AVRUPA BİRLİĞİ SüRECİNDE TÜRKİYE ELEKTRİK ENERJISİ SEKTÖRÜNÜN YATIRIM GEREKSİNİMİ VE FİNANSMANI

YÜKSEK LİSANS TEZİ
Müh. Alp ÇAMCI
504021051

Tezin Enstitüye Verildiği Tarihi : 8 Temmuz 2005
Tezin Savunulduğu Tarih : 22 Temmuz 2005

Tez Danışmanı : Doç. Dr. Nazif Hülâgü SOHTAOĞLU

Diğer Jüri Üyeleri : Prof. Dr. Serhat ŞEKER (İ.T.Ü.)
Prof. Dr. İrfan GÜNEY (M.Ü.)

Temmuz 2005
ÖNSÖZ

Bu çalışmanın hazırlanması sürecine ve özellikle kişisel gelişimime katkılarından dolayı Sayın Doç. Dr. Nazif Hülâgü SOHTAOĞLU’na, çalışma boyunca fikirleri ve çabaları ile desteği esirgemeyen Sayın Dr. Bülent ORAL’a, bu süreçteki anlayışı ve hoşgörüsü için Sayın Hasan TERZIOĞLU’na, tüm yaşamım boyunca desteklerini hep yanında hissettiğim, bugünümde en büyük payın sahibi olan Sayın Akin, Meral ve Anıl ÇAMCI’ya, çalışma sürecinde her zaman yanında olan ve düzeltmelerini yapan Sevgili Elif İNCE’ye teşekkürlerimi sunarım.

Temmuz, 2005

Alp ÇAMCI
İÇİNDEKİLER

KISALTMALAR vi
TABLO LISTESİ vii
ŞEKİL LISTESİ viii
ÖZET ix
SUMMARY x

1. GİRİŞ 1

2. KÜRESEL ÖLÇEKTE ELEKTRİK ENERJİSİ SEKTÖRÜNÜN TARİHSEL GELİŞİMİ 4
 2.1. 1870 – 1920 Dönemi 4
 2.2. 1920 – 1945 Dönemi 5
 2.3. 1945 – 1960 Dönemi 5
 2.4. 1960 – 1980 Dönemi 6
 2.5. 1980 – 1990 Dönemi 8

3. TÜRKİYE ELEKTRİK ENERJİSİ SEKTÖRÜNÜN TARİHSEL GELİŞİMİ VE ELEKTRİK PIYASASI KANUNU 10
 3.1. Türkiye Elektrik Enerjisi Sektörünün Tarihsel Gelişimi 10
 3.2. Yeniden Yapılanma Öncesinde Elektrik Enerjisi Sektörünün Durumu 15
 3.3. Yeniden Yapılanma Gereksinimi 16
 3.4. Elektrik Piyasası Kanunu 17
 3.5. EPK Sonrasında Elektrik Enerjisi Sektörünün Durumu 19
 3.5.1. Yasa ile Sektörde Oluşturulan Yapı 19
 3.5.2. Yeni Yapıda Üretim Faaliyetleri 20
 3.5.3. Yeni Yapıda İletim Faaliyetleri ve Toptan Satış 21
 3.5.4. Yeni Yapıda Dağıtım Faaliyetleri ve Perakende Satış 22
 3.5.5. Yeni Yasa Kapsamında Oluşturulan Kurullar 23
 3.5.6. Yeni Yasa Kapsamında Lisans Kavramı 24
 3.5.7. Yeni Yasa Kapsamında Tüketicilerin Durumu 25
 3.6. Serbest Piyasaya Geçiş Aşamaları 25
4. ELEKTRİK ENERJİSİ SEKTÖRÜNDE KULLANILAN YAPISAL MODELLER

4.1. Yapısal Modellerin Tarihsel Gelişimi 30
4.2. Dikey Birleşme Kavramı 32
 4.2.1. Üretim – İletim Birleşmesi 33
 4.2.2. Üretim – Dağıtım Birleşmesi 33
 4.2.3. İletim – Dağıtım Birleşmesi 35
4.3. Yatay Birleşme Kavramı 36
4.4. Yapısal Modeller 37
 4.4.1. Dikey Birleşen Tekelci Model 37
 4.4.2. Tek Alıcı Model 38
 4.4.3. Toptan Satış Rekabetine Dayalı Piyasa Modeli 40
 4.4.4. Perakende Satış Rekabetine Dayalı Piyasa Modeli 42

5. TÜRKİYE ELEKTRİK ENERJİSİ SEKTÖRÜNDE YATIRIM VE FINANSMAN MODELLERİ 45

5.1. 1980 Sonrası Kamu Yatırım ve Finansman Modelleri 45
5.2. Yap-İşlet-Devret Modeli 48
 5.2.1. Yap-İşlet-Devret Modelinin Özellikleri 49
 5.2.2. Yap-İşlet-Devret Modelinin Yasal Altyapısı 50
 5.2.3. Yap-İşlet-Devret Modelinin Elektrik Enerjisi Sektöründe Uygulaması 53
 5.2.3.1. İhale Yöntemleri 54
 5.2.3.2. İhale Sonrası Değerlendirme 54
 5.2.3.3. Sözleşme Aşaması 55
 5.2.3.4. Yap-İşlet-Devret Projelerinin Finansmanı 56
 5.2.3.5. Yap-İşlet-Devret Projeleri Kapsamında Verilen Hazine Garantileri 57
 5.2.3.6. Yap-İşlet-Devret Projelerinde Tarife ve Ücret Belirleme Yöntemleri 57
5.2.4. Yap-İşlet-Devret Modeli Çerçevesinde Karşılaşılan Sorunlar 59
 5.2.4.1. Teknik Sorunlar 59
 5.2.4.2. Ekonomik Sorunlar 59
5.2.5. Yap-İşlet-Devret Modeli Sonuç Değerlendirmesi 60
5.3. Yap-İşlet Modeli 62
5.4. İşletme Hakkı Devir Modeli 64
6. AVRUPA BİRLİĞİ – TÜRKİYE İLİŞKİLERİ

6.1. Tarihsel Perspektifte Avrupa Birliği – Türkiye İlişkileri 66
6.2. Avrupa Birliği Elektrik Piyasası Direktifi ve Türkiye Uygulaması 72
6.3. Enerji Sektörü Çerçevesinde İlerleme Raporları
 6.3.1. 1998 Yılı Düzenli Raporu 76
 6.3.2. 1999 Yılı Düzenli Raporu 76
 6.3.3. 2000 Yılı Düzenli Raporu 77
 6.3.4. 2001 Yılı Düzenli Raporu 77
 6.3.5. 2002 Yılı Düzenli Raporu 78
 6.3.6. 2003 Yılı Düzenli Raporu 79
 6.3.7. 2004 Yılı Düzenli Raporu 80

7. 1985 – 2001 DÖNEMİNDE ELEKTRİK ENERJİSİNİ YÖNELİK YATIRIMLARIN İRDELENMESİ 83

8. UZUN DÖNEM YATIRIM PLANLAMA STRATEJİLERİ VE TÜRKİYE İÇİN ÖNGÖRÜLEN TEMEL SENARYOLAR 92

8.1. Uzun Dönem Yatırım Planlama Stratejileri 92
8.2. Senaryo Temelli Planlama
 8.2.1. Senaryo Planlanmanın Temelleri 93
 8.2.2. Senaryo Planlanmanın Çeşitleri 94
 8.2.3. Senaryo Planlanmanın Avantajları ve Dezavantajları 95
8.3. Türkiye için Öngörülen Temel Senaryolar
 8.3.1. Senaryo A 97
 8.3.2. Senaryo B 98
 8.3.3. Senaryo C 99

9. UZUN DÖNEM TÜRKİYE ELEKTRİK ENERJİSİ TALEP TAHMINİ VE KURULU GÜÇ GEREKSİNİMİ 101

9.1. Türkiye’deki Elektrik Enerjisi Talep Tahmini ve Arz Planlama Çalışmaları 102
 9.1.1. MAED 102
 9.1.2. WASP Modeli 104
 9.1.3. Valoraqua Modeli 107
9.2. Talep Tahminini Etkileyen Parametreler 107
9.3. 2025 Perspektifinde Senaryolara Dayalı Türkiye Talep Tahmini Çalışması ve Sonuçları 111

10. GELİŞTİRİLEN SENARYOLAR ÇERÇEVEŞİNDE YATIRIM GEREKSİNİMİ VE FİNANSMANI 116

11. SONUÇLAR VE TARTIŞMA 126

KAYNAKLAR 130
ÖZGEÇMİŞ 133
<table>
<thead>
<tr>
<th>KISALTMALAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>Avrupa Birliği</td>
</tr>
<tr>
<td>CCGT</td>
<td>Birleşik Çevrim Gaz Türbini</td>
</tr>
<tr>
<td>CEGB</td>
<td>Central Electricity Generating Board (Merkezi Elektrik Üretim Komitesi)</td>
</tr>
<tr>
<td>ÇEAŞ</td>
<td>Çukurova Elektrik Türk Anonim Şirketi</td>
</tr>
<tr>
<td>EDF</td>
<td>Electricité de France</td>
</tr>
<tr>
<td>EİEİ</td>
<td>Elektrik İşleri Etüt İdaresi</td>
</tr>
<tr>
<td>EPDK</td>
<td>Enerji Piyasası Düzenleme Kurulu ve Kurumu</td>
</tr>
<tr>
<td>EPK</td>
<td>Elektrik Piyasası Kanunu</td>
</tr>
<tr>
<td>ETKB</td>
<td>Enerji ve Tabii Kaynaklar Bakanlığı</td>
</tr>
<tr>
<td>EÜAŞ</td>
<td>Elektrik Üretim Anonim Şirketi</td>
</tr>
<tr>
<td>GSYİH</td>
<td>Gayri Safi Yurtiçi Hâsîla</td>
</tr>
<tr>
<td>HES</td>
<td>Hidroelektrik Santral</td>
</tr>
<tr>
<td>IAEA</td>
<td>Uluslararası Atom Enerjisi Ajansı</td>
</tr>
<tr>
<td>IPP</td>
<td>Independent Power Producer (Bağımsız Güç Üreticisi)</td>
</tr>
<tr>
<td>İİHD</td>
<td>İşletme Hakkı Devri</td>
</tr>
<tr>
<td>KEPEZ</td>
<td>Kepez ve Antalya Havalisi Elektrik Santrallar Türk Anonim Şirketi</td>
</tr>
<tr>
<td>MAED</td>
<td>Model for Analysis of Energy Demand</td>
</tr>
<tr>
<td>MDA</td>
<td>Merkez ve Doğu Avrupa</td>
</tr>
<tr>
<td>MTA</td>
<td>Maden Tektik Arama Enstitüsü</td>
</tr>
<tr>
<td>PMUM</td>
<td>Piyasa Mali Ulaştırma Merkezi</td>
</tr>
<tr>
<td>TCK</td>
<td>Türkiye Cumhuriyeti Karayolları Genel Müdürlüğü</td>
</tr>
<tr>
<td>TEAŞ</td>
<td>Türkiye Elektrik Üretim – İletim Anonim Şirketi</td>
</tr>
<tr>
<td>TEDAŞ</td>
<td>Türkiye Elektrik Dağıtım Anonim Şirketi</td>
</tr>
<tr>
<td>TEİAŞ</td>
<td>Türkiye Elektrik İletim Anonim Şirketi</td>
</tr>
<tr>
<td>TEK</td>
<td>Türkiye Elektrik Kurumu</td>
</tr>
<tr>
<td>TETAŞ</td>
<td>Türkiye Elektrik Ticaret ve Taahhüt Anonim Şirketi</td>
</tr>
<tr>
<td>UCTE</td>
<td>Elektrik İletimi Koordinasyon Birliği</td>
</tr>
<tr>
<td>UYDM</td>
<td>Ulusal Yük Dağıtım Merkezi</td>
</tr>
<tr>
<td>YİL</td>
<td>Yap İşlet</td>
</tr>
<tr>
<td>YİD</td>
<td>Yap İşlet Devret</td>
</tr>
<tr>
<td>WASP</td>
<td>Wien Automation for Systems Planning</td>
</tr>
<tr>
<td>Tablo</td>
<td>Adı</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>5.1</td>
<td>Yap-İşlet-Devret Modeli ile Gerçekleştirilen Elektrik Enerjisi Üretim Tesisi Projeleri</td>
</tr>
<tr>
<td>5.2</td>
<td>Yap-İşlet Modeli ile Gerçekleştirilen Elektrik Enerjisi Üretim Tesisi Projeleri</td>
</tr>
<tr>
<td>5.3</td>
<td>İşletme Hakki Devir Modeli ile Gerçekleştirilen Elektrik Enerjisi Üretim Tesisi Projeleri</td>
</tr>
<tr>
<td>7.2</td>
<td>1980 – 2001 Döneminde Üretim, Kurulu güç, Çalışma Saati ve Faydalama Faktörü Tablosu</td>
</tr>
<tr>
<td>7.3</td>
<td>1985 – 2001 Döneminde Üretim Kapasitesi ve Çalışma Süresi Beklenen ve Gerçekleşen Değerleri ve Aralarındaki Fark</td>
</tr>
<tr>
<td>7.4</td>
<td>Yıllar İtibarıyla ile Türkiye Brüt Üretiminin Şirketlere Dağılımı</td>
</tr>
<tr>
<td>7.5</td>
<td>1985 – 2001 Döneminde Elektrik Enerjisi Brüt Üretiminde Kullanılan Birinci Kaynaklar ve Yüzde Değerleri</td>
</tr>
<tr>
<td>8.1</td>
<td>Türkiye için Öngörülen Temel Senaryolar için GSÝIH Yıllık Artış Hızları</td>
</tr>
<tr>
<td>9.1</td>
<td>Talep Tahmininde Kullanılan BağIMSız Değişkenlerin Geçmişte Aldıkları Değerler</td>
</tr>
<tr>
<td>9.2</td>
<td>Talep Tahmininde Kullanılan BağIMSız Değişkenlerin 2006 – 2025 Döneminde Değişimi</td>
</tr>
<tr>
<td>9.3</td>
<td>Geliştirilen Senaryolar Çerçevesinde 2006 – 2025 Döneminde Türkiye Brüt Üretim ve Net Tüketim Değerleri</td>
</tr>
<tr>
<td>10.1</td>
<td>Yıllar İtibarıyla ile Kurulu güç Birinci Enerji Kaynaklarına Yüzde Dağılımı Tahminleri</td>
</tr>
<tr>
<td>10.2</td>
<td>Birinci Enerji Kaynaklarına Göre Santral Tiplerinin Birim Yatırıım Maliyetleri</td>
</tr>
<tr>
<td>10.3</td>
<td>Senaryolar İtibarıyla 2006 – 2025 Döneminde Brüt Talep ve Kurulu güç Değerleri</td>
</tr>
<tr>
<td>10.4</td>
<td>Senaryo A için Kurulu güç Birinci Enerji Kaynaklarına Dağılımı ve Gerekli Yatırım Maliyeti</td>
</tr>
<tr>
<td>10.5</td>
<td>Senaryo B1 için Kurulu güç Birinci Enerji Kaynaklarına Dağılımı ve Gerekli Yatırım Maliyeti</td>
</tr>
<tr>
<td>10.6</td>
<td>Senaryo B2 için Kurulu güç Birinci Enerji Kaynaklarına Dağılımı ve Gerekli Yatırım Maliyeti</td>
</tr>
<tr>
<td>10.7</td>
<td>Senaryo C için Kurulu güç Birinci Enerji Kaynaklarına Dağılımı ve Gerekli Yatırım Maliyeti</td>
</tr>
</tbody>
</table>
ŞEKİL LISTESİ

Şekil 3.1 : Yeniden Yapılanma Öncesi Türkiye Elektrik Enerjisi Sektörünün Yapısı ... 16
Şekil 3.2 : Elektrik Piyasası Kanunu'na Göre Türkiye Elektrik Enerjisi Sektörünün Yapısı ... 20
Şekil 4.1 : Dikey Birleşen Model İşleyiş Yapısı .. 38
Şekil 4.2 : Tek Alıcı Modelin Genel İşleyiş Yapısı .. 40
Şekil 4.3 : Toptan Satış Rekabetine Dayalı Piyasa Modeli Genel İşleyiş Şeması .. 41
Şekil 4.4 : Perakende Satış Rekabetine Dayalı Piyasa Modeli Genel İşleyiş Şeması .. 43
Şekil 4.5 : Tekelci Yapı ile Perakende Satış Rekabetine Dayalı Modelin Karşılaştırmaları .. 44
Şekil 7.2 : Yıllar İtibariyla Brüt Üretim, Net Üretim ve Kayıp Kaçak Değerleri .. 87
Şekil 7.3 : Yıllar İtibariyla Kurulu Güçün Birincil Enerji Kaynakları Cinsinden Dağılımı .. 90
Şekil 9.1 : Nüfus Bağımsız Değişkeni için Serpilme DIYAGRAMI .. 112
Şekil 9.2 : GSYİH Bağımsız Değişkeni için Serpilme DIYAGRAMI .. 112
Şekil 9.3 : Sanayi Sektörünün Elektrik Enerjisi Yoğunluğu Bağımsız değişkeni için Serpilme DIYAGRAMI .. 113
Şekil 9.4 : Hizmet Sektörünün Elektrik Enerjisi Yoğunluğu Bağımsız değişkeni için Serpilme DIYAGRAMI .. 113
AVRUPA BİRLİĞİ SÜRECİNDE TÜRKİYE ELEKTRİK ENERJİSİ
SEKTÖRÜNÜN YATIRIM GEREKSİNİMİ VE FİNANSMANI

ÖZET

THE INVESTMENT AND FINANCE REQUIREMENT OF TURKISH ELECTRIC POWER INDUSTRY FROM THE EUROPEAN UNION PERSPECTIVE

SUMMARY

Investment requirements of Turkish electric power industry from the European Union perspective are evaluated within the context of this study. To this end, first, the power market and the structural developments thereof in Turkey and in the world are discussed from a historical point of view. Secondly, actions that are taken in order to create a Turkish electric power market are discussed and investment models employed in financing of the power market investments are examined. When the implementation period and the cost of investments to be made in the power market industry are taken into account, the significance of investment planning becomes evident. Therefore determining the electric power demand is the most essential of the decisions to be made considering the investment. As a result, scenario planning techniques are utilized to construct several future scenarios with the help of which the electric power demand of Turkey for the year 2025 is determined as well the cost of the required production facility investments that are needed in order to meet that demand.
1. **GİRİŞ**

Elektrik enerjisi sektörünün tarihsel gelişimine bakıldığında, ilk dönemlerde sadece genel aydınlatma için kullanılan elektrik enerjisi, günümüze ekonomik kalkınmanın temel parametrelerinden biri olarak ön çökmaktadır. Aynı zamanda sanayi sektörünün en temel girdilerinden biri olan elektrik enerjisinin ardından yaşanacak bir sıkıntı, tüm ülke ekonomisinin etkileyebilecek boyutlara sahip olması da konunun önemi arttırmaktadır.

uzanan uzun dönemdeki, sisteme eklenecek ilave kapasitenin bugünden belirlenmesi gerekmektedir.

Aynı zamanda elektrik enerjisi sektörüne yapılması gereken yüksek yatırım tutarları nedeniyle, sektör üzerinde kamu yatırım yöntemlerinin yanı sıra birçok yatırım modeli de gündeme getirilmişdir. Gelişmekte olan ülkeler kategorisinde değerlendirilen ülkemiz, hem enerji talebindeki hızlı artış, hem de kamu finansmanı sıkıntıları sonucunda yatırım modellerinin yaygın olarak uygulandığı ülkeler arasındadır. Yatırım modellerin uygulama ve işleyişinden kaynaklanan sorunlar uzun yıllardan bu yana tartışılmaktadır.

Günümüzde hızla değişen sosyal, ekonomik, finansal, teknolojik ve politik yapıda gececek öngörülerinde bulunmak, bunlara bağlı olarak sadece bir gececek tanımlayabilecek mümkün değildir. Özellikle elektrik enerjisi sektöründe, verilecek kararların ekonomik yansımalarının büyüklüğü düşünüldüğünde ülkelerin farklı durumlar karşısında hazırlıklı olmaları gerekliği açığıdır. Geleceğin farklı şekillenişlerine göre mevcut seçeneklerin değerlendirilerek ve bağlı olarak stratejilerin belirlenmesinde senaryo planlama tekniği, 1973 petrol krizinde Royal Dutch Shell şirketine sağladığı avantajlardan sonra oldukça yaygın olarak kullanılmaktadır.

Bu çalışma kapsamında, yukarıda deşinilen özellikler kapsamında elektrik enerjisi sektörü incelenmiş ve ülkemizdeki çözümlere uygulanması sunulmuştur.

Bölüm 2’de, dünyada elektrik enerjisi sektörünün gelişimi tarihsel perspektifte açıklanmıştır.

Bölüm 3’de, dünyada yaşanan yapısal değişimlerin ülkemiz üzerinde etkilerinin görülmesi açısından Türkiye elektrik enerjisi sektörünün tarihsel gelişimi sunulmuş, ayrıca sektörde yeni bir yapılanma öngören Elektrik Piyasası Kanunu öncesi ve sonrası karşılaştırmalıtır.

Bölüm 4’de, elektrik enerjisi sektörünün bugünkü işleyişine ulaşılanada kadar geçen süreçte yapısal modeller incelenmiştir.
Bölüm 5’de, özellikle Türkiye elektrik enerjisi sektöründe yaygın olarak kullanılan Yap-İşlet-Devret (YİD), Yap-İşlet (Yİ) ve İşletme Hakkı Devri (İHD) gibi yapısal modeller ayrıntılandırılmış, bu modellerin ülkemiz uygulamaları sunulmuştur.

Bölüm 7’de, Türkiye’nin günümüzdeki 20 yılda etkileri en yoğun hissedilecek siyasal belirsizliği olan Avrupa Birliği süreci tarihsel perspektifte açıklanmış, Avrupa Birliği’nin ilgili direktiflerinin elektrik enerjisi sektörüne olan yansımaları özetlenmiştir.

Bölüm 8’de, senaryo planlama tekniği açıklanarak, Türkiye için Avrupa Birliği perspektifinde çeşitli senaryolar oluşturulmuştur.

Bölüm 10’da, farklı ölçütlere bağlı olarak geliştirilen senaryolar kapsamında hesaplanan talebi karşılamak amacıyla, elektrik enerjisi üretim tesisleri için yatırım tutarları hesaplanmış, AB sürecine ilişkin senaryolar çerçevesinde değerlendirmeler yapılmıştır.
2. KÜRESEL ÖLÇEKTE ELEKTRİK ENERJİSİ SEKTÖRÜNÜN TARIHSEL GELİŞİMİ

Elektrik enerjisi sektörünün gelişimi tarihsel perspektifte irdelendiğinde, yapısal olarak farklı 5 önemli dönem saptanmaktadır. Anılan süreçlerde ekonomi politikaları ve teknolojik gelişmeler sonucunda, sektörün yapısını temelden etkileyen, önemli değişikliklere yol açan gelişmeler yaşanmıştır [1]. Bu dönemler:

- 1870 – 1920 Dönemi,
- 1920 – 1945 Dönemi,
- 1945 – 1960 Dönemi,
- 1960 – 1980 Dönemi ve
- 1980 – 1990 Dönemi

olarak sıralanabilir. İzleyen başlıklar altında, genel hatlarıyla, elektrik enerjisi sektöründe yaşanan gelişmeler ayrıntılandırılmıştır.

2.1 1870 – 1920 Dönemi

2.2 1920 – 1945 Dönemi

2.3 1945 – 1960 Dönemi

II. Dünya Savaşı’ndan sonra büyük oranda zarar görmüş altyapının yeniden oluşturulması gereği doğmuştur. Böyle büyük çapta bir yatırım ihtiyacı, özel sektör tarafından ve ivedilikle karşılanması mümkün olamamıştır. Ayrıca serbest piyanın böylesi zor bir durumda bile fiyat savaşlara, tekel oluşturma çabalarına devam etmesine karşı uluslararası tepkiler artmaya başlamış ve kamunun zorunlu ihtiyaç olarak değerlendirilen kalemlerinde kamu denetimi gerektiği fikri daha çok destek bulmaya başlamıştır.

Avrupa’dan başlamak üzere hükümetler elektrik enerjisini sektörünün doğal bir tekel olduğu düşünceси ile bütün üreticilerin ulusal düzeyde veya bölgesel kapsamında tek
bir çatı altında toplanmasına karar vermişlerdir. Ayrıca tekelci yapının piyasaya zarar vermemesi ve kamu yararının gözetilmesi açısından kamuya ait olması gerektiğini düşünülmüştür.

Amerika Birleşik Devletleri’nde ise aynı dönemde farklı bir model uygulanmıştır. Elbette dünya genelinde elektrik enerjisi sektörünün doğal bir kamu tekeli olduğunu fıkri Birleşik Devletleri de etkisi altında almıştır. Ancak uygulamada özel bir şirketin sahipliğinde oluşturulan tekel piyasasının, bağımsız bir düzenleyici komisyon tarafından denetlenmesi ile gerçekleştirilmiştir.

2.4 1960 – 1980 Dönemi

1970’li yıllarda, dünya enerji piyasasının petrol krizleri ile ilk defa karşılaştığı dönem olmuştur. 1973 krizinde, petrol fiyatlarının tahminlerin çok ötesinde artması ve petrolde karşılaşılan arz güvenliği sorunu o dönemde kadar elektrik üretiminin temel hammadde olan petrolün ve bağlı olarak petrole dayalı üretimin sorgulanmasına
neden olmuştur. Sorgulama, bazı ülkelerin nükleer kaynaklara dayalı üretim programlarına hız vermesine, bazı ülkelerin ise nükleer programları gündemlerine almalarına ve sonuçta üretim girdisi olarak petrol yerine hidrokarbon tabanlı hammaddelere yönelimin artmasına sebeb olmuştur.

1973 enerji krizi ve sonrasında yaşanan gelişmeler, sanılanın aksine bağımsız üretim tesislerinin şebekein düzene ve kararlılığını etkilemeden paralel olarak çalışabileceğini gösteren teknik buluşlarla birlikte minimum verimi santral gücü konusundaki kabul göre fikirleri değiştirmiş, dikey örgütlenmiş tekel yapısının elektrik enerjisi sektörü için tek ve vazgeçilmez yapılar olmasının olmadığını göstermiştir [4].

Anılan gelişmeler işığında 1960’lardaki öngörülen en düşük verimli üretim miktarının aslında hesaplandığı kadar yüksek seviyelerde olmadığı görüşü ağırlık kazanmıştır. Yeni görüşe göre, elektrik enerjisi üretim sektörünün doğal bir tekel olmadığı iddia edilmiştir. Piyasanın giderek artan talebi karşılayacak ve yeteri kadar artış değer yaratacak kadar büyük olması koşulu ile üretim şirketleri arasında etkin bir ticaret ve optimum bir dağıtım sağlanarak piyasa yeniden yapılandırılmıştır.

Yeni yapılanmada üretim ve dağıtım şebekeleri arasında teknolojik ve ekonomik açıdan bağımsız yatay bir örgütlenme şeması olduğu ortaya konulmuş ve eğer elektrik piyasasında rekabetçi bir yapılanma oluşturulacak ise iki farklı fonksiyonu işbirliği ve eşgödüm içerisinde çalıştıracak yeni mekanizmaların oluşturulması gerekliğini ortaya çıkarmıştır [1].
2.5 1980 – 1990 Dönemi

En düşük verimli üretim kavramını tamamen değiştiren kombine çevrim gaz türbini teknolojisi ilk askeri jetlerin motorlarında kullanılmış ve daha sonra elektrik enerjisi üretiminde uygulama alanı bulunmuştur. Temel anlamda, klasik gaz türbinlerine ısı dönüşülü buhar jeneratörü ve buhar türbini eklener kombine çevrim gaz türbini elde edilmiş, böylelikle elektrik enerjisi üretiminde kullanılan yeni malzemeler ve tasarımlar ile yakıtın daha yüksek sıcaklıklarda ve daha verimli yakılması sağlanmıştır. Kombine çevrim gaz türbini teknoloji, elde edilebilir ısı verimliliği %60 mertebesine çıkarmış ve 1980’lerde 1,000 MW olan minimum verimli üretim gücünü 50 ve 350 MW merteplerine düşürmüştür. Söz konusu gelişme, sadece elektrik enerjisi üretiminde meydana gelen bir yenilik değil tüm piyasa yapılanmasının tümüyle değiştiriren bir buluş olarak algılanmalıdır. Günümüzde birçok ülke temel elektrik üretim tesislerinde kombine çevrim gaz türbini kullanmakta ve tek çevrimli türbinleri sadece tepe talep söz konusu olduğunda devreye almaktaadır [5].

Teknolojik yapıda meydana gelen değişimlerin yanı sıra ekonomik bakış açısında da değişimler olmuştur. Elektrik enerjisi sektörüne yapılması zorunlu yatırımların kamu bütçesine getirdiği yük ve kamu tarafından işletilen tesislerin verimsiz işletmeler olarak değerlendirilmesi sonucu, verimliliği maksimize edeceği düşünülen, piyasa ekonomisi ve pazarlamaya dayanan yeni bir yapı, artarak daha fazla savunucu bulmuştur. Ayrıca gelişmekte olan ülkeler açısından, piyasanın özelleştirilmesi ile ek kaynaklar yaratılabileceğini düşünülmüştür.
1990’ların ilk yarısında İngiltere Birleşik Krallığı, Arjantin ve Norveç elektrik piyasalarında reform çalışmalara başlamıştır. Sayılan reform örnekleri geri kalan ülkelerce, yapacakları değişimleri desteklemek, rekabeti dengeleyici ya da işbirliğini sağlayacak pratik mekanizmaların geliştirmek konularında örnek olmuştur. Üretim ve dağıtım arasındaki yatay örgütlenme yapısı korunmuş fakat kontrollü bir rekabetçi yapıya düzenlemeleri başlamıştır [1 - 4].
3.TÜRKİYE ELEKTRİK ENERJİSİ SEKTÖRÜNÜN TARIHSEL GELİŞİMİ VE ELEKTRİK PIYASASI KANUNU

3.1 Türkiye Elektrik Enerjisi Sektörünün Tarihsel Gelişimi

Türkiye'de elektrik enerjisi üretiminin tarihçesine bakıldığında, ilk olarak 1902 yılında Tarsus'ta su miline bağlımış dinamo vasıtasıyla 2kW gücünde bir santral ile başladıgı görülmektedir. İlk yüksek güçlü elektrik enerjisi üretim tesisi, 1914 yılında İstanbul Silahtarağa'da kurulmuştur. Silahtarağa aynı zamanda, Türkiye’nin ilk taşkımürü santralıdır ve Macar GANZ şirketine verilen imtiyazla Banque Generale de Credit ve Banque de Brexellese şirketleri ile birlikte Osmanlı Elektrik Anonim Şirketi adı altında kurulmuştur. Türkiye Cumhuriyeti’nin kurulduğu 1923 yılında bakıldığında, toplam kurulu gücün 32,8MW ve üretimin yılda 45GWh olduğu, ayrıca elektrik enerjisinin sadece İstanbul, Adapazarı ve Tarsus’ta kullanılabilirdiği görülür. Bu rakamlarla, toplam nüfusun sadece %6’sının elektriklenmiş bölgede yaşadığı ve kişi başına yıllık elektrik tüketiminin yaklaşık 3 kWh olduğu söylenebilir [6].

İlk Türk elektrik üretim şirketi 1926 yılında Tarsus ve Civari Elektrik Anonim Şirketi adıyla kurulmuştur. Dünyada 1919’da başlayan ve etkileri 1920’li yıllarda uzanan ekonomik kriz ve aynı dönemde ortaya çıkan enflasyonist ortamda elektrik enerjisi fiyatları aşırı artmıştı. Anılan koşullar altında ve ayrıca yeterli özel sektör sermaye birikimi sağlanamadığından mutedil devletçilik uygulaması başlatılmıştır [7].

1933 yılında Birinci Beş Yıllık Sanayi Planı uygulamaya konulmuştur; yine aynı yıl çıkarılan Belediyeler Kanunu ile belediyelere elektrik enerjisi üretim tesisiurma ve
işletme yetkisi verilmiştir. 1930’lu yıllarda, kırcısal açıdan elektrik enerjisi sektöründe, kamu yönetiminin zorunlu olduğu kabul edilmeye başlanırken, ülkemizde de Maden Tetak Arama (MTA) ve Elektrik İşleri Etti Etidayesi (EİEİ) gibi elektrik üretime işlemektedir. Kuruşi oluşturmuş, kamuya ve sorumlulukları arasında ülkemizin hidrohidro elektrik potansiyelinin araştırılması, planlanması, baraj ve hidroelektrik santrallarının projelendirilmesi bulunmaktadır [7].

1930’lu yılların sonunda elektrik enerjisi sektöründe çoğun Osmanlı dönemi kalma imtiyaz anlaşmaları ile faaliyetlerini sürdürden imtiyazlı şirketlerce işletilen 48 adet santral bulunmaktadır. Muhtelif güçlere sahip bu üretim tesislerinin toplam kurulu gücü 74,8 MW ve yıllık üretimleri 106,3 GWh dır. Birincil enerji kaynaklarının kullanımını açısından değerlendirildiğinde, 3 adet taşkımörü, 11 adet hidrohidro, 27 adet dizel, 4 adet buhar makinalı, 3 adet gaz motorlu üretim tesi mevcuttur. [6].

1939 yılında, yabancı şirketlere verilen imtiyazlar devlete satın alınmış ve yetki tümüyle belediyelere devredilmişdir. 1950’li yılların başında Etibank’tın ve İller Bankası’nın kurup işlettiği termik, dizel ve hidrohidro santrallara ek olarak belediyeler başa olmak üzere birçok sanayi kuruluşunun işlettiği dizel santrallar ile elektrik enerjisi talebi yerel düzeyde karşılanmaktadır. 1950’li yılların başında toplam 408 MW kurulu güç ve yılda 789,5 GWh üretim ile elektrik enerjisi toplam nüfusun sadece %23’lük kısmına ulaştırılabilmiştir.

Söz edilen anonim şirketleri içerisinde, Seyhan Barajı ve Hidroelektrik Santralı’ndan elektrik üretilmesi, taşınması ve toptan satışından sorumlu Çukurova T.A.Ş ile Antalya Kepez’de elektrik enerjisi üretim tesisinin kurulması, üretilen elektrikin tüketim merkezlerine taşınması ve toptan satış ile sorumlu Kepez Elektrik T.A.Ş şirketleri sermaye ve yönetim değişikliklerine rağmen varlıklarını halen sürdürmektedir [4].

1953 yılında, elektrik enerjisi üretim sektöründe bir dönüm noktası olarak Devlet Su İşleri (DSİ) Genel Müdürlüğü kurulmuştur. DSI’nin kurulması ile ilk 10 yılda hidroelektrik kapasitenin elektrik enerjisi üretiminde kullanıma oranı %3'lerden %35 seviyelerine yükselmiştir. Ayrıca anlamda dönemde, ilk bölgeler santrallar ve yüksek gerilim hatları inşa edilmeye başlanmıştır ve günümüz bağımlılı şebekesinin temelleri atılmıştır. 1960 yılında Etibank Elektrik İşletmesi Müdürlüğü kurulmuştur.

Birinci Enerji İstişare Kongresi kararları sonucu, takip eden yıllarda elektrik enerji sektöründe oluşturuldu yeni yapılandırma maddeler halinde özetlenirse:

- 1963 yılının Aralık ayında Türkiye’nin tüm enerji politikalarından sorumlu olacak şekilde yetkilendirilen Enerji ve Tabii Kaynaklar Bakanlığı (ETKB) kurulmuştur.

- 1970 yılında tüm ülke sathında elektrik üretim, iletim ve dağıtım işlerinden sorumlu bir kamu tekel olarak Türkiye Elektrik Kurumu (TEK) kurulmuştur.

1970'li yılların başlarında, Türkiye genelinde artan elektrik enerjisi talebi ve üretim tesislerinin toplam 2234,9 MW kurulu gücünə karşı, elektrik enerjisi yerleşim bölgelerinin yalnızca %7'sine ulaştırılabilmiştir. Elektrik üretiminin birincil enerji kaynaklarına dağılımı incelendiğinde, toplam üretimın %32'si hidroelektrik ve kalan %68'i termik santrallar ile sağlanmaktadır [7].

Artan talebi karşılama ve organizasyon eksikliğini giderme amacıyla kurulan TEK'in planlama ve yönetim çabaları sonucu 1982 yılında elektrik enerjisi tüm Türkiye'de yerleşim bölgelerinin %60'ına ulaşmış ve toplamda 6639 MW kurulu gücü erişilmişdir. Aynı yılında çıkarılan 2705 sayılı yasa ile üretim hizmetleri dışında bırakılan elektrik enerjisi iletim ve dağıtım fonksiyonlarındaki yetkiler de belediyeler ve İller Bankası'ndan alınarak TEK'e devredilmiştir [6].

1980'lerde esmeye başlayan liberal ekonomi ve özellikle rüzgârları ülkemizde de etkili olmuş ve diğer tüm kamu hizmetlerinde olduğu gibi, elektrik enerjisi sektöründe de özel sektör için çeşitli yaratıcı teşvikleri verilmiştir. Yatırım teşviklerinin başlatıldığı olarak 2075 sayılı yasa gösterilebilir. 2075 sayılı yasa ile elektrik enerjisi sektörü tek elde toplanmış ve özel sektör şirketlerinin yatırım yapabilmesi için gerekli olan altayının oluşturulmasını hedeflenmiştir. Böyle bir altyapıda öncelikli olarak TEK ve DSİ'nin santral yapımında sürdürdükleri takım tekeli ortadan kaldırılmış ve takip eden yasal düzenlemelerle özel sektör şirketlerine üretim izni verilerek, ürettikleri elektrik enerjisini tek kanaldan kamuya satabilecekleri bir yapı getirilmistiştir. Yeni yapılardan TEK elektrik enerjisi sektöründe tüm kurulu altayıının sahibi ve işleticisi olarak, yeni kurulan işletmelerin
ürettiği elektrik enerjisinin son kullanıcılıya transferini gerçekleştiren tek muhatap olacaktır.

1988 – 1992 yılları arasında yaklaşık 10 özel şirket üretim, iletim, dağıtım ve satış alanlarında, yashal düzenlemeler ile belirlenmiş kendi coğrafi bölgelerinde faaliyet göstermiştir. 1993 yılı itibari ile 20335 MW olan toplam elektrik enerjisi kurulu gücünün 10683 MW’ıını termik santrallar, 9683 MW’ıını ise hidrolik santrallar oluştururken, ülkemizin elektrik üretimi yıllık 73808 GWh’e çıkmış; 213 GWh ithalata karşıın 589 GWh elektrik enerjisi ihraç eder duruma gelmiştir [8].

Sektöre yönelik yasa düzenlemelerin devami olarak, 4 Ekim 1995 tarihli Resmi Gazete’de yayılan 95/9799 sayılı kanun ile kişi ve kurumlara kendi ihtiyaç ve
önşörülerle doğrultusunda ihtiyaç duydukları elektrik enerjisini üretmek amacı ile tesis kurma ve işletme izni verilmiştir. 17 Nisan 1996 tarihli Resmi Gazete'de yayımlanan 96/8007 sayılı karanname ile elektrik enerjisi üretimini kimlerin yapabileceğini, ihtiyaç fazlası üretim olduğu takdirde elektrik enerjisinin satış fiyatı ve diğer alicılara iletim ve dağıtım ücretleri belirlenmiştir. 2 Eylül 1997 tarihli Resmi Gazete'de yayımlanan 97/9670 sayılı karanname ile ev ve hastane gibi tesislerin atık ısı ve buhar kullanımları, artık enerjinin satışı, yakıt kullanımı ve ticaret gibi konular düzenlenerek elektrik enerjisi sektöründe otoproduktörlük uygulamasının düzenlenemesine devam edilmiştir [9].

Elektrik enerjisi sektörünün yapılandırılma çalışmalarında, 3 Mart 2001 tarihinde Resmi Gazete'de yayımlanan 4628 sayılı Elektrik Piyasası Kanunu ile yeni bir dönemde girilmiştir.

3.2 Yeniden Yapılanma Öncesinde Elektrik Enerjisi Sektörünün Durumu

- Üretim faaliyetlerinde: bir kamu kurumlu olan TEAŞ ve bu kuruma bağlı ortaklık santralları; kendi bölgelerinde imtiyazlı ÇEAŞ ve KEPEZ, Y1 ve YİD modelleri ile kurulan santralların sahibi özel firmalar; kamu tesislerinin işletme haklarını devralan üretim şirketleri; mobil santrallar ve otoproduktör şirketler

- İletim faaliyetlerinde: TEAŞ; kendi bölgelerinde imtiyazlı ÇEAŞ ve KEPEZ
• Dağıtım faaliyetlerinde: TEDAŞ ile bağlı ortaklıkları; bölgelerinde imtiyazlı ÇEAŞ ve KEPEZ; İstanbul Anadolu yakasında dağıtım hakkını elinde bulunduran AKTAŞ; İstanbul Avrupa yakasında faaliyet gösteren Boğaziçi; Kayseri ilinde faaliyet gösteren Kayseri T.A.Ş

Ayrıca sektörün tüm denetimi, düzenlenmesi ve elektrik enerjisinin fiyatlandırılmasında tek yetkili olarak Enerji ve Tabii Kaynaklar Bakanlığı görevlendirilmiştir. Yeniden yapılanma öncesi Türkiye elektrik enerjisi sektörünün işleyiş yapısı Şekil 3.1'de verilmiştir [4].

Şekil 3.1: Yeniden Yapılanma Öncesi Türkiye Elektrik Enerjisi Sektörünün Yapısı

3.3 Yeniden Yapılanma Gereksinimi

Dünya genelinde kabul gören liberal ekonomik anlayışın elektrik enerjisi sektörüne yansıması 1990'lı yılların ilk yarısından itibaren yapılan reform çalışmalarları ile görülmüştür. İngiltere, Arjantin, Norveç ve Şili örnekleri ile başlayan rekabetçi ve yatay örgütlenmiş piyasaya geçiş çalışmalarını zaman içerisinde tüm Dünya ülkelerine örnek teşkil etmiştir. Bu yeniden yapılandırmanın ülkemizde gerçekleştirilmesi ise Elektrik Piyasası Kanunu ile sağlanmıştır. Elektrik Piyasası Kanunun kapsamında,
piyasaya yeni bir düzenleme yapılması ihtiyacı doğuran çeşitli siyasi, ekonomik, sosyal ve teknik nedenler sayılabilir.

Elektrik Piyasası Yasası’nın oluşum nedenleri içinde öncelikli siyasi sebep olarak Avrupa Birliği Uyum Yasaları gösterilebilir. AB Elektrik Direktifi kapsamında üye ve aday ülkeler piyasalarını rekabete açık, şeffaf ve çevresel korumaya öncelik veren bir yapıya kavuşturmak zorundaydı. Hükümetler yeni yapının tesis edilmesi için gerekli yasa ve mevzuatları çıkartmak, uygulamasını denetlemekle görevlidir [4].

Teknik sebepler arasında ise dağıtım şebekesinde meydana gelen teknik ve teknik olmayan kayıpların etkin kontrolü, iletişim ve dağıtım sistemin iyileştirme ihtiyacı gösterilebilir [9].

3.4 Elektrik Piyasası Kanunu (EPK)

Kurulu’nda kabul edilmiştir. Yasa 24335-mükerrer sayı numarası ile 3 Mart 2001 tarihli Resmi Gazete’de yayınlanarak yürürlüğe girmiştir [10].

Elektrik piyasası kanunun amacı, rekabetçi piyasa uygulamaları ve özel kanun hükümleriyile finansal açısından güçlü, istikrarlı, şeffaf bir elektrik piyasasını yapılandırmak ve bu piyasanın nihai ürünü olarak, yeterli, yüksek kaliteli, sürekli, düşük maliyetli, çevre dostu elektrik enerjisini tüketiciyerin kullanımına sunmaktadır. Üretim, iletişim, dağıtım, toptan ve perakende pazar, ithalat ve ihracat dahil olmak üzere elektrik servisleri, piyasada yer alan gerçek ve tuzel kişilerin tüm hak ve sorumlulukları kanun ile tanımlanmıştır. Ayrıca kanun ile piyasanın özel teşebbuse açılması ve mevcut yapının özelleştirilmesi için yaratılması zorunlu süreçler tanımlanmıştır.

Bakanlar Kurulu’nun 5 Şubat 2001 tarihinde Resmi Gazete’de yayınlanan 2001/2026 sayılı kanun hükümündeki kararnamesi ile TEAŞ, Türkiye Elektrik İletim A.Ş. (TEIAŞ), Elektrik Üretim A.Ş. (TEUAŞ), ve Türkiye Elektrik Ticaret ve Taahhüt A.Ş. (TETAŞ) olarak 3 farklı kamu şirketine bölünmüştür. Günümüzde ülkemizin elektrik enerji sektörü büyük oranda bu 3 şirket ve ek olarak dağıtımdan sorumlu olan TEDAŞ tarafından düzenlenmektedir [12].

3.5 EPK Sonrasında Elektrik Enerjisi Sektörünün Durumu

3.5.1 Yasa ile Sektörde Oluşturulan Yapı

Elektrik Piyasası Kanunu ile sektördeki dikey örgütlenme yapılarında değişikliklere gidilerek, kurumlar daha çok yatay örgütlenme şemasına göre düzenlenmiştir. Bu yasa ile piyasada oluşturulan üç yeni kurum Elektrik Üretim Anonim Şirketi, Türkiye
Elektrik İletim Anonim Şirketi ve Türkiye Elektrik Ticaret ve Taahhüt Anonim Şirketi'dir. Şirketlerin görev ve sorumlulukları kısaça aşağıda maddeler halinde belirtilmiştir:

- Elektrik Üretim Anonim Şirketi (EÜAŞ) : TEAŞ'tan devraldığı ve tüzel kişilere devri yapılmamış üretim tesislerini ve DSİ bünyesinden devraldığı üretim tesislerini kendisi ve/veya bağlı ortakları vasıtası ile işletme veya sistemden çıkarma yetkisi ile kurulmuştur.

- Türkiye Elektrik İletim Anonim Şirketi (TEİAŞ) : Elektrik enerjisi iletiminde kullanılan, yasa gereği 36 kV’un üzerine tüm elektrik taşıma hat ve tesislerinin mülkiyetini devralmak, iletim tesislerinin işletmesini yapmak, kurulması öngörülen yeni iletim tesisleri için yatırıım planlamasını yapmak ve bu plan dahilinde yatırımları gerçekleştirmekle görevlendirilmiştir.

- Türkiye Elektrik Ticaret ve Taahhüt Anonim Şirketi (TETAŞ) : TEAŞ bölünmesinde ortaya çıkan ticaret ve taahhüt şirketidir. Mevcut sözleşmeler kapsamında imzalanmış enerji alış ve satış anlaşmalarını devralan şirket piyasadaki toptan satış faaliyetini yürütmek amacı ile kurulmuştur [10].

Sektörün Elektrik Piyasası Kanunu'ndan sonraki yılışı Şekil 3.2'de özetlenmiştir.
3.5.2 Yeni Yapında Üretim Faaliyetleri

Yeni yasa ile elektrik enerjisi üretimi fonksiyonunu yerine getirebilecek şirket ve gruplar şu şekilde tanımlanmışlardır. Üretim fonksiyonu dilimindeki en büyük pay, yasa ile TEAŞ’a bağlı tüm elektrik enerjisi üretim tesislerini devralan EÜAŞ ve EÜAŞ’ın bağlı ortaklıklarına aittir. 21693 MW kurulu güç ile 18 termik, 100 hidroelektrik ve 13 mobil olmak üzere 133 santralıya piyasanın %80’ine sahip olan EÜAŞ, ürettiği elektrik enerjisini TETAŞ’a satacaktır. Diğer bir grup ise özel sektör üretim şirketleri olarak adlandırılan imtiyazlı şirketlere ait, Yap-İşlet-Devret, Yap-İşlet ve İşlette Hakkı Devri tesisleridir. Üretim diliminde bulunan şirketler arasında, EPDK tarafından verilecek üretim lisansına sahip olan şirketler, üretikleri elektrik enerjisini ikili anlaşmalar yoluyla toptan ve da perakende satış lisansı sahibi tüzel kişilerle satabilmektedirler. Üretim fonksiyonu altında tanımlanan son dilim ise otoproduktörler ve otoproduktör gruplandır. Şirketler kendi ihtiyaçlarını karşılamak üzere elektrik üreticikler ve üretikleri elektrik enerjisinin ihtiyaç fazlası bölümünü belirli bir oranda satabilecekledir. [12].
3.5.3 Yeni Yapıda İletim Faaliyetleri ve Toptan Satış

Elektrik enerjisi piyasasında, iletim fonksiyonunun gerçekleştirilmesinden TEİAŞ sorumludur. Bu kapsamda TEİAŞ, iletim yatırımlarının planlanması ve gerçekleştirilmesinden, iletim sisteminin işletilmesinden, bakım ve onarım çalışmalarından, iletim sistemine erişim hakkının denetlenmesinden ve uluslararası şebekelele gerekli bağlantıların yapılmasından soruludur. Ayrıca bu kamu kuruluşu, kendisine bağlı Ulusal Yük Dağıtım Merkezi (UYDM) ile iletim sistemi işletiminden ve Piyasa Mali Uzlaştırma Merkezi (PMUM) ile de piyasa işletmeciliğinden soruludur.

Elektrik enerjisinin toptan satışı, TETAŞ tarafından lisanslı dağıtım şirketlerine yapılabileceğü gibi özel sektör toptan satış şirketleri tarafından da yürütülebilmektedir. Ancak özel sektör toptan satış şirketlerinin piyasada sahip olabilecekleri paya bir sınırlandırma getirilmiştir. Şirketlerin payı piyasada bir önceki yılda tüketilen toplam elektrik enerjisi miktarının %10’u geçmeyecektir.

TETAŞ, yeni piyasa modeli öncesi uygulamalardan kaynaklanan ve piyasa tam olarak işlerlik kazanmadan oluşabilecek ek maliyetlerin karşılaşılmasını konusunda da görevlendirilmiştir. TETAŞ, kanunun geçici 6. maddesi kapsamında, süresi 5 yılı geçmeyecik şekilde düzenlenecek anlaşmalarla, EÜAŞ ve bağlı ortaklıklarından belirli bir miktar elektrik enerjisini satın alacak ve satışını gerçekleştirecektir. Uygulama ile EÜAŞ ve bağlı ortaklarının geçmiş uygulamalardan doğabilecek zararlarının karşılanması hedeflenmiştir. Ancak bu destek tam rekabetçi piyasaya geçiş açısından bir engel teşkil etmektedir. Yapılan alım anlaşmaları ile EÜAŞ ve
onun bağlı ortaklıklarına rekabet anlayışına aykırı sayılabilecek güvenceler verilmektedir.

Uygulama sırasında, yapılan ikili anlaşmalarla belirlenen üretim ve tüketim değerlerinden sapmalar olabilecektir. Sapmaları engellemenin yolu, yapılacak tüketim tahminlerinin doğruluğun sağlanmasıdır. Tahminde yaşanacak sapmalar piyasasın üretim tüketim dengesini ve dolayısı ile arz güvenliğini tehlikeye sokacaktır. Böyle bir durumda iletim sistem işletmecisi olarak UYDM, arz tarafında üretim şirketlerinin üretimine veya talep tarafında yapılmış ikili anlaşmalara müdahale ederek nihai arz- talep dengesini sağlamakla görevlendirilmiştir [4, 10].

3.5.4 Yeni Yapida Dağıtım Faaliyetleri ve Perakende Satış

Dağıtım lisansına sahip tüzel kişiler, görevli bulundukları ve lisansları çerçevesinde belirlenen bölgelerde yatırım planlarının yapılması, tesislerin kurulması, işletilmesi, bakımı, bölgeleri için talep tahminlerinin hazırlanması ve üçüncü şahsların şebekeye erişim haklarının gözlictediği ile görevlendirilmiştir. Perakende satış şirketleri ise lisansları kapsamındaki bölgelerde, elektrik enerjisinin son kullanıcıya satışından ve satılan elektrik enerjisi üzerinden faturalandırma servislerinden sorumludur [10].

Dağıtım sektöründe yer alan bir kamu şirketi olan TEDAŞ ise piyasannın ilk dönemde ağırlıklı olarak dağıtım fonksiyonunu yürütecek ama piyasının öngörüdüğü şekilde yeniden yapılacaktır. Bu yapılardırmanın kapsamı ise şirket bünüyesinde bulunan dağıtım ve perakende satış fonksiyonlarının ayrılmasıdır.

3.5.5 Yeni Yasa Kapsamında Düzenleyici Kurullar

"Kurum, tüzel kişilerin yetkili oldukları faaliyetleri ve bu faaliyetlerden kaynaklanan hak ve yükümlülüklerini tanımlayan onaylı lisansların verilmesinden, işletme hakkını devri kapsamındaki mevcut sözleşmelerin bu Kanun hükümlerine göre düzenlenmesinden, piyasa performansının izlenmesinden, performans standartlarının ve dağıtım ve müşteri hizmetleri yönetmeliklerinin oluşturulmasından, tadelinden ve uygulattırılmasından, denetlenmesinden, bu Kanunda yer alan fiyatlandırma esaslarını tespit etmekten, piyasa ihtiyaçlarını dikkate alarak serbest olmayan tüketiciye yapılan elektrik satışında uygulanacak fiyatlandırma esaslarını tespit etmekten ve bu fiyatlara enflasyon nedeniyle ihtiyaç duyulacak ayarlamalarla ilişkin formülleri uygulamaktan ve bunların denetlenmesinden ve piyasada bu Kanuna uygun şekilde davranılması sağlanmakta sorumludur [10].”

EPDK, kanunda belirtilen 18 aylık geçiş dönemi içerisinde, piyasanın işleyişini sağlamak için gerekli ikincil mevzuatların çıkartmış ve yayınlanmıştır. Anılan dönem içerisinde çıkartılan mevzuatlar ve yayan tarihleri şu şekildedir [11]:

- Lisans Yönetmeliği (Ağustos 2002),
- Tarifeler Yönetmeliği ve İlgili Tebliğleri (Ağustos 2002),
- Serbest Tüketicı Yönetmeliği (Eylül 2002),
- İthalat – İhracat Yönetmeliği (Eylül 2002),
- Müşteri Hizmetleri Yönetmeliği (Eylül 2002),
- Rüzgâr ve Güneş Ölçümlerine İlişkin Tebliğ (Ekim 2002),
- Elektrik Piyasasında Birden Fazla Piyasa Faaliyetini Sürdürümekte Olan Tüzel Kişilerin Mevcut Sözleşmelerinde Yapılacak Tadillere ve İletim Faaliyeti ile Vazgeçilen Faaliyetlerin Devrine İlişkin Yönetmelik (Kasım 2002),
- Sayış Tebliğ (Mart 2003),
- Şebeke Yönetmeliği (Ocak 2003),
- Dağıtım Yönetmeliği (Şubat 2003).

3.5.6 Yeni Yasa Kapsamında Lisans Kavramı

3.5.7 Yeni Yasa Kapsamında Tüketicilerin Durumu

Piyasa modelinde arz tarafında yapılan bütün düzenlemelerin yanı sıra tam serbestlik sağlanması açısından talep tarafında da düzenlemeler yapılmalıdır. Elektrik piyasası kanunu kapsamında iki grup kullanıcuya perakende satış şirketleri, perakende satış lisansına sahip dağıtım şirketleri, toptan satış şirketleri ve üretim şirketleri ile doğrudan ikili enerji alm anlaşması yapabilme hakkı tanınmıştır. Bu kapsamdaki kullanıcılara her türlü bağışıklık her tüketicinin ve bir önceki yıl toplam tüketimleri 9 milyon kWh’i aşan büyük endüstriyel kullanıcılardır. Bu kapsam dışındaki diğer tüm tüketiciler serbest olmayan tüketiciler olarak adlandırılmış ve bölgelerinde görevli perakende satış şirketine bağlanmıştır [4].

3.6 Serbest Piyasaya Geçiş Aşamaları

öngörülmektedir. Burada yaşanan gecikmenin sebebi ise EÜAŞ ve bağlı ortağın TETAŞ ile yapmış oldukları 5 yıl süreli elektrik satış anlaşmalarının, tam işler piyasaya geçirilmesi önünde bir engel teşkil etmesidir.
4. ELEKTRİK ENERJİSİ SEKTÖRÜNDE Kullanılan YAPISAL MODELLER

Elektrik piyasası, elektrik enerjisini üretiminden tüketici kullanımına sunulmasına kadar tüm süreçleri, süreçlerde yer alan tüm katılımcılar ve katılımcıların gerçekleştirdiği fonksiyonlarını kapsamaktadır. Anılan fonksiyonların bazıları rekabet kurallarına göre uygulanabilirken bazı fonksiyonları ise liberal ekonomik model ile değerlendirilemez. Son kullanıcı açısından elektrik, saklanamayan ve depolanamayan bir meta olan enerjinin üretimi, iletimi, dağıtım ve sistem işletmesine dayalı nakil servislerinin bütününden oluşturulur bir üründür. Son kullanıcıya yönelik faturalandırma servisleri ile desteklenen piyasada ayrıca yatırım, işletme ve bakım gibi diğer yardımcı servislerle tamamlanmaktadır [15].

Üretilen enerjinin naklinin iletim ve dağıtım olarak ikiye ayrılmasıın sebebi bu taşımının farklı gerilim seviyelerinde yapılmasınıdır. Genel olarak elektrigin yüksek veya çok yüksek gerilimlerle nakline iletim; orta ve alçak gerilimlerle nakline dağıtım denmektedir. İletim, üretilen elektrik enerjisinin tüm son kullanıcıların kullandıkları ortak bağlantılı şebekesinin üzerinden nakline karşılık gelirken, dağıtım ise bu ortak bağlantılı şebekesinden ayrılr sadece bir grup kullanımın bağlı bulunduğu hat üzerinde nakline karşılık gelir.

Birden fazla dağıtım şebekesi yapılmasının yatırım maliyetleri, sabit ve yüksek olduğundan genel olarak dağıtım piyasası doğal bir tekel olmuştur. Bu kabulün tek istisnası hattın fiziksel kesintisinden korunmak ve arz güvendiğini sağlamak için dağıtım şebekesinden birden fazla hat çekten fabrika veya binalar olmaktadır [15].

İletim şebekesinin ise kendine has bir yapısı vardır. Enterkonnekte şebeke yapısında, birbirine bağlı olan bölgesel hatta ülkeler arası iletim hatlarında yapılan her yatırım, birbirine bağlı olan tüm şebekelerde iletim güvenirliliğini ve güvendiğini artırmak,maliyetleri düşürmüştür. İletim şebekesinin dışa bağımlı yapısı, aynı zamanda birbiri arasında yapılacak başarılı yatırımların, tüm sistem ve bağlı şebekeler için ek artı değerler yatıramaya anlamına da gelmektedir. Böylece iletim hatları için ölçek ekonomisinin varlığında bahsdedilebilir. İletim hatları genel olarak doğal tekel piyasası sayılaması çünkü iki iletim hattı, paralel olarak, herhangi bir ekonomik olumsuzluk yaratmadan çalışabilmektedir. Ayrıca uygulamada, iletim sürekliğini sağlamak için, enterkonnekte şebekenin iki düğümü arasında birden fazla hat bulunduğu göz önüne alınrsa, işletmenin birden fazla şirket tarafından gerçekleştirilebileceği ve ekonomik verimliğe zarar vermeyeceği açaaktır [13].

Sistemin işletilmesinden kasıt, nakil sistemleri arasında esgündüm sağlayarak şebekenin her zaman ve her düğümde statik arz talep dengesinin sağlanmasıdır. Arz talep dengesi, şebekeye giren ve şebekeden çekilen enerjinin sürekli izlenmesini ve gerek gördüğü anda yardımcı işletmelerin devreye alınarak teknik güvenirliliğinin sağlanması ile gerçekleştirilir. Sistemin işletilme şekli, piyasanın düzenleneyici yapısına bağlıdır. Enerjinin teslimat andındaki tüm oranları sistemi işareten kurum veya şirketler verirken, teslimattan önce ayarlamalar konusunda diğer piyasa oyuncuları da karar sürecine ortak olabilmektedir.
Piyasa düzenlemesinin rekabetçi yapısından veya tekel oluşusundan bağımsız bir şekilde, sistem işletilmesi her zaman bir tekel olarak ele alınmıştır. Enterkonekte yapının getirdiği güvencilerlik ve düşük maliyetler sadece merkezi bir işletme ile mümkün olmaktadır. Ancak burada işletmeden kasıt, dağıtım şebekesinin operatörün sahipliğinde bulunmasına demek değildir. Şebeke operatörü sistem üzerinde mülkiyet haklarına sahip olması da, dağıtım şebekesini kontrol edebilmektedir.

Son kullanıcı tedarik ve servisleri kapsamında temel fonksiyon, elektrliğin son kullanıcıya teslimatıdır. Bu kavrama son kullanıcının tüketimi ile ilgili ölçümlerin yapılması, tüketime bağlı olarak faturaların düzenlenmesi ve faturalar üzerinden tahsilatın yapılması dahildir. Sistemde iletişim servisleri, genel olarak dağıtım şebekesi işletmecisi tarafından sağlansa bile, bazı ülke uygulamalarında bu hizmetin başka firmalar tarafından verildiği görülmektedir. Son kullanıcı servisleri arasında, paket enerji sağlanması (örneğin elektrik enerjisi yanında doğal gaz servisi), farklı güvenilirlik ve kalitede elektrik sağlanması (örneğin kesintisiz güç kaynağı ile besleme) sayılabilir. Son kullanıcı servisleri genelde servis şirketleri tarafından özelleştirilmekte ve rekabet, hizmet çeşitliliği ekseninde yürütülmektedir. Son kullanıcıya hizmet sektöründe çalışan firmalar, iki fonksiyona yerine getirirler. Birincisi, elektriği alıp yeniden satarak kar sağlamak, fiyat dalgalanması riskini ve son kullanıcıların tüketim alışkanlıklarına göre satış fiyatının belirlenmesi görevini üstlenirler. İkincisi olarak da, yukarıda belirtilen farklılıklar yaratarak, son kullanıcıya çeşitli hizmetler sunarlar [15].

İlgili servisler kapsamında ise, yukarıda belirtilen tüm hizmet alt yapılarının ve tesislerin kurulması, inşası, bakım ve onarımı sayılabilir. Ayrıca son yıllarda, işletmeler arasında enerji transferleri ile piyasada, bu anlaşmaların yapılması konusunda yardımcı firmalara gereksinim duyulmuştur. Bu fonksiyonda yer alan oyuncular hem elektrik tahminleri ile geleceği daha belirli kılacak konusunda faaliyet göstermekte ve böylece risk yönetimini geliştirmekte, hem de finansal işlemler piyasasında yapılan denetlemeye ve düzenlenmeye benzer bir yapıyı elektrik enerjisi sektöründe hayata geçirmektedirler. Ancak genel yapıda, bu tür hizmetler dikey örgütlenmeler ve tekel şirket tarafından gerçekleştirilmektedir. Sonuç olarak, ilgili servislerin yardımcı firmalar tarafından yönetilebilmesi konusun elektrik piyasasının liberalleştirilmesi konusu ve piyasa reformları kapsamında ele alınmaktadır [15].
4.1 Yapısal Modellerin Tarihsel Gelişimi

Hızlı teknolojik gelişmeler, elektrik enerjisi talebinde meydana gelen artış, üretim tesislerinin sayısı ve kapasite olarak artış, yüksek gerilim iletim hatlarının kurulması ile küçük ve yerel üretim tesisleri daha büyük şebekeler altında birleşerek bölgesel, ulusal bağlantıları gerektirmiştir. Devam eden gelişimde ulusal bağlantılar birleştirilerek, uluslararası hatta kıtalar arası enterkonesiyon gerçekleştirilmiştir. Yerel sistemlerin birleşmesindeki yöntemler, bugün Elektrik Piyasası dediğimiz yapının şekillenmesindeki en önemli faktörlerden biri olmuştur [3].

Dünyadaki elektrik piyasasının gelişimini Fransa örneği üzerinden takip etmek mümkün olduğundan bu bölümde Fransa örneği ayrıntılı olarak incelenecektir.

parlamentosu kararı ile Electricité de France (EdF)'i kurarak piyasanın tüm kontrolünü kamuya ait bu şirkete devretmiştir [15].

Elektrik piyasası yapısal organizasyonlarından bahsedildiğinde, piyasa yapısını belirleyen iki önemli kavram bulunmaktadır. Bu kavramlar, şirketlerin ana fonksiyonel faaliyetleri arasındaki bağ veya ilişki derecesine göre oluşturulmuş olan, dikey ve yatay birleşme kavramlardır. Elektrik enerji sektöründe kullanılacak yapısal modeller açıklanmadan önce kısaca anılan kavramlara değinilecektir.

Dikey birleşmeden kasıt, elektrik enerjisi arz zincirindeki temel fonksiyonların (üretim, iletim, dağıtım vb.) arasındaki ilişki ya da bağlantıdır. Yatay birleşme ise belirli bir fonksiyon içerisindeki yoğunluk yada ortaklık derecesidir. Örneğin üretim fonksiyonu ile ilgilenen katılmacının sayısı yada da katılmaların toplam üretimdeki payları yatay birleşme kapsamında değerlendirilir. [4, 15].
4.2 Dikey Birleşme Kavramı

Elektrik enerjisi sektöründe yer alan herhangi bir şirket, elektrik enerjisinin üretiminden son kullanıcaya sunulmasına kadar bütün fonksiyonlar için gereken tesis ve altyapıya sahip ise, bütün bu fonksiyonları tek başına kontrol etmesi söz konusudur. Farklı fonksiyonlar arasındaki ilişkiler, piyasa kuralları veya rekabet gereklikleri ile değil, tek şirketin iç yapısı içinde verdiği organizasyonel kararlarla belirlenmektedir. Çeşitli elektrik piyasası fonksiyonlarının tek bir şirket tarafından yerine getirildiği tip piyasa yapılandırması, dikey birleşme kavramı ile nitelendirilir.

Piyasa örgütlenmesinde bir diğer yapı ise farklı fonksiyonların farklı şirketler tarafından yerine getirilmesi örneği vardır. Bu tip yapılarda, üretim, iletişim, dağıtım ve hatta pazarlama fonksiyonları kendi içlerinde, farklı şirketler tarafından yürütülür; şirketlerden hiçbir arz zincirinde bir diğerinden daha çok pay sahibi değildirler ve kendi aralarındaki ilişkileri ticari kurallar çerçevesinde düzenlemektedirler [15].

Yukarıda sözlü edilen iki örnek arasında yer alan ve genel olarak piyasa yapılarda kullanılan 3 farklı tip örgütlenme şekli bulunmaktadır. Bu organizasyonel yapılara kısmi bütünleşmiş yapılara ad verilir [15].

Kısımı bütünleşme kavramında, elektrik enerjisi piyasasının 3 temel fonksiyonundan ikisi tek bir şirket ya da aynı şirketin farklı temsilcilikleri tarafından sağlanırken diğer fonksiyon başka şirket ya da şirketlerce yürütülmektedir.

İlerleyen bölümde ayrıntılı olarak bahsedeceğiz olan 3 tip kısmi bütünleşik yapı:

- Üretim ve iletişim dikey birleşmesi
- Üretim ve dağıtım dikey birleşmesi
- İletim ve dağıtım dikey birleşmesi olarak adlandırılır.

4.2.1 Üretim – İletim Birleşmesi

Elektrik enerjisi sektöründe, optimum yatırım ve kapasite planlaması yanında operasyonel verimlilik gibi kavramlar önem kazandıkça birleşme çalışmaları hız kazanmıştır. Arz güvenliğinin artırılması ve ölçük ekonomilerinin avantajlarından piyasının yararlanması için yüksek dereceli dikey birleşmenin gerekliği, özellikle üretim ve iletişim arasında birleşmenin önemi ortaya çıkmıştır. Ayrıca elektrik enerjisi
piyasasının yapısı gereği, piyasaya yapılacak yatırımlar çok yüksek sermaye yoğunluğuna sahiptir. Elektrik enerjisine yönelik yatırım projelerinin gerçekleştirilme süreleri de göz önüne alınrsa, üretim ve iletim tarafında uzun dönem planlamaların çok dikkatli ve koordinasyon içinde yürütülmesini gerektiği görülür.

Üretim ve iletimin dikey birleşmesinin gerçekleştirilmesi konusunda savunanları önemli sebep bulunmaktadır. Piyasanın planlanmasında en önemli hedef maliyetlerin düşürülmesidir ki maliyet kaleminde üretim ve iletim maliyetleri önemli bir yer tutmaktadır. Bu sebeple üretim ve iletim tesisleri kurulması konusunda, yakın bir işbirliğinde daha ileri, ortak planlama gereksinimi ortaya çıkmıştır. Örneğin en verimli ve mümkün olan en düşük maliyetli bir üretim tesisini iletim maliyetlerinin çok yüksek olacağını, yeni ve pahalı iletim şebekeleri kurulmasını gerektirecek bir yere kurmanın ekonomik olarak bir avantaj sağlayacağını söylememez. Aynı şekilde iletim kayıplarının en düşük seviyede tutulması ve iletim maliyetini minimize edecek bir noktaya kurulacak bir üretim tesisi her zaman en avantajlı yatırım maliyetinde gerçekleştirilmemeyecekktir. Sonuç olarak, üretim ve iletim arasında dikey birleşimi sağlamış bir işletmenin bütün bu faktörleri göz önünde bulundurarak, optimum bir sistemi kurması beklenmektedir. [15].

Üretim ve iletim fonksiyonlarını farklı kuruluşların denetimine birakan ülkelerde ise, bu işbirliği, hükümetlerin komisyonlar, kurullar ya da özel düzenlemeler vasıtası ile denetimi ile sağlanmaktadır. Belirtilen denetleyici yapılar, kuruluşları, ilgi alanlarının kesistiği noktalar ve karar aşamalarında işbirliğine zorlamaktadır. Örneğin Hollanda’da, iletimden sorumlu SEP şirketi aynı zamanda yeni üretim kapasitesini planlamakta da sorumludur. SEP, kurulacak üretim tesisinin kapasitesini, yerini ve

Dikey birleşmenin, yatırım maliyetlerinin optimum düzeyeye çekilmesinden başka yararlarından da söz edilebilir. Dikey birleşme, üretim ve İletim tesisleri için yapılan yatırımlar arasında ticari bağlantıyı kolaylaştıracağı için, bu yatırımların geri dönüşünde şirketler ile son kullanıcıları daha etkin bir şekilde ilişkilendirilecektir. Elektrik enerjisi sektörü yatırımlarının sermaye yoğun niteliği gereği şirketlerin, yatırımlarının ticari ömürleri içerisinde geri dönüşü ve karlılığı; bazı durumlarda, şirketlere piyasada tekel konumu yaratarak, garanti altında alınmak istenecektir. Şirket, elektrik satış fiyatlarını tek başına belirleyerek yatırım maliyetinin geri dönüşünü garanti altında almaktaadır. Garanti, yerel dağıtım şirketlerine verilen etkini tekel hakları (tüm piyasanın değil bazı büyük tüketici gruplarının tek bir şirkete bağlanması) ve dağıtım şirketlerinin uzun dönem anlaşmalar çerçevesinde belirli üretim ve İletim şirketlerinden elektrik ihtiyaçını karşılaması yoluya gerçekleştirilir. Burada hem dağıtım şirketleri tekel konumlarından faydalanmakta hem de üretim ve İletim şirketleri yaptıkları satış kontratları ile yatırımları için ihtiyaç duydukları garantileri elde etmektedir.

İletim ve üretimin birleşmesi fikrinden, bağımsız kalan dağıtım fonksiyonu hem piyasaya yeni oyuncu olarak girmesi açısından bir alan yaratmakta, hem de diğer fonksiyonları yerine getiren şirketle yapılan kontratlar yoluya piyasayı düzenlemelemektedir.

4.2.2 Üretim- Dağıtım Birleşmesi

Üretim – dağıtım birleşmesinde, fonksiyonlar tek bir şirketin mülkiyetinde gerçekleştirilir ve bağımsız bir iletişim altyapısı elektrig’in üreticiden dağıtım şirketine
taşınması için hizmet verir. Üretim ve dağıtımın tekel yapısında örgütlenmesi iki amaca hizmet etmektedir: yatırımların etkin şekilde planlanmasının ve elektrik kesimlerini, acil talep artışlarına zamamında mücadele edilebilmesi.

4.2.3 İletim – Dağıtım Birleşmesi

Model genel olarak, elektrik enerjisi ihtiyacını üretimden ziyade ithalat yolu ile komşu şebekelelerden karşılaman piyasalar için geçerlidir. Bu tip örgütlenme yapısı için dünya üzerindeki en önemli örnek Lüksemburg Elektrik Piyasasıdır. Piyasannın iki önemli şirketinden SOTEL, enterkonnekte Avrupa şebekesi üzerinden kendi iletim şebekesine elektriği almakta ve özellikle yüksek güç gereksinimi olan demir çelik endüstrisindeki son kullanıcılarına dağıtımı gerçekleştirmektedir. Diğer bir şirket CEGEDEL ise yine kendi iletim ve dağıtım şebekesi üzerinden endüstriyel,
ticari ve konutlara elektrik enerjisinin ulaştırılmaktadır. Tüm dağıtım şirketlerinin Birleşik Krallık mülkiyetinde olması nedeniyle ve ayrıca iletim dağıtım birleşme yapısı ile Lüksemburg elektrik enerjisi piyasası dünyadaki tek övgün örnekter [1].

4.3 Yatay Birleşme Kavramı

Yatay birleşme kavramı elektrik piyasasında, ayrı fonksiyonlar içindeki yoğunluk olarak tanımlanmaktadır. Kastedilen yoğunluk, bir elektrik şirketinin özellikle bir piyasa fonksiyonu üzerine odaklanması ve fonksiyon içindeki varlıkların sayısını artırmıştır.

Ulusal düzeyde, gerekli elektrik enerjisinin ham güç olarak piyasa sunulur ve iletilibilen, ölçü ekonomisinin avantajlarından yararlanılması için yatay birleşme giderek daha fazla tercih edilmektedir. Yatay birleşen örgütlenmeler, uzun ve kısa dönemlerde gerekli talebin planlanması, gerekli tesislerin kurulması ve işletilmesinde en etkin yöntem olarak değerlendirilmektedir. Yatay birleşen piyasa örgütlenmeleri, Fransa, İtalya, İrlanda, Yunanistan ve Portekiz gibi ülkelerde uygulanmaktadır. Diğer uygulamalarda ise, üretim genel olarak birçok şirketin sorumluluğunda olmakla beraber, kapasite planlama ile ilgili aşağıdaki çeşitli önlemler alınmıştır: [15]

- Üretimin kamusal şirketler tarafından gerçekleştirilmesine rağmen, elektrik talebinin ulusal düzeyde planlanması,
- Talep planlamanın bölgesel seviyede hükümetler tarafından yapılması,
- Talep planlamasının herhangi bir hükümet müdahale olmaksızın piyasa ekonomisi kurallarına bırakılmasıdır.

4.4 Yapısal Modeller

Geçmiş bölümde anlatılan temel örgütlenme yapılarının yanı sıra, elektrik piyasasında, özellikle rekabet kavramı ile birliktə, bazı alternatif yapısal modeller ve mekanizmalar uygulanmaktadır. Bu alternatif yöntemlerdeki en temel farklılık, üretim ve perakende satış şirketleri arasında yapılan anlaşmalar ve piyasayı korumaya yönelik önlemlerdir.
Elektrik enerjisi sektöründe, günümüzde kadar geçen süre içerisinde, yapısal küçük değişiklikler ile farklılaşan birçok model kullanılmıştır [13]. Modeller içerisinde temel olarak ön çıkan dört model vardır:

- Dikey Birleşen Tekelci Model (Vertical Integration Monopoly Model)
- Tek Ahcılı Model (Monopsony Model)
- Toptan Satış Rekabetine Dayalı Piyasa Modeli (Wholesale Competition Model)
- Perakende Satış Rekabetine Dayalı Piyasa Modeli (Retail Competition Model)

4.4.1 Dikey Birleşen Tekelci Model

Modelde, elektrik piyasası işleşiinde herhangi bir rekabet söz konusu değildir. Tüketicici, almak istediği hizmetler üzerinde söz sahibi değildir ve hizmet sağlayıcısını seçme hakkı bulunmamaktadır. Üretim, iletim, dağıtım fonksiyonlarını yerine getiren tüm yapı ve tesisler üzerinde mülkiyet ve işletme hakkı bir kamu kuruluşunundur. Modelin işleyiş şemasi Şekil 4.1’de verilmiştir:

![Şekil 4.1: Dikey Birleşen Model İşleyiş Şeması](image)

Şekil 4.1: Dikey Birleşen Model İşleyiş Şeması [4]
Yukarıdaki modelin ayırt edici özelliği, hızlı sanayileşme sürecinde özel sektör yatırımlarının yetersiz kaldığı piyasalarda, alt yapısının kurulması için devlet müdahaleine olanak tanmasıdır. Her türlü fiyat kontrolü ve düzenleme devlet tarafından yapılmaktadır. Geçmiş bölümde bahsedilen dikey birleşme sisteminin getirdiği bir diğer avantaj olan, arz talep dengesinin üretim ve dağıtım fonksiyonlarından alınan geri besleme ile oluşturulması da model açısından artı bir yön olmaktadır [13].

4.4.2 Tek Alıcı Model

Tek alıcı model, elektrik piyasasının yeniden düzenlenmesi açısından ilk adım olarak düşünülebilir. Oluşturulan yapıda, halen dikey birleşen tekelci yapılar piyasanın kontrol etse de özellikle üretim fonksiyonunda, Bağımsız Güç Üreticilerinin (Independent Power Producers - IPP) mühürlüyette özel yatırımlar yapılabilmesidir. [4, 13].

Üreticiden bağımsız olarak, tüm elektrikin tek bir alıcı tarafından satın alındığı bu modelde rekabetten söz edilmesi kısmen mümkündür. Modeldeki tek alıcı, kuruldu veya kurulacak olan üretim kapasitesi üzerinden alın anlaşmaları yapmakta ve ayrıca üretim ve iletim tesisi için planlama, birlikte çalışma ve işleyişi en iyileştirme görevlerini yerine getirmektedir.
Modelde, üretim sistemine alm analısmaları ile bağlanan tek alıcı iletim şebekesine de sözleşme ya da yönetmeliklerle sağlanmaktadır. Modelin şleşişinde, iletim şebekesi bağımsız bir yapıda olabilir ancak sonucda bu sistem de tek alıcı ile ilişkilendirilmiş bir kurumudur.

Modelin tek alıcı üzerinden satışın gerçekleştirilmesi özelliği, sadece büyük alıcılara verilen serbest tüketiciilik hakları konusunda değişime uğramaktadır. Modelde, bağımsız güç üreticileri, üretimlerinin bir kısmını tek alıcı kurum denetiminde sözleşme yaptıkları tüketiciyere satabilmektedir. Serbest tüketiciyeler, taraf sınırlığın sürdürülebilir olması ve çıkabilecek sorunların önlenebilmesi için üretimde müklüyet sahibi olamazlar.

4.4.3 Toptan Satış Rekabetine Dayalı Piyasa Modeli

Modelin bundan önce ele alınan modellerden temel farklılığı, iletim şebekesinde kurulacak bir kurumsal yapı vasıtası ile bir tekel olarak kabul edilen dağıtım şebekesinde, toptan satış konunda, düşük veya yüksek seviyelerde rekabetin uygulanabilirliğini ortaya koymasidir. Burada düşük rekabet, üreticiler ya da toptan satıcıların, dağıtım şirketleri ve büyük son kullanıcılarla sözleşmeler yapmasına izin verilmemesi ve dağıtım şirketlerin güç ihtiyaçlarını iletim sisteminden uzun dönemi sözleşmelerle sağlamasıdır. Yüksek rekabet seviyesinde ise üretici ve toptan satıcıların dağıtım şirketleri ve son kullanıcılarla ticareti serbest bırakılmıştır. Modelin öngörüdüğü yapıda düşük veya yüksek seviyelerde bile olsa, dağıtımculara, müşterilerine satacakları elektrik enerjisini sağlayacakları ürettici seçme hakkı verilmektedir. Bu yöntem ile üretim ve toptan satışlarda bir rekabet ortamı
yaratılmıştır. Ancak dağıtım şirketleri son kullanıcılara enerji satışında tekel konumlarını sürdürmektedir. Model uyarınca müşterilerin, hangi dağıtım şirketini seçecekleri konusunda söz hakları yoktur.

Modelin getirdiği bir yenilik olarak, piyasa ve teknoloji risklerinin üreticilerle paylaşılması sayılabilir. Ayrıca bu yapıda, iletim şebekesine açık giriş de söz konusudur [1, 13].

Modelin karşılaşacağı en önemli sorunlarından birisi, toplam güç talebinin, sınırlı sayıda üretici ile sağlanıp sağlanamayacağıdır. Tüm elektrik enerjisi piyasasının bu modele göre yeniden yapılandırılması kapsamında piyasada, arz güvenliğini ve gerekli ek kapasiteyi sağlamak ile görevli kurumların oluşturulması gereklidir.

Modelin genel akış şeması Şekil 4.3’de verilmiştir [4].

Şekil 4.3: Toptan Satış Rekabetine Dayalı Piyasa Modeli Genel İşleyiş Şeması [4]

Kurum fiyatları düzenlemek ve tedarikçilerle olan etmekle görevlidir. Dağıtım şirketleri, belirlenen fiyatları üzerinden kendi tedarikçilerini seçebilecektir.

İkili anlaşmalar üzerinden yapılan elektrik enerjisi ticaretinde ise, üreticiler ve tedarikçiler arasında direk bir bağlantı söz konusudur. İkili anlaşmalar yöntemi güç havuzu yöntemine göre daha esnek bir yöntemde, piyasanın ve sistemin işleyişi farklı organizasyonların kontrolündedir. Sistem operatörlüğü fonksiyonu verilmiş şirketler, sistemin dengelenmesi için gerekli teknik eşgüdümün sağlanması ile görevlidir [4].

Model çerçevesinde tüketilecek birincil enerji kaynağı ya da minimum verimli kapasite seçimi, piyasa oyuncularının kontrolüne bırakılmıştır. Böylece birtakım riskler kamadan özel sektör aktarılmış ve aynı zamanda ekonomik verimlilik de arttırılmıştır.

Modelin sunduğu elektrik piyasası yapısı, sektörün yeniden yapılandırılmasında önemli bir adım olsa da, model tam rekabetçi piyasa amacı için sadece kısmı bir adımdır. Çünkü model uyarınca tüketicilerin tamamı, bölgelerinde faaliyet gösteren dağıtıcı şirketlerin doğal müşterisi sayılmaktadır. [14].

4.4.4 Perakende Satış Rekabetine Dayalı Piyasa Modeli

Perakende satış rekabetine dayalı piyasa modeli, toptan satış rekabetine dayalı piyasa modellinden bir adım daha ileri olarak sektörün tüm seviyelerinde rekabeti sağlamak amacıyla amacalamaktadır. Modelin en temel özelliği, iletim ve dağıtım şebekelerini özel sektörün girişi tamamen aşmasıdır. Teorik olarak, herhangi bir elektrik tüketici (talep miktarına bağlı olmasızın) bölgesinde sorumlu herhangi bir perakende satış şirketinden elektrik ihtiyacını satın alabilmektedir. Modelin akış şeması Şekil 4.4'de verilmişdir [4].
Şekil 4.4: Perakende Satış Rekabetine Dayalı Piyasa Modeli Genel İşleyiş Şeması

Aşağıdaki şekillerde perakende satış rekabetine dayalı model ile tekelci yapının karşılaştırılmasına yer verilmiştir [4, 13].

Şekil 4.5: Tekelci Yapı ile Perakende Satış Rekabetine Dayalı Modelin Karşılaştırılması [4]
5. TÜRKİYE ELEKTRİK ENERJİSİ SEKTÖRÜNDE YATIRIM VE FINANSMAN MODELLERİ

5.1 1980 Sonrası Uygulanan Kamu Yatırım ve Finansman Modelleri

Klasik olarak adlandırabileceğimiz bu sistem, son 30 yılda, hem ülkemiz ekonomik ve politik koşullarından hem de küresel etkilerden dolayı değişmeye başlamıştır. Klasik sistemden uzaklaştırılmasının ülke koşullarından kaynaklanan sebepleri şu şekilde özetlenebilir:

Belirtilen iç ve dış gelişmeler sonucu, Türkiye’nin kamu projeleri finanse etmesi yolunda, iç ve dış kaynak bulma olanakları ciddi şekilde azalmış, altıyapı projelerinin devamı açısından başka kaynak arayışlarına gidilmesi kaçınılmaz hale gelmiştir. [16].

Bu aşamada ihaleye çıkan kamu kuruluşları, müteahhitlerden projenin tamamına kredi bulmalarını talep etmektedirler. Uygulamada ihaleler, TEAŞ, DSİ ve Türkiye Cumburiyeti Karayolları İşletmeleri (TCK) gibi büyük kamu kuruluşları tarafından gerçekleştirilme ve %100 kredili işler olarak tanımlanmaktadır. Ancak bu yöntemlerde, dış finansman ile yapılacak kısmın (örneğin makine, teçhizat almım, montaj, mühendislik ve gözetim hizmetleri gibi) için kredi bulmak, gerçekce olarak kolay olsa da iç finansman ile yapılacak işler için (örneğin inşaat işleri gibi) kredi bulmak oldukça zordur. Alınabilen krediler ise yüksek faizli olmaları nedeniyle yatırım maliyetlerini artırmaktadır. Kamu altıyapı yatırımlarına Büyükşehir Belediyelerinin
kent içi ulaşım, atık arıtma tesisleri gibi yatırımları da eklenildiğinde dış kredi talebi alanında rekabet de oldukça artmıştır.

Yatırım finansmanı bulma çabalarına yönelik bir başka model olarak, Karma Ekonomik Komisyonlar çerçevesinde oluşturulan, ikili ekonomik işbirliği anlaşmaları kapsamında verilen, ülkeler arası desteklerdir.

Kısacası, kamu alt yapılı yatırımları için karma bütçeden kaynak ayırılamaz hale gelen ve uygun koşullarda dış kredi bulması zorlaşan Türkiye, liberalleşmenin ve özelleştirmenin giderek artan baskı ise yatırım finansmanı ihtiyacı, özel sektörün doğrudan yatırımları ile karşılamak zorunda kalmıştır.

Ayrıca çeşitli iç ve dış yönlendirmeler sonucu kamu alt yapılı yatırımlarının özel sektör tarafından gerçekleştirilmesinin, finansman kaynağı bulmaktan öte yararları olduğu düşünülmuştur. Bu görüşe göre, özel sektör hem yatırım maliyetlerini karşılayacak hem de sahip olduğu işletme ve yönetme becerileri ile kamuya nazaran daha verimli projeler gerçekleştirerekktir.

yük olduğu dile getirilmeye başlamıştır. Geçmiş tecrübe lerden yola çıkılarak, yatırımlar konusunda özel sektörün daha verimli olduğu ve kamu payının sadece denetleme aşamasında kalması gerektiği düşüncesi hakim olmuştur [16].

5.2 Yap – İşlet – Devret Modeli

Yap-İşlet-Devret Modeli, 3996 sayılı “Bazı Yatırım Hizmetlerinin Yap-İşlet-Devret Modeli Çerçevesinde Yaptırılması Hakkında Yasa’nın” 3. maddesinde şu şekilde tanımlanmıştır:

“İleri teknoloji ve yüksek maddi kaynağı ihtiyaç duyulan projelerin gerçekleştirilmesinde kullanılmak üzere geliştirilen özel bir finansman modeli olup, yatırım bedelinin (elde edilecek kar dâhil) sermaye şirketine veya yabancı şirkete, şirketin işletme süresi içerisinde ürettiği mal veya hizmetin idare veya hizmetten yararlananlarca satın alınması suretiyle ödenmesini ifade eder [17].”

Diğer bir deyişle, YİD modeli, bir kamu altyapı yatırım veya hizmetinin yatırım finansmanının özel bir şirket tarafından karşılanmasıdır. Ancak bu şirket, yatırım sonucu elde edilen tesisleri, kamu tarafından belirlenen bir süre için işletme ve ürettiği mal veya hizmeti, tarafların karşılık anlaştıkları bir tarife üzerinden, kamuya satacaktır İşletme süresi sonunda, şirket, tesisi bakımını yapmış, eksiksiz ve işler durumda ilgili kamu kuruluşuna devredecektir.

5.2.1 Yapı – İşlet – Devret Modelinin Özellikleri

Modelin genel özelliği, bazı temel kamu altyapı yatırımlarının gereksinim duyduğu finansman sorununa çözüm getirirken aynı zamanda bu tür projelerin işletme aşamasında da özel sektörün teknoloji, işletme ve yönetim anlayışından faydalanmak ve böylece yatırının hizmet etkinliğinin arttırmaktır. Model sadece yeni yatırımlar için değil, modernizasyon veya ek kapasite yatırımları için de kullanılmıştır. Finansman aşamasında, köprü krediler haricinde diğer kredilerin anapara ve faiz geri ödemeleri hazine garantisi altında olmadığından, Türkiye’nin dış borç dengesini etkilememektedir.

YİD modelinin avantajları şu şekildedir:

- Model, hazine dış borç stokunu olumsuz yönde etkilemeksizin, yeni bir finansman olanakı sağlamaktadır.
- Model, yabancı sermayenin tilkeye girişini teşvik ederek özelliştirme politikalarına katkı sağlayacaktır. Ancak model sonucu gerçekleştirilen tesisin kamuya devredilmesi, modelin ana fikrine ters düşmektedir. Özellendirme teşvik edeceği savunan modelin genel uygulamasında, yeni kamu kuruluşları yaratmamak açısından, işletmeler uygulayıcı şirketlere devredilmektedir.
- Özel sektör projelendirme ve uygulama aşamalarında kamuya göre daha etkin yöntemler kullanarak karını maksimize etmeye çalışacaktır. Böylece, model kapsamında özel sektör tarafından gerçekleştirilen yatırımlar, kamu yatırımlarından daha verimli olacaktır.
Modelin dezavantajı olarak, ülkenin taş olduğu siyasi ve ekonomik risklere çok duyarlı olması belirtilebilir. Özel teshebbüsün karını garanti almak için ülke koşullarını göz önünde bulundurarak belirli bir garanti payını maliyete ekleyecektir. Bu nedenle, model çerçevesinde gerçekleştirdilen yatırımların maliyetleri, ülkelere göre farklılık gösterebilir. Öte yandan projelerin yatırım ve işletme aşamasında olduğu gibi, devretme aşamasında da karlı olarak teslim edilmesi için çok etkin bir denetim gerekmektedir. İşletme süresinin sonunda zarar eder halde devir alınacak bir kuruluş, kamuya arı bir yük getirilmesine neden olacaktır.

5.2.2 Yap – İşlet – Devret Modelinin Yasal Altyapısı

Görevli Şirket, belirli bir bölgede, elektrik enerjisi üretimi, iletimi, dağıtım ve ticareti görevlerinin tamamını veya bölgedeki tesislerin özelliğine göre bu fonksiyonlardan bazlarını gerçekleştirmek ile yetkilendirilmiş yerli veya yabancı sermaye şirketidir. Bakanlar Kurulu kararıyla görevlendirilen şirket, yeni tesisler kurup işletmeleceği gibi mevcut tesislerin işletme haklarını da devralabilir. Bu devir, Enerji ve TabiiKaynaklarBakanlığı ile imzalanacak görev sözleşmesi çerçevesinde gerçekleştiriliktir [17].

50
TEK’ in TEAŞ ve TEDAŞ olarak ikiye bölünmesini takiben görevli şirket tanımı, bu değişikliği de içermesi için 04.04.1996 tarih ve 96/8008 sayılı Bakanlar Kurulu kararı ile yenilenmiştir [17].

Görevli Şirket tanımı içerisinde bulunan özel şirketler:

- Adana Mersin ve Hatay illerinden sorumlu Çukurova Elektrik A.Ş.
- Kepez ve Antalya Havalisi Elektrik Santralları A.Ş.
- Kayseri ilinin tamamı ve Sivas’ın bazı ilçe ve köylerinden sorumlu Kayseri ve Civari T.A.Ş. olarak sayılabilir.

YID yatırım modeli, özellikle elektrik enerjisi sektöründe uygulama alanı bulmuş, ayrıca bir başka önemli altyapı yatırımı olan ulaştırma sektöründe de YID modeli ile önemli projeler gerçekleştirilmiştir. 02.06.1988 tarihinde yayınlanan 3465 sayılı Yasa ile otoyol yapımı, bakım ve işletilmesi alanında, Türkiye Cumhuriyeti Karayolları İşletmesi (TCK) dışında özel şirketlere de izin verilmiştir. İstekli şirket,
TCK ile yapacağı sözleşme ile görelendirilecek olup bu projelerin sözleşme süresi 49 yıla sınırlandırılmıştır. Ancak ulaştırma sektöründe, yatırım modelinin uygulanmasında kimi sorunlar yaşanmıştır. Örneğin 3495 sayılı Yasa’nın görevli şirketin seçim yöntemi, şartname hazırlanması ve görelendirmenin usulü konularını düzenleyen yönetmeliği, 5 yıl geçikme ile yayınlanmıştır. Yasa, otoyol hizmet tesislerinin yapılması ve işletilmesi alanında kullanılmaktadır.

3996 sayılı yasının uygulamaya yönelik kuralları, 1.10.1994 tarih ve 22068 sayılı Resmi Gazete’de yayımlanmış olan Bakanlar Kurulu kararı ile belirlenmiştir. Bu düzenleme ile uygulamaya, Yüksek Planlama Kurulu izni ve 49 yıllık sözleşme süresi gibi değişiklikler getirilmiştir [17].

istedikleri ve model kapsamında yatırım yapmak için ileri sürdükleri olmasa olmaz bir koşuldur.

Bu sorunların aşılması amacıyla, 13.08.1999 tarih ve 4446 sayılı yasa ile sözleşmelerde taraflar arası anlaşmazlıkların Uluslararası Tahkim ile çözülmesinin önü açılmıştır. 4446 sayılı yasa ile Anayasanın 47,125 ve 155. maddelerinde yapılan değişiklikler:

- 47. maddede yapılan değişiklik ile kamu mülkiyetindeki işletme ve varlıkların özelleştirilmesine anayasal olananak sağlanmıştır.
- 125. maddede yapılan değişiklik ile imtiyaz sözleşmelerinde idare ile şirketler arasında çıkacak uyuşmazlıkların ulusal ya da uluslararası tahkim yoluyla çözülmünün önünden açılmıştır.
- 155. maddede yapılan değişiklikle Danıştayın “imtiyaz şartlaşma ve sözleşmelerini incelemek” görevi, “imtiyaz şartlaşma ve sözleşmeleri hakkında iki ay içinde düşüncesini bildirmek” biçiminde yeniden tanımlanmıştır [17].

5.2.3 Yap – İşlet – Devret Modelinin Elektrik Enerjisi Sektöründe Uygulaması

Yap-İşlet-Devret modelinin elektrik enerjisi sektörüne uygulanmasında görevlendirilen şirkete ilişkin bulunan birçok kuruluş olduğundan, model uygulamada karmaşıklıkmaktadır. Modelin temel tarafları, yürütücü kamu kurumu ve görevli sermaye şirketidir. Bu tarafların yanında, kredi firmaları, sigorta şirketleri, hukuki, mali ve teknik Danışmanlık şirketleri, üretim girdisi sağlayan şirketler, üründü satın alan kuruluşlar, inşaat ve teknik malzeme müteahhidi ve taşeronları gibi çok sayıda ilişki kurulmaktadır. Tüm bu ilişkiler, çok sayıda kanun ve değişik sözleşmelerle karmaşık hukuki yapıya bağlanmaktadır.
5.2.3.1 İhale Yöntemleri

Ancak uygulamada karşılaşılan yöntem, Bakanlığın fizibilite raporları hazırlık projeleri ilan edip açık ihaleye çıkmadıgıdır. İhale evrakım alan şirketler, kendi tekliflerini bu fizibilite raporu ve mevcut yönetimlerle belirlenmiş kurallar dahilinde hazırlamaktadırlar. Tekerler, fizibilite raporunda yer alan işletme süresi temel alınarak hazırlanır. Tekerler veren firmalar, bu süre dikkate alarak tekliflerinde Nakit Akış Tablolarını ve en önemli belirleyici olarak yıllık ortalama elektrik enerjisi satış fiyatlarını belirlerler [16].

Projeler, teklif aşamasında gümrük muafiyeti, yatırım indirimi, KDV muafiyeti veya ertelemesi ve %20 öz sermaye oranı gibi teşvik unsurlarından yararlanacak şekilde hazırlanır.

5.2.3.2 İhale Sonrası Değerlendirme

5.2.3.3 Sözleşme Aşaması

Bakanlık, teklifleri olumlu bulunan ortak girişimcilere, mevcut projeye ilgili yatırım şirketi’ni kurmaları için çağında bulunur. Yatırım şirketi’nin kuruluş amacı, mevcut proje ile ilgili mühendislik hizmetlerini yapmak veya taşeronlar üzerinden yapmaktadır, tesis kurmak, sözleşme süresi boyunca işleterek ürettiği elektriği sözleşme ile belirlenmiş bedel üzerinden Görevli Şirkete satmak ve sözleşme sonunda tesişi bakımını yapılmış ve işler halde ilgili kamu kuruluşuna-bedensiz olarak devretmektedir. Ayrıca yatırım şirketi, projenin finsansmanı için gerekli olan öz sermayeyi sağlamak, gerekli kredi anlaşmalarını yapmak ve kredilerin anapara ve faiz ödemelerini eksiksiz olarak tamamlamaktan sorumludur.

Şirketin kurulmasını takiben, projenin sahibi olan yatırım şirketi ile Bakanlık yetkilileri arasında projenin tüm yürütme kalemlerini içerecek olan bir uygulama sözleşmesi üzerinde görüşmeler başlar. Bakanlık, geliştirilmiş olduğu tip sözleşme üzerinde şirketin görüşlerine göre uygun düzeltmeleri yapar.

Yatırım şirketi ile bakálnlık arasında imzalanana uygulama sözleşmesi haricinde, yatırım şirketi projeye kapsamında yaklaşık 15 adet daha sözleşmeye imza atacaktır. Bu sözleşmelerle örnek olarak, TEİAŞ ile imzalanacak elektrik satın alma sözleşmesi, Bakanlık ile imzalanacak inşaat sözleşmesi, enerji fonu katılım sözleşmesi, TEÜAŞ ile imzalanacak işletme ve bakım sözleşmesi, bankalar ve uluslararası kredi şirketi ile imzalanacak kredi sözleşmeleri, sigorta sözleşmeleri, müşavirlik hizmeti alınacak firma ile sözleşmeler, malzeme sağlayıcı ve müteahhitlerle imzalanacak hizmet sözleşmeleri sayılabilir [16].

Yasal sözleşmeler imzalandıktan ve Bakanlığın sözleşme paketi üzerinde onayı alındıktan sonra şirket Hazine Müşteşarlığı ile garanti sözleşmesi imzalayacaktır. Burada şirkete verilen garanti, eğer elektrik enerjisini satın almakla yükümlü kuruluş ödemeleri aksatır ise bu ödemelerin hazine tarafından yapılacağı garantisidir.
5.2.3.4 Yap – İşlet – Devret Projelerinin Finansmanı

YİD modeli ile yapılacak projelerin finansmanında, şirketlere toplam yatırım bedelinin %20 si kadar öz sermaye ortaya koymaları koşulu ile kalan %80’lik tutar için teşvik kapsamında kredi kullanma kolaylığı sağlanmıştır. Şirket, işletme aşamasında, ilgili görevli şirketten alacağı alım veya ödeme garantili elektrik enerjisi bedeliyle, yatırım aşamasında ise kendi öz sermayesinden, kredi anapara ve faiz ödemelerini gerçekleştirmekle yükümlüdür.

3996 sayılı yasa ve 94/5907 sayılı Bakanlar Kurulu Kararı ile proje finansmanında kullanılabilecek kredi çeşitleri şu şekilde tanımlanmıştır [17]:

- Ana Kredi (Senior Loan)
Ana kredi, projenin gerçekleştirilmesi için bulunması gereken orta ve uzun vadeli temel kredidir. Kredi kapsamında inşaat işleri, makine ve donanım temini başta olmak üzere yatırımın önemli bölümü finanse edilir. Bu kredi üzerinde hazine garantisi verilmesi söz konusu değildir.

- Köprü Kredi (Subordinated Loan)

- Destek Kredi (Stand-by Loan)
Köprü Kredide anlatılan koşulların bu kez yatırım şirketi kusuru ile ortaya çıkmış durumunda kullanılan kredi çeşitli. Kusur ve sorumluluk yatırım şirketinde olduğundan, kredi bulunması tümden şirket sorumluğundadır ve geri ödeme konusunda herhangi bir hazine garantisi söz konusu değildir.
5.2.3.5 Yap – İşlet – Devret Projeleri Kapsamında Verilen Hazine Garantileri

YİD modeli kapsamında verilen tüm hazine garantileri dayanakını 3996 sayılı yasanın 4180 sayılı yasa ile değişik 11. maddesi oluşturarak edindi. Bu yasanın önce hazine garantileri genel bütçe yasaları kapsamında değerlendirilmektedir. 3996 sayılı yasanın 13. maddesi uyarınca, ilgili idarenin isteği durumunda 3096 ve 3465 sayılı yasaların kapsamında yürütülen projeler de garanti kapsamından yararlanılabilmektedir [16].

5.2.3.6 Yap – İşlet – Devret Projelerinde Tarife ve Ücret Belirleme Yöntemleri

3096 sayılı yasanın 9. maddesinde belirtildiği üzere, enerji tarifeleri görevli şirketin önerisi ve Enerji ve Tabii Kaynaklar Bakanlığı’nın onayı ile yürütülrece en değerli olup, tarifolden belirlenmesinde, yıllık işletme, bakım ve onarım giderleri, kur farkları, aşınma payları ile ortaklara dağıtılan makul bir temettü için gereklili gelirin sağlanması esas alınacaktır.

Uygulama yönetmeliğinin 8.maddesi uyarınca tarifenin belirlenmesinde;

- İşletme ve bakım giderleri (yakit, malzeme, personel, vergi, aşınma payı ve diğer giderler)
- Yatırımlar için ödenen faiz ve kur farkları
- Sermayenin yeniden değerlendirilmesi, piyasa koşullarına göre makul bir temettü verilmesi
- İdarenin benzer üretim tesislerinden aldığı fiyatlar
• Hidroelektrik santrallar için %10, termik santrallar için %5 oranında ayrılan ve satış bedellinden indirilerek Kamu Ortaklığı Fonuna yatırılacak Kamu Ortaklığı Fonu payı
• Kanunu ihtiyaçlar göz önünde bulundurulmaktadır.

Uygulama yönetmeliğinin 9. maddesinde satış fiyat için “Elektrik enerjisi satış fiyatlarının belirlenmesinde ekonomik kaynak seçimine yardımcı olmak ve ülke ekonomisine sunulan elektrik enerjisi fiyatlarını olumsuz yönde etkilememek esas olmak üzere, üretim tesisleri fiziblilete raporlarının hazırlanmasında elektrik enerjisi satış fiyatı, projenin iç karlılık oranını %16 civarında gerçekleştirecek şekilde seçilirse, bu fiyatın TEK ortalaması satış fiyatının hidroelektrik santrallarda %60’ını termik santrallarda %65’ini geçememesi esas alınacaktır” denilmiştir. Bu madde 04.04.1996 gün ve 96/8007 sayılı Bakanlar Kurulu kararı ile “elektrik enerjisi satış fiyatlarının belirlenmesinde ekonomik kaynak seçimine yardımcı olmak ve ülke ekonomisine sunulan elektrik enerjisi fiyatlarını olumsuz yönde etkilememek esas alınacaktır” biçiminde değiştirilmiş ve böylece şirketlere ödenecek hazine garantili enerji fiyatları ile Kurum tarafından tüketicielere uygulanan satış fiyatları arasındaki bağlantı ve sınırlamalar kaldırılmıştır [17, 18].

3996 sayılı yasanan uygulama esaslarını belirleyen 01.10.1996 tarih ve 22068 sayılı Resmi Gazete’de yayınlanan Bakanlar Kurulu kararı ek kararda ise, ücret belirleme yöntemi değiştirilmiştir. Bu değişiklik uyarınca yasanan 34. maddesine göre yatırım ve hizmet ücretlerinin belirlenmesinde şu iki yöntemin uygulanması esastır:

• Uluslararası arası sektörel iç karlılık oranları göz önünde bulundurularak, maliyet artı kar yöntemi ve
• Tavan fiyat yöntemi

İdare, yatırım ve hizmetin niteliğine göre bu yöntemlerden birini veya ikisini birlikte tercih edebilmektedir [18].
5.2.4 Yap – İşlet – Devret Modeli Çerçevesinde Karşılaşılan Sorunlar

Model çerçevesinde karşılaşılan sorunlar teknik ve ekonomik sorunlar olarak ikiye ayrılabilir.

5.2.4.1 Teknik Sorunlar

5.2.4.2 Ekonomik Sorunlar

Projelerin gerçekleştirilmesi için gerekli finansman, ağırlıklı olarak uluslararası piyasadan bulunduğu için projelerin yabancı ortaklı olması, önemli bir finansman kolaylığı sağlayacaktır. Ancak yurtdışı firmaların ülkemizde yatırımı yapmaları ekonomik ve siyasi koşullarımızın yanında küresel yönlendirmeler ile de belirlenmektedir. Örneğin modelin ilk aşamalarında yurtdışı firmaların yatırım yapması için tahkim yasalarının çıkması gerektiğini öne sürmüştür ancak tahkim düzenlemelerinden sonra bile yabancı yatırımcı sayısını istenilen seviyelere çıkarmıştır. Bu nedenle projelerin finansmanında birçok uygulamada, yüksek faizli kredi kullanımını söz konusu olmuştur.

Projelerin en çok tartışılın ve en önemi sorunu ise kullanılar da al temelli yapılmış anlaşmalarıdır. Hem üretim girdilerinin sağlanması, hem elektrik iletim ve dağıtımında devlet tekel söz konusu olduğundan, bu kamu kuruluşları ve yatırım

5.2.5 Yap – İşlet – Devret Modeli Sonuç Değerlendirmesi

60

Bu projeler dışında, uygulama ya da imtiyaz sözleşmeleri imzalanmamış olmakla birlikte, paraflanmış veya DPT onayına sunulmuş ancak hazine garantisinden yararlanamayacak olan toplam 12.011 MW Kuruluğüстве 112 adet YİD projesi daha bulunmaktadır [16].
<table>
<thead>
<tr>
<th>Proje No</th>
<th>Projenin Adı</th>
<th>İşletmeye Alınma Tarihi</th>
<th>Kuruluş Gücü (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Marmara Ereğlisi – Trakya Doğal gaz</td>
<td>05.06.1999</td>
<td>478</td>
</tr>
<tr>
<td>2</td>
<td>Marmara Ereğlisi – Unımar Doğal gaz</td>
<td>12.06.1999</td>
<td>478</td>
</tr>
<tr>
<td>3</td>
<td>Gebze – Dilovası Doğal gaz</td>
<td>21.01.1997</td>
<td>253,4</td>
</tr>
<tr>
<td>4</td>
<td>Esenyurt Doğal gaz</td>
<td>22.05.1999</td>
<td>180</td>
</tr>
<tr>
<td>5</td>
<td>Birecik Barajı ve HES</td>
<td>04.10.2001</td>
<td>672</td>
</tr>
<tr>
<td>6</td>
<td>Berdan HES</td>
<td>27.12.1996</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Çal HES</td>
<td>12.01.2001</td>
<td>2,2</td>
</tr>
<tr>
<td>8</td>
<td>Çamlıca HES</td>
<td>12.12.1998</td>
<td>84</td>
</tr>
<tr>
<td>9</td>
<td>Aksu – Çayköy HES</td>
<td>01.11.1989</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>Fethiye HES</td>
<td>20.12.1999</td>
<td>16,5</td>
</tr>
<tr>
<td>12</td>
<td>Girvelik II – Mercan HES</td>
<td>30.03.2001</td>
<td>11,6</td>
</tr>
<tr>
<td>13</td>
<td>Gaziler HES</td>
<td>07.11.2002</td>
<td>11,1</td>
</tr>
<tr>
<td>14</td>
<td>Gönen HES</td>
<td>07.03.1998</td>
<td>10,6</td>
</tr>
<tr>
<td>15</td>
<td>Kısık HES</td>
<td>05.01.1994</td>
<td>9,6</td>
</tr>
<tr>
<td>16</td>
<td>Hasanlar HES</td>
<td>17.05.1991</td>
<td>8</td>
</tr>
<tr>
<td>17</td>
<td>Suçağı HES</td>
<td>18.01.2000</td>
<td>7</td>
</tr>
<tr>
<td>18</td>
<td>Dinar II HES</td>
<td>01.12.2000</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>Ahıköy II HES</td>
<td>18.11.1999</td>
<td>2,5</td>
</tr>
<tr>
<td>20</td>
<td>Ahıköy I HES</td>
<td>02.09.1999</td>
<td>2,1</td>
</tr>
<tr>
<td>21</td>
<td>Sütçüler HES</td>
<td>18.06.1998</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>Bozcaada Rüzgar Enerjisi</td>
<td>25.06.2000</td>
<td>10,2</td>
</tr>
<tr>
<td>23</td>
<td>Çeşme Alaçatı Rüzgar Enerjisi</td>
<td>28.11.1998</td>
<td>7,2</td>
</tr>
</tbody>
</table>

5.3 Yap – İşlet Modeli

YİD modelini oluşturan 3096 yasa ile birlikte uygulamaya sokulmuş ve enerji sektöründe uygulamalarına sıkça rastlanılan bir başka yatırım finansman yöntemi de Yap-İşlet (Yİ) modelidir. YİD modelinde, devlet tekelinde olan bir görevin bir sözleşme ve denetim eşliğinde özel sektör devri söz konusudur. Yukarıda YİD modelinde bahsedilen sorunlar (özellikle ve rekabet kavramlarına aykırılık gibi) yatırım finansman modellerinde yeni bir düzenleme yapılması gerekmıştır.

Bu ihtiyaç sonucu, Yİ modeli, 08.06.1996 tarih ve 96/8269 sayılı “Elektrik Enerjisi Üretim Tesislerinin Kurulması Hakkında Bakanlar Kurulu kararı” ve tebliğ ile uygulamaya sokulmuştur. Ancak bu düzenlemeler Danıştay tarafından yasa dayanacağı olmadığı gerekçesiyle iptal edilmiş ve yürütmenin durdurulması kararı verilmiştir [7, 17].

Yap-İşlet yatırım finansman modeli uygulama alanlarından hidroelektrik, jeotermal, nükleer enerji santralları ve yenilenebilir enerji kaynakları ile çalıştırılacak santrallar çıkartılmış. Elektrik enerjisi sektöründe Yİ modeli yalnızca termik santralların kurulması ve işletilmesi yatırımlarında kullanılmıştır [16].

Yİ modelinde yapımı öngörülen üretim tesislerinin ilgili kurumca (TEAŞ - TETAŞ) belirlenmesi, DPT ve hazine Müşteşarlığının uygun görüşlerinin alınması ve teklife çapın amacıyla Resmi Gazete’de ilan çıkarılması gerektmektedir. Daha sonra işin özelliğine göre, kapalı olarak toplanan teklifler değerlendirilecek ve belirli istekliler arasında yeniden teklif toplama ya da pazarlık yöntemlerinden biri ile görevli şirket seçilecektir. Bu yöntem YİD modelinden farklı olarak projelerin dağıtımında rekabete uygun bir model getirilmiştir.

Yİ modelini YİD modelinden ayrıran en temel fark işletme süresi sonunda tesis mülkiyetinin kamuya devredilmeyecek ve özel sektörde kalacak olmasıdır. YİD modelinden bir diğer farklılık ise kurulacak tesislerin ürettiği elektriği enerjisinin satın alma garantisi verilmemesidir. Yİ modeli çerçevesinde, tesislerin ürettiği elektrik enerjisinin tümü değil bir kısmıdır (uygulamada oran %85'dir) alı ya da öde garantisi verilmektedir. Ancak bu hazine garantisi 4628 sayılı elektrik Piyasası Kanunu ile kaldırılmıştır.

Model çerçevesinde gerçekleştirilen projelerde YİD modelinde olduğu gibi ayrıcalıklı şirketler yaratılmaktadır. Tamamen olmaya bile getirilen alım garantileri piyasadaki oluşturulmak istenen rekabetçi yapıyı olumsuz etkilenmektedir. Bu
sence 2001 yılında çıkan Elektrik Piyasası Kanunu ile alın garantileri ortadan kaldırılmış ve rekabetçi bir piyasa oluşturmak için gerekten düzenlemeler yapılmıştır.

Modelin bir diğer eksikliği ise, 4283 sayılı yasa ile tesislerin toplam yatırım tutarları konusunda herhangi bir düzenleme yapılmamış olmasıdır. Firmaların görevlendirilmesi amacıyla teklifler değerlendirilirken, enerjinin birim satış fiyatı tek ölçült olarak alınmıştır. Ancak bu satış fiyatı maliyetinin bir fonksiyonudur ve mevzuattan kaynaklanan bir eksiklik olarak değerlendirilmenin sadece birim satış fiyatı üzerinden yapılması elektrik enerjisinin satışında yüksek tarifelere neden olmuştur.

Yıl modeli kapsamında toplam 5.630 MW kurulu gücü sahip Tablo 5.2’de belirtilen 5 adet elektrik enerjisi üretim tesisi projesi gerçekleştirilmiştir. Ayrıca yine bu model kapsamında Atatürk ve Antalya Hava limanları’nın yeni dış hatlar terminallerinin finansmanı sağlanmıştır.

<table>
<thead>
<tr>
<th>Proje No:</th>
<th>Proje Adı</th>
<th>Görevli Şirket</th>
<th>Kurulu Güçü (MV)</th>
<th>Toplam Yatırım Tutarı (10⁶ $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gebze Doğal Gaz Kombine Çevrim</td>
<td>Gebze Elektrik Üretim A.Ş.</td>
<td>1.540</td>
<td>733</td>
</tr>
<tr>
<td>2</td>
<td>Adapazarı Doğal Gaz Kombine Çevrim</td>
<td>Adapazarı Elektrik Üretim A.Ş.</td>
<td>770</td>
<td>407</td>
</tr>
<tr>
<td>3</td>
<td>İzmir Doğal Gaz Kombine Çevrim</td>
<td>İzmir Elektrik Üretim A.Ş.</td>
<td>1.540</td>
<td>747</td>
</tr>
<tr>
<td>4</td>
<td>Ankara Doğalgaz Kombine Çevrim</td>
<td>Baymina Elektrik Üretim A.Ş.</td>
<td>700</td>
<td>478</td>
</tr>
<tr>
<td>5</td>
<td>İskenderun Termik</td>
<td>İskenderun Elektrik Üretim A.Ş.</td>
<td>1.100</td>
<td>1.370</td>
</tr>
</tbody>
</table>

5.4 İşletme Hakkı Devri Modeli

Mülkiyeti ve işletme hakları kamuya ait olan üretim ve dağıtım tesislerinin, işletme haklarının belirli bir süre ile özel sektör şirketlerine devredilmesine dayanan İHD modeli, 3096 sayılı yasa kapsamında gündemde gelmiştir. Modelin amacı, mevcut tesislerin modernizasyonu, gerektiğiinde kapasite artırımı yapılması ve daha verimli bir işletme tarafından sağlanmasıdır. İşletme hakkının devredilmesinde, Enerji ve Tabii Kaynaklar Bakanlığı tarafından belirlenmiş bir
devir bedeli tesi devreden kuruluşa ödenecektir. Bu devir bedeli, elektrik enerjisi satış tarifesine yansıtılacak ve yapılan al ya da ödeme anlaşmaları uyarınca işletme süresi sonunda şirketçe geri alınmış olacaktır.

Tablo 5.3: İşletme Hakkı Devri Modeli ile Gerçekleştirilen Elektrik Enerjisi Üretim Tesisleri Projeleri

<table>
<thead>
<tr>
<th>Proje No</th>
<th>Proje Adı</th>
<th>Görevli Şirket</th>
<th>Devir Tarihi</th>
<th>Kiram (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Çayırhan Termik</td>
<td>Park Termik Elektrik A.Ş.</td>
<td>05.10.2001</td>
<td>620</td>
</tr>
<tr>
<td>2</td>
<td>Hazar I – II HES</td>
<td>Bilgin Elektrik A.Ş.</td>
<td>08.08.1996</td>
<td>29,8</td>
</tr>
</tbody>
</table>
6. AVRUPA BİRLİĞİ – TÜRKİYE İLİŞKİLERİ

6.1 Tarihsel Perspektifte Avrupa Birliği – Türkiye İlişkileri

Avrupa Ekonomik Topluluğu’nun (AET) kurucu anlaşması olan Roma Anlaşması’ndan (1 Ocak 1958) 19 ay sonra Türkiye Cumhuriyeti Roma Anlaşması’nın 238. maddesi uyarınca, 31 Temmuz 1958 tarihinde toplulüğa ortak üye (associate member) başvurusunda bulunmuştur. Ortak üye kavramı topluluk ile yoğun işbirliğine girmekte yükümlü devlet ile karşılıklı hak ve borçların denkleştirildiği ilişkiye öngören ortak bir tutum ve özel bir yöntem olarak tanımlanmıştır [22].

Türkiye’nin başvurusu sonucu 12 Eylül 1963 tarihinde imzalanan Ankara Anlaşması Türkiye-AET (AB) ilişkilerini düzenleyen bir çerçeve anlaşması olması açısından ilişkilerin resmi başlangıcı olarak sayılabilir. Bu anlaşmanın dikkat çeken yönleri:

- Ortaklık Anlaşması uyarınca Türkiye’nin AET’ye tam üye sıfatiyla katılabilmesinin yolunun açık tutuluyor olması ve

- Anlaşmada bir fisih hüküm bulunmaktadır; diğer bir deyişle anlaşmanın, taraflardan biri aksi bir tutum içine girmekdiçe yürütülkte kalacak olmasıdır.

Ankara Anlaşması ile çizilen çerçeve uyarınca Türkiye - AET işbirliği her biri 4 yıl sürecek 3 dönemde ve toplam 12 yılda gerçekleştirilecektir. Bu dönemler, Türkiye ekonominin topluluk koşullarına uygun duruma getirilmesi açısından iki tarafın da karşılıklı çaba harcayacağı Hazırlık Dönemi; imzalanan bir katma protokol ile malların, hizmetlerin, işgıcünün ve sermayenin kademe kademe serbest dolaşmasına geçilmesini öngören ve süresinin 22 yıla sınırlanmış olduğu Geçiş Dönemi ve Türkiye ve AET arasında ekonomik birliğin sağlanacağı ve ekonomi politikalarında eğitildiğimın sağlanacağı Son Dönem olarak belirlenmiştir [22].

Gümrük Birliği’ne katılım sürecine kadar Türkiye’nin karşılanmayan beklentileri aşağıdaki başlıklar halinde özetlenebilir:

- Mart belgesi ile oluşan durumda Türkiye Gümrük Birliği kararı mekanizmasının dışında tutulurken tam üye gibi değerlendirilmiş ve bazı egemenlik haklarını tek yanlı olarak AB’ye devretmiştir. Örneğin Türkiye’nin 3. ülkelere karşı AB’nin ortak gümrük tarifesine geçerek bugüne kadar AB’nin imzaladığı ve imzalayacağı bütün ticaret anlaşmalarına 5 yıl içinde uyması beklenmiştir.

- AB 1970 Katma Protokolü’nde yer alan 4 maddeden, yani malların, işgütünün, sermayenin serbest dolaşımı ve mali yardım maddelerinden sadece malların serbest dolaşımını devreye sokarak diğer yükümlülükleri görmezden gelmiştir [22].
Dolayısıyla, 6 Mart belgesi, ne 1963 anlaşmasının ne de 1970 protokolünün öngördüğü ekonomik, sosyal ve siyasal unsurları içermekteidir. Burada Türkiye lehine olan bütün unsurlar açıklanmış ve tek yanlı bağlılık yaratan bir metin imzalanmıştır [23].

71

6.2 Avrupa Birliği Elektrik Piyasası Direktifi ve Türkiye Uygulaması

Avrupa Birliği üye ülkelerindeki elektrik iç pazarını düzenlemek amacıyla Avrupa Parlamentosu tarafından yayınlanan ve Avrupa Konseyi tarafından onaylanan 19 Aralık 1996 tarih ve 96/92/EC sayılı kuralları bütün AB Elektrik Piyasası Direktifi olarak adlandırılmıştır. Bu direktifin kapsamı, 1. maddesinde belirtildiği üzere:

“Direktif, elektrik enerjisi üretimi, üretim ve dağıtım için ortak kurallar oluşturur. Direktifte elektrik enerjisi sektörünün organizasyonu ve işlevi, pazarara erişim, teklif isteme ve yetki vermede uygulanabilir usuller ve sistemlerin işletilmesi ile ilgili kurallar yer almaktadır [27].” AB üyelik sürecinde Türkiye’nin de benimsemek zorunda olduğu bu kurallar bütününün genel amaçları şu şekilde özetlenebilir:

- İletim, üretim ve dağıtım için ortak kurallar oluşturularak rekabete açık bir elektrik enerjisi sektörü ve elektrik enerjisi iç piyasalarının düzenlenmesi;
- Üretim, üretim ve dağıtında verimliliğin arttırılması;
- Arz güvenliğinin ve Avrupa ekonomisinin dünya ekonomileriyle rekabet edebilirliğinin sağlanması;
- Çevresel korumayı arttırmalı;
- Sistemin emniyet, güvenilirlik ve veriminin sağlanması sürecinde üretici ve tüketici yararlarının uygun değerde gözellenmesi ve
• Teknik kurumların ve sistem operatörlerinin şeffaf ve ayrımsız şekilde çalışmasını sağlanması ve baskı kurumlarının suistimallarının engellenmesi.

Direktif temel olarak üye ülkelerde sektördeki yatırıım ihale işlemelerini izleyecek ve denetleyecek; sözleşmelerle ortaya çıkması muhtemel anlaşmazlıkları çözecek ve sisteminin oyuncuları arasında tam rekabetin sağlanması için gerekli düzenleme ve müdahaleleri gerçeklestirebilecek bağımsız bir denetleyici kurum oluşturulması esasına dayandırılmıştır [4].

Türkiye ise bu direktifte uyumun sağlanması için, direktifte verilen öncelik ve kurallar dikkate alınarak hazırlanan 4628 sayılı Elektrik Piyasası Kanunu’nun 3 Mart 2001 tarihi itibari ile yürürlüğe sokmuştur [28].

Bu kanun kapsamında belirlenen ve Enerji Direktifi’ne uyum sağlanması yolunda öncelikli olarak kabul edilen maddeler şunlardır [28]:

• Elektrik enerjisi sektöründe düzenleyici ve tam bağımsız bir otoritenin tesis edilmesi;

• Sınır ötesi enerji ticaretinde kısıtlamaların kaldırılması;

• Rekabetçi bir enerji iç pazarının kurulması;

• Enerji verimliliğine yönelik mevzuat uyumunun sağlanması;

• Yenilenebilir enerji kaynaklarından sağlanan enerji üretiminin artırılması;

• Avrupa Birliği’nin nükleer enerji mevzuatına uyum sağlanması ve

• Avrupa Birliği genelinde kurulu Trans-Avrupa Enerji Şebekesi’ne ortaklığın sağlanması.

Yukarıdaki öncelikler göz önune alınarak ortaya konan Ulusal Program’da elektrik enerjisi sektörüne yönelik çeşitli düzenlemeler öngörülmüştür. Bu öngörüler doğrultusunda yapılan düzenlemeler aşağıda maddeler halinde özetlenmiştir.

• Elektrik enerjisi piyasasında düzenleyici ve tam bağımsız bir otoritenin tesis edilmesi konusunda düzenleneyici ve denetleyici bir kurum olarak Enerji

- Sınır ötesi enerji ticareti konusunda ulusal elektrik sistemimizin Avrupa iletim sistemi ile paralel çalışabilir hale getirilmesi ve fiziksel enterkoneksiyon eksikliğinin giderilmesi gerekmektedir. Sınır ötesi ticaret kapsamında hedef Avrupa elektrik sisteminin çekirdeğini oluşturan Elektrik İletim Koordinasyon Birliği (Union for the Coordination of Transmission of Electricity- UCTE) bağlantısına geçilmesidir. Ulusal elektrik iletim şebekemizin 2006 yılında Yunanistan üzerinden UCTE’ye bağlanması için çalışmalar sürdürülmektedir.

- Rekabetçi bir elektrik piyasasının tesis edilmesi konusunda yasal altyapı 4628 sayılı kanunla oluşturulmuştur. Bu kanunla piyasa dikey olarak ayrılrılmış, rekabete uygun kurumlar oluşturulurken mevcut kurumlar da yeni yapıya göre düzenlenmiştir. Buna karşın tam rekabetin sağlanması için kamu şirketlerinin özelleştirilmeleri tamamlanması gerekmektedir. Ayrıca yeni piyasada faaliyet gösterecek şirketlerin lisanslama çalışmaları bitirilmeli;
piyasa oyuncularının sayısı artırılmalı; ana mevzuatı tamamlayacak ikincil yönetmelikler çıkarılabilecektir. Elektrik Piyasası Kanunu ile belirlenen serbest ve tam rekabetçi piyasaya geçiş aşamalarının 2007 yılında tamamlanacağı öngörülümektedir.

- Nükleer enerji konusunda ise ülkemizde nükleer tesislerin denetlenmesinden sorumlu düzenleyici yapı Türkiye Atom Enerjisi Kurumu’dur. Bu kurum AB komisyonu tüzüğü ile tam uyumlu olarak bir kısım yönetimmelik çıkarmıştır.
Ülkemizde nükleer enerji ile elektrik enerjisi üretimi konusu ise geniş katılımla hala tartışılmakta olan bir konudur [4, 27].

6.3 Enerji Sektörü Çerçevesinde İlerleme Raporları

6.3.1 1998 Yılı Dönemli Raporu

Raporda esas olarak enerji sektörü ile ilgili kaydedilen gelişmeler ele alınmış ve Türkiye’deki mevcut mevzuatın bir dökümunun çıkarılması gereği ortaya konmuştur. Enerji sektörünün esas olarak kamu şirketleri tarafından oluşturulduğu ve işletildiği; hükümetin elektrik enerjisinde özelleştirmeye yönelik Yİ ve YİD yatırım modelleri ile artan talebi karşılamaya çalıştığı ve bu dış finansman ile gerçekleştirilecek yatırımların sektörün dışa açılması kolaylaştırarak rekabeti arttıracağı belirtilmiştir. Raporda ayrıca Akkuyu’da kurulması planlanan nükleer santralin inşa planlarının onaylandığına ancak seçilen bölge yakından geçen fay hattına dikkat çekilmiş; strateji olarak sektördeki yasaların AB mevzuatı ile yakınlaştırılması için yeni düzenlemelerin yapılması şartı ortaya konmuştur [29].

6.3.2 1999 Yılı Dönemli Raporu

Raporda Türkiye’nin enerji politikası hedeflerinin arz güvenirliği, arz kaynaklarını çeşitlendirme, piyasa temelli işleyişe geçiş, çevresel koruma ve verimlilik olarak belirlendiği ve bu ülkelerin AB politikaları ile büyük ölçüde uyumlu olduğu belirtilmiştir. Türkiye’de bağımsız bir düzenleyici yapının kurulmasının düşünüldüğüne deffenen rapor, enerji verimliliği ve nükleer santral konusunda

6.3.3 2000 Yılı İlerleme Raporu

6.3.4 2001 Yılı Düzenli Raporu

6.3.5 2002 Yılı Düzenli Raporu

personel alımı ve bağımsız yapının sağlanması ile güçlendirmelidir. Sektördeki sübvanşıyonların ve elektrik ihracatındaki kısıtlamaların aşılması olarak kaldırılması önerilmiştir. Gerçekteştirilen yatırımlardan kaynaklanan maliyetlerin karşılanması ve elektrik üretim varlıklarının özelleştirilmesine önem verilmelidir [4, 33].

6.3.6 2003 Yılı Düzenli Raporu

Yenilenebilir enerji kaynakları konusunda 2002 yılında çıkaran lisanslama yönetimini önemli bir ilerleme olduğu kaydedilmiş ancak bunun için genel bir yenilenebilir enerji stratejisinin şekillenmesi vurgulanmıştır. Bu raporda strateji olarak ortaya konulan yol ise, üretilen elektrik maliyetine etkisi dolayısı ile dağıtım kayıplarının azaltılması, elektrik enerjisi ıthalat ve ihracatına yönelik sınırlamaların kaldırılması, gerçek rekabete geçişe ve genel olarak direkt genelinde müktesebata sağlanan uyumun uygulanmalarla güçlendirilmesi olmuştur. Ayrıca tartışmalı yapışlet-devret ve işletme hakkı devri sözleşmelerinin sorunlarının çözülmesi gerekliği ortaya konulmuştur [4, 34].

79
6.3.7 2004 Yılı Düzenli Raporu

2004 yılı Düzenli Raporu'ndaki enerji bölümü, güncel olması dolayıtıryla burada ayrıntılı olarak ele alınacak ve yapılan değerlendirilmeler aktarılacaktır.

Enerji iç pazarına fiziksel bütünleşme ve Türkiye ile Batı Avrupa elektrik enerjisi şebekelerinin senkron olarak çalışması için devam eden çalışmalarla gözlenen ilerlemeler kaydedilmiştir.
Türkiye’nin Aralık 2003’de, enerji iç pazarı için Enerji Direktifi’nde belirtilen ilkeler doğrultusunda, Güneydoğu Avrupa’da bölgesel bir elektrik ve gaz pazarı oluşturmayı hedefleyen Atina Zaptu’nu imzalamasına değinen raporda, bu zaptın ortak ülkeler arasında Güneydoğu Avrupa’da bir enerji topluluğu kurulmasını hedeflediği kaydedilmiştir.

Enerji verimliliği konusunda hükümetin kapsamlı bir strateji belgesi kabul ettiği deininmiş ancak yenilenebilir enerji kaynakları konusunda herhangi bir gelişme kaydedilemediği belirtilmiştir.

Raporun genel değerlendirme ve stratejiler bölümünde ise, Yüksek Planlama Kurulu’nun kabul ettiği son strateji belgesinin elektrik enerjisi sektöründe süreݱelen temel problemlerin çözülmesine imkân sağlayacağı ancak tam zamanında ve bütün olarak uygulanmaya konması gerekliliğinden bahsedilmiştir. Bu belge kapsamında mevcut hukuki çerçeveye uyarlanması gereken yap-ıslet-devret ve işletme hakkı devri modellerinden, sübvansiyonların aşamalı olarak kaldırılmasından, işletmeci şirketlerin mali disiplini ve özellikle elektrik faturalarının tahsil edilmeye oranında sağlanması gereken ciddi iyileştirmelerden bahsedilmiştir. Rekabetçi bir piyasanın tesis konusunda yeni idari veyasal tedbirlerin oluşturulması, sınır ötesi ticaretle ilgili kısıtlamaların kaldırılması, uzun vadeli enerji alımına yönelik anlaşmaların yeniden gözden geçirilmesi önerilmiştir.

Türkiye’nin Trans-Avrupa enerji ağlarına ilişkin yönlendirici ilkeler çerçevesinde, ortak çıkarlara hizmet eden projelerin geliştirilmesiyle, enerji alanında transit ülke olma konumunu güçlendirmesi tavsıye edilmektedir.

Elektrik, doğalgaz ve petrol piyasalarında yönelik düzenleyici kurum olan EPDK’nın idari kapasitesi ve kalifiye eleman sayısı arttırılması ve bu yapının güçlendirilmesi gerektiğini belirtildikten bu öne​rmeye sebep olarak düzenleyici kurumun temel görevi olan kamuya ait şebeke operatörleri olan TEİAŞ ve BOTAŞ’in faaliyetlerinin izlenmesi gösterilmiştir.

Enerji verimliliği konusunda bu alandaki tedbirlerin Enerji Bakanlığı’nın sorumluluğu altında, Ulusal Enerji Tasarruf Merkezi tarafından yürütüldüğü açıklanmıştır. Bu kurumun yeniden yapılandırılması ve enerji, inşaat, ulaştırma,
sanayi ve çevre dahil tüm ilgili sektörler arasında daha etkili yatay koordinasyonun sağlanması hedefiyle düzenlenmesi önerilmiştir.

Sonuç olarak Türkiye mütkebesebat uyumu bakımından çeşitli ilerlemeler sağlamış ve mevzuatın etkili biçimde uygulanması için çabalarını arttırmıştır. Bu gözlem AB komisyonu tarafından ilgili raporlarda belirtilmektedir. Ancak enerji politikasının AB politikaları ve enerji direktifi ile uyumu sınırlıdır ve yoğunlaştıran belirli konular hariç dengeli değildir. Sektörde tam öylelik öncesinde kapsamlı bir uyumun gerçekleştirilmesi için ilave çaba gösterilmelidir. Enerji piyasının birlik hedefleri doğrultusunda rekabetçi bir yapıya gösterilmesi için yeniden yapılanmaya devam edilmeli, özellikle uygulamaları teşvik edilmeli ve sektördeki kamu şirketleri önemlendirilmeli ve son olarak da piyasada fiyat kontrolü etkin ve adaletli bir şekilde sağlanmalıdır. Bu kapsamda yeniden yapılan enerji piyasası ile Türkiye dünya enerji arızının önemli bir bölümüne elinde tutan komşu ülkelerden Avrupa Birliği'ne giden petrol ve doğalgaz kaynaklarının ve rotalarının şekillendirilmesinde önemli bir rol oynayacaktır [33, 35].
7. 1985 – 2001 Döneminde Elektrik Enerjisine Yönelik Yatırımların İrdelemesi

<table>
<thead>
<tr>
<th>Yıllar</th>
<th>Kurulu Güç (MW)</th>
<th>Üretim Kapasitesi (Ortalama) (GWh)</th>
<th>Üretim Kapasitesi (Güvenenilir) (GWh)</th>
<th>Brüt Üretim (GWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>9.122</td>
<td>42.927</td>
<td>38.931</td>
<td>34.219</td>
</tr>
<tr>
<td>1986</td>
<td>10.115</td>
<td>48.803</td>
<td>44.811</td>
<td>39.495</td>
</tr>
<tr>
<td>1987</td>
<td>12.495</td>
<td>63.588</td>
<td>59.416</td>
<td>44.353</td>
</tr>
<tr>
<td>1988</td>
<td>14.521</td>
<td>68.806</td>
<td>64.028</td>
<td>48.049</td>
</tr>
<tr>
<td>1989</td>
<td>15.808</td>
<td>74.998</td>
<td>69.801</td>
<td>52.043</td>
</tr>
<tr>
<td>1990</td>
<td>16.318</td>
<td>81.628</td>
<td>76.301</td>
<td>57.544</td>
</tr>
<tr>
<td>1991</td>
<td>17.209</td>
<td>86.156</td>
<td>80.424</td>
<td>60.246</td>
</tr>
<tr>
<td>1992</td>
<td>18.716</td>
<td>93.470</td>
<td>86.956</td>
<td>67.342</td>
</tr>
<tr>
<td>1993</td>
<td>20.338</td>
<td>100.363</td>
<td>92.966</td>
<td>73.808</td>
</tr>
<tr>
<td>1994</td>
<td>20.860</td>
<td>103.360</td>
<td>95.516</td>
<td>78.322</td>
</tr>
<tr>
<td>1995</td>
<td>20.954</td>
<td>105.257</td>
<td>97.414</td>
<td>86.247</td>
</tr>
<tr>
<td>1996</td>
<td>21.249</td>
<td>106.519</td>
<td>98.395</td>
<td>94.862</td>
</tr>
<tr>
<td>1997</td>
<td>21.892</td>
<td>110.868</td>
<td>102.150</td>
<td>103.296</td>
</tr>
<tr>
<td>1998</td>
<td>23.354</td>
<td>120.147</td>
<td>108.566</td>
<td>111.022</td>
</tr>
<tr>
<td>2000</td>
<td>27.264</td>
<td>147.933</td>
<td>137.555</td>
<td>124.922</td>
</tr>
<tr>
<td>2001</td>
<td>28.332</td>
<td>154.176</td>
<td>143.251</td>
<td>122.725</td>
</tr>
</tbody>
</table>
Tablo 7.1'de inceleme dönemi boyunca Türkiye elektrik enerjisi kurulu gücü ve bu kurulu gücün kullanımı ile elde edilen üretim kapasiteleri verilmiştir.

Bu karşılaştırma sonucu, mevcut kapasitenin verimli kullanımı ile yaratılabilecek ek kapasite göz önüne alındığında, elektrik enerjisi talebinin bir kısmının, yeni yatırımlar ile değil mevcut kapasitenin daha verimli kullanılması ile elde edilebilir olduğu görülmektedir. Karşılaştırma yapılarak mevcut talebin %20’si oranında bir yedek kapasite öngörülmiştır. Saptanan yedek kapasite TEİAŞ’ın öngördüğü ortalama yedek kapasite değerinin en yüksekliğidir.

<table>
<thead>
<tr>
<th>Yıllar</th>
<th>Brüt Üretim (GWh)</th>
<th>Kuruğu Güç (MW)</th>
<th>Saatlik Puant (MW)</th>
<th>Teorik Çalışma Saati</th>
<th>Faydalama Faktörü (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>23.275</td>
<td>5.119</td>
<td>4.023</td>
<td>5.786</td>
<td>79</td>
</tr>
<tr>
<td>1981</td>
<td>24.673</td>
<td>5.538</td>
<td>4.158</td>
<td>5.934</td>
<td>75</td>
</tr>
<tr>
<td>1982</td>
<td>26.552</td>
<td>6.639</td>
<td>4.600</td>
<td>5.772</td>
<td>69</td>
</tr>
<tr>
<td>1983</td>
<td>27.347</td>
<td>6.935</td>
<td>4.734</td>
<td>5.777</td>
<td>68</td>
</tr>
<tr>
<td>1984</td>
<td>30.614</td>
<td>8.462</td>
<td>5.509</td>
<td>5.557</td>
<td>65</td>
</tr>
<tr>
<td>1985</td>
<td>34.219</td>
<td>9.122</td>
<td>5.739</td>
<td>5.963</td>
<td>63</td>
</tr>
<tr>
<td>1986</td>
<td>39.495</td>
<td>10.115</td>
<td>6.440</td>
<td>6.133</td>
<td>64</td>
</tr>
<tr>
<td>1987</td>
<td>44.353</td>
<td>12.495</td>
<td>7.412</td>
<td>5.984</td>
<td>59</td>
</tr>
<tr>
<td>1989</td>
<td>52.043</td>
<td>15.808</td>
<td>8.499</td>
<td>6.123</td>
<td>54</td>
</tr>
<tr>
<td>1991</td>
<td>60.246</td>
<td>17.209</td>
<td>9.903</td>
<td>6.084</td>
<td>58</td>
</tr>
<tr>
<td>1993</td>
<td>73.808</td>
<td>20.338</td>
<td>11.819</td>
<td>6.245</td>
<td>58</td>
</tr>
<tr>
<td>1994</td>
<td>78.322</td>
<td>20.860</td>
<td>12.495</td>
<td>6.268</td>
<td>60</td>
</tr>
<tr>
<td>1995</td>
<td>86.247</td>
<td>20.954</td>
<td>13.876</td>
<td>6.216</td>
<td>66</td>
</tr>
<tr>
<td>1996</td>
<td>94.862</td>
<td>21.249</td>
<td>15.185</td>
<td>6.247</td>
<td>71</td>
</tr>
<tr>
<td>1998</td>
<td>111.022</td>
<td>23.354</td>
<td>17.614</td>
<td>6.303</td>
<td>75</td>
</tr>
<tr>
<td>2000</td>
<td>124.922</td>
<td>27.264</td>
<td>19.405</td>
<td>6.438</td>
<td>71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yıllar</th>
<th>Teorik Çalışma Saati</th>
<th>Gerçekleşen Çalışma Saati</th>
<th>Çalışma Saati Farkı</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>5.963</td>
<td>4.706</td>
<td>1.256</td>
</tr>
<tr>
<td>1986</td>
<td>6.133</td>
<td>4.825</td>
<td>1.308</td>
</tr>
<tr>
<td>1987</td>
<td>5.984</td>
<td>5.089</td>
<td>995</td>
</tr>
<tr>
<td>1988</td>
<td>6.311</td>
<td>4.739</td>
<td>1.573</td>
</tr>
<tr>
<td>1989</td>
<td>6.123</td>
<td>4.744</td>
<td>1.379</td>
</tr>
<tr>
<td>1990</td>
<td>6.354</td>
<td>5.002</td>
<td>1.352</td>
</tr>
<tr>
<td>1991</td>
<td>6.084</td>
<td>5.006</td>
<td>1.077</td>
</tr>
<tr>
<td>1992</td>
<td>6.136</td>
<td>4.994</td>
<td>1.142</td>
</tr>
<tr>
<td>1993</td>
<td>6.245</td>
<td>4.935</td>
<td>1.310</td>
</tr>
<tr>
<td>1994</td>
<td>6.268</td>
<td>4.955</td>
<td>1.313</td>
</tr>
<tr>
<td>1995</td>
<td>6.216</td>
<td>5.023</td>
<td>1.192</td>
</tr>
<tr>
<td>1996</td>
<td>6.247</td>
<td>5.013</td>
<td>1.234</td>
</tr>
<tr>
<td>1997</td>
<td>6.161</td>
<td>5.064</td>
<td>1.097</td>
</tr>
<tr>
<td>1998</td>
<td>6.303</td>
<td>5.145</td>
<td>1.158</td>
</tr>
<tr>
<td>1999</td>
<td>6.143</td>
<td>4.142</td>
<td>2.002</td>
</tr>
<tr>
<td>2000</td>
<td>6.438</td>
<td>5.426</td>
<td>1.012</td>
</tr>
<tr>
<td>2001</td>
<td>6.324</td>
<td>5.442</td>
<td>882</td>
</tr>
</tbody>
</table>

Ayrıca Şekil 7.1’de Türkiye kurulu gücünün yıllara dayalı grafiği verilmiştir.

![Şekil 7.2: Yıllar İtibarıyla Brüt Üretim, Net Üretim ve Kayıp Kaçak Değerleri Grafiği](image)

İnceleme döneminde Tablo 7.4’de verilen brüt üretim yılara göre şirketlere dağılımı incelendiğinde 1984 yılı ile başlayan farklı finansman modelleri arayışı ve bu modeller kullanılarak yapılan yatırımların toplam elektrik enerjisi üretimindeki payı görülmektedir. Bu dönemde yapılan yatırımların devreye alınmasını takiben EÜAŞ ve bağlı ortaklıkları hariç diğer şirketlerin toplam üretimdeki paylarının 1997 yılından itibaren arttığı ve 2002 yılı itibari ile toplam üretimin %15’ine ulaştığı görülmektedir. 1997 yılı sonrasıda kamu şirketi olan EÜAŞ’un üretimdeki payı %86’dan %46’ya gerilerken, finansman modelleri ile oluşturulan üretim şirketleri, ayrıcalıklı şirketler, işletme hakkı devirleri, otoproduktör ve mobil santrallerin payı %14’den %40’a yükselmiştir [19].
<table>
<thead>
<tr>
<th>Yıllar</th>
<th>EÜAŞ (GWh)</th>
<th>EÜAŞ'ın Bağlı Ortaklıklar (GWh)</th>
<th>Özelleştirme Kapasmasına Alınan Santrallar (GWh)</th>
<th>Ayrıntılı Şirketler (GWh)</th>
<th>Üretim Şirketleri (GWh)</th>
<th>Otoproduktörler (GWh)</th>
<th>Mobil Santrallar (GWh)</th>
<th>IHD (GWh)</th>
<th>Toplam (GWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>19.415</td>
<td></td>
<td></td>
<td>1.610</td>
<td>2.189</td>
<td>23.275</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>20.588</td>
<td></td>
<td></td>
<td>1.938</td>
<td>2.085</td>
<td>24.673</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>23.243</td>
<td></td>
<td></td>
<td>1.590</td>
<td>1.659</td>
<td>26.552</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>23.689</td>
<td></td>
<td></td>
<td>1.618</td>
<td>1.999</td>
<td>27.347</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>30.249</td>
<td></td>
<td></td>
<td>1.592</td>
<td>2.378</td>
<td>34.219</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>35.470</td>
<td></td>
<td></td>
<td>1.454</td>
<td>2.771</td>
<td>39.695</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>39.679</td>
<td></td>
<td></td>
<td>1.592</td>
<td>3.082</td>
<td>44.353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>43.014</td>
<td></td>
<td></td>
<td>1.858</td>
<td>3.177</td>
<td>48.049</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>47.454</td>
<td></td>
<td></td>
<td>1.317</td>
<td>5</td>
<td>52.043</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>52.854</td>
<td></td>
<td></td>
<td>1.305</td>
<td>23</td>
<td>57.543</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>55.461</td>
<td></td>
<td></td>
<td>1.370</td>
<td>47</td>
<td>60.246</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>61.533</td>
<td></td>
<td></td>
<td>2.015</td>
<td>67</td>
<td>67.342</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>67.100</td>
<td></td>
<td></td>
<td>2.467</td>
<td>69</td>
<td>73.808</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>71.943</td>
<td></td>
<td></td>
<td>1.686</td>
<td>74</td>
<td>78.322</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>71.544</td>
<td>6.651</td>
<td></td>
<td>2.301</td>
<td>126</td>
<td>86.247</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>69.124</td>
<td>16.291</td>
<td></td>
<td>2.908</td>
<td>469</td>
<td>94.862</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>72.487</td>
<td>18.432</td>
<td></td>
<td>2.214</td>
<td>2.409</td>
<td>103.296</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>78.581</td>
<td>17.494</td>
<td></td>
<td>2.299</td>
<td>2.517</td>
<td>111.022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>74.402</td>
<td>17.911</td>
<td></td>
<td>2.169</td>
<td>9.224</td>
<td>121.240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>73.942</td>
<td>19.292</td>
<td></td>
<td>1.903</td>
<td>12.039</td>
<td>124.922</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>67.469</td>
<td>18.894</td>
<td></td>
<td>1.346</td>
<td>13.279</td>
<td>122.725</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>60.075</td>
<td>17.257</td>
<td></td>
<td>4.507</td>
<td>19.700</td>
<td>129.400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>52.170</td>
<td>8.337</td>
<td>2.591</td>
<td>2.021</td>
<td>45.461</td>
<td>140.581</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TEAŞ’ın işletme faaliyetleri raporuna göre, 2002 yılında ülke toplam üretim geçmiş yıla göre %5,1 artışken, EÜAŞ termik ve hidrolik santrallarının toplam üretimi %10,9 azalmıştır. Bağlı ortaklıkların santrallarında yaşanan %8,7 azalma da dikkate alındığında, kamu elindeki üretim tesislerinin bir önceki yıla göre %19,6 oranında azalan üretim yaptıkları ortaya çıkmaktadır.

Türkiye brüt elektrik enerjisi üretiminde kullanılan birincil enerji kaynakları ve üretim içindeki yüzdeleri ve kurulu gücün elektrik enerjisi üretiminde kullanılan birincil enerji kaynaklarına göre dağılımı 1985’den günümüze incelediğinde ise Tablo 7.5 ve Şekil 7.3’de verilen değerler görülmektedir.

<table>
<thead>
<tr>
<th>Yıllar</th>
<th>Termik (GWh)</th>
<th>Doğalgaz (GWh)</th>
<th>Hidrolik (GWh)</th>
<th>Diğer (GWh)</th>
<th>Toplam (GWh)</th>
<th>Termik %</th>
<th>Doğalgaz %</th>
<th>Hidrolik %</th>
<th>Diğer %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>17.165</td>
<td>-</td>
<td>13.426</td>
<td>22</td>
<td>30.614</td>
<td>56,1</td>
<td>0,0</td>
<td>43,9</td>
<td>0,1</td>
</tr>
<tr>
<td>1986</td>
<td>22.110</td>
<td>58</td>
<td>12.045</td>
<td>6</td>
<td>34.219</td>
<td>64,6</td>
<td>0,2</td>
<td>35,2</td>
<td>0,0</td>
</tr>
<tr>
<td>1987</td>
<td>26.438</td>
<td>13.41</td>
<td>11.873</td>
<td>44</td>
<td>39.695</td>
<td>66,6</td>
<td>3,4</td>
<td>29,9</td>
<td>0,1</td>
</tr>
<tr>
<td>1988</td>
<td>23.149</td>
<td>25.28</td>
<td>18.618</td>
<td>58</td>
<td>44.353</td>
<td>52,2</td>
<td>5,7</td>
<td>42,0</td>
<td>0,1</td>
</tr>
<tr>
<td>1989</td>
<td>15.791</td>
<td>32.40</td>
<td>28.950</td>
<td>68</td>
<td>48.049</td>
<td>32,9</td>
<td>6,7</td>
<td>60,3</td>
<td>0,1</td>
</tr>
<tr>
<td>1990</td>
<td>24.517</td>
<td>95.24</td>
<td>17.940</td>
<td>63</td>
<td>52.043</td>
<td>47,1</td>
<td>18,3</td>
<td>34,5</td>
<td>0,1</td>
</tr>
<tr>
<td>1991</td>
<td>24.123</td>
<td>10.192</td>
<td>23.148</td>
<td>80</td>
<td>57.543</td>
<td>41,9</td>
<td>17,7</td>
<td>40,2</td>
<td>0,1</td>
</tr>
<tr>
<td>1992</td>
<td>24.855</td>
<td>12.589</td>
<td>22.683</td>
<td>120</td>
<td>60.246</td>
<td>41,3</td>
<td>20,9</td>
<td>37,7</td>
<td>0,2</td>
</tr>
<tr>
<td>1993</td>
<td>29.844</td>
<td>10.814</td>
<td>26.568</td>
<td>117</td>
<td>67.342</td>
<td>44,3</td>
<td>16,1</td>
<td>39,5</td>
<td>0,2</td>
</tr>
<tr>
<td>1994</td>
<td>28.934</td>
<td>10.788</td>
<td>33.951</td>
<td>134</td>
<td>73.808</td>
<td>39,2</td>
<td>14,6</td>
<td>46,0</td>
<td>0,2</td>
</tr>
<tr>
<td>1995</td>
<td>33.784</td>
<td>13.822</td>
<td>30.586</td>
<td>130</td>
<td>78.322</td>
<td>43,1</td>
<td>17,6</td>
<td>39,1</td>
<td>0,2</td>
</tr>
<tr>
<td>1996</td>
<td>33.819</td>
<td>16.579</td>
<td>35.541</td>
<td>308</td>
<td>86.247</td>
<td>39,2</td>
<td>19,2</td>
<td>41,2</td>
<td>0,4</td>
</tr>
<tr>
<td>1997</td>
<td>36.953</td>
<td>17.174</td>
<td>40.475</td>
<td>259</td>
<td>94.952</td>
<td>39,0</td>
<td>18,1</td>
<td>42,7</td>
<td>0,3</td>
</tr>
<tr>
<td>1998</td>
<td>41.017</td>
<td>22.086</td>
<td>39.816</td>
<td>377</td>
<td>103.296</td>
<td>39,7</td>
<td>21,4</td>
<td>38,5</td>
<td>0,4</td>
</tr>
<tr>
<td>1999</td>
<td>43.611</td>
<td>24.838</td>
<td>42.229</td>
<td>345</td>
<td>111.022</td>
<td>39,3</td>
<td>22,4</td>
<td>38,0</td>
<td>0,3</td>
</tr>
<tr>
<td>2000</td>
<td>45.110</td>
<td>36.346</td>
<td>34.678</td>
<td>306</td>
<td>116.440</td>
<td>38,7</td>
<td>31,2</td>
<td>29,8</td>
<td>0,3</td>
</tr>
<tr>
<td>2001</td>
<td>47.497</td>
<td>46.217</td>
<td>30.879</td>
<td>329</td>
<td>124.922</td>
<td>38,0</td>
<td>37,0</td>
<td>24,7</td>
<td>0,3</td>
</tr>
</tbody>
</table>
Şekil 7.3: Yıllar itibarıyla Kurulu Gücün Birincil Enerji Kaynakları Cinsinden Dağılımı

Bu dönemde, birincil enerji kaynaklarının kullanımını kapsamında değerlendirildiğinde aşağıdaki sonuçlar elde edilebilir:

- Ulusal ve yenilenebilir bir kaynak olarak değerlendirilen hidrolik potansiyelin 1970’li yıllarda kurulu gücün %40’ını karşılamamasına rağmen son yıllarda üretimdeki payı %25’lere düşmüştür.

Enerji ihtiyacının karşılanması konusunda istikrarlı olarak oranını koruyan kömür önemli bir arz kaynağıdır. Ülkemizde yerli bir enerji kaynağı olarak değerlendirilen linyit kömürünün ısı değeri düşük ve kükürt içeriği yüksektir. İlerleyen süreçte çevre
koruma normları ve özellikle Kyoto Protokolü gibi karbon emisyonunun sınırlandırma çalışmalarının kömürün üretimdeki yüzdesini düşüreceği varsayılmaktadır. Mevcut tesisler ise başka gazı kükürt giderme tesisleri ve yeni teknolojiler ile sürdürülebilir olacaktır.
8. UZUN DÖNEM YATIRIM PLANLAMA STRATEJILERI VE TÜRKYE İÇİN ÖNGÖRÜLEN TEMEL SENARYOLAR

8.1 Uzun Dönem Yatırım Planlama Stratejileri

8.2 Senaryo Temelli Planlama

Senaryo planlama, geleceğin çeşitli sebeplerle belirsizlik arz ettiği durumlarda stratejiler ve bu stratejilerin test edilebileceği olması gelecek senaryoları yaratmayı hedefleyen bir yöntemdir. Tarihi gelişimlere bakılabacak olursa, senaryoların İkinci Dünya Savaşı'ndan sonra askeri strateji geliştirme amacıyla ortaya çıktığı söylenebilir. Ancak daha sonra senaryo planlama Royal Dutch Shell şirketi gibi
çokuluslu şirketler tarafından, şirketlerin stratejik karar alma aşamalarında yol gösterici olması maksadiyla kullanılmaya başlanmıştır. 1970’lerde şirketlerin özellikle petrol krizlerini atlatmanın yollarını bulmak için uyguladığı senaryo planlama, geçtiğimiz 15 yıl içerisinde hükümetler ve bakanlıklar tarafından araştırmadan halk sağlığına, şehir planlamadan, ulaşım ve enerji altyapısına kadar kamuusal hayatın her alanında yaygın şekilde faydalanılan bir araç haline gelmiştir [37].

Senaryoların en temel koşullarından biri geleceğin nasıl şekilleneceğini tutarlı, mantıklı ve makul bir şekilde kurgulamalarıdır. Ayrıca senaryo belir bir problemi çok yönlü bir şekilde ele almalı; söz konusu problemi etkileyebilecek kısa ve uzun vadeli olayları birlikte değerlendirebilmeli ve o alandaki genel eğilimler kadar olası eğitim sapmalarını da göz önünde bulundurmalıdır.

Küresel enerji pazarı göz önüne alınduğunda burada yatırım yapacak özel şirketlerin veya yatırım planlarını yapmak ile yükümlü kamu kurum ve kuruluşların, söz konusu büyük yatırım maliyetleri ve yıllar süren yatırım gerçekleşirme süreleri düşünüldüğünde geleceğin daha bilinir biracak teknikler ve gelecek ile ilgili sistematik bir düşünceye şekilde ihtiyaçları olduğu açıklıdır. Gelecek üzerinde etkisi tartışılmaz kararların bugün vermek ve bu kararlar çerçevesinde oluşan stratejileri uygulamaya koymak zorunda olan bu oyunları senaryo planlamadan yararlanırlar. İlerleyen bölümlerde senaryo planlanmanın temelleri, senaryo planlanmanın kullanım şekilleri ve bu teknliğin avantaj ve dezavantajları açıklanacaktır.

8.2.1 Senaryo Planlanmanın Temelleri

Senaryo planlanmanın 3 temel presbesi vardır. Bunlar; sistemler düşünceesi, serbest gelecek düşünceesi, ve stratejik düşünce olarak adlandırılabilir.

- Sistemler yaklaşıması: Senaryo planlama, girişimciligin önemli özellikleri olan çok yönülü ve dinamizmi göz önünde bulundurmalıdır, çünkü bireysel alanları ve o alanları etkileyen faktörleri ayrı ayrı ele alan geleneksel işletme yaklaşımları yanılmaya mahkumudur.

- Gelecekteki belirsizlik ve riskler: Senaryo planlama geleceğin bilinebilir olmadığı ve gelecek için bugünden bir şeyler yapmanın gerekliliği üzerine

93
hareket eder. Tahmin edilebilir, tek bir gelecek olmadığını kabulünden yola çıkarak, belir bir geleceğin tahminini yapmak yerine, olası gelecekleri tasvir etmeyi amaçlar.

- Stratejik yönetim: İkinci Dünya Savaşı'nı izleyen ekonomik buhran ve 1970'li yılların petrol krizleri o zamana kadar alışlaglanmış olan devamlılık ve yanının tahmin edilebilirliği fikrine son vermiştir. Böylelikle işletmelerin kısa vadeli kar maksimizasyonu derdi yerini gerekliklerin yaratılması ve korunmasına bırakmıştır. Dolayısıyla stratejik düşünce karmaşık ve çalkantılı bir ortamda başarılı olmak için birincil şart haline gelmiştir [38].

Prensipleri bu şekilde tanımlanabileceği senaryo planlamada genel olarak izlenmesi gereken adımlar şunlardır:

- Sorunun tanımlanması;
- Sorunu belir bir süre boyunca etkileyecek olan önceden belirlenmiş ve belirsiz öğelerin değerlendirilmesi;
- Bu öğelerin dikkate alınarak çeşitli seçenekler ve senaryoların geliştirilmesi;
- Senaryoların kurumsal stratejiler dikkate alınarak test edilmesi ve
- Oluşturulan senaryoların gerçekleşmesi halinde hazırlıklı olmak adına bugün ile senaryonun sunduğu gelecek arasındaki zamanın planlanması.

Böylelikle belirlenen bir senaryo, bilim adamları ve kurumsal politika analistlerinin geleceğeri etkileyen ve şekillendiren faktörleri tanımlamalarına, bu faktörler arasındaki dinamik ilişkileri ve hangi değişkenin ne derece önemli olduğunu belirlemelerine yardımcı olup, ileride özellikle çevre ve enerji alanlarında karşılaşılmış olası belirsizliklerin daha sistematik bir şekilde karşılanmasına olanak tanıyacaktır [38].

8.2.2 Senaryo Planlanmanın Çeşitleri

Planlanma stratejilerine göre, senaryolar tanımsal ve normatif olarak ikiye ayrılabılır. Tanımsal senaryolar bir dizi durumun olası sonuçlarını ve bu sonuçların stratejik
karar alma açısından nasıl etkileri olabileceğini analiz ederken; normatif senaryolar ise daha önceden şekillendirilmiş, gerçekleşmesi istenen bir geleceğe nasıl ulaşılabileceğini araştırmır. İstenen gelecek ana hatlarıyla belirlendikten sonra, bu çerçeveden yola çıkılarak geriye doğru bakım suretiyle şu andan itibaren o geleceğe ulaşılabilir için hangi noktalarda nelerin düzeltildiği gerektiği saptanır. Kısacası, tanımsal senaryolar öngörüde bulunarak olacakları tahmin etmeye çalışırken; normatif senaryolar "geri-görü" usulüyle yapılması gerekenleri ortaya çıkarmaya çıkarır [37].

Senaryoların ayırt edici diğer bir özelliği nicel veya nitel olmalardır. Nitel senaryolar gelecek konuşundaki tahminleri şekillerden veya benzer araçlardan yardımcı almadan yaparken; nicel senaryolar önemli göstergelerin ve değişkenlerin sayısal açıklamasında da bulunur. Nicel senaryolar genellikle bir model aracılığıyla ifade edilir. Modellemenin temelinde yatan, değişkenler arasındaki neden-sonuç ilişkisini inceleyen teorilerdir. Matematiksel ve istatistiksel modeller uzun vadeli senaryo analizlerinde araçlar olarak kullanılmaktadır [38].

8.2.3 Senaryo Planlamının Avantajları ve Dezavantajları

Senaryo planlamının önemli özelliklerinden biri sosyal, ekonomik, teknolojik, kültürel ve demografik boyutları bir araya getirebilen tamamlayıcı ve birleştirici bir yöntem olmasıdır. Ancak böylesine çok yönlü bir sistemın başarısı da, uygulamanın
niteliği, değişkenlik unsuru, problemin büyüklüğü, konuya ilgilenenlerin yetenekleri ve kullanılan kaynaklar gibi bir dizi etmene bağlıdır. Dolayısıyla doğru uygulandığında başka yöntemlerle elde edilemeyecek öngörüler üretilmesini sağlayan senaryo planlanmanın, aynı zamanda bir takım yanlisamaları da yol açması da olabilir. Diğer bir değişikle nasıl uygulandığına göre bir takım avantajlar veya dezavantajlar sağlanabilir.

Senaryo planlama strateji üretilmesi ve üretilen stratejilerin test edilmesi için etkili bir tekniktir. Söz gelimi, başarılı olup olmadığı ancak on yıllar sonra değerlendirilebilecek milyonlarda dolarlık bir yatırım kararının verilmesi önceden belirlenmiş pek çok faktöre bağlı olduğu gibi bir o kadar da değişken veya belirsiz etmenlerle ilgilidir. Dolayısıyla senaryo planlama, özellikle içinde bulunulan ortamdaki kesin ve değişken güçlerin geleceği nasıl etkileyebilğini belirlemeye karar verici mekanizmalarla fikir vererek, bu cins bir kararnın daha sağlıklı ve bilinci alınmasına yardımcı olacaktır.

Senaryo planlama olası pek çok gelecek seçeneği arasında yalnızca bir kaç taneyi oluşturabileceğidir, planlamaların diğer ihlalleri göz ardı etme derecesinde bu seçenekler üzerine yoğunlaşmayı riskini taşırlar. Diğer bir deyişle, senaryo planlama, yaratılan senaryolardan birinin veya bircaçının gerçekmiş gibi algılanmasına yol açacak bir kör nokta yaratabilir.

Senaryo planlanmanın diğer bir dezavantajı deneySEL bilgilere sahip küçük bir kesim yaratırken, bu bilgilerin organizasyonun geri kalana yeteri kadar iletilmesmesine sebep olabildir. Bu durum, senaryo planlanmanın, bir organizasyon ve kurumsal yapının genellikle küçük bir kesimi tarafından yapıtılmaktadır. Eğer planlamalar ve karar alıcılar arasında iyi bir iletişim yoksa senaryo planlama maksimum kaynak tüketerek minimum etki sağlayan bir sistem haline dönüsecektir [38].

8.3 Türkiye için Öngörülen Temel Senaryolar

Bu bölümde, 2025 yılı perspektifinde ülkemizin iç koşulları ve küresel ölçüde yaşanması muhtemel durumlar üzerinden çeşitli 2025 senaryoları üretiltecektir. Bu senaryolar, elektrik enerjisi talep tahmini için birincil girdiıyor oluşturacak ekonomik
kalkınma parametresi, üzerinden farklı tahminler yapılması amacıyla kullanılabilecektir. Elektrik enerjisi sektörü ülkenin genel ekonomik yapısından ayrılmayacak olduğuundan ve günümüz dünyasında ekonomik yapının siyasal yönlendirme ve etkilenmelere açık olduğu tartışmaz olduğuundan değerlendirme mimarı büyük bir kısmını siyasal süreç öngörülenine dayandırılmıştır. Ayrıca bu değerlendirmeler, temel olarak Türkiye'nin Avrupa Birliği'ne tam üyeliği perspektifinde yapılmıştır.

2005 yılından bakıldığında takdirde, Türkiye'nin önündeki 20 yıllık süreçte en büyük siyasal değişken AB ile ilişkileri ve AB üyeliğin sürecinin nasıl sonuçlanacağı sorusudur. Türkiye'nin birlik üyeliği için siyasi ve sosyal yükümlülükleri göz önüne alındığında bu parametrelerin ne denli etkili olacağı görülmektedir.

Avrupa Birliği'ne aday ülke olarak Türkiye'nin önündeki süreç 2004 yılı AB Komisyonu'nun Türkiye'nin Katılım Doğru İlerleyişine İlişkin Tavsiye Raporu'nda şu ifade ile özetlenmiştir: "Türkiye'nin AB üyeliğinin hem Türkiye hem de AB açısından güçlükleri bulunmaktadır. Türkiye'nin üyelik perspektifinden kaynaklanan değerlendirmeler, üyelik için gerekli hazırlıkların önüne geçmekle 10 yıla yayılacağını ortaya koymaktadır [35]."

8.3.1 Senaryo A

Bu senaryoda Türkiye'nin planladığı gibi 2015 yılında Kopenhag ve Maastricht ölçütleri doğrultusunda koymuş olduğu siyasal ve ekonomik hedefleri yerine getirmesi, ve böylelikle Katılım Ortaklığı Belgesi ve Ulusal Program'da belirtilen gelişmeleri tamamlayarak Avrupa Birliği'ne tam üye olması öngörülmüştür. Bu saptamanın ekonomiye yansıması müzkere süreci ve sonrasında yaşanan sürdürülebilir kalkınma ve yüksek büyüme rakamlarıdır. Türkiye uyum yasaları ile sosyal hak ve özgürlükleri garanti altında alırken diğer yandan dış yatırım için istenen istikrarlı yapıya sahip olacaktır. Aynı zamanda AB ticaret hukukunun uygulanması ile ülkeye dış yatırım çekilmesi konusunda ilerleme kaydedilecektir. Dış yatırımların ve aynı kapsamında algılanan özelleştirmelerin gerçekleşmesi için istenen hukuksal
altyapı tamamlanacak ve ülkeye dışardan duyulan güven artacaktır. Yabancı sermaye yatırımları artacak ve liberal ekonominin gereği olarak kamu şirketlerinin özelleştirilmesi tamamlanacaktır. Bu süreç kapsamında Avrupa Birliği ile tam üyelik perspektifi ve çalışmaların sürmesi ile Avrupa Birliği Türkiye’yi mevcut ve aday ülkelerle taahhüt ettiği fonlarla destekleyecektir.

Bu senaryo kapsamında öngörülen elektrik sektörü yapılanması ile AB Enerji Şartı ve Elektrik Direktifi’ne uygun olarak düzenlenen Enerji Piyasası Kanunu’nun tam olarak uygulanmasıdır. Daha önceki bölümlerde açıklanan bu düzenlemelerle elektrik enerjisi piyasasının yatay örgütlenmesi tamamlanacak, TEİAŞ gözetiminde tam rekabetçi, kamu bütçesine yatırım yükü getirmeyen, liberal bir elektrik enerjisi piyasa yapısı tesis edilecektir.

8.3.2 Senaryo B

İkincı durumda ise AB kapsamında güncel olarak yaşanan Anayasa süreci ve bu kapsamda birliğin, Türkiye’nin üyeliği ile ilgili tartışmaları, günümüzden başlayarak, yoğun olarak sürdürümesi göz önüne alınabilir. Bu kapsamda önmüzdeki birkaç yıl içerisinde Türkiye’nin tam üyeliğine karşı Avrupa Birliği’nin çekirdeğini oluştur

8.3.3 Senaryo C

Bu senaryo kapsamında Türkiye’nin günümüzdeki tartışmalı konumunu koruduğu durum göz önune alınacaktır. Tam üyelik perspektifi tam olarak ortadan kalkmamış ama ilişkilerde herhangi bir istikrar sağlanamamıştır. Avrupa Birliğinin anayasa tartışmaları sonrasında yeniden yapılması içine girdiği bu dönemde birlik genişleme politikasından vazgeçmemekle birlikte, var olan genişleme çabalarını belirir bir tarihe ertelemiş durumdadır. AB kurumunun, küreselleşen dünyada siyasi ve hatta askeri destekten mahrum bir ekonomik güç olarak devam edemeyeceği düşünüldüğünde, bu dönemde, yeni bir Avrupa tanımlaması ve kurumun gerçekle ve içerikte ne olduğunun tekrar belirlenmesi ile geçecektir. Bütünleşmenin son aşaması olarak gelen siyasal birleşmenin sağlanmadan işsizlik kaygısı ve kültürel gerekçelerle birliğe yeni üye kabulü hakkında olumlu ya da olumuz bir karar verileyecektir. Ayrıca mevcut kazanımlar, edinilmiş gereken kimlik ve geleceğe dair hesaplar, mevcut 25 üyeli yapıda devam etmesi seçilecektir. Bu dönemde,

Bu gelişmeler işışında elektrik piyasının durumu ise B senaryosunda olduğu gibi kamunun piyasa içerisindeki en güçlü oyuncu olma konumunun güçlendirerek sürmesidir.

Yukarıda bahsedilen dört senaryonun elektrik enerjisi talebine yansıtılmış amaçyla Gayri Safi Yurtiçi Hasıla (GSYİH)'daki yıllık artış öngörüleri, planlama periyodundaki 5' er yıllık dönemler için Tablo 8.1'de verilmiştir.

Tablo 8.1: Türkiye İçin Öngörülen Temel Senaryolar için GSYİH Yıllık Artış Hızları

<table>
<thead>
<tr>
<th>Yıllar</th>
<th>Senaryo A</th>
<th>Senaryo B1</th>
<th>Senaryo B2</th>
<th>Senaryo C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006 – 2010</td>
<td>%66</td>
<td>%66</td>
<td>%2</td>
<td>%2,8</td>
</tr>
<tr>
<td>2011 – 2015</td>
<td>%65</td>
<td>%55</td>
<td>%1</td>
<td>%2,8</td>
</tr>
<tr>
<td>2016 – 2020</td>
<td>%67</td>
<td>%63</td>
<td>%2</td>
<td>%2,8</td>
</tr>
<tr>
<td>2021 – 2025</td>
<td>%66</td>
<td>%62</td>
<td>%3</td>
<td>%2,8</td>
</tr>
</tbody>
</table>
9. UZUN DÖNEM TÜRKİYE ELEKTRİK ENERJİSİ TALEP TAHMİNİ VE KURULU GÜÇ GEREKSİNİMİ

Elektrik enerjisi söz konusu olduğunda sistemin sürekli olarak üretici ve tüketicilerin zarar görmeyeceği bir yapıda işleyişi için arz-talep dengesi kavramı çok önemlidir. Elektriğin talep edildiğinde arz edilmesi gerekliliği dolayısıyla, elektrik enerjisi sektörünün düzenlenmesinde en önemli görev uzun dönemde elektrik yük talebinin belirlenmesidir.

Ülkenin elektrik enerjisi gereksinimini karşılamada bir diğer gereklilik, belirlenen ihtiyaçaya yönelik olarak arz politikalarının oluşturularak uzun dönem enerji yatırımların planlarının yapılmasınıdır. Bu planıların amacı elektrik enerjisi talebinin güvendiği bir şekilde karşılanması için yeni kurulacak üretim tesislerinin zamanlanması, miktarı ve kompozisyonu hakkında karar vericilere, yatırımcılara ve tüm piyasa oyuncularına yol göstermektedir. Eksik veya fazla kapasitenin ekonomik maliyeti çok fazla olduğundan, uzun dönemde arz güvenliğinin sağlanabilmesi için tahmin edilen elektrik enerjisi talebinin nasıl karşılanacağı zamanında belirlenmesi gerekmektedir. Üretim tesisleri için gereken yatırımların süresinin uzunluğu, yatırımların zamanında ve ihtiyaçına cevap verebilecek miktar ve tıpte olması arz güvendiği açısından önemlidir. Baz veya puant yük ihtiyaçına göre santralların tesisi, ülkenin enerji politikaları da göz önüne alınarak belirlenmelidir. Ülke politikalarının mali kistasları ve birincil kaynakların yerli veya yabancı kaynaklardan temin politikaları yanında kurulacak tesislerin mevcut enternoneksi şebekeye uyumlu olması da gözetilmesi gereken bir husustur.

Yük tahminleri genel olarak üç grupta toplanmaktadır:

- Kısa Dönem Yük Tahminleri: Yarım saat ile bir aylık zaman dilimlerinde yapılan bu tahminler, elektrik üretim tesislerinde ünitelerin devreye girip çıkma zamanlarını belirlemek için kullanılır. En önemli kullanımı günlük yük
9.1 Türkiye’deki Elektrik Enerjisi Talep Tahmini ve Arz Planlaması Çalışmaları

9.1.1 MAED

MAED paket programı Uluslararası Atom Enerjisi Ajansı (IAEA) tarafından, gelişmekte olan ülkelere özel olarak tasarlanmış bir talep tahmini yazılımıdır. Genel olarak ülkenin orta ve uzun dönemde genel enerji ve elektrik enerjisi talebini

Gelecek ile ilgili yapılan talebin doğruluğunun kontrolü ve modelin sağlıklı bir şekilde çalıştığının kanıtlanması için baz yılı ilave olarak gerçekleşen bir yılın enerji talebi modele bildirilmiştir. 2004 yılında çalıştırılan modelde kontrol yılı olarak 2000 yılı gerçekleştiren talep verileri girilmiştir.

Baz yılı ve kontrol yılı hariçinde modele 5 adet projeksiyon yılı girilibilidadektir. Model baz yılı ve kontrol yılı değerler üzerinden tüm verileri inceler ve bu 5 yıl ait talep değerlerini ortaya koyar.

Model sonucu çıktı olarak kabul edilen elektrik enerjisi talep değerleri modelde kullanılan verilerin tümüne duyarlıdır. Bu sebeple modelde kullanılan verilerin gerçek değerlerine yakın olması gereklidir. Ayrıca model verilerin doğruluğ orannına göre kısa ve orta vadede daha gerçekçi sonuçlar vermekte ancak projeksiyon süreleri uzadığında veri doğruluğu sonuca daha fazla yansımaktadır.

Model kişilerin sosyal ihtiyaçlarından dolayı değişim, ülkenin kalkınma ve sanayileşme politikası, ulaştırma ve teknolojik gelişme gibi alanlarda benimsenen politikaları ayrıntılı olarak incelmektedir. Enerji talebini sektör bazında tarım, sanayi, ulaştırma, konut ve hizmetler olarak vermektedir. Ayrıca modelin kaynaklar çeşitliliği fosil kaynaklar, elektrik enerjisi, motor yakıtları, güneş, metallurjik kok, ticari olmayan kaynaklar olarak verilmektedir.
Modele 5 ana grup altında veri girisi yapılmaktadır. Bu gruplar ekonomik ve sosyal veriler ile sanayi, konut, hizmetler ve电解后 sectorlerine ait verilerdir. Bu verilerin bir kısımı Devlet Planlama Teşkilatı Müsteşarlığından, Devlet İstatistik Enstitüsü Başkanlığından ve Beş Yıllık Kalkınma Planları hedeflerinden alınmakta diğer kısımları ise çeşitli hesaplamalar ETKB tarafından yapılmaktadır.

Bazı, kontrol ve projeksiyon yıllarının her biri için yaklaşık 170 adet veri girilen model baz yılı verilerini teknik parametreleri değerlendirek simüle etmektede; bu simülasyonu kontrol yılı gerçekleşen değerleri ile teşvik ederek, projeksiyon yılları için beklenen talep değerlerini vermektedir. Ayrıca model GSYİH, GSÝIH’nin sektörle dağılımı ve nüfus parametrelerine üst seviyede duyarlıdır. Model sonuçlarını işgıc̄u potansiyeli, kursal nüfusun değişimi, ortalama hane büyüklüğü, çalışan nüfusun toplam nüfusa oranı gibi sosyal faktörler yanında sanayi,电解后urma, konut ve hizmetler sektörlerine dair çok sayıda veri de etkilemektedir.

MAED sonuçları ve duyarlılık analizleri son olarak Enerji ve Tabii Kaynaklar Bakanlığı, Enerji Piyasası Düzenleme Kurulu, Devlet Planlama Teşkilati ve Hazine Müsteşarlığı temsilcileri ile tartışılacak; bu kuruluşların da kurumsal değerlendirmeleri alınarak görüş birliği ile kabul edilmektedir [39].

9.1.2 WASP Modeli

Türkiye elektrik enerjisi uzun dönem üretim planlama çalışması TEİAŞ tarafından ETKB’dan alınan talep eğrileri kullanılarak, Uluslararası Atom Enerjisi Ajansı

Modelin geleceği dönük tasarımı bir takım belirsizlikleri de beraberinde getirmektedir. Bu belirsizlikler arasında ilk akla gelenler arasında yük tahminlerinde olabilecek sapmalar; üretim tesislerinin bakım ya da arıza gibi nedenlerle devre dışı kalması; hidrolik tesislere gececek su akışı sayılabilir. Uygulamada bu belirsizlik olarak görülüen parametreler istemin yapısı, kapasitesi ve yedek durumu ile ilgili belirleyici nitelikleridir. Bu parametreler bir yıldaki yükün belirli bir bölümünün karşılanmadığı saatlerin toplamının yıllık toplam saate oranı olarak tanımlanan bir indeks olan yükü karşılayamama oranı ve sağlanamayan enerji maliyeti olarak modele girilmektedir.

WASP modelinin işletilmesinde TEİAŞ bünyesinde bir komisyon oluşturulmaktadır. Bu komisyon farklı santral tipleri ve farklı birincil kaynaklar üzerinde gerekli parametrelerin modele alınmasına yardımcı olmaktadır. Çalışmada kullanılan hidrolik santrallar ile ilgili bilgiler Devlet Su İşleri Genel Müdürlüğü (DSİ) ve Elektrik İşleri Etüt İdaresi Genel Müdürlüğü'nden (EİEİ); mevcut ve aday termik santrallarla ilgili bilgiler Elektrik Üretim A.Ş.'dan (EÜAŞ); yerli linyit ve taş kömürü potansiyel bilgileri Türkiye Kömür İşletmeleri Genel Müdürlüğü (TKİ) ve Türkiye Taşkömür Kurumu Genel Müdürlüğü'nden (TTK) ve doğal gaz tüketim ve maliyet bilgileri BOTAŞ Genel Müdürlüğü'nden alınmaktadır. Ayrıca komisyona girdi
saglayan diğer kurumlar Devlet Planlama Teşkilatı, Enerji ve Tabii Kaynaklar Bakanlığı ve Elektriğ Piyasasi Düzenleme Kurulu’ndur.

Planlama periyodu boyunca her yılın üçer aylık dönemlere bölünmesinin yanında, hidrolik santrallar özelinde normal, kurak ve yağışlı olarak üç hidrolik duruma dikkat edilerek; normal hidrolik durumda ortalama üretimleri, kurak durumda güvenilir üretim değerleri göz öndüne almaktadır.

Modele ayrıca aday üretim tesisleri tanımlanmaktadır. Bu tesislerin sınıflandırılmasında birincil enerji kaynakları kullanılmıştır. Aday santral tipleri, ilkimiz bu linyit, taşkömür, hidrolik ve rüzgar potansiyeli ile dış kaynaklı kömür, doğalgaz ve nükleer kaynaklı santrallardır. Bu santrallar için modelin çıktısı olarak verebileceğini ünitelerin güçlerine sınırlama getirilmiştir. Bu kapsamda Elbistan kaynaklı linyit potansiyeli için kurulu gücü sınırına bına 150 MW aksıkan yatak teknolojisi ile üretim; Elbistan kömürü için ise 350 MW konvansiyonel tip tesisler öngörülmektedir. Diğer kaynakların için koyulan ünite sınırları ise, taşkömür için 300 MW; doğal gaz için baz yüke alınan 750 MW ve orta/ puant yükle devreye girecek 275 MW; ithal kömür için 500 MW ve nükleer santrallar için 1500 MW olarak belirtilmiştir.
Bu aday santrallar ile ilgili olarak kurulu güç, işletme maliyeti, yatırım süreleri, ekonomik ömür, yatırım maliyeti ve inşaat süreleri gibi çok çeşitli kalemlerde veriler modele girilmektedir.

WASP modeli mevcut durum ve gelecek talep değeri üzerinden Monte Carlo simulasyon tekiğini kullanarak alternatifli olarak her yıl sisteme eklenmesi gereken kapasiteyi, santral tipini ve ünite gücünün alternatifli olarak belirlemektedir. Daha sonra bu alternatiflerarasından dinamik programlama teknikleri kullanılarak ve ekonomik koşullar göz önüne alınarak alternatif sayısını azaltılmaktadır [40].

9.1.3 Valoraqua Modeli

WASP modelinin hidrolik santrallar ile ilgili bütün seçenekleri tam olarak değerlendirilmekte yetersiz kalması nedeniyle kullanılan bir diğer model Hidrolik-Termik Güç Sisteminin Optimal Yönetim Modeli adıyla da bilinen Valoraqua'dır. Valoraqua, tanımlanmış bir elektrik güç sistemi için fiziki ve işletme koşullarını belirlemek amacıyla kullanılan bir ek modeldir. Bu model, termik ve hidrolik sistemler için en ekonomik işletme politikasını belirlemek ve sistemi güvenilir koşullarda yönetim amacıyla WASP modeline veri sağlamak için kullanılmaktadır. Yazılım her tip hidroelektrik üretim tesisinin haftalık, aylık, mevsimsel hatta yıllık temelde benzetimini yapmakta ve bu benzetim sırasındanehir akışının modeli dahil birçok ayrıntılı veri işlemektedir. Ek olarak barajların su tutma kapasitelerini de modelleyebilen modelde, tarihsel (istatistik) veya sentetik (olasılı) olarak akış değerleri hesaplanmakta ve enerji arzı modellenmektedir [41].

9.2 Talep Tahminini Etkileyen Parametreler

Elektrik enerjisi talep tahmini çalışmasında ülke genelinde talep tahmini değişimini doğrudan veya yüksek dereceli orantılı olarak etkileyecək parametrelerin seçimi doğru sonuç alınması yönündede en önemli adımdır [39].

Elektrik enerjisi tüketimindeğişken yapısi nedeniyle talep tahmininde kullanılan parametreler projeksiyonun yapıldığı zaman dilimine ve çalışmamın yapıldığı alan göre değişmektedir. Elektrik enerjisi tüketimi bölgelere, aylara, günler ve hatta günün saatlerine göre değişim göstermektedir. Tüketimde görülen bu
dalgalanmalardan dolayı mevcut kapasitenin en yüksek talebi karşılamasının yanında belirli bir ek kapasite hazır bulundurulması gerekmektedir.

Kısa ve orta vadede elektrik enerjisi talebini etkileyebilecek faktörler; iklim, mevsimsel değişiklikler, hava koşulları ve coğrafi özellikler olarak sayılabilir. Ancak uzun dönemde ve ülke genelinde bir tahmin yapılması amaçlandığında gayri safi yurt içi hasıla, nüfus ve demografik değişiklikler, sektörel (konut, sanayi, tarım ve ulaşım gibi) büyüme, kişi başına düşen milli gelir, istihdam, teknolojik gelişmeler, iş aletlerinin kullanımlarının yaygınlaştırılmasını gibi ayrıntılı parametreler dikkate alınmalıdır [39].

Bu çalışma kapsamında yapılacak elektrik enerjisi talep tahmini uzun dönemli bir tahmindir. Bu nedenle kullanılacak parametreler şu şekilde seçilmiştir:

- Nüfus: Gelişmekte olan ülkelerde, özellikle konutlar, ulaştırma ve aydınlatma böülümlerine elektrik enerjisi tüketimine doğrudan etkisi olan bir parametredir. Çalışmada kullanılan yıllık nüfus değerleri 1 Temmuz itibari ile yıl ortası tahmini nüfus olarak Devlet İstatistik Enstitüsü verilerinden alınmıştır. Bu değerin hesaplanmasına genel nüfus sayımı yapılan yıllardaki kesin sonuçlar alınarak, birbirini izleyen iki sayım arasındaki artış hızı hesaplanmıştır. Daha sonra bu artış hızı ara yıllar nüfus değerlerinin hesaplanmasında kullanılmıştır [42].

- Hizmet Sektörü Elektrik Enerjisi Yoğunluğu: Sanayi için hesaplanan yoğunluk değerinin benzeri ticaret ve turizm; ulaşım ve haberleşme; kamu hizmeti; genel aydınlatma ve meskener olarak tüketim değerleri alınan hizmet sektörü için de hesaplanmıştır. Bu parametre de 1987 yılı 100 birim kabul edilerek ölçeklenmiştir.

109
<table>
<thead>
<tr>
<th>Yıllar</th>
<th>Nüfus</th>
<th>GSYİH Toplam</th>
<th>GSYİH Sanayi</th>
<th>GSYİH Diğer</th>
<th>Sanayi Enerji</th>
<th>Diğer Enerji</th>
<th>Britü Tüketim</th>
<th>Net Tüketim</th>
<th>Sanayi Enerji</th>
<th>Diğer Enerji</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(10^5 kİ)</td>
<td>(milyon TL)</td>
<td>(milyon TL)</td>
<td>(milyon TL)</td>
<td>(GWh)</td>
<td>(GWh)</td>
<td>(GWh)</td>
<td>(GWh)</td>
<td>(GWh)</td>
<td>(GWh)</td>
</tr>
<tr>
<td>1975</td>
<td>40.026</td>
<td>44.748</td>
<td>10.061</td>
<td>34.687</td>
<td>8.732</td>
<td>4.760</td>
<td>15.127</td>
<td>13.492</td>
<td>62</td>
<td>58</td>
</tr>
<tr>
<td>1977</td>
<td>41.769</td>
<td>51.113</td>
<td>11.716</td>
<td>39.397</td>
<td>11.961</td>
<td>6.008</td>
<td>20.047</td>
<td>17.969</td>
<td>74</td>
<td>64</td>
</tr>
<tr>
<td>1979</td>
<td>43.531</td>
<td>51.558</td>
<td>11.583</td>
<td>39.975</td>
<td>12.512</td>
<td>7.151</td>
<td>22.226</td>
<td>19.663</td>
<td>77</td>
<td>75</td>
</tr>
<tr>
<td>1983</td>
<td>47.864</td>
<td>57.333</td>
<td>13.628</td>
<td>43.705</td>
<td>15.365</td>
<td>9.100</td>
<td>27.887</td>
<td>24.465</td>
<td>85</td>
<td>88</td>
</tr>
<tr>
<td>1985</td>
<td>50.306</td>
<td>63.776</td>
<td>15.909</td>
<td>47.867</td>
<td>19.300</td>
<td>10.409</td>
<td>34.055</td>
<td>29.709</td>
<td>96</td>
<td>91</td>
</tr>
<tr>
<td>1986</td>
<td>51.433</td>
<td>68.248</td>
<td>17.668</td>
<td>50.580</td>
<td>20.605</td>
<td>11.605</td>
<td>37.656</td>
<td>32.210</td>
<td>96</td>
<td>97</td>
</tr>
<tr>
<td>1987</td>
<td>52.561</td>
<td>74.222</td>
<td>19.276</td>
<td>55.446</td>
<td>23.518</td>
<td>13.179</td>
<td>42.317</td>
<td>36.697</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1989</td>
<td>54.893</td>
<td>76.498</td>
<td>20.529</td>
<td>55.969</td>
<td>27.150</td>
<td>15.970</td>
<td>49.367</td>
<td>43.120</td>
<td>113</td>
<td>120</td>
</tr>
<tr>
<td>1991</td>
<td>57.064</td>
<td>84.353</td>
<td>22.909</td>
<td>61.444</td>
<td>28.139</td>
<td>21.144</td>
<td>57.351</td>
<td>49.283</td>
<td>106</td>
<td>145</td>
</tr>
<tr>
<td>1992</td>
<td>57.931</td>
<td>89.401</td>
<td>24.268</td>
<td>65.133</td>
<td>31.031</td>
<td>22.954</td>
<td>63.294</td>
<td>53.985</td>
<td>110</td>
<td>148</td>
</tr>
<tr>
<td>1993</td>
<td>58.812</td>
<td>96.591</td>
<td>26.260</td>
<td>70.331</td>
<td>33.616</td>
<td>27.981</td>
<td>73.814</td>
<td>61.401</td>
<td>116</td>
<td>177</td>
</tr>
<tr>
<td>1994</td>
<td>59.706</td>
<td>91.322</td>
<td>27.775</td>
<td>66.546</td>
<td>33.420</td>
<td>27.981</td>
<td>73.814</td>
<td>61.401</td>
<td>116</td>
<td>177</td>
</tr>
<tr>
<td>1995</td>
<td>60.614</td>
<td>97.888</td>
<td>27.766</td>
<td>70.122</td>
<td>36.769</td>
<td>30.323</td>
<td>81.859</td>
<td>67.394</td>
<td>119</td>
<td>182</td>
</tr>
<tr>
<td>1996</td>
<td>61.536</td>
<td>104.745</td>
<td>29.743</td>
<td>72.502</td>
<td>40.444</td>
<td>33.884</td>
<td>90.356</td>
<td>71.157</td>
<td>123</td>
<td>190</td>
</tr>
<tr>
<td>1997</td>
<td>62.510</td>
<td>112.631</td>
<td>32.835</td>
<td>79.796</td>
<td>43.006</td>
<td>38.879</td>
<td>100.738</td>
<td>81.885</td>
<td>121</td>
<td>205</td>
</tr>
<tr>
<td>1998</td>
<td>63.451</td>
<td>116.114</td>
<td>33.494</td>
<td>82.620</td>
<td>44.287</td>
<td>43.418</td>
<td>108.798</td>
<td>87.705</td>
<td>121</td>
<td>221</td>
</tr>
<tr>
<td>1999</td>
<td>64.385</td>
<td>110.646</td>
<td>31.814</td>
<td>78.832</td>
<td>45.294</td>
<td>45.907</td>
<td>113.032</td>
<td>91.202</td>
<td>130</td>
<td>245</td>
</tr>
<tr>
<td>2000</td>
<td>65.311</td>
<td>118.789</td>
<td>33.738</td>
<td>85.051</td>
<td>47.657</td>
<td>50.662</td>
<td>122.489</td>
<td>98.296</td>
<td>127</td>
<td>251</td>
</tr>
<tr>
<td>2001</td>
<td>66.229</td>
<td>109.883</td>
<td>31.207</td>
<td>78.678</td>
<td>45.799</td>
<td>51.271</td>
<td>120.832</td>
<td>97.070</td>
<td>132</td>
<td>274</td>
</tr>
<tr>
<td>2002</td>
<td>67.140</td>
<td>118.612</td>
<td>34.142</td>
<td>84.470</td>
<td>49.595</td>
<td>52.205</td>
<td>127.315</td>
<td>102.948</td>
<td>133</td>
<td>260</td>
</tr>
<tr>
<td>2003</td>
<td>68.043</td>
<td>125.483</td>
<td>36.794</td>
<td>88.691</td>
<td>53.836</td>
<td>56.842</td>
<td>136.406</td>
<td>111.766</td>
<td>136</td>
<td>270</td>
</tr>
</tbody>
</table>
9.3 2025 Perspektifinde Senaryolara Dayalı Türkiye Talep Tahmini Çalışması ve Sonuçları

Talep tahmini çalışmalarıında, elektrik enerjisi talebi ile seçilen parametreler arasındaki ilişkinin matematiksel bir denklem yoluyla ifade edilmesi gereklidir. Bu matematiksel denklemde elektrik enerjisi talebi bağlıdır; diğer değişken ise bağımsız olarak kabul edilmelidir. İki ya da daha fazla bağımsız değişkenin bir bağlı değişken üzerinde etkilerini ortaya çıkarmak konusunda yaygın olarak kullanılan yöntem birleşik bölünme serilerinin analizine regresyon analizi adı verilir.

Tekli regresyon analizi bağımsız ve bağlı değişkenlerin geçmiş değerlerinden yola çıkarak bu değişkenler arasındaki matematiksel ilişkiye ortaya koyar. Ancak bu matematiksel denklemi seçilen parametreler arasındaki ilişkiyi ortaya ne derece doğru tespit ettiği anlaşılması için bir analiz gerektirir. Bu analiz ise korelasyon analizi adını alır [4].

Şekil 9.1: Nüfus Bağımsız Değişkeni için Serpilme Diyagramı

Şekil 9.2: GSYİH Bağımsız Değişkeni için Serpilme Diyagramı
Şekil 9.3: Sanayi Sektörünün Elektrik Enerjisi Yoğunluğu Bağimsız Değişkeni için Serpilme Diyagрамı

Şekil 9.4: Hizmet Sektörünün Elektrik Enerjisi Yoğunluğu Bağımızız Değişkeni için Serpilme Diyagaramı

Çalışmada Türkiye genelinde 2025 yılında ortaya çıkacak elektrik enerjisi talebi tahmini için uygulanan çoklu regresyon ve korelasyon analizleri SPSS paket programından faydalanılarak yapılmıştır.

Tablo 9.2: Talep Tahmininde Kullanılan Bağımsız Değişkenlerin 2006 – 2025 Döneminde Değişimi

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>153.588</td>
<td>153.588</td>
<td>145.018</td>
<td>144.455</td>
<td>175</td>
<td>302</td>
<td>72.176</td>
</tr>
<tr>
<td>2007</td>
<td>162.804</td>
<td>162.804</td>
<td>149.368</td>
<td>148.500</td>
<td>180</td>
<td>320</td>
<td>73.193</td>
</tr>
<tr>
<td>2008</td>
<td>172.572</td>
<td>172.572</td>
<td>153.849</td>
<td>152.658</td>
<td>186</td>
<td>339</td>
<td>74.211</td>
</tr>
<tr>
<td>2009</td>
<td>182.926</td>
<td>182.926</td>
<td>158.465</td>
<td>156.932</td>
<td>191</td>
<td>360</td>
<td>75.228</td>
</tr>
<tr>
<td>2010</td>
<td>193.902</td>
<td>193.902</td>
<td>163.219</td>
<td>161.326</td>
<td>197</td>
<td>381</td>
<td>76.246</td>
</tr>
<tr>
<td>2011</td>
<td>205.536</td>
<td>205.536</td>
<td>168.115</td>
<td>165.843</td>
<td>203</td>
<td>404</td>
<td>77.264</td>
</tr>
<tr>
<td>2013</td>
<td>226.603</td>
<td>226.603</td>
<td>174.907</td>
<td>175.261</td>
<td>216</td>
<td>454</td>
<td>79.299</td>
</tr>
<tr>
<td>2014</td>
<td>237.933</td>
<td>237.933</td>
<td>178.405</td>
<td>180.168</td>
<td>223</td>
<td>482</td>
<td>80.316</td>
</tr>
<tr>
<td>2015</td>
<td>249.830</td>
<td>249.830</td>
<td>181.973</td>
<td>185.213</td>
<td>229</td>
<td>511</td>
<td>81.334</td>
</tr>
<tr>
<td>2016</td>
<td>262.321</td>
<td>262.321</td>
<td>185.613</td>
<td>190.399</td>
<td>237</td>
<td>541</td>
<td>82.352</td>
</tr>
<tr>
<td>2017</td>
<td>280.684</td>
<td>270.191</td>
<td>191.181</td>
<td>195.730</td>
<td>244</td>
<td>574</td>
<td>83.369</td>
</tr>
<tr>
<td>2018</td>
<td>300.332</td>
<td>278.297</td>
<td>196.917</td>
<td>201.210</td>
<td>251</td>
<td>608</td>
<td>84.387</td>
</tr>
<tr>
<td>2019</td>
<td>321.355</td>
<td>286.646</td>
<td>202.824</td>
<td>206.844</td>
<td>259</td>
<td>645</td>
<td>85.404</td>
</tr>
<tr>
<td>2020</td>
<td>343.850</td>
<td>295.245</td>
<td>208.909</td>
<td>212.636</td>
<td>267</td>
<td>684</td>
<td>86.422</td>
</tr>
<tr>
<td>2021</td>
<td>367.919</td>
<td>304.102</td>
<td>215.176</td>
<td>218.589</td>
<td>275</td>
<td>725</td>
<td>87.440</td>
</tr>
<tr>
<td>2022</td>
<td>389.995</td>
<td>310.185</td>
<td>223.783</td>
<td>224.710</td>
<td>284</td>
<td>768</td>
<td>88.457</td>
</tr>
<tr>
<td>2023</td>
<td>413.394</td>
<td>316.388</td>
<td>232.734</td>
<td>231.002</td>
<td>292</td>
<td>815</td>
<td>89.475</td>
</tr>
<tr>
<td>2024</td>
<td>438.198</td>
<td>322.716</td>
<td>242.044</td>
<td>237.470</td>
<td>301</td>
<td>864</td>
<td>90.492</td>
</tr>
<tr>
<td>2025</td>
<td>464.490</td>
<td>329.170</td>
<td>251.725</td>
<td>244.119</td>
<td>311</td>
<td>916</td>
<td>91.510</td>
</tr>
<tr>
<td>Yıllar</td>
<td>Brüt Tüketim (GWh) A SenaryoSuy</td>
<td>Brüt Tüketim (GWh) B1 SenaryoSuy</td>
<td>Brüt Tüketim (GWh) B2 SenaryoSuy</td>
<td>Brüt Tüketim (GWh) C SenaryoSuy</td>
<td>Net Tüketim (GWh) A SenaryoSuy</td>
<td>Net Tüketim (GWh) B1 SenaryoSuy</td>
<td>Net Tüketim (GWh) B2 SenaryoSuy</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>2006</td>
<td>161.783</td>
<td>161.783</td>
<td>154.738</td>
<td>154.275</td>
<td>129.349</td>
<td>124.069</td>
<td>123.723</td>
</tr>
<tr>
<td>2007</td>
<td>175.427</td>
<td>175.427</td>
<td>164.383</td>
<td>163.669</td>
<td>139.673</td>
<td>131.397</td>
<td>130.862</td>
</tr>
<tr>
<td>2008</td>
<td>189.975</td>
<td>189.975</td>
<td>174.585</td>
<td>173.605</td>
<td>150.666</td>
<td>139.133</td>
<td>138.399</td>
</tr>
<tr>
<td>2009</td>
<td>205.482</td>
<td>205.482</td>
<td>185.375</td>
<td>184.115</td>
<td>162.368</td>
<td>147.300</td>
<td>146.356</td>
</tr>
<tr>
<td>2010</td>
<td>222.005</td>
<td>222.005</td>
<td>196.784</td>
<td>195.228</td>
<td>174.822</td>
<td>155.921</td>
<td>154.755</td>
</tr>
<tr>
<td>2011</td>
<td>239.607</td>
<td>239.607</td>
<td>208.847</td>
<td>206.980</td>
<td>188.072</td>
<td>165.020</td>
<td>163.621</td>
</tr>
<tr>
<td>2012</td>
<td>256.661</td>
<td>256.661</td>
<td>220.218</td>
<td>219.404</td>
<td>200.900</td>
<td>173.590</td>
<td>172.980</td>
</tr>
<tr>
<td>2013</td>
<td>274.741</td>
<td>274.741</td>
<td>232.247</td>
<td>232.538</td>
<td>214.485</td>
<td>182.640</td>
<td>182.858</td>
</tr>
<tr>
<td>2014</td>
<td>293.904</td>
<td>293.904</td>
<td>244.972</td>
<td>246.421</td>
<td>228.869</td>
<td>192.199</td>
<td>193.285</td>
</tr>
<tr>
<td>2015</td>
<td>314.211</td>
<td>314.211</td>
<td>258.433</td>
<td>261.096</td>
<td>244.095</td>
<td>202.296</td>
<td>204.291</td>
</tr>
<tr>
<td>2016</td>
<td>335.726</td>
<td>335.726</td>
<td>272.672</td>
<td>276.606</td>
<td>260.213</td>
<td>212.960</td>
<td>215.908</td>
</tr>
<tr>
<td>2017</td>
<td>362.829</td>
<td>354.204</td>
<td>289.258</td>
<td>292.997</td>
<td>280.503</td>
<td>225.369</td>
<td>228.171</td>
</tr>
<tr>
<td>2018</td>
<td>391.798</td>
<td>373.685</td>
<td>306.790</td>
<td>310.320</td>
<td>302.174</td>
<td>238.470</td>
<td>241.115</td>
</tr>
<tr>
<td>2019</td>
<td>422.754</td>
<td>394.223</td>
<td>325.322</td>
<td>328.626</td>
<td>325.317</td>
<td>252.302</td>
<td>254.778</td>
</tr>
<tr>
<td>2020</td>
<td>455.829</td>
<td>415.876</td>
<td>344.907</td>
<td>347.971</td>
<td>350.030</td>
<td>266.906</td>
<td>269.202</td>
</tr>
<tr>
<td>2021</td>
<td>491.162</td>
<td>438.704</td>
<td>365.607</td>
<td>368.413</td>
<td>376.415</td>
<td>282.325</td>
<td>284.428</td>
</tr>
<tr>
<td>2022</td>
<td>525.877</td>
<td>460.273</td>
<td>389.251</td>
<td>390.013</td>
<td>402.317</td>
<td>305.154</td>
<td>300.501</td>
</tr>
<tr>
<td>2023</td>
<td>562.765</td>
<td>483.026</td>
<td>412.838</td>
<td>429.824</td>
<td>370.069</td>
<td>318.538</td>
<td>317.471</td>
</tr>
<tr>
<td>2024</td>
<td>601.956</td>
<td>507.030</td>
<td>440.717</td>
<td>436.957</td>
<td>459.035</td>
<td>338.204</td>
<td>335.386</td>
</tr>
<tr>
<td>2025</td>
<td>643.588</td>
<td>532.355</td>
<td>468.696</td>
<td>462.443</td>
<td>490.050</td>
<td>406.693</td>
<td>358.987</td>
</tr>
</tbody>
</table>
Çalışmanın bu bölümünde farklı senaryolar çerçevesinde yapılan talep tahminlerinin elektrik enerjisi üretiminde kullanılabilecek birincil kaynaklara göre dağılımı temelinde bu talebi karşılamak için yapılması gereken yatırımlar değerleri incelenmektedir.

Elektrik enerjisinin karşılanmasına kullanılacak birincil enerji kaynakları ile ilgili ortalama değerler, geçmiş oranların yanı sıra Türkiye Elektrik Enerjisi Üretim Planlama Çalışmasında 2020 yılına kadar planlanan ortalama değerlerin lineer olarak 2025 yılına ötelenmesi ile bulunmaktadır [40]. Bu öteleme yapılırken TÉAŞ değerlerinin planlama dönemi sonunda belirli bir yüzde aralığa yaşadığı gözlemi temel alınmış ve yine aynı dönemdeki ortalama değerler göz önünde bulundurulmuştur. Yıllar itibari ile elektrik enerjisi üretiminde birincil kaynak kullanımını hedefleri Tablo 10.1'de verilmiştir [44].

Tablo 10.1: Yıllar Itibariyla Kurulu Gücün Birincil Enerji Kaynaklarına Yüzde Dağılımı Tahminleri [40]

<table>
<thead>
<tr>
<th>Yıllar</th>
<th>Doğal Gaz (%)</th>
<th>Termik Toplam (%)</th>
<th>Hidrolik (%)</th>
<th>Nükleer (%)</th>
<th>Diğer Toplam (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>31</td>
<td>32</td>
<td>34</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2007</td>
<td>31</td>
<td>31</td>
<td>35</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2008</td>
<td>31</td>
<td>31</td>
<td>35</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2009</td>
<td>31</td>
<td>31</td>
<td>35</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2010</td>
<td>34</td>
<td>29</td>
<td>34</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2011</td>
<td>35</td>
<td>29</td>
<td>33</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2012</td>
<td>34</td>
<td>28</td>
<td>33</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2013</td>
<td>34</td>
<td>27</td>
<td>33</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2014</td>
<td>33</td>
<td>27</td>
<td>33</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>2015</td>
<td>32</td>
<td>26</td>
<td>33</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>2016</td>
<td>31</td>
<td>26</td>
<td>33</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>2017</td>
<td>31</td>
<td>27</td>
<td>33</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>2018</td>
<td>31</td>
<td>28</td>
<td>33</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>2019</td>
<td>30</td>
<td>29</td>
<td>32</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>2020</td>
<td>29</td>
<td>31</td>
<td>32</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>2021</td>
<td>30</td>
<td>30</td>
<td>32</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>2022</td>
<td>30</td>
<td>30</td>
<td>32</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>2023</td>
<td>30</td>
<td>30</td>
<td>32</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>2024</td>
<td>30</td>
<td>30</td>
<td>32</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>2025</td>
<td>30</td>
<td>30</td>
<td>32</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

116
Tablo 10.1 üzerinde yapılacak değerlendirmede gözlenen hususlar şu şekildedir:

- Birincil enerji kaynağı olarak termik santral kapsamında değerlendirilen linyit, taş kömür, ıthal kömür, fuel oil tipi kaynakların toplam içerisindeki yüzdesi, artan işletme maliyetlerinin yanı sıra yüksek karbon emisyonlarının çevresel etkileri de dikkate alınarak, kademeli olarak azaltılacaktır.

- Türkiye, TEİAŞ öngörülerine dayanarak 2012 yılında ilk nükleer elektrik enerjisi üretim tesisini devreye alacak ve nükleer kapasitenin elektrik enerjisi üretiminde yüzde payı giderek artacaktır.

Tablo 10.2: Birincil Enerji Kaynaklarına Göre Santral Tiplerinin Birim Yatırım Maliyeti [40]

<table>
<thead>
<tr>
<th>Santral Tipi</th>
<th>Ünite Kurulu Gücü (MW)</th>
<th>Toplam Yatırım Tutarı (US$/kW)</th>
<th>Sabit İşletme Bakım Maliyeti (US$/kW - yıl)</th>
<th>İnşaat Süresi (yıl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akışkan Yatakli Termik</td>
<td>160 MW</td>
<td>$1.678</td>
<td>$36</td>
<td>4</td>
</tr>
<tr>
<td>Konvansiyonel Termik</td>
<td>360 MW</td>
<td>$1.726</td>
<td>$31</td>
<td>5</td>
</tr>
<tr>
<td>Taş Kömürü</td>
<td>300 MW</td>
<td>$1.657</td>
<td>$44</td>
<td>4</td>
</tr>
<tr>
<td>İthal Kömür</td>
<td>500 MW</td>
<td>$1.325</td>
<td>$54</td>
<td>4</td>
</tr>
<tr>
<td>Doğal Gaz</td>
<td>275 MW</td>
<td>$851</td>
<td>$6</td>
<td>3</td>
</tr>
<tr>
<td>Doğal Gaz</td>
<td>700 MW</td>
<td>$681</td>
<td>$6</td>
<td>3</td>
</tr>
<tr>
<td>Nükleer</td>
<td>1.500 MW</td>
<td>$2.472</td>
<td>$55</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>175.427</td>
<td>175.427</td>
<td>167.994</td>
<td>163.669</td>
<td>32.386</td>
<td>32.386</td>
<td>31.014</td>
<td>30.216</td>
</tr>
<tr>
<td>2008</td>
<td>189.975</td>
<td>189.975</td>
<td>179.568</td>
<td>173.605</td>
<td>35.072</td>
<td>35.072</td>
<td>33.151</td>
<td>32.050</td>
</tr>
<tr>
<td>2009</td>
<td>205.482</td>
<td>205.482</td>
<td>191.822</td>
<td>184.115</td>
<td>37.935</td>
<td>37.935</td>
<td>35.413</td>
<td>33.990</td>
</tr>
<tr>
<td>2010</td>
<td>222.005</td>
<td>222.005</td>
<td>204.792</td>
<td>195.228</td>
<td>40.986</td>
<td>40.986</td>
<td>37.808</td>
<td>36.042</td>
</tr>
<tr>
<td>2011</td>
<td>239.607</td>
<td>239.607</td>
<td>218.517</td>
<td>206.980</td>
<td>44.235</td>
<td>44.235</td>
<td>40.342</td>
<td>38.212</td>
</tr>
<tr>
<td>2012</td>
<td>256.661</td>
<td>256.661</td>
<td>231.559</td>
<td>219.404</td>
<td>47.384</td>
<td>47.384</td>
<td>42.749</td>
<td>40.505</td>
</tr>
<tr>
<td>2013</td>
<td>274.741</td>
<td>274.741</td>
<td>245.338</td>
<td>232.538</td>
<td>50.721</td>
<td>50.721</td>
<td>45.293</td>
<td>42.930</td>
</tr>
<tr>
<td>2014</td>
<td>293.904</td>
<td>293.904</td>
<td>259.894</td>
<td>246.421</td>
<td>54.259</td>
<td>54.259</td>
<td>47.980</td>
<td>45.493</td>
</tr>
<tr>
<td>2015</td>
<td>314.211</td>
<td>314.211</td>
<td>275.269</td>
<td>261.096</td>
<td>58.008</td>
<td>58.008</td>
<td>50.819</td>
<td>48.202</td>
</tr>
<tr>
<td>2016</td>
<td>335.726</td>
<td>335.726</td>
<td>291.508</td>
<td>276.606</td>
<td>61.980</td>
<td>61.980</td>
<td>53.817</td>
<td>51.066</td>
</tr>
<tr>
<td>2018</td>
<td>391.798</td>
<td>391.798</td>
<td>323.261</td>
<td>310.320</td>
<td>72.332</td>
<td>68.988</td>
<td>59.679</td>
<td>57.290</td>
</tr>
<tr>
<td>2019</td>
<td>422.754</td>
<td>422.754</td>
<td>340.502</td>
<td>328.626</td>
<td>78.047</td>
<td>72.780</td>
<td>62.862</td>
<td>60.669</td>
</tr>
<tr>
<td>2020</td>
<td>455.829</td>
<td>455.829</td>
<td>358.725</td>
<td>347.971</td>
<td>84.153</td>
<td>76.777</td>
<td>66.226</td>
<td>64.241</td>
</tr>
<tr>
<td>2021</td>
<td>491.162</td>
<td>491.162</td>
<td>377.983</td>
<td>368.413</td>
<td>90.676</td>
<td>80.992</td>
<td>69.781</td>
<td>68.015</td>
</tr>
<tr>
<td>2022</td>
<td>525.877</td>
<td>525.877</td>
<td>400.230</td>
<td>390.013</td>
<td>97.085</td>
<td>84.974</td>
<td>73.889</td>
<td>72.002</td>
</tr>
<tr>
<td>2023</td>
<td>562.765</td>
<td>562.765</td>
<td>423.731</td>
<td>412.838</td>
<td>103.895</td>
<td>89.174</td>
<td>78.227</td>
<td>76.216</td>
</tr>
<tr>
<td>2024</td>
<td>601.956</td>
<td>601.956</td>
<td>448.557</td>
<td>436.957</td>
<td>111.130</td>
<td>93.605</td>
<td>82.810</td>
<td>80.669</td>
</tr>
<tr>
<td>2025</td>
<td>643.588</td>
<td>643.588</td>
<td>474.781</td>
<td>462.443</td>
<td>118.816</td>
<td>98.281</td>
<td>87.652</td>
<td>85.374</td>
</tr>
</tbody>
</table>
Tablo 10.4: Senaryo A İçin Kurulu Güçün Birincil Enerji Kaynaklarına Dağılımı ve Gerektiri Yatırım Maliyetleri

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>10.007</td>
<td>10.040</td>
<td>11.335</td>
<td>-</td>
<td>1.036</td>
<td>32.419</td>
<td>1.161</td>
<td>1.279</td>
<td>-</td>
<td>234</td>
<td>2.969</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>15.482</td>
<td>12.695</td>
<td>14.421</td>
<td>-</td>
<td>1.592</td>
<td>44.191</td>
<td>335</td>
<td>1.314</td>
<td>3.711</td>
<td>170</td>
<td>5.896</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>17.195</td>
<td>13.796</td>
<td>16.738</td>
<td>1.500</td>
<td>1.775</td>
<td>51.004</td>
<td>930</td>
<td>1.428</td>
<td>-</td>
<td>185</td>
<td>2.695</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>18.331</td>
<td>15.082</td>
<td>18.911</td>
<td>3.000</td>
<td>1.972</td>
<td>57.296</td>
<td>1.748</td>
<td>1.888</td>
<td>-</td>
<td>202</td>
<td>4.455</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>22.061</td>
<td>20.470</td>
<td>23.653</td>
<td>3.000</td>
<td>2.387</td>
<td>71.571</td>
<td>3.953</td>
<td>2.000</td>
<td>-</td>
<td>165</td>
<td>7.050</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>23.492</td>
<td>22.946</td>
<td>25.287</td>
<td>3.000</td>
<td>2.498</td>
<td>77.223</td>
<td>4.882</td>
<td>2.215</td>
<td>-</td>
<td>293</td>
<td>7.797</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>24.404</td>
<td>26.003</td>
<td>27.097</td>
<td>3.000</td>
<td>2.693</td>
<td>83.198</td>
<td>1.915</td>
<td>2.348</td>
<td>3.711</td>
<td>41</td>
<td>10.119</td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>35.645</td>
<td>35.645</td>
<td>38.021</td>
<td>6.000</td>
<td>3.564</td>
<td>118.875</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Gereken yatırım tutarları ve ek kapasite ihtiyacı göz önüne alınarak şu değerlendirme yapılabildir:

- Türkiye'nin AB üyeliğine kabul edilmesini öngören A senaryosu hariç, diğer senaryolarda gözlenen husus, elektrik enerjisi sektörüne sürekli olarak ve sabit miktarlarda yatırım yapılmasına ihtiyaç olduğudur. A senaryosu kapsamında ise artan talebi karşılamak gerekillosu dolaysıyla yapılacak yatırımlar özellikle AB üyeliğinden sonra artmaktadır. Çalışma kapsamında alınmamış bir seçenek olan Türkiye'nin AB enterkonuke şebekeesi üzerinden elektrik enerjisi ihracatı bu aşamada değerlendirilmelidir.

121

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>10.007</td>
<td>10.040</td>
<td>11.335</td>
<td>-</td>
<td>1.036</td>
<td>32.419</td>
<td>528</td>
<td>1.161</td>
<td>1.279</td>
<td>-</td>
<td>234</td>
<td>2.969</td>
</tr>
<tr>
<td>2008</td>
<td>10.697</td>
<td>10.767</td>
<td>12.381</td>
<td>-</td>
<td>1.192</td>
<td>35.037</td>
<td>901</td>
<td>1.343</td>
<td>865</td>
<td>-</td>
<td>259</td>
<td>3.109</td>
</tr>
<tr>
<td>2011</td>
<td>15.482</td>
<td>12.695</td>
<td>14.421</td>
<td>-</td>
<td>1.592</td>
<td>44.191</td>
<td>335</td>
<td>535</td>
<td>1.314</td>
<td>170</td>
<td>5.896</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>15.921</td>
<td>13.030</td>
<td>15.494</td>
<td>1.500</td>
<td>1.706</td>
<td>47.652</td>
<td>975</td>
<td>1.222</td>
<td>1.522</td>
<td>-</td>
<td>104</td>
<td>3.720</td>
</tr>
<tr>
<td>2013</td>
<td>17.195</td>
<td>13.796</td>
<td>16.738</td>
<td>1.500</td>
<td>1.775</td>
<td>51.004</td>
<td>336</td>
<td>930</td>
<td>1.428</td>
<td>-</td>
<td>185</td>
<td>2.692</td>
</tr>
<tr>
<td>2015</td>
<td>18.331</td>
<td>15.082</td>
<td>18.911</td>
<td>3.000</td>
<td>1.972</td>
<td>57.296</td>
<td>819</td>
<td>1.748</td>
<td>1.888</td>
<td>-</td>
<td>202</td>
<td>4.455</td>
</tr>
<tr>
<td>2017</td>
<td>20.141</td>
<td>17.656</td>
<td>21.710</td>
<td>3.000</td>
<td>2.222</td>
<td>64.730</td>
<td>689</td>
<td>2.983</td>
<td>1.039</td>
<td>-</td>
<td>79</td>
<td>4.712</td>
</tr>
<tr>
<td>2025</td>
<td>29.484</td>
<td>29.484</td>
<td>31.450</td>
<td>4.500</td>
<td>2.948</td>
<td>97.867</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Tablo 10.6: Senaryo B2 İçin Kurulu Güçün Birinci Enerji Kaynaklarına Dağılımı ve Gereklı Yatırım Maliyetleri

<table>
<thead>
<tr>
<th>Yıllar</th>
<th>Doğal Gaz</th>
<th>Termik Kurulu</th>
<th>Hidrolik</th>
<th>Nükleer Kurulu</th>
<th>Diğer Kurulu</th>
<th>Toplam Kurulu</th>
<th>Doğal Gaz Yatırım Maliyeti</th>
<th>Termik Yatırım Maliyeti</th>
<th>Hidrolik Yatırım Maliyeti</th>
<th>Nükleer Yatırım Maliyeti</th>
<th>Diğer Yatırım Maliyeti</th>
<th>Toplam Yatırım Maliyeti</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(MW)</td>
<td>(MW)</td>
<td>(MW)</td>
<td>(MW)</td>
<td>(MW)</td>
<td>(MW)</td>
<td>(milyon $)</td>
<td>(milyon $)</td>
<td>(milyon $)</td>
<td>(milyon $)</td>
<td>(milyon $)</td>
<td>(milyon $)</td>
</tr>
<tr>
<td>2008</td>
<td>10.111</td>
<td>10.177</td>
<td>11.702</td>
<td>-</td>
<td>1.127</td>
<td>33.118</td>
<td>745</td>
<td>1.052</td>
<td>630</td>
<td>-</td>
<td>221</td>
<td>2.428</td>
</tr>
<tr>
<td>2009</td>
<td>11.084</td>
<td>10.836</td>
<td>12.218</td>
<td>-</td>
<td>1.275</td>
<td>33.413</td>
<td>1.298</td>
<td>143</td>
<td>640</td>
<td>-</td>
<td>186</td>
<td>2.082</td>
</tr>
<tr>
<td>2013</td>
<td>15.354</td>
<td>12.320</td>
<td>14.947</td>
<td>1.500</td>
<td>1.585</td>
<td>45.706</td>
<td>183</td>
<td>630</td>
<td>1.085</td>
<td>-</td>
<td>141</td>
<td>1.899</td>
</tr>
<tr>
<td>2017</td>
<td>17.453</td>
<td>15.300</td>
<td>18.813</td>
<td>3.000</td>
<td>1.927</td>
<td>56.494</td>
<td>573</td>
<td>2.537</td>
<td>858</td>
<td>-</td>
<td>64</td>
<td>3.969</td>
</tr>
<tr>
<td>2021</td>
<td>20.934</td>
<td>20.934</td>
<td>22.330</td>
<td>3.000</td>
<td>2.093</td>
<td>69.292</td>
<td>943</td>
<td>1.967</td>
<td>1.608</td>
<td>-</td>
<td>184</td>
<td>4.520</td>
</tr>
<tr>
<td>2022</td>
<td>22.167</td>
<td>22.167</td>
<td>23.644</td>
<td>3.000</td>
<td>2.217</td>
<td>73.194</td>
<td>997</td>
<td>2.078</td>
<td>1.699</td>
<td>-</td>
<td>195</td>
<td>4.775</td>
</tr>
<tr>
<td>2023</td>
<td>23.468</td>
<td>23.468</td>
<td>25.033</td>
<td>3.000</td>
<td>2.347</td>
<td>77.316</td>
<td>1.053</td>
<td>2.195</td>
<td>1.795</td>
<td>-</td>
<td>206</td>
<td>5.044</td>
</tr>
<tr>
<td>2025</td>
<td>26.296</td>
<td>26.296</td>
<td>28.049</td>
<td>4.500</td>
<td>2.630</td>
<td>87.769</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Tablo 10.7: Senaryo C için Kurulu Güçün Birincil Enerji Kaynaklarına Dağılımı ve Gereklı Yatırım Maliyetleri

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>14.553</td>
<td>11.677</td>
<td>14.167</td>
<td>1.500</td>
<td>1.503</td>
<td>43.400</td>
<td>177</td>
<td>604</td>
<td>1.035</td>
<td>-</td>
<td>134</td>
<td>1.817</td>
</tr>
<tr>
<td>2014</td>
<td>14.785</td>
<td>12.056</td>
<td>15.013</td>
<td>1.500</td>
<td>1.592</td>
<td>44.946</td>
<td>342</td>
<td>761</td>
<td>858</td>
<td>3.711</td>
<td>69</td>
<td>5.673</td>
</tr>
<tr>
<td>2017</td>
<td>16.660</td>
<td>14.605</td>
<td>17.958</td>
<td>3.000</td>
<td>1.839</td>
<td>54.063</td>
<td>622</td>
<td>2.568</td>
<td>948</td>
<td>-</td>
<td>77</td>
<td>4.140</td>
</tr>
<tr>
<td>2018</td>
<td>17.473</td>
<td>16.213</td>
<td>18.734</td>
<td>3.000</td>
<td>1.891</td>
<td>57.311</td>
<td>603</td>
<td>2.593</td>
<td>1.129</td>
<td>-</td>
<td>76</td>
<td>4.326</td>
</tr>
<tr>
<td>2020</td>
<td>18.630</td>
<td>19.850</td>
<td>20.686</td>
<td>3.000</td>
<td>2.056</td>
<td>64.221</td>
<td>1.359</td>
<td>884</td>
<td>1.320</td>
<td>-</td>
<td>-</td>
<td>3.564</td>
</tr>
<tr>
<td>2023</td>
<td>22.865</td>
<td>22.865</td>
<td>24.389</td>
<td>3.000</td>
<td>2.286</td>
<td>75.406</td>
<td>1.023</td>
<td>2.133</td>
<td>1.744</td>
<td>-</td>
<td>200</td>
<td>4.900</td>
</tr>
<tr>
<td>2024</td>
<td>24.201</td>
<td>24.201</td>
<td>25.814</td>
<td>3.000</td>
<td>2.420</td>
<td>79.636</td>
<td>1.081</td>
<td>2.254</td>
<td>1.842</td>
<td>-</td>
<td>211</td>
<td>5.178</td>
</tr>
<tr>
<td>2025</td>
<td>25.612</td>
<td>25.612</td>
<td>27.320</td>
<td>3.000</td>
<td>2.561</td>
<td>84.105</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
11. SONUÇLAR

Bu çalışma kapsamında, Avrupa Birliği tylen sürecinde Türkiye elektrik enerjisi sektörünün mevcut durumunu ortaya konmuş, daha sonra sürecte karşılaşılabilecek olası farklı sonuçlara bağlı olarak oluşturulan senaryolar çerçevesinde Türkiye’nin elektrik enerjisi talebi hesaplanmış, farklı senaryoların talebe ve bağlı olarak yatırım ve finansman gereksinimine etkisi incelenmiştir. Bu yatırım gereksinimini yalnızca elektrik enerjisi üretimi alanında değerlendirme işlemi, iletim ve dağıtım tesisleri çalışma konusu dışında tutulmuştur. Çalışma kapsamında geleckte karşılaşılabilecek farklılıkların, planlanmanın birincil derecede önemli olduğu elektrik enerjisi sektöründeki etkileri gösterilmeye çalışılmıştır.

Yatırım maliyetlerinin yüksek, tesis süresinin uzun olduğu bir sektör için yapılacak planlama çalışmalarında farklı alternatif geleceklerin değerlendirilmesi, ulaşılan sonuçların gelecek belirlenen noktalara göre güncellenmesi gerekmektedir. Çalışma kapsamında farklı senaryolar için hesaplanan tayp düzeyleri ve yatırım maliyetleri bu tespiti desteklemektedir.

Elektrik enerjisi sektöründe eksik ya da fazla yatırımların farklı zararları bulunmaktadır. Elektrik enerjisi talebinin karşılanamaya yetecek yatırımların zamanında gerçekleştirelimemesinin, tüketiciyile sunulan elektrik arzının kesintiye uğraması, sunulan elektrik enerjisinin kalitesinin düşmesi gibi teknik sorunlar yaratması yanıında, birincil girdi olarak elektrik enerjisi kullanan sanayi sektörleri göz önune alınındığında ülke ekonomisine de olumsuz etkileri olacaktır. Diğer taraftan sektör e talebi karşılanmanın üzerinde yatırım yapıldığında, atı kapasite nedeniyle yüklenilen gerekşiz yatırım, finansman, işletme gibi maliyetler; ağır bir finansman yükünü beraberinde getirecektir. Bu bakımından elektrik enerjisi sektöründe yapılan yatırımlarda hedeflenen, elektrik enerjisini ne eksik ne fazla, gerektiği yerde, gerektiği zamanda, gerektiği miktarda, ucuz, kaliteli, güvenli, çevresel kayıpları gözeten ve ekonomik bir şekilde sağlamaktır. Bu amaç doğrultusunda dikkate alınması gereken bir diğer husus da elektrik enerjisi sektöründe üretim, iletim ve
dağıtım yatırımlarının ağır maliyeti ve sermaye duyarlı yapısıdır. Özellikle elektrik enerjisi üretim sistemlerine yönelik yatırımların yapılabilirlik etüllerinden, gerçekleştirilip devreye alınmalarını için geçen zaman da düşünülüğünde, elektrik enerjisi sektörünün doğru işleyişi açısından, talep tahminlerinin önemi açıkça ortaya çıkmaktadır.

Talep tahminleri ve arz planlamasında yapılacak öngörü çalışması, ulusal düzeyde farklı faktörlerle ilişkilili olmasının yanı sıra küresel ölçekte değerlendirilebilecek çok çeşitli faktörlere de bağlıdır. Liberal ekonomik yapı ve serbest piyasa işleyişinde elektrik enerjisi sektörüne ilişkin tahmin ve planlama çalışmaları gerçekleştirilir ve ulaşılan sonuçları tüm piyasa oyuncuları ile paylaşacak bir düzenleyici ya da yönlendirici yapıya ihtiyaç bulunmaktadır. Düzenleyici yapının hem ulusal düzeyde çeşitli değişkenlerin elde edilmesinde, hem de ülkenin geleceği ile ilgili politikalarının被执行lendirilmesinde en kuvvetli oyuncu olan kamu ağırlıklı özver bir yapıda örgütlenmesi gerekliktir.

Türkiye elektrik enerjisi sektörü, liberal ekonominin gereği olan rekabetçi bir yapıda tekrar örgütlenirken, bu süreçte, devlet denetimini gerektiren bir başka unsur da ülkemizin gelişmekte olan bir ülke olmasıdır. Bu değerlendirmenin doğal bir sonucu olarak, elektrik enerjisi diğer sektörlerin üretim girdileri içinde ağırlıklı olarak yer almaktan ve toplumun ihtiyaç duyduğu bir ürün olarak kamu hizmeti olma özelliğini sürdürmektedir. Aynı zamanda ülkemize ve dünyada- elektrik enerjisi sektörüne yönelik üretim, iletim ve dağıtım yatırımlarının kamu bütçeleri ile karşılanamadığı gerektiği, bu sektörde girişi özel teşebbüsünün özendirilmesi gereğini de ortaya koymaktadır. Özel sektörün payı, sadece gerekli kapasite artırılarımın

127

Serbest piyasaya geçiş gibi uluslararası yükümlülüklerin getirdiği anlaşmaların söz konusu olduğu elektrik enerjisi sektöründe yaşanan sorunlar, YİD ve Yİ yatırım modellerinin uygulama aşamasında ve sonrasında, taraflar arasında bir takım zorluklarla karşılaşıldığı ve yanlış uygulamaların ortaya konduğuunu göstermektedir. Burada tartışlan durum bu yatırım modellerinin arz talep dengesini sağlamakta çok, siyasal kararlar ile uygulamaya konulmuş olmasından kaynaklanmaktadır.

Çalışma kapsamında yalnızca elektrik enerjisi sektörü için farklı senaryolar üzerinde çalışılmış ve bunun ekonomi üzerine etkileri gösterilmeye çalışılmıştır. Ancak bu tip alternatifli planların tüm iç ve dış politika belirsizlikleri için yapılması ve kamuoyu ile paylaşılması gereklidir.

Elektrik enerjisi sektörü konusunda Avrupa Birliği’nin çeşitli direktifleri, üyelik sürecinde Türkiye tarafından uygulanmak zorundadır. Serbest ve tam rekabetçi elektrik enerjisi piyasasına geçiş, düzenleyici kurumları kuvvetlendirilmesi, Avrupa Elektrik İletimi Koordinasyon Birliği’ne dahil olunması çalışmalarını, bu direktifler sonucudur.

Sonuç olarak elektrik enerjisi sektöründe yapılan yatırım planlamaları, talep tahmininden başlayarak alternatifli ve mümkün olan en doğru verilerle yapılmalı, bu talep tahmini çalışmalarında en çok bilgi ve tecrübe sahibi olan, kamu olanaklarını kullanacak bağımsız bir kurum görevlendirilmelidir. Piyasa oyuncularının farklı beklentiler içinde olduğu elektrik enerjisi sektöründe düzenleyici kurum, tüm bu beklentileri göz önünde alarak geliştirilen senaryolar çerçevesinde talep değerlerini ve bağlı olarak yatırım gereksinimini ortaya çıkarmalı ve özel sektör ile paylaşımalıdır. Böylece, özel sektörin beklentileri karşılanırken, kamu yararı da gözetilmiştir olacaktır.
KAYNAKLAR

[36] www.tcias.gov.tr

[43] www.die.gov.tr

[44] www.dpt.gov.tr
ÖZGEÇMİŞ