TARİHİ YAPILARIN AYDINLATMA SORUNLARI
VE
AYDINLATMA SİSTEMLERİNİN
RESTORASYON İLKELERİ AÇISINDAN İNCELENMESİ

YÜKSEK LİSANS TEZİ
Mimar İrem ÇATAY
(502971223)

Tezin Enstitüye Verildiği Tarih : 14 Nisan 2002
Tezin Savunulduğu Tarih : 2 Mayıs 2002

Tez Danışmanı : Prof.Dr. Mehmet Şener KÜÇÜKDOĞU
Diğer Jüri Üyeleri
Prof.Dr. Nur AKIN (İ.T.Ü.)
Doç.Dr. Sermin Onaygil (İ.T.Ü.)

MAYIS 2002
ÖNSÖZ

Tarihi yapıların aydınlatma sistemleri, kent kimliğine katkıları ve yapıların korunmasına destek olması açısından aydınlatma konusu içinde özel bir yer tutmaktadır. Aydınlatma sistemi tasarmında, tarihi yapıların niteliğinden kaynaklanan sorunların incelenmesi ve çözümlerin tarihi çevre koruma ve restorasyon ilkeleri açısından değerlendirilmesi bu çalışmanın içeriğini oluşturmaktadır.

Hazırladığım bu çalışma sırasında ve öncesinde, bana olan akademik desteği, mesleğime ve çalışmama olan katkılarından dolayı, değerli hocam Sayın Prof. Dr. Mehmet Ş. KUÇÜKDOĞU 'ya teşekkür ederim.

Mayıs 2002

İrem ÇATAY
İÇİNDEKİLER:

KISALTMALAR i
TABLO LISTESİ v
ŞEKİL LISTESİ vi
SEMBOL LISTESİ vii
ÖZET viii
SUMMARY ix

1. GİRİŞ VE KONUNUN SINIRLARI 1
2. KENT KIMLIĞI VE TARIHI YAPI İLİŞKİSİ 1
 2.1. Kent, Kent Kimliği ve Işık 1
 2.3. Kent Kimliği ve Tarihi Yapılar 6
3. KORUMA VE RESTORASYON DÜSÜNCELERİNİN 8
 KURAMSAL TEMELİ VE ÇAĞDAŞ RESTORASYON İLKELERİ
4. TASARIM AŞAMALARINDA ROL OYNAYAN ETKENLERİN 11
 VE AYDINLATMA SİSTEMİ TASARIMININ KORUMA
 VE RESTORASYON İLKELERİ AÇISINDAN DEĞERLENDİRİLMESİ 15
 4.1 Restorasyon İlkelerinin Tarihi Yapılarında Aydınlatma Sistemi Tasarımına
 Yansımları ve Tarihi Niteliğin Tasarına Getirdiği Özel Koşullar 16
 4.2. Aydınlatma Sisteminin Performansının ve Amacına
 Uygunluğunun Değerlendirilme Ölçüleri 36
 4.2.1. Gorse Konfor Koşullarına Uygunluk 36
 4.2.2. Yapının Kent Kimliği İçindeki Rolüne Uygunluk 36
 4.2.3. Tarihi Çevre Koruma İlkelerine Uygunluk 37
 4.2.4. Enerji Tasarrufu İlkelerine Uygunluk 48
 4.3. Tasarım Aşamalarında Rol Oynayan Etkenler 48
 4.3.1. Aydınlığın Nitelik ve Niceliğinin Belirlenmesinde Rol Oynayan
 Etkenler 48
 4.3.2. Amaçlanan Aydınlık İçin Uygun Işık Kaynağı Ve Aygıt
 4.3.3. Tasarlanan Aydınlatma Sisteminin Uygulanmasında Rol
 Seçilmesinde Rol Oynayan Etkenler 55
 Oynayan Etkenler 58
5. SONUÇ VE ÖRNEKLERIN DEĞERLENDİRİLMESİ 59
KISALTMALAR:

CIE: Uluslararası Aydınlatma Komisyonu
IDA: International Dark-Sky Association
ILCOS: International Lamp Coding System
ULOR: Ust Yarı Uzay İşık Akışı Oranı
DLOR: Alt Yarı Uzay İşık Akışı Oranı
TABLO LISTESİ:

Sayfa No.

Tablo 4.1, Yapı yüzü, parlıtu değerleri...24
Tablo 4.2, Işık kaynağı renk saçaklıları...31
Tablo 4.3, Işık kaynağı renksel geriye dönüş indeksleri...33
Tablo 4.4, Yapı yüzeyi ortalama aydınlık düzeyi..35
Tablo 4.5, Işık kaynağı-ortalama lamba ömrü...41
ŞEKİL LİSTESİ:

<table>
<thead>
<tr>
<th>Şekil</th>
<th>Sayfa No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Şekil 4.1: Parıltı tanımu.</td>
<td>17</td>
</tr>
<tr>
<td>Şekil 4.2: Görme alanı-merkezi görme.</td>
<td>20</td>
</tr>
<tr>
<td>Şekil 4.3: Görme alt-üst görme.</td>
<td>21</td>
</tr>
<tr>
<td>Şekil 4.4: Görme sağ-sol görme.</td>
<td>22</td>
</tr>
<tr>
<td>Şekil 4.5: Kentsel bölgeler.</td>
<td>23</td>
</tr>
<tr>
<td>Şekil 4.6: Saint Wojciech Katedrali.</td>
<td>25</td>
</tr>
<tr>
<td>Şekil 4.7: Gamla Stan Kasabası- Stockholm.</td>
<td>25</td>
</tr>
<tr>
<td>Şekil 4.8,9,10,11: Parıltı şablonu.</td>
<td>26,27</td>
</tr>
<tr>
<td>Şekil 4.12: Dalga uzunlukları şeması.</td>
<td>30</td>
</tr>
<tr>
<td>Şekil 4.13, 14, 15,16: Aygıt örnekleri.</td>
<td>39-40</td>
</tr>
<tr>
<td>Şekil 4.17,18, 19: Aygıt örnekleri.</td>
<td>40</td>
</tr>
<tr>
<td>Şekil 4.20, 21, 22, 23: Uydu fotoğrafları.</td>
<td>46-47</td>
</tr>
<tr>
<td>Şekil 4.24, 25, 26: Aygıt yerleşim şemaları.</td>
<td>51</td>
</tr>
<tr>
<td>Şekil 5.1: St. Pierre Katedrali-Paris.</td>
<td>60</td>
</tr>
<tr>
<td>Şekil 5.2, 3, 4, 5: St. Pierre Katedrali-Paris.</td>
<td>62-65</td>
</tr>
<tr>
<td>Şekil 5.6,7 8, 9, 10: Eremitage Müzesi.</td>
<td>65</td>
</tr>
<tr>
<td>Şekil 5.11, 12, 13, 14: Vitré Kasabası-Fransa.</td>
<td>66-74</td>
</tr>
</tbody>
</table>
SEMBOL LİSTESİ:

L: Parlul
E: Aydınlık düzeyi
I: Işık Şiddeti
ϕ: Işık akısı
Ω: Uzay açısı
η: Armatur Verimi
ÖZET

Bu çalışmanın amacı, aydınlatma sistemi tasarımları içinde, çeşitli açıldardan özel bir konumda yer almaktan olan tarihi eserlerde aydınlatma sistemlerinin tasarılanmasındaki sorunların incelenmesi; tarihi yapıların kent kimliğinin oluşmasındaki rolünün belirlenmesi, aydınlatma sisteminin bu role olması katkılarının artırılması ve oluşturulacak çözümlerin tarihi çevresi koruma ve restorasyon ilkelerine uygunluğunun tartışılmasıdır.

Birinci bölümde, konunun sınırları “tarihi yapılarla dış aydınlatma tasarımını” kapsayacak şekilde belirlenmektedir.

İkinci bölümde, kent kimliği ve tarihi yapı kavramları tanımlanmakta ve birbirleriyle ilişkileri incelenerek değerlendirilmektedir. Tarihi yapı kavramının geçmişte ve günümüzde nasıl algulandığı ve güncel tanıının hangi yapı türlerini kapsamadığı, tarihi niteliğin kent kimliğine kente yaşayan bireylere sunduğu değerler araştırılmaktadır.

Tarihi çevresi koruma ve restorasyon düşüncelerinin, kurumsal temeli ve gelişimi hakkında kısa açıklı bilgi verilmekte ve güncel ilkelerin uygulamaya nasıl yenителиleceği araştırılmaktadır.

Üçüncü bölüm, amacına uygun aydınlatma sisteminin sağlaması gereken koşulların tanımlanması; sistemın performansının değerlendirilmesinde incelenen kriterlerin belirlenmesi ve tasarım aşamalarında etken olan faktörlerin ahlakını içeren alt başlıklardan oluşmaktadır. Tasarım sorunları ve çözümleri araştırılırken, tasarım etkileyen faktörlerin ve sağlanması gereken koşulların, restorasyon kuramları açısından incelenmesi yapılmaktadır.

Sonuç bölümünde, çalışmanın ana amaçına yönelik olarak, tarihi yapıların aydınlatma sistemlerinde belirlenen kriterler ve prensiplerle çözümlemesi öngörülen sorunların ve çevre koşullarından kaynaklanan etkenlerin değişik kombinasyonlar halinde ortaya çıkımlarının, uygulamaya nasıl yansığı ve ne tür çözüm yollarına gidildiği örneklerle incelenmekte ve ele alınan örneklerin ne derece başarılı olduğu değerlendirilmektedir.
SUMMARY

DESIGN PROBLEMS OF ILLUMINATION AT THE HISTORICAL BUILDINGS AND STUDY OF THE LIGHTING SYSTEMS WITH CONSERVATION PRINCIPLES

This study deals with the design problems of illumination systems design, especially in historical sites and historic buildings.

First section defines the subject within boundries. Explains the substance and essential concepts of illumination engineering.

Second section explains the definitions of city identification, historical structure and historical building. Also defines the theoretical basis of the restoration ideas and temporary principles, due Venice Charter.

Third section defines the outstanding position of the lighting systems of historical buildings and explores solution possibilities due principles of conservation.

Fourth section includes appraisal of examples and their problem solving approach according to conservation principles.
1. GİRİŞ VE KONUNUN SINIRLARI

İşık; sınırlanan uzamın niteliklerinin doğru algılanabilmesi ve herhangi bir eylemin bu sınırlar içinde yerine getirilmesini insanın fizyolojik ve psikolojik gereksinmelerini karşılayarak sağlaması [1] dışında; mekani sınırlama veya sınırlara açıklık kazandırma işlevine de sahip olduğu için yapış ya da kentsel mekânın önemli bir bileşenidir. [2]

Kent kimliğini oluştururken büyük rolü olan tarihi yapıların aydınlatılması, kentin gece görüntüsünün daha çekici hale getirilmesi, yapıların vurgulanması ve güvenlik amaçına hizmet ederek yapıının korunmasına katkıda bulunması açısından önemlidir. Tarihi yapıların dış aydınlatmasında ortaya çıkan sorunların incelenmesi ve yapay dış aydınlatma sistemi tasarımının koruma ve restorasyon ilkeleri açısından ele alınması bu çalışmanın konusunu oluşturmaktadır.
2. KENT KİMLİĞİ VE TARİHİ YAPI İLİŞKİSİ

Kentlerin, kendine özgü niteliklerinden kaynaklanan ve ilgi çekici, akılda kalıcı olmalarını sağlayan kimlikleri söz konusudur. Kentsel mekan içinde, baskı tanımlayıcı unsur olan tarihi dokumun aydınlatma sorunlarının incelenmesi için, bu bölümde, kent kimliği, tarihi yapı niteliği ve bu türlerin ıskıla bağlantısı incelenmektedir.

2.1. Kent, Kent Kimliği ve İşik

Kent kimliğini, o kentte yer alan ve belirli bir özelliğe sahip olan doğal ve yapay bileşenler oluşturur. Görünüşüne kadar sradan olursa olsun, bir kente bakmak kişiyi özel bir zevk verebilir. Tıpkı bir bina gibi, bir kent de boşlukta yer tutan bit yapıdır, tek farklı ölçülerinin çok daha büyük olması ve yalnızca uzun zaman içinde tam olarak algılanabilmesidir. Bu nedenle kent tasarımı, zamanına bağlı bir sanattır, ancak

İmgenin tutarlılığı- ya da ortaya çıkan kimliğin tüm kent sahinleri veya dışardan izleyenler için geçerliliği- çeşitli biçimlerde ortaya çıkabilir. Gerçek nesnenin, kentin, kendisinde pek fazla uyumlu ya da ilginç bir şey olamayabilir, ama o nesnenin zihindeki tablosu, uzunca bir süredir yaktan tanıdığı için kimlik ve geçerlilik kazanmıştır.

Her birey kullanıcı olduğu kentte ilgili kendi imgesini taşıdığı ve yaşattığı halde, aynı kümeye dahil bireyler arasında temel bir uyuma oluşmaktadır. Çok sayida kişi tarafından kullanlacak bir çevreyi biçimlendirmek söz konusu olduğundan, planca/tasarımcı, algılama konusundaki bireysel farklılıkların uzlaşmış ortaya koyan, bir kentte oturanların çoğunluğunun zihninde taşıdığı ortak imgeleri saptamak durumundadır. Bu noktada kentin kimliğini; bir tek fiziki gerçeğin, yani ortak bir kültürün ve temel fizyolojik doğanın karşılığı etkileşimi sonucu ortaya çıkma beklenen uyuşma alanları bütün olarak tamamlamak mümkündür.
Kent kimliğini tanımlayan unsurlar o kentin içinde yer alan;

- Tarihi ve sanatsal değeri olan eserler (saraylar, kasırlar, dinsel yapılar, köprüler, surlar gibi)
- Sosyal ya da kültürel amaçlı yapılar ve çevreleri
- Uluslar arası ilişkiler yönünden önem taşıyan yapılar,
- Çağdaş mimarlık özellikleri taşıyan yapılar,
- Yöresel iklim koşullarının etkisiyle oluşmuş jeolojik ya da botanik biçimlenişler,
- Peyzaj yönünden önemli olan doğal güzellikler ve benzeri doğal ya da yapay elemanlardır.

Bazı durumlarda daha minor bileşenler, hatta tasarımı veya teknolojisi özellik gösteren kentsel mobilyalar, ya da kentte yaşamış olan önemli bir kişilikle bağlantısından dolayı önem kazanan ancak kendi yasal ürünü olmayan binalar de kent kimliğine ve kentsel imajı katkıda bulunabilir.

KentSEL aydınlatma; kentin gece de yaşaması ve işlevlerini sürdürübilmesi için gerekli aydınğun sağlanması, sahip olduğun güzelliklerin sergilanmasını ve değişik etkilerle daha çekici hale getirilmesini amaçlar.

Kent aydınlatmasının temel amaçlarını;
- Güvenlik sağlanması,
- Çevreyi tanımlamak, yol ve yönleri belirtmek,
- Açık hava etkinliklerinin gerçekleştirilmesini olanaklı kılmak,
- Kent kimliğinin oluşturulması ve kent estetiğine katkıda bulunmak olarak belirleyebiliriz. [5]

Kent aydınlatması aynı zamanda mimari etkiye güçlendirme amacıyla değişik etkiler ve ışık efektleri yaratılması da sağlar.

Kentler gün boyunca güneş ile aydınlanır ve onun özellikleri doğrultusunda algılanır. [6] Doğal ışık kaynağı olan güneş ve göğün yapıtları ışıkların birleşimiyle oluşan günesliği sürekli değişim gösteren ve özellikleri denetlenemeyen bir ışık türdür. Ancak çeşitli gölegeleme elemanları aracılığıyla,
2.2. Tarihi Yapı Niteliğinin Tanımı

Günümüzde, kent ve tarih bilincinin gelişmesiyle bağlantılı olarak antlar ve tarihi çevre, estetik değerinin dışında, belirli bir dönemin kentsel ve mimari düzenini, yapım tekniklerini ve sosyal yaşamını açıklayan birer belge olarak da değerlendirilmektedir.[7]

Geçmişte sadece dini, ulusal, ideolojik simge olan, yaygın beğenisi kazanan yapılar toplumun iradesiyle ya da vakıflar ve benzeri maddi kaynaklarla yaşatılmaktayken, günümüzde korumanın kapsamı antsal tek yapı çerçevesinin dışında, tarihi kent dokusunu oluşturutan mütevazi yapıları da içine almıştır. Tarihi bir sokak, mahalle, kent korunacak bir değer olarak benimsenmekte ve korunması kamu fonlarıyla desteklenmekte; yapının işlevsel değeri sürekli bakımının yapılması ve yaşamını sürdürümesi için bir araç ve gereklilik olurken, artık aynı ilke ilk işlevini yitirmiş yapıları da kapsaktadır. Ulusal evrensel kültürün birer bileşeni, uygarlık belgesi olarak korunmaları amaçlanan tarihi ant ve çevrelerin yaşamasını rastlantıya bırakılmaz. Yapısal varlık, özgün bir struktur ve malzemeyle ayakta tutulabildiği oranda koruma başına ulaşmış sayılmalıdır. Doğru uygulamalarla korunmuş yapı, ait olduğu dönemde ilgili yapı teknikleri, mimari nitelikler ve sosyal yaşam gibi konularda sunduğu veriler aracılığıyla, yazılı tarihten daha aydınlatıcı ve öğretici olabilir.

Alois Riegler'in tanımına göre[8] bir yapının ant olup olmadığını karar verirken genel olarak:

•Estetik değer
•Tarihi ve kültürel değer ele alınmaktadır.

Estetik değer kavramı, yapımın sanatsal niteliği, izlenim ve pitoresklik değeri, olarak açıklanabilir. Tarihi değer ise yapının tarihi araştırma nesnesi olarak tarihsel değerini kapsar.

1964 tarihinde toplanan “II. Uluslararası Tarihi Anıtlar Mimar ve Teknisyenleri Kongresi”nin aldığı Venedik Tüzüğü adıyla alınan kararlar içinde “tarihi ant” kavramı yeniden tanımlanmıştır.[7] Tek yapıdan, beli bir uygurlığı, önemli bir gelişmenin, tarihi bir olayın tanı硕士研究 yapım kentsel ya da kursal yerleşme boyutuna ulaştıran “ant” kavramı, ayrıca yalnız büyük sanat eserlerini değil,
zamanın geçmesiyle kültürel anlam kazanmış daha basit eserleri de içine alacak şekilde genişletilmiştir. Bu doğrultuda, tarihi yapının niteliğini tanımlayan ölçütler:

a) Tarihi belge niteliği,

b) Eskilik özelliği,

c) Estetik değer

yönlerinden sahip olduğu önem olarak belirlenmiştir.

Yapı ya da yapılar grupu tarihi belge niteliğine, tarihi bir olayla veya kişiyle ilişkisi veya tarihi bir sürece yansıtması dolayısıyla sahip olabilir.

Eskilik değerini belirleyen zaman ölçütü ülkeden ülkeye değişmektedir. Türkiye'de 1900 tarihinden önce yapılmış olan binalar koruma kapsamındadır, XX. yüzyıl yapılarının koruma kapsamına alınmaları için ise önemli bir mimarın eseri, bir mimari akımın temsilcisi, bir yapı dizisinin parçası olmak gibi özel nitelikler taşımalarıerek meydana gelmektedir. Kesin zaman sınırları koymak yerine, farklı bir sanat anlayışı, yaşam biçimi, sosyal yapı, teknik düzey ve ünlü bir sanatçının da akımın ürünü olan yapı ve çevrelerin korunması ilke olarak benimsenmek daha doğru bir yaklaşımdır.

Estetik değer ölçütü ise, yargının kendisinin nesnel olmayışı ve kişiye ya da topluma göre değişmesi nedeniyle tartışmalara neden olabilmektedir. Bilinçli bir toplumsal beğeninin olmadığını durumlarda, yapının ilk tasarımındaki estetik değeri görebilmek ve ait olduğu dönemde değerlendirilebilmek yetkisi bu konuda birikim sahibi olan arkeolog ve sanat tarihçilerine bırakılmaktadır.

Henüz ortak bir sistem oluşturulamamış olmakla birlikte tarihi yapıların değerlendirilmesini bilimsel bir temele oturtmaya yönelik bir ölçüt sistemi, Almanya'da G. Kiesow tarafından geliştirilmiştir.

G. Kiesow Sistemi'ne göre değerlendirirme:

• Sanat tarihi değeri

• Şehircilik yönünden önemi

• Tarihi önemi

• Teknik önemi olarak dört ana başlıkta toplanmaktadır.[7]
2.3. Kent Kimliği ve Tarihi Yapılar

Tarihi ve korunmuş kentlerde kimlik yansıması çok daha belirgindir. Yeni kentler veya kent bölgelerinde ise genellikle çağdaş teknolojiler ve gereçler ön plana çıkmaktadır.[5]

Tarihi yapı, kent kimliğini belirlerken ve güçlendirirken, aynı zamanda belge ve gelecek kusaklara aktarılacak üzere veri sunar. Çevremize verdiği tepki, sosyal yapılarımıza ya da sanatlarımızda biçim verdiği gibi, sosyal yapılarımıza ve sanatımızda çevremize verdiği tepkilerin niteliğine sessiz bir tanıklık sağlayarak bir uzmanlar için okunabilir bir veri oluşturur.

Bir insanın kişiliğini, anlattıklarının ve eylemlerinin bütününden okudüğümüz gibi, bir kent peyzajının karakterini de aynı yolla okuruz. Bir uzman, görsel anlamın farklı şartlarından ve çevresinden yola çıkarak ve tarihsel olarak evrimleşmiş formların içsel tasarımına ilişkin kanıtları kullanarak, bir heykelin veya oylmuş taş parçasının tarihin küçük bir yanılma payıyla belirleyebilir.

Tarihi yapıların kent kimliği içindeki payı ve bu payın korunmasını, desteklenmesinin ve belirginleştirilmesinin gerekliği; sadece korunmakta olan gücün kendi öz güzelliğinden, yapıldığı dönemin yaşıyan simgesi olmasından değil, her şeyden önce temsil ettiği kişilikten ve barındırdığı tarihi veriler dizisinden ve sahip olduğu belge niteliğinden ileri gelmektedir.

Tarihi yapıların gündüz görüntüsü ve kent kimliğini oluşturmadaki rolü, güneşimin denetlendirememeyen ve sürekli değişim gösteren bir ışık türü olmasından dolayı fazla kontrol edilememektedir. Kentin geç görsel görüntüsünde ise yapay ışık kaynaklarının olduğu, özellikleri gereksinimlere göre denetlenezdiği ve kendiliğinden bir değişim göstermediği için insanların kentsel değerleri ve yapıları kolaylıkla algılaması, güneşında dikkat çekmeyen yapıların daha dikkat çekici hale getirilmesi ve vurgulanması uygun aydınlatma düzenleri ile mümkündür. Uygun aydınlatma sistemlerinin tasarlanabilmemesi için, tarihi yapıyla ilgili verilerin, özelliklerin ve çevresel etkenlerin doğru değerlendirilmesi gerekir.
Doğru aydınlatma sistemi, kentin gece görüntüsüne ve kimliğine vurgulayıcı katkıda bulunmann ötesinde, "ışık şehri" olarak anılan Lyon-Fransa örneğinde olduğu gibi kent kimliğinin kendisini oluşturan unsur haline gelebilir.
3. KORUMA VE RESTORASYON DÜŞÜNCELERİNİN KURAMSAŁ TEMELİ VE ÇAĞDAŞ RESTORASYON İLKELERİ

Bu kuramları sırasıyla incelesek, [7]

Üslup Birliği İlkesi (Stilistik Rekompozisyon):

Restorasyon çalışmalarını mimarlık tarihi araştırmalarına dayamak ve kuramsal bir temele oturtmak yönünde önemli bir adım atan Viollet Le Duc tarafından yapılan tanma göre:

“Bir yapıyı restore etmek, onu onarmak, korumak veya yeniden yapmak değil, belirli bir zamanda, hiç var olmadığı biçimde tam bitmiş bir yapı haline getirmek demektir.” Bu açıklamaya göre restorasyon, antıları Ortaçağ’daki tasarımlarında öngörülen, ancak tarih boyunca yapılan onarım ve değişikliklerle gerçekleştir hıçbir zaman ulaşamadıkları bir duruma getirmeyi amaçlayan bir işlemdir. Her yapının veya bölünün yalanız görünüş olarak değil, struktür olarak da ait olduğu dönemın...
üslubunda restore edilmesini kabul eden bu kuram, Ortaçağ yapılarına uygulanmasıyla büyük hasarlar neden olmuştur. Çünkü tüm tek aşamada, ilk tasarım yapan mimarın yaşam süresi içinde bitirilebilen Ortaçağ yapısı çok azdır. Bazı katedrallerin yapımı yüzüys aşık sürede tamamlanmış olduğu için; başlangıça geçerli olan sanat akımı değişmiş, antın alt ve üst bölümleri, yan kuleleri arasında üslup farklılar olmuştur. Ayrıca işlevini sürdürmekte olan antlara , farklı yüzyıllarda, o dönemin sanatçıları tarafından değerli katkular da bulunmuştur. Böylece bir antı, yapımda başlangıçta geçerli olan üsluba göre restore etmek için, yaşadığı çeşitli evrelerde, dönemlere ait ekler kaldırılmış; antı tek dönem yapısı görünümüne sokma çalışıyla “ilk üsluba uygun tasarımlar” yapılarak antların kimlikleri değiştirilmiştir.

Romantik Görüş (Anti-Restorasyon Akımı):

Temelinde üslup birliğine ulaşma girişimlerine karşı hiçbir şey yapmamak tavrını savunan bu söylemin şiirsel bir ideal düzeyinde olduğu söylenebilir. Restorasyon adı altında değişiklik yapanların kendi kişisel yargılarından başka yol göstericileri bulunmadığını ve yapıya bakar kişinin nelerin yok edilib nelerin korunduğunun anlayamayacağı savunmaktadır. Bu yaklaşım, sanatın yapının dokunulmazlığı, antın zamanın etkilerine dayanabildiği sürece ayakta tutulması, ancak bir kopyanın onun yerini almasına izin verilmemesi gerektiğini ilkelerine dayanır.

Tarihi Restorasyon:

 Çağdaş Restorasyon Anlayışı:

Boito’nun 1883’de açıkladığı ilkeler, her biri ayrı bir bakış açısının görüşünü ortaya koyan üslup birliği, romantik görüş ve tarihi rekompozisyon kuramlarını, çağdaş restorasyon anlayışı içinde uzlaştırp birleştirmiştir ve çağdaş onarım kurallarının öncüsü kabul edilmektedir.

Bu ilkeler kısaca beş ana başlıkta özetlenebilir:

• Antlar tüm insanlığın tarihini belgeler ve bu nedenle yarıştırsa sonuçlara ve hükümlere yol açabilecek değişikliklerden kaçınmalıdır.

• Mimari anta müdahale edilmesinin zorunlu olduğu durumlarda, restore etmek yerine öncelikli olarak sağlamlaştırma ve onarım tercih edilmeli; yenileme ve eklerdenden kaçınmalıdır.

• Strüktürel aksaklıklar veya güvenlik gibi nedenlerle anta ek yapılmak gerekirse, bunlar yapının görsel bütünlüğine saygı gösterilerek ve somut verilere dayandırılarak yapılmalı; başka malzeme ve özellikle gerçekleştirilmemeli ve yapılan restorasyon tarihi bir işaretle belirlenmelidir.

• İlk tasarımından sonra değişik dönemlerde yapılan ekler antın bir parçası olarak kabul edilmeli; başka bir öğeyi kapatma, ya da bozma gibi zararlı etkileri olmadığı takdirde korunmalıdır.

• Restorasyon sırasında yapılan işlemler rapor, çizim fotoğraflarla belgelenmelidir.

Boito’nun belirlemiş olduğu ilkeler Gustavo Giovannoni’nin katkılarıyla birlikte 1931’de Atina’da toplanan “Tarihi Antların Korunması ile İlgili Mimar ve Teknisyenlerin I. Uluslar arası Konferansında”da uzmanlar tarafından tartıştı ve benimsendi.

Giovannoni tarafından kurama eklenen ve genişletilen ilkeler:

• Yapıın yaşamını sürdürebilmesi için estetik ve tarihi kimliğine saygı bir amaca yönelik olmak şartıyla kullanımlarını önerisini

• Özel mülkiyeteki antların korunmaları için kamu yetkilerinin koruyucu önlemler alabileceği biçimde güçlendirilmelerinin gerekliliğini
• Tarihi anıtların çevrelerine de saygı gösterilmesi ve bazı yapı kümeleri veya pitoresk oluşumların da koruma kapsamına alınması

• Çağdaş teknliğin sunduğu bütün olanakların onarımında akıllıca kullanılamasının ve arkeolojik alanlarda bulunan her özgün parçanın yerine konulmasının gerekliliğini içermektedir.

1964 tarihinde toplanan “II. Uluslararası Tarihi Anıtlar Mimar ve Teknîşyerleri Kongresi”, ilk konferansın aradan geçen süre içinde beliren sorunları çözmede yetersiz kaldığı noktalar üzerinde durarak, yeni bir ilkeler bütünü oluşturmuş ve çerçevesini aşan özel durumların varlığı kabul edilmekle birlikte hala geçerliliğini korumakta olan Venedik Tüzüğü hazırlanarak kabul edilmiştir. Tüzüğün gelişen gereksinimlere uyum sağlaması, uluslararası kuruluşların sık sık gerçekleştirdikleri toplantılarda koruma ilkeleri, geleneksel malzemenin korunması, tarihi yapı ve çevrelerin çağdaş yaşam içindeki yerleri, kültürel kimliğin tanımına katkıları gibi konularda tartışma ortamı yaratarak, günün koşullarına uygun kararların alınmasına yardımcı olmasıyla sağlanmaktadır.

Venedik Tüzüğü’ne göre korumadaki amaç, anıtların sanat eseri olduğu kadar, birer tarihi belge olarak da korumak şeklinde belirlenmiş ve korumanın sürekliliğinin sağlanması, tarihi yapıların çağdaş yaşam içinde toplumsal amaçlara kullanılarak değerlendirilmeleri ve her türlü kazi onarım ve düzenleme çalışmalarının belgelenmesi ilke olarak kabul edilmiştir.
4. TASARIM AŞAMALARINDA ROL OYNAYAN ETKENLERİN VE AYDINLATMA SİSTEMİ TASARIMININ KORUMA VE RESTORASYON ILKELERİ AÇISINDAN DEĞERLENDİRİLMESİ

Aydınlatma sisteminin, korumayı destekleyen bir unsur haline getirilebilmesi için, tasarım aşamalarını belirleyen veri ve etkenler dizgesi; yapının beşeye niteliğine zarar vermeyecek, restorasyon analizi doğrultusunda belirlenmiş önem sırasında göre nesne ve elemanları değerlendirilecek ve yapının ruhsu yansıtamayacak bir sonuç elde etmeye yönelik değerlendirilmelidir. Bu nedenle, öncelikle, tasarım aşamasında rol oynayan etkenlerin tanımlanması ve ne ölçüde kontrol edilebileceğinin belirlenmesi gerekmektedir.

4.1 Restorasyon İlkelerinin Tarihi Yapılarında Aydınlama Sistemi Tasarımına Yansımları ve Tarihi Niteliğin Tasarına Getirdiği Özel Koşullar

İşık, XV.y.y. a kadar, sadece görsel tatmin ve ihtiyacı karşılama düzeyinde kullanılmış, yapısi ve etkisi hakkında ciddi bir inceleme yapılmamıştır. Bu dönemde kadar, uygulamalar, deneyimlere dayanarak yapılmış ve doğal olarak ışık terimi sadece “güneş ışığı”'nün tanımlanmıştır. Ancak XVII. y.y.a kadar olan dönemde, ışık ve yapısi hakkında ciddi bir ilerleme olmuş ve “optik” bilimsel anlamda bir “alan” haline gelmiştir. XVIII.y.y'dan sonra ise görmenin fiziğine dayalı yaklaşımdan, ışığın kendi fiziğine dayalı yasaklama geçiş gerçekleşmiş ve ancak XIX.y.y. sonlarında bilimsel ölçüm, hesap ve kodlamaların dayanan, ışığın kendi geometrisini inceleyen “matematiksel” analayış oluşmuştur.[9]

Akkor telli lambanın geliştirilmesiyle yapay ışık üretimi ve aydınlatma sistemi tasarım kavramları oluşmuş ve tüm bu geçiş dönemleri sonucunda günümüzde “çağdaş aydınlatma tekniği” olarak adlandırılan uzmanlık alanı doğmuştur.

Uluslararası Aydınlama Komisyonu tarafından yapılan tamma göre aydınlatma, “nesneler ve çevrelerinin görülebilmesi amacı ile ışık uygulanması”, yani görsel
algılamanın en iyi biçimde gerçekleşmesinin ve görme alanının insan üzerindeki etkisinin doğru ve olumlu olması sağlanmasıdır.

Fizyolojik görmenin minimum gereksinmesi olan ışığın, ekonomik koşullarda, fizyolojik ve psikolojik görsel konfor sınırları içinde, hacim ve yüzeylerin tam ve doğru algılanmasını sağlayacak düzeyde üretilmesi ve bu amaca uygun ışık kaynaklarının tasarlanıp geliştirilmesiyle uygun aydınlatma sisteminin gerçekleştirilmesi aydınlatmacılığın konusunu oluşturur.

Aydınlata türleri, sistemin kuruluş amacına göre, kullanılan ışığın kökenine göre ve aydınlatılan yere göre olmak üzere üç sınıf altında toplamak olanaktdır.

Aydınlata Sisteminin Kuruluş Amacına Göre Aydınlatma Türleri:[9]

a) Fizyolojik aydınlatma: Cisimlerin bütün gerçek nitelikleri ile, kısa bir süre içinde, yorulmadan görülmesi için göz fizyolojisinin gerektirdiği ışık bileşimi, dağılımı ve siddeti ile ilgili koşulların gerçekleştirilmesini amaçlar.

b) Dekoratif aydınlatma: Cisimlerin görülmesini istediğimiz biçim ve formla, tasarlanmış olan estetik etkiye verebilecek şekilde gösterilmesini amaçlar.

c) Dikkati çekten aydınlatma: Gözlemcinin bir cisim veya olay üzerine dikkatini çekmeyi amaçlar.

İşığın Kökenine Göre Aydınlatma Türleri:

a) Doğal Aydınlatma: Doğal ışığın kullanıcı ihtiyaçlarıyla bağlı olarak en rasyonel şekilde dağıtılmıştır,

b) Yapay Aydınlatma: Yapay ışığın kullanıcı optimum performansını sağlayacak şekilde üretilmesini ve dağıtılmıştır,

c) Entegre Aydınlatma: Yapay ve doğal ışığın bütünleşik olarak dağıtılmıştır ele alan aydınlatma türüdür.

Aydınlata olan Yere Göre Aydınlatma Türleri:

a) İç Aydınlatma: Kapalı yerlerin aydınlatılması sorunun içerir.

b) Dış Aydınlatma: Kapalı mekanların dışında kalan tüm açık alanların aydınlatılmasını kapsar.
Aydınlatma sistemi tasarımları; her aydınlatılacak yeri özel bir problem olarak ele alır ve genel olarak, tasarım amacı doğrultusunda yaratmak istenen etkiye, ve problemi oluşturan konunun sağladığı verilere göre:

- Aydınlığın nitelik ve niceliğine karar verilmesi,
- İstenilen aydınlık için uygun ışık kaynağı ve aygıtlar seçilmesi
- optimum performans sağlayacak şekilde ve ekonomik koşullar içinde uygulanması aşamalarından oluşur.

Aydınlatma tasarımı; bina ölçüğünde ele alındığında, uygulanmanın doğru sonuca ulaşması ve çözümün uygun maliyetle gerçekleştirilebilmesi açısından, proje aşamasında yer almış ve mimari tasarım paralel sürdürülmelidir. Kent ölçeğindeyse, kent içindeki yapıların ve kentsel değerlerin bütünlik sağlayarak kentsel kimliği oluşturabilmesi ve kentin sahip olduğu estetik değerlerin vurgulanabilmesi için, birbirinden bağımsız uygulamalar yerine, kent bütünü kapsayan aydınlatma master planları doğrultusunda, planlı, kapsamlı, birbiri ile uyumlu aydınlatmaların yapılması gereklidir.

Tarihi bir yapının dış aydınlatması söz konusu olduğunda, aydınlatma tasarımı mevcut bir bina kabuğunu, verilmiş bir sınır üzerinden çalışmak zorunda olduğundan problem daha özel bir hale gelir. Yeni bir yapıda, mimari tasarım aşamasıyla paralel devam etmesi gereken aydınlatma sistemi tasarımı, tarihi bir yapıda doğal olarak mevcut verilerden yola çıkarak kurulan bir senaryo çerçevesinde gelişir. Aydınlatma tasarımları, tarihi yapının mevcut özelliklerine zarar vermemek, korunmasına katkıda bulunmak, tanıtılmasını sağlamak, işlevini sürdürmesini sağlamak gibi görevleri üstlenir.
4.2. Aydınlatma Sisteminin Performansının ve Amacına Uygunluğunun Değerlendirilme Ölçütleri

Yapma çevrenin bir alt sistemi olan aydınlatma sisteminin dizaynlanması, ışığın kullanıcı ihtiyaçlarıyla dengeli olarak kontrol edilebilmesini olanaklı kilarak görme yeteneği, görme rahatlığı ve görsel performansı yüksek düzeyde taşımayı amaçlar.

Doğru aydınlatma sisteminin, kullanıcının psikofizyolojik ihtiyaçlarını karşılayarak, eylemin tür ve şiddetine bağlı olarak minimum enerjiyle optimum verimi elde edebilmesine katkıda bulunması Beklenir.[1]

Aydınlatmanın nitel ve nicel yeterliliği, birden fazla insan ihtiyacına cevap vermesinden dolayı, yalnızca tek bir ölçeme sistemiyle değerlendirilemez. Işık üretimi ve dağıtımın karşılanması gereken kullanıcı ihtiyaçları ana başlıklar olarak:[10]

• görsel performans
• görüş sonrası performans (görülen nesneye bağlantılı gerçekleşecek eylem için söz konusu olan performans)
• sosyal iletişim ve etkileşim
• bireyin ruhsal durumu
• sağlık faktörü
• estetik yargı (uzamın ve ışığın içerdüğü estetik değer)

şeklinde özetlenebilir.

Bu durum, "doğru aydınlatma"nın, ölçümle karar verilebilen bir sonuç değil, aydınlatlan çevre ve çevrenin kullanıcısı olan birey arasındaki karşılıklı etkileşimin yarattığı özel bir durum konumuna gelmesini sağlamaktadır.

Doğru ve yeterli bir aydınlatma sisteminin,
• görme için yeterli şartları sağlaması
• çevrede gerçekleşecek eylem ve davranışları desteklemesi
• amaçlanan sosyal etkileşim ve iletişim teşvik etmesi
durumun gerektirdiği ruh halinin oluşumuna katkıda bulunması

mekan içinde doğru sağlık koşulları yaratması (göz sağlığı için olduğu kadar işmin genel etkisi açısından da)

uzmanın sahip olduğu estetik değerin artmasına katkıda bulunması

gerekmektedir.

Aydınlatmanın, kendisinin değil, insanların üzerindeki etkisinin değerlendirildiği söylenebilir.

Ancak tarihi yapların aydınlatılmasının aydınlatma tasarımını içindedeki özel konumu, hem bina hem de kent ölçeğinde incelenmesinin gerekliliği ve aydınlatmanın amaçlarının birden fazla olmasından kaynaklanan çok boyutluğunu, aydınlatma sisteminin sağlanması gereken koşulların kapsamını genişletmektedir. Tarihi yapı aydınlatmasının, sergilenecek bir nesne olarak yapıyı vurgulamak, sahip olduğu niteliklerin algılanabilirliğini artırmak ve estetik değereine katkıda bulunmak, devam etmekte olan veya sonrasında kazandırılmış işlevi doğrultusunda içinde ve çevresinde gerçekleştirilecek eylemler için konfor koşullarını temin etmek, yapının daha dikkat çekici hale getirilmesiyle turistik amaçlara hizmet etmesini sağlamak ve benzeri amaçlara yapılışı dikkate alınarak; aydınlatma sistemi değerlendirirme kriterleri:

görsel konfor koşullarına uygunluk

tarihi çevre koruma ve restorasyon ilkelerine uygunluk

yapının kent kimliği içindeki rolüne uygunluk

enerji tasarrufu ilkelerine uygunluk /ekonomiklik

olarak dört ana başlık altında toplanmıştır.

4.2.1. Görsel Konfor Koşullarına Uygunluk

Genel anlamda, kullanıcının tutan duyum sistemlerinin sağlıklı Çalışabilmesi için ve metabolik dengesinin sağlanması için gerekli çevresel psikofiziksel koşullar konfor koşulları olarak bilinmektedir.[1]
Görsel konfor koşulları, aydınlığın niteliği ve niceliği hakkında, uluslararası kabuller, deneySEL yöntemlerle ve hesaplarla elde edilmiş sonuçlar ve hazırlanmış standartlar aracılığıyla belirlenmiş değerlerin tasarım kararlarında kullanılmaktadır.

Görsel performans:

- aydınlık düzeyi,
- parltı ve
- renk

etkenlerinin fonksiyonu olarak tanımlanabilir. Gözün görme yeteneği, gözün kontrast duyarlılığı, şekit keskinliği ve görme hızı olaylarını içermektedir.

- Aydınlık Düzeyi:

Yüzeye düşen ışık akışının yoğunluğuna, ya da başka bir deyişle S yüzey alanı ve φ ışık akısı olmak üzere, ΔS yüzeyi sıfıra yaklaşıktken Δφ/ΔS oranının limiti olarak tanımlanmaktadır. Işık akısı, yani ışık kaynağından çıkan ve normal gözün görmesine ait spektral duyarlık eğrisine göre değerlendirilen enerji akısı, lümen ve S yüzey alanı metrekare cinsinden alınarak hesaplanan nicel aydınlık değeri E için lux birimi kabul edilmiştir. Belirli bir eylemin gerçekleştirilmesi veya nesnemin algılanması için aydınlık düzeyinin belli bir nicelikte olması gerekmektedir. Çeşitli görsel eylemler için, ülkelerin ekonomik görüşlerine göre farklılıklar gösterebilen minimum aydınlık düzeyi değerleri deneylerle bulunmuştur ve aydınlık niceliğine karar verilirken bu değerler dikkate alınır.[7]

- Parltı (Luminance):

Cisimlerin görülebilirliğinde başının bir role sahip olan parltı etkeni, yüzey, yüzeyin bir noktası ve gözlem doğrultusunu kapsayan doğrultuya bağlı bir büyüklüğtür). ve yüksek değerlere ulaşması ile, kamaşıma olayı oluşmaktadır.
Şekil 4.1: Parlıtta tanıma

İşık yayılan bir yüzeyin bir M noktasının, bu yüzeyin normali ile α açısı yapan dohrultudaki (Şekil 4.1)parlıtta:

M noktasını içine alan ΔS yüzey elemanının bu dohrultuda doğurduğu $\Delta t \alpha$ işık şiddetinin ΔS in bu dohrultuya dik düzlemdeki ΔS_n görünen alanına oranının limiti olarak tanımlanmaktadır. S nin her noktasında parlıt aynı değerde, S in bir M noktasındaki işık şiddeti I_n ve S nin bu dohrultudaki görünen alanı S_n ile gösterilirse, M noktasının bu dohrultudaki parlıtta:

$$L_n = \frac{I_n}{S_n}$$

(candela/m2) olarak hesaplanır.

Bir cismin görülebilmesi için o cismin gözün ağ tabakasındaki görüntüünün sahip olduğu aydınlık düzeyi önemlidir ya da cismiler ancak parlıtları ile gözde görme hissi uyandırırlar denilebilir. Parlıt olarak tanımlanan sayısal değer, aydınlık düzeyi ve yüzey yansıtıılığı değerlerinin her ikisine de bağlıdır. Ancak, ikisi de objektif sayısal değerler olan aydınlık düzeyi ve parlıt kavramlarını, subjektif bir saptama olan parlaklık kavramını direkt olarak etkilemezler. Parlaklık, gözün ve beynin birlikte algılaması olarak tanımlanır ve tek başına göz fizyolojisiyle açıklanmaz. Ama parlıt, sağlanan aydınlık düzeyi ve sahnenin görünen parlaklığı arasında önemli bir objektif link sağlar.
Ancak parlıt kavramı doğrultuya bağılı bir değer olduğundan ve günlük hayatta yanyana karşılaşılan iki ışık uyarının parlıt oranları her zaman farklı olduğundan parlıt kavramının, aydınlatma probleminin nesnesi ve nesneye ait çevre koşulları açısından incelenmesi zoruntilur. Görüntü konfora etki eden parlıt kontrastı kabul edilebilir değerler içinde kaldığında, cisimler görülebilir olurken, bu değerlerin dışına çıkması durumlarda, görülebilme niteliklerini kaybederler, ya da kamaşmaya neden olurlar. Bir parıltıdan diğerine geçiş yavaş yavaş olduğunda, gözün fark etme yeteneği küçülür ve parlıt orani ani geçiştekinden zayif görünür.

Görüntü sistemin, fizyolojik olarak, aydınlatık düzeyi dışında görüş alanındaki parlıt dağılımına da duyarlı olmasi, ancak görüntüyü bu anlamda açıklayamamasından dolayı, gözlemci, görüntü sahneyi yüzeylerin renk farklılaşmaları, yüzey yansımaları ve aydınlatık düzeyleri ile yorumlayabilme ve bu olay, renk sürekliliği veya renk sabitliği diye adlandırılan fenomeni yaratmaktadır.

Kentsel ölçüte parlıt kavramını incelemeden önce, görme alanını struktürunü ve gorüntü algının kenti tanımlarken nasıl çalıştığını açıklamak gerekir.[11]
Görme alanı; tepsisi, iki odak, bir ana düzlem ve bir düğüm noktasıyla karakterize edilen gözün optik sisteminin, düğüm noktasında olan bir koni ile retina’nın ara kesitinden ibaretir ve teorik olarak yarachte açısı (düzlemsel tepe açısı) 90° olan bir koniyle verilebilir. Fakat retinadaki bütün görüntüler görme duyumunu uyarmadıklarından yorulmasız görme alanı olarak “2 x 50°” alınabilir. Tam net görme alanı ise çok küçüktür. Görme alanının biyolojik mekanizması, görme alanının farklı geometrik bölgederden oluşmasını sağlamaktadır ve bütün görme alanı içinde yer alan görsel reaksiyonların karmaşılığı uzunun gece ve gündüz tamamen değişik algılanmasına neden olmaktadır.

Görme alanı, görüş kesinliği (şekil 4.2) açısından:

- merkezi görme
- periferik görme

alanları olarak,

Bakış noktasından geçen yatay doğruya göre (şekil 4.3):

- Yatay eksenin altı
- Yatay eksenin üstü olarak,

Bakış noktasından geçen düşey doğruya göre (şekil 4.4):

- Sağ

- Sol olarak, üç başlık altında bölgelere ayrılmaktadır ve ışık uyarmını bu bölgelerden hangisinde olduğuna göre gözün reaksiyonu değişmektedir.
A) Tam net görme alanı, görüş alanının ortasında yer alan yaklaşık %2 lik bölüm.

B) Merkezi görme alanı, görüşün çok keskin olduğu alanın dışında yer alan ve %35-55 arasında değişim gösteren alan. Bu bölgede göz, nesneleri ayrıntı edebilir ancak çok net ve kesin yargular edinemez ve detayları tam olarak seçemez.

C) Periferik görme alanı, görme alanının en dışında yer alan bölge. Görüş ekseninden, %70-90 lik bir alanı kapsar ve bu bölgede göz nesnelerin biçimi hakkında bulanık ve yaklaşık bir duyum alabilir. En dış noktada ise ancak hareketleri belirsiz olarak kısmen algılar.
1) Bakış merkezinden geçen yatay doğrunun üstünde kalan bölge.

Bu bölgede, göz parlı değeri yüksek noktaları daha kolay tolere edebilir ancak görsel karmasa karşı daha zayıftır.

2) Yatayın altında kalan bölge.

Birinci bölgenin tersi söz konusudur. Deneysel verilere göre, göz alt yarından gelen kamaşmadan ve yansımalardan görece olarak daha çok rahatsız olmaktadır. Parlak noktalar, parlı aralarlarındaki ani ve büyük değişimler ya da aydınların nitelik ve niceliğindeki düzensizlikler ise daha az dikkat çekici ve kafa karıştırıcı konumdadır ve algısal bütün içinde daha kolay yerleşir. Bu iki bölge arasındaki fark, kamaşma riski daha az olduğu halde, üst yarında kurulacak aydınlatma şablonunun daha titiz bir düzen, hiyerarşi ve düzgün dağıtım gerektirmesine neden olmaktadır.

Ancak değeri parlı araların belirgin bir farkla üstünde yer alan noktalar, ya da başka bir deyişle ani parlı geçişine neden olan noktalar, gözün davranışı üzerinde, algılama sırasında belirlenmesine katkıda bulunmak gibi önemli bir kontrol etkisine sahiptir. [11]

[Şekil 4.4: Görme, sağ-sol görme.]

3) Görüş alanının, bakış eksenine göre sağ ve sol yarı olarak ikiye ayrılması, beynin sağ ve sol bölümlerinin duyumsal etkileri farklı değerlendirmeye tavrından kaynaklanmaktadır. Sol yanında göz detaylara daha az duyarlıdır.
4) Sağ yanda ise detayları algılama faktörü daha güçlüdür. Ancak bu fark aynı zamanda sağda yer alan parıltı odaklarının görsel algı içinde daha kafa karştırıcı olacağını anlamına gelmektedir. Detay algısının güçlü olması durumunda, daha çok yol aydınlatmasında, işaret ve ışıklı levhaların bu yönde yerleştirilmesi açısından değerlendirilir ancak aynı kural, tarihi dokunun bütünüyle korunduğu bölgelerde ya da külliyelede veya geniş sit alanı olan yerlerde, tarihi yapı aydınlatması yaya akslarını da içerdği zaman insanların yönlendirilmesinde de geçerli olabilmektedir.

Görsel duyum, alt bilinci tarafından geliştirilgi söyleenebilecek kategoriler aracılığıyla, yaratılan uzamsal izlenimi sınıflandırıp beyin sahnenin parçalarını ve bütünü algılamasını sağlar. İnsanın yer-yön duyusunun alt kategorileri olarak da tanımlanabilecek bu kavramlar, kentsel mekânın olduğu kadar, küçük mekan birimlerinin, alış-veriş merkezlerinin ya da genel anlamda, değişik bileşenlerden oluşan herhangi bir atmosfer parçasının algılanma ve tamam haline gelmesindeki mekanizmanın parçalarını oluştururlar. Bu parçaların ötesi temel kavram tarafından oluşturduğu söylemek mümkündür. (Şekil 4.5)

![Şekil 4.5: Kentsel bölger](image)

- Yollar(ya da izler): Kent içindeki ana caddeler, ara yollar veya yaya yolları, kent dışındaki yerleşimlerde patika ve benzeri baskıda da ikincil akşalar.
- Bölgeler: Belirli bir dokudan veya yapı türünden oluşan bölgeler. Kentin endüstri yapılarının toplanığı bölge ya da yoğun olarak iş merkezi veya yüksek yapılarдан oluşan bölgeler, tarihi dokunun yoğun olduğu bölgeler.
- Sınırlar: Bölgelerin ara kesiti veya kent içinde belirgin karakter farklılıklarını arasındaki sınır bölgeleri.
• Düğüm noktaları: Kent içinde düğüm noktalarına örnek olarak, öncelikle meydanlar olmak üzere, izlerin kesiştiği merkez noktalar, sirkülasyon dağılımı veya başlangıç noktaları sayılabilir.

• Referans Noktaları: Tanımlama konusunda en başlık etken olan, doku içinde özellikleri ile ön plana çıkan, daha akılda kalıcı ve çeşitli yönlerden nitelikli olan yapılar veya kentsel elemanlar.

Kentsel uzam kategorileri, daha küçük ve sınırlı alanlardaki da geçerli olabilmektedir. Büyük alışveriş merkezlerinde çekirdeklerin düğüm noktaları, vitrin tasarımını ilgi çekici ve akılda kalıcı mağazaların referans noktaları, aynı tür dükkânların oluşturduğu kısımların bölgeler olarak kabul edilmesi mümkündür.

Doğal olarak son grup çoğulukla kent içindeki tarihi yapılarından oluşmaktadır. Kent aydınlatmasında basit ön koşul, kentin tanımlanabilir ve tanımlanabilir olması, işlevini güvenligi için sürdürübilmesidir. Bu durumda bazı faktör ya da birincil etken diyebileceğimiz referans noktaları oluşturan tarihi yapılar uygulananacak aydınlatma sistemi, yapıyı görünebilir kılmalı, yeni visuell konfor koşullarını sağlama; aynı zamanda bu referans noktalarında oluşturulacak senaryolarla işin, görsel algının alt kategoriler arasındaki sürekliği takip edebilmesi için esnek ve kolay anlaşılır bir dil oluşturması amaçlanmıştır.

İşık tarafindan bir dil, bir senaryo oluşturulması söz konusu olduğunda, parıltılı kavramı ve parıltılı odakların konumunun ayarlanması, merkezi ve periferik gördümedi ortak fenomenin, karanhk arka plan önünde yer alan parıltılı değeri yüksek bölgelerin dikkati kontrol ederek, görsel psikoloji içinde “gruplama” olarak adlandırılan kavramı yaratmasından dolayı, önemli birer kontrol mekanizması oluşturur.

Parıltılı arayıkların kontrol amaç kullanırken ilk belirlenmesi gereken, yapının yakın çevresi ve arka plandaki parıltıyla ait sayisal değerlerdir. Temelde, çevreye ait değerler belirlenmeden sistemin kurulacağı yönde alınması gerektiren aydınlanın düzeyi ve parıltılı değerleri için net bir ölçü kontrollü olarak anlaşıldır. Ancak genel bir değerlendirme ile, iyi bir görsel algılama için gerekli ortalama değerler her üç arka plan koşulu için tablo 4.1 de verilmektedir.[6]
<table>
<thead>
<tr>
<th>Çevre Koşulu</th>
<th>Yapı Yüzü Parıltı (Luminance) değeri (L=cd/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yakın çevrede arka plan karanlık (Şekil 4.6)</td>
<td>10-51</td>
</tr>
<tr>
<td>Yakın çevrede ya da arka plan karanlık (Şekil 4.7)</td>
<td>20-25</td>
</tr>
<tr>
<td>Yakın çevrede ve arka plan aydınlık</td>
<td>30-40</td>
</tr>
</tbody>
</table>

Şekil 4.6 Saint Wojciech Katedrali [11]
Şekil 4.6’daaki yapı, hem yakını plan, hem de arka planın karanlık olduğu, Şekil 4.7 de verilen gece görüntüsü ise, yakını planın aydınlık, arka planın karanlık kabul edildiği çevre koşuluna örnektir.

Parıltı odaklarının konumunda belirli bir düzen olmadığı, oluşturulan bir model ve şablon doğrultusunda yerleştirilmişdikleri zaman, dikkatin algılanmak istenen nesnede yoğunlaşmasını engelleyecek düzeyde görsel karmaşa oluşur ve göz, yapı ve yapı gruplarının sunduğu hiyerarsıyi algılayamaz.

Bu durum, özellikle tarihi yapıların arka arkiaya aynı perspektif içinde yer aldığı bakış noktalarında, yani tarihi dokunu yoğun olduğu bölgelerde, parıltı aralarının birincil düzeyde dikkatle değerlendirilmesini gerektirir. Bakış yönünde birbirine yakın sak yer alan ya da başka bir deyişle görüş alanı içinde geometrik açıdan ardışık konumda bulunan yapılar arasında, arka arkaaya aynı nitelik ve nicelik değerlerini içeren aydınlatma sistemlerinin uygulanması, görsel algının gruplama reaksiyonun bloke eden en önemli faktördür.

Bu durumda göz, gerçekten varolan düzeni, yapının elemanları ve kütlesel geometrisi içindeki bağlantılıları ve dolayısıyla sergilenmek istenen estetik değerin yanında, tarihi niteliğin araştırma nesnesi olarak içerdığı verileri de kaybetmiş olacaktır.
Şekil 4.8, 9, 10, ve 11 de sunulan örnekte, parlıttı odakları olarak tanımladığımız noktaların, algı mekanizması tarafından nasıl kullanıldığımı ve ağ tabakada oluşacak görüntüyü nasıl etkilediğini ifade etmek amacıyla, tarihi bir köprü aydınlatmasının iki farklı açıdan görüntü sü incelenmiştir.

Şekil 4.10 ve 4.11, sırasıyla şekil 4.8 ve 4.9’daaki bakış açılardan gırilen köprü aydınlatmasının, parlat odaklar aracılığıyla algılanmasında, görsel algı tarafından kurulmuş olan gruplamannı abartılı birer ifadesidir. İlk örnekte (Şekil 4.8), bakış açısına göre strukturun anlaşılmasını güçlendiren, sürekliliği ve geometriyi vurgulayan parlıttı faktörü, ikinci örnekteki bakış yönünden incelediğindeyse (Şekil 4.9), belirli bir düzene sahip olmayan parlat spotların kararlıktan dağınık konumlanmışna dönüştüktedir. Örnekte, aydınlatmanın yanlışlığı kesinlikle söz konusu olmamakla birlikte, yapıyi sadece görsel konfor koşulları çerçevesinde görülebilir kılınmanın, her yönden aynı şekilde vurgulayamayacağı ve bakış yönune göre farklı niteliklerini ön plana çıkaracağı açıktır.

Bu durumda, daha önce tanımlanmış olan kentsel uzam kategorilerinden, öncelikli algılanması istenen referans noktalarının, kendisi içinde ve kent bütünü içinde aydınltık ve karanlığın birer fonksiyonu olarak yorumlanması gerekmektedir.
Bakış yönü ve niteliklerden hangisinin hangi bakış yönünden ön plana çıkmasının istendiği, yapının kent içindeki konumuna ve sahip olduğu önmek türüne bağlı olarak belirlenmektedir.

Öncelikli olarak ana yaklaşım aksarımı, yani yapıya kentin trafik aksına göre hangi yönden yaklaşıldığı ve oluşturduğu sahneye bu açıdan bakıldığında hangi tamamlayan elemanların dahil olduğunu belirlemek; ikinci aşamadaysa bu akslardan hangisinde, hangi etkinin güçlendirileceğiine karar vermek gerekir. Bu kararlar arasında baskın etken doğal olarak yapıyı doğru sunmaktır. Ancak doğru görüntüyü daha cazip ve ilgi çekici hale getirmek için değişik senaryolardan geliştirilerek ilginç etkiler yaratmak mümkündür.

*Renk:

Cisimler, yansıtıkları ışık ile görünür duruma gelir ve renkleri, üzerine düşen ışığın yapısı ve değişik dalga uzunluklarındaki yansıtma özelliklerine göre değişir.

Renk kavramının zor açıklanabilir ve ölçülebilir olma nedeni, bir rengin algılanması; rengin ait olduğu objenin, objeyi aydınlatan ışığın, gözlemcinin ve çevredeki yansıtıcı veya yutucu elemanların özellikleri ve gözlemcinin adaptasyonu olmak üzere bir dizi karmaşık faktörün etkileşiminden oluşmasıdır.[12]

Renk terimi, birbirinden farklı üç ayrı kavramı ifade etmek amacıyla kullanılmaktadır. İnsan tarafından gözlenliğinde aynı büyüklik ve biçimdeki ışık parçalarının birbirinden ayırdılabilmesini sağlayan ışık özelliğini ifade eden renk terimi, aynı zamanda nesne rengi ve algılanmış nesne rengini de anlatmak için
kullanılır. Aydınlatma sistemi içinde renksel özelliğin sağladığı tasarım seçeneklerinden yararlanılabilmesi için bunların birbirinden ayrımının doğru yapılması gerekmektedir.

Nesne rengi: bir nesnenin, standart(CIE A,B,C gibi) bir ışık kaynağı ile aydınlatıldığında, yansıttığı veya geçirdiği ışığın rengidir.

Algılanan nesne rengi: gözlemcinin adaptasyonu, gözlem yönü, nesneyi aydınlatan ışık ve çevre koşulları ve nesnenin kendisine ait özelliklerin birleşimi sonucu, göz tarafından o nesneye ait olarak algılanan renk. Başka bir deyişle nesnenin belli koşullar altına algılanan rengidir.

İşık dalga uzunluklarının göz tarafından algılanabilir kısmı, elektromanyetik yayınının 400-700 nm. Arasında kalan küçük bir kısmından oluşmaktadır. (Şekil 4.12)

![Şekil 4.12](image)

Bir cisim, ışık kaynağından var olmayan bir renği yansıtmayacağına göre, renği en canlı olarak, o renkleri bünyesinde bulunduran bir ışık kaynağı altında görünür. Eğer bir ışık kaynağı, cismin renginde ışık içermiyorsa, cisim gerçekten farklı bir renkte görünecektir.

Aydınlatma sistemi tasarımında renk etkeni:

- Işık kaynaklarının renksel özellikleri,
- Aydınlat düzeyinin renklerin algılanması üzerindeki etkisi,
- Renklerin ışık yansıma özellikleri,
- Renk psikolojisi

gibi yönlerden ele alınmaktadır.
• Işık kaynaklarının renksel özellikleri:

Işık kaynağıının renksel özellikleri tanımlarken; kaynak tarafından üretilen ışığın,
görünen (gözlemci tarafından algılanan) rengi ya da bağlı renk
sıcaklığı(CCT:correlated color temperature) ve renksel geriverim (CRI: color
rendering index) özelliği olarak iki ayrı kavramın açıklanması gerekmektedir.[12]

Renk sıcaklığı, renksellikle ilgili bir özelliiktir ve ışık kaynağının yaydığı enerjiyle
ilgili değildir. Kelvin (°K) birimiyle gösterilmektedir.

Renk sıcaklığına göre renkler:

800-900 °K ..Kırmızı
3000 °K ..Sarı
5000 °K ...Beyaz
8000 °K-10000 °KAçık mavi
60000-100000 °KGök mavisi

olarak sınıflandırılmaktadır.

Işık kaynaklarının algılanan rengini belirtmek için, bağlı renk sıcaklığı kavramı
kullanılır. Bu sıcaklık, söz konusu kaynağın belirtilen sıcaklıkta olduğu değil, bu
sıcaklığa gelmiş bir tungsten filamanla aynı renkte olduğu anlamına gelmektedir.

Renk sıcaklığı kavramı, bir kaynağı ışık rengini belirtmede standart bir referans
oluşturulmasını sağlar.

Bir ışık kaynağının renk niteliği en kesinlikle, onun diğer bir ışık kaynağının renk
niteliği ile karşılaştırılarak saptanabilir.[9]

Tablo 4.2'de, sık kullanılan ışık kaynaklarının renk sıcaklıklarını verilmiştir.
<table>
<thead>
<tr>
<th>Işık Kaynağı</th>
<th>Işık Rengi sıcaklığı (°K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akkor Telli Lamba</td>
<td>2600-3000</td>
</tr>
<tr>
<td>Halojen Akkor (tungsten halojen) Lamba</td>
<td>3000-3400</td>
</tr>
<tr>
<td>Metal Halojen Lamba</td>
<td>3300-5700</td>
</tr>
<tr>
<td>Cıva Buharlı Lambalar</td>
<td>55-60</td>
</tr>
<tr>
<td>Yüksek Basınçlı Sodyum buharlı Lambalar (HPS)</td>
<td>2000-3200</td>
</tr>
<tr>
<td>Alçak Basınçlı Sodyum Buharlı Lambalar (LPS)</td>
<td>1600</td>
</tr>
<tr>
<td>WW (warm white) Flüoresan Lamba</td>
<td>3000</td>
</tr>
<tr>
<td>Deluxe WW (warm white) Flüoresan Lamba</td>
<td>2900</td>
</tr>
<tr>
<td>Beyaz Flüoresan Lamba (W)</td>
<td>3500</td>
</tr>
<tr>
<td>Cool White (CW) Flüoresan Lamba</td>
<td>4200</td>
</tr>
<tr>
<td>Deluxe Cool White (CW) Flüoresan Lamba</td>
<td>4200</td>
</tr>
<tr>
<td>Güneşği Renginde (Daylight) Flüoresan Lamba</td>
<td>7000</td>
</tr>
<tr>
<td>Xenon</td>
<td>6000</td>
</tr>
</tbody>
</table>
Tablo 4.2 devam

<table>
<thead>
<tr>
<th>Gün ışığı (güneş doğuşunda)</th>
<th>1800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gün ışığı (öğleden sonra)</td>
<td>5000</td>
</tr>
<tr>
<td>Kapalı gök koşulu (standart CIE kapalı göğü)</td>
<td>6500</td>
</tr>
</tbody>
</table>

Bir ışık kaynağı, tek dalga uzunluğunda ışık veriyorsa, bu kaynaktan ışık alan bütün cisimler, bu rengin tonlarındaki renklerde görünürler. Bir ışık kaynağının, bir cismin rengini gerçek durumu ile gösterebilmesi için, kuzey göğünün spektral niteliklerine sahip olması ve bütün dalga uzunluklarında, gün ışığının kine yakın oranlarında, ışık içermesi gereklidir.

Renksel geriverim (CRI: color rendering index) özelliği ise, ışık kaynağının bir nesnenin rengi üzerindeki etkisini tanımlamak için belirlenmiş bağlı bir kavramdır ve 0-100 arası değerlerle ışığın renkleri ne kadar bozduğunu veya gerçekle yakın gösterebildiğini belirlemektedir.

Renksel geriverim indeksi, ışık kaynağının sağladığı algılanan nesne rengi ve kabul edilmiş standart ışık kaynağının tarafından sağlanan nesne rengi arasında bağlı bir oran belirler. Tablo 4.3’de ışık kaynaklarının renksel geriverim indeksleri verilmektedir.

Ancak renksel geriverim indeksinin sadece rengin bozulma oranını belirttiği, hangi rengin bozulacağı saptamadığı umutlammadır. Birbirine yakın CRI değerinde iki farklı ışık kaynağında, aynı nesne rengi, farklı algılandığı nesne rengi ortaya koyabilmektedir. [12]

Tablo 4.3

<table>
<thead>
<tr>
<th>Işık Kaynağı</th>
<th>Renksel geriverim indeksi (CRI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akkor Telli Lamba</td>
<td>100</td>
</tr>
<tr>
<td>Üretim Tipleri</td>
<td>Ölçü (mm)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Halojen Akkor (tungsten halogen) Lamba</td>
<td>100</td>
</tr>
<tr>
<td>Metal Halojen Lamba</td>
<td>65-80</td>
</tr>
<tr>
<td>Çıva Buharlı Lambalar</td>
<td>15-55</td>
</tr>
<tr>
<td>Yüksek Basınçlı Sodyum buharlı Lambalar (HPS)</td>
<td>22-75</td>
</tr>
<tr>
<td>Alçak Basınçlı Sodyum Buharlı Lambalar (LPS)</td>
<td>0</td>
</tr>
<tr>
<td>WW (warm white)Flüoresan Lamba</td>
<td>52</td>
</tr>
<tr>
<td>Deluxe WW (warm white)Flüoresan Lamba</td>
<td>73</td>
</tr>
<tr>
<td>Beyaz Flüoresan Lamba (W)</td>
<td>60</td>
</tr>
<tr>
<td>Cool White (CW) Flüoresan Lamba</td>
<td>66</td>
</tr>
<tr>
<td>Deluxe Cool White (CW) Flüoresan Lamba</td>
<td>89</td>
</tr>
<tr>
<td>Güneş Renginde (Daylight) Flüoresan Lamba</td>
<td>79</td>
</tr>
<tr>
<td>Xenon</td>
<td>95</td>
</tr>
</tbody>
</table>

• Aydınlayıcı yüzeyin renklerin algılanmasını üzerindeki etkisi.

Cisimlerin renklerinin, gerçekten gibi görülmesi için, ışık kaynaklarının spektral niteliklerinin büyük önemi açık olmakla birlikte, ışığın niceliği de, dikkate alınması gereken bir etkendir.
Işık kaynağıının gücü arttığında;
- Kırmızılar biraz morlaşır,
- Portakal rengi ve sarı biraz değişir,
- Yeşiller, daha çok kırmızılaşır ve dolayısıyla gri görünür,
- Maviler, daha kırmızı görünür,
- Morlar, kırmızıya dönüşür.[1]

• Renklerin ışık yansıma özellikleri

Fizyolojik aydınlatmada, renk etkeninin en önemli yönü, değişik yansıma özelliklerine sahip olmasıdır.

<table>
<thead>
<tr>
<th>Yapı Yüzey Malzemesi</th>
<th>Malzemenin Yansıtma çarpımı (r, %)</th>
<th>İşık Önerilen Yapı Yüzeyi Ortalama Aydınlık Düzeyi (E=Lümen/m²)</th>
<th>Yakın Çevre Aydınlık Düzeyi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Düşük</td>
<td>Orta</td>
</tr>
<tr>
<td>Beyaz Tuğla</td>
<td>50-60</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Sarı Tuğla</td>
<td>25</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Kırmızı Tuğla</td>
<td>15</td>
<td>80</td>
<td>140</td>
</tr>
<tr>
<td>Beyaz Mermer</td>
<td>50-60</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Granit</td>
<td>150</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>Açık Renk Beton</td>
<td>30-40</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Koyu Renk Beton</td>
<td>10-15</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>Beyaz Kireç Badana</td>
<td>60-65</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>Beyaz Yağlı Boya</td>
<td>60-65</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>Orta Koyulukta Taş Kaplama</td>
<td>40-50</td>
<td>30</td>
<td>50</td>
</tr>
</tbody>
</table>

4.2.2. Yapının Kent Kimliği İçindeki Rolüne Uygulan

Tarihi yapı niteliği, estetik değer ve tarihi belge niteliğinin yanında, duygusal değeri, yani yapının kentte yaşayan insanların üzerindeki psikolojik etkisini de içermektedir.

Kent içinde referans noktaları oluşturan tarihi yapılar, birbirleriyle aralarında zaman içinde nitelikleri doğrultusunda kendiliğinden oluşan bir hiyerarşi kurmaktadır ve insanlar üzerinde yaratıkları psikolojik etki bu yönde olmaktadır. Aydınlatma konusu olan tarihi yapının bu bütünlik içinde aldığı yerin değişmesi ve kendisinden daha nitelikli bir yapının önüne geçmesi gerekir. Tarihi yapıların aydınlatma aracılığıyla vurgulanmasına, kent bütününde sahip olduklarını konuma saygılı davranılması gerekmektedir.

4.2.3. Tarihi Çevre Koruma İkilemerine Uygulan

Aydınlatma sistemi, koruma altındaki yapıın mevcut niteliklerini yok etmemeli ve fiziksel ya da psikolojik değişiklikleri yaratmamalıdır. Amacı yapıın korunmasına katkıda bulunmak olmalıdır. Aydınlatma mümkün olduğu kadar orijinal renk ve malzeme özelliklerini ortaya çıkarmalı ve form ve geometrinin doğru ve kolay algılanmasını sağlama yönelik olmalıdır.

Yapının tüm görsel özelliklerinin biraraya gelerek oluşturduğu tarihi belge niteliği, renk, doku, ritm, okunaklılık gibi bileşenlerinden herhangi birini kaybetmediğinde yitirilecektir. Bu nedenle restorasyon analizinin sağlayacağı verilere dayanarak ve yapının asıl kimliğine sadık kalarak, aydınlatma tekniğinin sahip olduğu her türlü teknolojiden yararlanılması gereklidir.

Tarihi yapı, her koşulda kent bütünü içinde ele alınmalı ve bağlantıyı oluşturacak ışık şablonu ilişkisi güçlendirmeyi amaçlamalıdır.
Korumanın temel ilkesi ve gerekli olduğu olan kullanmayı desteklemeli e güvenlik içinde gerçekleştirmesini sağlamak için yeterli ve görsel konfor koşullarına uygun olmalıdır.

4.2.4. Enerji Tasarrufu İlkelerine Uygunluk

Elektrik tüketimi, elektrik enerjisinin maliyeti yüksek bir enerji türü olmasından dolayı ülke ekonomisinin etkileyen önemli faktörlerden biridir. Elektrik enerjisi tüketilen alanlar içinde aydınlatmanın payının giderek artması, aydınlatmada enerji tasarrufu olanaklarının ortaya çıkarılması gerektirmektedir. Bu tasarrufun aydınlatma kalitesini düşürmeden yapılmasını gerekli olduğu açıklar.[13]

Doğru aydınlatma sisteminin, enerji harcamasını minimum tutacak şekilde uygulanması için: aydınlatma aygıtlarının doğru seçimi, aydınlnk düzeyinin gerektiminin duylduğu ölçüde tutulması, etkinlik faktörü yüksek ışık kaynaklarının kullanılması gerektmektedir.

İşık kaynağının etkinlik faktörü ya da verimi, lumen/watt olarak ölçülen sayısal bir değerdir ve kaynağın ne kadar ışık akışını ne kadar elektrik enerjisi kullanarak ürettiğini belirler. Başka bir deyisle en az güç ile en çok ışık akısı üretbilen lamba verimi en yüksek lambadır. [14]

İşık Kaynağı Etkinlik Faktörü, \[e = \frac{\phi}{W} \] (lumen / watt oranı)

Aydınlatma Aygıtının verimi ise, aygıtthan çıkan ışık akısının, aygıt içindeki ışık kaynağının ürettiği ışık akısına oranıdır.

Aygıt Verimi, \[\eta = \frac{\phi_{(kaynak)}}{\phi_{(aygıt)}} \]

Aydınlatma aygıtlarından kaynaklanan enerji kaybını konusunda ışık akısı dağılımıyla ilgili iki önemli kavramın açıklanması gerekmektedir.

Aydınlatma aygıtının üst yari uzaya yaydığı ışık akısının, içindeki lambanın ürettiği ışık akısına oranıdır.

Alt Yarı Uzay Işık Akısı Oranı (DLOR: Downward Light Output Ratio):

Aydınlatma aygıtının alt yari uzaya yaydığı ışık akısının, içindeki lambanın ürettiği ışık akısına oranıdır.
Aydıntın ışık akışının yönlenmesinde, ekran (ya da ırtıcı) olarak adlandırılan ve lambanın belirlenmiş bir açı altında görülmemesini önlemek üzere, yarı geçirgen ya da hiçbir ışık geçirmeyen parçacıkların bir geometrik etüd ile konumlandırılmışından oluşmuş düzen olarak tamlanan elemanlar etkendir.

Aydınlama aygıtları, Enerji ve Tabii Kaynaklar Bakanlığı tarafından, ışık akışı dağıtımları yönünden üç gruba tanınmaktadır.

- **Ekranlı Aygıtlar**: Maksimum ışık şiddetine 65° lik açıda sınırlandılmış, üst yarısı uzaya hiç ışık yaymayan (ULOR = 0) aygıtlar.

- **Yarı-ekranlı Aygıtlar**: Maksimum ışık şiddetine 75° lik açıda sınırlandılmış, üst yarısı uzaya gönderdiği ışık akısı % 10'dan fazla olmayan (ULOR < 10) aygıtlar.

- **Ekransız Aygıtlar**: Maksimum ışık şiddeti belir bir açı ile sınırlandılmamış olan, ancak 65° lik açıda ışık şiddeti, içindeki lambanın/lambaların ışık akısı ne olursa olsun, 1000 cd'yi aşmayan aygıtlar.

![Aydınlama aygıtı](image)

4. 13: Aygıt örnekleri

Şekil 4.13 deki projekktör örneğinde, aygıtın şekildeki konumda kullanılması durumunda, üst yarısı uzaya giden ışık akısı yaklaşık %30-50 dir. Işık kaybının sıfır olması, ancak aygıtın aşağı yönendirilmesiyle mümkün olabilmektedir.

Dekoratif aydınlatma aygıtı örneğinde (Şekil 4.14) ise ışık kaybı yaklaşık %70tir. Yaya yolları ve parklarda sık kullanılan (Şekil 4.15'teki örnek) uygun %30 u yukarı gitmektedir. [16]
Şekil 4.13 Aygıt örnekleri

Şekil 4.14 Aygıt örnekleri.

Sokak aydınlatmasında çok yaygın olarak 1960lardan bu yana kullanılmakta olan (Şekil 4.16) aygıt tasarımı ise ışığın yaklaşık %30'unun üst yarı uzaya dağılmasına neden olmaktadır.

Şekil 4.15 Aygıt örnekleri...

Şekil 4.17'de ise, yüksek basınçlı bir sodyum buharlı lamba, bir çıva buharlı lamba ve yanlış yönlendirilmiş bir projektor'den oluşan yanlış bir birleşim görülmektedir. Projektordeki ışık akışının büyük kısmını yukarı gittiği ve boşা harcanılgı açıklar.
Şekil 4. 17 Aygıt örnekleri.

Şekil 4.18 te ULOR değeri yüksek bir sokak aydınlatması görülmektedir. Şekil 4.19’de ise ışık akısı dağılımı yönünden doğru ve yanlış örneklerin birleşiminde, ön plandaki ekranı aygıt ışığı tamamen aşağı yönlendirirken, sağdaki yanlış yönlendirilmiş projekktör aradaki sokak aydınlatmaları ışığın büyük bölümünü üst yan uzaya dağıtmaktadır.[16]

Şekil 4. 18 Aygıt örnekleri.

Tablo 4.4 de, dış aydınlatmada sık kullanılan ışık kaynaklarının etkinlik faktörleri karşılaştırılmaktadır.[17]

Tablo 4.4

<table>
<thead>
<tr>
<th>Işık Kaynağı Türü</th>
<th>Lumen/watt</th>
<th>Ortalama Lamba Ömrü (saat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akkor Telli (enkandesan)</td>
<td>8-25</td>
<td>1000-2000</td>
</tr>
<tr>
<td>Çiva Buharlı</td>
<td>13-48</td>
<td>12000-24000+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Fluoresan</td>
<td>33-77</td>
<td>10000-24000</td>
</tr>
<tr>
<td>Metal Halojen</td>
<td>60-100</td>
<td>10000-15000</td>
</tr>
<tr>
<td>Yüksek Basınç Sodyum Buharlı</td>
<td>45-110</td>
<td>12000-24000</td>
</tr>
<tr>
<td>Alçak Basınç Sodyum Buharlı</td>
<td>80-180</td>
<td>10000-18000</td>
</tr>
</tbody>
</table>

- Enkandesan (akkor telli) Işık Kaynakları:

Kullanımı en yaygın olan kaynak türüdür. Aynı zamanda diğer ışık kaynaklarına göre enerji etkinlik faktörü en düşük olan enkandesan lambalar, üretiliği ışık akışından göre daha fazla ısı üretmektedir. Lamba içindeki telin ısılanması için harcanan enerjinin sadece %10 u ısığa dönüştür.

Enkandesan lambalar, ömrüleri kısa ancak renksel özellikleri olumlu ışık kaynakları olarak tanımlanmaktadır. Öncelikle iç aynılatma olmak üzere kullanımları çok yaygın olmakla birlikte, kentsel aynılatma için uygun olmadıkları açıktır.

Bazı durumlarda, tarihi yapı, çevresinde yer alan orijinal aynılatma aygıtların değiştirilmeden korunmak istenebilir. Bütünlik açısından yapının ait olduğu dönemin sokak aynılatmasına atıfta bulunmanın hoş bir etki yaratmasının yanı sıra, bazı özel tasarmlarda, aygıtın kendisi dönemle ilgili tarihi nitelikte bir dizayn nesnesi olabilmektedir. Mevcut aygıtın kullanılması durumunda, aygıt içinde yer alan kaynakların, daha verimli kaynaklarla değiştirilmesi, örneğin düşük güçte lambaların yerleştirilmesi enerji tasarrufu açısından düşünülebilir.

Ülkemizde geçerli olan Elektrik Daş Aydınlama Yönetmeliği, enkandesan lambaların sadece kısa süreler için gerçekleştirilen eğlence veya reklam amaçlı aynılatmalarda ve iyi ekranlanmış olmak koşuluyla kullanılmasına izin vermekte ve mevcut enkandesan tesisatin ömrüleri sonunda değiştirilmesini öngörmektedir.
• Çıva Buharlı Işık Kaynakları:

Özellikle güvenlik amaçlı aydınlatmada çok kullanılan cıva buharlı ışık kaynakları, diğer kaynaklardan görece daha uzun ömürdür. Enerjinin minimum kullanımı için uygulamada mümkün olan en düşük watt seçilmesidir. Mevcut aygıtların çoğununda olumlu bir parıltı dağılımı vardır ancak ışık kontrolü yetersizdir.

Diş aydınlatma yönetimliğinde, sadece park ve bahçe aydınlatmaları için kullanımları uygun görülmektedir.

• Flüoresan Işık Kaynakları:

Enkandesan lambalar, göre yaklaşık dört kat daha verimli ışık kaynakları olan flüoresan lambaların, enerji verimi yüksek balastlarla kullanılması gerekir. Enkandesan lambalar alternatif olarak üretimişlerdir ve yaygın olarak iç aydınlatmada kullanılırlar. Çalışma karakteristikleri ortam sıcaklığına bağlı olarak değişmektedir.

Kompakt flüoresan lambaların, diş ortam koşullarına uygun seçilmiş ve iyi korunmuş aygıtlar içinde yerleştirilecek, yalnızca park, bahçe ve kapı önü aydınlatmasında; tüm flüoresan lambaların ise, aynı şekilde uygun aygit ve elektronik balastları ve ışıkları tamamen aydınlatılan yüzeye yönelikmiş olarak sadece reklam ve seyir amaçlı kullanılması önerilmektedir.

• Metal Halojen Işık Kaynakları:

Güncel olarak en enerji verimi yüksek "beyaz" ışık kaynakları oldukları söylenebilir. Çıva buharlı kaynaklara göre verimleri iki kat fazladır. Renksel özellikleri çok iyi olan metal halojenler, özel aydınlatmalar için uygun bulunmaktadır birliktede, ekonomik ömürleri kısıdır. Ülkemizde geçerli olan Elektrik Diş Aydınlatma Yönetmeliği, metal halojen ışık kaynaklarının renkli TV çekimlerinin yapılabacağı açık alanlarda ve beyaz rengin vurgulanmak istendiği bina cephe aydınlatmalarında kullanılması öngörümektedir.

• Yüksek Basınçlı Sodyum Buharlı Işık Kaynakları:

Sokak ve park aydınlatmalarında sık kullanılan sodyum buharlı ışık kaynakları, en uzun ömürlü metal halojenlere göre verimi daha yüksek ışık kaynaklardır. Nesnelerin gerçek renginin görülebilir olmasını birincil kriter olmadığı durumlarda iyi bir seçenek olduğu söylenebilir. Şeffaf cam tüpü olanların etkinlik
faktörleri 130 lm/watt'a kadar çıkmaktadır. Işık rengi, turuncuslu san-beyaz olarak tanımlanabilir.

Diş Aydınlatma Yönetmeliği'ne göre, şeffaf cam tüplü yüksek basınçlı sodyum buharlı kaynakların tüm şehir içi yol, cadde, sokak, meydan aydınlatmalarda kullanılması uygun bulunmaktadır ve daha önce enerji tasarrufu amacıyla kullanılmış olan ateşleyicisiz tiplerin kullanılmasına karar verilmiştir.

- Alçak Basınçlı Sodyum Buharlı Işık Kaynakları:

Özellikle işık kirliliğinin birinci derece önem taşıdığı doğal hayatın korunması gereken alanlarda, astronomi gözlemevlerinin çevresindeki yol ve meydanlarda kullanımları uygun görülmektedir.

Enerji tasarrufuya bağlantılı olarak ele alınması gereken önemli bir dış aydınlatma kavramı ise günümüzde boyutları ve etkileri sıkça tartışılmakta olan işık kirliliği konusudur.

Yol aydınlatması tasarmındaki yetersizlikler, dış aydınlatmada kullanılan aydınlatma aygıtlarının ışığı istenen alana yoğunlaştırılamaması, kaçak ışığın istenmeyen bölgelere yayılması ve ekst tasarrulanış tüm dış aydınlatma sistemleri işık kirliliğini etkileyen faktörlerdir. Asıril dış aydınlatma, yetersiz tasarına sahip ekranızı ve amaca uygun olmayan aydınlatma aygıtlarının kullanılması, ekst veya yetersiz projelendirilmiş aydınlatma sistemleri ve ışığın gerekşiz ve kontrolsüz kullanımsı temel nedenlerdir.

Işık kirliliğinde etken faktörlerin tanımlanması, problemın boyutlarının algılanması açısından önemlidir.

Asırı Aydınlatma: Güvenlik gerekçesiyle yapılan aydınlatmanın kalitesi yüksek ve aydınlan düzeyleri önerilen standartlara uygun olmalıdır. Ancak güvenlik amaçlı aydınlatma genellikle belirli aydınlt düzeyi değerlerinin üstüne çıkarak yapılmakta.
ve ışık kirliliğine neden olmaktadır. Geceleri reklam amacıyla yapılan aydınlatmalarda kent içinde aşırı aydınlatma odakları haline gelmektedir. Reklam amaçlı aydınlatma dikkat çekici olması gerekmekle birlikte belirli sınırları geçmemelidir.[18]

Kaçak Işık (Light Trespass) : Kaçak ışık kavramı, genel olarak istenen ya da gereksinimin duyuulan alan dışındaki alanlara yayılan veya yölenen ışık olarak tanımlanabilir.

Yer seviyesinde istenen bölgeyi aydınlatmak amacıyla kullanlan ekranlış aydınlatma aygıtlarından çıkan ışık yatay düzeyin üst bölgesinde gökyüzüne yayılır.

Kaçak Işıkların dört temel nedeni:

• Glob aygıtlar ve dekoratif amaçlı, tasarımında süslemenin ön planda olduğu aygıtlar gibi, optik açıdan kontrolsüz mimari dış aydınlatma elemanları,

• Yol aydınlatmasında kullanılan ve ışık akışını tamamen aşağıya göndermeyen, düşürülmuş yansıtıcı aygıtlar,

• Güvenlik, otoparklar ve cephe aydınlatmları için kullanılan projektorlar, (özellikle tarihi yapılarda cephe aydınlatması için kullanılan projektorlar ışıkları yoğun olduğu için önemli bir bölümü oluşturmakta),

• Özellikle oteller ve hastaneler gibi çok pencereli cephelere sahip yapıların aşırı aydınlatılmış iç mekanlarından yukarı yarı uzaya yayılan ışıklar.[19]

Şekil 4.20 ve 4.21 de, kaçak ışıkların ulaştığı düzeyi gösteren iki uyuşu fotoğrafı verilmektedir. Yerden yansıyan ışık akışının da etkisi olduğu kesindir ancak uyuşu fotoğraflarında görülen ışıkların ancak %10’luk küçük bir bölümü yansıyan ışıklardan oluşurken, %90’ı direkt olarak üst yarı uzaya yayılan ışık oluşturmaktadır.
Şekil 4.21 ve 4.22 de ise daha geniş çapta uydu fotoğraflarıyla bütün dünyadaki ışık kirliliği boyutu gösterilmektedir.

İlk gündeme geldiğinde ışık kirliliğinin fiziksel olarak zarar içermediği kabul edilmekteyken, günümüzde bitki ve hayvanlar üzerindeki olumsuz etkisi bilinmektedir. Özellikle bitkilerin gelişimini negatif etkileyen yoğun ışık akısı için büyük parklarda ve doğal sittlerde önlem alınması, ekranlı tiplerin tercih edilmesi ve ışığın aşağı yölenmiş olmasına dikkat edilmesi gerekmektedir.

Hedeflenen alanlarda dışındaki kamaşma ve ışığın insan görüşü üzerindeki rahatsızlık ve zararı ise açıktır.

Bir diğer önemli sakınca ise, ışık kirliliğinin yarattığı yatay düzlem üzerinden uzaya yayılan ışığın, yıldızların görünebilirliğini engelliyerek gözlem evlerinin ve astronomların çalışmalarına engel olmas›dır. Özellikle California ve Arizona’da tespit edilen veriler, bu bölgede yer alan astronomik gözlemevlerinin etkinliğini , ışık kirliliğinden dolayı büyük ölçüde kaybettiği sonucunu vermektedir.

San Diego’da ışık kirliliği konusunda yayınlanan yönetmeligin koymus olduğu sınırlamalar, tüm dünyada uygulanabilecek nitelikte olmasa da temel prensipler açısından incelenebilir. Söz konusu yönetmelik dış aydınlatma da dört temel kısıtlama önermektedir.

“Spektral emisyonun minimize edilmesi: Alçak basncılı sodyum lambalarının monokromatik spektral yayının, diğer kaynakların geniş spektrumu göre
astronomik gözlemlere daha az zarar verici olduğu belirlenmiştir. Uygun olan yerlerde LPS kaynaklarının kullanımı büyük ölçüde ışık kirliliğini azaltacaktır.

Renksel geri verimlerinin neredeyse sıfır olması nedeniyle bu uygulama ancak çok sınırlı alanda落到实处ylebilmektedir.

- Tüm dış aydınlatmada tam ekranlanmış aygıtların kullanılması ve üst yarı uzaya ışık yayılmasını önlenmesi gerekmektedir.

- İşık kaynaklarının kullanım saatlerine sınırlama getirilmesi, mimari peyzaj aydınlatması ve cephe lerin aydınlatılmasını yalnızca belirli saatlerde yapılması önerilmektedir. San Diego için 23.00 olarak belirlenen saat, ülkemiz açısından erken kabul edilebilirse de, saat kısıtlaması uygulaması kentlerin ve ülkelerin ašıkanlıkları doğrultusunda revize edilerek uygulanabilir. Dış aydınlatma aygıtlarının kontrollü olması ve belirli saatlerde kapatılmasını gerektiği açıktır.

- Son olarak belirli ışık kontrolü bölgeleri önerilmektedir (ışık kirliliğinin özellikle zarar verici olduğu gözlemevi çevreleri gibi).
4.3. Tasarım Aşamalarında Rol Oynayan Etkenler

Doğru ve uygun aydınlatma sisteminin tasarım aşaması, bir çok bileşenden oluşmakta ve temel kararların alınmasındaki kriterler arasında, konunun niteliği doğrultusunda hangisini ön planda olacağ çok önemlidi. Bu kriterlerin önem srası, tarihi yapıların özel konumunu nedeniyle, her yapının farklı çözümlere götüren değişik hiyerarşiler oluşturmakta ve tasarım aşamasında etkenlerin doğru analiz edilmesi gerekmektedir.

4.3.1. Aydınlığın Nitelik ve Niceliğinin Belirlenmesinde Rol Oynayan Etkenler

Tarihi bir yapıda veya tarihi bir doküman içinde aydınlatma sistemi tasarlanırken, tek bir doğru çözüm olmaması nedeniyle her konu için ayrı bir senaryo ve yol izlenmektedir. Bu amaçla öncelikle yapının veya dokunun sunduğu verilerin analizi gereklidir. Verileri, yapının kendisine ait olanlar ve içinde bulunduğu yapay ve doğal çevreye ait olanlar olarak iki grup altında toplanmak mümkündür.

• Yapıya Ait Özellikler

Yapının Geometrik Biçimi:

Parmayı aynı yaratılırken, bitişik yüzeyden hangisinin daha önemli olduğuna göre aydınlatma düzeyi ve parlıltısı daha yüksek tutulabilir. Ancak tarihi yapılar genellikle aynı anda görüş açısı giren yüzeyin tümü esdeğer önem taşımaktadır. Çözüm olarak yüzeylerdeki bıçak yazi elemanları ve ikincil yazi elemanları arasında aynı farklılığı arayanların yaratılması yoluna gidilebilir.
Yapıların bitişik konumda olması durumundaysa, yapları yalnızca bir yüzünden ve genellikle giriş yüzünden algılanmaktadır. Böyle durumlarda, bitişik konumda diğer yapıların özellikleri dikkate alınmalıdır. Yanyana korunmuş tarihi yapılar topluluğu içinde, yükseklik farkları ve hangisinin ön plana çıkarılsın istendiği önem kazanırken, kent dokusu içinde tek başına korunmuş ve bitişik konumda tarihi olmayan ve mimari değeri zayıf binaları barındıran bir yapı sözl konusuya, Aydınlatmayı konuyu oluşturan yapıda yoğunlaştırmak ve bitişik konumda binaların cephesindeki baskı, dikkat dağıtıcı elemanların (ışıklı reklam panoları gibi) kontrol edilmesi gerekmektedir.

Yapının geometrisinin bir diğer boyutu, Aydınlatma aygıtlarının yerleştirileceği yerlerin belirlenmesi açısından önemli olan plan formudur. Binaların planları, genel bir kabulle, kare, dikkörtgen, daire veya bu geometrik formların birleşiminden oluşmaktadır.

Şekil 4.26 ise yuvarlak plan için iki ayrı ana yaklaşım aksı için önerileri göstermektedir. Ancak her iki şekildeki önerilerin örnek olduğu ve aynı anda birden fazla bakış açısı ve yapı çevresinde dağılmamasının söz konusu olduğu durumlarda, projekktörlerin diğer açılar için kamaşma yaratacağını dikkate alınması gerekmektedir.

Aydınlatma aygıtlarının sürekli yenilenen olanaklar sunması nedeniyle projekktörler dışında (fiber optik vs.) farklı ve çeşitli seçenekler ortaya çıkmaktadır.
Şekil 4. 23 Aygıt yerleşim şemaları

Şekil 4. 24 Aygıt yerleşim şemaları.

Şekil 4.25, Aygıt Yerleşim şemaları
Yapının Çatı Biçimi:

Düz (teras) çatılı yapılarla, çatının gezilebilir olması durumunda çatı üzerinde aydınlatma aygıtlarını yerleştirilmesi çatı alanının kullanım için gerekmektedir. Ancak kullanılmayan çatı alanlarının, görme alanı içine girmemeleri için yapı dışından alınanları mümkün değildir ve aydınlatmanın yalnızca bu alanın bakımı için yeterli düzeyde yapılması yeterli olmaktadır.[3]

Eğik çatılı yapılarında çatının cepheyle birlikte aydınlatılması düşünülmelidir. Bu nedenle aygıtların, çatıların da aydınlanabileceği bir uzaklığa yerleştirilmesi doğru olacaktır. Üst katı geri çekilmiş yapılarla, bu katların karanhıta kalmaması için o kara ek aygıtlar koyulması ya da aygıtların bir kısmının geri çekilmiş kara yönlenebilecek uzaklığa çekilmişesi gerekmektedir.

Yapının Yüksekliği:

Yapı yüzünde vurgulanacak bir eleman olmaması durumunda, amaç, aydınlinin yatayda ve düşeyde tüm noktalara eşit dağılımının sağlanmasıdır. Bu durumda alttan yukarı doğru, giderek artan ışık kaynağı sayısı ve değişik ışık yoğunluğu diyagramına sahip aygıtlar kullanılmalıdır.

Tarihi yapıların aydınlatılmasında amaçlanan sadece düzgün ışık dağılımı değil mimari elemanların vurgulanması olduğunu için, tasarımında seçilen kaynak ve aygıtların düşeyde her bölgeye yeterli aydınlık düzeyi sağlamakken, aynı zamanda yapı bütünü içindeki önemli noktalarda yoğunlaşması kriter alınmaktadır. Özellikle kuleler veya minareler gibi mimari elemanlarda ışık dağılımı ve kullanım ışık efektleri yükseklik kavramını vurgulayıcı olmalıdır.

Yapının cephe mimarisi ya da cephe plastiği:

Yapının mimari biçimini oluşturulan girişi ve çıkıtların, aydınlatma aracılığıyla, yapı yüzeyinde ışıklı ve karanhık bölgeler yaratılarak vurgulanması gerekmektedir.

Düz yapı yüzeylerinde, cam ve sağır bölmeler dikkate alınarak, yüzeyin yansıtma çarpıcı ve yakın-uzak çevredeki parlatlı değerleri incelenerek karşı verilmesi yeterli olmaktadır.

Yapının güçlü bir cephe plastiğine sahip olduğu durumlar ise, mimarının etüd edilmesiyle hangi bölümün ön plana çıkarılması gerektiğini ve yapının elemanlarının

![BİLGÎ YÖNTEMLERİ]

DOKÜMANTASYON METOTLARI

53
önen hiyerarşisine karar verildikten sonra, parıltı kontrastları yaratılarak giriinti ve çıkintıların anlaşılır hale getirilmesi gerekmektedir.

Yapının Malzeme Özellikleri:

Aydınlatma sistemini bileşenlerine karar verilirken, yapının malzeme özellikleri; yansıtlılıkları ve renksel özellikleri bakımından etkendir.

Yapı yüzeyinde kullanılmış olan malzemeden renk türü, kullanılabilecek kaynağın belirlenmesinde önemli bir etkendir. Genel ilk, belirli bir senaryo çerçevesinde yaratılmak istenen değişik bir renk efekti amaçlanmadıkça, aydınlatılan yüzeyin renk türü ile kullanılan ışığın renk türünün birbirine benzer olması, yapı yüzey malzemesinin rengine uygun bir kaynak olmasına durumunda, tayfi güneşine benzeyen tür, beyaz bir ışıkla aydınlatılmasa yapılmasa da doğrultusundadır. Örneğin mavimsi bir yüzey, orva buharı ışık kaynağıyla aydınlatıldığında daha çekici görünecektir.

Yapının İşlevi:

Dini yapılar büyük ölçüde orijinal işlevini sürdürmektedir. Bu işlevin gerektirdiği güvence, kolay erişilebilirlik özelliklerine, ışığın sosyal çekiciliği ve yaratacağı mistik etki eklenmektedir.

Sivil yapılar ve kamu yapılarında işlev çeşitliliği söz konusudur. Otel, müze, bar-kafeterya ve benzeri yeniden işlevlendirmelerin tümünde, yapının değerinin vurgulanması ve zarar görmesini önlemek için güvence alınması sağlanacağı düzeyde aydınlatmanın sağlanması birinci kriterdir.

Köprü, sur gibi yapılar ise çevresinde yer alacak bir sosyal aktivite olup olmadığı önem kazanmaktadır. Örneğin, kentin eski sınırlarını belirlemekte olan surlar, düşük aydınlik düzeyinde ve sodyum buharı kaynaklarının ışığında çok cici bir görüntü verebilir ve arka planda kentin gece görüntüsüne hoş bir katkı sağlayabilir.
ama çevresinde konser ve benzeri bir faaliyet gerçekleştirilecekse bu aydınlatma yetersiz kalacaktır.

• Çevre Koşulları

Yapının içinde bulunduğu doğal ve yapay çevreden kaynaklanan etkenler ve içinde bulunduğu yerleşimle birlikte değerlendirilmesiyle elde edilen sonuçlar, çevre koşulları başlığı altında toplanmaktadır. Çevre koşullarının yaratığı etkenler: Aydınlatma konusu olan yapının ait olduğu kent veya yerleşim birimi içindeki konumu ve çevresindeki doğal veya yapma çevre elemanlarından oluşmaktadır.

Yapının kent içindeki konumu:

Yapıya hangi yönden yaklaşılacağını belirlenmesi ve ana bakış noktalarını tespit edilmesi; yapının hangi açıdan görüntüsünün birincil olarak ele alınması gerekiğine karar verilmesi, parıltı araylarının değerlendirilmesi ve kamaşmaya neden olunmadan ışık kaynaklarının yerleştirilebilmesi, ana yaklaşım aksında yer alan başka önemli yapılar arasında bir ışık dengesi ve süreklilığı sağlanması gibi açılardan çok önemlidir.

Aynı zamanda kent içinde, referans noktaları arasında bir bütünlük sağlanması ve kent kimliğinin sürekliliği açısından, yapının önem derecesine de karar vermek gerekmektedir. Herhangi bir tarihi yapının aydınlatmasının, kent için en basık referans noktasi olan tarihi yapının aydınlatmasından daha dikkat çekici olması, bu sürekliliği bozacaktır.

Yapının çevresindeki doğal ve yapma çevre elemanları:

Doğal çevre elemanları incelendiğinde, yapının deniz, göl veya nehir kıyısında olması önemli bir etken olarak ortaya çıkmaktadır. Bu tür yapılarla, aygıtların yerleştirilebileceği yeterli büyükliğe kara parçası olmayaabilir. Böyle durumlarda, aygıtlardan çıkan ışığın, su yüzeyine gelmeden yapı yüzünü aydınlatması sağlanmalı, aygıtların yerden yükseklikleri ve ışık dağılım diyagramları ışığın yalnız yapısı yüzüne gelsmesini sağlayacak biçimde düzenlenmelidir.

Yapının yapma çevresindeki öğelerin getirdiği, yakın çevre ve arka plan aydınliği ve parıltı değeri gibi veriler karar aşamasında rol oynamaktadır. Aynı zamanda yapma çevrenin içerdiği daha önemli bir yapı bulmuş bulunmadığı da aydınlığın niteliğine karar verilmesinde önemli bir kriterdir.
4.3.2. Amaçlanan Aydınlık İçin Uygun İşık Kaynağı Ve Aygıt Seçilmesinde Rol Oynayan Etkenler

Belirlenen aydınlık niteliğini ve düzeyini elde etmek için seçilecek işık kaynağı ve aygıtın uygunluğu, sistemin sorunsuz çalışmasını, ekonomikliğini ve tasarının değerini belirlemektedir.

İşık kaynağı seçimindeki etken ve kriterler aşağıdaki gibi özetlenebilir.

• Elektrik enerjisi kullanımında tasarruf sağlanması için, verimi yüksek işık kaynakları tercih edilmelidir. Aynı elektrik enerjisiyle daha yüksek aydınlık düzeyi elde etmek, kent ve ülke ölçüne önemli bir maliyet farkı sağlayacaktır.

• Aydınlığın boşa harcanması ve aydınlığın niteliği açısından, aydınlatılacak konunun renksel özellikleri ile, aydınluğu oluşturan işığın özellikleri birbirine uygun olmalıdır. Bu nedenle, kullanılabilecek lambaların renk sıcaklığı ve renksel geriverim indeksleri göz önünde tutulmalıdır. Özel durumlar ol olmadıkça, renksel geriverimi yüksek işık kaynakları seçilmedir.

• Bazı işık kaynakları, teknik özellikleri nedeniyle ancak belirli konumlarda (örneğin yalnız yatay ya da yatayla ±45°lik açı içinde) çalışabilmeekte ve işık üretebilmektedir. Seçilecek kaynakların çalışma konumlarının, aydınlatma düzeni içinde kullanılacakları yere uygun olmasına dikkat edilmesi gerekmektedir.

• Bakım kolaylığı açısından, uzun ömülü ve çalışması için çok sayıda ek parça gerektirmeyen işık kaynakları tercih edilmelidir.

• Teknik özelliklerinden dolayı gerilimindeki değişimlere çok duyarlı olan işık kaynakları, gerilim değişimleri söz konusu olduğunda teknik çizelgelerinde belirtilen renksel geriverim ve verim değerlerine ulaşamazlar ve ömürleri kısaltılır. Bu tür duyarlı kaynakların kullanılaması durumunda, gerilimin hangi sınır değerlerine arasında kalması gerektiğini iyi incelenmeli ve özel önlemler alınmalıdır.

• Titreşimli ortamlar ve sarsıntılar, işık kaynaklarının teknik özelliklerinin bozulmasına ve lamba ömrünün kısalmasına yol açmaktadır. Bu tür ortamlarda kullanılabilecek işık kaynaklarının, olası sarsıntılar dayanıklı türden seçilmesi gerekmektedir.
Aydınlatma ağıtlarının seçiminde ise verim ve benzeri faktörlere ek olarak estetik değerler de ön plana çıkmaktadır. Aygıt özelliklerine ilişkin dikkat edilmesi gereken değerler aşağıda özetlenmiştir.

• Kaynakta yayınlanan ışığın, amaca göre belli bir alanda toplanması, yönlendirmesi ya da dağıtılması için, aygıtta değişik özelliklerde yayıcı, yansıtırıcı yüzey ve parçalar kullanılır. Hangi doğrultuya hangi nicelikte ışık akışı yaymlanacağı ise, ışık şiddetin dağılımı eğrileri ile gösterilmektedir. Aygıtın belli bir büyüklükteki alan üzerinde oluşturduğu ortalama aydınlık düzeyi, belirli noktalarda oluşturduğu noktasal aydınlık düzeyleri ve söz konusu alanda oluşturduğu aydınlığın düzgünliği ışık dağılım diyagramları üzerinde incelenmeli ve aygıt bu değerlendirme doğrultusunda seçilmeli ve dağılının amaca uygunluğunu denetlenmelidir. Yapı yüzeylerinin aydınlatmasında genellikle asimetrik dağılama sahip projekktörler kullanılmakta ve böylece tüm yüzey aydınlatılıırken kaçak işıkların oluşması önlenmektedir.

• Kaynakta yayınlanan ışığın uzaysal dağılımı, aydınlatılacak alan için uygun olmasına karşın, ışık kaynağı, çevrede dolaşan insanların görme alanı içinde bulunarak ya da o doğrultulara ışık yayılarak görsel konforun bozulmasına ve kamaşıma yol açamamalıdır. Bu nedenle ışık kaynağıının uygun açılarda gözden gizleyecek ya da görünen parlıtımı azaltacak özellikleri olan bir aygıt seçilmesi gerekmektedir.

• Kaynak tarafından üretilen ışık akısı, aygıt dışına çıkarken, belli bir oranda yansıır veya yansıır ve geçer. ışık akısı bu yansıma ve geçme sırasında belirli bir azalmaya uğrar. Bu nedenle kaynak ışığının olalığıncı büyük bölümünü yaymaya bulabilen, verimi yüksek aygıtlar seçilmelidir.

• Aygıtın yayınlanan ışığın azaltılması ya da renksel niteliğinin değiştirilmesi istendiğinde, filtrle kullanma seçeneği olup olmadığı ve aydınlatmanın amacına uygun filtrle bulunup bulunmadığının değerlendirilmesi gerekmektedir.

• Seçilen aygıtın, aydınlatma ağıtlarının sahip oldukları (IP) koruma sınıflardan (dokumaya, toza, suya vs.), hangisine sahip olduğu ve bu niteliğin uygulama içinde olabilecek ortam koşullarından kaynaklanan zararlar için yeterli olup olmadığı değerlendirilmelidir.
Aydınlatma aygıt, biçim, gerçek, detay ve genel tasarım özellikleri açısından, üzerinde bulunduğu yol, meydan, alan ya da kent bölümü'nün mimari, sanatsal ve estetik değerlerine uyumlu olmalıdır. Tarihi yapı üzerinde yer alması gerekiyorsa, dikkati çeken ve yapı elemanlarına zarar vermeden yerleştirilebilecek nitelikte olmalı, yapının çevresinde konumlanyorsa, yapının özellikleriyle tezat oluşturmayacak ve uyum sağlayabilecek nitelikte seçilmelidir.

İlk yatırım, kullanım, bakım giderleri açısından ekonomik olmalıdır ve tarihi yapının bakım masraflarını artırmak yerine, korunmasına sağladığı güvenlik ve çekicilik katkılarıyla azaltması amaçlanmalıdır.

Tarihi yapı aydınlatmasında değişik senaryolar ve etkiler yaratmak isteneceği de dikkate alınarak, bu kriterleri kısalta:

- Değişik ışık kaynaklarının kullanımlarına elverişli olmak,
- Aygıtın filtre takılması uygun olması ve yeterli seçeneğ bulunması,
- Müdahale edilebilir ekran (örtücü) ye sahip olması,
- ışık akışı yönelimini uygun olması,
- Uygulama ve bakım kolaylığı,
- Mimari formun estetik nitelikine uyum ve mevcut yapı elemanları arasına gizlenebilir forma sahip olması,

olarak özetleyebiliriz. [20]

4.3.3. Tasarlanan Aydınlatma Sisteminin Uygulanmasında Rol Oynayan Etkenler

Tarihi yapılarda belirlenen aydınlatma aygıtların yapısı zarar vermeden yerleştirilmesi önemli bir sorun oluşturmaktadır. Yanlış seçilen ve yerleştirilen aygıtlar, yapının çevresinde dikkat çeken ve yapıya uygunsuz görüntüler yaratarak kimliğine zarar veren bir etki yaratmak ve uygulamada direkt yapış üzerine yerleştirilmeleri durumunda yapı elemanlarına fiziksel zarar vermek şeklinde iki açıdan yapı için sakınca olabilmektedir.
Yapı çevresinde olabildiğince mevcut diğer elemanların yerleşim noktası olarak kullanılması, örneğin projekçörlerin sokak lambası direkleri, yakın çevredeki binaların çatları gibi yerlerde konumlandırılması, ya da çiçeklik ve çalılığın arasına yerleşilmesi her iki durum için de geçerli çözümlerdir.
5. ÖRNEKLERİN DEĞERLENDİRİLMESİ VE SONUÇ

Bu bölümünde, çalışmanın ana amaçına yönelik olarak, tarihi yapıların aydınlatma sistemlerinde belirlenen ölçütler ve prensiplerle çözümlenmesi öngörülen sorunların ve çevre koşullarından kaynaklanan etkenlerin değişik kombinasyonlar halinde ortaya çıkmalarının, uygulamaya nasıl yansıtiği ve ne tür çözüm yollarına gidildiği örneklerle incelenmekte ve ele alınan örneklerin ne derece başarılı olduğu değerlendirilmektedir.
• St. Pierre Katedrali - Nantes, FRANSA

Katedral, 37.5 metre yükseklikte kulelerinin Paris-Notre Dam’dan daha yüksek olmasıyla ve yapımına XV. yüzyıla başlanıp ancak XIX. yüzyıla tamamlanması olmasına karşı ortaya koyduğu mükemmel Gotik bütünlükle ünlüdür.

Şekil 5.1 St. Pierre Katedrali, ilk plan
Katedralin 1434-1508 yılları arasında inşaati tamamlanan cephesinde iki büyük kule bulunmaktadır. 1944’teki savaşa bağlı zararın giderilmesi için başlatılan çalışmalar ve yeni yapılan eklər, 1972’de büyük bir yangın sonucu zarar görmüş ve yapının çatısı tamamen çökmüştür. Bu tarihten itibaren tekrar başlatılan ve onüç yıl süren restorasyon projesi kapsamında bugünkü durumuna getirilen yapı, Fransa’nın içi tamamen restore edilmiş tek katedrali olarak kabul edilmektedir. 1920’de kabul edilen ve uygulamasına başlanan kentsel yenileme projesi kapsamında nehrin kenti bölgenin kollarından bazıları doldurularak yeni yollar olarak değerlendirilmiş ve tarihi doku içinde dolaşımı engellediği düşünülen demiryolu ağının yeraltına taşınarak yaya yollarının düzenlenmesine elverişli bir plan elde edilmiştir.
Saint Pierre Katedrali'nin restorasyon sonrası aydınlatma sistemi, Nantes'in güneyinde yer alan Saint Nazaire Limanı'nu yaptığı aydınlatma tasarımıyla kent için ölü bir nokta olmaktan çıkarıp dikkat çekici hale getiren aydınlatma tasarımını Yann Kersalé tarafından yaratılmıştır.

![Şekil 5. Giriş cephe, geç Görüntüsü](image)

Kersalé, sisteminde; genellikle benzer uygulamalarda tercih edilenin tersine, projekktörler yerine fiber-optikler kullanarak değişken bir ışık ve görüntü yaratmayı amaçlamıştır. Proje, tasarımcısının kendi yorumuna göre; strüktüre kozmik bir boyut sağlamakta ve izleyicinin yeniden değerlendirilmesi için yeşyeni bir zaman-uzam-görünüt üçlemesi oluşturmaktadır.
Şekil 5.4 te, Katedral ana yaklaşım aksından görülmektedir. Şekil 5.5 te ise yapının tasarım öncesi aydınlatma sistemi verilmiştir. Eski sistemde kullanılan mini projektorlar cephe dokusunu daha çok ön plana çıkarmakta ancak kütlenin algılanışı konusunda yetersiz kalmaktadır.
Aydınlatmada kullanılan toplam 325 km uzunluğundaki fiber kablo, 1 mm çapında polimer esaslı seçilmiştir ve kablo uçlarının her birine, istenilen yerde dar veya geniş açıda ışık hızmelerini yaratılmasını sağlamak için lenses yerleştirilmiştir. Her ışık jeneratöründe ışık kaynağı olarak 200 wattlık metal halide (msd200) lamba bulunmaktadır. Jeneratörlerin içinde, fiberlere zarar verici ısıyı engellemek için sıcaklığı 70°C nin altında tutan fanlar bulunmaktadır ve jeneratörlerin dışına yerleştirilerek çevre etkilerinden korunmaları için plastik koruyucular uygulanmıştır. Tüm aydınlatma sistemi için 16kW’lık güç yeterli olmaktadır.

Aydınlatmayı çevredeki doğal elementlara birleştirerek açısından tasarım düzeyi çok başarılı olmakla birlikte, yapının orijinal renk ve dokusu, kullanılan renkli filtrelerden dolayı gerçek görüntüsünden uzaklaşmaktadır.

Tablo 5.1

<table>
<thead>
<tr>
<th>Saint Pierre Katedrali</th>
<th>Dış Aydınlatması</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeneratör sayısı</td>
<td>80</td>
</tr>
<tr>
<td>ışık kaynağı Türü</td>
<td>(MSD200W)</td>
</tr>
<tr>
<td>ışık Aksisi</td>
<td>13 500 lm.</td>
</tr>
<tr>
<td>Renk Sıcaklığı</td>
<td>5900 K.</td>
</tr>
<tr>
<td>Renksel Geriverim</td>
<td>Ra>80</td>
</tr>
<tr>
<td>Lamba ömrü(yaklaşık)</td>
<td>2000 saat</td>
</tr>
<tr>
<td>Fiber kablo türü</td>
<td>Polimer esaslı</td>
</tr>
<tr>
<td>Aydınlatma Tasarımı</td>
<td>Yann Kersale</td>
</tr>
</tbody>
</table>
• Eremitage Müzesi, St. Petersburg

Şekil 5.6 Eremitage Müzesi
Barok tarzda bir yapı olan Eremitage Müzesi; St. Petersburg’un merkezinde, Neva nehri kıyısında yer almaktadır. Altı binadan oluşan müze, 300 odadan oluşan sergi alanıyla dünyanın en büyük müzelerinden biridir ve yılda iki milyondan fazla ziyaretçisi tarafından gezilmektedir. Ana yapı, (Kış Sarayı olarak adlandırılan kütle) 1754-62 tarihleri arasında
mimar Francesco Bartolomeo Rastrelli tarafından tasarlanmıştır. 300 metre uzunluğundaki nehré bakan cephe; abartılı ölçüyle, lüksü ve zaferi yansıması amaçlanarak kent bütününün içinde bir simge olarak düşünülmüş ve XVIII. Yüzyılın ortalarına kadar kentin sembolü kabul edilmiştir. İlk tasarım Rus Gotiği'nin belirgin bir örneği olan yapı, 1837'de geçirdiği yangından sonra, Stasov ve Brillov tarafından yapılan restorasyon sonucu, geç dönem klasizizmi etkisini de yansıtmaktadır.

Aydınlattıma projesinin konsepti, yapının ilk amacına uygun olarak, uzun nehir cephesinin abartılı uzunluğunu çevreden bağımsız olarak algılanan büyük bir kitle olması üzerine kurulmuş, aynı zamanda cephe plastiği ve kornislerdeki heykellerin doğru algılanabilmesi amaçlanmıştır.

Şekil 5.8’de nehir cephesi için yapılan bilgisayar simulasyonu görülmektedir. Nehir kıyısı için, yere gümüş 21 çift yüksek başlıca sodyum buharlı lamba kullanılmış ve bunların sudaki yansımasının aks boyunca ağaçlara birlikte cepheye uyumlu bir fon oluşturması amaçlanmıştır. Uzun fasat için 230 adet düşük renk sıcaklığında metal halojen lamba seçilmiştir ve projekktörler ağaçların altındaki yuvalara gizlenmiş, çatıdaki figürler içinse kornişlere, aşağıdan görüş açısına girmeyecek şekilde yerleştirilmiştir.
<table>
<thead>
<tr>
<th>İşık Kaynağı</th>
<th>Aygit</th>
<th>Adet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal Halojen Lambda HPI/T 400 W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILCOS Kodu</td>
<td>4500 K</td>
<td></td>
</tr>
<tr>
<td>Renk Sıcaklığı Te (K)</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Renksel Geriverim Ra.</td>
<td>30500 lm.</td>
<td></td>
</tr>
<tr>
<td>Güç (W)</td>
<td>425 w</td>
<td>86</td>
</tr>
<tr>
<td>Geniş Açılış Projektör</td>
<td>HNF003</td>
<td></td>
</tr>
<tr>
<td>Metal Halojen Lambda MHW-TD 150W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILCOS Kodu</td>
<td>3000 K</td>
<td></td>
</tr>
<tr>
<td>Renk Sıcaklığı Te (K)</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Renksel Geriverim Ra.</td>
<td>13000 lm.</td>
<td></td>
</tr>
<tr>
<td>Güç (W)</td>
<td>170 w</td>
<td>230</td>
</tr>
<tr>
<td>Geniş Açılış Projektör</td>
<td>HRM</td>
<td></td>
</tr>
</tbody>
</table>

Şekil 5.9 Yapı çevresine yerleştirilen projekktör. Yalıtım sınıfı: I, Koruma sınıfı: IP 65
Şekil 4. 10 – Çatı heykellerinden aydınlatma örneği

- **Vitré Kasabası- Fransa**

Fransa’nın batısında küçük bir kasaba olan Vitré; Ortaçağ’da ait cepheleriyle binalarının çevrilüğü rüzgarlı sokakları, korunmuş bir alan olan tarihi merkezi ve şatosuyla tanınır. Kasaba sakinlerinin de bilinçli desteğiyle, her yıl binlerce turist tarafından ziyaret edilen yerleşim, uzun vadeli bir rehabilitasyon programı sürdürülmemekte ve aydınlatma-kent güzelleştirme bu rehabilitasyon kapsamında planlı olarak gerçekleştirilmektedir.

Aydınlatma planı; Yves Trochel ve Jean-Marc Dupont tarafından, Kasaba yönetimini sağladığı tekniğin destek ve olanaklarında yardımcıla hazırlanmış ve aşamalar halinde gerçekleştirilmişştir. Aydınlatma konsepti, aydınlatma tasarımının, görünür kılanın ötesinde olması gerektiğini fikrini başlangıç noktası olarak, kasabanın sahip olduğu değerlerle bir *gece resmi* yaratma fikri üzerine kurulmuştur.
Şekil 5. 11, master plan

Aydınlatma planının gelişim aşamaları:

Tüm kasaba için oniki ayrı durum-amaç ve bunların uzantısı olarak senaryo belirlenmesi,

Yaklaşım yönü ve bölgelerin belirlenmesi,

Zonlama yapılması ve bölgelerin önem sırasının belirlenmesi,

Işık kaynağı ve aygıt seçilmesinden oluşturulmuştur.

İlk aşama için (Şekil 5.11) durum tarifleri ve amaçları doğrultusunda aydınlatma senaryoları:

1. Kentsel kimlik geliştirilecek-ortaya çıkaranacak bölge,

2. Interaktif panoramik görüntülerin yaratılacağı bakış noktaları; hem kasaba sakinleri hem de ziyaretçiler için vurgulanması gereken bölgeler,

3. Kalıntıların belirlenileceğini bölgeler; yerleşimin sahip olduğu tarihi ve mimari zenginliğin yoğun olduğu bölgeler,

4. İstasyon bölgesi; ziyaretçilerin yerleşime ulaştığı ve ilk izlenimi edindiği kilit nokta,

5. Çağdaş yerleşim merkezi; canlandırılması ve dinamizmin vurgulanması istenen kentsel merkez,

6. Park alanı; masalsı bir uzam yaratılmak istenen bölge,

7. Kentin kültürel yaşantısının açılımı, bütün kültürel spektrumu ifade edecek bir aydınlatma stratejisi geliştirilmesi,
8 Kentsel image vurgulama noktaları; Kesişim ya da geçiş/giriş noktaları gibi kentsel image ve sınırların ortaya konduğu noktalar,

9 Turistik ürün yaratmaya yönelik aydınlatma; aydınlatmanın kendisini bir tür gece turizmi yaratacak kadar baskın ve dikkat çekici hale geleceğini noktalar,

10 Aydınlatmanın sosyal rolünün ön planda olacağı bölgeler; konut yerleşim bölgelerinde görüş konforu ve okunaklılık-kolay anlaşılabilir yaratmayı hedefleyen aydınlatma,

11 Kişisel tarihi değerleri korumaya ve vurgulamaya teşvik; mal sahiplerinin kendi yaplarının cephesini aydınlatarak güzelleştirmeye ve korumaya katkıda bulunmaya teşvik edilmesi,

12 Aydınlatma planının bütünlüğü; kente bir gece kimliği kazandıracak şekilde uyumlu ve bağlantıları başarılı bir master aydınlatma planı yaratılması,

olarak belirlenmiş ve yerleşim planı üzerinde şekil 5.11’de gösterildiği gibi işaretlenmiştir.

![Şekil 5. 12 Master plan](image)

Bir sonraki aşamada, ana yollar ve demir yolü şeması hazırlanmış ve aydınlatma planı için ana sirkülasyon akışları belirlenmiştir (sekil 5.12).

Önemli tarihi bölgeler, sit alanları ve belirgin kentsel aksalar aynı şema üzerinde incelenmiştir. (sekil 5.13’te sarı alanlar tarihi bölgeleri ve kırmızı çizgiler kentsel aksları göstermektedir.)

Son olarak yerleşimin, bakış yönlerinin işaretlendiği bir plan hazırlanmış ve bu planda manzara noktaları ve silhouette olarak vurgulanması gereken alanlar (sekil 5.14) belirlenerek, önemli seyir noktaları seçilmiştir.

72
Şekil 5. 15 Vitré Kasabası-Fransa.

Şekil 5. 16 sokak görünüşü
Şekil 5. 17 genel görünüm

Şekil 5. 18 duvar aydınlatması

Aydınlattıranın değişik görevler üstlendiği bölgeler, aşağıdaki gibi sıralanmıştır.

Büyük antıların ve genel peyzajın algılandığı görüntüler: Silüetin ortaya çıkarıldığı, işin kente ait önemli antıların hatlarını algılanır kılması, belirginleştirilmiş ve tanımlı hale getirilmesi temel amaç olduğu bölge. Bu bölge için temel amaç kentin **imzasını** yaratmak olarak seçilmiştir.

Periferik bölge: Yerleşimin hemen dışındaki bölge. Güvenlik ve yön bulma amaçlı aydınlatmanın önceliği olduğu, ancak kentsel imajın ipuçlarının da hazırlanması gereken bölge.
Kentsel bölge: Kasabının kendisini içeren, tarihi dokunu bulunmadığı, ancak yerleşimin kimliğini okunur hale getirme açısından aydınlatmanın geçişleri ve bağışıkları vurgulaması gerekten bölge. Bu bölge için anahtar aydınlatma fonksiyonları; güvenlik, yönlendirme-ışaretleme, atmosfer oluşturma-uzam tanımlama.

Tarihi doku bölgesi: Özel uzamsal karakteriyle anıtların yoğun olduğu, koruma altında eski kent merkezi. Aydınlatma tasarımında; vurgulanması gereken yapıların sunduğu değişken geometri, sokakların aşırı dar oluşmuş gibi bir dizi sorun içermesinden dolayı büyük dikkat gerektiren bu bölge, diğer tüm grupların içerdiği amaçları bir arada barındırmaktadır. Yapılar zarar vermemek amacıyla tüm aydınlatma ekipmanının yere gömülmesi öngörülmüştür.

Bu bölge için aynı zamanda korumaya katkida bulunmak için yeniden kullanıma teşvik ve kullanımın güvence koşulları içinde sağlanması için yeterli aydınlatma desteği yaratılmaya çalışılmıştır.

Dürgün su yüzeyleri ve yeşil alanlar bölgesi: Bitkileştirmenin ve doğal yeşil dokunun yoğun olduğu park bölgesi, gezinti alanları, ve Vilaine Nehri kıyısı bu gruba dahil edilerek, özel aydınlatma efsaneleri ve renkli filtrelerin kullanılmasına karar verilmiştir.
Şekil 5.19’da ve 5.20’de özel mülklerin güzelleştirilmesini teşvik sonucu yapılan iki konut aydınlatması örneği görülmektedir. Şekil 5.19’da cephede; taş duvar dokusunun belirginleştirilmesi için düşük renk sıcaklığında ışık kaynakları seçilmiş ve aygıtlar bahçedeki çiçekliklerden ve peyzajın yaratığı seçeneklerden yararlanarak görüntüyü bozmadan başarıyla gizlenmiştir. Üst katlardaki plastik anlatımı güçlendirmek ve modelleme içinse, silmelerin üzerine küçük spotlar yerleştirilmiştir. Ancak bu noktalarla düzgün dağılımلي bir aydınltlık değil noktasal yüksek parlıcı değerleri ortaya çıkmaktadır.

Şekil 5.20’de ise yere gömülüş iki yönlendirilmiş aygıtla bir bahçe duvarı ve giriş yapısının vurgulandığı görülmektedir. Uygulama yapının sahip olduğu plastik değeri ortaya çıkarmak birlikte kullanıcıl için yerden gelen bir kamaşma odağı yaratacağı açıklar.
Şekil 5.20, Vitre Kasabası, Fransa

Şekil 5.21’de aynı uygulamanın şato girişinde kullanıldığı görülmektedir. Giriş cazip hale getirme ve görünür kulma açısından başarılı olan örnek, aynı şekilde ziyaretçi/gözleme açısından yaratacağı kamaşmanın kontrol edilebilmesi için aygıtın yönlendirilmesinde büyük özen gerektirmektedir. Amacı her zaman için, gereken yerde aydınlık sağlamırken aynı aydınlığın kullanıcı için rahatsızlık yaratmadan ulaşması istenen yüzeye ulaştırılabilmesidir.
Şekil 5. 21 Sokak Aydınlatması

Şekil 5. 22 Sokak Aydınlatması
Şekil 5.23 Sokak Aydınlatması

Şekil 5.22 ve 5.23’ de tarihi doku içinde bir sokağın, 5.24 ve 5.25’ de ise ana caddelerden birinde yer alan kilisenin sırasıyla aydınlatma sistemini uygulanmasından önce ve sonra görüntüler verilmektedir.

Aydınlatmanın kent sokaklarını ve yapıların içerdığı değerleri ortaya çıkarmadaki katkısının yanı sıra, görünür kılma özelliği güvence açısından tarihi dokuya katkıda bulunmaktadır.
Şekil 5.26’ da, Eiffel Kulesinin önünde yer alan demir konstrüksiyonlu köprüyle uyumlu bir şekilde aydınlatılması görülmektedir.

Köprüün kimliğine uygun olarak seçilen (mavimsi renk özelliğindeki) ışık, 58 watt, ve 18 watt güçte, 6500 K renk sıcaklığında flüoresanlarla sağlanmaktadır. Strüktürün rahat algılanmasının yanında, sudaki uyumlu yansımlar yaratması açısından da renk seçimi olumlu sonuçlanmaktadır. Aynı zamanda arka planda görüş alanına giren kule, farklı renk özelliğinde aydınlatmaya sahip olduğu için, iki önemli yapının birbirinin algılanmasını engellememesi sağlanmıştır.
SONUÇ

Tarihi yapılarda aydınlatma sistemi tasarımının gerektirdiği zorunluluk, her durumun kendi koşullarında değerlendirilmesidir.

Gece, yapılan aydınlatmadan ötürü, kentin uzamsal formları ve karşılıklı ilişkileri değişik bir şablon türüyle yüklenir ve kentin çifte yaşamını oluşturur. Dikkat edilmesi gereken nokta, ortaya çıkan her iki görüntünün birbiriyile çelişen değil, birbirini güçlendiren etkiler yaratmasıdır.

Tarihi yapının gece görüntüsünün oluşturulmasına, her zaman, gündüz görüntüsünün ve değerinin, birden fazla disiplin tarafından (restoratör mimar, kent plancısı, aydınlatma uzmanı) yapılacak iyi bir analizini başlangıç noktası olarak başlamalıdır. Meslek ilgisinin yükseltilmiş estetik duyarlıyla ve kent sorunlarına ilişkin daha büyük bir kavrayışla birleştği yaratıcı bir işbirliğinin gerekli olduğu, gece kimliğinin önemli alanını oluşturan tarihi dokuların yoğunlaştığı bölgelerde, olası estetik karşılığın titiz bir çözümlemesi, ışık, gölge ve form ilişkisini doğasında bulunan zenginlikle uyumlu değişikliklerin planlanabilmesi açısından açıktır.

Yapışı ve ruhunu değiştirmeden, fiziksel ve estetik zarar vermeden ve belge niteliğini bozmadan değerini vurgulayacak bir aydınlatma sisteminin tasarlanması ve ekonomik koşullar içinde uygulanması esas amaçtır.
KAYNAKLAR

KAYNAKLAR

EK A - ENERJİ VE TABİİ KAYNAKLAR BAKANLIĞI, ELEKTRİK DIŞ AYDINLATMA YÖNETMELİĞİ:

Birinci Bölüm

Amaç, Kapsam, Hukuki Dayanak ve Tanımlar

AMAÇ

Madde - 1:

Bu yönetmeliğin amacı, elektrik enerjisinin nihai tüketiminde önemli payı olan dış aydınlatmada, enerjinin etkin ve doğru kullanılmasıyla gerekşiz yere enerji sarfıyatını önleyerek enerji tasarrufu sağlanması ve astronomik gözlemleri ve doğal hayatı olumsuz yönde etkileyen ışık kirliliğinin önlenmesidir.

KAPSAM

Madde - 2:

Bu yönetmelik, aydınlatmanın kalitesinden ve güvenliğinden ödür vermeden enerji tasarrufu sağlayacak şekilde, kentsel yerleşik alanlardaki bina, tesis, yol, cadde ve sokaklar ile milli park, vb. tabi tutulmuş alanları, kentsel gelişme alanları ve turizm ve ticaret alanlarının dış aydınlatmalarında kullanılan aydınlatma armatürlerinin ve ışık kaynaklarının (lambaların) tiplerinin, teknik ve fotometrik özelliklerinin, konumlarının ve tesisatının belirlenmesinde uygulması gereken kurallar kapsar.

Türk Silahlı Kuvvetlerine ait harekat ve savunma amaçlı aydınlatmalar, askeri yasak bölgeler güvenlik bölgelerindeki aydınlatmalar ile kendi yönetimine uygun olarak tesis edilen hava alanını ve benzeri tesisler bu yönetmelik kapsamı dışındadır.

HUKUKİ DAYANAK

Madde - 3:
Bu yönetmelik, 3154 sayılı Enerji ve Tabii Kaynaklar Bakanlığı'nın Teşkilat ve Görevleri Hakkındaki Kanun'un 28'inci Maddesinin verdiği yetkiye dayanarak aynı kanunun 2'inci Maddesinin (b) bendi ile 12/8/1993 tarihli ve 505 sayılı Kanun Hükümdede Kararname ile değişik 10'uncu Maddesinin (d) bendi uyarınca hazırlanmıştır.

TANIMLAR

Madde - 4:

Bu Yönetmelikte yer alan kısıtlamalar ve tanımlamalar aşağıda verilmektedir.

a. **Bakanlık** : Enerji ve Tabii Kaynaklar Bakanlığı

b. **Yetkili Kuruluş** : Dış aydınlatma tesisine elektrik enerjisi sağlayan elektrik dağıtım şirketidir.

c. **Dış Aydınlama Tesi** : Dış aydınlatma yapmak üzere kurulmuş olup, Elektrik Kuvvetli Akım Tesisleri Yönetmeliği kapsamında olan bir kuvvetli akım tesisidir.

d. **Yerleşme Alanı** : İmar planı sınırları içindeki yerleşik ve gelişme alanlarının tümüdür (3194 sayılı İmar Kanunu ve ilgili yönetmelikler).

e. **Mücavir Alan** : İmar mevzuatı bakımından belediyelerin kontrol ve mesuliyeti altında verilmiş olan alanlardır.

f. **Yerleşik (Meskun) Alan** : a) Planlı yerlerde; namaz imar planı ile belirlenmiş ve iskan edilmiş alanlar, b) Plansız yerlerde, belediye ve mücavir alan sınırları içindeki imar planı bulunmayan mevcut yerleşmelerin (mahalle, köy ve mecralar) mustakbel gelişme alanlarını da içine alan ve sınırları belediye meclislerince karara bağlanan alanlardır.

g. **Gelişme (İnkişaf) Alanı** : Namaz imar planlarında kentin gelişmesine ayrılmış olan alanlardır.

h. **Kentsel Çalışma Alanları** : a) Ticaret Bölgesi; imar planlarında ticari amaçlı yapılar için ayrılmış bölgedir (Bu bölgede bürolar, işhanları, gazino, lokanta, çarşı, çok katlıмагазalar, bankalar, oteller, sinema ve tiyatro gibi kültürel ve sosyal tesisler, yönetimle ilgili tesisler ve benzeri yapılar yapılabilir). b) Sanayi Bölgesi; imar planlarında her türlü sanayi tesisleri için ayrılmış alanlardır (Bu bölge içerisinde amaca göre hizmet görecek diğer yapı ve tesisler de yapılabilir).
i. **Turizm Bölgeleri**: Sınırları Turizm Bakanlığı’nın önerisi ve Bakanlar Kurulu kararı ile tespit ve ilan edilen bölgelerdir (2634 sayılı Turizmi Teşvik Kanunu ve ilgili yönetmelik).

j. **Turizm Alanları**: Turizm bölgeleri içinde öncelikle geliştirilmesi öngörülen, mevkii ve sınırları Turizm Bakanlığı’nın önerisi ve Bakanlar Kurulu kararı ile tespit ve ilan edilen, doğal veya sosyo-kültürel değerlerin yoğunlaştırduğu alanlardır.

k. **Turizm Merkezleri**: Turizm bölgeleri içinde veya dışında, yeri, mevkii ve sınırları Turizm Bakanlığı’nın önerisi ve Bakanlar Kurulu kararı ile tespit ve ilan edilen, turizm bakımından önem taşıyan yerler ve bölümlerdir.

l. **Koruma Alanı**: Taşınmaz kültür ve tabiat varlıklarının muhafazaları veya tarihi çevre içinde korunmalarda etkinlik taşıyan korunması zorunlu olan alanlardır (2863 sayılı Kültür ve Tabiat Varlıklarını Koruma Kanunu, 2873 sayılı Milli Parklar Kanunu).

m. **CIE**: Uluslararası Aydınlatma Komisyonu (Commission Internationale de L’eclairage)

n. **İşik Kirliliği**: Işığın, enerji savurganlığına neden olacak, astronomi gözlemlerini engelleyecek ve doğal hayatı bozucu tehlikeler oluşturacak şekilde, yanlış yerde, yanlış miktarda, yanlış yönde ve yanlış zamanda kullanılmasıdır.

o. **İşik akısı (Φ)**: Bir işık kaynağından çıkan, normal gözün gündüz görmesine ait spektral duyarlık egrisine göre değerlendirilen enerji akısıdır. Birimi lümen (lm) dir.

p. **Uzay açısı (Ω)**: İçinden kısmi işık akısı geçen koni veya piramit şeklindeki uzay parçasına denir. Birimi steradyan (sr) dir.

r. **İşik şiddeti (I)**: Noktasal işık kaynağının belli bir α doğrultusundaki işık şiddeti, bu doğrultuyu içine alan Δ Ω uzay açısından çıkan Δ Φ işık akısının Δ Ω uzay açısıına bölümü ile ilgilidir. Δ Ω safira yaklaşıırken bu oranın limiti işık şiddetini tanımlar. Birimi candela (cd) dir.

s. **İşık Dağılımı (Polar Fotometri) Eğrisi**: Noktasal bir işık kaynağından geçen düzlem üzerinde, kaynağıн çeşitli doğrultulardaki işık şiddetlerinin üç noktalarının geometrik yeridir.

t. **Armatür Verimi (η)**: Bir aydınlatma armatüründen çıkan işık akısının armatür içindeki lambanın ürettiği işık akısına oranıdır.
u. Üst Yarı Uzay Işık Akısı Oranı (ULOR) : Armatürün üst yarın uzaya yaydığı ışık akısının, içindeki lambanın ürettiği ışık akısına oranı’dur.
v. Alt Yarı Uzay Işık Akısı Oranı (DLOR) : Armatürün alt yarın uzaya yaydığı ışık akısının, içindeki lambanın ürettiği ışık akısına oranı’dur.
y. Aydınlık Sıddeti (E) : Yüzeye düşen ışık akısının, o yüzeyin alanına bölümütür. Birimi lüks (lx) tür.
aa. Koruma Derecesi : Aydınlatma armatürlerinin toza, kati cisimlere ve suya, neme karşı dayanıklıklarının göstergesidir. Uluslararası kabullere göre IPX1, IPX2 kodları ile gösterilir. Koruma derecesindeki ilk rakam (X1) kati cisimlere, ikinci rakam (X2) ise suya karşı koruma derecesini gösterir (TS 3033).
bb. Parrıtı (L) : Işık yayan bir yüzeyin bir noktasının, bu yüzeyin normalı ile α açısı yapan doğrultudaki parıltısı, bu noktayı içine alan yüzey elemanının bu doğrultuda doğrultu işık şiddetinin, bu doğru duygu dik düzlemdeki yüzeyin görünen alanına oranının limitidir. Birimi cd/m²’dir.
ce. Ekranlı Armatür : Maksimum ışık şiddet düseye 65° lik açıda sınırlanmışız, üst yarın uzaya hiç ışık yaymayan (ULOR = 0) aydınlatma armatörü.
 dd. Yarı-ekranlı Armatür : Maksimum ışık şiddet düseye 75° lik açıda sınırlanmışız, üst yarın uzaya gönderdiği ışık akısı % 10’dan fazla olmayan (ULOR ≤ %10) aydınlatma armatörü.
 ee. Ekranlı Armatür : Maksimum ışık şiddet bellii bir açı ile sınırlanılmamışı olan, ancak düseye 90° lik açıda ışık şiddeti, içindeki lambanın/lambaların ışık akısı ne olursa olsun, 1000 cd’yi aşmayan armatür.
 ff. Ekonomik Ömür : Bir testeseki lambaların 100 saat kullanımdan sonra toplam ışık akılarının, lambaların kullanılmaz hale gelmeleri ve ışık akılarından azalmalarından dolayı yaklaşık % 30 değer kaybettiği ana kadar geçen süredir.
gg. Etkinlik Faktörü (e) : Bir ışık kaynağının etkinlik faktörü, kaynaktan çıkan toplam ışık akısının kaynağın gücne orandır. Birimi lumen/watt (lm/W) dr.

İkinci Bölüm

Diş Aydınlatmada Temel Prensipler, Işık Kaynakları (Lambalar) ve Armatürler

Diş Aydınlatmada Temel Prensipler

Madde – 5:
Aydınlatmadan azami ölçüde yararlanabilmesi ve yaşanılan ortamda gerekli güvenliğinin temini ön planda tutularak gerek enerji tasarrufunun sağlanabilmesi ve ışık kirliliğinin önlenebilmesi için tasarımından kullanıma kadar tüm sashalarda uygulması gerekken temel prensipler aşağıda sıralanmıştır,

a. İlgili standartlar ve Uluslararası Aydınlatma Komisyonu’nun yayınları da takip edilerek aydınlatılacak yere ve amaca uygun optimum çözümün elde edilebileceği aydınlatma kriterlerinin belirlenmesi,

b. Fotometrik ve teknik özellikleri bilinen armatürler ile gerekli tasarım hesaplarının yapılması, sadece aydınlatılacak alana ışık gönderen armatür tip ve saylarının saptanması,

c. Aydınlık şiddetin algılanıncı ve/veya zaman kontrollü tesisat ile aydınlatmanın gerek duyan zanmandarda gerektiği ölçüde yapılmasıın sağlanması.

Işık Kaynakları (LAMBALAR)

Madde – 6:
Yönetmeliğin ürünü tarihinde geçerli olan teknolojik olanaklar esas alınarak, dış aydınlatmada kullanılabilecek ışık kaynaklarının (lambaların) teknik özellikleri ve kullanım alanları aşağıda açıklanmıştır. Teknolojik gelişmeler sonucunda oluşacak üstünükler zaman içinde değerlendiriliıp lambaların kullanımasına yansıtılacaktır.

a. Akkor Telli (Enkandesen) Lambalar : Etkinlik faktörleri çok düşük (~ 15 lm/W), ömrüleri kısa, fakat renksel özellikleri mükemmel olan bu ışık kaynakları

d. Yüksek Basınçlı Civa Buharlı Lambalar: Etkinlik faktörleri 50 lm/W civarında olan beyaz ışıkltı bu lambalar sadece park, bahçe aydınlatması için kullanılacaktır. Lambalar üst yarı uzaya hiç ışık göndermeyecek şekilde tasarlanmıştır ekranlı armatürler için yerleştirilecektir.

e. Metal Halojen Lambalar: Etkinlik faktörleri 80 lm/W civarında ve renk özelliklerini iyi olan bu lamba grubu özel aydınlatmalar için uygunlardır. Ekonomik ömürleri kısa olan bu lambalar sadece renkli TV çekimlerinin yapılacağı açık havada spor sahalarında ve beyaz rengin vurgulanmak istendiği bina dış cephe aydınlatmalarında, çok iyi erkanlanmış armatürler içinde kullanılacaktır.
f. Yüksek Basıncı Sodyum Buharlı Lambalar: Bu lambalar en uzun ömürli ışık kaynakları (lambalar) olup, şeffaf cam tüplü olanlarının etkinlik faktörleri 130 lm/W civarındadır. Şehir içi yol, cadde, sokak, meydan aydınlatmalarının tamamında parlak beyaz-sarı renkte ışık yayan bu lambaların en verimli tipli olan şeffaf cam tüplüleri kullanılabilecektir. Daha önce yüksek basınçlı cıva buharlı lambalar tesislerde enerji tasarrufu elde edebilmek amacıyla kullanılan olan yüksek basınçlı sodyum buharlı lambaların ateşleyicisiz tipli yeni tesislerde kesinlikle kullanılmayacaktır.

g. Alçak Basıncı Sodyum Buharlı Lambalar: Renk ayrıntılarının önemlili olduğu tüm tesislerde kullanılabilecek en yüksek etkinlik faktörü ışık kaynağıdır. Ekspres yollar, limanlar, yükleme başlatma alanları ve güvenlik aydınlatması için uygun lambalarıdır. Işık kirliliğinin önlenmesinin birincili derecede önem taşıdığı doğal hayatın korunması gereken alanlardaki ve astronomi gözlemevleri etrafındaki yollar, sokaklar, alan aydınlatmalarında sadece alçak basınçlı sodyum buharlı lambalar kullanılmaktadır.

Armatürler

Madde - 7:
Diş aydınlatmada kullanılacak armatürler, verimi yüksek ve koruma derecesi en az IP 54 olan tiplerden seçilecektir. Armatürlerin her birinin içinde güç katsayısını en az 0,95 olacak şekilde ayarlayan teklik veya merkezi kompanzasyon üniteleri bulunacaktır.

Armatürler ve donanımları, Ek-1’de listelenen ilgili standartlara uygun olmalıdır.
Armatürlerin üst yarısı uzaya (gökyüzüne) gönderdikleri ışık miktarı, Madde-8’de verilen yüzdeleri aşmayacak ve ışık dağılım eğrileri de kasma problema yol açmayacek şekilde ekranelmiş olacaktır.

Fotometrik ölçümler Uluslararası Aydınlatma Komisyonu’nun Ek-2’de listelenen yalnızları göre yapılacaktır.
10 m'den alçak direklerle yapılan uygulamalarda, kullanılan armatürlerin düşeyle 85° lik açı yapan doğrultudaki ışık şiddeti değerler Tablo 1’deki değerleri aşmayacaktır.
Tablo 1. 10 metreden alçak direk yüksekliklerinde kamaşıma sınırlaması

<table>
<thead>
<tr>
<th>Düşeyle 85° lik açıda ve üstünde parıltı değeri</th>
<th>≤ 20 000 cd/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direk yüksekliği</td>
<td>4,5 m</td>
</tr>
<tr>
<td>85° lik açıda ışık şiddeti</td>
<td>≤ 2 500 cd</td>
</tr>
</tbody>
</table>

10 m'den yüksek direklerle yapılan aydınlatmalarda ise, Ek-4'te verilen aydınlatma kriterleri sağlanacaktır.

Ek-5'de cadde, sokak, gezinti yolları, park ve bahçelerde kullanılan aydınlatma armatürlerinin bazı tiplerinin ışık dağılım eğrileri, alt ve üst yarı uzaya gönderdikleri ışık akısı yüzdeleri gösterilmektedir. Park ve bahçelerde büyük ölçekte üst yarı uzaya ışık gönderen gloop (küre) tipi armatürler kullanılmayacaktır. Gloop tipi armatürler ancak uygun ekranlarla ışıkları alt yarı uzaya yönlendirildiğinde kullanılabilir. Ek-6'da ekranız ve ekranlı gloop tipi armatürlerin ışık akıları yüzdeleri verilmektedir.

Bina dış cephe ve reklam panoları aydınlatılması amaçlı kullanılan projekktör tipi armatürler uygun açılarla sadece aydınlatmak istenen alanı aydınlatacak tipte seçilecek ve yönlendirilecektir. Aydınlatmalar yukarıdan aşağıya doğru yapılacaktır.

Üçüncü Bölüm

Aydınlatma Bölgeleri

Aydınlatma Bölgeleri

Madde - 8:

Güvenlik, ulaşım, ticari ve turizm gereksinimleri dikkate alınarak, gerek enerji tasarrufu sağlanması gerekse doğal hayatın ve astronomik gözlemlerin etkilenmemesi amacıyla dış aydınlatma uygulamalarında aşağıda belirtilen kurallar esas alınır.
I. Bölge : Gözlemevleri çevresindeki 30 km. yarıçaplı alanlar, köy ve mezralar hariç yerleşme alanları dışında kalan alanlar ile doğal hayatın, tarihi ve kültürel yapının korunması gerekten koruma alanlarını kapsar. Bu bölgelerde üst yarı uzaya gönderdikleri ışık akısı yüzdeleri % 0 (ULOR=0%) olan yüksek verimli armatürlar içinde sadece çok basıncı sodyum buharlı lambalar kullanılabacak.

II. Bölge : Belediye mücavir alanları ile kentsel çalışma ve gelişme alanları, imar ve yol istikamet planı bulunmayan beldeler ve köy sınırlarını kapsar. Bu bölgede kullanılacak armatürlerin üst yarı uzaya gönderdikleri ışık akısı yüzdeleri % 5’den az (ULOR ≤ 5%) olacaktır.

III. Bölge : 3030 Sayılı Kanun kapsamındaki Büyükşehir Belediyeleri ve 1580 Sayılı Kanun kapsamındaki diğer belediyelerin sınırları içindeki kentsel yerleşik ve gelişme alanları ile mücavir alanları kapsar. Bu bölgelerde güvenlik amaçlı yol aydınlatması armatürlarinin üst yarı uzaya yaydırıkları ışık akısı % 5’den az (ULOR ≤ 5%), eğlence ve reklam amaçlı dış aydınlatma armatürlerinin üst yarı uzaya gönderdikleri ışık akısı yüzdeleri ise % 15′den az (ULOR ≤ 15%) olacaktır.

IV. Bölge : Dış aydınlatmanın ve reklam aydınlatmalarının yoğun olarak kullanılması gerekli olan kentsel çalışma alanlarından ticaret bölgelerini ve turizm bölgelerini kapsar. Bu bölgelerde, güvenlik amaçlı yol aydınlatmaları için kullanılan armatürlerin üst yarı uzaya gönderdikleri ışık akısı yüzdeleri % 5’den az (ULOR ≤ 5%) olmalıdır; turizm ve ticaret amaçlı sürekli aydınlatmalarında kullanılan armatürlerin üst yarı uzaya gönderdikleri ışık akısı yüzdeleri en fazla %15 (ULOR ≤ 15%) olmalıdır. Yine turizm ve ticaret amaçlı olarak ve kısa süreler için yapılacak aydınlatmalarda ise, armatürlerin üst yarı uzaya gönderdikleri ışık akısı yüzdelerinin en fazla %20 (ULOR ≤ 20%) olması müsaade edilebilir.

Dördüncü Bölüm

Plan ve Projelerin Onaylanması, Uygulama ve Denetim,
Geçici Muafiyet ve Süresi,
Yaptırım, Yürütme ve Yürürlik

Plan ve Projelerin ONAYLANMASI

Madde - 9 :

Diş aydınlatma tesisini kurmak isteyen kişi veya kuruluşlar özel veya tüzel kişilere hazırlattıkları uygulama projeleriyle birlikte, projenin kurulu gücüne göre Enerji ve Tabii Kaynaklar Bakanlığına veya yetkili kuruluşu başvurmak zorundadır. Projeler mutlaka aşağıdaki belgeleri içermelidir;
1. İşık kaynaklarının (lambaların), aydınlatma armatürlerinin ve taşıyıcıların tiplerini ve konumlarını gösteren paftalar,
2. İşık kaynakları (lambalar), aydınlatma armatürleri ve taşıyıcıların teknik ve fotometrik (ışık dağılım eğrileri, verimi, üst ve alt yarı ışık aksı yüzdeleri, parltıslı, v.b.) özelliklerini içeren bilgi ve açıklamalar,
3. Kullanılan armatürlerin fotometrik değerleri ile yapılan, armatür sayısını, yerlerini, yönlendirme açıklarını ve sağlanacak aydınlatma kriterlerini veren aydınlatma tasarım hazıpları,
4. Elektrik kuvvetli akım tesis projesi.

Projelerin Bakanlık ve diğer yetkilili kuruluş tarafından kontrol ve iki ay içinde cevaplandırılması zorunludur.

uygulama VE DENETİM

Madde – 10:
Onaylanmış projelerin uygulamadaki denetlenmesi yetkilili kuruluşların sorumluluğundadır. Bu yönetimle uymayan lamba ve armatür çeşitleri kullanılmaz.
Bu yönetimlinin yürütülüğe girdiği tarihten önce, yasa ve yönetimliklerde uygun olarak kurulmuş ve çalıştır durumda olan bütün dış aydınlatma tesisleri ile onay alınarak uygulama aşamasına gelmiş olan projeler, bu yönetimlik kapsamı dışındadır. Ancak, yönetimlinin yürütülüğe girdiği tarihten itibaren, mevcut tesislerdeki ışık kaynakları (lambalar) ekonomik ömürleri sonunda, tesis değişikliği gerektirmeyen daha verimli tipleriyile, bu yönetimle uygun olarak değiştirilecektir.

Geçici Muafiyet ve Süresi

Madde – 11:
Tesis sahibi veya işletmcisi, yazılı bir dilekçe ile bu yönetimlikle ilgili hususlarda geçici muafiyet için başvurabilir. Geçici muafiyet için başvurular aşağıdaki bilgileri içerecektir,

1. İsteneden özel muafiyet(ler),
2. İsteneden özel muafiyet(ler)in süresi,
3. Varsa önceki geçici muafiyet(ler) ve ilgili yer adresleri,
4. Işık kaynaklarının (lampaların) tipi, gücü ve ışık akısı,
5. Işık kaynaklarının (lampaların) toplam gücü (W),
6. Söz konusun dış aydınlatma armatürünün (armatürlerinin) tipi ve teknik özellikleri (boyut, ekran, v.b.),
7. Dış aydınlatma armatürünün (armatürlerinin) konacağı yer ve yönlendirme açısı,
8. Dış aydınlatma armatürünün (armatürlerinin) fotometrik özellikleri,
9. Yetkili kuruluşun gerekli gördüğü benzeri diğer bilgiler.

Yetkili kuruluş tarafından, geçici muafiyet başvurusuna, veriliş tarihinden sonra on dokuz gün içinde cevap verilecek ve geçici muafiyet onay tarihinden itibaren en fazla altı ay için geçerli olacaktır.

Yaptırım

Madde – 13:
Bu yönetiminde belirtilen şartlara uymadığında tesis izni alamayın veya izin için başvuruda bulunmayan tesislere enerji verilmeyeceği gibi, yönetimliğe uymadığı belirlenen tesislere verilmiş bulunan enerji, yetkili kuruluş tarafından kesilir.

Yürütme

Madde – 14:
Bu yönetimliği Enerji ve Tabii Kaynaklar Bakanlığı yürüttür.

YÜRÜRLÜK

Madde – 15:
Bu yönetimlik Resmi Gazete’de yayılmasından tarihten itibaren yürürlüğe girer.

EKLER

EK 1. Armatür ve Donanımları İçin Uyulması Gerekli Standartlar

<table>
<thead>
<tr>
<th>TS 8697 / IEC 598-1</th>
<th>Aydınlatma Armatürleri</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bölüm 1 : Genel Kurallar ve Deneyler</td>
</tr>
<tr>
<td>TS 8700 / IEC 598-2, 3</td>
<td>Aydınlatma Armatürleri – Sokak ve Cadde</td>
</tr>
<tr>
<td>TS 289 / IEC 61, IEC 238</td>
<td>Elektrik Lamba Başlıklarını ve Duyları (Edison Vidali)</td>
</tr>
<tr>
<td>Standard</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>TS 2219 / IEC 400</td>
<td>Tüp Biçimli Flüoresan Lambalar ve Yolvericileri İÇin Duylar</td>
</tr>
<tr>
<td>TS 896</td>
<td>Yüksek Basınçlı Cıva Buharlı Lamba Balastları</td>
</tr>
<tr>
<td>IEC 922, IEC 923</td>
<td>Deşarj Lambaları İÇIN Balastlar (Ballasts for Discharge Lamps)</td>
</tr>
<tr>
<td>IEC 926, IEC 927</td>
<td>Ateşleme Cihazları (Starting Devices)</td>
</tr>
<tr>
<td>IEC 929</td>
<td>A.C. ile Beslenen Tüp Flüoresan Lambalar İÇIN Elektronik Balastlar – Performans Kuralları (A.C. Supplied Ballasts for Tubular Fluorescent Lamps – Performance Requirements)</td>
</tr>
<tr>
<td>IEC 1048, IEC 1049</td>
<td>Tüp Flüoresan ve Diğer Deşarj Lambaları İÇIN Kondansatörler (Capacitors for Use in Tubular Fluorescent and Other Discharge Lamp Circuits)</td>
</tr>
<tr>
<td>TS 834</td>
<td>Aydınlatma Armatür Camları</td>
</tr>
<tr>
<td>TS 3033 / IEC 529</td>
<td>Mahfazaların Sağladığı Koruma Dercelerinin Sınıflandırılması</td>
</tr>
</tbody>
</table>

EK 2. Fotometrik Ölçümlerinin Yapılmasında Uyulacak Uluslararası Aydınlatma Komisyonu (CIE) Yayınları

<p>| CIE Pub. 27 | Sokak Aydınlatma Armatürlerinin Fotometrik Değerleri (Photometry of Luminaires for Street Lighting) |</p>
<table>
<thead>
<tr>
<th>CIE Pub.</th>
<th>Konu</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>Yol Aydınlatması Armatür ve Tesisatının Fotometrik Değerleri, Grafiklere ve Performansları (Road Lighting Lanterns and Installation Photometry, Classification and Performance)</td>
</tr>
<tr>
<td>43</td>
<td>Projektör Fotometrisi (Photometry of Floodlights)</td>
</tr>
<tr>
<td>67</td>
<td>Spor Tesisleri Aydınlatma Tesisatının Fotometrik Tanımları ve Ölçümleri (Guide for the Photometric Specification and Measurement of Sports Lighting Installations)</td>
</tr>
<tr>
<td>70</td>
<td>Işık Dağım Eğrisi Ölçümü (The Measurement of Absolute Luminous Intensity Distributions)</td>
</tr>
<tr>
<td>121</td>
<td>Armatürlerin Fotometri ve Ganiyofotometrisi (The Photometry and Ganiophotometry of Luminaires)</td>
</tr>
</tbody>
</table>

EK 3. Aydınlatma Kriterlerinin Belirlenmesinde Uyulacak Yayınlar

<table>
<thead>
<tr>
<th>CIE Pub.</th>
<th>Konu</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Astronomi Gözlemevleri Civarındaki Işık Kirliliğini Azaltmak İçin Kılavuz Bilgiler</td>
</tr>
<tr>
<td>30.2</td>
<td>Yol Aydınlatmasında Parlılı ve Aydınlatık Düzeyi Hesap ve Ölçümleri (Calculation and Measurement of Luminance and Illuminance in Road Lighting)</td>
</tr>
<tr>
<td>115</td>
<td>Motorlu Taşıt ve Yaya Yollarının İçin Aydınlatma Esasları (Recommendations For The Lighting of Roads for Motor and Pedestrian Traffic)</td>
</tr>
<tr>
<td>31</td>
<td>Yol Aydınlatma Tesisatlarında Kamaşma ve Düzgünlik (Glare and Uniformity in Road Lighting Installations)</td>
</tr>
<tr>
<td>92</td>
<td>Kentsel Alanların Aydınlatılması İçin Kılavuz</td>
</tr>
<tr>
<td>CIE Pub. 94</td>
<td>Projektörler İçin Kılavuz</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>CIE Pub. 140</td>
<td>Yol Aydınlatması Hesapları (Road Lighting Calculations)</td>
</tr>
<tr>
<td>CIE Pub. 112</td>
<td>Düş Alan ve Spor Aydınlatmalarında Kullanılacak Kamaşma Belirleme Sistemi (Glore Evaluation System for Use Within Outdoor Sports and Area Lighting)</td>
</tr>
<tr>
<td>Environment Agency of Japan</td>
<td>Işık Kirliliği İçin Kurallar (Guidelines for Light Pollution)</td>
</tr>
</tbody>
</table>

EK 4. DEĞİŞİK YOL TIPLERI İÇİN ÖNERİLEN AYdınLATMA KRİTERLERİ

Değişik yol tipleri için güvenlik ve konfor açısından sağlanması gereken aydınlatma kriterleri aşağıdaki tablolarında verilmektedir.

Tablo E1. Farklı yol tipleri için aydınlatma sınıfları

<table>
<thead>
<tr>
<th>Yolun Tamımı</th>
<th>Aydınlatma Sınıfı</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bölünmüş yollar, ekspres yollar, otoyollar (otoyola giriş ve çıkışlar, bağlantı yolları, kavşaklar, ücret toplama alanları)</td>
<td></td>
</tr>
<tr>
<td>Trafik yoğunluğu ve yolun karmaşılık düzeyi (Not 1);</td>
<td></td>
</tr>
<tr>
<td>Yüksek ...</td>
<td>M1</td>
</tr>
<tr>
<td>Orta ..</td>
<td>M2</td>
</tr>
<tr>
<td>Düşük ...</td>
<td>M3</td>
</tr>
<tr>
<td>Devlet yolu ve il yolları (tek yönü veya iki yönü; kavşaklar ve bağlantı noktaları ile şehir geçişleri ve çevre yolları dahil)</td>
<td></td>
</tr>
<tr>
<td>Trafik kontrolü (Not 2) ve yol kullanıcılılarının (Not3) tiplerine göre ayırın (Not 4);</td>
<td></td>
</tr>
</tbody>
</table>

99
<table>
<thead>
<tr>
<th>Zayıf</th>
<th>İyi</th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Şehir içi ana güzergahlar (bölünür ve caddeler), ring yollar, dağıtıcı yollar</td>
<td>Trafik kontrolu (Not 2) ve yol kullanıcılarının (Not 3) tiplerine göre ayrımı (Not 4);</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zayıf</td>
<td>İyi</td>
<td>M2</td>
<td>M3</td>
</tr>
<tr>
<td>Şehir içi yollar (yerleşim alanlarına giriş çıkış yapıldığı ana yollar ve bağlantı yolları)</td>
<td>Trafik kontrolu (Not 2) ve yol kullanıcılarının (Not 3) tiplerine göre ayrımı (Not 4);</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zayıf</td>
<td>İyi</td>
<td>M4</td>
<td>M5</td>
</tr>
</tbody>
</table>

Not 1. Karmasıklık: Yolun geometrik yapısını, trafiği hareketlerini ve görsel çevreyi içerir. Görüşündede bulundurulması gereken faktörler; şerit sayısı, yolun eğimi, trafiğin yoğunluktan ve işaretleri.

Not 2. Trafik Kontrolü: Yatay ve düşey işaretlemeleri ve sinyalizasyon ile trafiğin kontrolünde ve mevzuatının varlığı anlamında kullanılmıştır. Bunların olmadığı yerlerde trafik kontrolü zayıf olarak adlandırılır.

Not 3. Kullanıcılar: Motorlu araçlar (kamyon, otobüs, otomobil vb.), bisiklet, yavaş araçlar ve yayalar.

Not 4. Ayırma: Tahsisli yol (Her bir trafiğe cinsinin kullanacağı şeriden kesin olarak ayrıldığı yerler, örneğin otobüs yolu, bisiklet yolu vb.).
Tablo E1'de tanımlanan aydınlatma sınıfları için parıltı, enine ve boyuna düzgünlik oranları ve kamaşma sınırlaması ile ilgili değerler Tablo E2'de gösterilmektedir.

Tablo E2. Değişik aydınlatma sınıfları için uygulanacak yol aydınlatması kriterleri

<table>
<thead>
<tr>
<th>Aydınlatma sınıfı</th>
<th>L (cd/m²)</th>
<th>U₀</th>
<th>U₁</th>
<th>TI (%) ≤</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>2.0</td>
<td>0.4</td>
<td>0.7</td>
<td>10</td>
</tr>
<tr>
<td>M2</td>
<td>1.5</td>
<td>0.4</td>
<td>0.7</td>
<td>10</td>
</tr>
<tr>
<td>M3</td>
<td>1.0</td>
<td>0.4</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>M4</td>
<td>0.75</td>
<td>0.4</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>M5</td>
<td>0.5</td>
<td>0.4</td>
<td>-</td>
<td>15</td>
</tr>
</tbody>
</table>

Burada;

U₀ : Ortalama Düzgünlik : Yolun sağ kenarından yol genişliğinin ¼ mesafesinde bulunan bir gözlemciye göre kısmi alanların minimum parıltısının yolun ortalama parıltısına oranıdır (U₀ = Lₘᵢₙ / L₀ᵣₜ).

U₁ : Boyuna Düzgünlik : Her yol şeridinin orta çizgisi üzerinde bulunan gözlemci

noktasına göre, bu orta çizgi boyunca uzanan kısmi alanlardaki minimum parıltının maksimum parıltıya oranıdır (U₁ = Lₘᵢₙ / Lₘₐₓ).

Yaya trafiği olan alanlardaki değişik yol tipleri için tanımlanan aydınlatma sınıfları Tablo E3'de ve bu aydınlatma sınıfları için uygulanacak ortalama aydınlık şiddetleri ise Tablo E4'de verilmektedir.

Tablo E3. Yaya alanlarındaki değişik yol tipleri için aydınlatma sınıfları

<table>
<thead>
<tr>
<th>Yolun Tamımı</th>
<th>Aydınlatma Sınıfı</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sosyo-ekonomik ve kültürel önemi yüksek olan kalabalık yaya yolları</td>
<td>P1</td>
</tr>
<tr>
<td>Trafıği yüksek yaya veya bisiklet yolları</td>
<td>P2</td>
</tr>
<tr>
<td>Trafıği orta yaya veya bisiklet yolları</td>
<td>P3</td>
</tr>
<tr>
<td>Trafıği az yaya veya bisiklet yolları</td>
<td>P4</td>
</tr>
<tr>
<td>Doğal çevrenin, tarihi ve kültürel yapının korunması gereken alanlardaki trafiği az yaya veya bisiklet yolları</td>
<td>P5</td>
</tr>
<tr>
<td>Doğal çevrenin, tarihi ve kültürel yapının korunması gereken alanlardaki trafiği çok az yaya veya bisiklet yolları</td>
<td>P6</td>
</tr>
</tbody>
</table>

Tablo E4. Yaya yolları için önerilen aydınlık düzeyi değerleri

<table>
<thead>
<tr>
<th>Aydınlatma Sınıfı</th>
<th>Ortalama Aydınlık Düzeyi (lux)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>20</td>
</tr>
<tr>
<td>P2</td>
<td>10</td>
</tr>
<tr>
<td>P3</td>
<td>7.5</td>
</tr>
<tr>
<td>P4</td>
<td>5</td>
</tr>
<tr>
<td>P5</td>
<td>3</td>
</tr>
</tbody>
</table>

102
Tanımlar:

Bölünmüş Yol (Tek Yönlü Yol); Taştı yolumun yalnız bir yöndeki taşt trafiği için kullanıldığı karayoludur.

Ekspres Yol; Sınırlı erişme kontrollü ve önemli kesişme noktalarının köprüsü kavşak olarak teşkil edildiği bölünmüş karayoludur.

Otoyollar; Özellikle transit trafiğe tahsis edilen, belirli yerler ve şartlar dışında geçiş ve çıkış yasaklandığı, yaya, hayvan ve motorsuz araçların giremediği, ancak izin verilen motorlu araçların yararlandığı ve trafiğin özel kontrole tabi tutulduğu erişme kontrollü karayoludur.

İki Yönlü Yol; Taştı trafiğinin her iki yönde kullanıldığı karayoludur.

Geometrik Yapı; Yolun sınıfa göre tasarım şeklindedir (yolun genişliği, şerit sayısı, yatay ve düşey eğim, yolun proje hızı vb.).

Trafik Yoğunluğu; Yayalannın, hayvanların ve araçların karayolları üzerindeki hareketleridir.

Trafik Güvenliği; Karayolları trafik kanunu ve buna dayanarak çakırtılan ilgili mevzuat.

Kullanıcılar; Motorlu taştılar, motorsuz taştılar, yayalar ve hayvanlardır.

Kavşak; İki veya daha fazla yolu kesişmesi veya birleşmesi ile oluşan ortak alandır.

Bağlantı Yolu; Bir kavşak yakında, karayolu taştı yollarının birbirine bağlanmasını sağlayan, kavşak alanı dışında kalan ve bir yönlü trafiğe ayrılmış olan karayolu kısındır.

EK 5. Dış Aydınlatma Armatürlerinin Fotometrik Değerleri
EK 6. Glop Armatürlerin Işık Akısı Yüzdelere Örnekler
Ekranız b) Üstten Ekranı c) İçten Ekranlı

ULOR = % 50 ULOR = % 20 ULOR = % 10

DLOR = % 40 DLOR = % 50 DLOR = % 30

η = % 90 η = % 70 η = % 40
EK B - VENEDİK TÜZÜĞÜ

VENEDİK TÜZÜĞÜ (MAYIS 1964)*

Tanımlar:
Madde 1– Tarihi ant kavramı sadece bir mimari eseri içine almaz, bunun yanında belli bir uygarlığın, önemli bir gelişmenin, tarihi bir olayın tanıklığı yapan kentsel ya da kursal bir yerleşmeyi de kapsar. Bu kavram yalnız büyük sanat eserlerini değil, ayrıca zamanla kültürel anlam kazanmış daha basit eserleri de kapsar.

Madde 2– Antılların korunması ve önarnım için, mimari mirasın incelememesine ve korunmasına yardımcı olabilecek bütün bilim ve tekniklerden yararlanmalıdır.

Amaç:
Madde 3– Antılların korunmasında ve önarnılmasındaki amaç, onları bir sanat eseri olduğu kadar, bir tarihi belge olarak da korumaktır.

Koruma:
Madde 4– Antılların korunmasındaki temel tutum korumunun kalıcı olması, sürekliliğinin sağlanmasıdır.

Madde 5– Antılların korunması, her zaman onları herhangi bir yararlı toplumsal amaç için kullanmakla kolaylaştırılabilir. Bunun için bu tür bir kullanma arzu edilir, fakat bu nedenle yapının planı, ya da bezemeleri değiştirilmemelidir. Ancak bu sınırlar içinde yeni işlevin gerektirdiği değişiklikler tasarlanabilir ve buna izin verilebilir.

Madde 6– Antın korunması, ölçeğin dışına taşımamak koşuluyla çevresinin de bakımını içine almaldır. Eğer geleneksel ortam varsa, olduğu gibi bırakmalıdır. İkile ve renk ilişkilerini değiştirecek hiçbir yeni eklemeye, yok etmeye, ya da değiştirmeye izin verilmemelidir.

Madde 8— Anttın tamamlayıcı öğeleri sayılan heykel, resim gibi süslemeler, ancak bunları korumanın başka çaresi yoksa yerlerinden kaldırılabilir.

Onarım:

Madde 10— Geleneksel tekniklerin yetersiz kaldıguna yerlerde, koruma ve inşaat için bilimsel verilerle ve deneylerle geçerliği saptanmış herhangi çağdaş bir teknik kullanılarak ant sağlamlaştırılabilir.

Madde 11— Anta mal edilmiş farklı dönemlerin geçerli katkıları saygı görmelidir, zira onarımın amacı üstel birliği değildir. Bir ant üst üstçe çeşitli dönemlerin izlerini taşıyorsa, alttaki dönemleri aşağı çıkarmak ancak bazı özel durumlarda- yok edilen malzemenin önum azsa, aşağı çıkarılan malzeme büyük tarihi, arkeolojik, ya da estetik değer taşıyorsa ve korunma durumu böyle bir davranış gereklili göstermek kadar iyi ise- hakkı çıkarılabilir. İlgili unsurların önemini değerlendirilmesi ile ilgili yargını ve neyin yok edileceği üzerinde karar vermek, sadece bu işi üzerine almış kimseye bırakılmaz.

Madde 12— Eksik kısımlar tamamlanırken, bütünle uyumlu bir şekilde bağlaştırılmalıdır; fakat bu onarının, aynı zamanda sanatsal ve tarihi tanıklığı yanlış bir biçimde yansıtmaması için, özgünden ayırdedilebilecek bir şekilde yapılması gereklidı.
Madde 13- Eklemlerle, ancak yapının ilgi çekici bölümlerine, geleneksel konumuna, kompozisyonuna, dengesine ve çevresiyle olan bağıntısına zarar gelmediği durumlarda izin verilebilir.

Tarihi yerler:
Madde 14- Antlarını bulundukları yerler, bütünlüğünü koruması, sağlıklı kılınır, yaşanır şeklinde ortaya konması için özel bir dikkat gerektirir. Böyle yerlerde yapılacak koruma ve önümüz çalışmalarında, daha önceki maddelerde açıklanan ilkelerden esinlenmelidir.

Kazılar:
Madde 15- Kazılar 1956 yılında UNESCO tarafından kabul edilmiş arkeolojik kazılarda uygulanması istenen uluslararası ilkelerle tanınılan kararlara ve bilimsel standartlara uygun olarak yapılmalıdır.
Yıkıntılar korunmalı, mimari unsurların ve bulunuların sürekli olarak korunması için gerekli önlemler alınmalıdır. Bundan başka, antın anlaşılmasını kolaylaştıracak ve anlamını hiç bozmadan açıkça çıkartacak her çareye başvurulmalıdır.
Bütün yeniden inşa işlemlerinden peşinen (a priori) vazgeçilmelidir. Yalnız anastylosis’e, yani mevcut fakat birbirinden ayrılmış parçaların bir araya getirilmesine izin verilebilir. Birleştirmede kullanılan madde her zaman ayırdedilebilecek bir nitelikte olmalı ve bu, antın korunmasını sağlamak ve eski haline getirmek için mümkün olduğunca az kullanılamalıdır.

Yayın
Madde 16- Bütün koruma, önarm ve kazi işlemlerinde her zaman çizim ve fotoğraflarla açıklık kazanmış çözüm getirici ve eleştirici raporlar halinde kesin belgeler hazırlanmalıdır.

Temizlemenin, sağlamlaştırmanın, yeniden düzenlemenin ve birleştirmenin her safhası- çalışma sırasında ortaya çıkan, tanınlanmış biçimsel ve teknik özellikler gözönünde tutularak- raporda gösterilmelidir. Bu belgeler bir resmi kurumun
arşivine konmalı ve araştırcılar bundan yararlanabilmelidir. Bu raporların yayınlanması tavsiye edilir.

* Prof. Dr. Cevat Erder’in çeviri metni alınmıştır.

EK C - AMSTERDAM BİLDİRGESİ:

AMSTERDAM BİLDİRGESİ (1975)*
1975 Avrupa Mimarlık Mirası yılı taşlandırız ve Avrupa’nın tüm ülkelerinin delegelerinden oluşan Amsterdam Kongresi, Avrupa’nın benzersiz mimarlığının tüm halklarının ortak mirası olduğunu bilincini taşıyan ve korunması için üye devletlerin aralarında ve diğer Avrupa hükümetleriyle birlikte çalışma isteklerini bildiren Avrupa Konseyi Bakanlar Komitesi’nin yürütülge konulan Kartayı sevincle karşılamaktadır.

Kongre, Avrupa mimarlık mirasının tüm dünyayı kültürle mirasının bütünleyici bir parçasını olduğunu onaylamaktadır ve bu yılın Temmuz ayında Helsinki’de benimsenen Avrupa Güvenlik ve İşbirliği Kongresi Sonuç Yasası’na öngörülen kültürel alanda işbirliği ve alşverisi teşvik amacıyla karşılık yüklenilen sorumluluğu büyük bir memnuniyetle izlemiştir.
Bu şekilde, Kongre aşağıdaki temel düşünceleri vurgulamaktadır:

a. Avrupa’nın mimarlık mirası, paha biçilmez kültürel değerinin yanı sıra, halklar arası ortak tarihlerinin ve geleceğinin bilincini aşılamaktadır. Bu nedenle yaşatılması çok önemlidir.

b. Mimarlık mirası, yalnız üstün nitelikli tek yapıları ve çevrelerini değil, tarihsel ve kültürel özelliği olan tüm kentsel ve kırsal alanları içerir.

c. Bu hazine, tüm Avrupa halklarının ortak varlığı olduğundan, bu halklar ihmal, kasıtsız yıkım, düzensiz yeni yapışma ve aşırı trafik gibi gittikçe artan tehlikelere karşı, onları korunmak için ortak bir sorumluluğa sahiptirler.
d. Mimarlık ürünlerinin korunması marjinal bir sorun olarak değil, kent ve ülke planlamasının ana hedefi olarak ele alınmalıdır.

e. En önemli planlama kararlarını alan yerel yetkililerin mimarlık mirasının korunmasına özel bir sorumluluğu vardır ve fikir ve bilgi alışverişini yaparak birbirlerine yardımcı olmalıdır.

f. Eski alanların sağlıklılaştırılması olanak ölçeşinde, bölge sakinlerinin toplumsal kompozisyonunda köklü bir değişiklik gerektirmeyecek şekilde tasarlanmalı ve uygulanmalıdır. Kamu kaynaklarına gerçekleştirilen restorasyon çalışmalarının sağladığı yararlardan tüm toplum kesimleri pay almalıdır.

g. Gereklı yasal ve yönetimsel önlemler tüm ülkelerde güçlendirilmeli ve daha etkin kılmalıdır.

h. Mimarlık veya tarih açısından önemli binaların ve yörelerin restorasyon, uygulama ve bakım giderlerinin karşılanmasına katkıda bulunmak için yerel yönetimlere parasal yardım sağlanmalı, aynı biçimde özel mülk sahiplerine de parasal destek ve devletten yardım sunulmalıdır.

i. Mimarlık mirası ancak, halk ve özellikle de genç kuşak onun değerini bilirse yaşayacaktır. Bu nedenle her düzeydeki eğitim programları bu konuya artan bir ilgi göstermek zorundadır.

j. Kamunun ilgisini uyandırmaya yardımcı olarak uluslararası, ulusal ve yerel bağımsız örgütler yüreklendirilmelidir.

k. Bugünün yeni yapıları yarının mirası olarak açılacaktır, çağdaş mimariğin yüksek kaliteli olması için her türlü çaba gösterilmelidir.
Avrupa Mimarlık Mirası Karta’sında Bakanlar Komitesi’nin belirttiği gibi, üye
devletlerin dayanışma ruhu içinde birbirini tutan politikalar izleyeceğini garanti
altına almak Avrupa Konseyi’nin sorumluluğundadır. Bu nedenle tüm Avrupa
ulkelerinde mimarlık ürünlerinin korunması için gösterilen aşamalar deneyim
alışverişini özendirecek biçimde periyodik raporlar halinde sunulmalıdır.
Kongre hükümetleri, parlamentoları, ruhani ve kültürel kuruluşları, profesyonel
enstitüleri, ticari, endüstriyel ve bağımsız birlikleri ve tüm vatandaşları bu
bildirinin hedeflerini tüm güçleriyle desteklemeye ve bunların uygulanmasını
sağlamak için her türlü çaba göstermeye çağırmaktadır.

Avrupa’nın yeri doldurulamaz mimarlık mirası, şimdi ve gelekte tüm halklarının
yasamlarının zenginleştirilmesi için ancak bu yolla yaşatılabilir.
Kongre tartışmalar sonucu ortaya çıkan sonuç ve önerilerini aşağıda sunmaktadır.
Yeni bir koruma politikası ve bütünleşik koruma uygulanmazsa, toplumumuz çok
yakında geleneksel çevresini oluşturan yapı ve sit mirasını çoğuituştırıçış
olduğunun gerektiğini görecektir. Koruma bugün tarihi park ve bahçelerin yanı sıra, tarihi
kentler, kentlerin eski mahalleleri ve geleneksel karakteri olan kent ve köyler için
de gereklidir. Bu mimarlık ürünlerinin korunması en büyüğünden en alcak
gönüllülerine kadar, günümüz yapısını da unutmadan, kültürel değer taşıyan tüm
yapıları çevrelereyle birlikte kapsayan geniş bir perspektif içinde görülebilir.
Mimarlık mirasının önemi ve onu koruma tartışmaları artık çok daha açıkla
biliniyor. Anı toplumsal değişikliklere karşı bireylerin kimliklerini bulmalarına
olanak veren çevreleri korumak, ya da yaşatmak zorundaysak, tarihsel sürekliliği
korumamızın gerektiği kabul edilmelidir.

Çağdaş kent planlamasında eski kentlerin kentsel dokusunu karakterize eden insan
ölçeğini, kapalı mekanları, işlevlerin etkileşimini ve toplumsal ve kültürel
değişikliği geri getirmek için bir çaba vardır. Fakat aynı zamanda eski yapların
korunmasının görünüm toplumunun ana ilgilerinden biri olarak kaynak tasarrufu ve
israfın önlenmesine de katkıda bulunduğu farkına varılmıştır. Tarihi yapılarla
cçağdaş yaşamın gerektirileri ilişkili yeni işlevler verilebileceği gösterilmiştir.
Dahası, koruma, yetenek ve becerilerini yaşatıp geleceği aktarmak zorunda olan
sanatçı ve yüksek nitelikli zanaatkarlar da gereksinim yaratmaktadır. Mevcut
yerleşmelerin iyileştirilmesi aynı zamanda, tırmal alanlara daha az el
Uzatılmasına ve koruma politikasının çok önemli bir üstünlüğü olarak, nüfus hareketlerini önlemeye, ya da büyük ölçüde azaltmaya da yardımcı olur.

Tüm bu nedenlerle, mimarlık mirasının korunması için yapılan tartışmalar bugün her zamankinden daha güçlürdür. Bununla beraber sağlam ve kalıcı bir temele oturtulmalı ve böylece esaslı bir araştırma konusu haline getirilerek tüm eğitsimsel ve kültürel gelişim programlarının parçası olmalıdır.

Mimarlık mirasının korunması kentsel ve bölgesel planlamamın baş hedeflerinden biridir. Mimarlık mirasının korunması, yaktın geçmişte sık sık olduğu gibi, ikinçil bir kaygı, ya da ankır eylemler gerektiren bir çalışma gibi ele alınmak yerine, kentsel ve bölgesel planlamamın bütünleyici bir parçası haline gelmelidir. Yani korumacilarla planlama sorumluları arasında sürekli bir diyalog kaçınılmazdır.

Plancılar tüm alanların aynı olmamışını ve bu nedenle de kendi özel niteliklerine göre ele alınmak zorunda olduklarını bilincinde olmalıdır. Mimarlık mirasının estetik ve kültürel değerlerinin gerektirdiklerinin bilinmesi eski mimarlık kompleksleri için özel hedef ve planlama kurallarının benimsenmesine yol açmalıdır.

Sıradan planlama yöntemlerikleri ve tarihsel yapıları koruma amaçlı özel kuralları, birbirine uyarlamanaksız, yalnızca birlikte uygulamak yeterli değildir. Gereken bütünleşmeyi olması kılınmamalı, çevrelerindeki koruma bölgelerini de belirleyerek, yapıların, mimarlık komplekslerinin ve sitlerin envanterlerini hazırlamak şarttır. Bu envanter, koruma değeri taşıyan yapı ve bölgelere kişilerin dikkatini çekmek amacıyla, özellikle de kent ve ülke planlamasından sorumlu bölgesel ve yerel yetkilileri ulaştırılmalıdır. Böyle bir envanter, mekan yönetimindeki esaslı bir niteliksel öğe olarak koruma için gerçekçi bir temel oluşturacaktır.

Bölgesel planlama politikası, mimarlık mirasının korunmasını hesaba katmalı ve ona katkıda bulunmalıdır. Bu, özellikle nüfus azalmasını denetlemek ve dolayısıyla eski yapıların bozulmasını önlemek amacıyla, yeni etkinliklerin ekonomik çoğunluğu içinde bulunan bölgelerde yerleşmesini teşvık edebilir. Buna ek olarak, kent çevresindeki alanların gelişim kararları eski mahallelerin üzerindeki baskı
hafifletecek bir biçimde yönlendirilebilir; burada ulaşım ve çalışma politikaları, bir de kentsel etkinliklerin odak noktalarının daha iyi dağılımının sağlanması, mimarlık mirasının korunması üzerinde önemli bir etki oluşturabilir.

Son olarak, mimarlık mirasının korunmasının niteliğsel ölçütlerle ve doğru oranlara hak ettiği önemli veren ve çok sık olarak kısa vadeli kayıllar, teknolojiye dar gorteği bir yaklaşım, yani kısaça moda geçmiş bir bakışın hakim olduğu seçeneğ ve hedefleri bundan sonra reddedebilme olanağı sağlayacak olan yeni, uzun vadeli bir yaklaşım özelliği taşımak zorundadır.

Bütünleşik koruma yerel yetkililerin sorumluluğunu da kapsar ve yurttaşların katılımını gerektirir.

Yerel yetkililerin mimarlık mirasının korunmasında özel ve yaygın sorumlulukları olmalıdır. Bütünleşik koruma ilkelerini uygularken, kentsel ve kursal topluluklardaki mevcut toplumsal ve fiziksel gerçeklerin sürekliğini de hesaba katmak zorundadırlar. Gelecek geçmişin pahasına kurulamaz ve kurulmamalıdır.

İnsan yapısı çevreye aklı, duyarlı ve ekonomik bir saygıyla yaklaşan böyle bir politikayı uygulamak için yerel yetkililer;
- kentsel ve kursal dokuyu, onların yapısı, karmaşık işlevlerini, inşa edilmiş ve açık mekanların mimarlık ve mekansal özelliklerini konu alan bir çalışmayı temel olarak kullanmalı;
- yapılarla, onların karakterine saygı göstermeyi ihmal etmeden çağdaş yaşamın gereklere uyan işlevler vermeli; böylece yaşatılmalarını garanti altında almali;
- (eğitimsel, yönetimsel ve tıbbi) kamu hizmetlerinin gelişimi üzerinde yapılan uzun vadeli incelemlerin, aşırı boyutların bunların nitelik ve etkinliklerini zedelediğini gösterdiğini bilmeli;

- böyle bir politika için bütçelerin uygun bir bölümünü ayırılmaları. Bu bağlamda, hükümlерden özellikle bu cins amaçlar için ayrılmış kaynakların yaratılmasını istemelidir. Bireylere ve çeşitli kuruluşlara yerel yönetimlerce verilen karşılıklı ve karşılıksız krediler onların katılımını ve parasal bağlantılarını canlılandırmayı hedef almaları;

- mimarlık mirasını ilgilendiren her türlü konu ile uğraşmak üzere temsilciler atanabilir;

- yapının o sıradaki kullanıcılaryla esas sahipleri arasında doğrudan doğruya bağlar kurulmasını sağlayacak özel, ticari olmayan acenteler kurmalı;

- restorasyon ve iyileştirme çalışmalarını için gönüllü kuruluşların oluşturunu ve etkin işleyişini kolaylaştırmalıdır.

Yerel yönetimler, koruma planları ile ilgilenen grupların görüşlerini araştırmak için kullandıkları danışma tekniklerini geliştirmeli ve planlamının ilk aşamalarından itibaren bu görüşleri hesaba katmalıdır. Halkı bilgilendirme çabalarının bir bölümü olarak, yerel yetkililerin kararlarını açıkça anlasılır bir dil kullanarak halka sunmalı ve böylece yörede yaşayanlar bu kararların nedenlerini öğrenip, tartışıp değerlendirebilme talimatıdır. Halkın konuları birlikte inceleyebilmesine olanak veren toplantı yerleri sağlanmalıdır.

Bu politikanın bir parçası olarak, halk toplantıları, sergiler, halk oylamaları, iletişim araçlarının kullanımı gibi yöntemler ve tüm diğer uygun yöntemlerin uygulanması her zaman başvurulan uygulamalar haline gelmelidir. Gençlerin çevre sorunlarında eğitilmeleri ve koruma görevlerine katılımları en önemli toplumsal gerekliliklerden biridir.

Gruplar ya da bireylerce ileriye sürülen tamamlayıcı öneri veya seçenekler, planlamacısı önemli bir katkı olarak düşünülmelidir.

Yerel yönetimler birbirlerinin deneyimlerinden yararlanabilirler. Bu nedenle tüm kullanıma açık kurallardan yararlanarak sürekli bir bilgi alışverişi oluşturulmalıdır.
Herhangi bir bütünleşik koruma politikasının başarıya ulaşması toplumsal etkenlerin gözönüne alınmasına bağlıdır.

Mimarlık mirasının bir bölümlünü oluşturan bir yapı kompleksinin iyileştirilmesi, mevcut alt yapı üzerine yeni yapılmalıdır, ya da daha önce gelişmemiş bir alanda yeni bir kompleks yapılmasından daha ucuz ge lebilir. Toplumsal sonuçları oldukça farklı olan bu üç çözümün maliyetleri karşlaştırıldığında, toplumsal maliyetleri gözden kaçaramamak önemlidir. Bunlar yalnızca mal sahipleri ve kiracıları değil, o bölgeye canlılığı sağlayan ve koruyan zanaatkar, tüccar ve yüklenicileri de ilgilendirir.

Kamu yetkilileri restore edilmiş ve iyileştirilmiş bölgelerdeki sakınlerin artan kiralari ödevdememeleri, orayı terk etmek zorunda bırakılları gibi sonuçlar veren serbest piyasa yasalarını önlemek için, düşük maliyetli yerleşmelerde zaten yaptıkları gibi, ekonomik etkenlerin etkisini azaltmak üzere araya girmelidirler. Parasal Müdahaleler, kira üst sınırlarının sabitleştirilmesiyle bağlantılı olarak mal sahiplerine yapılacak restorasyon giderleri yardımcı ile, eski ve yeni kiralar arasındaki farkı tımyyle, ya da kısmen karşlayacak biçimde kiracılara yapılacak para yardımcı arasında bir denge oluşturulmayı hedef almalıdır.

Halkın programlarının hazırlanmasına katılması olanaq tammak için, onlara bir yandan korunacak yapların tarihsel ve mimari değerini anlatarak, diğer yandan da sürekli ve geçici yeniden yerleşme konusunda tüm ayrıntılarını vererek durumu anlamaları için gerekli çerçeveler ortaya konmalıdır. Bu katılım en önemlisidir çünkü iş artık birkaç öncelikli yapıın restore edilmesi değil bölgelerin tümüyle iyileştirilmesi olaydır. İnsanların kültürle ilgilenmesini sağlamak yonelik bu pratik yöntem, hârın sayılan bir toplumsal yarar getirecektir.
Bütünleşik koruma yasal ve yönetimsel önlemler alınmasını gerektirir. Mimari miras kavramı yavaş yavaş tarihsel tek yapıdan kentsel ve kursal mimarlık komplekslerine ve daha yakın tarihi mimarlık eserlerine doğru genişletildiği için, yönetimsel kaynaklarda bir arısla başıntılı olarak geniş kapsamlı bir yasal reform yapılması etkili eylemin ön koşulu olmuştur.

Bu reform, bölgesel planlama yasalarının mimarlık mirasının korunması ile ilgili yasalarla birlikte uygulama gerekliliği ile yönlendirilmelidir. Bu sonuncusu (koruma yasaları), mimarlık mirasının ve bütünleşik koruma hedeflerinin yeni bir tanımı getirmelidir.

Bunlara ek olarak, aşağıdaki konulara ilişkin özel işlemler tasarlamak zorundadır:
- Mimari komplekslerin saptanıp, çizimlerinin yapılması;
- koruyucu dış bölgelerin ve bunların içinde geçerli olan ve halkı ilgilendiren kısıtlamaların belirlenmesi;
- bütünleşik koruma şemalarının hazırlanması ve bunların gerektirdiklerinin planlama politikaları içine alınması;
- projelerin onaylanması ve işi yürütmek için yetki alınması;

Bunlara ek olarak, gerekli yasal hazırlıklar yapılırak aşağıdaki maddeler gerçekeleştirilmelidir:
- kentsel planlama için sağlanan bütçe kaynaklarının iyileştirme ve yeni gelişme arasında dengeli olarak paylaşırlacağını garantilemek;
- eski bir yapıyı iyileştirmeye karar veren yurtaşlara en azından yeni yapışma için yararlandırıcilar kadar parasal destek vermek;
- devlet ve kamu yetkililerinin parasal destek sistemini yeni bütünleşik koruma politikasının işığında yeniden gözden geçirmek.

Yapı yasa, yönetimsel ve kuralların uygulanması, olabildiğince bütünleşik koruma gerekliliklerini karşılayacak şekilde geliştirilmelidir.

Yetkililerin çalışma kapasitesini artırmak için yönetim yapısını yeniden gözden geçirerek kültür mirasından sorumlu departmanların uygun düzeylerde örgütlenğini ve yeterli sayıda nitelikli personelle gerekli bilimsel, teknik ve parasal kaynakların onların emrine verildiğini garanti altında almak şarttır.
Bu departmanlar yerel yetkililere yardım etmeli, bölge planlama bürolarıyla işbirliği yapmalı ve kamu özel kuruluşlarıyla sürekli ilişki içinde olmalıdır.

Bütünleşme koruma uyggun parasal araçların varlığını gerektirir. Tüm ülkelerde uygulanabilecek bir parasal politikayı tanımlamak ya da planlama sürecindeki farklı önlemlerin sonuçlarını değerlendirirken, bunların karşılıklı yansıları nedeniyle zordur.

Dahası, bu sürecin kendisine toplumun güncel yapısından doğan dış etkenler hakimdir.

Bütünleşik korumanın ekonomik sorunlarını çözebilmek için şu etken önemlidir: yeni yapıların çevreleriyle uyum içinde olmalarını sağlayacak bazı hacimsel ve boyutsal (yükseklik, arazi kullanım katsayısı vb.) kısıtlamalar getirecek bir yasa hazırlanmalıdır.

Planlama yönetmelikleri, artan yoğunlukları çaydırıcı rol oynamalı ve yeni gelişme yerine iyileştirme çalışmaları önemlendirmelidir.

Koruma programlarının baskılardan kaynaklanan fazla maliyeti belirleyecek yöntemler gözden geçirilmelidir. Olanak olduğunca, bu restorasyon çalışmasını yürütme zorunda olan mal sahiplerinin fazla maliyeti (ne fazlası, ne eksiktiği) karşılayabilmelerine yardım etmek için yeterli kaynaklar bulunmalıdır.

Eğer fazla maliyeti karşılayacak böyle bir yardım sistemi kabul edilirse, tabii ki, bu yararın vergilendirmeye azaltılmasına da özen göstermek gerekecektir. Aynı ilke, tarihsel ve mimari önem taşıyan yıpranmış yapı topluluklarına da uygulanmalıdır. Bu toplumsal dingenin yeniden kurulmasını sağlayacaktır.

Yine de tüm özel parasal kaynakları özellikle de endüstriden gelenleri teşvik etmek çok önemlidir. Sayısal özel girişim, ulusal ya da yerel düzeydeki yetkililere birlikte oynayabilecekleri yararı rolü ortaya koymıştır.

Bütünleşik koruma restorasyon ve iyileştirme yöntem ve teknikleri daha iyi araştırılmalı ve kapsamları genişletilmelidir. Önemli tarihi kompleksler için geliştirilmiş olan özel teknikler bundan böyle daha az sanatsal üstünliğe sahip olan birçok yapı ve komplekte de uygulanmalıdır.

Geleneksel yapı malzemelerinin bulunabilmesi ve geleneksel zanaat ve tekniklerinin kullanımının sürdürülmessini garanti altında alacak adımlar atılmalıdır.

Mimarlık mirasının sürekli bakımının yapılması, uzun vadede masraflı iyileştirme işlemlerini önleyecektir.

Her iyileştirme şeması uygulanmaya başlanmadan önce iyice incelenmelidir. Aym zamanda malzeme ve tekniklerle ilgili kapsamlı bir belge toplama çalışması ve giderlerin bir analizi yapılmıştır. Bu belgeler toplam uygun merkezlerde bulundurulmalıdır.

Koruma için kullanılan yöntem ve tekniklerin bir kataloğuunu derlemek için araştırmaya girişilmeli, bu amaçla bilimsel kurumlar oluşturulmalı ve bunlar aralarında yakın bir işbirliği içinde bulunmalıdır. Bu katalog hazırlık bulundurulmalı ve restorasyon ve iyileştirme uygulamalarının düzeyini yükseltmek isteyenlere dağıtılmalıdır.

Bu, koruma programları hazırlamak için gereklı plançıl, mimar, teknisyen ve zanaatçı birikimini yaratmaya ve yok olma tehlikesi içinde olan restorasyon çalışmalarına özgü zanaatçılarnın yaşatulacağını garanti altına almaya yardımcı olmalıdır.

Nitelik kazanma, çalışma koşulları, ücret, iş güvenliği ve toplumsal statü fırsatları, gençlerin restorasyon ve iyileştirme çalışmalarıyla bağlantılı disiplinleri seçip sürdürmelerini sağlayacak kadar çekici olmalıdır.
Bunun yani sıra, tüm düzeylerdeki eğitim programlarından sorumlu olan yetkililer, gençlerin ilgisini koruma disiplinlerine çekmek için çaba göstermelidirler.

** Mimarlar Odası 1989 yılından alınmıştır.
ÖZGEÇMİŞ

İrem ÇAY
Doğum : Ankara, 1973
Öğrenim:

- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Mimarlık Ana Bilim Dalı, Yapı Bilgisi Programı (1997-

Bildiği yabancı dil : İngilizce

Aydınlatma konusu içinde katıldığı projeler :

- Edirne'de II.Bayezid Külliyesi, aydınlatma projesi,