprem etkisi, kesme kuvveti sonucu oluşan çatlaklar genelde kiremit hisasıında çinko denelin üzerine veya bunların 10 cm altında, yaklaşık mertek hizasında olmuştur. Mahyadan uzakta olan hazır şont tuğla bacalarda, kesit 8 cm'lik tuğla ile arttırmış bile olsa devrilmeye meydana gelmiştir.

Deprem etkisinde baca dibinden çatlamış fakat devrilmemiş bacalar, çelik profillerden oluşturulunan çerçeveler ile takviye edilebilirler. Baca köşelerinde L profiller ve bunları bağlayan 4mm'lik lamalar kullanılabilir. Korniyerler baca köşeleri delinerek çelik dübbeler ile çatı doçmesine ankre edilebilirler. Metal korozyonunu önlemek için profiller kullanımdan önce boyanmalı ve kaynak

211
yapımından sonra tekrar boyanmalıdır. Takviye işlemi bittikten sonra baca diplerindeki çatıklar, çift bileşenli epoksi reçinesi ile doldurulmalıdır.

Bacaların onarımında; betonarme mantolama, çelik levha ile küiflama, çelik profilden iskelet kurma, çatıkların genişletilerek reçinelerle onarılması, portland çimentolu şerbetler veya polimerli şerbetler ile onarım, delerek kapatma, elastik malzeme ile onarım yöntemlerinden birine başvurulabilir.
KAYNAKLAR

ÖZGEÇMİŞ