FARKLI KARISIMLARDAKİ TEK KAT KESİKLİ LİF İPLİKLERİNİN KALİTE ÖZELLİKLERİ İLE KUVVET UZAMA DAVRANIŞLARININ ARAŞTIRILMASI

YÜKSEK LİSANS TEZİ
Şevket Süreyya ÇELİKKANAT
503930153011

100919

Tezin Enstitüye Verildiği Tarih : 05 Haziran 2000
Tezin Savunulduğu Tarih : 21 Haziran 2000

Tez Danışmanı: Doç.Dr. Emel ÖNDER
Diğer Jüri Üyeleri Prof.Dr. Bülent ÖZİPEK
Doç.Dr. Sait YÜCENUR (İ.T.Ü.)

Haziran 2000
ÖNSÖZ

Son yıllarda özellikle elektronik alanındaki hızlı gelişim, tüm sektörlerde olduğu gibi teksilde de üretim hızı ve verimlilik artışında önemli rol oynadı. Örne makinalarında desen hazırlanması çok basit ve hızlı yapılabilir oldu.

Tüketici alışkanlıkları da çeşitli. Artık tek renkten, standart tipte ürünler yerine katma değeri yüksek farklı örme, dokuma tipleri hatta farklı ipliklerden yapılmış ürünler tercih edilir oldu. Bu tip ürünlerin teknolojisinin gelişimi doğrultusunda daha ucuza mal edilmesinin etkisiyle önemli bir pazar payına ulaşıldı.

Günümüzde keten karışımı iplikten yapılan kumaşlardan, pamuk melanj ipliklerden yapılan kumaşlara kadar pek çok fantazi iplik tekstil sektöründe kullanılmaktadır. Tek kat iplik içindeki hatta üç dört değişik elyaf türü bulunabilmektedir.

Fantazi iplik çeşitleri için bir kalite standardı henüz oluşmamıştır. Sektör içerisinde iplikten kaynaklanan problemlerin çözümünde başvurulabilecek bir kaynak yoktur.

%100 Pamuk melanj iplikler ve polyester-pamuk karışımı iplikler üzerine gerçekleştirdiğim bu çalışma karışım ipliklerin kalite özelliklerinin ve kuvvet-uzama davranışlarının incelenmesi amacı taşımaktadır.

Haziran, 2000

Şevket S. Çelikkanat
İÇİNDEKİLER

TABLO LİSTESİ

ŞEKİL LİSTESİ

ÖZET

SUMMARY

1 GENEL BİLGİLER 1

1.1 Kesikli Lif İplikleri Bilgisi 3

1.1.1 Olgunluk 4

1.1.2 Uzunluk 4

1.1.3 İncelik 6

1.1.4 Mukavemet 7

1.1.5 Yabancı madde miktarı 8

1.1.6 Renk 9

1.2 İplik Tanımlayıcı Parametreler Düzungünsültük, Kuvvet-Uzama Genel Bilgiler 10

1.3 Elyaf Karışımı İplikler İle Elde Edilen İplik Türleri Ve Bu İpliklerin Üretim Yöntemleri 20

1.3.1 İmitasyon İplikler 20

1.3.2 Muline İplikler 20

1.3.3 Melanj İplikler 21

1.3.3.1 Harman Karışımı % 100 Pamuk Melanj İplikler 21

1.3.3.2 Polyester Ya Da Diğer Elyaflar İle Karıştırlarak Elde Edilen Melanj İplikler 21

2 LİTERATÜR ÖZETİ 22

3 DENEYSEL ÇALIŞМА VE ANALİZ METODLARI 49

3.1 Deneysel Çalışma 49

3.1.1 Materyal 49

3.1.2 Deney Cihazları 50

3.1.2.1 Uster Tester 3 50

3.1.2.2 Uster Tensorapid II 50

3.1.2.3 Uster Tensojet 51

3.1.3 Ölçüm Yöntemleri 52

3.1.3.1 Laboratuvar Şartları 52

3.1.3.2 Test Çalışmaları 52

3.2 İstatistik Analiz Metodları 53
4 SONUÇLAR VE TARTIŞMA 55
4.1 Pamuk ve Polyester Karışımı İpliklerin Ölçüm Sonuçları 55
4.2 Pamuk Melanj İpliklerin Ölçüm Sonuçları 67
4.3 Değerlendirme ve Öneriler 84
KAYNAKLAR 88
ÖZGEÇMİŞ 90
<table>
<thead>
<tr>
<th>Sayfa No</th>
<th>Tablo_no</th>
<th>Tablo Adı</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Tablo 1.1</td>
<td>Laboratuvarlar Arası Ölçüm Farklıklar</td>
</tr>
<tr>
<td>11</td>
<td>Tablo 1.2</td>
<td>İplik Kalitesinin Kumaş Görünümüne Etkisi</td>
</tr>
<tr>
<td>12</td>
<td>Tablo 1.3</td>
<td>% 100 Penye Pamuk, Ring İplik İçin Kalite Karakteristikleri</td>
</tr>
<tr>
<td>14</td>
<td>Tablo 1.4</td>
<td>Yuvarlak Örme Makinalarında Çalışabilecek Bir Pamuk İpligin Kalite Değerleri</td>
</tr>
<tr>
<td>15</td>
<td>Tablo 1.5</td>
<td>Örme İşletmesinin Kullanacağı İpliklerin Özellikleri</td>
</tr>
<tr>
<td>52</td>
<td>Tablo 3.1</td>
<td>Test Edilen İplik Çeşitleri</td>
</tr>
<tr>
<td>54</td>
<td>Tablo 3.2</td>
<td>Tesadüf Parselleri İle Varyans Analizi Yöntemi</td>
</tr>
<tr>
<td>55</td>
<td>Tablo 4.1</td>
<td>Pamuk-Polyester Karışımı İpliklerin Düğünsültülük Test Sonuçları</td>
</tr>
<tr>
<td>56</td>
<td>Tablo 4.2</td>
<td>Pamuk-Polyester Karışımı İpliklerin Mukavemet Test Sonuçları</td>
</tr>
<tr>
<td>56</td>
<td>Tablo 4.3</td>
<td>Pamuk-Polyester Karışımı İpliklerin Düğünsültülük Varyans Analizi</td>
</tr>
<tr>
<td>57</td>
<td>Tablo 4.4</td>
<td>Pamuk-Polyester Karışımı İpliklerin İnce Yer Varyans Analizi</td>
</tr>
<tr>
<td>57</td>
<td>Tablo 4.5</td>
<td>Pamuk-Polyester Karışımı İpliklerin Kalın Yer Varyans Analizi</td>
</tr>
<tr>
<td>58</td>
<td>Tablo 4.6</td>
<td>Pamuk-Polyester Karışımı İpliklerin Nepş Varyans Analizi</td>
</tr>
<tr>
<td>58</td>
<td>Tablo 4.7</td>
<td>Pamuk-Polyester Karışımı İpliklerin Tüyülük Varyans Analizi</td>
</tr>
<tr>
<td>58</td>
<td>Tablo 4.8</td>
<td>Pamuk-Polyester Karışımı İpliklerin Kopma Kuvveti Varyans Analizi</td>
</tr>
<tr>
<td>59</td>
<td>Tablo 4.9</td>
<td>Pamuk-Polyester Karışımı İpliklerin Uzama Varyans Analizi</td>
</tr>
<tr>
<td>60</td>
<td>Tablo 4.10</td>
<td>Pamuk-Polyester Karışımı İpliklerin Mukavemet Varyans Analizi</td>
</tr>
<tr>
<td>67</td>
<td>Tablo 4.11</td>
<td>Pamuk Melanj İpliklerin Düğünsültülük Test Sonuçları</td>
</tr>
<tr>
<td>68</td>
<td>Tablo 4.12</td>
<td>Pamuk Melanj İpliklerin Mukavemet Test Sonuçları</td>
</tr>
<tr>
<td>68</td>
<td>Tablo 4.13</td>
<td>Pamuk Melanj İpliklerin Düğünsültülük Varyans Analizi</td>
</tr>
<tr>
<td>69</td>
<td>Tablo 4.14</td>
<td>Pamuk Melanj İpliklerin İnce Yer Varyans Analizi</td>
</tr>
<tr>
<td>69</td>
<td>Tablo 4.15</td>
<td>Pamuk Melanj İpliklerin Kalın Yer Varyans Analizi</td>
</tr>
<tr>
<td>70</td>
<td>Tablo 4.16</td>
<td>Pamuk Melanj İpliklerin Nepş Varyans Analizi</td>
</tr>
<tr>
<td>70</td>
<td>Tablo 4.17</td>
<td>Pamuk Melanj İpliklerin Tüyülük Varyans Analizi</td>
</tr>
<tr>
<td>71</td>
<td>Tablo 4.18</td>
<td>Pamuk Melanj İpliklerin Kopma Kuvveti Varyans Analizi</td>
</tr>
<tr>
<td>71</td>
<td>Tablo 4.19</td>
<td>Pamuk Melanj İpliklerin Uzama Varyans Analizi</td>
</tr>
<tr>
<td>72</td>
<td>Tablo 4.20</td>
<td>Pamuk Melanj İpliklerin Mukavemet Varyans Analizi</td>
</tr>
<tr>
<td>86</td>
<td>Tablo 4.21</td>
<td>Ham İplik-Boyalı İplik Mukavemet Değişimi</td>
</tr>
<tr>
<td>ŞEKİL LİSTESİ</td>
<td>Sayfa No</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Şekil 1.1</td>
<td>Spun Uzunlüğünün Stapel Diyagramı Üzerindeki Gösterimi</td>
<td>5</td>
</tr>
<tr>
<td>Şekil 1.2</td>
<td>Stapel Diyagramı Üzerinde Üst Yarı Ortalama ve Ortalama Uzunluk Gösterimi</td>
<td>6</td>
</tr>
<tr>
<td>Şekil 1.3</td>
<td>Örne Mamuller Üzerindeki Hataların Kaynakları</td>
<td>13</td>
</tr>
<tr>
<td>Şekil 1.4</td>
<td>İplik Tüyülüğü</td>
<td>18</td>
</tr>
<tr>
<td>Şekil 1.5</td>
<td>Düzgünsüzlik Artışının Kumaş Görünümüne Etkisi</td>
<td>16</td>
</tr>
<tr>
<td>Şekil 1.6</td>
<td>Periyodik Düzgünsüzliğin Kumaş Görünümüne Etkisi</td>
<td>17</td>
</tr>
<tr>
<td>Şekil 1.7</td>
<td>İnce Yer Hatalarının Kumaş Görünümüne Etkisi</td>
<td>17</td>
</tr>
<tr>
<td>Şekil 2.1</td>
<td>Nylon Oranına Bağlı Olarak İplik Mukavemetinin Değişimi</td>
<td>23</td>
</tr>
<tr>
<td>Şekil 2.2</td>
<td>Nylon Oranına Bağlı Olarak Kuvvet Uzama Davranışı</td>
<td>24</td>
</tr>
<tr>
<td>Şekil 2.3</td>
<td>Nylon Oranına Bağlı Olarak Kopma Kuvveti Ve Kopma Uzaması Değişimi</td>
<td>25</td>
</tr>
<tr>
<td>Şekil 2.4</td>
<td>Nylon Oranına Bağlı Uzama Grafiği</td>
<td>27</td>
</tr>
<tr>
<td>Şekil 2.5</td>
<td>Uzama-Kopma Sayısı İlişkisi</td>
<td>28</td>
</tr>
<tr>
<td>Şekil 2.6</td>
<td>Uzama Artışına Bağlı Olarak Ortalama Elyaf Uzunluğu ve Kopma Sayısı Değişimi</td>
<td>29</td>
</tr>
<tr>
<td>Şekil 2.7</td>
<td>İplik İçindeki Elyaflın Kopmayı Bağlı Hareketi</td>
<td>31</td>
</tr>
<tr>
<td>Şekil 2.8</td>
<td>Elyaflın Kopmayı Davranışı</td>
<td>33</td>
</tr>
<tr>
<td>Şekil 2.9</td>
<td>Uzamaya Bağlı Kopma Miktarı</td>
<td>34</td>
</tr>
<tr>
<td>Şekil 2.10</td>
<td>Nylonun Kuvvet Uzama Davranışı</td>
<td>35</td>
</tr>
<tr>
<td>Şekil 2.11</td>
<td>% 17,5 Uzamadaki Elyaflar</td>
<td>36</td>
</tr>
<tr>
<td>Şekil 2.12</td>
<td>Incelenmiş Olan Dört İpliğin Kuvvet Uzama Diyagramları</td>
<td>42</td>
</tr>
<tr>
<td>Şekil 2.13</td>
<td>Polyester ve Viskoz İpliklerin Kuvvet Uzama Davranısları</td>
<td>43</td>
</tr>
<tr>
<td>Şekil 2.14</td>
<td>Kopma Kuvveti ve Varyasyon Katsayısı İlişkisi</td>
<td>45</td>
</tr>
<tr>
<td>Şekil 2.15</td>
<td>Varyasyon Katsayısı CV % ve Düzgünsüzlik U % İlişkisi</td>
<td>46</td>
</tr>
<tr>
<td>Şekil 2.16</td>
<td>Kopma Kuvveti, İnce Yer İlişkisi</td>
<td>46</td>
</tr>
<tr>
<td>Şekil 2.17</td>
<td>İnce Yer Uzunlukları ile Kopma Kuvveti İlişkisi</td>
<td>47</td>
</tr>
<tr>
<td>Şekil 2.18</td>
<td>Tüyülük ve Lif Uzunluğu İlişkisi</td>
<td>48</td>
</tr>
<tr>
<td>Şekil 2.19</td>
<td>Tüyülük- İplik Kalınlığı İlişkisi</td>
<td>48</td>
</tr>
<tr>
<td>Şekil 3.1</td>
<td>Uster Tester 3 Test Cihazı</td>
<td>50</td>
</tr>
<tr>
<td>Şekil 3.2</td>
<td>Uster Tensorapid II Test Cihazı</td>
<td>51</td>
</tr>
<tr>
<td>Şekil 3.3</td>
<td>Uster Tensojet Test Cihazı</td>
<td>51</td>
</tr>
<tr>
<td>Şekil 4.1</td>
<td>Pamuk-Polyester Karışımı İpliklerin Düzgünsüzlik Değerleri</td>
<td>60</td>
</tr>
</tbody>
</table>
Şekil 4.2 Pamuk-Polyester Karışımı İpliklerin İnce Yer Değerleri .. 61
Şekil 4.3 Pamuk-Polyester Karışımı İpliklerin Kahl Yer Değerleri .. 61
Şekil 4.4 Pamuk-Polyester Karışımı İpliklerin Neps Değerleri .. 62
Şekil 4.5 Pamuk-Polyester Karışımı İpliklerin Tüylültük Değerleri .. 62
Şekil 4.6 Pamuk-Polyester Karışımı İpliklerin Kopma Kuvveti Değerleri 63
Şekil 4.7 Pamuk-Polyester Karışımı İpliklerin Uzama Değerleri .. 63
Şekil 4.8 Pamuk-Polyester Karışımı İpliklerin Neps Değerleri .. 64
Şekil 4.9 % 100 Pamuk İpliklerin Kopma Kuvveti-Uzama Dağılımı .. 65
Şekil 4.10 % 67 Pamuk- % 33 Polyester İpliklerin Kopma Kuvveti-Uzama Dağılımı 65
Şekil 4.11 % 33 Pamuk- % 67 Polyester İpliklerin Kopma Kuvveti-Uzama Dağılımı 66
Şekil 4.12 Pamuk-Polyester İpliklerin Kuvvet Uzama Diyagramları .. 66
Şekil 4.13 Pamuk Melanj İpliklerin Düzgünülük Değerleri .. 72
Şekil 4.14 Pamuk Melanj İpliklerin İnce Yer Değerleri ... 73
Şekil 4.15 Pamuk Melanj İpliklerin Kahl Yer Değerleri ... 74
Şekil 4.16 Pamuk Melanj İpliklerin Neps Değerleri ... 75
Şekil 4.17 Pamuk Melanj İpliklerin Tüylültük Değerleri ... 76
Şekil 4.18 Pamuk Melanj İpliklerin Kopma Kuvveti Değerleri ... 77
Şekil 4.19 Pamuk Melanj İpliklerin Uzama Değerleri .. 78
Şekil 4.20 Pamuk Melanj İpliklerin Mukavemet Değerleri ... 79
Şekil 4.21 % 1 Boyali Elyaf İçeren Pamuk Melanj İpliklerin Kopma Kuvveti-Uzama Dağılımı 80
Şekil 4.22 % 20 Boyali Elyaf İçeren Pamuk Melanj İpliklerin Kopma Kuvveti-Uzama Dağılımı 80
Şekil 4.23 % 40 Boyali Elyaf İçeren Pamuk Melanj İpliklerin Kopma Kuvveti-Uzama Dağılımı 81
Şekil 4.24 % 61 Boyali Elyaf İçeren Pamuk Melanj İpliklerin Kopma Kuvveti-Uzama Dağılımı 81
Şekil 4.25 % 80 Boyali Elyaf İçeren Pamuk Melanj İpliklerin Kopma Kuvveti-Uzama Dağılımı 82
Şekil 4.26 % 100 Boyali Elyaf İçeren Pamuk Melanj İpliklerin Kopma Kuvveti-Uzama Dağılımı 82
Şekil 4.27 % 100 Pamuk Melanj İpliklerin Kopma Kuvveti-Uzama Dağılımı 83
ÖZET

FARKLI KARIŞIMLARDAKİ TEK KAT KESİKLİ LİF
İPLİKLERİNİN KALİTE ÖZELLİKLERİ VE KUVVET-UZAMA
DAVRANİŞLARININ ARAŞTIRILMASI

Tekstil sektöründe pek çok çeşitli doğal ve sentetik elyaf kullanılmaktadır. Doğal elyafların hemen hepsi kesiklidir. Bunlardan en çok kullanılanları pamuk ve yündür.

Pamuk melanj iplikler üzerindeki çalışmada bu konuda bir kalite standartı olup olmadığı incelendi. İplik içerisindeki boyalı elyaf oranı değişimine bağlı olarak, iplik kalite değerlerinin ve kuvvet-uzama davranışının değişimi araştırıldı.

Polyester – pamuk iplikler üzerindeki çalışmada ise polyester elyaf oranı değişimine bağlı olarak iplik kalitesinin değişimi araştırıldı.

İki koldan yapılan bu araştırmanın asıl amacı farklı karakterde elyaf içeren karışımli ipliklerin mukavemet, düğünsüzlük, elastikiyet, kuvvet-uzama gibi özelliklerindeki değişimin incelenmesiydi. Bu incelemelerin ardından karışım oranına bağlı bir parametre olup olmadığı incelendi.
SUMMARY

THE RESEARCH OF THE QUALITY PROPERTIES AND
STRESS-STRAIN BEHAVIOR OF ONE PLY SPUN YARNS
IN VARIOUS PERCENTAGES

There are many natural and synthetic fiber in textile industry. Almost all natural fibers are staple fibers. Cotton and wool fibers are used most in textile.

This research is on cotton spinning. Cotton is blended with polyester fiber mostly. The blend ratio could be 50/50, 67/33 or 33/67. Polyester fiber is continue fiber. In order to blend with cotton, polyester fiber is cut and is converted to staple fibers.

Cotton melange yarns are the mixture of the dyed cotton fibers. Colored fibers are mixed by certain proportion to have desired color effect.

These fancy yarns in cotton spinning has not been researched much. Especially cotton melange fibers have not been researched. Because of that, this research is done.

This research is based on the changes in stress-strain behavior on yarns. Basically, it is done by two different ways.

In the first research, cotton melange yarns were observed. At first, test results are checked if there is any quality standard. Also it is checked that if these yarns’ quality characteristics and stress-strain behaviors change by the ratio of the dyed cotton fiber in the yarn.

Polyester- cotton blended yarns are tested in the second research. The main question is the same with first research. Test results are checked if there is any change in the yarn stress-strain behavior by the ratio of polyester fiber.

The main focus on these results is to observe the yarn quality characteristics such as evenness, elasticity, stress-strain behavior of the yarns which have different type of fibers. It is checked that if there is any characteristic which changes by the ratio of the fiber in the yarn.
1 GENEL BİLGİLER

Karışımli iplikler tekstilde uzun bir süre bir kullanılmaktadır. Elyafların karıştırılmasıyla üretilen iplikler değişik özellikler kazanır. Amaç tek bir elyaf ile elde edilemeyen bir farklılık yaratmaktadır.

Karışım iplik yapısının önemini anlamak için mekanik davranışlarını anlamak ve tanımlamak gerekmektedir. İstenilen özelliklere ulaşmak için gerekli optimum karışım oranı hakkında geçerli bir çalışma ortaya konmamıştır. Çok düşük oranda karışımda yer alan elyafların fonksiyonları iyileştirici bir etkisinin olmadığı, sadece estetik amaçlı yapıldığı bilinmektedir.
Giyimde, polyester, akrilik gibi sentetik elyaf türleri tek başlarına kullanıldığında rahatsızlık vermektedir. İnsan vücudü ile uyum sağlayan doğal elyaflar ile karıştırılacak kullanılanda bu tür rahatsızlıklar giderilebilmektedir. Ancak biri 100% polyester diğerleri 100% pamuk iki ayrı iplikten yapılan kumaşlar farklı davranış sergilerler. Tüketicide ise nihai karışım oranını gördüğü için karışımın elyafından ya da ipliklerden olduğunu bilemez.

Dacron ticari markası ile 1953 te tekstile sunulan polyester elyafi en geniş kullanım hacmine sahip sentetik elyafıdır. Polyester sağlamlığı, çekmezlik ve buruşmazlık özelliği kazandırması, sürünme mukavemetini artırması ve kolay yıkanabilirliği ile kendisine yer edinmiştir. Zaman içinde gelişmiş, plastik şişelerin geri kazanımdan elde edilen ticari tipleri daşıdır üretilmiştir. Bugün dösemelikten ev tekstiline polyester ve pamuk karışımli iplikler kullanılmaktadır. Alerjik olmayan polyester elyafı daha da geliştirilmiştir. Vücuta rahatsızlık vermemektedir. Amerika'nın toplam elyaf tüketiminin %42 si polyesterdir. 50%-65% oranında pamuk ile karıştırdığıda giyimde ve ev tekstilinde kullanım rahatsızlığı yüksek mamuller üretilmektedir. 45%-55% oranında yön ile karıştırdığıda 100% yön görüntüsü veren kaliteli kumaşlar elde edilmektede, üstelik bu sağlamlık ve buruşmazlık özellikleri de iyileştirilmektedir.

Keten gibi bazı elyafların görüntüsünü taklit edebilmek için düşük oranlarda keten elyafı ile pamuk ya da viskon karıştırılacak iplik elde edilebilmekte ve bu iplik çok daha ucuz mal olmaktadır.

Muline ya da melanj efekti verebilmek için iki değişik elyaf karıştırılacak tek kat iplik yapılmakta ve daha sonra herhangi bir komponenti boyanarak ya da her iki komponent de değişik renklere boyanarak özel efektler üretilmektedir. Ticari isimlendirmede tek kat iki değişik renkte ipliğin bükümlesi ile elde edilen ipliğe de muline denebilmektedir.

Bahsedilen bütün bu ürünlerde iki ya da daha fazla elyaf harmonlanarak iplik üretimi yapılmaktadır. Söz konusu karışımının ser makinalarında da yapılması mümkündür. Hatta muline iplikler fitil halinde ring iplik makinalarının üzerinde bir araya getirilerek üretilmektedir.
Bu çalışmada öncelikle sadece pamuk melanj ipliklerde boyalı elyaf oranı değişiminin iplik kalite özelliklerine etkisinin araştırılması amaçlanmıştır. Ayrıca pamuk/polyester karışım ipliklerin kalite özelliklerindeki değişimi de incelenmesi tcari olarak üretilen kumaşlarda kullanılan bu ipliklerin hammaddede özelliklerinin karşılaştırılması olarak orataya konabilmesi açısından tezin kapsamlı içine alınmıştır.

Hem pamuk melanj hem de pamuk/polyester karışımında kalite değerlerinin ve kuvvet uzama davranışlarının ne ölçüde değiştiği araştırılmıştır.

1.1 Kesikli Lif İplikleri Bilgisi

Doğal elyafların hemen hepsi kesikli elyaflardır. En çok kullanılan pamuk, yün, keten gibi doğal selülozik ya da protein esaslı elyaflar ile iplik yapabilmek için özel üretim şekilleri oluşturmuştur.

Tez kapsamında pamuk iplikçiliği ele alındığı için yün iplikçiliği incelenmemiştir.

Sentetik elyaflar devamlı filament şeklinde üretilirler. Eğer pamuk iplikçiliğinde karşıtırılacak kullanılabilecek ise kullanılabacak doğal elyaf uzunluğuna benzer şekilde kesilerek kesikli lif yapılır.

Sentetik elyaflar temiz olduklarını için, pamuk elyafın harman hallaç dairesinde temizlenmek için işlendiği makinalardan geçmeleri gerekmez. Hatta sentetik elyaflar serit halinde cer makinasyonuyle pamuk seritleri ile birleştirilerek, iplik karışımına dahil edilebilirler. Ancak ideal karışım homojenliği karışım elyaf aşamasında yapılar rsa gerçekleşir.

Ülkemizde GAP ile birlikte 850.000 ton /yıl pamuk üretilmektedir. Dünyadaki doğal elyafların üretimi tüketim ihtiyacı karşılamadığı için sentetik elyafların üretildiği düşünülürse GAP ile sağlanan ek üretimin faydasi ortaya çıkmaktadır. (Özipek, 1999)

1.1.1 Olgunluk

Bu tür elyaflar neps oluşumunu arttırlar ve boyama işlemlerinde fazla boyan absorbsı etikleri için farklı tonlar alarak abража neden olurlar.

1.1.2 Uzunluk

Ring iplikçiliğinde iplik kalite özelliklerini etkileyen en önemli elyafl özellikidir. Tüm üretim hattının çalışmasını optimize edilmesinde belirleyicidir. Ancak pamuk elyaflının uzunluğu sabit değildir. Bu nedenle kullanılabacak olan uzunluğu tanımlamak gerekir.

Span uzunluğu ise elyafların fibrografa yakalandıkları noktadan uzunluklarını belirtir.
%2.5 span uzunluğu: Fibrograftaki yakalanma noktasından en uzakta olan ve elyafların sadece %2.5 in ulaşabilirdiği uzakuktur. % 2.5 span uzunluğu pamuk elyafernın iplik eğirmeye uygunluğunun değerlendirildiği ulusal arası bir standarttır. Şekil 1.1.

Şekil 1.1 span uzunluğu'nun stapel diyagramı üzerindeki gösterimi.

Fibrograf avantajlarına rağmen , gerçek stapel diyagramı çıkarmamaktadır.

Pamuk elyaflın uzunluğu değişkendir. Bu değişkenliğin derecesi iplik kalitesini etkilemektedir. %2.5 span uzunluğuna ve efektif uzunluğa bağlı olarak yapılan silindir ayarları bu değişkenlikten etkilenir ve yüzey elyaflar denilen kontrol edilememen elyaflar oluşur. Bu elyaflar da iplik kalitesini kötü etkiler. Şekil 1.2.

Pamuk elyaflın uzunluk CV si %30’u geçmemelidir. Eğer daha fazla , %50 gibi ise iki değişik karakterde pamuk elyafl ya da yapay lif karıştırılmış olabilir. (Özipek, 1999)

CV% < %26 küçük değişim

%26 < CV% < %34 orta değişim

CV% >34 % çok büyük değişim söz konusudur.
Şekil 1.2 Stapel Diyagramı Üzerinde Üst Yarı Ortalama ve Ortalama Uzunluk Gösterimi

1.1.3 İncelik

İplik inceligi mikroner değeri ile belirtilir. Bu değeri tespit eden hava akımı prensibi ile çalışan test cihazları bulunmaktadır. Bu tür ölçümde ölü elyaf oranı, sonuçları etkileyebilir.
Pamuk Elyaf için

Mikroner Değer Aralıkları (μgr/inç)

Mikroner < 3.0 Çok ince
3.1 < Mikroner < 3.9 İnce
4.0 < Mikroner < 4.9 Normal
5.0 < Mikroner < 5.9 Kalın
6.0 < Mikroner Çok Kalın

1.1.4 Mukavemet

Elyaf mukavemeti ve elastikiyeti iplik mukavemetini belirleyici ana unsurdur. Mukavemeti düşük elyaflar harman hallaç işlemleri ve tarak makinasyonu koparak kısa elyaф oluşturur ki bu da iplik düzgünsüzliğinin kötü etkiler.

Pamuk elyaфın mukavemeti 15-40 cN/tex arasındadır. Polyester elyaф ise 35-60 cN/tex arasındadır. Bir liften iplik olabilmesi için mukavemetinin min. 6 cN/tex olması gereklidir.

Elastikiyet de mukavemet kadar önemlidir. Pamuk elyaфın elastikiyeti %6-10 arasında. Sentetik lifler %10-20 arasında elastikiyet değeri alabilirler.
Pamuk Elyafi Pressley Mukavemet Değerlerine göre, livre/inç

Mukavemet > 93 Çok mukavemetli
87 < Mukavemet < 97 Çok Kuvvetli
81 < Mukavemet < 86 Kuvvetli
75 < Mukavemet < 80 Orta
70 < Mukavemet < 74 Ortanın Altı
Mukavemet < 70 Zayıf

1.1.5 Yabancı madde miktarı

Pamuk balyasındaki yabancı madde miktarı harman dairesinin temizleme işlemini optimize etmesi açısından çok önemlidir. Fazladan yapılacak her mekanik işlem pamuk eleyafına zarar verecektir. Özellikle değişik pamukların karışımı söz konusu ise bu optimizasyonun yapılması oldukça zordur.

Shirley Analizörü kullanılarak elyaftaki yabancı madde miktarı ölçülebilir. Uster MDTA (MicroDust and Trash Analyzer) cihazı da bu ölçümleri yapmaktadır.

Ham pamuk için yabancı madde oranları, %

Yabancı madde < 1.2 % Çok temiz
1.3 % < Yabancı madde < 2.0 % Temiz
2.1 % < Yabancı madde < 4.0 % Normal
4.1 % < Yabancı madde < 7.0 % Kirli
7.0 % < Yabancı madde Çok kirlenmiş
1.1.6 Renk

Pamuk elyafın rengi, üretilcek ipligin ne kadar iyi kasarlanabileceğini ya da boyanabileceğini gösterir. High Volume Instruments ile elyafın parlaklık ve sarılık değerleri ölçülebilmektedir.

Belirtilen özelliklerin ölçümü için örneklemeye metodo ile test yapılmaktadır. Ölçüm yapan test cihazlarının kapasiteleri ve hızı arttırıca daha çok örnek ile test yapılmakta ve bu da hammaddenin yığıını hakkında daha kesin bilgiler vermektedir. Elyaf kalite değerleri ölçüm maddindeki asıl amacı istenen kalitedeki ipliği üretmek için hammaddenin yeterli olup olmadığınıdır. Bu ölçümlerin ekonomik, pratik ve başarılı bir şekilde yapılmasıının önemi kadar, ölçüm sonuçlarının iplik kalitesine etkisi de sağlıklı yorumlanması da önemlidir.

Laboratuvarlar arası ölçüm farklılıklar olabilir. Bu farklılıklar Zellweger Uster tarafından listelenmiştir. Tablo 1.1
Tablo 1.1 laboratuvarlar arası ölçüm farklılıkları

<table>
<thead>
<tr>
<th>Kalite Karakteristiği</th>
<th>Laboratuvar Varyasyonu CVb%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikroner</td>
<td><2.5</td>
</tr>
<tr>
<td>50% Span Uzunluk</td>
<td><2.5</td>
</tr>
<tr>
<td>2.5% Span Uzunluk</td>
<td><1.2</td>
</tr>
<tr>
<td>Düzgünlik Orarı</td>
<td><2.0</td>
</tr>
<tr>
<td>Elyaf Mukavemeti</td>
<td><4.5</td>
</tr>
<tr>
<td>Elyaf Uzaması</td>
<td><9.5</td>
</tr>
</tbody>
</table>

1.2 İplik Tanımlayıcı Parametreler Düzgünleşme, Kuvvet-Uzama Genel Bilgiler

İplik kalite karakteristikleri, iplik endüstrisinin son yıllardaği gelişimine bağlı olarak uluslar arası tanımlamalar ve kabuller şekline gelmiştir. İplik kalite kontrolü de gerek on-line gerekse düzenli off-line kontroller ile üretim aşamasında yapılmaktadır. İplik üreticisi ile dokuma ya da örne işletmecisi arasında iplik kalitesi hakkında üzerinde anlaşılabilecekleri parametreler belirlenmiştir.

Örneklikte kullanılan iplik kalite karakteristikleri ve kumaş kalitesine etkisi aşağıda görülmektedir. (Uster, 1999) Kumaş, Ne 30 numara, 100% penye pamuk ipliğinden yapılmış olup gramaji 145 gr/m2 dir. Süprem kumaş, lacivert renktedir. Tablo 1.2
Tablo 1.2 iplik kalitesinin kumaş görüntüüne etkisi

<table>
<thead>
<tr>
<th>İplik Karakteristikleri</th>
<th>İyi görüntü</th>
<th>Könüt görüntü</th>
</tr>
</thead>
<tbody>
<tr>
<td>Düzgünşüzlük CV0.01 m</td>
<td>12.7 %</td>
<td>13.5 %</td>
</tr>
<tr>
<td>İnce Yer (-50%)/1000 m</td>
<td>1.4</td>
<td>3.5</td>
</tr>
<tr>
<td>Kalın Yer (+50%)/1000 m</td>
<td>23.2</td>
<td>54.5</td>
</tr>
<tr>
<td>Neps (+200%)/1000 m</td>
<td>42.8</td>
<td>82.3</td>
</tr>
<tr>
<td>Numara (CV100m) Düzgünşüzlüğü</td>
<td>1.9% *</td>
<td>1.4% *</td>
</tr>
<tr>
<td>Klassimat Hataları/100.000 m</td>
<td>1.28</td>
<td>3.45</td>
</tr>
<tr>
<td>A3+B3+C2+D2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uzun kalın yerler (E)</td>
<td>0.60</td>
<td>1.30</td>
</tr>
<tr>
<td>Uzun ince yerler (H2+I2)</td>
<td>1.92 **</td>
<td>0.75</td>
</tr>
</tbody>
</table>

* Farklılık istatistiksel açıdan önemli değildir. ** Uzun ince yerler 5 örnekte birdir.

Uzun kalın yerler ve numara varyasyonu değişimi dışındaki değerler bize gösteriyor ki iyi görüntü elde edilen kumaşın kalite karakteristikleri, kötü görüntü elde edilen kumaştaki değerden belirgin derecede daha iyi. Test sonuçlarına bakıldığında kalite karakteristikleri daha iyi olan bir iplikten görüntüü daha iyi bir kumaş elde edileceği sonucuna varılıyor.

Benzer gözlemlere dayanılarak yuvarlak örgü makinalarında kullanılması gereken iplik kalite özellikleri Tablo 1.3 te çıkarılmıştır.
Tablo 1.3 %100 penye pamuk, ring iplik için kalite karakteristikleri

<table>
<thead>
<tr>
<th>Kalite Karakteristikleri</th>
<th>Ne 24</th>
<th>Ne 30</th>
<th>Ne 34</th>
<th>Ne 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numara değişimi, CVt(100m)%</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
<td><2.0</td>
</tr>
<tr>
<td>Numara değişimi, CVm(0.01m)%</td>
<td><11.0</td>
<td><12.0</td>
<td><13.0</td>
<td><14.0</td>
</tr>
<tr>
<td>İnce Yer</td>
<td><3</td>
<td><4</td>
<td><7</td>
<td><9</td>
</tr>
<tr>
<td>Kalın Yer</td>
<td><20</td>
<td><30</td>
<td><60</td>
<td><100</td>
</tr>
<tr>
<td>Neps</td>
<td><60</td>
<td><70</td>
<td><100</td>
<td><120</td>
</tr>
<tr>
<td>Kopma uzaması, Fmax/tex(cN)</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
</tr>
<tr>
<td>Kopma Kuvveti CVFmax(%)</td>
<td><6.0</td>
<td><7.0</td>
<td><7.5</td>
<td><8.0</td>
</tr>
<tr>
<td>EFmax (%)</td>
<td>>5.5</td>
<td>>5.3</td>
<td>>5.2</td>
<td>>5.0</td>
</tr>
<tr>
<td>Tüylülük(sh)</td>
<td><1.5</td>
<td><1.4</td>
<td><1.3</td>
<td><1.3</td>
</tr>
<tr>
<td>Klassimat</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td><30</td>
</tr>
<tr>
<td>A3+B3+C2+D2/1+E+G+F (Kahn) / 100.000 m (temizlenmemiş)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klassimat</td>
<td><3</td>
<td><3</td>
<td><3</td>
<td><3</td>
</tr>
<tr>
<td>H2+I2 (İnce) / 100.000 m (temizlenmemiş)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Yukarıda belirtilen değerler minimum değerlerdir.

Birkaç yıl önce bir Avrupalı örme işletmesinin ürünlerinin %20 sinin hatalı olduğunu görerek başladığı araştırma sonuçları Şekil 1.3 te görülmektedir. (Uster, 1999)

Şekil 1.3 örne mamuller üzerindeki hataların kaynakları

Ürünlerdeki hataların büyük çoğunluğunun örne makinasından kaynaklandığı görülüyor. Örmeden ve iplikten kaynaklanan hataları şöyle sıralanabilir.

<table>
<thead>
<tr>
<th>Örme Hataları</th>
<th>İplik Hataları</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patlak</td>
<td>Başka renkte elaf karışması</td>
</tr>
<tr>
<td>Leke/Bulaşmalar</td>
<td>Yabancı maddeler</td>
</tr>
<tr>
<td>Uçunlu</td>
<td>Kısa kalın yerler</td>
</tr>
<tr>
<td>İlmek Kaçığı</td>
<td>Uzun kalın yerler</td>
</tr>
<tr>
<td>Yırtılma</td>
<td>Uzun ince yerler</td>
</tr>
<tr>
<td>İğne Kırılması</td>
<td>Düğümler/Splice lar</td>
</tr>
<tr>
<td>İlmek Transferi</td>
<td>Düzgünsüzlük</td>
</tr>
<tr>
<td>Diğerleri</td>
<td></td>
</tr>
</tbody>
</table>

13
Teknolojinin gelişimi ile birlikte artan makine hızları mevcut kaliteli iplikler ile dahi hata frekansını artırmaktadır. Yuvarlak Örne makinalarında çalışabilecek bir pamuk ipliğin kalite değerleri şu şekilde olmalıdır. Tablo 1.4 ve Tablo 1.5

<table>
<thead>
<tr>
<th>Numara Değişimi CVt, cut length 100 m**</th>
<th>< 1.8 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numara Değişim CVt , cut length 10 m **</td>
<td>< 2.5 %</td>
</tr>
<tr>
<td>Kopma Dayanımı (Fmax / tex)</td>
<td>>10 cN/tex</td>
</tr>
<tr>
<td>Kopma Mukavemeti ,CVFmax</td>
<td>< 10 %</td>
</tr>
<tr>
<td>Kopma Uzaması , Efmax</td>
<td>> 5.0 %</td>
</tr>
<tr>
<td>Kopma Uzaması , CV si</td>
<td>< 10 %</td>
</tr>
<tr>
<td>İplik Bükümü (∞ metrik)</td>
<td>Ring iplik 94-110</td>
</tr>
<tr>
<td>İplik sürünmesi</td>
<td>Ideal .15 μ</td>
</tr>
<tr>
<td>İplik Düzgünsüzliği **</td>
<td>< 25 % Uster İstatistik Kışası</td>
</tr>
<tr>
<td>İnce Yer / Kalın Yer / Neps</td>
<td>< 25 % Uster İstatistik Kışası</td>
</tr>
<tr>
<td>Tüylülük H ***</td>
<td>> 50 % Uster İstatistik Kışası</td>
</tr>
<tr>
<td>Bobinler Arası Tüylülük Değişimi H, CVb</td>
<td>< 7 %</td>
</tr>
<tr>
<td>Az rastlanan ince ve kalın Klassimat hataları</td>
<td>A3/B3/C2/D2 or D1 olmamalı</td>
</tr>
<tr>
<td>Diğer Klassimat Hataları</td>
<td>A3 + B3 + C2 + D2 <= 5 / 100.000 m</td>
</tr>
</tbody>
</table>

* Düşük kopma mukavemeti değeri, yüksek kopma uzaması değeri ile kompanse edilebilir. ** Süperm kumaşlar için çok önemlidir. *** Yüksek ancak sabit bir tüylülük dağılımı kumaş görüntüslü ve tuşesi açısından önemlidir.

Tablo 1.5 örme işlemesinin kullanacağı ipliklerin özellikleri

<table>
<thead>
<tr>
<th>Numara Nm</th>
<th>Büküm faktörü, α, inç</th>
<th>Kopma Kuveti, cN/tex</th>
<th>CV Fmax %</th>
<th>Düzgünslük CVm%</th>
<th>İnce Yer</th>
<th>Kalın Yer</th>
<th>Neps</th>
<th>Kumaş tipi</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 Amerikan</td>
<td>3.3</td>
<td>12.5</td>
<td>9.0</td>
<td>13.0</td>
<td>4</td>
<td>50</td>
<td>60</td>
<td>Süprem</td>
</tr>
<tr>
<td>40 Amerikan</td>
<td>3.3</td>
<td>13.0</td>
<td>9.0</td>
<td>13.0</td>
<td>6</td>
<td>50</td>
<td>70</td>
<td>Süprem</td>
</tr>
<tr>
<td>50 Amerikan</td>
<td>3.5</td>
<td>13.0</td>
<td>9.0</td>
<td>14.5</td>
<td>10</td>
<td>70</td>
<td>90</td>
<td>Ribana</td>
</tr>
<tr>
<td>55 Amerikan</td>
<td>3.5</td>
<td>13.5</td>
<td>9.0</td>
<td>15.0</td>
<td>12</td>
<td>90</td>
<td>110</td>
<td>Ribana + Süpren</td>
</tr>
<tr>
<td>60 Amerikan</td>
<td>3.5</td>
<td>13.5</td>
<td>9.0</td>
<td>15.0</td>
<td>15</td>
<td>100</td>
<td>150</td>
<td>Çift Plaka</td>
</tr>
<tr>
<td>70 Amerikan</td>
<td>3.6</td>
<td>13.5</td>
<td>10.0</td>
<td>15.5</td>
<td>20</td>
<td>100</td>
<td>120</td>
<td>Tricot + Ribana</td>
</tr>
</tbody>
</table>

Ust Düzgünslük değeri arttıkça kumaş görüntüsünün nasıl değiştiğine ait üç örnek kumaş Şekil 1.5 te gösterilmiştir. CVm = 11.5 %, 14.7 % ve 22.6 % değerindeki iplikler kullanılmıştır. Bulutlu görüntünün artışı açıkça izlenemaktadır.
Şekil 1.5 düzgünverständlich artışının kumaş görünümüne etkisi

Şekil 1.6 periyodik düzgünersistentliğin kumaş görünümüne etkisi

Periyodik hataların neden olduğu kumaş hatası da Şekil 1.6 da görülmektedir. CVm değerini değiştirmeyen bu hata kumaş üzerinde istenmeyen görüntüye neden olmaktadır.

İnce ve Kalın yer hatalarının neden olduğu kumaş görüntüsü de Şekil 1.7 deki gibidir. Yuvarlak örme ribana kumaş, Ne 30/1 , 100% penye pamuk iplikten yapılmıştır. İplik bükm faktörü α=inç = 3.3 ve Kumaş gramaji 180-200 gr/m2 dir. Peryodik şekilde görülen bu hata bize farklı kalınlıkta, türde bir ipliğin beslenmekte olduğunu gösteriyor da olabilir.
Şekil 1.7 ince yer hatalarını kumaş görünümüne etkisi (uster, 1999)
Şekil 1.4 iplik tüylülüğü

Çoğu zaman yüksek bir tüylülük oranı ve düşük büküm değeri örme kumaşın tuşesi için gereklidir. Ancak bu durumda tüylülük değerinin değişim göstermemesi gerekir.

Kısa ya da uzun periyotlu düzgünzülükler örme kumaşta bant oluşumuna ya da bulutlu bir görünümue neden olurlar.

İplik tüylülüğünü etkileyen parametreler;

18

Uster Tester 3 cihazında 'tüyülük' olarak ifade edilen "H" in (hairiness) tanımı açıklanmalıdır. Tüyülük ölçme ünitesinde yaklaşık 1 cm uzunluğundaki ipligin tüyülüğünü incelenir. Hesaplanan sayısal değerin daha iyi anlaşılabilmesi için aşağıdaki tanımlı yapılmıştır.

Tüyülük "H" tüm dışarı çıkan liflerin toplam uzunluklarının (cm olarak) ölçme uzunluğu olan 1 cm'ye oranıdır. Mesela, tüyülük değeri H=4, çıkan veya sarkan elyaf uzunluğunu toplamı olan 4 cm' nin 1 cm'lik ölçme uzunluğuna oranı demektir. Bu tanımda tüyülüğün temel bir değerlendirme mesasını sağlar. Bu metod ortalama elyaf inceliğine sahip pamuklu iplikler için geçerlidir. Tüyülük iki uzunluğun birbirine oranı olduğundan boyutsuz bir sayıdır.
1.3 Elyaf Karışımlı İpikler İle Elde Edilen İpik Türleri Ve Bu İpiklerin Üretim Yöntemleri

1.3.1 İmitasyon İpikler
İmitasyon ipikler keten, tavgan tıyük gibi pahalı elyafların yerine genellikle az oranda bu elyaflardan ve yüksek oranda daha ucuz sentetik ve doğal elyaflar karıştırılarak aynı görüntüyü taklit etmek için üretilirler.

Eğer %20 keten, %80 viskon karışımlı bir iplik üretilirse, örenlen kumaş keten görünümü olduğu gibi, viskonun etkisi ile daha yumuşak tutumlu ve dökümlü de olur. Karışım yapılan elyafların olumlu özellikleri biraraya getirilip çoğun zaman %100 keten iplikten çok daha iyi bir ürün elde edilebilir.

1.3.2 Muline İpikler
Ring iplik makinasında iplik eğirme işlemi öncesinde iki ayrı fitilden birbirlerinden farklı renkte iki fitil birleştirerek çekim sistemine verilir. Üretilen iplik boyunca iki ayrı fitil rengi de birbirine karışmamış şekilde görülür.

Karışım yapılan iki fitil genellikle aynı kalınlıktadır. Karışım oranı %50-%50 olduğu için iplik ve kumaş üzerindeki dağılımı da eşit olur. Ticari olarak İtalyan Muline şeklinde adlandırılan ipikte ise karışım oranı eşit değildir ve kumaş üzerindeki görüntü üstü oldukça farklıdır.

Karışımındaki fitillerin numarası farklı olabileceği gibi fitiller iki ayrı elyaf cinsinden de oluşturulabilir. Örneğin siyah polyester bir fitil ile beyaz pamuk fitil biraraya getirilip iplik yapılabilir. Bu durumda iplik üretiminin ardından beyaz pamuk elyafi farklı bir renge boyanarak çeşitlendirme sağlanabilir. Ancak örneğin beyaz polyester ve beyaz pamuk karışımı bir iplik yapılrsa üretim sırasında gerçekleşmiş aksaklıkları tespit etmek imkansızdır. Oluşan hatalar ancak iplik boyama ya da kumaş boyamadan sonra ortaya çıkacaktır. Eğer bu aşamada bir hata görülürse, tamiri imkansız olacağı için büyük zararlara yol açabilir. Bu şekilde üretilen kumaşın her iki komponenti de aynı renge
boyansa dahi eğer komponentlerin karışım oranında bir düzgünsülük var ise kumaşta yine abraj olacaktır.

1.3.3 Melanj İplikler

Melanj iplikler ise harmanda ya da şerit birleştirme aşamasında değişik renklerdeki elyafların biraraya getirilmesi ile üretilir. Mulfine iplikten farklı olarak bu tür ipliklerde renk karışımı daha homojendir. Çoğu zaman karıştırlan elyafların rengi değil karışımın rengi görülür.

1.3.3.1 Harman Karışımı % 100 Pamuk Melanj İplikler

100% pamuk elyaftan ipliklerin üretimi, harman dairesinde önceden boyanan elyafların karıştırılması şeklinde gerçekleşir. Bir kısmın renkler için şerit birleştirme aşamasında da karıştırılması mümkündür.

100% pamuk melanj iplikler en önemli konu eyaft boyama işlemidir. Elyafların homojen bir şekilde boyandığından emin olmak gerekir. Bu konudaki değişimi azaltmak için birden çok parti uygun şekilde homojenleştirilir.

1.3.3.2 Polyester Ya Da Diğer Elyaflar İle Karşıtırlarak Elde Edilen Melanj İplikler

Karışım oranları farklı polyester-pamuk ipliklerin iki komponentini ya da sadece birini boyaarak melanj iplik elde edilebilir. Ancak bu iplik çeşidi hem içindeki polyester nedeni ile hem de elde edilebilecek renk çeşitliliğin azlığı nedeni ile her zaman tercih edilmemektedir.
2 LİTERATÜR ÖZETİ

Coplan, Kemp & Owen, Machida gibi araştırmacılar da karışım iplikler üzerinde teorik araştırmalar yapmışlar pratik deney sonuçları ile araştırmalarını desteklemişlerdir.

Öncelikle Coplan nylon – pamuk karışımı iplikler üzerinde çalışmış ve 100% pamuk tan 100% nylon karışım oranına kadar değişen aralıktaki iplik mukavemetini karakterize eden bir grafik oluşturmuştur. (S.Backer, 1950). Şekil 2.1 deki A eğrisi belirli bir oranda iplikte bulunan əyafların toplam mukavemetinin hesaplanması yöntemi ile belirlenmiştir. B eğrisinde ise bazı liflerin iplikte mukavemet taşımayacağını (iki ucunun da iplikte yakalanamayacağı) düşünülerek toplam mukavemeti A eğrisinden %15 azaltılmıştır. Pierce in (weak link) zayıf bağ teorisi için verdiği %10 luk mukavemet azalması da eklenmiş ve C eğrisi oluşturulmuştur. Son olarak verimlilik faktörü dediği son indirim yapılmış ve bu faktörün əyaf özellikleri helix açısına ve karışım oranına bağlı olarak değiştiğini belirtmiştir. Böylece karışımında bulunan liflerin tekil mukavemetlerinin toplamı olan teorik iplik mukavemetinden hareket edip pratik iplik mukavemetine ulaşmıştır.

Şekil 2.1 Nylon oranına bağlı olarak iplik mukavemetinin değişimi

İpliklerin özelliklerini:

<table>
<thead>
<tr>
<th>İplik Numarası</th>
<th>Nylon oranı %</th>
<th>0 - % 20 - % 40 - % 60 - % 80 - % 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ne 24/1</td>
<td>4,0</td>
<td>38 mm, 3 denye</td>
</tr>
</tbody>
</table>

Pamuk eylef özellikleri

<table>
<thead>
<tr>
<th>Pamuk eylef özellikleri</th>
<th>Eksibit uzunluk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efektif uzunluk</td>
<td>34,1 mm</td>
</tr>
</tbody>
</table>

Kısa Eylef Oranı

<table>
<thead>
<tr>
<th>Kısım Eylef Oranı</th>
<th>Ortalama uzunluk</th>
</tr>
</thead>
<tbody>
<tr>
<td>% 22</td>
<td>25,4 mm</td>
</tr>
</tbody>
</table>

İncelik

| İncelik | 1,8 denye | Olgunluk | 69 % normal, % 10 ölü eylef |

Kuvvet Uzama eğrileri elde edilirken aynı oranda yük verilmiştir ve 50 cm test uzunluğu kullanılmıştır. 7,1 gr’lik başlangıç yükü verilmiştir. Her kopuştan sonra kopan iki parça kısaçlardan kesilerek tartılmıştır. Her karışıın için 20’şer tane eğri elde edilmiştir. Deney sonuçlarının sağlıklı olması için her karışıın için belirli bir uzama miktarı seçilmiştir, bu uzama miktarı kopma uzamasının altındadır. Her eğri için belirlenen uzamadaki kuvvet okundu ve ölçülen ipligin ağırlığına bölünmüştür. % 60 ve % 80 nylon oranları için bulunan değerler eğriyle çıkışmıştır.

23
Şekil 2.2 nylon oranına bağlı olarak kuvvet uzama davranış

% 7 uzamaya kadar bütün karışımalar aynı karakterdeydi. % 7'den sonra nylon oranı % 20 ve % 40 olan iplikler kopmuştur. İçindeki nylon oranına bağlı olarak kopma uzaması ve kopma gerilmesi değişimi incelemiştir.

Kopma gerilmesi, % 45 - % 50 nylon oranı civarında minimum değer göstermiştir. Kopma uzaması, %8 - % 40 nylon oranı arasında sabit kalmıştır. Nylon oranı % 80 olduğunda, kopma uzaması hızla artarak % 17'ye çıkmaktadır. Tekil ölçümlerde % 60 oranında nylon içeren iplik için kopma uzaması % 7 ile % 19 arasında değişim göstermektedir. Şekil 2.3 teki eğriler iki ayrı bölgede incelenebilir. Birisi uzamanın % 7,5'a kadar olduğu bölge, diğeri de % 7,5'un üstündeki bölgedir.
Şekil 2.3 Nylon Oranına Bağlı Olarak Kopma Kuvveti ve Kopma Uzaması Değişimi

% 7,5’un altındaki bölge:

Belirli uzamadaki karışım ipliğin gerilmesi, % 7-7,5'a kadar olan uzamalarda % 100 pamuk ve % 100 nylon ipliklerin aynı uzamayi gösterdiği kabulü yapılarak hesaplanmıştır.

\[Q_y = \left(\frac{Y}{100}\right)Q_n + \left(\frac{1-Y}{100}\right)Q_c + ... \] (1)

Bu formüldeki \(Q_y, Q_n \) ve \(Q_c \) gerilmeleri, \(Y \) komponentin oranını gösterir. % 100 pamuk ve % 100 nylon kuvvet uzama grafiklerinden bulunan değerler: \(Q_n = 0,62 \) gr/denye, \(Q_c = 1,53 \) gr/denye'dir.
Bu durumda % 60 nylon içeren iplikin gerilmesi $Q_{60} = (\frac{60}{100}) \times 0,62 + (\frac{40}{100}) \times 1,53$

$Q_{60} = 0,98$ gr/denye

Hesaplanan değerlerle gerçek değerler arasında iyi bir korelasyon olduğu görülmektedir. Sadece % 40 nylon içeren iplik değeri, gerçek değerden farklı çıkmıştır. Şekil 2.4.

% 7,5’un üstündeki bölge:

Burada sadece % 60, % 80, % 100 nylon içeren iplikler incelenmiştir. Burada gerilme nylon tarafından karşılanır kabulü ile aşağıdaki değiştirilmiş eşitlik kullanılmıştır.

$$Q'_e = \frac{Q_y - (\frac{Y}{100})Q_n}{1 - \frac{Y}{100}}$$ (2)

% 14 uzama için $Q_n = 1,43$ gr/denye, $Q_{60} = 1,53$ gr/denye. Bu durumda

$$Q'_e = \frac{1,53 - (\frac{60}{100}) \times 1,34}{1 - \frac{60}{100}} = 1,82$$ gr / denye

Nylon oranı % 60 ve % 80 için bütün hesaplamalar yapılarak pamuk elyafın gerilim değerleri grafik üzerinde gösterilmiştir. % 7 uzama kadar her iki karışım içindeki pamuğun gerilim değerleri birbirine çok yakındır, istatistiksel olarak aralarında önemli
Şekil 2.4 Nylon oranına bağlı uzama grafiği

bir fark yoktur. Pamuk elyafın karışım içerisindeki davranış, diğer komponent ne olursa olsun, bütün iplikler için aynı şekilde olacaktır denilebilir. Sonuçlar bize gösteriyor ki, karışım iplikleri içindeki pamuk elyafı, % 100 pamuk ipliklerinin mukavemetinin üstündeki gerilimlerde daheim gerilim taşıyarak iplik mukavemetine katkıda bulunmaktadır. % 8’in üzerindeki uzamalarda pamuk elyafı kopmakta ancak nylon komponent tarafından kopan elyafın uçları tekrar yakalanmakta böylece iplik yapısı içinde tekrar gerilim taşımaya başlamaktadır.
Karışım iplikleri içerisindeki pamuk elyaafının kopuşu detaylı olarak incelendi. Uzama bağılı olarak elyaaf uzunluğu değişimi araştırıldı, % 60 nylon içeren iplik en fazla uzmaya sahip olduğu için seçildi. Uzama oranı % 5,1, % 7,6, % 10,2, % 13,2 ve % 15,2 için deneyler yapıldı.

Karışım iplik içindeki pamuk elyaafı % 100 pamuk ipliğinin kopma uzamasından daha düşük olan uzamalarda koppmaya başlar. Ayrıca kopma uzamasından daha yüksek olan noktalarda da kopmaya devam etmektedir.

Histogramda görüldüğü gibi uzun elyaaf önce kopuyor. Uzamanın az olduğu noktada 3 cm uzunluğundaki elyafların oranı fazlayken, uzama arttıkça 0,5 cm uzunluğundaki elyafların oranı artmaktadır. % 10,2 uzamada ortalama olarak her pamuk elyaafı bir kere koppmuştir, % 14,2 uzamada ise her pamuk elyaafının iki kere koptuğu söylenebilir.

Şekil 2.5 uzama – kopma sayısı ilişkisi (kemp, owen)
Şekil 2.6 Uzama Artışına Bağlı Olarak Ortalama Elyaf Uzunluğu ve Kopma Sayısı Değişimi

Kuvvet uzama grafiğinin lineer olduğu ve uzamaya bağlı olan gerilmenin bütün elyaflar için aynı olduğu kabul edildi.

Bu araştırmalar göstermiştir ki, karışımı iplikler içindeki elyafların değişik kopma uzamaları sebebiyle daha düşük mukavemet göstermekteidirler. Gözlemlerde % 11'e varan uzamalarda dahi pamuk elyafının gerilme taşıdığı görülmuştur. Hatta karışımı ipliğin kopma uzamasında pamuğun gerilmesi % 100 pamuk ipliğin kopma uzamasındaki gerilmeden biraz daha azdır. Araştırmalarda karışım pamuk içerisindeki pamuk elyafın, ipliğin düşük miktarlardaki uzamalarında kopmaya başlayıp iplik kopana kadar kopmaya devam ettiği görülmuştur. % 10,2 gibi bir uzama ipliklerin elyaflarının herbirinin birer kere koptuğunu ve iplik koptuğunda ise her elyafın ortalama iki kere koptuğunu gözlemlemiştir.

Pamuk elyafın uzunluğunda dışında diğer özelliklerinin benzer olduğu, kopma uzama eğrilerinin lineer olduğu ve iplik yapısının ideal spiral bir yapıda olduğu, elyafların iplik içerisinde yerleşiminin helisel olduğu ve iplik kesitindeki elyaf sayısının sabit olduğu kabul edildi. İplikteki büyüm nedeniyle herhangi bir boyutsal gerilme radyal bir basınç yaratacaktır. Bu basınç iplik gerilimiyile orantılıdır, bu sebeple kuvvet uzama grafiği

\[P = Y \cdot S', \; P = \text{basınç,} \; Y = \text{katsayı,} \; S' = \text{uzama} \]

Elyaf uzunluğu 2l olarak alınmıştır.

\[F = \text{sürünme kuvveti basınçla doğru orantılıdır.} \]

\[F = U \times P, \; U = \text{sabit} \]

Elyaf uzunluğu (l) üzerinde herhangi bir uzaklık (x) düşünelim ve bu noktasındaki gerilme T, uzama S olsun. Eğer kuvvet uzama grafiği lineer ise T, S ile orantılıdır.

\[T = b \times S, \; b = \text{sabit} \]

Buradan \(T = U \cdot P \times, \; S = \frac{U \cdot P \times}{b} \) çıkarılır.

Sonuç olarak \(S = \frac{U \cdot Y \cdot S'}{b} \) bulunur.

Olası maksimum S değeri, \(S' \cdot \cos^2 \theta \) dir. \(\theta = \text{büküm açısı} \)

\[S' \cdot \cos^2 \theta = \frac{U \cdot Y \cdot S' L_c}{b} = S' \]

Buradan \(L_c = \frac{c \cdot \cos^2 \theta}{U \cdot Y} \) bulunur. (3)

\(L_c = \text{kritik elyaf uzunluğu} \)

Buradan da görülüyor ki, Lc iplik uzamasından (S') bağımsızdır.
Şekil 2.7 İp İçindeki Elyafın Kopmaya Bağlı Hareketi

a) $l < L_c$ Kayma her yerde oluşabilir. Maksimum uzama, $S = S'' \frac{1}{L_c}$, eleyafın merkez noktasında oluşur.

b) $L = L_c$ Kayma yine her yerde oluşur. Maksimum uzama $S = S''$, merkezde oluşur.

c) $L > L_c$ Merkezde kayma oluşmaz. Maksimum uzama $S = S''$.

Eleyafın ıplığın taşıdığı yükü katılımı belirli bir noktada, o naktadaki eleyafın gerilimiyle orantılıdır.

$$\frac{1}{2l} \int_{0}^{2l} Tdx$$

ya da eğer kuvvet uzama eğrisi lineer ise

$$\frac{1}{2l} \int_{0}^{2l} Sdx$$

İntegrali (S, x) eğrisi altındaki alana eşittir.
\[C = \frac{k}{2l} \int_{0}^{2l} S dx \]

\[k = \text{sabit} \]

\[C' \text{ in maksimum olduğu yerde kayma yoktur ve } kS' \text{ ne eşittir. Bu durumu incelersek} \]

(a) \[1 < L_c \quad C = \frac{kL_s'}{2L_c} \text{ ve buna göre } \frac{c}{c'} = \frac{1}{2L_c} \]

(b) \[1 = L_c \quad C = \frac{kS'}{2} \text{ ve buna göre } \frac{c}{c'} = \frac{1}{2} \]

(c) \[1 > L_c \quad C = \frac{k(2L - L_c)S'}{2l} \text{ ve buna göre } \frac{c}{c'} = \frac{2L - L_c}{2l} \]

Elyaf Kopması

Elyaf koparsa kopmanın gerçekleştiği noktadaki gerilim sıfıra iner. Oluşan iki parça iki kısa elyafmuş gibi hareket eder. \[1 \leq L_c \] olan elyaflar merkez noktadan koparlar. Kopan her iki elyaf için de maksimum kalıcı uzama kopma uzamasının (Sb) yarısına eşittir.

\[1 > L_c \] olan elyaflar heryerden kopabilir. Kalıcı uzama en azından bir tanesinde kopma uzamasının (Sb) yarısından fazladır.
Şekil 2.8 Elyafın Kopma Davranışı

Arından Kemp ve Owen ise karışım ipliklerin kopma uzama grafiikleri ile ilgileniyor. Karışım içinde bulunan pamuk elyafların, ipligin ortalama %7 uzamasından sonra tamaminin kopması ve mukavemette büyük bir düüş olması beklenirken kuvvet uzama grafiğinde bir düşme göremiyorlar. Bu durum ya pamuk elyaflının uzamaya devam etmesi ya da koptuktan sonra da mukavemette katkıda bulunması ile açıklanabilir. Pamuk elyaflın %10 uzamalarda dahi koptmaya devam ettiği görünce koptuktan sonra
da gerilme taşıdığı açığa çıkmaktadır. Demek ki lif kopsa dahi iplik yapısı içinde her iki kovan parça da sürünme kuvvetlerinin etkisi ile yük taşımaya devam etmektedir.

Şekil 2.9. da Uzama ile birlikte kopan lif sayısı ile ortalama elyaf uzunluğu görülmektede

Şekil 2.9 uzamaya bağlı kovan miktarı

6-7 % uzamaya kadar elyaf karıştı mukavemeti modeli Coplan’ın modeline uymaktadır. Daha yüksek uzama seviyelerinde kopan elyafın mukavemeti düşürücü ve tekrar iplik yapısında gerilme taşımaya başlaması ile mukavemete katkıda bulunucu etkileri beraber incelenmelidir.

Şekil 2.10 de görüldüğü gibi %10 uzamadan sonra dahi nylon karışım±ı iplik mukavemetine pamuk eýafi katkıda bulunabiliyor.

Şekil 2.10 nylon'un kuvvet uzama davranışı

Bu incelemeler kontrollü bir sistem ile yapılyor. İstenilen uzama değerinde iplikte kaç adet kopma olduğu inceleniyor.
Şekil 2.11 % 17.5 uzamadaki elyaflar

Merkezdeki basınç ilk gerilme büyüklüğü ve bükümün karesi ile orantılı olarak değişmektedir. Elyafta gerilme gittikçe artar ve eyafl boyunda bir noktada kopma mukavemeti ya da uzaması değerini aştığıda eyafl kopar. Kopan parçalar hemen yeni

Pamuk elyaflarının az olduğu ve elyafların radyal yerleştiği bir iplikte kopma sayısı teorik ve pratik bazda incelemiştir.

Bu devamlı mukavemet katkısı ipligin kopma enerjisini arttırıyor. Denebilir ki pamuk iplik karışımı iplikteki pamuk elyafl bu davranış ile toplam iplik ve dolayısı ile kumaş dayanımına katkıda bulunmaktadır. (doğal elyafl mukavemetinin üzerindeki zorlanmalarda da)

Bu bize karışım ipliklerde homojenliğin çok önemli olduğunu göstermektedir. Aynı şekilde iplik içindeki elyafların uzamaları ne kadar fazla ise iplik yapısı o kadar dayanıklı olacaktır.

Karışım ıpliklerin kırtıma ve buruşmazlık dayanımlarının fazla olduğu görülmüştür. Kopma mukavemetindeki artış tüketici için önemli gözükmesi de üretimde kopuş sayısındaki azalmanın sağlayacağı randman ve fiyodaki azalma maliyeti düşürecekdir.

Modelde, kesitler ıplik boyunca eșit aralıklarla yerleştirilmİŞlerdir. Liflerin ıplik içindeki yerleşimlerini tahmin edebilecek sayıda kesit alınmıştır. İki kesit arasındaki uzaklık 0,25 mm dir.
İpliği oluşturan metod özetlenirse:

- Kesitteki elyaf düzenini kararlaştırmak,
- İplik boyunca belirli aralıklarla kesitler oluşturmak,
- Her kesiti belirli bir miktar döndürerek iplik bükümü oluşturmak,
- Liflerdeki bazı büklümeleri göstermek,

Kesikli elyaflar’ın özellikleri bu metod için irdelenmiştir.

Sisteme adapte edilen basit kontrol sistemi ile iplik boyunca kesitteki elyaf sayısı değişim kontrol edilir. Modelde izlenen her kesitte lif sayısı farklı olabilir. Eğer iplik kalınlığı o noktada bilinen kalınlıktan fazla ise orada daha fazla lif var demektir. Bunun tersi de geçerlidir.

İncelemede liflerin lineer olmayan özellikleri dahil edilmemiştir. Liflerin özelliklerinin de değiştiği bilinmektedir. Bu nedenle young modülü uzama fonksiyonu olarak kullanılmıştır.

Belirli bir bölgedeki ipliğin young modülü o bölgedeki liflerin uzama ve iplik eksenine paralellüğine bağlı olarak hesaplanabilir.

Bilinen bir elyaf tipi ve kalitesi için liflerin kopma uzaması bir dağılım gösterir. Bu dağılıının ortalamaşı ve varyansı biliniyor kabul edilir. Ek olarak liflerin kopma olasılığı uzamasına bağlıdır kabul edilir. Bu uzama iplik uzamasından ve lif yerleşiminden
hesaplanabilir. Genel olarak maksimum lif uzaması iplik uzamasına çok yakın bir değerdir.

Uygulanan DeneySEL Metodun Özetı

- İplik uzaması seçildi
- Bu uzama için gereken kuvvet liflerin uzaması ve yerleşimlerinden hesaplandı
- Her lif için radyal kuvvet bulundu ve yeni pozisyonları için eşitlik çözülüldü.
- Sürtünme kuvveti ipliğin yapısını oluşturduğu bulundu. Eğer kuvvet sürtünme kuvvetinden fazla ise iplik kopuyor.
- Yukarıdaki işlemler belirli bir uzama aralığı için tekrar edilirse ipliğin uzama ve mukavemet özellikleri hesaplanabilir.

Sonuçlara bakacak olursak, bu çalışmada Tencel elyaf içeren iplik kullanılmıştır. 1.4 dtex , 38 mm özelliklerinde olan bu iplik ile üretilen ring iplik kalınlıkları ve bükmüler aşağıda belirtilmiştir.

<table>
<thead>
<tr>
<th>İplik (tex)</th>
<th>12</th>
<th>15</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twist (1/m)</td>
<td>1111</td>
<td>940</td>
<td>774</td>
<td>592</td>
</tr>
<tr>
<td>Lif sayısı</td>
<td>90</td>
<td>112</td>
<td>149</td>
<td>217</td>
</tr>
</tbody>
</table>

Yoğunluk, Migrasyon miktarı, sürtünme gibi diğer parametreler sabit seçilmiştir.

Şekil 2.12 İncelenmiş olan dört ipliğin kuvvet uzama diyagramları

Tencel iplikleri dışındaki ipliklere de bu model uygulanabilir. Polyester ve viskoz iplikler için uygulanan modelin sonuçları da Şekil 2.13 tedir.

Şekil 2.13 Polyester ve viskoz ipliklerin kuvvet uzama davranışları

Öte yandan Z. Peneva ve V. Oreskovic tarafından yapılan bir başka araştırmada da iplikteki ince yerlerin, iplik kopmasına etkileri ile ilgili kayda değer saptamalar elde edilmiştir. Bu araştırmada iplik kalınlığının %40 ve daha altındaki ince yerler incelenmiştir. İplik kopma noktası ile ince yerler arasında bir bağlantılı saptanmıştır. Ölçüm sonuçlarında kopma noktalarının %61 inin ince yerler olduğu ortaya çıkmıştır. Bu noktalardaki kopma sayısının uygulanan kuvvet ile orantılı olduğu da saptanmıştır.
Tekstil üzerine araştırma yapan pek çok bilim adamı iplik yapısı üzerinde çalışmıştır. İlk araştırmacılardan Martindale 1945, iplik kütle varyasyonlarının iki faktöre bağlı olduğunu belirtmiştir.

1- İplik kesitindeki lif sayısına,

2- İplik kalınlığının varyasyonuna,

Picard 1951 ise lif düzgünşülüğünden şerit düzgünşülüğünü tanımlayabilecek bir model üzerinde çalıştır.

Dyson 1974 iplik düzgünşülüğünün, liflerin iplik içerisindeki yerleşiminden de etkilendiğini ortaya çıkardı.

1975 yılında Wegener, iplik hatalarını ölçmek yerine kesitteki lif sayısını ölçmenin daha önemli olduğunu vurguladı.

Stout düzgünşülük ile iplik kopuş oranı arasındaki ilişkiyi inceledi ve minimum ve ortalama kritik kuvvetleri hesapladı.

İplik düzgünşülüğünde kullanılan CV ve U değerleri arasında,

\[\frac{CV}{U} = \sqrt{\frac{\pi}{2}} = 1,25 \]

degeri kabul edilir. Aslında Uster in verilerine göre bu değer 1,04 ile 1,45 arasında değişmektedir. Ancak Uster tarafından toplanan verilerin 2/3 ü 1,20 ile 1,30 arasında değişmektedir. Bu nedenle 1,25 lik değerin kullanılmasıındaki hata oranı pratikte kabul edilebilir.

Kullanılan pamuk iplik kalınıluğu 42 tex ve büküm 597 tur/m dir.

Şekil 2.14 da İplik %CV si azaldıkça kopma kuvvetinin arttığı görülmektedir.

Şekil 2.14 Kopma kuvveti ve varyasyon katsayısı ilişkisi
Şekil 2.15 Varyasyon katsayısı CV% ve düzgünüzülük U% ilişkisi

\[CV(I) = 0.87958 + 1.1968 \times U(I) \]

Korelasyon: \(r = 0.94398 \)

Şekil 2.16 Kopma kuvveti, ince yer ilişkisi

\[F = 804.34 + 4.8701 \times X_p \]

Korelasyon: \(r = 0.80747 \)
Kopma Kuvveti F, cN

$$F = 671.998 - 190.308 \times \log(l_y)$$

Korelasyon: $r = -0.5320$

İnce yerlerin uzunlukları, mm

Ø Köpma oluşan yler (%40 tan ince)
* Köpma olmuşayan yerler (%40 a kadar ince yerler)

Şekil 2.17 İnce yer uzunlukları ile kopma kuvveti ilişkisi

Şekil 2.15 te ise %CV ile %U değerleri arasındaki lineer ilişki açıkça izlenebilmektedir. Şekil 2.16 de ise iplik üzerinde inceliği %40 tan daha az olan yerlerde kopmanın gerçekleştiği görülmektedir. Şekil 2.17 da ise ince yer uzunluğu ile kopma kuvveti diyagramında kopan ince yerler belirtilmiştir.

Araştırma gösteriyor ki, İplik düzgün澳大luk CV% si ile kopma kuvveti arasında çok az bir bağlantı görülmektedir. Ayrıca İnce yer in uzunluğu arttıkça kopma kuvveti eksponansiyel olarak düşmektedir. İncelenen kopmaların %61 inin ince yer olduğu gözlenmişdir. Tüylülük ipliğin tamamen geometrik bir özelliği dır. Liflerin iplik içindeki yerleşiminden hareketle hesaplanabilir. İplik yüzeyinden 3 mm ve daha fazla yüzeyinden duran lifler sayılır. Bu ölçüm ile iplik yüzeyinden dışarı uzanan lifler sayılır ancak uzunlukları ölçülemez. Modellen üretilen rakam Uster’ın ölçüm sonuçlarından fazla çıkmıştır ancak genel trend olarak benzer sonuçlar gözlenmiştir. Belirli bir katsayı
hesaplayarak Uster sonuçları ile karşılaştırılabilir hale gelinebilir. Şekil 2.18 de lif uzunluğu – tüylük sayısı gözlenmektedir.

Şekil 2.18 Tüylük ve lif uzunluğu ilişkisi

İplik numarası değişikçe tüylük değişimine ait Şekil 2.19 teki iplikler de tümüm ve yoğunluk sabit alınmıştır. İplik numarası ile tüylük arasında doğru oranı olduğu görünmektedir.

Şekil 2.19 Tüylük-iplik kalınlığı ilişkisi

48
3 DENEYSEL ÇALIŞMA VE ANALİZ METODLARI

3.1 DeneySEL ÇalışMA

3.1.1 Materyal

Deney çalışmalarındaki iplik test numuneleri iki ayrı gruptur.

Birinci gruptaki iplikler:

Ne 30/1, %100 pamuk,

Ne 30/1 %67 Pamuk-%33 Polyester,

Ne 30/1 %33 Pamuk-%67 Polyester ipliklerdir.

İplik numuneleri ring iplik makinasında üretilmiş karde ipliklerdir.

İkinci gruptaki iplikler:

Ne 30/1, %100 pamuk melanj ipliklerdir. Melanj iplik içerisindeki boyalı elyaf oranı %1, %20, %40, %61, %80, %100 olmak üzere toplam 6 çeşit iplik numunesi kullanılmıştır. Tüm iplikler ring iplik makinasında üretilmiş penye ipliklerdir.

Mikroner : 4,4 μgr/İnç Pressley mukavemeti (libre/İnç)

%2.5 stapel uzunluğu : 30 mm Ham elyaf : 85 libre/İnç, Boyalı elyaf : 90 libre/İnç
3.1.2 Deney Cihazları

Mevcut ölçüm işlemlerinin hepsi aşağıda belirtilen test cihazlarında yapılmıştır

3.1.2.1 Uster Tester 3

Şekil 3.1. Uster Tester 3 test cihazı

Uster Tester 3 test cihazı ile yapılan ölçümlerde tüm ıpliklerin düzgünülük, ince yer, kalın yer, neps, tüylülük değerleri tespit edildi. Uster Tester 3 cihazı kütle varyasyonunu tespit eden, kapasitör prensibi ile çalışan bir ölçüm cihazdır. Şekil 3.1 Değişik kapasitörlerin kullanılması ile şerit, fitil, iplik düzgünülükleri istenen hassasiyetlerde ölçülebiliyor. Ölçüm sonuçları değerlendirilmesinde bilgisayar desteği ile spektrogram çizilebiliyor. Ek bir cihaz ile tüylülük ölçümü de yapılabiliyor.

3.1.2.2 Uster Tensorapid II

Şekil 3.2 Uster Tensorapid II test cihazı

3.1.2.3 Uster Tensojet

İplik mukavemeti ölçmek için yeni üretilen bu test cihazı ise Tensorapid-II cihazından çok daha hızlıdır. Saatte 30.000 adet (yaklaşık 24.000 m iplik) kopma testi yapabilmektedir. Test sonuçlarını mukavemet ve uzama dağılımını gösteren özel bir grafik üzerinde gösterebilen bu cihaz ile kuvvet-uzama diyagramı elde edilememektedir. İplik mukavemeti değerinin doğru olması için, ölçüm sayısı mümkün olduğu kadar fazla olmalı düşüncesi ile Mukavemet, kopma kuvveti ve uzama ölçümleri Tensojet ile gerçekleştirildi. Şekil 3.3. Kuvvet-Uzama diyagramı için ise Tensorapid-II kullanıldı.
3.1.3 Ölçüm Yöntemleri

3.1.3.1 Laboratuvar Şartları

Standart laboratuvar klima koşulları, (%65 +/- 2 bağıl nem ve 20 +/- 2 °C sıcaklık) sağlanıdı. Testi yapılacak tüm ıplikler 48 saat süre ile laboratuvara açık halde bekletildi. Testi yapılan ıpliklerin listesi Tablo 3.1 dedir.

Tablo 3.1 Test edilen ılık çeşitleri

<table>
<thead>
<tr>
<th>Grup</th>
<th>Karakteri</th>
<th>Çeşidi</th>
<th>Numune Adedi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Grup</td>
<td>Karde , Ring , Ne 30/1</td>
<td>% 100 pamuk</td>
<td>10 adet bobin</td>
</tr>
<tr>
<td></td>
<td>Karde , Ring , Ne 30/1</td>
<td>%67 Pamuk -%33 Polyester</td>
<td>10 adet bobin</td>
</tr>
<tr>
<td></td>
<td>Karde , Ring , Ne 30/1</td>
<td>% 100 pamuk</td>
<td>10 adet bobin</td>
</tr>
<tr>
<td>2. Grup</td>
<td>Penye , Ring , Ne 30/1</td>
<td>%100 pamuk , %1'i boyah pamuk</td>
<td>10 adet bobin</td>
</tr>
<tr>
<td></td>
<td>Penye , Ring , Ne 30/1</td>
<td>%100 pamuk , %20'si boyah pamuk</td>
<td>10 adet bobin</td>
</tr>
<tr>
<td></td>
<td>Penye , Ring , Ne 30/1</td>
<td>%100 pamuk , %40'i boyah pamuk</td>
<td>10 adet bobin</td>
</tr>
<tr>
<td></td>
<td>Penye , Ring , Ne 30/1</td>
<td>%100 pamuk , %61'i boyah pamuk</td>
<td>10 adet bobin</td>
</tr>
<tr>
<td></td>
<td>Penye , Ring , Ne 30/1</td>
<td>%100 pamuk , %80'i boyah pamuk</td>
<td>10 adet bobin</td>
</tr>
<tr>
<td></td>
<td>Penye , Ring , Ne 30/1</td>
<td>%100 pamuk , %100'i boyah pamuk</td>
<td>10 adet bobin</td>
</tr>
</tbody>
</table>

3.1.3.2 Test Çalışmaları

Uster Tester 3 test cihazı ile düzgünasylık , ince yer , kalın yer , neps , tüylülük değerleri herbir ılık bobini için 1000 m ölçüm yaparak saptandı. Her ılık çeşidi için 10 adet bobin ölçüldü. Tablo 3.1. Ölçüm sonuçları dökümü test cihazının bilgisayarı ve yazıcısi yardımı ile alındı.

Uster Tensorapid-II cihazı ile yapılan ölçümlerde her bir bobinden 10 adet kopma testi uygulandı. Elde edilen veriler ve kuvvet-uzama diyagramı test cihazının bilgisayarı ve

3.2 İstatistik Analiz Metodları

Polyester – Pamuk ipliklerinin ölçüm sonuçlarını analiz ederken amaç iplikteki polyester/pamuk oranı değişimine bağlı olarak düzgünsülük, ince yer, kalın yer, neps, tüylülük, kopma kuvveti, uzama ve mukavemet değerlerinde bir değişim olup olmadığını incelemekti. Aynı amaç ile %100 pamuk melanj ipliklerdeki boyalı pamuk etyağı oranın değişiminin iplik özelliklerine etkisi de incelendi.

Ölçüm sonuçlarındaki farklılığın deney hatalarından mı yoksa ipliklerin özelliklerinden mi kaynaklandığı incelendi. Bu analizde tesadüf parselleri metodu ile varyans analizi yapıldı. Tablo 3.2.
Bir Tablo 3.2

<table>
<thead>
<tr>
<th>Varyasyon Kaynağı</th>
<th>Serbestlik Derecesi</th>
<th>Kareler Toplamı</th>
<th>Kareler Ortalaması</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muameleler</td>
<td>$t-1$</td>
<td>$\sum_{i=1}^{t} r_i (\bar{x}_i - \bar{x})^2$</td>
<td>$\sum_{i=1}^{t} r_i (\bar{x}_i - \bar{x})^2 / (t-1)$</td>
</tr>
<tr>
<td>-Çeşitler arası</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deneysel Hata</td>
<td>$\sum r_i - t$</td>
<td>$\sum_{i=1}^{t} \sum_{j=1}^{n} (x_{ij} - \bar{x}_i)^2$</td>
<td>$\sum_{i=1}^{t} \sum_{j=1}^{n} (x_{ij} - \bar{x}_i)^2 / (\sum r_i - t)$</td>
</tr>
<tr>
<td>-Muameleler içi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genel Toplam</td>
<td>$(\sum r_i) - 1$</td>
<td>$\sum_{i=1}^{t} r_i (\bar{x}_i - \bar{x})^2$</td>
<td></td>
</tr>
</tbody>
</table>

Tablo 3.2 deki işlemlerden sonra kareler ortalaması birbirine bölünerek F oranı hesaplanır.

$$\frac{\sum_{i=1}^{t} r_i (\bar{x}_i - \bar{x})^2}{(\sum r_i - t)}$$

$$\text{Foran} = \frac{t-1}{\sum_{i=1}^{t} \sum_{j=1}^{n} (x_{ij} - \bar{x}_i)^2 / (\sum r_i - t)}$$

4 SONUÇLAR VE TARTIŞMA

4.1 Pamuk ve Polyester Karışım İpliklerin Ölçüm Sonuçları

Tablo 4.1 pamuk-polyester karışımı ipliklerin düzgününsülük test sonuçları

<table>
<thead>
<tr>
<th>Karışım Oranına Göre İpikler</th>
<th>%100 Pamuk</th>
<th>%67 Pamuk</th>
<th>%33 Polyester</th>
<th>%67 Polyester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Düzgününsülük (CV%)</td>
<td>Ortalama</td>
<td>18,38</td>
<td>16,07</td>
<td>15,15</td>
</tr>
<tr>
<td></td>
<td>CV%</td>
<td>3,69</td>
<td>1,28</td>
<td>3,55</td>
</tr>
<tr>
<td>İnce Yer (adet)</td>
<td>Ortalama</td>
<td>173,10</td>
<td>23,80</td>
<td>13,00</td>
</tr>
<tr>
<td></td>
<td>CV%</td>
<td>50,40</td>
<td>20,56</td>
<td>56,87</td>
</tr>
<tr>
<td>Kahn Yer (adet)</td>
<td>Ortalama</td>
<td>479,30</td>
<td>214,60</td>
<td>124,90</td>
</tr>
<tr>
<td></td>
<td>CV%</td>
<td>19,14</td>
<td>12,88</td>
<td>17,26</td>
</tr>
<tr>
<td>Neps (adet)</td>
<td>Ortalama</td>
<td>62,40</td>
<td>52,30</td>
<td>42,70</td>
</tr>
<tr>
<td></td>
<td>CV%</td>
<td>24,31</td>
<td>17,57</td>
<td>21,61</td>
</tr>
<tr>
<td>Tıylılılık (H)</td>
<td>Ortalama</td>
<td>6,60</td>
<td>6,35</td>
<td>6,06</td>
</tr>
<tr>
<td></td>
<td>CV%</td>
<td>4,22</td>
<td>1,66</td>
<td>2,80</td>
</tr>
</tbody>
</table>
Tablo 4.2 pamuk-polyester karışımli ipliklerin mukavemet test sonuçları

<table>
<thead>
<tr>
<th>Karışım Oranına Göre İplikler</th>
<th>%100 Pamuk</th>
<th>%67 Pamuk</th>
<th>%33 Polyester</th>
<th>%67 Polyester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Köpma Kuvveti Ortalama</td>
<td>2,81</td>
<td>3,03</td>
<td>5,14</td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>7,38</td>
<td>1,53</td>
<td>2,23</td>
<td></td>
</tr>
<tr>
<td>Uzama Ortalama</td>
<td>4,91</td>
<td>5,92</td>
<td>9,13</td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>6,00</td>
<td>0,84</td>
<td>1,93</td>
<td></td>
</tr>
<tr>
<td>Mukavemet Ortalama</td>
<td>14,57</td>
<td>15,71</td>
<td>26,62</td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>7,36</td>
<td>1,51</td>
<td>2,25</td>
<td></td>
</tr>
</tbody>
</table>

Tablo 4.3 pamuk-polyester karışımli ipliklerin düzgünlik varyans analizi

<table>
<thead>
<tr>
<th>Varyasyon Kaynağı</th>
<th>Serbestlik Derecesi</th>
<th>Kareler Toplamı</th>
<th>Kareler Ortalaması</th>
<th>F Oram</th>
<th>Olasılık %</th>
<th>F Değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muameleler arası</td>
<td>2,00</td>
<td>55,45</td>
<td>27,72</td>
<td>105,17</td>
<td>5,00</td>
<td>3,35</td>
</tr>
<tr>
<td>Deney Hatası</td>
<td>27,00</td>
<td>7,12</td>
<td>0,26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29,00</td>
<td>62,57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sonuç: Polyester-Pamuk karışımli ipliklerin test sonuçları arasındaki fark anlamlı
Tablo 4.4 pamuk-polyester karışımı ipliklerin ince yer varyans analizi

<table>
<thead>
<tr>
<th>Varyasyon Kaynağı</th>
<th>Serbestlik Derecesi</th>
<th>Kareler Toplamı</th>
<th>Kareler Ortalaması</th>
<th>F Oranı</th>
<th>Olasılık %</th>
<th>F Değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muameleler arası</td>
<td>2,00</td>
<td>160.130,47</td>
<td>80.065,23</td>
<td>31,23</td>
<td>5,00</td>
<td>3,35</td>
</tr>
<tr>
<td>Deneý Hatası</td>
<td>27,00</td>
<td>69.210,50</td>
<td>2.563,35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29,00</td>
<td>229.340,97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sonuç: Polyester-Pamuk karışımı ipliklerin test sonuçları arasındaki fark anlamlı

Tablo 4.5 pamuk-polyester karışımı ipliklerin kalın yer varyans analizi

<table>
<thead>
<tr>
<th>Varyasyon Kaynağı</th>
<th>Serbestlik Derecesi</th>
<th>Kareler Toplamı</th>
<th>Kareler Ortalaması</th>
<th>F Oranı</th>
<th>Olasılık %</th>
<th>F Değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muameleler arası</td>
<td>2,00</td>
<td>679.038,47</td>
<td>339.519,23</td>
<td>105,61</td>
<td>5,00</td>
<td>3,35</td>
</tr>
<tr>
<td>Deneý Hatası</td>
<td>27,00</td>
<td>86.799,40</td>
<td>3.214,79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29,00</td>
<td>765.837,87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sonuç: Polyester-Pamuk karışımı ipliklerin test sonuçları arasındaki fark anlamlı
Tablo 4.6 pamuk-polyester karışımı ipliklerin neps varyans analizi

<table>
<thead>
<tr>
<th>Varyasyon Kaynağı</th>
<th>Serbestlik Derecesi</th>
<th>Kareler Toplamı</th>
<th>Kareler Ortalaması</th>
<th>F Oranı</th>
<th>Olasılık %</th>
<th>F Değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muameleler arası</td>
<td>2,00</td>
<td>1.940,87</td>
<td>970,43</td>
<td>7,29</td>
<td>5,00</td>
<td>3,35</td>
</tr>
<tr>
<td>Deney Hatası</td>
<td>27,00</td>
<td>3.596,60</td>
<td>133,21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29,00</td>
<td>5.537,47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sonuç : Polyester-Pamuk karışımı ipliklerin test sonuçları arasındaki fark anlamlı

Tablo 4.7 pamuk-polyester karışımı ipliklerin tutuluk varyans analizi

<table>
<thead>
<tr>
<th>Varyasyon Kaynağı</th>
<th>Serbestlik Derecesi</th>
<th>Kareler Toplamı</th>
<th>Kareler Ortalaması</th>
<th>F Oranı</th>
<th>Olasılık %</th>
<th>F Değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muameleler arası</td>
<td>2,00</td>
<td>1,49</td>
<td>0,74</td>
<td>18,98</td>
<td>5,00</td>
<td>3,35</td>
</tr>
<tr>
<td>Deney Hatası</td>
<td>27,00</td>
<td>1,06</td>
<td>0,04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29,00</td>
<td>2,55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sonuç : Polyester-Pamuk karışımı ipliklerin test sonuçları arasındaki fark anlamlı
Tablo 4.8 pamuk-polyester karışılımlı ipliklerin kopma kuvveti varyans analizi

<table>
<thead>
<tr>
<th>Varyasyon Kaynağı</th>
<th>Serbestlik Derecesi</th>
<th>Kareler Toplamı</th>
<th>Kareler Ortalaması</th>
<th>F Oranı</th>
<th>Olasılık %</th>
<th>F Değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muameleler arası</td>
<td>2,00</td>
<td>32,98</td>
<td>16,49</td>
<td>848,57</td>
<td>5,00</td>
<td>3,35</td>
</tr>
<tr>
<td>Deney Hatası</td>
<td>27,00</td>
<td>0,52</td>
<td>0,02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29,00</td>
<td>33,50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sonuç : Polyester-Pamuk karışılımlı ipliklerin test sonuçları arasındaki fark anlamlı

Tablo 4.9 pamuk-polyester karışılımlı ipliklerin uzama varyans analizi

<table>
<thead>
<tr>
<th>Varyasyon Kaynağı</th>
<th>Serbestlik Derecesi</th>
<th>Kareler Toplamı</th>
<th>Kareler Ortalaması</th>
<th>F Oranı</th>
<th>Olasılık %</th>
<th>F Değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muameleler arası</td>
<td>2,00</td>
<td>97,10</td>
<td>48,55</td>
<td>1.208,23</td>
<td>5,00</td>
<td>3,35</td>
</tr>
<tr>
<td>Deney Hatası</td>
<td>27,00</td>
<td>1,08</td>
<td>0,04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29,00</td>
<td>98,18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sonuç : Polyester-Pamuk karışılımlı ipliklerin test sonuçları arasındaki fark anlamlı
Tablo 4.10 pamuk-polyester karışılımlı ipliklerin mukavemet varyans analizi

<table>
<thead>
<tr>
<th>Varyasyon</th>
<th>Serbestlik Derecesi</th>
<th>Kareler Toplamı</th>
<th>Kareler Ortalaması</th>
<th>F Oranı</th>
<th>Olasılık %</th>
<th>F Değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muameleler arası</td>
<td>2,00</td>
<td>885,95</td>
<td>442,98</td>
<td>850,78</td>
<td>1,00</td>
<td>5,49</td>
</tr>
<tr>
<td>Deney Hatası</td>
<td>27,00</td>
<td>14,06</td>
<td>0,52</td>
<td>29,00</td>
<td>900,01</td>
<td></td>
</tr>
</tbody>
</table>

Sonuç : Polyester-Pamuk karışılımlı ipliklerin test sonuçları arasındaki fark anlamlı

Polyester – Pamuk Karışılımlı İpliklerin Test sonuçlarının dağılımı

Değerler üzerinde belirtilen eğri eğilimi belirlemek için yerleştirilmiştir. Sadece üç değişik oranda inceleme yapılabildiği için bir formül teklif edilmedi.

![Chart](image.png)

Şekil 4.1. Pamuk-polyester karışılımlı ipliklerin düzgünşlük değerleri
Şekil 4.2. Pamuk-polyester karışımlı ipliklerin ince yer değerleri

Şekil 4.3. Pamuk-polyester karışımlı ipliklerin kalın yer değerleri
Şekil 4.4. Pamuk-polyester karışımli ipliklerin neps değerleri

Şekil 4.5. Pamuk-polyester karışımli ipliklerin túylılık değerleri
Şekil 4.6. Pamuk-Polyester Karışımı İpliklerin Kopma Kuvveti Değerleri

Şekil 4.7. Pamuk-polyester karışımı ipliklerin uzama değerleri
Şekil 4.8. Pamuk-polyester karışımli ipliklerin neps değerleri

Polyester – Pamuk karışımli iplikteki polyester elyaf oranı artışına bağlı mukavemet değerlerindeki iyileşme Şekil 4.8 de görülmektedir.
Şekil 4.9 %100 pamuk ipliklerin kopma kuvveti-uzama dağılımı

Şekil 4.10 %67 pamuk- %33 polyester ipliklerin kopma kuvveti-uzama dağılımı
Şekil 4.11 %33 pamuk- %67 polyester ipliklerin kopma kuvveti-uzama dağılımı

Şekil 4.12 Pamuk-Polyester ipliklerin kuvvet uzama diyagramları
4.2 Pamuk Melanj İpliklerin Ölçüm Sonuçları

Tablo 4.11 pamuk melanj ipliklerin düzgünlik test sonuçları

<table>
<thead>
<tr>
<th>Düzgünlik</th>
<th>Ortalama</th>
<th>CV %</th>
<th>Ortalama</th>
<th>CV %</th>
<th>Ortalama</th>
<th>CV %</th>
<th>Ortalama</th>
<th>CV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>%1</td>
<td>13,47</td>
<td>2,68</td>
<td>13,01</td>
<td>5,17</td>
<td>13,79</td>
<td>2,74</td>
<td>14,55</td>
<td>2,08</td>
</tr>
<tr>
<td>%20</td>
<td>14,58</td>
<td>1,98</td>
<td>%40</td>
<td>14,76</td>
<td>%61</td>
<td>1,84</td>
<td>%80</td>
<td>1,84</td>
</tr>
<tr>
<td>%100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

İnce Yer

<table>
<thead>
<tr>
<th>Ortalama</th>
<th>CV %</th>
<th>Ortalama</th>
<th>CV %</th>
<th>Ortalama</th>
<th>CV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>%1</td>
<td>2,80</td>
<td>74,91</td>
<td>0,80</td>
<td>129,10</td>
<td>2,70</td>
</tr>
<tr>
<td>%20</td>
<td>6,80</td>
<td>98,84</td>
<td>5,20</td>
<td>57,91</td>
<td>2,70</td>
</tr>
<tr>
<td>%40</td>
<td>5,20</td>
<td>56,66</td>
<td>6,80</td>
<td>54,24</td>
<td>5,20</td>
</tr>
<tr>
<td>%61</td>
<td>5,20</td>
<td>54,24</td>
<td>5,20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>%80</td>
<td>5,20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kahm Yer

<table>
<thead>
<tr>
<th>Ortalama</th>
<th>CV %</th>
<th>Ortalama</th>
<th>CV %</th>
<th>Ortalama</th>
<th>CV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>%1</td>
<td>47,70</td>
<td>25,22</td>
<td>41,10</td>
<td>27,25</td>
<td>81,50</td>
</tr>
<tr>
<td>%20</td>
<td>140,40</td>
<td>24,05</td>
<td>143,90</td>
<td>22,31</td>
<td>120,90</td>
</tr>
<tr>
<td>%40</td>
<td>143,90</td>
<td>22,31</td>
<td>120,90</td>
<td>24,84</td>
<td></td>
</tr>
<tr>
<td>%61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Neps

<table>
<thead>
<tr>
<th>Ortalama</th>
<th>CV %</th>
<th>Ortalama</th>
<th>CV %</th>
<th>Ortalama</th>
<th>CV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>%1</td>
<td>5,70</td>
<td>51,01</td>
<td>14,70</td>
<td>20,55</td>
<td>15,20</td>
</tr>
<tr>
<td>%20</td>
<td>29,10</td>
<td>21,22</td>
<td>27,50</td>
<td>21,32</td>
<td>15,20</td>
</tr>
<tr>
<td>%40</td>
<td>8,50</td>
<td>27,94</td>
<td>29,10</td>
<td>21,22</td>
<td>15,20</td>
</tr>
<tr>
<td>%61</td>
<td></td>
<td>41,96</td>
<td></td>
<td>27,94</td>
<td>21,22</td>
</tr>
<tr>
<td>%80</td>
<td></td>
<td></td>
<td></td>
<td>41,96</td>
<td></td>
</tr>
<tr>
<td>%100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tüylülük

<table>
<thead>
<tr>
<th>Ortalama</th>
<th>CV %</th>
<th>Ortalama</th>
<th>CV %</th>
<th>Ortalama</th>
<th>CV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>%1</td>
<td>6,86</td>
<td>5,42</td>
<td>5,68</td>
<td>4,93</td>
<td>2,73</td>
</tr>
<tr>
<td>%20</td>
<td>7,57</td>
<td>5,89</td>
<td>7,53</td>
<td>5,62</td>
<td>2,73</td>
</tr>
<tr>
<td>%40</td>
<td>7,89</td>
<td>5,75</td>
<td>7,57</td>
<td>5,62</td>
<td>2,73</td>
</tr>
<tr>
<td>%61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

67
Tablo 4.12 pamuk melanj ipliklerin mukavemet test sonuçları

<table>
<thead>
<tr>
<th>Boya \ Elyaf Oranına Göre Melanj İplikler</th>
<th>%1</th>
<th>%20</th>
<th>%40</th>
<th>%61</th>
<th>%80</th>
<th>%100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kopma Kuvveti</td>
<td>Ortalama</td>
<td>3,41</td>
<td>3,23</td>
<td>3,55</td>
<td>2,96</td>
<td>2,79</td>
</tr>
<tr>
<td></td>
<td>CV %</td>
<td>1,85</td>
<td>4,75</td>
<td>4,39</td>
<td>3,98</td>
<td>5,42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,94</td>
<td>5,26</td>
<td>5,62</td>
<td>5,62</td>
<td>5,62</td>
</tr>
<tr>
<td>Uzama</td>
<td>Ortalama</td>
<td>5,01</td>
<td>4,89</td>
<td>4,57</td>
<td>4,73</td>
<td>4,62</td>
</tr>
<tr>
<td></td>
<td>CV %</td>
<td>2,15</td>
<td>2,81</td>
<td>2,60</td>
<td>2,78</td>
<td>2,91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,09</td>
<td>5,26</td>
<td>5,36</td>
<td>5,36</td>
<td>5,36</td>
</tr>
<tr>
<td>Mukavemet</td>
<td>Ortalama</td>
<td>17,69</td>
<td>16,73</td>
<td>18,40</td>
<td>15,35</td>
<td>14,45</td>
</tr>
<tr>
<td></td>
<td>CV %</td>
<td>1,90</td>
<td>4,77</td>
<td>4,44</td>
<td>4,02</td>
<td>5,45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,92</td>
<td>5,26</td>
<td>5,36</td>
<td>5,36</td>
<td>5,36</td>
</tr>
</tbody>
</table>

Tablo 4.13 pamuk melanj ipliklerin düzgünsüzlük varyans analizi

<table>
<thead>
<tr>
<th>Varyasyon Kaynağı</th>
<th>Serbestlik Derecesi</th>
<th>Kareler Toplamı</th>
<th>Kareler Ortalaması</th>
<th>F Oranı</th>
<th>Olasılık %</th>
<th>F Değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muameleler arası</td>
<td>5,00</td>
<td>32,80</td>
<td>6,56</td>
<td>40,15</td>
<td>5,00</td>
<td>2,39</td>
</tr>
<tr>
<td>Deney Hatası</td>
<td>54,00</td>
<td>8,82</td>
<td>0,16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>59,00</td>
<td>41,63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sonuç: Pamuk melanj ipliklerin test sonuçları arasındaki fark anlamlı
Tablo 4.14 pamuk melanj ipliklerin ince yer varyans analizi

<table>
<thead>
<tr>
<th>Varyasyon</th>
<th>Serbestlik Derecesi</th>
<th>Kareler Toplamı</th>
<th>Kareler Ortalaması</th>
<th>F Oranı</th>
<th>Olasılık %</th>
<th>F Değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muameleler arası</td>
<td>5,00</td>
<td>240,48</td>
<td>48,10</td>
<td>6,49</td>
<td>5,00</td>
<td>2,39</td>
</tr>
<tr>
<td>Deney Hatası</td>
<td>54,00</td>
<td>400,10</td>
<td>7,41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>59,00</td>
<td>640,58</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sonuç: Pamuk melanj ipliklerin test sonuçları arasındaki fark anlamlı

Tablo 4.15 pamuk melanj ipliklerin kalın yer varyans analizi

<table>
<thead>
<tr>
<th>Varyasyon</th>
<th>Serbestlik Derecesi</th>
<th>Kareler Toplamı</th>
<th>Kareler Ortalaması</th>
<th>F Oranı</th>
<th>Olasılık %</th>
<th>F Değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muameleler arası</td>
<td>5,00</td>
<td>104.428,88</td>
<td>20.885,78</td>
<td>44,86</td>
<td>5,00</td>
<td>2,39</td>
</tr>
<tr>
<td>Deney Hatası</td>
<td>54,00</td>
<td>25.143,70</td>
<td>465,62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>59,00</td>
<td>129.572,58</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sonuç: Pamuk melanj ipliklerin test sonuçları arasındaki fark anlamlı

69
Tablo 4.16 pamuk melanj ipliklerin neps varyans analizi

<table>
<thead>
<tr>
<th>Varyasyon Kaynağı</th>
<th>Serbestlik Derecesi</th>
<th>Kareler Toplamı</th>
<th>Kareler Ortalaması</th>
<th>F</th>
<th>Olasılık %</th>
<th>F Değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muameleler arası</td>
<td>5,00</td>
<td>4.648,48</td>
<td>929,70</td>
<td>35,11</td>
<td>5,00</td>
<td>2,39</td>
</tr>
<tr>
<td>Deney Hatası</td>
<td>54,00</td>
<td>1.429,70</td>
<td>26,48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>59,00</td>
<td>6.078,18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sonuç: Pamuk melanj ipliklerin test sonuçları arasındaki fark anlamlı

Tablo 4.17 pamuk melanj ipliklerin täylülük varyans analizi

<table>
<thead>
<tr>
<th>Varyasyon Kaynağı</th>
<th>Serbestlik Derecesi</th>
<th>Kareler Toplamı</th>
<th>Kareler Ortalaması</th>
<th>F</th>
<th>Olasılık %</th>
<th>F Değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muameleler arası</td>
<td>5,00</td>
<td>43,28</td>
<td>8,66</td>
<td>70,04</td>
<td>5,00</td>
<td>2,39</td>
</tr>
<tr>
<td>Deney Hatası</td>
<td>54,00</td>
<td>6,67</td>
<td>0,12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>59,00</td>
<td>49,96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sonuç: Pamuk melanj ipliklerin test sonuçları arasındaki fark anlamlı
Tablo 4.18 pamuk melanj ipliklerin kopma kuvveti varyans analizi

<table>
<thead>
<tr>
<th>Varyasyon Kaynağı</th>
<th>Serbestlik Derecesi</th>
<th>Kareler Toplamı</th>
<th>Kareler Ortalaması</th>
<th>F</th>
<th>Olaslık %</th>
<th>F Değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muameleler arası</td>
<td>5,00</td>
<td>5,65</td>
<td>1,13</td>
<td>67,79</td>
<td>5,00</td>
<td>2,39</td>
</tr>
<tr>
<td>Deney Hatası</td>
<td>54,00</td>
<td>0,90</td>
<td>0,02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>59,00</td>
<td>6,54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sonuç : Pamuk melanj ipliklerin test sonuçları arasındaki fark anlamıdır

Tablo 4.19 pamuk melanj ipliklerin uzama varyans analizi

<table>
<thead>
<tr>
<th>Varyasyon Kaynağı</th>
<th>Serbestlik Derecesi</th>
<th>Kareler Toplamı</th>
<th>Kareler Ortalaması</th>
<th>F</th>
<th>Olaslık %</th>
<th>F Değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muameleler arası</td>
<td>5,00</td>
<td>3,45</td>
<td>0,69</td>
<td>45,05</td>
<td>5,00</td>
<td>2,39</td>
</tr>
<tr>
<td>Deney Hatası</td>
<td>54,00</td>
<td>0,83</td>
<td>0,02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>59,00</td>
<td>4,28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sonuç : Pamuk melanj ipliklerin test sonuçları arasındaki fark anlamıdır
Tablo 4.20 pamuk melanj ipliklerin mukavemet varyans analizi

<table>
<thead>
<tr>
<th>Varyasyon</th>
<th>Serbestlik Derecesi</th>
<th>Kareler Toplamı</th>
<th>Kareler Ortalaması</th>
<th>F Oranı %</th>
<th>Olasılık F Değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muameleler arası</td>
<td>5,00</td>
<td>151,17</td>
<td>30,23</td>
<td>66,63</td>
<td>1,00</td>
</tr>
<tr>
<td>Deney Hatası</td>
<td>54,00</td>
<td>24,50</td>
<td>0,45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59,00</td>
<td>175,67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sonuç: Pamuk melanj ipliklerin test sonuçları arasındaki fark anlamıdır.

Melanj İpliklerin Test Sonuçları Dağılımı

Dağılımlarda görülen eğriler eğilimi göstermek amacı ile çizilmişdir.

Şekil 4.13 pamuk melanj ipliklerin düzgünleşme değerleri

%1 ve %100 boyalı elyaf içeren pamuk melanj iplikleri gözardı ederek Şekil 4.13 te bakıldığında boyalı elyaf yüzdesi arttıkça düzgünleșme artışı izlenmektedir.
Şekil 4.14 pamuk melanj ipliklerin ince yer değerleri

%1 ve %100 boyalı elyaf içeren pamuk melanj iplikleri gözardı ederek Şekil 4.14 te bakıldığında boyalı elyaf yüzdesi arttıkça ince yer sayısı artışı izlenmektedir.
Şekil 4.15 pamuk melanj ipliklerin kalın yer değerleri

%1 ve %100 boyalı elyaf içeren pamuk melanj iplikleri gözardı ederek Şekil 4.15 te bakıldığında boyalı elyaf yüzdesi arttıkça kalın yer sayısı artışı izlenmektedir.
Şekil 4.16 pamuk melanj ipliklerin neps değerleri

%1 ve %100 boyalı elyaf içeren pamuk melanj iplikleri gözardı ederek Şekil 4.16 da bakıldığında boyalı elyaf yüzdesi arttıkça neps sayısı artışı izlenmektedir.
Şekil 4.17 pamuk melanj ipliklerin tuyuluğ değerleri

%1 ve %100 boyalı elyaf içeren pamuk melanj iplikleri gözardı ederek Şekil 4.17 de bakıldığında boyalı elyaf yüzdesi arttıkça tuyuluğ artışı izlenmektedir.
Şekil 4.18 pamuk melanj ipliklerin kopma kuvveti değerleri

%1 ve %100 boyalı elyaf içeren pamuk melanj iplikleri gözardı ederek Şekil 4.18 de bakıldığında boyalı elyaf yüzdesi arttıkça kopma kuvveti düşmektedir.
Şekil 4.19 pamuk melanj ipliklerin uzama değerleri
Şekil 4.20 pamuk melanj ipliklerin mukavemet değerleri

%1 ve %100 boyalı elyaf içeren pamuk melanj iplikleri gözardı ederek Şekil 4.20' de bakıldığında boyalı elyaf yüzdesi arttıkça mukavemet düşmektedir.
Şekil 4.21 %1 boyalı elyaf içeren melanj ipliklerin kopma kuvveti-uzama dağılımı

Şekil 4.22 %20 boyalı elyaf içeren melanj ipliklerin kopma kuvveti-uzama dağılıımı
Şekil 4.23 40 boyalı elyaflı melanj ipliklerin kopma kuvvet-üzama dağılımı

Şekil 4.24 61 boyalı elyaflı melanj ipliklerin kopma kuvvet-üzama dağılımı
Şekil 4.25 %80 boyalı eylaf içeren melanj ipliklerin kopma kuvveti-uzama dağılımı

Şekil 4.26%100 boyalı eylaf içeren melanj ipliklerin kopma kuvveti-uzama dağılımı
Şekil 4.27 %100 pamuk melanj ipliklerin kuvvet-uzama diyagramları

Şekil 4.27 de %1 ve %100 boya içeren pamuk melanjların dayanım özelliklerinin daha yüksek olduğu görülmektedir.
4.3 Değerlendirme ve Öneriler

Pamuk-Polyester karışımli iplikler ile yapılan çalışma sonuçlarında polyester oranı artışına bağlı olarak iplik kalite özelliklerinde belirgin değişiklikler yaşandığı gözlemdi. Gerçekleştirilen varyans analizi ile bu değişimın polyester oranı değişimine bağlı olduğu anlaşıldı. Tablo 4.3, 4.4 ,4.5 ,4.6 , 4.7, 4.8, 4.9, 4.10

Polyester Pamuk karışımli ipliklerin düzgünçülük değerlerine bakıldığında , %CV değerinde %100 pamuk ipliği ile %67 Pamuk-%33 Polyester ipliği arasında büyük oranda bir iyileşme görülmektedir. %100 Pamuk iplikteki %CV değeri 18.38 iken , %67 Pamuk-%33 Polyester iplikteki değer %16.07 bulunmuştur. Düzgünçülük değeri iyileştiği gibi elde edilen değerler arasındaki varyasyon da azalmıştır. %67 Pamuk-%33 Polyester iplik değerleri arasındaki varyasyon katsayısı %1.28 dir. %100 Pamuk iplikte bu değer %3.69 bulunmuştur. Tablo 4.1

%67 Pamuk-%33 Polyester ipliği ile %33 Pamuk-%67 Polyester ipliği karşılaştırıldığında ise düzgünçülükteki iyileşmenin azalarak da olsa devam ettiği görülmektedir. Sadece kalın yer değerlerinde karışım oranı ile paralel bir azalma görülmektedir.

Genel olarak Pamuk – Polyester ipliklerinin düzgünçülük değerlerini incelediğimizde %33 Polyester-%67 Pamuk ipliğin ortalama değerlerinin varyasyon katsayısı diğer iki iplik türünden belirgin derecede daha azdır. Yüksek oranda polyester içeren ipliklerden yapılan kumaşların özellikle giyimde tercih edilmediği düşünülüğünde , %100 pamuk iplik özelliklerini belirgin derecede iyileştiren ve sadece %33 polyester içeren bu iplik türe optimum ve kararlı yapıda bir çözüm olarak görülebilir.

Polyester Pamuk karışımli ipliklerin mukavemet değerlerine bakıldığında , polyester elyafın mukavemet ve uzama değerlerinde , pamuk elyafa göre daha iyi ve değişmez olması iplik özelliklerini de belirlemiştir. Elde edilen tüm sonuçlarda %100 pamuk iplik ortalama değerlerinin varyasyon katsayısı çok yüksek çıkmıştır. %67 Pamuk ,%33 polyester ipliklerde ise %100 Pamuk ipliğe oranla kopma kuvveti, uzama ve mukavemet değerlerinde iyileşme görülmektedir. Ancak polyester oranının %67 olduğu %33 pamuk,
%67 polyester iplikte kopma kuvveti, uzama, mukavemet değerlerindeki artış çok daha fazladır. %67 Pamuk, %33 Polyester iplik mukavemet, uzama, kopma kuvveti ortalama değerlerinin varyasyon katsayısı diğer iki iplikten daha düşük çıkmıştır. Tablo 4.2

Tensorapid-II test cihazından elde edilen kuvvet uzama grafiği inceleğinde %100 pamuk ipliğinin daha düşük bir uzama ve kuvvet değerinde koptuğu görülmektedir. İplik içerisindeki polyester oranı artıktça hem uzama hem de kopma kuvveti artmaktadır. Şekil 4.13.

Polyester elyaflı pamuk elyaf ile birlikte kullanılmasına ana nedeninin iplik dayanım özelliklerindeki iyileşme olduğu açıkça görülmektedir. Polyester karışılıklı ipliklerin iplik, örgü, dokuma işletmelerindeki iplik kopmalarını da azaltarak maliyeti düşüreceği ve tüketici için dayanıklı tekstil ürünleri yapılabileceğii değerlendirildiğinde, %100 pamuk ipliklerinin yanında güçlü bir alternatif olabileceğini görülmektedir. Günümüzde özellikte dayanımın daha önemli olduğu özel giyim eşyaları, döşemelikler gibi ürünler için kullanılmaktadır.

Pamuk melanj ipliklerin, incelenen test sonuçları üzerinde yapılan varyans analizi ile pamuk melanj ipliklerdeki boyalı pamuk elyaf oranı değişikçe iplik kalite değerlerinin değiştiği saptandı. Tablo 4.13,4.14,4.15,4.16,4.17,4.18,4.19,4.20

Pamuk Melanj İpliklerin düzgünşülük değerlerine bakıldığında, değerlerin ortalamalarının varyasyon katsayları birbirine yakın bulundu. Sadece ince yer için bir farklılık vardı ki bu da değerlerin küçük olmasından kaynaklanmaktadır. Tablo 4.11

Düzgünşülük test sonuçlarında genel eğilim %20, %40, %61, %80 oranında boyalı elyaf içeren ipliklerin değerlerinin belirli bir artış gösterdiği, %1 boyalı elyaf içeren ipliğin değerlerinin %20 boyalı elyaf içeren iplikten biraz daha kötü olduğu ve %100 boyalı elyaf içeren ipliğin de %80 boyalı elyaf içeren iplikten daha iyi sonuçlar verdiği görüldü.

%1 ve %100 boyalı elyaf içeren iplikleri grup dışında bırakarak kalan %20, %40, %61, %80 boyalı elyaf içeren iplikler arasında yapılan varyans analizinde de boyalı elyaf oranı değişiminin önemli olduğu saptandı. Bu dört iplik çesidini içeren grupta boyalı
elyaf oranı arttıkça %CV, İnce Yer, Kalın Yer, Nepş, Tüyülük değerlerinde artış görülmektedir. Bu durumun preslenerek boyama işlemine tabi tutulan elyafların açılması ve istenen melanj iplik rengini elde edecek şekilde farklı renkteki elyaflar ile harmonlanması sırasındaki işlemlerin yetersizliğinden kaynakladığı tahmin edilmektedir. Yine incelen bu dört iplik için alınan düzgünşlük değerler ortalamalarının varyasyon katsayıları da yüksektir. %100 boyalı elyafl içeren pamuk melanj iplikte ise bu işlemlerden daha az geçeceğ ve daha homojen bir yapıya sahip olacağı için kalite değerlerinin daha iyi olması beklenir.

Mukavemet

%100 pamuk melanj ipliklerin koyu tonlarında genellikle bir mukavemet problemi yaşanmaktadır. Bu nedenle incelediğimiz ipliklerde boyanacak elyaflının mukavemeti, ham elyafl mukavemetinden yüksektir. Böylece boyama ile kaybedilen mukavemet daha kuvvetli elyafl kullanılarak aşılama çalışılmıştır.

Ek olarak aynı işletme laboratuvarından aldığımız iplik, bobin boyamadaki mukavemet kaybi verileri Tablo 4.20 de verilmiştir.

<table>
<thead>
<tr>
<th>İplik Cinsi</th>
<th>Ham Mukavemet Rkm</th>
<th>Boyalı Mukavemet Rkm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ne 30/1 Penye, triko büküm</td>
<td>14,8</td>
<td>13,0</td>
</tr>
<tr>
<td></td>
<td>13,6</td>
<td>13,8</td>
</tr>
<tr>
<td></td>
<td>14,2</td>
<td>12,1</td>
</tr>
<tr>
<td>Ne 20/2 Karde, triko büküm</td>
<td>13,6</td>
<td>11,4</td>
</tr>
<tr>
<td></td>
<td>13,8</td>
<td>11,9</td>
</tr>
</tbody>
</table>

Tablo 4.21 Ham iplik-boyalı iplik mukavemet değişimi
İşletme verilerinden anlaşıl olduğu gibi boyama işlemi nedeni ile iplik mukavemetinde ortalama %10-11 oranında bir kayıp oluşturmaktadır. Elyafl mukavemetinin boyama ile %8-9 oranında düştüğü belirtilmiştir. (Damkacı, 2000)
Pamuk melanj ipliklerin üretim aşamasında önce boyanacak elyaflar açılarak penyeleme işlemden geçirilmektedir. Ardından preslenerek boyama işlemine tabi tutulmakta ve istenen renk elde edilecek şekilde uygun oranlarla harmanlanıp tekrar açma işleminden geçirilmektedir. Bu aşamalardan geçen elyaf mekanik zorlanmalar ile karşılaşmaktadır.

Pamuk melanj üretim proseslerinde mekanik açma işlemlerinin ham iplik üretimine göre daha fazla oluştu, preslenmiş boyalı elyafların açılmasını zorlukları, boyama ile elyaftaki mukavemet kaybının söz konusu uzun üretim prosedüründe oluşturulacağı dezavantajlar nedeni ile belirli oranlarda boyalı elyaf içeren pamuk melanj ipliklerin mukavemet değerleri varyasyonu yüksek çıkmasıdır. Yüksek oranda boyalı elyaf içeren ipliklerde mukavemet sorununun çözülmesi için daha yüksek mukavemetli lifler boyama işleminde kullanılmıştır. Tensorapid II test cihazı ile elde edilen kuvvet uzama eğrileri incelediğinde %1 ve %100 boyalı elyaf içeren pamuk melanjların kuvvet-uzama davranışlarının daha iyi olduğu görülmektedir. Diğer pamuk melanj iplikler ise nispeten daha kötü davranış sergilemektedir. Şekil 4.27

KAYNAKLAR

Cerit C., Yüksel M., 1997, Matematik İstatistik, İstanbul

Çelikkanat A., Akkün B., 1998, İplik tüyülüğü ölçüm hızının sonuçlara etkisi, Lisans Tezi, İ.TÜ. Makina Fakültesi, İstanbul

Damkacı A., 1999, Kişisel görüşme, Edip İplik A.Ş.

Frey M., Doglas K., 1993, Characteristics of ring-spun yarns for knitting 35th congress of the International Federation of Knitting Technologist Ebnat-Kappel, Switzerland,

Frydrych, Iwona, 1995, Strength properties of cotton blend yarns, J. Text. Inst., V 84, 452

Önder E., 1989, İplik kopma mekanizmasının istatistiksel mekanik bir modelinin geliştirilerek dokuma verimliliğinin tahminlenmesinde kullanım olanaklarının araştırılması, Doktora Tezi, EGE Üniversitesi, İzmir

Önder E., 1999, İstatistik ders notları, İ.T.Ü. Makina Fakültesi, İstanbul

Özipek B., 1999, Pamuk iplikçiliği ders notları, İ.T.Ü. Makina Fakültesi, İstanbul

Pan N., 1995, Some of the recent developments in mechanics of fibrous structures, FAPTA, Vol. 4, No. 2

Peneva Z., Oreskovic V., 1997, Analysis of the coincidence between thin places and breaking point in a yarn, J. Text. Inst., 21

Peneva Z., Oreskovic V., 1999, Modelling of yarn properties from fiber properties, JTI 90, 322

Radhaknishaiah P., 1994, Low stress mechanical behaviour of cotton polyester yarns and fabrics in relation to fiber distribution within in the yarn.

Taylor M.A., 1999, Tekstil Teknolojisi, Şan Ofset, İstanbul

Uster, Zellweger, 1999, Description of all quality parameters of ring-spun yarns Laboratory Systems.

Uster, Zellweger, 1999, Yarn Quality Characteristics
ÖZGEÇMİŞ